

August 22, 2014

Ms. Lee Guterman
Deputy Director, IEH Division
New York City School Construction Authority
30-30 Thomson Avenue
Long Island City, NY 11101-3045

**Re:** Phase II Environmental Site Investigation

**Proposed Public School** 

1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue, Bronx, NY 10462 (Block 3952, Lots 1, 7, 8, 17 & 23)

LLW # 091486; IEH Job # X882-48569

Dear Ms. Guterman:

D&B Engineers and Architects, P.C. (D&B) conducted a Phase II Environmental Site Investigation (ESI) at the Site located at 1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue in the Bronx, New York 10462 (hereafter referred to as the "Site"). The Site consists of an approximate 70,600-square-foot lot improved with five interconnected one- and two-story commercial buildings with basements, as well as an active gasoline station. The Phase II ESI field activities were performed on June 23 through 30, 2014 and consisted of a geophysical survey, the advancement of soil borings and collection and analysis of soil vapor, soil and groundwater samples.

The geophysical survey identified anomalies consistent with utilities throughout the sampling area and identified and confirmed anomalies consistent with the underground storage tanks at the northwest corner of the Site. The analyses of the soil samples revealed several volatile organic compounds (VOCs), semivolatile organic compounds, metals and pesticides at concentrations exceeding comparison levels, which were attributed to historic fill of unknown origin, historical and current Site use, as well as off-site sources. Several VOCs were detected in soil vapor and groundwater above the applicable comparison criteria, which may be attributable to historical and/or current Site use or off-site sources.

D&B recommends that a sub-slab depressurization system (SSDS) be installed and a soil vapor barrier be integrated into the new school design to prevent potential soil vapor intrusion. All material excavated during construction activities should be properly characterized and disposed and a minimum of two feet of environmentally clean fill should be placed over existing soil in all landscaped areas. All tanks, piping and appurtenances on the Site should be removed. Suspect asbestos containing material, lead based paint, and PCB-containing materials should be properly identified and managed during demolition and construction activities. Based on the Phase II ESI results, groundwater remediation and long-term groundwater monitoring will be required. In addition, limited soil remediation is anticipated during removal of the existing on-site tanks and during excavation activities required to construct the foundation of the new school building.

Sincerely,

D&B Engineers and Architects, P.C.

Richard M. Walka Senior Vice President \$3154\NN08211402

PROPOSED PUBLIC SCHOOL 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462 BLOCK 3952, LOTS 1, 7, 8, 17 & 23

> NYCSCA LLW NO. 091486 NYCSCA CONTRACT NO. C000013007 NYCSCA JOB NO. X882-48569

> > **D&B PROJECT NO. 3415-F02**

**AUGUST 22, 2014** 

#### Prepared by:



D&B Engineers and Architects, P.C. 330 Crossways Park Drive Woodbury, NY 11797-2015 Phone: (516) 364-9890

Fax: (516) 364-9045 Attn: Mr. Richard M. Walka

#### Prepared for:



NYC SCA 30-30 Thomson Avenue Long Island City, NY 11101-3045

Phone: (718) 472-8502 Fax: (718) 472-8500 Attn: Ms. Lee Guterman

# NOTICE OF REMEDIATION REQUIRED

Environmental contamination at the project site must be remediated prior to, or during, site development. Remedial design documents must be included within bid specifications for the construction contract. Contact IEH Department for additional information or assistance.

| Site Name   | Proposed Public School Facility                                                                                    | LLW No.                | 091486                             |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------|--|--|
| Description | 1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue | IEH Job Number         | X882-48569                         |  |  |
| District    | 12                                                                                                                 | Consultant Vendor      | D&B Engineers and Architects, P.C. |  |  |
| Borough     | Bronx                                                                                                              | Phase I Delivery Date  | 4/14/2014                          |  |  |
| Block/ Lot  | Block 3952, Lots 1, 7, 8, 17 & 23                                                                                  | Phase II Delivery Date | 8/22/2014                          |  |  |

| 4504                       | Identified Co                             |                                 | ,             |
|----------------------------|-------------------------------------------|---------------------------------|---------------|
| MEDIA                      | CONTAMINANT                               | CONCENTRATION RANGE             | UNITS         |
| Soil Vapor                 | VOCs                                      | 29.83 to 32,644.3               | ug/m3         |
| Soil Vapor                 | Tetrachloroethene                         | 0.34 to 31,193                  | ug/m3         |
| Soil                       | 1,2,4-Trimethylbenzene                    | <0.00016 to 33.6                | mg/kg         |
| Soil                       | 1,3,5-Trimethylbenzene                    | <0.00016 to 11                  | mg/kg         |
| Soil                       | Acetone                                   | <0.0008 to 0.0576               | mg/kg         |
| Soil                       | Benzene                                   | <0.00016 to 7                   | mg/kg         |
| Soil                       | Ethylbenzene                              | <0.00016 to 13.5                | mg/kg         |
| Soil                       | Isopropylbenzene                          | <0.00016 to 14.3                | mg/kg         |
| Soil                       | m,p-Xylene                                | <0.00032 to 43.8                | mg/kg         |
| Soil                       | o-Xylene                                  | <0.00016 to 12.7                | mg/kg         |
| Soil                       | Tetrachloroethene                         | <0.00016 to 3.3                 | mg/kg         |
| Soil                       | Toluene                                   | <0.00016 to 3.4                 | mg/kg         |
| Soil                       | Naphthalene                               | <0.00016 to 32.3                | mg/kg         |
| Soil                       | n-Butylbenzene                            | <0.00016 to 12.6                | mg/kg         |
| Soil                       | n-Propylbenzene                           | <0.00016 to 41.1                | mg/kg         |
| Soil                       | 2-Methylnapthalene                        | <0.0366 to 0.75                 | mg/kg         |
| Soil                       | , ' ·                                     | <0.0366 to 3.1                  | mg/kg         |
| Soil                       | Indeno(1,2,3-cd)pyrene                    | <0.0366 to 6.5                  |               |
|                            | Benzo(a)anthracene                        |                                 | mg/kg         |
| Soil                       | Benzo(a)pyrene                            | <0.0366 to 5                    | mg/kg         |
| Soil                       | Benzo(b)fluoranthene                      | <0.0366 to 5.8                  | mg/kg         |
| Soil                       | Benzo(k)fluoranthene                      | <0.0366 to 2.7                  | mg/kg         |
| Soil                       | Chrysene                                  | <0.0366 to 5.3                  | mg/kg         |
| Soil                       | Dibenzo(a,h)anthracene                    | <0.0366 to 0.76                 | mg/kg         |
| Soil                       | 4,4'-DDE                                  | <0.36 to 4.7                    | ug/kg         |
| Soil                       | Arsenic                                   | 0.473 to 22.6                   | mg/kg         |
| Soil                       | Barium                                    | 7.86 to 1410                    | mg/kg         |
| Soil                       | Cadmium                                   | <0.138 to 5.77                  | mg/kg         |
| Soil                       | Chromium                                  | 14.9 to 102                     | mg/kg         |
| Soil                       | Copper                                    | 7.86 to 146                     | mg/kg         |
| Soil                       | Lead                                      | 9.84 to 3240                    | mg/kg         |
| Soil                       | Mercury                                   | <0.005 to 0.681                 | mg/kg         |
| Soil                       | Nickel                                    | 8.38 to 80.8                    | mg/kg         |
| Soil                       |                                           | 0.746 to 2.6                    | mg/kg         |
| Soil                       | Silver<br>Zinc                            | 18.9 to 1710                    |               |
| Groundwater                | 1,2,4-Trimethylbenzene                    | <0.200 to 2600                  | mg/kg<br>ug/l |
| Groundwater                | 1,3,5-Trimethylbenzene                    | <0.200 to 750                   | ug/l          |
| Groundwater                | Benzene                                   | <0.200 to 4000                  | ug/l          |
| Groundwater                | Chloroform                                | <0.200 to 15.8                  | ug/l          |
| Groundwater                | cis-1,2-Dichloroethene                    | <0.200 to 7.6                   | ug/l          |
| Groundwater                | Ethylbenzene                              | <0.200 to 4600                  | ug/l          |
| Groundwater                | Isopropylbenzene                          | <0.200 to 130                   | ug/l          |
| Groundwater                | m,p-Xylene                                | <0.400 to 13800                 | ug/l          |
| Groundwater                | Naphthalene                               | <0.200 to 500                   | ug/l          |
| Groundwater                | n-Butylbenzene                            | <0.200 to 5.8                   | ug/l          |
| Groundwater                | n-Propylbenzene                           | <0.200 to 400                   | ug/l          |
| Groundwater                | o-Xylene                                  | <0.200 to 5100                  | ug/l          |
| Groundwater                | p-Isopropyltoluene                        | <0.200 to 14.5                  | ug/l          |
| Groundwater                | sec-Butylbenzene                          | <0.200 to 30<br><0.500 to 46.9  | ug/l          |
| Groundwater<br>Groundwater | Methyl tert-Butyl Ether Tetrachloroethene | <0.500 to 46.9<br><0.200 to 220 | ug/l          |
| Groundwater                | Toluene                                   | <0.200 to 530                   | ug/l<br>ug/l  |
| Groundwater                | Trichloroethene                           | <0.200 to 8                     | ug/l          |
| Groundwater                | Cresols, m&p                              | <1 to 3.2                       | ug/l          |
| Groundwater                | Phenol                                    | <1 to 0.12                      | ug/l          |
| Groundwater                | Manganese                                 | 0.0125 to 17.9                  | mg/l          |
| Groundwater                | Selenium                                  | 0.000859 to 0.0164              | mg/l          |

| Required Remediation                                                    |                                                                                                                                                      |             |  |  |  |  |  |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| MEASURE METHOD COST ESTIMATE                                            |                                                                                                                                                      |             |  |  |  |  |  |
| (list recommended (e.g., Contractor HASP, soil excavation, removed soil |                                                                                                                                                      |             |  |  |  |  |  |
| remediation measures)                                                   | characterization, sub-slab vapor membrane, etc.)                                                                                                     |             |  |  |  |  |  |
| Implement further remediation measures                                  | Soil Excavation and Off-Site Disposal, Tank Removal, Groundwater Remediation and Monitoring, Soil Vapor Barrier and Sub-Slab Depressurization System | \$3,195,200 |  |  |  |  |  |

#### **Comments**

D&B Engineers and Architects, P.C. (D&B) conducted a Phase II Environmental Site Investigation (ESI) at the Site located at 1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue in the Bronx, New York 10462 (hereafter referred to as the "Site"). The Site consists of an approximate 70,600-square-foot lot improved with five interconnected one- and two-story commercial buildings with basements, as well as an active gasoline station. The Phase II ESI field activities were performed on June 23 through 30, 2014 and consisted of a geophysical survey, the advancement of soil borings and collection and analysis of soil vapor, soil and groundwater samples.

The geophysical survey identified anomalies consistent with utilities throughout the sampling area and identified and confirmed anomalies consistent with the underground storage tanks at the northwest corner of the Site. The analyses of the soil samples revealed several volatile organic compounds (VOCs), semivolatile organic compounds, metals and pesticides at concentrations exceeding comparison levels, which were attributed to historic fill of unknown origin, historical and current Site use, as well as off-site sources. Several VOCs were detected in soil vapor and groundwater above the applicable comparison criteria, which may be attributable to historical and/or current Site use or off-site sources.

D&B recommends that a sub-slab depressurization system (SSDS) be installed and a soil vapor barrier be integrated into the new school design to prevent potential soil vapor intrusion. All material excavated during construction activities should be properly characterized and disposed and a minimum of two feet of environmentally clean fill should be placed over existing soil in all landscaped areas. All tanks, piping and appurtenances on the Site should be removed. Suspect asbestos containing material, lead based paint, and PCB-containing materials should be properly identified and managed during demolition and construction activities. Based on the Phase II ESI results, groundwater remediation and long-term groundwater monitoring will be required. In addition, limited soil remediation is anticipated during removal of the existing on-site tanks and during excavation activities required to construct the foundation of the new school building.

# Attachments The following environmental reports are attached to this document: REPORT PREPARE FIRM DATE Phase II Environmental Site Investigation D&B Engineers and Architects, P.C. 8/22/2014 Signature

| Signature       |                                    |           |  |  |  |  |  |
|-----------------|------------------------------------|-----------|--|--|--|--|--|
|                 |                                    |           |  |  |  |  |  |
| Anthony Caniano | D&B Engineers and Architects, P.C. | 8/22/2014 |  |  |  |  |  |
| Preparer        | Firm                               | Date      |  |  |  |  |  |

Copy:

Indu SCA Environmenta

#### PROPOSED PUBLIC SCHOOL

# 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE

#### BRONX, NEW YORK 10462

#### TABLE OF CONTENTS

| Sec | ction          |                                                                                                             | Page |
|-----|----------------|-------------------------------------------------------------------------------------------------------------|------|
| EX  | ECUT           | IVE SUMMARY                                                                                                 | 1    |
| 1.0 | IN             | FRODUCTION                                                                                                  | 5    |
| 1.0 | 1.1            | Purpose                                                                                                     |      |
|     | 1.2            | Recognized Environmental Conditions (RECs), Vapor Encroachment Conditions (VECs) and Environmental Concerns |      |
| 2.0 | DE             | SCRIPTION OF PHASE II ESI FIELD ACTIVITIES                                                                  |      |
|     | 2.1            | Geophysical Survey                                                                                          |      |
|     | 2.2            | Asbestos Clearance                                                                                          |      |
|     | 2.3            | Soil Vapor Survey                                                                                           |      |
|     | 2.3.1          | Sub-Slab Soil Vapor Sampling                                                                                |      |
|     | 2.3.2          | Soil Vapor Sampling                                                                                         |      |
|     | 2.4            | Soil Investigation                                                                                          |      |
|     | 2.5            | Groundwater Investigation                                                                                   | 15   |
|     | 2.6            | Preliminary Waste Characterization                                                                          | 18   |
|     | 2.6.1          | Pre-Design Waste Characterization                                                                           | 18   |
|     | 2.6.2          | Investigation Derived Waste Sampling                                                                        | 18   |
| 3.0 | SIT            | 'E DESCRIPTION AND PHYSICAL CHARACTERISTICS                                                                 | 19   |
|     | 3.1            | Topography                                                                                                  |      |
|     | 3.2            | Geology                                                                                                     |      |
|     | 3.3            | Hydrogeology                                                                                                |      |
| 4.0 | DIS            | SCUSSION OF FINDINGS                                                                                        | 21   |
| 1.0 | 4.1            | Applicable Regulatory Standards                                                                             |      |
|     | 4.1.1          | Soil Vapor Guidelines                                                                                       |      |
|     | 4.1.2          | Soil Cleanup Objectives (SCOs), Supplemental Soil Cleanup Objectives (SSCOs) and                            |      |
|     |                | Soil Cleanup Levels (SCLs)                                                                                  | 21   |
|     | 4.1.3          | Groundwater Quality Standards and Guidance Values                                                           |      |
|     | 4.1.4          | Preliminary Waste Characterization                                                                          | 22   |
|     | 4.2            | Geophysical Survey Findings                                                                                 | 22   |
|     | 4.3            | Soil Vapor Survey Findings                                                                                  |      |
|     | 4.3.1          | Soil Vapor Sampling Findings                                                                                | 22   |
|     | 4.4            | Soil Sampling Findings                                                                                      |      |
|     | 4.4.1          | Volatile Organic Compounds (VOCs) in Soil                                                                   | 26   |
|     | 4.4.2          | Semivolatile Organic Compounds (SVOCs) in Soil                                                              |      |
|     | 4.4.3          | Metals and Cyanide in Soil                                                                                  |      |
|     | 4.4.4          | Pesticides and PCBs in Soil                                                                                 |      |
|     | 4.4.5          | Total Petroleum Hydrocarbons (TPH) in Soil                                                                  |      |
|     | 4.5            | Groundwater Sampling Findings                                                                               |      |
|     | 4.5.1          | Volatile Organic Compounds (VOCs) in Groundwater                                                            |      |
|     | 4.5.2          | Semivolatile Organic Compounds (SVOCs) in Groundwater                                                       |      |
|     | 4.5.3<br>4.5.4 | Total and Dissolved (Filtered) Metals in Groundwater                                                        |      |
|     | 4.5.4<br>4.5.5 | NYCDEP Discharge Parameters in Groundwater                                                                  |      |
|     | T.J.J          | 111 CDD DISCIMIZE I MUNICICIS IN OTOMIWWINCH                                                                |      |

#### PROPOSED PUBLIC SCHOOL

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

|     | 4.6   | Residual Waste and/or Pre-Design Waste Characterization Sampling Findings | 39 |
|-----|-------|---------------------------------------------------------------------------|----|
|     | 4.6.1 | Pre-Design Characterization Sampling Results                              |    |
|     | 4.6.2 | Investigation Derived Waste Management and Disposal                       |    |
|     | 4.7   | Summary of Findings                                                       | 39 |
| 5.0 | CO    | NCLUSIONS AND RECOMMENDATIONS                                             | 42 |
| 6.0 | SIG   | NATURES OF ENVIRONMENTAL PROFESSIONALS                                    | 45 |
| 7.0 | RE    | FERENCES                                                                  | 46 |
|     |       |                                                                           |    |

#### LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan with Off-Site RECs
- Figure 3 Site Plan and Sample Locations

#### LIST OF TABLES

- Table 1 Summary of Compounds of Concern
- Table 2 Summary of PID readings and Soil Sample Analytical Plan
- Table 3 Groundwater Sample Analytical Plan
- Tables 4 through 11 Embedded Tables with Values Exceeding Criteria
- Tables 12 through 20 Summary of Analytical Results Tables

#### **APPENDICES**

| APPENDIX A | SITE INVESTIGATION PHOTOGRAPHS         |
|------------|----------------------------------------|
| APPENDIX B | GEOPHYSICAL SURVEY REPORT              |
| APPENDIX C | SOIL BORING LOGS                       |
| APPENDIX D | SAMPLE COLLECTION LOGS                 |
| APPENDIX E | LABORATORY ANALYTICAL DATA REPORTS     |
| APPENDIX F | SUPPORTING DOCUMENTS                   |
| APPENDIX G | RECOMMENDED REMEDIATION COST ESTIMATES |

PROPOSED PUBLIC SCHOOL 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE

BRONX, NEW YORK 10462

#### **EXECUTIVE SUMMARY**

At the request of the New York City School Construction Authority (NYCSCA), D&B Engineers and Architects, P.C. (D&B) conducted a Phase II Environmental Site Investigation (ESI) of the proposed public school facility located at 1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue in the Bronx, New York 10462 (hereafter referred to as the "Site"). The legal description of the Site is Block 3952, Lots 1, 7, 8, 17 & 23. The NYCSCA is considering acquiring the Site for the demolition of all on-site structures and construction of a new public school facility. The Site consists of an entire city block bounded by East Tremont Avenue to the north, Unionport Road to the east, Guerlain Street to the south, and White Plains Road to the west, and is located in an area that is primarily characterized by residential and commercial use.

The Site consists of an approximate 70,600-square-foot (1.62 acre) lot improved with an assemblage of five interconnected one and two-story commercial buildings with basements, as well as a gasoline station with a convenience store. Lot 1 includes a one-story building with an approximate 7,000-square-foot footprint constructed in 1949; Lot 7 includes a two-story building with an approximate 6,650-square-foot footprint constructed in 1949; Lot 8 includes an active gasoline station and a one-story building with an approximate 1,350-square-foot footprint constructed in 1953; Lot 17 includes a two-story building with an approximate 17,000-square-foot footprint constructed in 1942; and Lot 23 includes two one-story buildings with a combined approximate 22,000-square-foot footprint constructed in 1941.

The Site is generally used for commercial purposes including a gas station/convenience store, insurance brokers, hair salons, barber shop, laundromat, beauty products store, music store, furniture store, discount store, T-shirt printing/sales office, shoe repair, law office, insurance broker, bakery, food market, bar and restaurants. Historically, the Site was used for various commercial uses including stores and offices with a gas station located on the northwest corner of the Site. The historical uses of the commercial buildings included dry cleaners, dental offices, offices, stores, a movie theater and a bowling alley. Adjoining properties include commercial and residential properties.

D&B previously performed a Phase I Environmental Site Assessment (ESA) of the Site for the NYCSCA. The Phase I ESA Report dated April 14, 2014 identified Recognized Environmental Conditions (RECs) and/or Vapor Encroachment Conditions (VECs) associated with the current and historical use of the Site and off-site properties. The Phase I ESA identified on-site RECs associated with historic fill of unknown origin, an active gasoline/filling station, active aboveground storage tanks on multiple lots with petroleum odors, historical dry cleaners, former bowling alley, three storm drains located in the alleyway in the central portion of the Site with unknown discharge points, a suspect underground storage tank associated with an oil-fired steam boiler, and a historical photograph processing facility. The Phase I ESA also identified off-site RECs associated with multiple historical gasoline/filling stations identified with open and closed spills and documented contamination to soil and groundwater; historical automobile sales and service facilities; a Con Edison substation with numerous reported spills, historical coal bins and coal pockets, and documented soil and groundwater contamination; an apartment building complex listed in spills and leaking underground storage tank databases, history of spills, documented release of oil underground, and four active 60,000-gallon USTs; multiple sites listed in spills, leaking underground storage tank and petroleum bulk storage tanks databases, and open and closed spills; a former gasoline/filling station located at 2040 White Plains Road listed in the Brownfields Cleanup Program database with documented soil and groundwater contamination, closed status in the BCP with a vapor barrier/active SSDS under site management plan, and open spill for off-site groundwater contamination under investigation; an active carwash and service station formerly a gasoline/filling station; and an auto

1

#### PROPOSED PUBLIC SCHOOL 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET,

#### 1577-1627 UNIONI ORT ROAD, 1669-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

repair shop listed in historical automobile station database with underground storage tanks. Additionally, the evaluation revealed the presence of environmental concerns associated with the potential presence of asbestos-containing materials (ACM), lead-based paint (LBP), polychlorinated biphenyl (PCB)-containing ballasts and caulk, pigeon guano, rat droppings, mold from water damage, and regulatory compliance issues associated with the on-site aboveground and suspect underground storage tanks.

The purpose of the Phase II ESI was twofold: 1) determine if the RECs, VECs, and environmental concerns identified in the Phase I ESA Report require special consideration and/or affect the suitability of the Site for use as a public school facility, and 2) preliminarily characterize the environmental condition of the soil anticipated to be excavated for construction of the new school facility. Phase II ESI field activities were performed between June 23 through June 30, 2014 and included the performance of a geophysical survey, the advancing of 19 soil borings, the collection of 23 soil samples, 18 soil vapor samples, and 9 groundwater samples from the borings, and the collection of 4 groundwater samples from existing on-site monitoring wells.

Based on the Phase II ESI results, the following can be concluded:

- The RECs/VECs identified in the Phase I ESA were adequately investigated.
- The geophysical survey found two anomalies that are consistent with the USTs located at the gas station on the northwest corner of the Site (Lot 8).
- Elevated VOC concentrations were detected in soil vapor throughout the Site, with 16 of the 18 soil vapor samples exhibiting one or more VOCs at concentrations greater than the New York State Department of Health Air Guideline Values (AGVs) or the anticipated range of background levels. Soil vapor samples SV-8 and SV-15, located in the vicinity of former on-site dry cleaners (1590 White Plains Road and 1597 Unionport Road), exhibited PCE concentrations up to 1,000 times the AGV and TCE concentrations up to 25 times the AGV near the former on-site dry cleaners. PCE was detected above the AGV in 11 of the 18 soil vapor samples. Soil vapor sample SV-5, which exhibited a benzene concentration nearly 100 times the maximum comparison value, is located in the alleyway immediately downgradient of the on-site gas station. Petroleum-related compounds were detected in soil gas in the western and northwestern portions of the Site. At these locations, compounds detected in soil vapor above the anticipated range of background concentrations were also detected exceeding their respective regulatory standards in soil or groundwater samples and were consistent with field observations of contamination. Therefore, the detected soil vapor concentrations are likely due to historical and/or current use of the Site (e.g., the on-site gasoline station and former dry cleaners), as well as off-site sources (e.g., adjoining upgradient gasoline station spill).
- The soil sample analyses indicate that most of the following petroleum-related VOCs and SVOCs (2-methylnaphthalene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, m,p-xylenes, o-xylene, toluene, naphthalene, n-butylbenzene and n-propylbenzene) were detected at concentrations greater than Unrestricted Use SCOs, SCLs and/or Supplemental SCOs in two soil samples located downgradient of the on-site gas station. The soil sample located in the vicinity of the former on-site dry cleaner formerly located at 1590 White Plains Road exhibited a PCE concentration of 3.3 mg/kg, above the Unrestricted Use SCO of 1.3 mg/kg. The source of these VOCs and SVOCs can likely be attributed to the

2

#### PROPOSED PUBLIC SCHOOL

# 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

historical or current use of the Site (e.g., the on-site gasoline station), as well as off-site sources (e.g., adjoining upgradient gasoline station spill) for smear zone soil

- Various PAHs and one pesticide (4,4'-DDE) were detected above Unrestricted Use SCOs and SCLs in one shallow soil sample. In addition, a total of 11 metals were detected in one or more soil samples at concentrations exceeding Unrestricted Use SCOs or Supplemental SCOs. Given that the highest concentrations were detected in shallow soil and are generally not consistent with the soil samples exhibiting petroleum contamination, the source of these SVOCs, metals and pesticides can likely be attributed to historic fill located on-site. Historic fill was observed in most boring locations with a maximum thickness of approximately 10 feet.
- The groundwater sample analyses indicate that most of the following VOCs and SVOCs (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, m,p-cresols, m,p-xylene, naphthalene, n-butylbenzene, n-propylbenzene, o-xylene, phenol, p-isopropyltoluene, sec-butylbenzene, MTBE and toluene) were detected at concentrations greater than Class GA Groundwater Standards in groundwater samples located downgradient of the on-site gas station. Groundwater sample GW-17, located downgradient of the Site, exhibited concentrations of three chlorinated VOCs (1,2-DCE, PCE and TCE) above the groundwater standard, with a PCE concentration over 40 times the standard. The upgradient sample did not exhibit concentrations of VOCs or SVOCs in excess of the Class GA Groundwater Standards, with the exception of MTBE. Therefore, the contamination detected in the on-site wells is either from an on-site source (e.g., the on-site gasoline station) or Location 1 is not hydraulically upgradient of these wells and off-site sources (e.g., adjoining upgradient gasoline station spill) may be impacting the Site.
- The analyses indicate that several metals were detected in one or more groundwater samples at concentrations exceeding their respective NYSDEC Class GA Groundwater Standards. The metals, with the exception of manganese and selenium, were only elevated in the total metals analysis and not the dissolved metals analysis and therefore are related to sample turbidity and not on-site release. The presence of dissolved manganese and selenium is related to natural conditions.
- Based on the soil vapor concentrations, a VEC exists. Based on the Phase II investigation, the VOCs detected in soil and groundwater may be the source of these concentrations. These impacts may be related to the historical or current use of the Site or off-site sources.
- Based on comparison of groundwater sampling results to NYCDEP discharge parameters, pre-filtering will be required to address total suspended solids if plans include discharging to the sewer system during dewatering at the Site. In addition, treatment to address the on-site chlorinated VOC and petroleum contamination may be necessary.
- The soil encountered at the Site can be classified as nonhazardous industrial waste as defined in the NYCSCA 02200 Earthwork Specification template.
- Given the extent of observed petroleum and chlorinated VOC contamination in soil vapor, soil
  and groundwater, it is likely that proceeding with the proposed school at this Site will require
  NYSDEC involvement. The Site may be eligible for management under the Brownfield Cleanup
  Program (BCP). Further discussion with the NYSDEC is recommended to determine eligibility.

#### PROPOSED PUBLIC SCHOOL

# 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

Based on the results of the Phase II ESI, the following remedial actions and/or engineering controls are required to render the Site suitable for use as a public school facility:

- As a safeguard to prevent potential volatile organic compounds in soil vapor from entering the
  new school building in the future, a sub-slab depressurization system should be installed and a
  soil vapor barrier should be integrated into the new school design including the integration with
  any proposed damp-proofing or waterproofing components of the new school design.
- To mitigate elevated concentrations of organic compounds, groundwater remediation should be completed followed by long-term groundwater monitoring both on-site and off-site.

In addition, D&B recommends the following as part of the NYCSCA standard construction requirements:

- If soil is to be excavated during the development of the public school facility, D&B recommends properly characterizing the soil to identify appropriate material handling, reuse, and/or disposal requirements. Excavated material should be managed in accordance with applicable federal, state, and local laws and regulations and in consideration of the results of the characterization sampling and analysis. Based on the results of the analyses of soil samples collected during the Phase II ESI, material excavated from the Site is expected to be nonhazardous industrial waste, as defined in the standard NYCSCA 02200 Earthwork Specification section template, and should be identified as nonhazardous industrial waste for bidding purposes. Additionally, the project construction specifications should require completion of waste characterization sampling by the contractor.
- If dewatering is necessary during school construction activities, it is expected that treatment of dewatering effluent may be required prior to discharge to the municipal sewer. Dewatering, groundwater treatment, and disposal should be performed in accordance with applicable local, state, and federal regulations. Dewatering required during construction should be minimized to mitigate potential influx of contaminated water from off-site sources toward the Site.
- All tanks, piping and appurtenances on the Site should be removed (i.e. gasoline station), and all other underground/aboveground storage tanks should be removed from the Site.
- After the proposed new building and grounds are constructed, any exposed soil (landscaped areas) must be covered with at least two feet of environmentally clean fill.
- Suspect ACM, LBP, and/or PCB-containing materials should be properly managed during construction or demolition activities.

A description of the remedial engineering controls and associated cost estimates are included in *Appendix G*.

#### PROPOSED PUBLIC SCHOOL

1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

#### 1.0 INTRODUCTION

#### 1.1 Purpose

At the request of New York City School Construction Authority (NYCSCA), D&B Engineers and Architects, P.C. (D&B) conducted a Phase II Environmental Site Investigation (ESI) of the proposed public school facility located at 1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue in the Bronx, New York 10462 (hereafter referred to as the "Site"). The legal description of the Site is Block 3952, Lots 1, 7, 8, 17 & 23. The Site consists of an entire city block bounded by East Tremont Avenue to the north, Unionport Road to the east, Guerlain Street to the south, and White Plains Road to the west, and is located in an area that is primarily characterized by residential and commercial use.

The Site consists of an approximate 70,600-square-foot (1.62 acre) lot improved with an assemblage of five interconnected one and two-story commercial buildings with basements, as well as a gasoline station with a convenience store. Lot 1 includes a one-story building with an approximate 7,000-square-foot footprint constructed in 1949; Lot 7 includes a two-story building with an approximate 6,650-square-foot footprint constructed in 1949; Lot 8 includes an active gasoline station and a one-story building with an approximate 1,350-square-foot footprint constructed in 1953; Lot 17 includes a two-story building with an approximate 17,000-square-foot footprint constructed in 1942; and Lot 23 includes two one-story buildings with a combined approximate 22,000-square-foot footprint constructed in 1941.

The Site is generally used for commercial purposes including a gas station/convenience store, insurance brokers, hair salons, barber shop, laundromat, beauty products store, music store, furniture store, discount store, T-shirt printing/sales office, shoe repair, law office, insurance broker, bakery, food market, bar and restaurants. Historically, the Site was used for various commercial uses including stores and offices with a gas station located on the northwest corner of the Site. The historical uses of the commercial buildings included dry cleaners, dental offices, offices, stores, a movie theater and a bowling alley. Adjoining properties include commercial and residential properties. *Figure 1* presents a Site Location Map. A Site Plan showing Site features, tax block and lot numbers and anticipated groundwater flow direction is provided as *Figure 2*.

A Test Fit/Sketch Study, dated March 6, 2014, was prepared by the NYCSCA. The Test Fit/Sketch Study envisions a new four-story school building with a full basement encompassing 107,674 square feet of gross floor area. The first floor of the planned school includes a 14,400-square-foot outdoor play area in the northwest portion of the Site. A copy of the Test Fit/Sketch Study is provided in *Appendix F*.

This Phase II ESI was performed as a follow up to the Phase I Environmental Site Assessment (ESA), prepared by D&B, dated April 14, 2014. Its purpose is to determine if there are any Recognized Environmental Conditions (RECs), Vapor Encroachment Conditions (VECs) or environmental concerns identified on the property or adjacent areas that require special considerations and/or may have affected the suitability of the Site for use as a public school facility (See Section 1.2). The analytical data collected during this study will also assist in preliminarily characterizing the soil anticipated to be excavated for construction of the school facility. To accomplish these objectives, the following media were investigated: soil, soil vapor and groundwater.

#### PROPOSED PUBLIC SCHOOL

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

# 1.2 Recognized Environmental Conditions (RECs), Vapor Encroachment Conditions (VECs) and Environmental Concerns

The Phase I ESA of the Site identified several on-site RECs, VECs, and environmental concerns, as listed below:

#### On-Site RECs/VECs:

- Historic fill of unknown origin.
- Active gasoline/filling station with two closed spills.
- Active aboveground storage tanks on multiple lots with petroleum odors.
- Historical dry cleaners (1590 White Plains Road and 1597 Unionport Road).
- Former bowling alley.
- Three storm drains located in the alleyway in the central portion of Site.
- Suspect underground storage tank associated with the oil-fired steam boiler.
- Historical photograph processing facility.

#### Off-Site RECs/VECs:

- Multiple historical gasoline/filling stations identified with open/closed spills and documented contamination to soil and groundwater.
- Historical auto sales and service facility with documented spills.
- Con Edison Parkchester-Tremont Substation listed in spills and leaking underground storage tank databases, historical coal bins and coal pockets, documented soil and groundwater contamination and numerous reported spills.
- Apartment building complex listed in spills and leaking underground storage tank databases, history of spills, documented release of oil underground, and four active 60,000-gallon USTs (with no leak detection or secondary containment in-place).
- Multiple sites listed in spills, leaking underground storage tank and petroleum bulk storage tanks databases, upgradient location and open/closed spills.
- Former gasoline/filling station located at 2040 White Plains Road listed in the Brownfields Cleanup Program database, documented soil and groundwater contamination, closed status in program with vapor barrier/active SSDS, under site management plan, and open spill for off-site groundwater contamination (under investigation).
- Active carwash and service station listed in historical automobile station database (former gasoline/filling station).
- Auto repair shop listed in historical automobile station database with underground storage tanks.

#### PROPOSED PUBLIC SCHOOL

# 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

This Phase I ESA has revealed the following environmental concerns associated with the Site:

- Potential presence of ACM, LBP, and PCB-containing equipment and material based on the age
  of the buildings.
- Presence of rat droppings and pigeon guano observed in the buildings.
- Presence of water damage and mold observed in the basements of the buildings.
- Regulatory compliance issues associated with the on-site aboveground and suspect underground storage tanks.

#### PROPOSED PUBLIC SCHOOL

# 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE

#### **BRONX, NEW YORK 10462**

#### 2.0 DESCRIPTION OF PHASE II ESI FIELD ACTIVITIES

Phase II ESI field activities were performed between June 23 and 30, 2014 and included the following:

- A pre-probe ACM survey prior to the ESI boring activities (performed by NYCSCA asbestos contractor/consultant);
- A geophysical survey to clear boring locations of utilities and identify any subsurface anomalies;
- Installation of nineteen soil vapor probes and collection of soil vapor samples for laboratory analysis;
- Advancement of nineteen soil borings with continuous sampling to the groundwater interface or refusal;
- Collection of soil samples from each boring for laboratory analysis;
- Collection of ten groundwater samples from specific borings where water was encountered; and
- Collection of four groundwater samples from existing permanent on-site wells.

A Site Plan showing all the sampling locations, Site features, tax block and lot numbers, identified RECs/VECs and anticipated groundwater flow direction is provided as *Figure 3*. Representative photographs of the field investigation activities including the condition of the Site prior to and following the investigation are included in *Appendix A*.

The Phase II ESI was conducted in general accordance with D&B's Phase II ESI Scope of Work dated April 14, 2014, with the following exceptions:

- Groundwater was not encountered at temporary wells GW-2, 4 and 12 due to refusal. As a result, groundwater samples were not collected for laboratory analysis from these locations. In order to obtain groundwater quality data from the northeast portion of the Site, a groundwater sample was collected from temporary well GW-11. This does not affect the conclusions of this report.
- Permanent monitoring wells MW-A, MW-B, MW-C and MW-D were inaccessible. As a result, groundwater samples were not collected for laboratory analysis from these wells. However, during the field activities, four additional monitoring wells were observed on-site and identified as MW-E, MW-F, MW-G and MW-H. Since these four wells are located in the vicinity of wells MW-A, MW-B, MW-C and MW-D, groundwater samples were collected from these wells. Information provided by the FOIL search did not indicate the owner of these wells or provide any current monitoring data. This does not affect the conclusions of this report.
- Due to the large area occupied by the building within Lot 23, an additional location was added to the program by the NYCSCA. This location is referred to as Location 19. It should be noted that a sub-slab soil vapor sample was proposed at this location. The sample was collected utilizing standard procedures. However, upon receipt at the laboratory, the laboratory indicated that the

#### PROPOSED PUBLIC SCHOOL 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET,

#### 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

sample was not in the Summa canister. As a result, a soil vapor sample was not obtained for this location. This does not affect the conclusions of this report.

- Since groundwater was not encountered at Locations 1 and 13 with the Geoprobe due to refusal, a hollow-stem auger drill rig was utilized to collect groundwater samples from these locations.
- Due to access limitations, the sampling locations within the Site buildings (i.e., Locations 3, 7, 10, 11 and 14) had to be relocated from their original proposed locations.
- Investigation derived waste (IDW) was not generated during the Phase II ESI. All surplus bored material (i.e., that not needed for sample collection) was utilized to backfill each borehole. In addition, all purged groundwater was introduced back into each borehole prior to backfilling.

The scope of the field activities and methods are described below.

#### 2.1 Geophysical Survey

A geophysical survey was performed on June 16, 2014 by Nova Geophysical Services (NOVA) of Douglaston, New York to determine the location and extent of subsurface anomalies (i.e., USTs and associated ancillary piping, suspect drywells, subsurface piping and utility lines, buried structures, etc.) and to verify that the proposed sample locations were clear of subsurface structures and utilities. The geophysical survey equipment consisted of a Geonics<sup>TM</sup> Electromagnetic Utility Detector (EUD-3) and a Noggin's 250 MHz ground penetrating radar (GPR) shielded antenna. The entire exterior portions of the Site were surveyed; in the building interiors, only the boring locations were cleared. The Site was first screened using the EUD-3 by carrying the instrument over the Site in 4' x 4' traverses. If evidence of anomalies was observed, GPR profiles were collected over each anomaly, which could be indicative of USTs. Sample locations were established in areas that did not conflict with subsurface structures or utilities. A copy of the geophysical survey report is attached as *Appendix B*.

#### 2.2 Asbestos Clearance

D&B marked the proposed boring locations to allow for subsequent asbestos clearance. Langan Engineering, Environmental, Survey & Landscape Architecture, D.P.C. (Langan) performed the asbestos testing and sample collection on June 16, 2014. ACM was not identified on the Site based on the samples collected on June 16, 2014. The Pre-Probe Inspection Letter is presented in *Appendix F*.

#### 2.3 Soil Vapor Survey

A soil vapor survey was conducted as part of the Phase II ESI to evaluate the potential for vapor intrusion at the Site. *Figure 3* shows the locations of the soil vapor survey points advanced at the Site as part of the Phase II ESI.

A total of 13 soil vapor samples and 5 sub-slab soil vapor samples were collected for laboratory analysis.

#### 2.3.1 Sub-Slab Soil Vapor Sampling

The sub-slab soil vapor sampling program was completed on April 15 and 16, 2014 in conformance with the applicable procedures described in ASTM E 2600-10 "Standard Guide for Vapor Encroachment

9

#### PROPOSED PUBLIC SCHOOL 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET,

#### 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

Screening on Property Involved in Real Estate Transactions" and the October 2006 New York State Department of Health (NYSDOH) Soil Vapor Intrusion Guidance Document protocols. Aquifer Drilling and Testing, Inc. (ADT) of Mineola, New York was retained as a subcontractor by D&B for drilling services. *Figure 3* presents the sub-slab soil vapor sampling locations.

The sub-slab soil vapor samples were collected using a jack hammer driven direct-drive system (i.e., Geoprobe) and installing dedicated polyethylene tubing within six inches of the base of the floor slab. Soil vapor points were installed by advancing a 0.75-inch diameter hollow probe rod fitted with an expendable 6-inch diameter stainless steel screened drive point to a depth of 5 feet below ground surface (bgs). Dedicated Teflon tubing with threaded fittings was then connected to the probe. The hollow probe rod was then removed and an air tight seal was created at the surface using hydrated bentonite.

The adequacy of each seal was tested using a 5-gallon bucket placed over the borehole and sealed from the ambient air using bentonite. Helium tracer gas was then pumped into the bucket. The above grade end of the tubing, which is the sample collection point, was then attached to a helium gas detector. The adequacy of the seal was verified by direct helium readings of less than 10 percent. Each of the temporary soil vapor probes were then purged using a photoionization detector (PID) to evacuate three volumes of soil vapor. PID readings during purging ranged from 0.18 to 2,000 parts per million (ppm). After purging, each probe was connected by means of Teflon tubing to a laboratory-supplied individually certified-clean 6-liter SUMMA canister equipped with a 0.2 liter per minute (L/min) flow regulator. Sub-slab soil vapor samples were collected in SUMMA canisters for an approximate 30-minute sampling period. Upon completion, each sub-slab soil vapor point was backfilled to near grade surface with the drill cuttings and then the ground surface was restored to its original condition with concrete.

The five sub-slab soil vapor samples were analyzed for VOCs by USEPA Method TO-15 (low level sensitivity) with selective ion monitoring (SIM). Method TO-15 with SIM provides detection limits of 0.25 micrograms per cubic meter for vinyl chloride, trichloroethene (TCE), and carbon tetrachloride, allowing for comparison with the lowest action levels for these compounds in the New York State Department of Health (NYSDOH) "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York", dated October 2006. All other compounds have a detection limit of 1 microgram per cubic meter.

The compounds of concern are listed in the following table. These compounds were selected based on the D&B's case-specific review of the information provided in the Phase I ESA and identification of potential VECs.

Table 1 Summary of Compounds of Concern

|   | Compound Rationale for Including in Parameter Suite |                                           |  |  |
|---|-----------------------------------------------------|-------------------------------------------|--|--|
| 1 | Benzene                                             | Petroleum constituent                     |  |  |
| 2 | Carbon Tetrachloride                                | Historically used at dry cleaners         |  |  |
| 3 | Chlorobenzene                                       | Petroleum constituent                     |  |  |
| 4 | Chloroethane                                        | Breakdown product of 1,1,1-TCA            |  |  |
| 5 | Chloromethane                                       | Breakdown product of carbon tetrachloride |  |  |
| 6 | 1,2-Dichlorobenzene                                 | Petroleum constituent                     |  |  |
| 7 | 1,3-Dichlorobenzene                                 | Petroleum constituent                     |  |  |
| 8 | 1,1-Dichloroethane                                  | Breakdown product of 1,1,1-TCA            |  |  |

#### PROPOSED PUBLIC SCHOOL

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

|    | Compound                 | Rationale for Including in Parameter Suite                |
|----|--------------------------|-----------------------------------------------------------|
| 9  | 1,2-Dichloroethane       | Plastic and rubber constituent. Used as a solvent and     |
|    |                          | fumigant                                                  |
| 10 | 1,1-Dichloroethene       | Breakdown product of PCE and TCE                          |
| 11 | cis-1,2-Dichloroethene   | Breakdown product of PCE and TCE                          |
| 12 | trans-1,2-Dichloroethene | Breakdown product of PCE and TCE                          |
| 13 | 1,2-Dichloropropane      | Unleaded gasoline additive                                |
| 14 | Ethyl benzene            | Petroleum constituent                                     |
| 15 | Methyl tert-Butyl Ether  | Gasoline additive                                         |
| 16 | Methylene Chloride       | Breakdown product of carbon tetrachloride, paint stripper |
|    |                          | and cleaning component                                    |
| 17 | Naphthalene              | Petroleum constituent                                     |
| 18 | Tetrachloroethene (PCE)  | Dry cleaning solvent                                      |
| 19 | Toluene                  | Petroleum constituent                                     |
| 20 | 1,1,1-Trichloroethane    | Common degreasing solvent                                 |
| 21 | Trichloroethene (TCE)    | Dry cleaning solvent                                      |
| 22 | 1,2,4-Trimethylbenzene   | Petroleum constituent                                     |
| 23 | 1,3,5-Trimethylbenzene   | Petroleum constituent                                     |
| 24 | Vinyl chloride           | Breakdown product of PCE & TCE, used in PVC               |
| 25 | m,p-Xylenes              | Petroleum constituent                                     |
| 26 | o-Xylene                 | Petroleum constituent                                     |

Based on the D&B's case-specific review of the Phase I ESA including potential VECs and knowledge of the site, no additional compounds were added to the typical TO-15 suite of parameters listed above.

The canisters were properly labeled and transported via courier to Chemtech Consulting Group, Inc. (Chemtech) of Mountainside, New Jersey utilizing standard chain-of-custody procedures. Chemtech is a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified analytical laboratory, whose current certification has been verified by D&B. A summary of the analytical results is provided in *Table 12* and a copy of the analytical laboratory results is attached in *Appendix E*.

#### 2.3.2 Soil Vapor Sampling

The soil vapor sampling program was completed on June 23 through 26, 2014 in conformance with the applicable procedures described in ASTM E 2600-10 "Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions" and the October 2006 NYSDOH Soil Vapor Intrusion Guidance Document protocols. Aquifer Drilling and Testing, Inc. (ADT) of Mineola, New York was retained as a subcontractor by D&B for drilling services. *Figure 3* presents the soil vapor sampling locations.

The soil gas samples were collected using a direct-drive system (i.e., Geoprobe). Soil vapor points were installed by advancing a 0.75-inch diameter hollow probe rod fitted with an expendable 6-inch diameter stainless steel screened drive point to a depth of 5 feet below ground surface (bgs) Dedicated Teflon tubing with threaded fittings was then connected to the probe. The hollow probe rod was then removed and an air tight seal was created at the surface using hydrated bentonite.

# 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE

**BRONX, NEW YORK 10462** 

The adequacy of each seal was tested using a 5-gallon bucket placed over the borehole and sealed from the ambient air using modeling clay. Helium tracer gas was then pumped into the bucket. The above grade end of the tubing, which is the sample collection point, was then attached to a helium gas detector. The adequacy of the seal was verified by direct helium readings of less than 10 percent. Each of the temporary soil vapor probes were then purged using a photoionization detector (PID) to evacuate three volumes of soil vapor. PID readings during purging ranged from 0 to 255 ppm. After purging, each probe was connected by means of Teflon tubing to a laboratory-supplied individually certified-clean, 6-liter SUMMA canister equipped with a 0.2 liter per minute (L/min) flow regulator. Soil vapor samples were collected in SUMMA canisters for an approximately 30-minute sampling period. Upon completion, each soil vapor point was backfilled to near grade surface with the drill cuttings and then the ground surface was restored to its original condition by capping with asphalt cold patch.

The 13 soil vapor samples were analyzed for VOCs by USEPA Method TO-15 (low level sensitivity) with selective ion monitoring (SIM). Method TO-15 with SIM provides detection limits of 0.25 micrograms per cubic meter for vinyl chloride, trichloroethene (TCE), and carbon tetrachloride, allowing for comparison with the lowest action levels for these compounds in the New York State Department of Health (NYSDOH) "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York", dated October 2006. All other compounds have a detection limit of 1 microgram per cubic meter. The compounds of concern are listed in *Table 1* above.

The canisters were properly labeled and transported via courier to Chemtech Consulting Group, Inc. (Chemtech) of Mountainside, New Jersey utilizing standard chain-of-custody procedures. Chemtech is a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified analytical laboratory, whose current certification has been verified by D&B. A summary of the analytical results is provided in *Table 12* and a copy of the analytical laboratory results is attached in *Appendix E*.

#### 2.4 Soil Investigation

A soil sampling program was conducted as part of the Phase II ESI. Soil samples were collected to assess current environmental conditions and to characterize subsurface soil at the Site. *Figure 3* shows the locations of the soil borings advanced at the Site as part of the Phase II ESI.

All soil sampling was conducted in accordance with the procedures set forth in the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, dated May 2010.

The subsurface soil sampling program was performed on June 23 through 27, 2014. Aquifer Drilling and Testing, Inc. (ADT) of Mineola, New York was retained as a subcontractor by D&B for drilling services. Direct push drilling methods, utilizing a track mounted direct drive rig and remote unit, were used to retrieve soil samples. Soil samples were collected and screened for evidence of field contamination continuously from the ground surface to the boring completion depth in 4-foot long, 2-inch diameter macro-core samplers lined with acetate sleeves. A description of the soils retained in each Geoprobe sample core was logged by D&B's on-site environmental scientist and the soils were screened in the field for the presence of VOCs with a PID. Upon completion, each boring was backfilled to near grade surface with the drill cuttings and then the ground surface was restored to its original condition by capping with asphalt cold patch. Soil boring logs, including the PID responses for each sample, are provided in *Appendix C*.

A description of each boring location is presented below.

#### PROPOSED PUBLIC SCHOOL

# 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

• The rationale for each of the 18 borings at the Site is as follows: Locations 1, 2 and 12 are used to determine impacts from off-site RECs to the north and northeast which include auto filling and service stations, spills and USTs; Locations 4, 5 and 6 are to determine impacts from the on-site gas station; Locations 1 through 5 and 7 though 19 are to assess historic fill; Locations 7, 9, 10, 11 and 12 are used to determine impacts from on-site fuel tanks; Locations 13, 15, 18 and 19 are to assess conditions from the on-site dry cleaners; and, Locations 3, 8, 10, 11, 14 and 19 are to assess historical on-site activities. Please refer to *Figure 3* for boring locations.

The following criteria were applied in selecting soil samples for laboratory analysis:

- Soil sampling was conducted in accordance with the NYCSCA-approved scope of work dated April 14, 2014.
- Soil samples were collected continuously to groundwater or refusal (expected to be a maximum of approximately 25 feet bgs).
- Soil samples collected from each boring were screened with a PID and inspected for indications of contamination (e.g., staining, odors, etc.). Geologic descriptions of the soil and field screening results were recorded in field logs.
- One (1) sample was collected from about 1 to 5 feet below the basement slab at Locations 3, 8, 10, 11, 14 and 19.
- For the other locations, if no apparent impacted soils were identified, one (1) sample was collected from the zone most likely to be affected by the proposed construction;
- If impacted soils were identified, one (1) sample was collected from the most impacted zone (based on odors, staining, elevated PID/FID readings, or presence of historic fill material), and a second sample was collected from a depth of two (2) feet below the first apparent clean soil encountered; or
- If no apparent clean soils were encountered, at least two (2) soil samples were collected. One of the soil samples was collected from the interval exhibiting the greatest degree of impact and the second sample was collected from soils directly above the water table within the capillary fringe.

The subsurface soil samples submitted to the laboratory were analyzed for Target Compound List (TCL) and CP-51 listed VOCs plus TICs, TCL and CP-51 listed SVOCs plus TICs, PCBs and TAL metals (less Al, Ca, Fe, K, Mg and Na), TCL pesticides/herbicides, cyanide and hexavalent chromium. For samples for pre-design waste characterization, selected samples from Locations 3, 7, 10, 11, 14, 17, 18 and 19 were also analyzed for TPH DRO/GRO and RCRA characteristics. The following table summarizes the soil analytical plan.

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

Table 2
Summary of PID Screening and Soil Sample Analytical Plan

| Sample<br>ID/Soil<br>Boring<br>Number | Boring<br>Depth<br>(ft bgs) | Sample<br>Interval<br>Selected<br>for<br>Analysis<br>(ft bgs) | PID<br>Reading<br>(ppb) | TCL/CP-51<br>VOCs | TCL/CP-51<br>SVOCs | TAL Metals | PCBs | TCL Pesticides/<br>Herbicides | Hexavalent<br>Chromium | Cyanide | TPH<br>DRO/GRO | RCRA<br>Characteristics |
|---------------------------------------|-----------------------------|---------------------------------------------------------------|-------------------------|-------------------|--------------------|------------|------|-------------------------------|------------------------|---------|----------------|-------------------------|
| GP-1                                  | 34'                         | 0-5'                                                          | 0 to 89                 | X                 | X                  | X          | X    | X                             | X                      | X       |                | -                       |
| GP-2                                  | 5'                          | 0-5'                                                          | 0                       | X                 | X                  | X          | X    | X                             | X                      | X       |                |                         |
| GP-3                                  | 9'                          | 6"-18"                                                        | 0                       | X                 | X                  | X          | X    | X                             | X                      | X       | X              | X                       |
| GP-4                                  | 11'                         | 0-5'                                                          | 0 to 312                | X                 | X                  | X          | X    | X                             | X                      | X       |                |                         |
| GP-5                                  | 20'                         | 10'-12'<br>18'-20'                                            | 10 to 500,000           | X                 | X                  | X          | X    | X                             | X                      | X       |                |                         |
| GP-6                                  | 20'                         | 7'-9'<br>12'-14'                                              | 0 to<br>27,000          | X                 | X                  | X          | X    | X                             | X                      | X       |                |                         |
| GP-7                                  | 20'                         | 9'-11'<br>14'-16'                                             | 0 to 1,000              | X                 | X                  | X          | X    | X                             | X                      | X       | X              | X                       |
| GP-8                                  | 6'                          | 6"-18"                                                        | 10 to 50                | X                 | X                  | X          | X    | X                             | X                      | X       |                |                         |
| GP-9                                  | 25'                         | 0-5'                                                          | 0                       | X                 | X                  | X          | X    | X                             | X                      | X       |                |                         |
| GP-10                                 | 18'                         | 6"-19"                                                        | 0                       | X                 | X                  | X          | X    | X                             | X                      | X       | X              | X                       |
| GP-11                                 | 9'                          | 6"-23"                                                        | 0                       | X                 | X                  | X          | X    | X                             | X                      | X       | X              | X                       |
| GP-12                                 | 13'                         | 0-5'                                                          | 0                       | X                 | X                  | X          | X    | X                             | X                      | X       |                |                         |
| GP-13                                 | 20'                         | 0-5'<br>18'-20'                                               | 0 to<br>300,000         | X                 | X                  | X          | X    | X                             | X                      | X       |                |                         |

#### PROPOSED PUBLIC SCHOOL

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

| Sample<br>ID/Soil<br>Boring<br>Number | Boring<br>Depth<br>(ft bgs) | Sample<br>Interval<br>Selected<br>for<br>Analysis<br>(ft bgs) | PID<br>Reading<br>(ppb) | TCL/CP-51<br>VOCs | TCL/CP-51<br>SVOCs | TAL Metals | PCBs | TCL Pesticides/<br>Herbicides | Hexavalent<br>Chromium | Cyanide | TPH<br>DRO/GRO | RCRA<br>Characteristics |
|---------------------------------------|-----------------------------|---------------------------------------------------------------|-------------------------|-------------------|--------------------|------------|------|-------------------------------|------------------------|---------|----------------|-------------------------|
| GP-14                                 | 9'                          | 6"-18"                                                        | 235 to<br>25,500        | X                 | X                  | X          | X    | X                             | X                      | X       | X              | X                       |
| GP-15                                 | 20'                         | 6"-20"                                                        | 0 to 10                 | X                 | X                  | X          | X    | X                             | X                      | X       |                |                         |
| GP-16                                 | 17'                         | 0-5'                                                          | 0                       | X                 | X                  | X          | X    | X                             | X                      | X       |                |                         |
| GP-17                                 | 20'                         | 0-5'                                                          | 0 to 440                | X                 | X                  | X          | X    | X                             | X                      | X       | X              | X                       |
| GP-18                                 | 15'                         | 6"-18"                                                        | 0                       | X                 | X                  | X          | X    | X                             | X                      | X       | X              | X                       |
| GP-19                                 | 9'                          | 10"-24"                                                       | 139 to<br>1,310         | X                 | X                  | X          | X    | X                             | X                      | X       | X              | X                       |

X: Sample analysis performed

--: Not analyzed

Sampling was conducted in accordance with the NYCSCA-approved Scope of Work dated April 14, 2014. Sampling parameters were based on the identified RECs/VECs which indicated potential petroleum and chlorinated solvent contamination on-site. Samples analyzed for TCL and CP-51 VOCs and SVOCs were also analyzed for TICs.

The samples were collected and containerized in accordance with NYSDEC/United States Environmental Protection Agency (USEPA) protocols. Each container was properly labeled, preserved, and placed in a cooler for transport via courier to Chemtech Consulting Group, Inc. (Chemtech) of Mountainside, New Jersey. Chemtech is a NYSDOH ELAP-certified analytical laboratory, whose current certification has been verified by D&B. Standard chain-of-custody procedures were followed. A summary of the analytical results is provided in *Tables 13 through 16* and a copy of the analytical laboratory results is attached in *Appendix E*.

#### 2.5 Groundwater Investigation

A groundwater sampling program was conducted as part of the Phase II ESI. Groundwater samples were collected to assess the current environmental conditions of groundwater within the proposed Site. *Figure 3* shows the locations of the groundwater samples collected at the Site as part of the Phase II ESI.

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

The groundwater sampling program was completed on June 23 through 30, 2014. Aquifer Drilling and Testing, Inc. (ADT) of Mineola, New York was retained as a subcontractor by D&B for drilling services.

All groundwater sampling was conducted in accordance with the procedures set forth in the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, dated May 2010.

Groundwater sampling was conducted in accordance with the NYCSCA approved scope of work dated April 14, 2014. Groundwater samples were collected by installing temporary 1-inch PVC monitoring wells below the encountered water table. Groundwater was encountered at approximately 9 to 22 feet bgs and as shallow as 4 feet bgs in the building basements. At three locations (i.e., Locations 2, 4 and 12 refer to Figure 3), groundwater was not encountered. Groundwater samples were collected from Locations 1, 5, 7, 9, 11, 13, and 15 through 18 (refer to *Figure 3*). The groundwater sample locations were selected to obtain groundwater quality information throughout the Site (including near the upgradient Site perimeter). Groundwater was collected from these temporary wells using a stainless steel check valve attached to Teflon tubing inserted into the well screen. Before sampling, groundwater was purged for turbidity to reach a minimum and the other parameters to stabilize. Conductivity, dissolved oxygen, pH, temperature and turbidity were monitored using a Horiba<sup>TM</sup> water quality meter during purging. During purging, D&B actively monitored and tracked the volume of water purged and the field parameter readings. Data was recorded in the field logbook.

Groundwater samples were also collected from four existing on-site monitoring wells (i.e., MW-E through MW-H - refer to *Figure 3*) using a low-flow bladder pump and dedicated Teflon lined tubing inserted into the installed well screen. Before sampling, each of the four wells was purged dry. Conductivity, dissolved oxygen, pH, temperature and turbidity were monitored using a Horiba<sup>TM</sup> water quality meter during purging. During purging, D&B actively monitored and tracked the volume of water purged and the field parameter readings. Data was recorded in the field logbook. After purging, the wells were allowed to recover seventy-five percent of the static water level before collecting samples.

A summary of groundwater field screening results and the groundwater sample analytical plan is presented in the table below.

Table 3
Groundwater Sample Analytical Plan

| Sample<br>ID/ Well<br>Number | Depth<br>to<br>Water<br>(ft<br>bgs) | Screened Interval<br>(MWs) or Sample<br>Interval (TWPs) | Field Observations (PID readings, sheen, odor, etc.) | TCL/CP-51<br>VOCs | TCL/CP-51<br>SVOCs | PCBs | TAL Metals | NYCDEP<br>Sewer<br>Discharge |
|------------------------------|-------------------------------------|---------------------------------------------------------|------------------------------------------------------|-------------------|--------------------|------|------------|------------------------------|
| GW-1                         | 22'                                 | 6" well screen installed at 34' bgs                     | No sheen or odor                                     | X                 | X                  | X    | X          |                              |
| GW-2                         | NA                                  | Refusal at 5' bgs                                       | Groundwater not encountered                          |                   |                    |      |            |                              |
| GW-4                         | NA                                  | Refusal at 11' bgs                                      | Groundwater not encountered                          |                   |                    | -    |            |                              |
| GW-5                         | 12'                                 | 6" well screen installed at 19' bgs                     | No sheen, slight odor                                | X                 | X                  | X    | X          |                              |

#### PROPOSED PUBLIC SCHOOL

## 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

| Sample<br>ID/ Well<br>Number | Depth<br>to<br>Water<br>(ft<br>bgs) | Screened Interval<br>(MWs) or Sample<br>Interval (TWPs) | Field Observations (PID readings, sheen, odor, etc.) | TCL/CP-51<br>VOCs | TCL/CP-51<br>SVOCs | PCBs | TAL Metals | NYCDEP<br>Sewer<br>Discharge |
|------------------------------|-------------------------------------|---------------------------------------------------------|------------------------------------------------------|-------------------|--------------------|------|------------|------------------------------|
| GW-7                         | 9'                                  | 6" well screen installed at 17' bgs                     | No sheen<br>or odor                                  | X                 | X                  | X    | X          |                              |
| GW-9                         | 20'                                 | 6" well screen installed at 25' bgs                     | No sheen<br>or odor                                  | X                 | X                  | X    | X          |                              |
| GW-11                        | 4' *                                | 6" well screen installed at 8' bgs                      | No sheen<br>or odor                                  | X                 | X                  | X    | X          |                              |
| GW-12                        | NA                                  | Refusal at 13' bgs                                      | Groundwater not encountered                          |                   |                    |      |            |                              |
| GW-13                        | 18'                                 | 6" well screen installed at 20' bgs                     | Trace sheen,<br>slight petroleum<br>odor             | X                 | X                  | X    | X          |                              |
| GW-15                        | 12'                                 | 6" well screen installed at 19' bgs                     | No sheen<br>or odor                                  | X                 | X                  | X    | X          |                              |
| GW-16                        | 11'                                 | 6" well screen installed at 16' bgs                     | No sheen<br>or odor                                  | X                 | X                  | X    | X          |                              |
| GW-17                        | 11'                                 | 6" well screen installed at 17' bgs                     | No sheen<br>or odor                                  | X                 | X                  | X    | X          | X                            |
| GW-18                        | 12'                                 | 6" well screen installed at 18' bgs                     | No sheen<br>or odor                                  | X                 | X                  | X    | X          |                              |
| MW-E                         | 16.11'                              | Low flow pump<br>installed at 22.7' bgs<br>in screen    | No sheen<br>or odor                                  | X                 | X                  | X    | X          |                              |
| MW-F                         | 12.6'                               | Low flow pump<br>installed at 23.2' bgs<br>in screen    | No sheen, trace petroleum odor                       | X                 | X                  | X    | X          |                              |

X: Sample analysis performed

<sup>--:</sup> Not analyzed

<sup>\*:</sup> Depth below the basement floor

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

The 14 groundwater samples were analyzed for TCL and CP-51 listed VOCs plus TICs, TCL and CP-51 listed SVOCs plus TICs, PCBs, and TAL metals (less Al, Ca, Fe, K, Mg and Na) (both unfiltered and laboratory filtered). In addition, in support of potential dewatering for school construction, the groundwater sample GW-17 was additionally analyzed for the New York City Department of Environmental Protection (NYCDEP) Sewer Discharge Parameters since the encountered groundwater is less than 30 feet bgs or within 10 feet of proposed excavation. Since dedicated sampling equipment was used, an equipment blank is not required; however, a laboratory supplied trip blank was analyzed for TCL VOCs. The samples were collected and containerized in accordance with NYSDEC/USEPA protocols. Each container was properly labeled, preserved, and placed in a cooler for transport via courier to Chemtech Consulting Group, Inc. (Chemtech) of Mountainside, New Jersey. Chemtech is a NYSDOH ELAP-certified analytical laboratory, whose current certification has been verified by D&B. Standard chain-of-custody procedures were followed. A summary of the analytical results is provided in *Tables 17 through 20* and a copy of the laboratory analytical results is attached in *Appendix E*.

Permanent groundwater monitoring wells were not installed as part of this Phase II ESI.

#### 2.6 Preliminary Waste Characterization

The objective of this investigation is to provide a preliminary evaluation of the material characteristics for disposal purposes. This investigation is **not** a substitute for waste characterization sampling required by a specific disposal facility. Completing a site-specific waste characterization for excavated/removed material is the responsibility of the construction contractor.

#### 2.6.1 Pre-Design Waste Characterization

Seven subsurface soil samples collected from the boring locations were utilized for preliminary waste characterization purposes as discussed in Section 2.4 and were analyzed for TPH DRO/GRO and RCRA characteristics. Samples for TCLP analysis were collected and placed on-hold at the laboratory pending the results of the totals analyses. Based on totals concentrations of lead and chromium exceeding the 20 Times Rule, 10 samples were subsequently analyzed TCLP lead and 1 sample was analyzed for TCLP chromium.

#### 2.6.2 Investigation Derived Waste Sampling

Investigation derived waste (IDW) was not generated during the Phase II ESI. All surplus bored material (i.e., that not needed for sample collection) was utilized to backfill each borehole. In addition, all purged groundwater was introduced back into each borehole prior to backfilling.

#### PROPOSED PUBLIC SCHOOL

1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

#### 3.0 SITE DESCRIPTION AND PHYSICAL CHARACTERISTICS

The Site consists of an approximate 70,600-square-foot (1.62 acre) lot improved with an assemblage of five interconnected one and two-story commercial buildings with basements, as well as a gasoline station with a convenience store. Lot 1 includes a one-story building with an approximate 7,000-square-foot footprint constructed in 1949; Lot 7 includes a two-story building with an approximate 6,650-square-foot footprint constructed in 1949; Lot 8 includes an active gasoline station and a one-story building with an approximate 1,350-square-foot footprint constructed in 1953; Lot 17 includes a two-story building with an approximate 17,000-square-foot footprint constructed in 1942; and Lot 23 includes two one-story buildings with a combined approximate 22,000-square-foot footprint constructed in 1941.

The Site is generally used for commercial purposes including a gas station/convenience store, insurance brokers, hair salons, barber shop, laundromat, beauty products store, music store, furniture store, discount store, T-shirt printing/sales office, shoe repair, law office, insurance broker, bakery, food market, bar and restaurants. Historically, the Site was used for various commercial uses including stores and offices with a gas station located on the northwest corner of the Site. The historical uses of the commercial buildings included dry cleaners, dental offices, offices, stores, a movie theater and a bowling alley. Adjoining properties include commercial and residential properties. *Figure 1* presents a Site Location Map. A Site Plan showing Site features, tax block and lot numbers and anticipated groundwater flow direction is provided as *Figure 2*.

#### 3.1 Topography

According to the United States Geological Survey (USGS.) 7.5-Minute Quadrangle Map, Flushing, New York, dated 1995, the elevation of the Site is approximately 58 feet above mean sea level (amsl) and the topographic gradient of the area generally slopes down to the south-southeast. The topography of the immediate Site area was observed to slope down slightly to moderately to the south, with an elevation of approximately 60 feet above mean sea level at the northern end of the block along East Tremont Avenue, dropping to approximately 50 feet above mean sea level at the southern end of the block at the intersection of Guerlain Street and White Plains Road.

#### 3.2 Geology

Information on local geology is available from entries in the NYSDEC Environmental Site Remediation Database for remediation sites located approximately 0.5 mile from the Site, including Purdy Street Station (V00557) and Lebanon West Farms (C203060). Based on bedrock information listed for these facilities, the Site elevation and the fact that basements are present at the Site, it is estimated that bedrock is located at a depth of 30 to 40 feet below grade at the Site. Note that actual bedrock depth can vary greatly in this area and can only be determined through the completion of borings. The Geologic Map of New York, Lower Hudson Sheet, dated 1970 indicates that the bedrock type in the vicinity of the Site is most likely schist and amphibolite of the Manhattan or Hartland formations.

According to the Surficial Geologic Map of New York, Lower Hudson Sheet, dated 1989, the unconsolidated deposits above the bedrock at the Site likely consist of glacial till, which is an unsorted mix of gravel, sand, silt and clay, beneath any urban fill that may be present. Geologic data from observations recorded at the remediation sites discussed above are consistent with the presence of urban fill and glacial till overlying bedrock.

PROPOSED PUBLIC SCHOOL 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

#### 3.3 Hydrogeology

Based on groundwater information from the remediation sites in the surrounding area, the Site elevation and local topography, it is estimated that groundwater is present above the bedrock at approximately 20 to 25 feet below grade in the vicinity of the Site flowing in an overall south-southwesterly direction toward the Bronx River and East River. However, estimated groundwater levels and/or flow direction(s) may vary due to seasonal fluctuations in precipitation, local usage demands, geology, underground structures, or dewatering operations. There is no data available regarding groundwater flow within bedrock. There are no surface water bodies located on or adjoining the Site. The nearest surface water body is the Bronx River located approximately 0.75 miles to the west of the Site. In addition, Westchester Creek is located approximately 1.25 miles to the east of the Site and the East River is located approximately 2.25 miles to the south. Based on observation made during the Phase II ESI, groundwater was encountered at approximately 9 to 22 feet below grade.

20

#### PROPOSED PUBLIC SCHOOL

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

#### 4.0 DISCUSSION OF FINDINGS

This section presents a discussion of the findings of the Phase II ESI. A summary of the laboratory results is presented in *Tables 12 to 20*. The sample collection logs and the complete laboratory analytical data packages are included in *Appendices D and E*, respectively.

#### 4.1 Applicable Regulatory Standards

This subsection identifies the USEPA, NYSDEC, NYSDOH and/or NYCDEP regulatory standards and guidelines used to evaluate the results of the soil vapor, subsurface soil, and groundwater sampling. The standards and guidelines used to evaluate the specific data are described individually below.

#### 4.1.1 Soil Vapor Guidelines

Analytical results for soil vapor samples were compared to the NYSDOH Air Guideline Values (AGVs) and to background levels of VOCs in indoor air presented in the Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006 ("NYSDOH Vapor Intrusion Guidance Document"), including Upper Fence Limit Indoor Air Values from "Table C-1, NYSDOH 2003: Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes," 90th Percentile Indoor Air Values from "Table C-2, EPA 2001: Building Assessment and Survey Evaluation (BASE) Database, SUMMA Canister Method", and the 95th Percentile Outdoor Air Values from "Table C-5, Health Effects Institute (HEI) 2005: Relationship of Indoor, Outdoor and Personal Air" published in the NYSDOH Soil Vapor Intrusion Guidance Document, Appendix C (October 2006). Tetrachloroethene (PCE) levels were compared to the air guideline value presented in the NYSDOH Fact Sheet on Tetrachloroethene in Indoor and Outdoor Air, dated September 2013 (see https://www.health.ny.gov/environmental/chemicals/tetrachloroethene/docs/perc.pdf). The results of the analyses of the soil vapor samples were also compared to Matrices 1 and 2 in the NYSDOH Vapor Intrusion Guidance Document. (*Please note that the matrices rely in part on indoor air data and indoor air samples were not collected as part of the Phase II ESI*.)

4.1.2 Soil Cleanup Objectives (SCOs), Supplemental Soil Cleanup Objectives (SSCOs) and Soil Cleanup Levels (SCLs)

The Unrestricted Use SCOs found in 6 NYCRR 375-6, Remedial Program Soil Cleanup Objectives are the appropriate standards for use in evaluating the results of the analyses of the Phase II ESI soil samples. Soil which is free of contaminants above these standards is suitable for "unrestricted use" which is the land use category without imposed restrictions, such as environmental easements or other land use controls.

Additionally, the Supplemental Soil Cleanup Objectives (SSCOs) outlined in Table 1 of the Commissioner Policy 51 (CP-51), "Soil Cleanup Guidance", dated October 21, 2010 were used to evaluate soils data. CP-51 replaces the Technical and Administrative Guidance Memorandum (TAGM) 4046: Determination of Soil Cleanup Objectives and Cleanup Levels (January 24, 1994); the Petroleum Site Inactivation and Closure Memorandum (February 23, 1998); and Sections III and IV of Spill Technology and Remediation Series (STARS) #1 (August 1992). The specific compounds listed in Table 1 of CP-51 had been included in former TAGM 4046 but were not included in 6 NYCRR 375-6.

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

Lastly, Soil Cleanup Levels (SCLs) for Gasoline and Fuel Oil Contaminated Soils, outlined in Tables 2 and 3 of CP-51, have been established. Soil analytical results were compared to the SCLs if a potential petroleum spill is being evaluated as part of the Phase II ESI.

#### 4.1.3 Groundwater Quality Standards and Guidance Values

Analytical results for groundwater were compared to New York State Class GA groundwater standards and guidance values, in the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values." Ambient water quality standards are enforceable regulatory limits. Where ambient water quality standards do not exist, ambient water quality guidance values were used to evaluate the groundwater results.

Groundwater data were also compared to the daily limits set forth in the NYCDEP Bureau of Wastewater Treatment "Limitations for Effluent to Sanitary or Combined Sewers."

#### 4.1.4 Preliminary Waste Characterization

Analytical results for the preliminary waste characterization sampling were compared to the NYSDEC 6 NYCRR Part 373 regulations for characteristic hazardous waste. In addition, the analytical results were compared to typical analytical requirements for selected disposal facilities.

#### 4.2 Geophysical Survey Findings

The geophysical survey identified numerous linear subsurface anomalies consistent with underground pipes and utilities. The boring locations were located in areas which did not conflict with these anomalies. In addition, the geophysical survey identified numerous utility lines and subsurface pipes throughout the Site. Two anomalies were confirmed to be consistent with the USTs located at the northwest corner of the project area. In addition, an aboveground storage tank (AST) was located along the eastern central portion of the project area. Also, the geophysical survey confirmed that the on-site storm water drains are connected to the public sewer system. The geophysical survey report is presented as *Appendix B*.

#### 4.3 Soil Vapor Survey Findings

#### 4.3.1 Soil Vapor Sampling Findings

A review of the soil vapor sample analytical results indicates that 20 of the 26 VOCs analyzed utilizing USEPA Method TO-15 for the parameters listed in Table 1 were detected in one or more samples. A summary of the analytical results for VOCs in soil vapor is summarized in *Table 12*. The complete analytical data report is presented in *Appendix E*. A summary of the detected compounds at a concentration greater than anticipated background levels and/or the AGV is provided below:

#### PROPOSED PUBLIC SCHOOL

1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

Table 4
Summary of Detected VOCs Concentrations Greater than AGV and/or Background Concentrations in Soil Vapor

| Sample ID Sampling Date                                                                                                                                                                                                     | SV-1<br>06/24/14                                                                                 | SV-2<br>06/24/14                                                                             | SV-3<br>06/24/14                                                                            | SV-4<br>06/23/1<br>4                                                                                        | SV-5<br>06/23/1<br>4                                                                                                            | NYSDOH<br>Air<br>Guideline<br>Value                        | NYSDOH<br>Table C-1<br>Upper Fence<br>Limit(indoor)                                  | NYSDOH Table C-2 90th Percentile Value(indoor)                                                                       | NYSDOH<br>Table C-5<br>95th<br>Percentile<br>Value(indoor)                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Units                                                                                                                                                                                                                       | μ <b>g/m</b> ³                                                                                   | μ <b>g/m</b> ³                                                                               | μ <b>g/m</b> ³                                                                              | μ <b>g/m</b> ³                                                                                              | μ <b>g/m</b> ³                                                                                                                  | μ <b>g/m</b> ³                                             | μ <b>g/m</b> ³                                                                       | μ <b>g/m</b> ³                                                                                                       | μ <b>g/m</b> ³                                                                  |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                      | 2.36 J                                                                                           | 5.41                                                                                         | 64.9                                                                                        | 89.0 D                                                                                                      | 107                                                                                                                             |                                                            | 9.8                                                                                  | 9.5                                                                                                                  |                                                                                 |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                      | 0.640 J                                                                                          | 2.21 J                                                                                       | 33.9                                                                                        | 24.1                                                                                                        | 27                                                                                                                              |                                                            | 3.9                                                                                  | 3.7                                                                                                                  |                                                                                 |
| Benzene                                                                                                                                                                                                                     | 1.73                                                                                             | 7.99                                                                                         | 40.6                                                                                        | 10.9                                                                                                        | 1054 D                                                                                                                          |                                                            | 13                                                                                   | 9.4                                                                                                                  | 10                                                                              |
| Chloroethane                                                                                                                                                                                                                | <0.260                                                                                           | <0.260                                                                                       | <0.260                                                                                      | <0.260                                                                                                      | <2.64                                                                                                                           |                                                            | 0.4                                                                                  | <1.1                                                                                                                 |                                                                                 |
| Chloromethane                                                                                                                                                                                                               | 1.14                                                                                             | 1.16                                                                                         | 0.700 J                                                                                     | <0.210                                                                                                      | <2.07                                                                                                                           |                                                            | 4.2                                                                                  | 3.7                                                                                                                  |                                                                                 |
| cis-1,2-Dichloroethylene                                                                                                                                                                                                    | < 0.400                                                                                          | <0.400                                                                                       | < 0.400                                                                                     | <0.400                                                                                                      | <3.96                                                                                                                           |                                                            | 0.4                                                                                  | <1.9                                                                                                                 |                                                                                 |
| Ethylbenzene                                                                                                                                                                                                                | 1.87 J                                                                                           | 3.65                                                                                         | 137 D                                                                                       | 38.2                                                                                                        | 127                                                                                                                             |                                                            | 6.4                                                                                  | 5.7                                                                                                                  | 7.62                                                                            |
| m,p-Xylenes                                                                                                                                                                                                                 | 5.65                                                                                             | 11.7                                                                                         | 380 D                                                                                       | 143 D                                                                                                       | 68.6                                                                                                                            |                                                            | 11                                                                                   | 22.2                                                                                                                 | 22.2                                                                            |
| Methylene Chloride                                                                                                                                                                                                          | 5.91                                                                                             | 3.2                                                                                          | < 0.350                                                                                     | 1.29 J                                                                                                      | <3.47                                                                                                                           | 60                                                         | 16                                                                                   | 10                                                                                                                   | 7.5                                                                             |
| Naphthalene                                                                                                                                                                                                                 | <0.520                                                                                           | <0.520                                                                                       | 1.63 J                                                                                      | 66.6 D                                                                                                      | 15.2 J                                                                                                                          |                                                            |                                                                                      | 5.1                                                                                                                  |                                                                                 |
| o-Xylene                                                                                                                                                                                                                    | 2.13 J                                                                                           | 4.34                                                                                         | 133 D                                                                                       | 61.2                                                                                                        | 9.99 J                                                                                                                          |                                                            | 7.1                                                                                  | 7.9                                                                                                                  | 7.24                                                                            |
| Tetrachloroethylene                                                                                                                                                                                                         | 0.75                                                                                             | 45.4                                                                                         | 745 D                                                                                       | 54.2                                                                                                        | 456                                                                                                                             | 30                                                         | 2.5                                                                                  | 15.9                                                                                                                 | 6.01                                                                            |
| Toluene                                                                                                                                                                                                                     | 15.8                                                                                             | 11.3                                                                                         | 274 D                                                                                       | 118 D                                                                                                       | 26.4                                                                                                                            |                                                            | 57                                                                                   | 43                                                                                                                   | 39.8                                                                            |
| Trichloroethylene (TCE)                                                                                                                                                                                                     | <0.160                                                                                           | 0.48                                                                                         | 0.27                                                                                        | 0.7                                                                                                         | <1.61                                                                                                                           | 5                                                          | 0.5                                                                                  | 4.2                                                                                                                  | 1.36                                                                            |
| Vinyl Chloride                                                                                                                                                                                                              | <0.0800                                                                                          | <0.0800                                                                                      | 0.18                                                                                        | <0.0800                                                                                                     | < 0.770                                                                                                                         |                                                            | 0.4                                                                                  | <1.9                                                                                                                 |                                                                                 |
|                                                                                                                                                                                                                             |                                                                                                  |                                                                                              |                                                                                             |                                                                                                             |                                                                                                                                 |                                                            |                                                                                      |                                                                                                                      |                                                                                 |
| Sample ID Sampling Date                                                                                                                                                                                                     | SV-6<br>06/25/14                                                                                 | SV-7<br>06/25/14                                                                             | SV-8<br>06/24/14                                                                            | SV-9<br>06/25/1<br>4                                                                                        | SV-10<br>06/23/1<br>4                                                                                                           | NYSDOH<br>Air<br>Guideline<br>Value                        | NYSDOH<br>Table C-1<br>Upper Fence<br>Limit(indoor)                                  | NYSDOH<br>Table C-2<br>90th<br>Percentile<br>Value(indoor)                                                           | NYSDOH<br>Table C-5<br>95th<br>Percentile<br>Value(indoor)                      |
| Sampling Date Units                                                                                                                                                                                                         | <b>06/25/14</b><br>μ <b>g/m</b> ³                                                                | <b>06/25/14</b><br>μ <b>g/m</b> <sup>3</sup>                                                 | <b>06/24/14</b><br>μg/m³                                                                    | 06/25/1<br>4<br>μg/m³                                                                                       | 06/23/1<br>4<br>μg/m³                                                                                                           | Air<br>Guideline                                           | Table C-1<br>Upper Fence<br>Limit(indoor)<br>µg/m³                                   | Table C-2<br>90th<br>Percentile<br>Value(indoor)<br>µg/m³                                                            | Table C-5<br>95th<br>Percentile                                                 |
| Sampling Date Units 1,2,4-Trimethylbenzene                                                                                                                                                                                  | 06/25/14<br>μg/m³<br>73.2                                                                        | 06/25/14<br>μg/m <sup>3</sup><br>40.8                                                        | 06/24/14<br>μg/m <sup>3</sup><br>147                                                        | 06/25/1<br>4<br>μg/m <sup>3</sup><br>50.1                                                                   | 06/23/1<br>4<br>μg/m <sup>3</sup><br>12.8                                                                                       | Air<br>Guideline<br>Value                                  | Table C-1<br>Upper Fence<br>Limit(indoor)<br>µg/m³<br>9.8                            | Table C-2<br>90th<br>Percentile<br>Value(indoor)<br>µg/m³<br>9.5                                                     | Table C-5<br>95th<br>Percentile<br>Value(indoor)                                |
| Sampling Date Units 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene                                                                                                                                                           | 06/25/14<br>μg/m <sup>3</sup><br>73.2<br>19.2                                                    | 06/25/14<br>μg/m <sup>3</sup><br>40.8<br>9.34                                                | 06/24/14<br>μg/m <sup>3</sup><br>147<br>70.3                                                | 06/25/1<br>4<br>μg/m <sup>3</sup><br>50.1<br>12.3                                                           | 06/23/1<br>4<br>μg/m³<br>12.8<br>3.15                                                                                           | Air<br>Guideline<br>Value<br>µg/m³<br><br>                 | Table C-1 Upper Fence Limit(indoor) µg/m³ 9.8 3.9                                    | Table C-2<br>90th<br>Percentile<br>Value(indoor)<br>µg/m³<br>9.5<br>3.7                                              | Table C-5<br>95th<br>Percentile<br>Value(indoor)<br>μg/m³<br><br>               |
| Sampling Date Units 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene                                                                                                                                                   | 06/25/14<br>μg/m³<br>73.2<br>19.2<br>22.4                                                        | 06/25/14<br>μg/m³<br>40.8<br>9.34<br>4.47                                                    | 06/24/14<br>µg/m³<br>147<br>70.3<br>46                                                      | 06/25/1<br>4<br>μg/m <sup>3</sup><br>50.1<br>12.3<br>36.1                                                   | 06/23/1<br>4<br>μg/m³<br>12.8<br>3.15<br>4.15                                                                                   | Air<br>Guideline<br>Value<br>µg/m³<br><br><br>             | Table C-1<br>Upper Fence<br>Limit(indoor)<br>µg/m³<br>9.8<br>3.9<br>13               | Table C-2<br>90th<br>Percentile<br>Value(indoor)<br>µg/m <sup>3</sup><br>9.5<br>3.7<br>9.4                           | Table C-5<br>95th<br>Percentile<br>Value(indoor)<br>µg/m³<br><br><br>10         |
| Sampling Date Units 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Chloroethane                                                                                                                                      | 06/25/14<br>μg/m³<br>73.2<br>19.2<br>22.4<br><0.260                                              | 06/25/14<br>μg/m³<br>40.8<br>9.34<br>4.47<br><0.260                                          | 06/24/14<br>μg/m³<br>147<br>70.3<br>46<br><2.64                                             | 06/25/1<br>4<br>μg/m³<br>50.1<br>12.3<br>36.1<br>5.54                                                       | 06/23/1<br>4<br>μg/m³<br>12.8<br>3.15<br>4.15<br><0.260                                                                         | Air<br>Guideline<br>Value<br>µg/m³<br><br><br>             | Table C-1<br>Upper Fence<br>Limit(indoor)<br>µg/m³<br>9.8<br>3.9<br>13<br>0.4        | Table C-2<br>90th<br>Percentile<br>Value(indoor)<br>µg/m³<br>9.5<br>3.7<br>9.4<br><1.1                               | Table C-5<br>95th<br>Percentile<br>Value(indoor)<br>µg/m³<br><br><br>10         |
| Sampling Date Units  1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Chloroethane Chloromethane                                                                                                                       | 06/25/14<br>μg/m³<br>73.2<br>19.2<br>22.4<br><0.260<br>0.950 J                                   | 06/25/14<br>μg/m³<br>40.8<br>9.34<br>4.47<br><0.260<br>1.05                                  | 06/24/14<br>μg/m³<br>147<br>70.3<br>46<br><2.64<br><2.07                                    | 06/25/1<br>4<br>μg/m³<br>50.1<br>12.3<br>36.1<br>5.54<br>21.9                                               | 06/23/1<br>4<br>μg/m³<br>12.8<br>3.15<br>4.15<br><0.260<br><0.210                                                               | Air<br>Guideline<br>Value<br>µg/m³<br><br><br><br>         | Table C-1<br>Upper Fence<br>Limit(indoor)<br>µg/m³<br>9.8<br>3.9<br>13<br>0.4<br>4.2 | Table C-2<br>90th<br>Percentile<br>Value(indoor)<br>µg/m³<br>9.5<br>3.7<br>9.4<br><1.1<br>3.7                        | Table C-5<br>95th<br>Percentile<br>Value(indoor)<br>µg/m³<br><br><br>10<br>     |
| Sampling Date Units  1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Chloroethane Chloromethane cis-1,2-Dichloroethylene                                                                                              | 06/25/14<br>μg/m³ 73.2 19.2 22.4 <0.260 0.950 J <0.400                                           | 06/25/14<br>μg/m³<br>40.8<br>9.34<br>4.47<br><0.260<br>1.05<br><0.400                        | 06/24/14<br>μg/m³<br>147<br>70.3<br>46<br><2.64<br><2.07<br><3.96                           | 06/25/1<br>4<br>μg/m³<br>50.1<br>12.3<br>36.1<br>5.54<br>21.9<br><0.400                                     | 06/23/1<br>4<br>µg/m³<br>12.8<br>3.15<br>4.15<br><0.260<br><0.210<br><0.400                                                     | Air<br>Guideline<br>Value<br>µg/m³<br><br><br><br><br>     | Table C-1 Upper Fence Limit(indoor)  µg/m³  9.8  3.9  13  0.4  4.2  0.4              | Table C-2<br>90th<br>Percentile<br>Value(indoor)<br>µg/m <sup>3</sup><br>9.5<br>3.7<br>9.4<br><1.1<br>3.7<br><1.9    | Table C-5<br>95th<br>Percentile<br>Value(indoor)<br>µg/m³<br><br><br>10<br><br> |
| Sampling Date Units  1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Chloroethane Chloromethane cis-1,2-Dichloroethylene Ethylbenzene                                                                                 | 06/25/14<br>μg/m³ 73.2 19.2 22.4 <0.260 0.950 J <0.400 108 D                                     | 06/25/14<br>µg/m³ 40.8 9.34 4.47 <0.260 1.05 <0.400 23                                       | 06/24/14<br>µg/m³ 147 70.3 46 <2.64 <2.07 <3.96 133                                         | 06/25/1<br>4<br>µg/m³<br>50.1<br>12.3<br>36.1<br>5.54<br>21.9<br><0.400<br>20                               | 06/23/1<br>4<br>µg/m³<br>12.8<br>3.15<br>4.15<br><0.260<br><0.210<br><0.400<br>6.08                                             | Air<br>Guideline<br>Value<br>µg/m³<br><br><br><br><br>     | Table C-1 Upper Fence Limit(indoor)                                                  | Table C-2<br>90th<br>Percentile<br>Value(indoor)<br>µg/m³<br>9.5<br>3.7<br>9.4<br><1.1<br>3.7<br><1.9<br>5.7         | Table C-5 95th Percentile Value(indoor) µg/m³ 10 7.62                           |
| Sampling Date Units  1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Chloroethane Chloromethane cis-1,2-Dichloroethylene Ethylbenzene m,p-Xylenes                                                                     | 06/25/14<br>μg/m³ 73.2 19.2 22.4 <0.260 0.950 J <0.400 108 D 204 D                               | 06/25/14<br>µg/m³<br>40.8<br>9.34<br>4.47<br><0.260<br>1.05<br><0.400<br>23<br>53.9          | 06/24/14<br>µg/m³<br>147<br>70.3<br>46<br><2.64<br><2.07<br><3.96<br>133<br>477             | 06/25/1 4 µg/m³ 50.1 12.3 36.1 5.54 21.9 <0.400 20 55.6                                                     | 06/23/1<br>4<br>µg/m³<br>12.8<br>3.15<br>4.15<br><0.260<br><0.210<br><0.400<br>6.08<br>23                                       | Air<br>Guideline<br>Value<br>µg/m³<br><br><br><br><br><br> | Table C-1 Upper Fence Limit(indoor)                                                  | Table C-2<br>90th<br>Percentile<br>Value(indoor)<br>µg/m³<br>9.5<br>3.7<br>9.4<br><1.1<br>3.7<br><1.9<br>5.7<br>22.2 | Table C-5 95th Percentile Value(indoor) µg/m³ 10 7.62 22.2                      |
| Sampling Date Units  1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Chloroethane Chloromethane cis-1,2-Dichloroethylene Ethylbenzene m,p-Xylenes Methylene Chloride                                                  | 06/25/14<br>μg/m³ 73.2 19.2 22.4 <0.260 0.950 J <0.400 108 D 204 D 1.46 J                        | 06/25/14<br>µg/m³<br>40.8<br>9.34<br>4.47<br><0.260<br>1.05<br><0.400<br>23<br>53.9<br>9.38  | 06/24/14<br>µg/m³  147  70.3  46  <2.64  <2.07  <3.96  133  477  167                        | 06/25/1<br>4<br>µg/m³<br>50.1<br>12.3<br>36.1<br>5.54<br>21.9<br><0.400<br>20<br>55.6<br>3.47               | 06/23/1<br>4<br>µg/m³<br>12.8<br>3.15<br>4.15<br><0.260<br><0.210<br><0.400<br>6.08<br>23<br>2.26                               | Air Guideline Value µg/m³                                  | Table C-1 Upper Fence Limit(indoor)                                                  | Table C-2 90th Percentile Value(indoor) µg/m³ 9.5 3.7 9.4 <1.1 3.7 <1.9 5.7 22.2 10                                  | Table C-5 95th Percentile Value(indoor) µg/m³ 10 7.62 22.2 7.5                  |
| Sampling Date Units  1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Chloroethane Chloromethane cis-1,2-Dichloroethylene Ethylbenzene m,p-Xylenes Methylene Chloride Naphthalene                                      | 06/25/14<br>μg/m³ 73.2 19.2 22.4 <0.260 0.950 J <0.400 108 D 204 D 1.46 J 9.96                   | 06/25/14<br>µg/m³ 40.8 9.34 4.47 <0.260 1.05 <0.400 23 53.9 9.38 32                          | 06/24/14<br>µg/m³  147  70.3  46  <2.64 <2.07 <3.96  133  477  167 <5.24                    | 06/25/1<br>4<br>µg/m³<br>50.1<br>12.3<br>36.1<br>5.54<br>21.9<br><0.400<br>20<br>55.6<br>3.47<br>9.44       | 06/23/1<br>4<br>µg/m³<br>12.8<br>3.15<br>4.15<br><0.260<br><0.210<br><0.400<br>6.08<br>23<br>2.26<br>3.46                       | Air Guideline Value µg/m³                                  | Table C-1 Upper Fence Limit(indoor)                                                  | Table C-2 90th Percentile Value(indoor) µg/m³ 9.5 3.7 9.4 <1.1 3.7 <1.9 5.7 22.2 10 5.1                              | Table C-5 95th Percentile Value(indoor) μg/m³ 10 7.62 22.2 7.5                  |
| Sampling Date Units  1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Chloroethane Chloromethane cis-1,2-Dichloroethylene Ethylbenzene m,p-Xylenes Methylene Chloride Naphthalene o-Xylene                             | 06/25/14<br>μg/m³ 73.2 19.2 22.4 <0.260 0.950 J <0.400 108 D 204 D 1.46 J 9.96 70.4 D            | 06/25/14<br>µg/m³ 40.8 9.34 4.47 <0.260 1.05 <0.400 23 53.9 9.38 32 19.6                     | 06/24/14<br>µg/m³  147  70.3  46  <2.64 <2.07 <3.96  133  477  167 <5.24  117               | 06/25/1<br>4<br>µg/m³<br>50.1<br>12.3<br>36.1<br>5.54<br>21.9<br><0.400<br>20<br>55.6<br>3.47<br>9.44<br>23 | 06/23/1<br>4 µg/m³<br>12.8<br>3.15<br>4.15<br><0.260<br><0.210<br><0.400<br>6.08<br>23<br>2.26<br>3.46<br>10.9                  | Air Guideline Value µg/m³  60                              | Table C-1 Upper Fence Limit(indoor)                                                  | Table C-2 90th Percentile Value(indoor) µg/m³ 9.5 3.7 9.4 <1.1 3.7 <1.9 5.7 22.2 10 5.1 7.9                          | Table C-5 95th Percentile Value(indoor) µg/m³ 10 7.62 22.2 7.5 7.24             |
| Sampling Date Units  1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Chloroethane Chloromethane cis-1,2-Dichloroethylene Ethylbenzene m,p-Xylenes Methylene Chloride Naphthalene o-Xylene Tetrachloroethylene         | 06/25/14<br>μg/m³ 73.2 19.2 22.4 <0.260 0.950 J <0.400 108 D 204 D 1.46 J 9.96 70.4 D 228 D      | 06/25/14<br>µg/m³  40.8  9.34  4.47  <0.260  1.05 <0.400  23  53.9  9.38  32  19.6  21       | 06/24/14<br>µg/m³  147  70.3  46  <2.64 <2.07 <3.96  133  477  167 <5.24  117  31193 D      | 06/25/1 4 µg/m³ 50.1 12.3 36.1 5.54 21.9 <0.400 20 55.6 3.47 9.44 23 47.5                                   | 06/23/1 4 µg/m³ 12.8 3.15 4.15 <0.260 <0.210 <0.400 6.08 23 2.26 3.46 10.9 7.46                                                 | Air Guideline Value µg/m³  60 30                           | Table C-1 Upper Fence Limit(indoor) µg/m³  9.8 3.9 13 0.4 4.2 0.4 6.4 11 16 7.1 2.5  | Table C-2 90th Percentile Value(indoor) µg/m³ 9.5 3.7 9.4 <1.1 3.7 <1.9 5.7 22.2 10 5.1 7.9 15.9                     | Table C-5 95th Percentile Value(indoor) µg/m³ 10 7.62 22.2 7.5 7.24 6.01        |
| Sampling Date Units  1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Chloroethane Chloromethane cis-1,2-Dichloroethylene Ethylbenzene m,p-Xylenes Methylene Chloride Naphthalene o-Xylene Tetrachloroethylene Toluene | 06/25/14<br>μg/m³ 73.2 19.2 22.4 <0.260 0.950 J <0.400 108 D 204 D 1.46 J 9.96 70.4 D 228 D 23.4 | 06/25/14<br>µg/m³  40.8  9.34  4.47  <0.260  1.05 <0.400  23  53.9  9.38  32  19.6  21  27.1 | 06/24/14<br>µg/m³  147  70.3  46  <2.64 <2.07 <3.96  133  477  167 <5.24  117  31193 D  166 | 06/25/1 4 µg/m³ 50.1 12.3 36.1 5.54 21.9 <0.400 20 55.6 3.47 9.44 23 47.5 37.3                              | 06/23/1<br>4<br>µg/m³<br>12.8<br>3.15<br>4.15<br><0.260<br><0.210<br><0.400<br>6.08<br>23<br>2.26<br>3.46<br>10.9<br>7.46<br>26 | Air Guideline Value µg/m³  60 30                           | Table C-1 Upper Fence Limit(indoor)                                                  | Table C-2 90th Percentile Value(indoor) µg/m³ 9.5 3.7 9.4 <1.1 3.7 <1.9 5.7 22.2 10 5.1 7.9 15.9 43                  | Table C-5 95th Percentile Value(indoor) µg/m³ 10 7.62 22.2 7.5 7.24 6.01 39.8   |
| Sampling Date Units  1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Chloroethane Chloromethane cis-1,2-Dichloroethylene Ethylbenzene m,p-Xylenes Methylene Chloride Naphthalene o-Xylene Tetrachloroethylene         | 06/25/14<br>μg/m³ 73.2 19.2 22.4 <0.260 0.950 J <0.400 108 D 204 D 1.46 J 9.96 70.4 D 228 D      | 06/25/14<br>µg/m³  40.8  9.34  4.47  <0.260  1.05 <0.400  23  53.9  9.38  32  19.6  21       | 06/24/14<br>µg/m³  147  70.3  46  <2.64 <2.07 <3.96  133  477  167 <5.24  117  31193 D      | 06/25/1 4 µg/m³ 50.1 12.3 36.1 5.54 21.9 <0.400 20 55.6 3.47 9.44 23 47.5                                   | 06/23/1 4 µg/m³ 12.8 3.15 4.15 <0.260 <0.210 <0.400 6.08 23 2.26 3.46 10.9 7.46                                                 | Air Guideline Value µg/m³  60 30                           | Table C-1 Upper Fence Limit(indoor) µg/m³  9.8 3.9 13 0.4 4.2 0.4 6.4 11 16 7.1 2.5  | Table C-2 90th Percentile Value(indoor) µg/m³ 9.5 3.7 9.4 <1.1 3.7 <1.9 5.7 22.2 10 5.1 7.9 15.9                     | Table C-5 95th Percentile Value(indoor) µg/m³ 10 7.62 22.2 7.5 7.24 6.01        |

#### PROPOSED PUBLIC SCHOOL

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE **BRONX, NEW YORK 10462**

| Sample ID                      | SV-11          | SV-12                     | SV-13                     | SV-14          | SV-15          | NYSDOH<br>Air  | NYSDOH<br>Table C-1    | NYSDOH<br>Table C-2<br>90th | NYSDOH<br>Table C-5<br>95th |
|--------------------------------|----------------|---------------------------|---------------------------|----------------|----------------|----------------|------------------------|-----------------------------|-----------------------------|
| 0 P B. (1                      | 00/00/44       | 00/05/44                  | 00/00/44                  | 06/25/1        | 06/26/1        | Guideline      | Upper Fence            | Percentile                  | Percentile                  |
| Sampling Date                  | 06/23/14       | 06/25/14                  | 06/23/14                  | 4              | 4              | Value<br>µg/m³ | Limit(indoor)<br>µg/m³ | Value(indoor)<br>µg/m³      | Value(indoor)<br>µg/m³      |
| Units                          | μ <b>g/m</b> ³ | μ <b>g/m</b> <sup>3</sup> | μ <b>g/m</b> <sup>3</sup> | μ <b>g/m</b> ³ | μ <b>g/m</b> ³ |                | , 0                    |                             | μ <b>g</b> /π               |
| 1,2,4-Trimethylbenzene         | 23.6           | 0.790 J                   | 1.87 J                    | 264 D          | 14.8 J         |                | 9.8                    | 9.5                         |                             |
| 1,3,5-Trimethylbenzene         | 6.39           | <0.490                    | <0.490                    | 69.8           | 5.41 J         |                | 3.9                    | 3.7                         |                             |
| Benzene                        | 20.4           | 0.580 J                   | <0.320                    | 2.91           | 7.03 J         |                | 13                     | 9.4                         | 10                          |
| Chloroethane                   | <0.260         | <0.260                    | <0.260                    | <0.260         | <2.64          |                | 0.4                    | <1.1                        |                             |
| Chloromethane                  | 1.67           | 1.78                      | <0.210                    | 1.53           | 4.96 J         |                | 4.2                    | 3.7                         |                             |
| cis-1,2-Dichloroethylene       | <0.400         | <0.400                    | <0.400                    | 8.72           | <3.96          |                | 0.4                    | <1.9                        |                             |
| Ethylbenzene                   | 16.1           | 0.480 J                   | <0.430                    | 16.1           | 6.52 J         |                | 6.4                    | 5.7                         | 7.62                        |
| m,p-Xylenes                    | 52.1           | 1.56 J                    | <0.870                    | 59.5           | 21.3 J         |                | 11                     | 22.2                        | 22.2                        |
| Methylene Chloride             | 11.1           | 1.01 J                    | 20.5                      | 937 D          | 5.21 J         | 60             | 16                     | 10                          | 7.5                         |
| Naphthalene                    | 5.24           | <0.520                    | 5.77                      | 8.91           | 5.24 J         |                |                        | 5.1                         |                             |
| o-Xylene                       | 22.2           | 0.650 J                   | 0.610 J                   | 30.4           | 8.25 J         |                | 7.1                    | 7.9                         | 7.24                        |
| Tetrachloroethylene            | 4.48           | 0.34                      | 65.8                      | 143 D          | 15596 D        | 30             | 2.5                    | 15.9                        | 6.01                        |
| Toluene                        | 91.2 D         | 22.2                      | 5.65                      | 22.6           | 21.9           |                | 57                     | 43                          | 39.8                        |
| Trichloroethylene (TCE)        | <0.160         | <0.160                    | 0.43                      | 2.79           | 178            | 5              | 0.5                    | 4.2                         | 1.36                        |
| Vinyl Chloride                 | <0.0800        | <0.0800                   | <0.0800                   | 0.38           | <0.770         |                | 0.4                    | <1.9                        |                             |
|                                |                |                           |                           |                |                | NYSDOH         | NYSDOH                 | NYSDOH<br>Table C-2         | NYSDOH<br>Table C-5         |
|                                |                |                           |                           |                |                | Air            | Table C-1              | 90th                        | 95th                        |
| Sample ID                      | SV-16          | SV-17                     | SV-18                     |                |                | Guideline      | Upper Fence            | Percentile                  | Percentile                  |
| Sampling Date                  | 06/25/14       | 06/25/14                  | 06/25/14                  |                |                | Value          | Limit(indoor)          | Value(indoor)               | Value(indoor)               |
| Units                          | μ <b>g/m</b> ³ | μ <b>g/m</b> ³            | μ <b>g/m</b> ³            |                |                | μ <b>g/m</b> ³ | μ <b>g/m³</b>          | μ <b>g/m³</b>               | μ <b>g/m³</b>               |
| 1,2,4-Trimethylbenzene         | 15.2           | 259 D                     | 65.4 D                    |                |                |                | 9.8                    | 9.5                         |                             |
| 1,3,5-Trimethylbenzene         | 4.13           | 86.0 D                    | 23.6                      |                |                |                | 3.9                    | 3.7                         |                             |
| Benzene                        | 1.98           | 3.51                      | 9.58                      |                |                |                | 13                     | 9.4                         | 10                          |
| Chloroethane                   | <0.260         | 0.690 J                   | < 0.260                   |                |                |                | 0.4                    | <1.1                        |                             |
| Chloromethane                  | 1.84           | 0.870 J                   | 1.01 J                    |                |                |                | 4.2                    | 3.7                         |                             |
| cis-1,2-Dichloroethylene       | < 0.400        | < 0.400                   | < 0.400                   |                |                |                | 0.4                    | <1.9                        |                             |
| Ethylbenzene                   | 3.26           | 15.2                      | 46                        |                |                |                | 6.4                    | 5.7                         | 7.62                        |
| m,p-Xylenes                    | 11.7           | 61.7                      | 117 D                     |                |                |                | 11                     | 22.2                        | 22.2                        |
| Methylene Chloride             | 6.95           | 14.6                      | 41.3                      |                |                | 60             | 16                     | 10                          | 7.5                         |
| Naphthalene                    | 1.99 J         | 29.9                      | 16.8                      |                |                |                |                        | 5.1                         |                             |
| o-Xylene                       | I              | 40.8                      | 63.8                      |                |                |                | 7.1                    | 7.9                         | 7.24                        |
| O Aylette                      | 5.65           | 40.0                      |                           |                |                |                |                        |                             |                             |
| Tetrachloroethylene            | 5.65<br>3.32   | 27.8                      | 46.8                      |                |                | 30             | 2.5                    | 15.9                        | 6.01                        |
| Tetrachloroethylene<br>Toluene |                |                           |                           |                |                | 30<br>         | 2.5<br>57              | 15.9<br>43                  | 6.01<br>39.8                |
| Tetrachloroethylene            | 3.32           | 27.8                      | 46.8                      |                |                |                |                        |                             |                             |

Qualifiers

<: Analyzed but not detected

J: Estimated value

D: Detected at secondary dilution

ug/m³: Micrograms per cubic meter Exceeds the range of all background databases

Exceeds the NYSDOH Air Guideline

The following compounds were detected at a concentration greater than the anticipated range of background concentrations or AGVs: 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, chloroethane, chloromethane, cis-1,2-dichloroethylene, ethylbenzene, m,p-xylenes, methylene chloride, naphthalene, o-xylene, tetrachloroethylene (PCE), toluene, trichloroethylene (TCE) and vinyl chloride. Of the 18 soil vapor samples, only two samples (SV-1 and SV-12) did not exhibit one or more of these compounds at concentrations greater than the anticipated range of background concentrations. SV-1 is located upgradient of the Site along East Tremont Avenue. The highest concentrations were detected in soil vapor samples SV-3, SV-5, SV-8, SV-14 and SV-15. Samples SV-8 and SV-15, which exhibited the maximum PCE concentrations of 31,193 μg/m<sup>3</sup> and 15,596 μg/m<sup>3</sup>, respectively, are located in the vicinity of the former on-site dry cleaners. Sample SV-5, which exhibited the maximum benzene concentration of 1,054 µg/m<sup>3</sup>, is located in the alleyway immediately downgradient of the on-site gas station.

#### PROPOSED PUBLIC SCHOOL 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET,

1577-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

The NYSDOH has established Air Guideline Values (AGVs) for three (3) of the VOCs analyzed (methylene chloride, PCE, and TCE). PCE was detected at a concentration greater than the AGV of  $30 \,\mu\text{g/m}^3$  in 11 of the 18 soil vapor samples, with a maximum concentration of  $31,193 \,\mu\text{g/m}^3$  detected in SV-8 collected beneath the slab of the building on Lot 1 in the vicinity of a former on-site dry cleaner. TCE was detected at a concentration greater than the AGV of  $5 \,\mu\text{g/m}^3$  in two soil vapor samples, including SV-8 at  $128 \,\mu\text{g/m}^3$  and SV-15 at  $178 \,\mu\text{g/m}^3$ , both near former on-site dry cleaners. As discussed above, both of these samples were collected in the vicinity of former on-site dry cleaners. Methylene chloride was detected at a concentration greater than the AGV of  $60 \,\mu\text{g/m}^3$  in two soil vapor samples, specifically SV-8 at  $167 \,\mu\text{g/m}^3$  and SV-14 at  $937 \,\mu\text{g/m}^3$ . Sample SV-14 was collected beneath the slab of the building on Lot 23 (methylene chloride in this sample could be attributable to degreasers used on the pin-setting equipment).

The soil vapor sampling results for TCE and vinyl chloride were compared to Matrix 1 of the NYSDOH Vapor Intrusion Guidance Document. The concentrations of TCE reported by the laboratory range from non-detect to  $178\,\mu\text{g/m}^3$ . The concentrations of vinyl chloride reported by the laboratory range from non-detect to  $6.9\,\mu\text{g/m}^3$ . Based on Matrix 1, for sub-slab vapor with a TCE concentration between non-detect and  $178\,\mu\text{g/m}^3$ , the required action may range from no further action to mitigation, depending on corresponding indoor air concentrations. Based on Matrix 1, for sub-slab vapor with a vinyl chloride concentration between non-detect and  $6.9\,\mu\text{g/m}^3$ , the required action may range from no further action to take reasonable and practical actions to identify source(s) and reduce exposures, depending on corresponding indoor air concentrations.

The soil vapor sampling results for 1,1--DCE, cis-1,2-DCE, PCE and 1,1,1-TCA were compared to Matrix 2 of the NYSDOH Vapor Intrusion Guidance Document. 1,1-DCE was not detected in any of the soil vapor samples. cis-1,2-DCE was detected in one sample at a concentration of 8.72  $\mu$ g/m³. The concentrations of PCE reported by the laboratory range from 0.34 to 31,193  $\mu$ g/m³. The concentrations of 1,1,1-TCA reported by the laboratory range from non-detect to 0.98  $\mu$ g/m³. Based on Matrix 2, for sub-slab vapor with a cis-1,2-DCE or 1,1,1-TCA concentration between non-detect and 8.72  $\mu$ g/m³, the required action may range from no further action to take reasonable and practical actions to identify source(s) and reduce exposures, depending on corresponding indoor air concentrations. Based on Matrix 2, for sub-slab vapor with a PCE concentration between 0.34 and 31,193  $\mu$ g/m³, the required action may range from no further action to mitigation, depending on corresponding indoor air concentrations. Since the PCE concentrations at SV-8 and SV-15 are greater than 1,000  $\mu$ g/m³ (31,193  $\mu$ g/m³ and 15,596  $\mu$ g/m³, respectively), the required action at these location is mitigation.

At Locations 5, 8 and 17, compounds detected in soil vapor above comparison levels were also detected exceeding their respective regulatory standards in soil or groundwater samples collected from these locations. These compounds include 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, xylenes and naphthalene at Location 5, and PCE at Locations 8 and 17. Location 5 also exhibited the greatest evidence of contamination from field screening, with a strong petroleum odor and PID readings up to 500 ppm. Petroleum odors and PID readings over 1 ppm were also detected at Locations 6, 7 and 14, which exhibited soil vapor concentrations above comparison levels. Therefore, the detected soil vapor concentrations are likely due to historical or current use of the Site (e.g., the on-site gasoline station), as well as off-site sources (e.g., the adjoining upgradient gasoline station).

It should be noted that many of the soil vapor concentrations exceeded the calibration range in the initial analysis and were reanalyzed at a secondary dilution. These concentrations were reported from the

# 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

secondary dilutions and were qualified with a "D". Original analytical data is reported where dilution was not required.

#### 4.4 Soil Sampling Findings

#### 4.4.1 Volatile Organic Compounds (VOCs) in Soil

A review of the soil sampling analytical results indicates that 22 of the 60 VOCs analyzed for were detected in one or more samples. Note that some of the soil concentrations exceeded the calibration range in the initial analysis and were reanalyzed at a secondary dilution. These concentrations were reported from the secondary dilutions and were qualified with a "D". Original analytical data is reported where dilution was not required. Tentatively identified compounds (TICs) were identified in 9 samples, at concentrations ranging from 0.006 to 2,383.7 mg/kg. A summary of the compounds and concentrations which exceed Unrestricted Use SCOs, SCLs and/or Supplemental SCOs is provided below:

Table 5
Detected VOC Concentrations above Unrestricted Use SCOs and Supplemental SCOs in Soil

| Sample ID Sampling Date Start Depth End Depth Units | GP-1(0-5)<br>6/24/2014<br>0 feet<br>5 feet<br>mg/kg | GP-2(0-5)<br>6/24/2014<br>0 feet<br>5 feet<br>mg/kg | GP-3(6-18)<br>6/24/2014<br>6 inches<br>18 inches<br>mg/kg | GP-4(0-5)<br>6/23/2014<br>0 feet<br>5 feet<br>mg/kg | GP-5(10-12)<br>6/23/2014<br>10 feet<br>12 feet<br>mg/kg | 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives (SCOs) mg/kg | CP-51 Soil<br>Cleanup<br>Levels Fuel<br>Oil<br>Contaminated<br>Soil<br>mg/kg | CP-51<br>SCOs<br>Residentia<br>I Use<br>mg/kg |
|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|
| 1,2,4-                                              |                                                     |                                                     |                                                           |                                                     |                                                         |                                                                        |                                                                              |                                               |
| Trimethylbenzene                                    | < 0.00053                                           | <0.00054                                            | <0.00024                                                  | <0.00044                                            | 28.1D                                                   | 3.6                                                                    | 3.6                                                                          |                                               |
| 1,3,5-                                              |                                                     |                                                     |                                                           |                                                     |                                                         |                                                                        |                                                                              |                                               |
| Trimethylbenzene                                    | <0.00053                                            | <0.00054                                            | <0.00024                                                  | <0.00044                                            | 9.2D                                                    | 8.4                                                                    | 8.4                                                                          |                                               |
| Acetone                                             | 0.0273                                              | 0.0434                                              | < 0.0012                                                  | 0.0486                                              | <1.2                                                    | 0.05                                                                   |                                                                              |                                               |
| Benzene                                             | < 0.00053                                           | < 0.00054                                           | < 0.00024                                                 | < 0.00044                                           | 7                                                       | 0.06                                                                   | 0.06                                                                         |                                               |
| Ethylbenzene                                        | < 0.00053                                           | < 0.00054                                           | < 0.00024                                                 | < 0.00044                                           | 7.7D                                                    | 1                                                                      | 1                                                                            |                                               |
| Isopropylbenzene                                    | < 0.00053                                           | < 0.00054                                           | < 0.00024                                                 | < 0.00044                                           | 14.3                                                    |                                                                        | 2.3                                                                          | 100                                           |
| m,p-Xylene                                          | < 0.0011                                            | < 0.0011                                            | < 0.00049                                                 | < 0.00089                                           | 30.6D                                                   | 0.26                                                                   | 0.26                                                                         |                                               |
| o-Xylene                                            | < 0.00053                                           | < 0.00054                                           | < 0.00024                                                 | < 0.00044                                           | 5.9 D                                                   | 0.26                                                                   |                                                                              |                                               |
| Tetrachloroethene                                   | 0.0049J                                             | < 0.00054                                           | 0.0109                                                    | < 0.00044                                           | <0.25                                                   | 1.3                                                                    |                                                                              |                                               |
| Toluene                                             | < 0.00053                                           | < 0.00054                                           | < 0.00024                                                 | < 0.00044                                           | 3.4                                                     | 0.7                                                                    | 0.7                                                                          |                                               |
| Naphthalene                                         | < 0.00053                                           | < 0.00054                                           | < 0.00024                                                 | 0.0022J                                             | 32.3                                                    | 12                                                                     |                                                                              |                                               |
| n-Butylbenzene                                      | < 0.00053                                           | < 0.00054                                           | < 0.00024                                                 | < 0.00044                                           | 12.6                                                    | 12                                                                     | 12                                                                           |                                               |
| n-Propylbenzene                                     | < 0.00053                                           | <0.00054                                            | < 0.00024                                                 | <0.00044                                            | 41.1                                                    | 3.9                                                                    | 3.9                                                                          |                                               |

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET,

#### 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

|                               |                      |                      |                      |                      |                      | 6 NYCRR                    | CP-51 Soil               |                     |
|-------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|--------------------------|---------------------|
| Sample ID                     | GP-5(18-20)          | GP-6(7-9)            | GP-6(12-14)          | GP-7(9-11)           | GP-7(14-16)          | Part 375                   | Cleanup                  |                     |
| Sampling Date                 | 6/23/2014            | 6/25/2014            | 6/25/2014            | 6/25/2014            | 6/25/2014            | Unrestricted Use           | Levels Fuel              | CP-51               |
| Start Depth                   | 18 feet              | 7 feet               | 12 feet              | 9 feet               | 14 feet              | Soil Cleanup<br>Objectives | Oil<br>Contaminated      | SCOs<br>Residentia  |
| End Depth                     | 20 feet              | 9 feet               | 14 feet              | 11 feet              | 16 feet              | (SCOs)                     | Soil                     | I Use               |
| Units                         | mg/kg                | mg/kg                | mg/kg                | mg/kg                | mg/kg                | mg/kg                      | mg/kg                    | mg/kg               |
| 1,2,4-                        |                      |                      |                      |                      |                      |                            |                          |                     |
| Trimethylbenzene              | 0.0069               | <0.00052             | <0.00059             | <0.00044             | <0.00041             | 3.6                        | 3.6                      |                     |
| 1,3,5-<br>Trimethylbenzene    | 0.0018 J             | <0.00052             | <0.00059             | <0.00044             | <0.00041             | 8.4                        | 8.4                      |                     |
| Acetone                       | 0.0018 J<br>0.0241 J | 0.0576               | <0.003               | 0.0062 J             | 0.0066 J             | 0.05                       |                          |                     |
| Benzene                       | 0.0164               | <0.00052             | < 0.00059            | <0.00044             | <0.00041             | 0.06                       | 0.06                     |                     |
| Ethylbenzene                  | 0.0019 J             | < 0.00052            | < 0.00059            | < 0.00044            | < 0.00041            | 1                          | 1                        |                     |
| Isopropylbenzene              | < 0.00049            | < 0.00052            | < 0.00059            | < 0.00044            | <0.00041             |                            | 2.3                      | 100                 |
| m,p-Xylene                    | 0.0072 J             | <0.001               | <0.0012              | <0.00088             | <0.00082             | 0.26                       | 0.26                     |                     |
| o-Xylene                      | 0.0018J              | <0.00052             | < 0.00059            | <0.00044             | <0.00041             | 0.26                       |                          |                     |
| Tetrachloroethene             | <0.00049             | <0.00052             | <0.00059             | <0.00044             | <0.00041             | 1.3                        |                          |                     |
| Toluene                       | <0.00049             | <0.00052             | <0.00059             | <0.00044             | <0.00041             | 0.7                        | 0.7                      |                     |
| Naphthalene<br>n-Butylbenzene | 0.0014J<br><0.00049  | <0.00052<br><0.00052 | <0.00059<br><0.00059 | <0.00044<br><0.00044 | <0.00041<br><0.00041 | 12<br>12                   | 12                       |                     |
| n-Propylbenzene               | <0.00049             | <0.00052             | <0.00059             | <0.00044             | <0.00041             | 3.9                        | 3.9                      |                     |
| ii i ropyibolizelle           | <b>CO.00043</b>      | ₹0.00002             | <u> </u>             | \0.000 <del>11</del> | \0.00041             | 6 NYCRR                    | CP-51 Soil               |                     |
| Sample ID                     | GP-8(6-18)           | GP-9(0-5)            | GP-10(6-19)          | GP-11(6-23)          | GP-12(0-5)           | Part 375                   | Cleanup                  |                     |
| Sampling Date                 | 6/24/2014            | 6/25/2014            | 6/23/2014            | 6/23/2014            | 6/24/2014            | Unrestricted Use           | Levels Fuel              | CP-51               |
| Start Depth                   | 6 inches             | 0 feet               | 6 inches             | 6 inches             | 0 feet               | Soil Cleanup               | Oil                      | SCOs                |
| End Depth                     | 18 inches            | 5 feet               | 19 inches            | 23 inches            | 5 feet               | Objectives<br>(SCOs)       | Contaminated<br>Soil     | Residentia<br>I Use |
| Units                         | mg/kg                | mg/kg                | mg/kg                | mg/kg                | mg/kg                | mg/kg                      | mg/kg                    | mg/kg               |
| 1,2,4-                        | mgrkg                | mg/kg                | mg/kg                | mg/kg                | mg/kg                |                            |                          | 3 3                 |
| Trimethylbenzene              | <0.00026             | < 0.00047            | < 0.00024            | <0.00026             | <0.00056             | 3.6                        | 3.6                      |                     |
| 1,3,5-                        |                      |                      |                      |                      |                      |                            |                          |                     |
| Trimethylbenzene              | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 8.4                        | 8.4                      |                     |
| Acetone                       | <0.0013              | 0.0087 J             | <0.0012              | <0.0013              | 0.007 J              | 0.05                       |                          |                     |
| Benzene<br>Ethylbenzene       | <0.00026<br><0.00026 | <0.00047<br><0.00047 | <0.00024<br><0.00024 | <0.00026<br><0.00026 | <0.00056<br><0.00056 | 0.06<br>1                  | 0.06<br>1                |                     |
| Isopropylbenzene              | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             |                            | 2.3                      | 100                 |
| m,p-Xylene                    | <0.00052             | <0.00094             | < 0.00049            | < 0.00053            | <0.0011              | 0.26                       | 0.26                     |                     |
| o-Xylene                      | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 0.26                       |                          |                     |
| Tetrachloroethene             | 3.3 D                | 0.0011 J             | < 0.00024            | 0.00097J             | <0.00056             | 1.3                        |                          |                     |
| Toluene                       | 0.00063J             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 0.7                        | 0.7                      |                     |
| Naphthalene                   | <0.00026             | 0.001 J              | <0.00024             | <0.00026             | <0.00056             | 12                         |                          |                     |
| n-Butylbenzene                | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 12                         | 12                       |                     |
| n-Propylbenzene               | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 3.9<br><b>6 NYCRR</b>      | 3.9<br><b>CP-51 Soil</b> |                     |
| Sample ID                     | GP-13(0-5)           | GP-13(18-20)         | GP-14(6-18)          | GP-15(6-20)          | GP-16(0-5)           | Part 375                   | CP-51 Soil<br>Cleanup    |                     |
| Sampling Date                 | 6/23/2014            | 6/30/2014            | 6/25/2014            | 6/26/2014            | 6/26/2014            | Unrestricted Use           | Levels Fuel              | CP-51               |
| Start Depth                   | 0 feet               | 18 feet              | 6 inches             | 6 inches             | 0 feet               | Soil Cleanup               | Oil                      | SCOs                |
| End Depth                     | 5 feet               | 23 feet              | 18 inches            | 20 inches            | 5 feet               | Objectives                 | Contaminated             | Residentia<br>I Use |
| Units                         | mg/kg                | mg/kg                | mg/kg                | mg/kg                | mg/kg                | (SCOs)<br>mg/kg            | Soil<br>mg/kg            | mg/kg               |
| 1,2,4-                        | g/Kg                 | mg/ng                | mg/ng                | mg/kg                | mg/kg                | mg/kg                      | g/Rg                     | J                   |
| Trimethylbenzene              | <0.00049             | 33.6 D               | <0.00017             | <0.00022             | <0.00047             | 3.6                        | 3.6                      |                     |
| 1,3,5-                        |                      |                      |                      |                      |                      |                            |                          |                     |
| Trimethylbenzene              | <0.00049             | 11.0 D               | <0.00017             | <0.00022             | <0.00047             | 8.4                        | 8.4                      |                     |
| Acetone<br>Benzene            | 0.0103 J<br><0.00049 | <0.0515<br><0.0103   | 0.0226<br><0.00017   | <0.0011<br><0.00022  | 0.0068 J<br><0.00047 | 0.05<br>0.06               | 0.06                     |                     |
| Ethylbenzene                  | <0.00049             | 13.5 D               | <0.00017             | <0.00022             | <0.00047             | 0.06                       | 0.06                     |                     |
| Isopropylbenzene              | <0.00049             | 1.5                  | <0.00017             | <0.00022             | <0.00047             |                            | 2.3                      | 100                 |
| m,p-Xylene                    | <0.00097             | 43.8 D               | <0.00033             | < 0.00045            | <0.00094             | 0.26                       | 0.26                     |                     |
| o-Xylene                      | < 0.00049            | 12.7 D               | < 0.00017            | <0.00022             | <0.00047             | 0.26                       |                          |                     |
| Tetrachloroethene             | 0.0021J              | <0.0103              | 0.0013J              | 0.022                | <0.00047             | 1.3                        |                          |                     |
| Toluene                       | <0.00049             | 0.16                 | <0.00017             | <0.00022             | <0.00047             | 0.7                        | 0.7                      |                     |
| Naphthalene                   | <0.00049             | 5.70 D               | <0.00017             | <0.00022             | <0.00047             | 12                         |                          |                     |
| n-Butylbenzene                | <0.00049             | 2.30 D               | <0.00017             | <0.00022             | <0.00047             | 12                         | 12                       |                     |
| n-Propylbenzene               | <0.00049             | 6.80 D               | <0.00017             | <0.00022             | <0.00047             | 3.9                        | 3.9                      |                     |

#### PROPOSED PUBLIC SCHOOL

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

| Sample ID Sampling Date Start Depth End Depth Units | GP-17(0-5)<br>6/26/2014<br>0 feet<br>5 feet<br>mg/kg | GP-18(6-18)<br>6/26/2014<br>6 inches<br>18 inches<br>mg/kg | GP-19(10-24)<br>6/25/2014<br>10 inches<br>24 inches<br>mg/kg | 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives (SCOs) mg/kg | CP-51 Soil<br>Cleanup<br>Levels Fuel<br>Oil<br>Contaminated<br>Soil<br>mg/kg | CP-51<br>SCOs<br>Residentia<br>I Use<br>mg/kg |
|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|
| 1,2,4-                                              |                                                      |                                                            |                                                              |                                                                        |                                                                              |                                               |
| Trimethylbenzene                                    | <0.00052                                             | <0.00016                                                   | <0.00018                                                     | 3.6                                                                    | 3.6                                                                          |                                               |
| 1,3,5-                                              |                                                      |                                                            |                                                              |                                                                        |                                                                              |                                               |
| Trimethylbenzene                                    | <0.00052                                             | <0.00016                                                   | <0.00018                                                     | 8.4                                                                    | 8.4                                                                          |                                               |
| Acetone                                             | 0.0109 J                                             | <0.0008                                                    | <0.00092                                                     | 0.05                                                                   |                                                                              |                                               |
| Benzene                                             | < 0.00052                                            | < 0.00016                                                  | <0.00018                                                     | 0.06                                                                   | 0.06                                                                         |                                               |
| Ethylbenzene                                        | 0.0011 J                                             | < 0.00016                                                  | <0.00018                                                     | 1                                                                      | 1                                                                            |                                               |
| Isopropylbenzene                                    | < 0.00052                                            | < 0.00016                                                  | <0.00018                                                     |                                                                        | 2.3                                                                          | 100                                           |
| m,p-Xylene                                          | 0.0019 J                                             | < 0.00032                                                  | < 0.00037                                                    | 0.26                                                                   | 0.26                                                                         |                                               |
| o-Xylene                                            | < 0.00052                                            | < 0.00016                                                  | <0.00018                                                     | 0.26                                                                   |                                                                              |                                               |
| Tetrachloroethene                                   | 0.0041 J                                             | < 0.00016                                                  | 0.13 D                                                       | 1.3                                                                    |                                                                              |                                               |
| Toluene                                             | < 0.00052                                            | < 0.00016                                                  | <0.00018                                                     | 0.7                                                                    | 0.7                                                                          |                                               |
| Naphthalene                                         | < 0.00052                                            | <0.00016                                                   | <0.00018                                                     | 12                                                                     |                                                                              |                                               |
| n-Butylbenzene                                      | < 0.00052                                            | <0.00016                                                   | <0.00018                                                     | 12                                                                     | 12                                                                           |                                               |
| n-Propylbenzene                                     | <0.00052                                             | <0.00016                                                   | <0.00018                                                     | 3.9                                                                    | 3.9                                                                          |                                               |

Footnotes/Qualifiers

mg/kg: Milligrams per kilogram

<: Analyzed for but not detected

J: Estimated value

Detected at secondary

D: dilution

--: No standard

Exceeds Unrestricted Use SCO, SCL and/or Supplemental SCO

The following compounds were detected at a concentration greater than Unrestricted Use SCOs, SCLs and/or Supplemental SCOs in soil sample GP-5 (10 to 12 feet): 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, m,p-xylenes, o-xylene, toluene, naphthalene, n-butylbenzene and n-propylbenzene. This soil sample was collected from the groundwater interface in the alleyway immediately downgradient of the on-site gas station. A similar but reduced suite of compounds was detected in soil sample GP-13 (18 to 20 feet), collected below the water table further downgradient along White Plains Road. The maximum concentration of 43.8 mg/kg was detected for m,p-xylene in GP-13 (18 to 20 feet), above the Unrestricted Use SCO of 0.26 mg/kg. These soil samples exhibited petroleum odors and PID readings up to 500 ppm.

Soil sample GP-8 (6 to 18 inches) exhibited a PCE concentration of 3.3 mg/kg, above the Unrestricted Use SCO of 1.3 mg/kg. Location 8 was completed beneath the slab of the building on Lot 1 in the vicinity of a former on-site dry cleaner. Acetone, a common lab contaminant, was also detected slightly above its Unrestricted Use SCO in soil sample GP-6 (7 to 9 feet).

The source of these VOCs can likely be attributed to the historical or current use of the Site (e.g., the onsite gasoline station and former dry cleaners), as well as off-site sources (e.g., adjoining upgradient gasoline station spill) for smear zone soil. Summaries of the analytical results for VOCs in soil are presented in *Table 13*. The analytical data package is presented as *Appendix E*.

#### 4.4.2 Semivolatile Organic Compounds (SVOCs) in Soil

A review of the subsurface soil sampling analytical results indicates that 21 of the 67 SVOCs analyzed for was detected in one or more samples, primarily polycyclic aromatic hydrocarbons (PAHs). Tentatively identified compounds (TICs) were identified in 23 samples, at concentrations ranging from 6.74 to

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

28.88 mg/kg. A summary of the compounds and concentrations which exceed Unrestricted Use SCOs, SCLs, and/or Supplemental SCOs is provided below:

Table 6
Detected SVOC Concentrations above Unrestricted Use SCOs and/or Supplemental SCOs in Soil

| Sample ID                              | GP-1(0-5)     | GP-2(0-5)          | GP-3(6-18)     | GP-4(0-5)          | GP-5(10-12)        | 6 NYCRR<br>Part 375<br>Unrestricted | CP-51 Soil<br>Cleanup | 00.54         |
|----------------------------------------|---------------|--------------------|----------------|--------------------|--------------------|-------------------------------------|-----------------------|---------------|
| Sampling Date                          | 6/24/14       | 6/24/14            | 6/24/14        | 6/23/14            | 6/23/14            | Use Soil<br>Cleanup                 | Levels Fuel<br>Oil    | CP-51<br>SCOs |
| Start Depth                            | 0 feet        | 0 feet             | 6 inches       | 0 feet             | 10 feet            | Objectives                          | Contaminated          | Residential   |
| End Depth                              | 5 feet        | 5 feet             | 18 inches      | 5 feet             | 12 feet            | (SCOs)                              | Soil                  | Use           |
| Units                                  | mg/kg         | mg/kg              | mg/kg          | mg/kg              | mg/kg              | mg/kg                               | mg/kg                 | mg/kg         |
| 2-Methylnaphthalene                    | < 0.37        | < 0.0767           | < 0.0383       | < 0.0726           | 0.64               |                                     |                       | 0.41          |
| Benzo(a)anthracene                     | 0.91 J        | 0.67 J             | 0.36 J         | 0.58 J             | < 0.0402           | 1                                   | 1                     |               |
| Benzo(a)pyrene                         | 0.79 J        | 0.62 J             | 0.32 J         | 0.51 J             | < 0.0402           | 1                                   | 1                     |               |
| Benzo(b)fluoranthene                   | 1 J           | 0.79               | 0.37 J         | 0.55 J             | < 0.0402           | 1                                   | 1                     |               |
| Benzo(k)fluoranthene                   | < 0.37        | 0.26 J             | 0.19 J         | 0.29 J             | < 0.0402           | 0.8                                 | 0.8                   |               |
| Chrysene                               | 0.8 J         | 0.66 J             | 0.31 J         | 0.56 J             | < 0.0402           | 1                                   | 1                     |               |
| Dibenzo(a,h)anthracene                 | < 0.37        | <0.0767            | < 0.0383       | <0.0726            | <0.0402            | 0.33                                | 0.33                  |               |
| Indeno(1,2,3-cd)pyrene                 | <0.37         | 0.36 J             | 0.19 J         | 0.28 J             | <0.0402            | 0.5                                 | 0.5                   |               |
|                                        |               |                    |                |                    |                    | 6 NYCRR                             | 00.54.0."             |               |
|                                        |               |                    |                |                    |                    | Part 375                            | CP-51 Soil<br>Cleanup |               |
| Sample ID                              | GP-5(18-20)   | GP-6(7-9)          | GP-6(12-14)    | GP-7(9-11)         | GP-7(14-16)        | Unrestricted<br>Use Soil            | Levels Fuel           | CP-51         |
| Sampling Date                          | 6/23/14       | 6/25/14            | 6/25/14        | 6/25/14            | 6/25/14            | Cleanup                             | Oil                   | SCOs          |
| Start Depth                            | 18 feet       | 7 feet             | 12 feet        | 9 feet             | 14 feet            | Objectives                          | Contaminated          | Residential   |
| End Depth                              | 20 feet       | 9 feet             | 14 feet        | 11 feet            | 16 feet            | (SCOs)                              | Soil                  | Use           |
| Units                                  | mg/kg         | mg/kg              | mg/kg          | mg/kg              | mg/kg              | mg/kg                               | mg/kg                 | mg/kg         |
| 2-Methylnaphthalene                    | < 0.0406      | < 0.0407           | < 0.0456       | <0.0384            | < 0.037            |                                     |                       | 0.41          |
| Benzo(a)anthracene                     | <0.0406       | < 0.0407           | < 0.0456       | <0.0384            | < 0.037            | 1                                   | 1                     |               |
| Benzo(a)pyrene                         | <0.0406       | <0.0407            | <0.0456        | <0.0384            | < 0.037            | 1                                   | 1                     |               |
| Benzo(b)fluoranthene                   | <0.0406       | <0.0407            | <0.0456        | <0.0384            | <0.037             | 1                                   | 1                     |               |
| Benzo(k)fluoranthene                   | <0.0406       | <0.0407            | <0.0456        | <0.0384            | <0.037             | 0.8                                 | 0.8                   |               |
| Chrysene                               | <0.0406       | <0.0407            | <0.0456        | <0.0384            | <0.037             | 1                                   | 1                     |               |
| Dibenzo(a,h)anthracene                 | <0.0406       | <0.0407            | <0.0456        | <0.0384            | <0.037             | 0.33                                | 0.33                  |               |
| Indeno(1,2,3-cd)pyrene                 | <0.0406       | <0.0407            | <0.0456        | <0.0384            | <0.037             | 0.5                                 | 0.5                   |               |
|                                        |               |                    |                | GP-11(6-           |                    | 6 NYCRR<br>Part 375                 | CP-51 Soil            |               |
| Sample ID                              | GP-8(6-18)    | GP-9(0-5)          | GP-10(6-19)    | 23)                | GP-12(0-5)         | Unrestricted                        | Cleanup               |               |
| Sampling Date                          | 6/24/14       | 6/25/14            | 6/23/14        | 6/23/14            | 6/24/14            | Use Soil                            | Levels Fuel           | CP-51         |
| Start Depth                            | 6 inches      | 0 feet             | 6 inches       | 6 inches           | 0 feet             | Cleanup                             | Oil                   | SCOs          |
| End Depth                              | 18 inches     | 5 feet             | 19 inches      | 23 inches          | 5 feet             | Objectives                          | Contaminated          | Residential   |
| •                                      |               |                    |                |                    |                    | (SCOs)                              | Soil                  | Use           |
| Units                                  | mg/kg         | mg/kg              | mg/kg          | mg/kg              | mg/kg              | mg/kg                               | mg/kg                 | mg/kg         |
| 2-Methylnaphthalene                    | <0.041        | <0.0366            | <0.0411        | <0.0394            | <0.0378            |                                     |                       | 0.41          |
| Benzo(a)anthracene<br>Benzo(a)pyrene   | 0.51<br>0.4 J | <0.0366<br><0.0366 | 0.58<br>0.47   | <0.0394<br><0.0394 | <0.0378<br><0.0378 | 1<br>1                              | 1<br>1                |               |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene | 0.43          | <0.0366            | 0.47           | <0.0394            | <0.0378            | 1                                   | 1                     |               |
| Benzo(k)fluoranthene                   | 0.46<br>0.2 J | <0.0366            | 0.55<br>0.27 J | <0.0394            | <0.0378            | 0.8                                 | 0.8                   |               |
| Chrysene                               | 0.2 3         | <0.0366            | 0.56           | <0.0394            | <0.0378            | 1                                   | 1                     |               |
| Dibenzo(a,h)anthracene                 | <0.041        | <0.0366            | <0.0411        | <0.0394            | <0.0378            | 0.33                                | 0.33                  |               |
| Indeno(1,2,3-cd)pyrene                 | 0.25 J        | <0.0366            | 0.3 J          | <0.0394            | <0.0378            | 0.5                                 | 0.5                   |               |
| macho(1,2,0-ou)pyrene                  | 0.200         | <b>\0.0300</b>     | 0.00           | \U.UJJ4            | V0.0070            | 0.0                                 | 0.5                   |               |

#### PROPOSED PUBLIC SCHOOL

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

| Sample ID Sampling Date Start Depth End Depth Units | GP-13(0-5)<br>6/23/14<br>0 feet<br>5 feet<br>mg/kg | GP-13(18-20)<br>6/30/14<br>18 feet<br>23 feet<br>mg/kg | GP-14(6-18)<br>6/25/14<br>6 inches<br>18 inches<br>mg/kg | GP-15(6-<br>20)<br>6/26/14<br>6 inches<br>20 inches<br>mg/kg | GP-16(0-5)<br>6/26/14<br>0 feet<br>5 feet<br>mg/kg | 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives (SCOs) mg/kg | CP-51 Soil<br>Cleanup<br>Levels Fuel<br>Oil<br>Contaminated<br>Soil<br>mg/kg | CP-51<br>SCOs<br>Residential<br>Use<br>mg/kg |
|-----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|
| 2-Methylnaphthalene                                 | <0.0388                                            | 0.75                                                   | <0.0391                                                  | <0.0383                                                      | <0.037                                             |                                                                        |                                                                              | 0.41                                         |
| Benzo(a)anthracene                                  | 0.4                                                | <0.0384                                                | < 0.0391                                                 | < 0.0383                                                     | < 0.037                                            | 1                                                                      | 1                                                                            |                                              |
| Benzo(a)pyrene                                      | 0.42                                               | < 0.0384                                               | < 0.0391                                                 | < 0.0383                                                     | < 0.037                                            | 1                                                                      | 1                                                                            |                                              |
| Benzo(b)fluoranthene                                | 0.49                                               | < 0.0384                                               | < 0.0391                                                 | <0.0383                                                      | < 0.037                                            | 1                                                                      | 1                                                                            |                                              |
| Benzo(k)fluoranthene                                | 0.23 J                                             | < 0.0384                                               | < 0.0391                                                 | <0.0383                                                      | < 0.037                                            | 0.8                                                                    | 0.8                                                                          |                                              |
| Chrysene                                            | 0.36 J                                             | < 0.0384                                               | < 0.0391                                                 | <0.0383                                                      | < 0.037                                            | 1                                                                      | 1                                                                            |                                              |
| Dibenzo(a,h)anthracene                              | <0.0388                                            | <0.0384                                                | < 0.0391                                                 | <0.0383                                                      | <0.037                                             | 0.33                                                                   | 0.33                                                                         |                                              |
| Indeno(1,2,3-cd)pyrene                              | 0.26 J                                             | < 0.0384                                               | < 0.0391                                                 | <0.0383                                                      | < 0.037                                            | 0.5                                                                    | 0.5                                                                          |                                              |
| Sample ID Sampling Date Start Depth                 | GP-17(0-5)<br>6/26/14<br>0 feet                    | GP-18(6-18)<br>6/26/14<br>6 inches                     | GP-19(10-24)<br>6/25/14<br>10 inches                     |                                                              |                                                    | 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives              | CP-51 Soil<br>Cleanup<br>Levels Fuel<br>Oil<br>Contaminated                  | CP-51<br>SCOs<br>Residential                 |
| End Depth                                           | 5 feet                                             | 18 inches                                              | 24 inches                                                |                                                              |                                                    | (SCOs)                                                                 | Soil                                                                         | Use                                          |
| Units                                               | mg/kg                                              | mg/kg                                                  | mg/kg                                                    |                                                              |                                                    | mg/kg                                                                  | mg/kg                                                                        | mg/kg                                        |
| 2-Methylnaphthalene                                 | <0.2                                               | <0.0397                                                | <0.0419                                                  |                                                              |                                                    |                                                                        |                                                                              | 0.41                                         |
| Benzo(a)anthracene                                  | 6.5                                                | 0.3 J                                                  | < 0.0419                                                 |                                                              |                                                    | 1                                                                      | 1                                                                            |                                              |
| Benzo(a)pyrene                                      | 5                                                  | 0.31 J                                                 | < 0.0419                                                 |                                                              |                                                    | 1                                                                      | 1                                                                            |                                              |
| Benzo(b)fluoranthene                                | 5.8                                                | 0.4                                                    | < 0.0419                                                 |                                                              |                                                    | 1                                                                      | 1                                                                            |                                              |
| Benzo(k)fluoranthene                                | 2.7                                                | 0.15 J                                                 | <0.0419                                                  |                                                              |                                                    | 0.8                                                                    | 0.8                                                                          |                                              |
| Chrysene                                            | 5.3                                                | 0.33 J                                                 | < 0.0419                                                 |                                                              |                                                    | 1                                                                      | 1                                                                            |                                              |
| Dibenzo(a,h)anthracene                              | 0.76 J                                             | < 0.0397                                               | < 0.0419                                                 |                                                              |                                                    | 0.33                                                                   | 0.33                                                                         |                                              |
| Dibonizo(a,n)antinacono                             |                                                    |                                                        |                                                          |                                                              |                                                    |                                                                        |                                                                              |                                              |

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

<: Analyzed for but not detected

J: Estimated value

--: No standard

Exceeds Unrestricted Use SCO, SCL and/or Supplemental SCO

The highest concentrations of SVOCs were detected in soil sample GP-17 (0 to 5 feet), located downgradient of the Site along Guerlain Street. As summarized above, seven PAHs were detected at concentrations above Unrestricted Use SCOs and SCLs in this sample. Evidence of contamination was not observed during field screening. Concentrations of 2-methylnaphthalene were also detected slightly above Supplemental SCOs in soil samples collected from soil boring GP-5 and GP-13, located downgradient of the on-site gas station. The source of these SVOCs can likely be attributed to historic fill located on-site and potentially to historical or current use of the Site (e.g., the on-site gasoline station), as well as off-site sources (e.g., adjoining upgradient gasoline station spill) for smear zone soil. Summaries of the analytical results for SVOCs in soil are presented in *Table 14*. The analytical data package is presented as *Appendix E*.

#### 4.4.3 Metals and Cyanide in Soil

A review of the subsurface soil sampling analytical results indicates that 16 of the 17 metals analyzed for was detected in one or more samples. In addition, cyanide was detected in 6 soil samples and hexavalent chromium in 14 soil samples, but at concentrations below Unrestricted Use SCOs and/or Supplemental SCOs. A summary of the metals and concentrations which exceed Unrestricted Use SCOs and/or Supplemental SCOs is provided below:

### PROPOSED PUBLIC SCHOOL

1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

Table 7
Detected Metals and Cyanide Concentrations above
Unrestricted Use SCOs and/or Supplemental SCOs in Soil

| Sample ID Sampling Date Start Depth End Depth | GP-1(0-5)<br>6/24/2014<br>0 feet<br>5 feet | GP-2(0-5)<br>6/24/2014<br>0 feet<br>5 feet | GP-3(6-18)<br>6/24/2014<br>6 inches<br>18 inches | GP-4(0-5)<br>6/23/2014<br>0 feet<br>5 feet | GP-5(10-12)<br>6/23/2014<br>10 feet<br>12 feet | 6 NYCRR Part 375<br>Unrestricted Use<br>Soil Cleanup<br>Objectives (SCOs) | CP-51<br>SCOs<br>Residential<br>Use |
|-----------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------|
| Units                                         | mg/kg                                      | mg/kg                                      | mg/kg                                            | mg/kg                                      | mg/kg                                          | mg/kg                                                                     | mg/kg                               |
| Metals<br>Arsenic                             | 8.1                                        | 3.97                                       | 7.81                                             | 5.18                                       | 1.88                                           | 13                                                                        |                                     |
| Barium                                        | 172                                        | 100                                        | 286                                              | 154                                        | 73.7                                           | 350                                                                       |                                     |
| Cadmium                                       | 0.608                                      | <0.141                                     | 0.679                                            | <0.139                                     | <0.157                                         | 2.5                                                                       |                                     |
| Chromium                                      | 20.1                                       | 22.3                                       | 28.3                                             | 24.1                                       | 31.6                                           | 30                                                                        |                                     |
| Cobalt                                        | 9.91                                       | 14.2                                       | 17                                               | 11.5                                       | 13                                             |                                                                           | 30                                  |
| Copper                                        | 146                                        | 39.3                                       | 82.6                                             | 52.3                                       | 21.8                                           | 50                                                                        |                                     |
| Lead                                          | 508                                        | 116                                        | 461<br>0.0060 J                                  | 232                                        | 11.4                                           | 63                                                                        |                                     |
| Mercury<br>Nickel                             | 0.184<br>28.3                              | 0.168<br>24.5                              | 31.2                                             | 0.15<br>20.9                               | 0.023<br>21.8                                  | 0.18                                                                      |                                     |
| Silver                                        | 26.3<br>1.54                               | 24.5<br>0.821                              | 2.27                                             | 0.925                                      | 0.755                                          | 30<br>2                                                                   |                                     |
| Zinc                                          | 385                                        | 112                                        | 2.27<br>447                                      | 215                                        | 55.1                                           | 109                                                                       |                                     |
| Sample ID                                     | GP-5(18-20)                                | GP-6(7-9)                                  | GP-6(12-14)                                      | GP-7(9-11)                                 | GP-7(14-16)                                    | 109                                                                       |                                     |
| Sample ID                                     | 6/23/2014                                  | 6/25/2014                                  | 6/25/2014                                        | 6/25/2014                                  | 6/25/2014                                      | 6 NYCRR Part 375                                                          | CP-51                               |
|                                               | 18 feet                                    | 7 feet                                     | 12 feet                                          | 9 feet                                     | 14 feet                                        | Unrestricted Use                                                          | SCOs                                |
| Start Depth                                   |                                            |                                            |                                                  |                                            |                                                | Soil Cleanup                                                              | Residential                         |
| End Depth                                     | 20 feet                                    | 9 feet                                     | 14 feet                                          | 11 feet                                    | 16 feet                                        | Objectives (SCOs)                                                         | Use                                 |
| Units                                         | mg/kg                                      | mg/kg                                      | mg/kg                                            | mg/kg                                      | mg/kg                                          | mg/kg                                                                     | mg/kg                               |
| <u>Metals</u>                                 | 0.470.1                                    |                                            |                                                  | 0.40                                       |                                                | 40                                                                        |                                     |
| Arsenic<br>Barium                             | 0.473 J                                    | 3.08                                       | 1.44                                             | 3.46                                       | 1.2                                            | 13                                                                        |                                     |
| Cadmium                                       | 7.86                                       | 68.4                                       | 167                                              | 113<br><0.147                              | 84.4<br><0.138                                 | 350                                                                       |                                     |
| Chromium                                      | <0.150<br>70.2                             | <0.158<br>28.9                             | 0.384<br>102                                     | 20.9                                       | 18.3                                           | 2.5<br>30                                                                 |                                     |
| Cobalt                                        | 5.05                                       | 26.9<br>15.4                               | 47                                               | 9.88                                       | 19.6                                           | 30<br>                                                                    | 30                                  |
| Copper                                        | 34.4                                       | 25.3                                       | 14.3                                             | 26.2                                       | 28.5                                           | 50                                                                        |                                     |
| Lead                                          | 19.4                                       | 26.2                                       | 16.2                                             | 71.1                                       | 36.4                                           | 63                                                                        |                                     |
| Mercury                                       | <0.0060                                    | 0.074                                      | 0.014                                            | 0.118                                      | <0.0050                                        | 0.18                                                                      |                                     |
| Nickel                                        | 8.38                                       | 23.5                                       | 80.8                                             | 19.8                                       | 25.8                                           | 30                                                                        |                                     |
| Silver                                        | 0.886                                      | 1.28                                       | 1.77                                             | 0.746                                      | 0.765                                          | 2                                                                         |                                     |
| Zinc                                          | 18.9                                       | 61.3                                       | 191                                              | 109                                        | 71.6                                           | 109                                                                       |                                     |
| Sample ID                                     | GP-8(6-18)                                 | GP-9(0-5)                                  | GP-10(6-19)                                      | GP-11(6-23)                                | GP-12(0-5)                                     |                                                                           |                                     |
| Sampling Date                                 | 6/24/2014                                  | 6/25/2014                                  | 6/23/2014                                        | 6/23/2014                                  | 6/24/2014                                      | 6 NYCRR Part 375                                                          | CP-51                               |
| Start Depth                                   | 6 inches                                   | 0 feet                                     | 6 inches                                         | 6 inches                                   | 0 feet                                         | Unrestricted Use<br>Soil Cleanup                                          | SCOs<br>Residential                 |
| End Depth                                     | 18 inches                                  | 5 feet                                     | 19 inches                                        | 23 inches                                  | 5 feet                                         | Objectives (SCOs)                                                         | Use                                 |
| Units                                         | mg/kg                                      | mg/kg                                      | mg/kg                                            | mg/kg                                      | mg/kg                                          | mg/kg                                                                     | mg/kg                               |
| Metals                                        |                                            |                                            |                                                  |                                            |                                                |                                                                           |                                     |
| Arsenic                                       | 22.6                                       | 3.94                                       | 5.79                                             | 4.14                                       | 2.82                                           | 13                                                                        |                                     |
| Barium                                        | 1410                                       | 359                                        | 104                                              | 47.1                                       | 91.4                                           | 350                                                                       |                                     |
| Cadmium                                       | 5.77                                       | 0.224 J                                    | <0.152                                           | <0.145                                     | <0.143                                         | 2.5                                                                       |                                     |
| Chromium                                      | 60.1                                       | 28.6                                       | 22.5                                             | 20.4                                       | 24.7                                           | 30                                                                        |                                     |
| Cobalt                                        | 13.3                                       | 11                                         | 13.1                                             | 7.39                                       | 25.2                                           |                                                                           | 30                                  |
| Copper                                        | 82.5                                       | 29.9                                       | 28.8                                             | 7.86                                       | 25                                             | 50                                                                        |                                     |
| Lead                                          | 1060                                       | 827                                        | 405                                              | 9.84                                       | 20.6                                           | 63                                                                        |                                     |
| Mercury                                       | 0.382                                      | 0.239                                      | 0.269                                            | 0.039                                      | 0.029                                          | 0.18                                                                      |                                     |
| Nickel                                        | 34.5                                       | 25                                         | 21                                               | 13.3                                       | 26.4                                           | 30                                                                        |                                     |
| Silver                                        | 2.6                                        | 0.807                                      | 1.21                                             | 1.1                                        | 1.14                                           | 2                                                                         |                                     |
| Zinc                                          | 1710                                       | 265                                        | 238                                              | 32.3                                       | 74.7                                           | 109                                                                       |                                     |

### PROPOSED PUBLIC SCHOOL

# 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

| Sample ID Sampling Date Start Depth End Depth Units                                       | GP-13(0-5)<br>6/23/2014<br>0 feet<br>5 feet<br>mg/kg                                  | GP-13(18-<br>20)<br>6/30/2014<br>18 feet<br>23 feet<br>mg/kg | GP-14(6-18)<br>6/25/2014<br>6 inches<br>18 inches<br>mg/kg             | GP-15(6-20)<br>6/26/2014<br>6 inches<br>20 inches<br>mg/kg | GP-16(0-5)<br>6/26/2014<br>0 feet<br>5 feet<br>mg/kg | 6 NYCRR Part 375<br>Unrestricted Use<br>Soil Cleanup<br>Objectives (SCOs)<br>mg/kg | CP-51<br>SCOs<br>Residential<br>Use<br>mg/kg |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------|
| Metals                                                                                    |                                                                                       |                                                              |                                                                        |                                                            | <u> </u>                                             |                                                                                    |                                              |
| Arsenic                                                                                   | 4.43                                                                                  | 2.25                                                         | 3.61                                                                   | 3.19                                                       | 2.4                                                  | 13                                                                                 |                                              |
| Barium                                                                                    | 142                                                                                   | 33.8                                                         | 68.6                                                                   | 79.8                                                       | 91.6                                                 | 350                                                                                |                                              |
| Cadmium                                                                                   | <0.143                                                                                | <0.144                                                       | 0.179 J                                                                | <0.151                                                     | <0.137                                               | 2.5                                                                                |                                              |
| Chromium                                                                                  | 29.2                                                                                  | 14.9                                                         | 21.1                                                                   | 22.8                                                       | 20.2                                                 | 30                                                                                 |                                              |
| Cobalt                                                                                    | 12.4                                                                                  | 9.04                                                         | 75.1                                                                   | 14.2                                                       | 13.5                                                 |                                                                                    | 30                                           |
| Copper                                                                                    | 36.2                                                                                  | 27.1                                                         | 61.1                                                                   | 26.8                                                       | 19.7                                                 | 50                                                                                 |                                              |
| Lead                                                                                      | 151                                                                                   | 11.1                                                         | 11.4                                                                   | 28.1                                                       | 39.3                                                 | 63                                                                                 |                                              |
| Mercury                                                                                   | 0.258                                                                                 | 0.0100 J                                                     | 0.0100 J                                                               | 0.208                                                      | 0.039                                                | 0.18                                                                               |                                              |
| Nickel                                                                                    | 25.6                                                                                  | 24.8                                                         | 73.3                                                                   | 22.1                                                       | 15.4                                                 | 30                                                                                 |                                              |
| Silver                                                                                    | 1.3                                                                                   | 0.791                                                        | 2.12                                                                   | 0.971                                                      | 0.809                                                | 2                                                                                  |                                              |
| Zinc                                                                                      | 203                                                                                   | 64.5                                                         | 104                                                                    | 63.1                                                       | 50.6                                                 | 109                                                                                |                                              |
| Sample ID<br>Sampling Date<br>Start Depth                                                 | GP-17(0-5)<br>6/26/2014<br>0 feet                                                     | GP-18(6-18)<br>6/26/2014<br>6 inches                         | GP-19(10-<br>24)<br>6/25/2014<br>10 inches                             |                                                            |                                                      | 6 NYCRR Part 375<br>Unrestricted Use<br>Soil Cleanup                               | CP-51<br>SCOs<br>Residential                 |
| End Depth<br>Units                                                                        | 5 feet                                                                                | 18 inches<br>mg/kg                                           | 24 inches<br>mg/kg                                                     |                                                            |                                                      | Objectives (SCOs)<br>mg/kg                                                         | Use<br>mg/kg                                 |
| End Depth                                                                                 |                                                                                       | 18 inches<br>mg/kg                                           | 24 inches<br>mg/kg                                                     |                                                            |                                                      | Objectives (SCOs)                                                                  | Use                                          |
| End Depth<br>Units                                                                        | 5 feet                                                                                |                                                              |                                                                        |                                                            |                                                      | Objectives (SCOs)                                                                  | Use                                          |
| End Depth Units Metals                                                                    | 5 feet<br>mg/kg                                                                       | mg/kg                                                        | mg/kg                                                                  |                                                            |                                                      | Objectives (SCOs)<br>mg/kg                                                         | Use                                          |
| End Depth Units  Metals Arsenic                                                           | 5 feet<br>mg/kg<br>6.82                                                               | mg/kg<br>4.36                                                | <b>mg/kg</b><br>2.65                                                   |                                                            |                                                      | Objectives (SCOs)<br>mg/kg                                                         | Use                                          |
| End Depth Units  Metals Arsenic Barium                                                    | 5 feet<br>mg/kg<br>6.82<br>748                                                        | <b>mg/kg</b> 4.36 539                                        | <b>mg/kg</b> 2.65 87                                                   |                                                            |                                                      | Objectives (SCOs)<br>mg/kg<br>13<br>350                                            | Use<br>mg/kg<br>                             |
| End Depth Units  Metals Arsenic Barium Cadmium                                            | 5 feet<br>mg/kg<br>6.82<br>748<br>0.79                                                | mg/kg<br>4.36<br>539<br>0.0680 J                             | mg/kg<br>2.65<br>87<br><0.161                                          |                                                            |                                                      | Objectives (SCOs)<br>mg/kg  13 350 2.5                                             | Use<br>mg/kg<br>                             |
| End Depth Units  Metals Arsenic Barium Cadmium Chromium                                   | 5 feet<br>mg/kg<br>6.82<br>748<br>0.79<br>24.4<br>14<br>51                            | 4.36<br>539<br>0.0680 J<br>25.4<br>30<br>44.8                | 2.65<br>87<br><0.161<br>23<br>10.1<br>23.6                             |                                                            |                                                      | Objectives (SCOs)<br>mg/kg  13 350 2.5 30 50                                       | Use<br>mg/kg<br><br><br>                     |
| End Depth Units  Metals Arsenic Barium Cadmium Chromium Cobalt Copper Lead                | 5 feet<br>mg/kg<br>6.82<br>748<br>0.79<br>24.4<br>14<br>51<br>3240                    | mg/kg  4.36 539 0.0680 J 25.4 30 44.8 2140                   | 2.65<br>87<br><0.161<br>23<br>10.1<br>23.6<br>26.4                     |                                                            |                                                      | Objectives (SCOs)<br>mg/kg  13 350 2.5 30 50 63                                    | Use<br>mg/kg<br><br><br><br><br>30           |
| End Depth Units  Metals Arsenic Barium Cadmium Chromium Cobalt Copper Lead Mercury        | 5 feet<br>mg/kg<br>6.82<br>748<br>0.79<br>24.4<br>14<br>51<br>3240<br>0.681 D         | mg/kg  4.36 539 0.0680 J 25.4 30 44.8 2140 0.03              | 2.65<br>87<br><0.161<br>23<br>10.1<br>23.6<br>26.4<br>0.0070 J         |                                                            |                                                      | Objectives (SCOs)<br>mg/kg  13 350 2.5 30 50 63 0.18                               | Use<br>mg/kg<br><br><br><br><br>30<br>       |
| End Depth Units  Metals Arsenic Barium Cadmium Chromium Cobalt Copper Lead Mercury Nickel | 5 feet<br>mg/kg<br>6.82<br>748<br>0.79<br>24.4<br>14<br>51<br>3240<br>0.681 D<br>19.1 | mg/kg  4.36 539 0.0680 J 25.4 30 44.8 2140 0.03 30.5         | 2.65<br>87<br><0.161<br>23<br>10.1<br>23.6<br>26.4<br>0.0070 J<br>18.6 |                                                            |                                                      | 0bjectives (SCOs)<br>mg/kg  13 350 2.5 30 50 63 0.18 30                            | Use<br>mg/kg<br><br><br><br>30<br>           |
| End Depth Units  Metals Arsenic Barium Cadmium Chromium Cobalt Copper Lead Mercury        | 5 feet<br>mg/kg<br>6.82<br>748<br>0.79<br>24.4<br>14<br>51<br>3240<br>0.681 D         | mg/kg  4.36 539 0.0680 J 25.4 30 44.8 2140 0.03              | 2.65<br>87<br><0.161<br>23<br>10.1<br>23.6<br>26.4<br>0.0070 J         |                                                            |                                                      | Objectives (SCOs)<br>mg/kg  13 350 2.5 30 50 63 0.18                               | Use<br>mg/kg 30                              |

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

<: Analyzed for but not detected

Exceeds Unrestricted Use SCO and/or Supplemental SCO

Given that the highest concentrations of metals were detected in shallow soil and are generally not consistent with the soil samples exhibiting petroleum contamination, the source of these metals can likely be attributed to historic fill located on-site. Summaries of the analytical results for metals in soil are presented in *Table 15*. The analytical data package is presented as *Appendix E*.

### 4.4.4 Pesticides and PCBs in Soil

A review of the subsurface soil sampling analytical results indicates that 2 of the 28 pesticide compounds and 1 of the 7 PCB aroclors analyzed for were detected in one or more samples. The pesticide compounds detected include: 4,4'-DDE and 4,4'-DDT. The PCB compound detected included Aroclor-1254. No PCBs exceeded Unrestricted Use SCOs. Only one sample exhibited a pesticide compound above Unrestricted Use SCOs: soil sample GP-8 (6 to 18 inches) exhibited a 4,4'-DDE concentration of 4.7 µg/kg, slightly above the SCO of 3.3 µg/kg.

The source of these pesticides can likely be attributed to historic fill located on-site. Summaries of the analytical results for pesticides and PCBs in soil are presented in *Table 16*. The analytical data package is presented as *Appendix E*.

### PROPOSED PUBLIC SCHOOL

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

### 4.4.5 Total Petroleum Hydrocarbons (TPH) in Soil

A review of the subsurface soil sampling analytical results indicates that total petroleum hydrocarbons (TPH) were detected in all 9 samples collected. A summary of the detected concentrations is provided below:

Table 8
Summary of Total Petroleum Hydrocarbons (TPH) Concentrations in Soil

| Sample ID Sampling Date Start Depth End Depth Units | GP-3(6-18)<br>6/24/2014<br>6 inches<br>18 inches<br>mg/kg | GP-7(9-11)<br>6/25/2014<br>9 feet<br>11 feet<br>mg/kg | GP-7(14-16)<br>6/25/2014<br>14 feet<br>16 feet<br>mg/kg | GP-10(6-19)<br>6/23/2014<br>6 inches<br>19 inches<br>mg/kg | GP-11(6-23)<br>6/23/2014<br>6 inches<br>23 inches<br>mg/kg |
|-----------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| Gasoline Range Organics (GRO)                       | <0.025                                                    | 0.026 J                                               | 0.027 J                                                 | <0.027                                                     | <0.026                                                     |
| Diesel Range Organics                               | 310.52                                                    | 4.79                                                  | 2.995                                                   | 153.91                                                     | 4.097                                                      |
| Sample ID<br>Sampling Date                          | GP-14(6-18)<br>6/25/2014                                  | GP-17(0-5)<br>6/26/2014                               | GP-18(6-18)<br>6/26/2014                                | GP-19(10-24)<br>6/25/2014                                  |                                                            |
| Start Depth                                         | 6 inches                                                  | 0 feet                                                | 6 inches                                                | 10 inches                                                  |                                                            |
| End Depth                                           | 18 inches                                                 | 5 feet                                                | 18 inches                                               | 24 inches                                                  |                                                            |
| Units                                               | mg/kg                                                     | mg/kg                                                 | mg/kg                                                   | mg/kg                                                      |                                                            |
| Gasoline Range Organics (GRO)                       | <0.026                                                    | <0.026                                                | <0.026                                                  | <0.028                                                     |                                                            |
| Diesel Range Organics                               | 26.883                                                    | 98.21                                                 | 66.463                                                  | 2.096                                                      |                                                            |

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram
<: Analyzed for but not detected

The concentrations of TPH detected in soil range from 0.026 to 310.52 mg/kg. There are no applicable regulatory comparison criteria for TPH. TPH results provide information on soil disposal options for soil excavated for new school construction, since disposal facilities in the New York City metropolitan area typically require TPH analyses prior to accepting soil for disposal. The concentrations of TPH noted in the samples will not impact potential soil disposal options.

Summaries of the analytical results for TPH in soil are presented in *Table 15*. The analytical data package is presented as *Appendix E*.

### 4.5 Groundwater Sampling Findings

The depth to groundwater was measured between June 23 and June 30, 2014 utilizing temporary monitoring wells, and existing on-site monitoring wells. Groundwater was encountered at a depth ranging from 9 to 22 feet below grade (and as shallow as 4 feet in the basement of building on Lot 17) with an estimated groundwater flow direction to the south-southwest across the Site. Permanent surveyed wells were not installed on-site; therefore, a groundwater contour map was not prepared as part of this Phase II ESI report. Groundwater was not encountered at Locations 2, 4 and 12 due to refusal.

A review of the field parameters from groundwater samples obtained indicates that no elevated PID readings or visual evidence of contamination (abnormally low dissolved oxygen, Eh, pH below 5.5 or greater than 9, discoloration, free product, orange precipitate, etc.) were noted, with the exception of

### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET,

1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

GW-5, GW-13, MW-F and MW-G. These groundwater samples exhibited slight petroleum odors and abnormally low dissolved oxygen and Eh readings. GW-13 also exhibited a trace sheen. Note that these locations are located downgradient of the on-site gas station. The results of the analyses of the groundwater samples are presented in *Tables 17 through 20*. Note that some concentrations exceeded the calibration range in the initial analysis and were reanalyzed at a secondary dilution. These concentrations were reported from the secondary dilutions and were qualified with a "D". Original analytical data is reported where dilution was not required. The complete analytical data report is presented in *Appendix E*. A review of the groundwater analytical results is presented below.

### 4.5.1 Volatile Organic Compounds (VOCs) in Groundwater

A review of the results of the analyses of groundwater for VOCs indicates that 26 of the 60 compounds analyzed were detected in one or more samples. A summary of the detected compounds at concentrations greater than the corresponding State Groundwater Standard or Guidance Value is provided below:

Table 9
Detected VOC Concentrations in Groundwater above State Criteria

| Sample ID<br>Sampling Date<br>Units | GW-1<br>6/30/2014<br>μg/l | GW-5<br>6/23/2014<br>μg/l | GW-7<br>6/25/2014<br>μg/l | GW-9<br>6/25/2014<br>μg/l | GW-11<br>6/26/2014<br>μg/l | GW-13<br>6/30/2014<br>μg/l | GW-15<br>6/26/2014<br>μg/l | NYSDEC Class GA<br>Standard or<br>Guidance Value µg/l |
|-------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|----------------------------|-------------------------------------------------------|
| 1,2,4-Trimethylbenzene              | <0.200                    | 220 D                     | <0.200                    | <0.200                    | <0.200                     | 2600                       | <0.200                     | 5                                                     |
| 1,3,5-Trimethylbenzene              | < 0.200                   | 84.2                      | < 0.200                   | <0.200                    | < 0.200                    | 750                        | < 0.200                    | 5                                                     |
| Benzene                             | < 0.200                   | 4000 D                    | < 0.200                   | < 0.200                   | < 0.200                    | <10                        | <0.200                     | 1                                                     |
| Chloroform                          | < 0.200                   | <0.200                    | < 0.200                   | < 0.200                   | < 0.200                    | <10                        | < 0.200                    | 7                                                     |
| Cis-1,2-Dichloroethylene            | < 0.200                   | <0.200                    | < 0.200                   | < 0.200                   | < 0.200                    | <10                        | < 0.200                    | 5                                                     |
| Ethylbenzene                        | < 0.200                   | 720 D                     | < 0.200                   | < 0.200                   | < 0.200                    | 4600                       | < 0.200                    | 5                                                     |
| Isopropylbenzene                    | < 0.200                   | 45.7                      | < 0.200                   | <0.200                    | < 0.200                    | 130                        | < 0.200                    | 5                                                     |
| m,p-Xylene                          | < 0.400                   | 960 D                     | < 0.400                   | < 0.400                   | < 0.400                    | 13800                      | < 0.400                    | 5                                                     |
| Naphthalene                         | < 0.200                   | 210 D                     | <0.200                    | < 0.200                   | < 0.200                    | 500                        | <0.200                     | 10                                                    |
| N-Butylbenzene                      | < 0.200                   | 5.8                       | <0.200                    | < 0.200                   | < 0.200                    | <10                        | <0.200                     | 5                                                     |
| N-Propylbenzene                     | < 0.200                   | 98.4                      | <0.200                    | <0.200                    | < 0.200                    | 400                        | <0.200                     | 5                                                     |
| O-Xylene                            | < 0.200                   | 170                       | <0.200                    | < 0.200                   | < 0.200                    | 5100                       | <0.200                     | 5                                                     |
| p-lsopropyltoluene                  | < 0.200                   | 1.6                       | <0.200                    | < 0.200                   | < 0.200                    | 14.5 J                     | <0.200                     | 5                                                     |
| Sec-Butylbenzene                    | <0.200                    | 3.8                       | <0.200                    | < 0.200                   | < 0.200                    | 30.0 J                     | <0.200                     | 5                                                     |
| Tert-Butyl Methyl Ether             | 39.6                      | 46.9                      | < 0.500                   | 1.6                       | < 0.500                    | <25.0                      | < 0.500                    | 10                                                    |
| Tetrachloroethylene                 | <0.200                    | <0.200                    | <0.200                    | <0.200                    | <0.200                     | <10                        | 1                          | 5                                                     |
| Toluene                             | <0.200                    | 140                       | <0.200                    | <0.200                    | <0.200                     | 530                        | <0.200                     | 5                                                     |
| Trichloroethylene                   | < 0.200                   | <0.200                    | < 0.200                   | < 0.200                   | <0.200                     | <10                        | <0.200                     | 5                                                     |

### PROPOSED PUBLIC SCHOOL

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

| Sample ID<br>Sampling Date<br>Units | GW-16<br>6/26/2014<br>μg/l | GW-17<br>6/26/2014<br>μg/l | GW-18<br>6/26/2014<br>μg/l | MW-E<br>6/27/2014<br>μg/l | MW-F<br>6/27/2014<br>μg/l | MW-G<br>6/27/2014<br>μg/l | MW-H<br>6/27/2014<br>μg/l | NYSDEC Class GA<br>Standard or<br>Guidance Value µg/l |
|-------------------------------------|----------------------------|----------------------------|----------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------------------------------------------|
| 1,2,4-Trimethylbenzene              | < 0.200                    | <0.200                     | < 0.200                    | <0.200                    | 4.9                       | 130                       | 0.810 J                   | 5                                                     |
| 1,3,5-Trimethylbenzene              | < 0.200                    | <0.200                     | < 0.200                    | < 0.200                   | 4.8                       | 56.6                      | <0.200                    | 5                                                     |
| Benzene                             | 2                          | <0.200                     | <0.200                     | < 0.200                   | 640 D                     | 1200 D                    | <0.200                    | 1                                                     |
| Chloroform                          | < 0.200                    | 0.870 J                    | 15.8                       | <0.200                    | <0.200                    | <0.200                    | < 0.200                   | 7                                                     |
| Cis-1,2-Dichloroethylene            | 7.6                        | 5.9                        | <0.200                     | < 0.200                   | <0.200                    | <0.200                    | < 0.200                   | 5                                                     |
| Ethylbenzene                        | < 0.200                    | <0.200                     | <0.200                     | < 0.200                   | 190 D                     | 140 D                     | 1.4                       | 5                                                     |
| Isopropylbenzene                    | < 0.200                    | <0.200                     | <0.200                     | < 0.200                   | 14.7                      | 10.5                      | <0.200                    | 5                                                     |
| m,p-Xylene                          | < 0.400                    | < 0.400                    | < 0.400                    | < 0.400                   | 110                       | 380 D                     | 2.5                       | 5                                                     |
| Naphthalene                         | < 0.200                    | <0.200                     | <0.200                     | < 0.200                   | 55.9                      | 53.8                      | <0.200                    | 10                                                    |
| N-Butylbenzene                      | < 0.200                    | <0.200                     | <0.200                     | <0.200                    | 1.7                       | 1.4                       | < 0.200                   | 5                                                     |
| N-Propylbenzene                     | < 0.200                    | <0.200                     | <0.200                     | < 0.200                   | 24.7                      | 20.4                      | <0.200                    | 5                                                     |
| O-Xylene                            | < 0.200                    | <0.200                     | <0.200                     | < 0.200                   | 5.4                       | 20.8                      | 1.3                       | 5                                                     |
| p-Isopropyltoluene                  | < 0.200                    | <0.200                     | <0.200                     | < 0.200                   | 0.330 J                   | 0.910 J                   | < 0.200                   | 5                                                     |
| Sec-Butylbenzene                    | < 0.200                    | <0.200                     | <0.200                     | 1.7                       | 1.6                       | 1.1                       | < 0.200                   | 5                                                     |
| Tert-Butyl Methyl Ether             | 5.5                        | < 0.500                    | < 0.500                    | < 0.500                   | 18.8                      | 20.8                      | < 0.500                   | 10                                                    |
| Tetrachloroethylene                 | 0.550 J                    | 220 D                      | 0.760 J                    | <0.200                    | <0.200                    | <0.200                    | <0.200                    | 5                                                     |
| Toluene                             | <0.200                     | <0.200                     | <0.200                     | <0.200                    | 37.6                      | 71.8                      | <0.200                    | 5                                                     |
| Trichloroethylene                   | < 0.200                    | 8                          | <0.200                     | <0.200                    | <0.200                    | <0.200                    | <0.200                    | 5                                                     |

Footnotes/Qualifiers:

μg/l: Micrograms per liter

- <: Analyzed for but not detected
- D: Detected at secondary dilution
- J: Estimated value

Exceeds Class GA Standard or Guidance Value

The following compounds were detected at a concentration greater than Class GA Standards and Guidance Values in one or more groundwater samples: 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, chloroform, cis-1,2-dichloroethylene, ethylbenzene, isopropylbenzene, m,p-xylene, naphthalene, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene, MTBE, PCE, toluene and TCE. The highest concentrations were detected in groundwater samples GW-5, GW-13, MW-F and MW-G, located downgradient of the on-site gas station. As discussed in earlier, these groundwater samples exhibited slight petroleum odors and abnormally low dissolved oxygen and Eh readings. GW-13 also exhibited a trace sheen.

It should also be noted that three chlorinated VOCs (1,2-DCE, PCE and TCE) were detected above standards in groundwater sample GW-17, located downgradient of the Site along Guerlain Street. A maximum PCE concentration in groundwater of 220  $\mu$ g/l was detected in GW-17, above the groundwater standard of 5  $\mu$ g/l.

The source of these VOCs can likely be attributed to the historical or current use of the Site (e.g., the onsite gasoline station and former dry cleaners), as well as off-site sources (e.g., adjoining upgradient gasoline station spill). Summaries of the analytical results for VOCs in groundwater are presented in *Table 17*. The analytical data package is presented as *Appendix E*.

### 4.5.2 Semivolatile Organic Compounds (SVOCs) in Groundwater

A review of the results of the analyses of groundwater for SVOCs indicates that 7 of the 67 compounds analyzed for were detected in one or more samples. 1,1-Biphenyl, 2,4-dimethylphenol, 2-methylnaphthalene, m,p-cresols, dimethylphthalate, naphthalene and phenol were detected. A summary of the detected compounds at concentrations greater than the corresponding State Groundwater Standard or Guidance Value is provided below:

### PROPOSED PUBLIC SCHOOL

# 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

Table 10
Detected SVOC Concentrations in Groundwater above State Criteria

| Sample ID Sampling Date Units | GW-1<br>6/30/201<br>4<br>µg/l | GW-5<br>6/23/201<br>4<br>μg/l | GW-7<br>6/25/201<br>4<br>µg/l | GW-9<br>6/25/201<br>4<br>μg/l | GW-11<br>6/26/201<br>4<br>µg/l | GW-13<br>6/30/201<br>4<br>µg/l | GW-15<br>6/26/201<br>4<br>µg/l | NYSDEC Class<br>GA Standard or<br>Guidance Value<br>µg/l |
|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------------------------------------|
| Cresols, M&P                  | <1.0                          | <1.0                          | <1.0                          | <1.0                          | <1.0                           | <1.0                           | <1.0                           | 1                                                        |
| Naphthalene                   | <1.0                          | 210 D                         | <1.0                          | <1.0                          | <1.0                           | 390 D                          | <1.0                           | 10                                                       |
| Phenol                        | <1.0                          | 14.5                          | <1.0                          | <1.0                          | <1.0                           | <1.0                           | <1.0                           | 1                                                        |
|                               |                               |                               |                               |                               |                                |                                |                                |                                                          |
| Sample ID                     | GW-16<br>6/26/201             | GW-17<br>6/26/201             | GW-18<br>6/26/201             | MW-E<br>6/27/201              | MW-F<br>6/27/201               | MW-G<br>6/27/201               | MW-H<br>6/27/201               | NYSDEC Class<br>GA Standard or                           |
| Sampling Date                 | 4                             | 4                             | 4                             | 4                             | 4                              | 4                              | 4                              | Guidance Value                                           |
| Units                         | μg/l                          | μg/l                          | μg/l                          | μg/l                          | μg/l                           | μg/l                           | μg/l                           | μg/l                                                     |
| Cresols, M&P                  | <1.0                          | <1.0                          | <1.0                          | <1.0                          | <1.0                           | 3.20 J                         | <1.0                           | 1                                                        |
| Naphthalene                   | <1.0                          | <1.0                          | <1.0                          | <1.0                          | 53.6                           | 18.8                           | <1.0                           | 10                                                       |
| Phenol                        | <1.0                          | <1.0                          | <1.0                          | <1.0                          | 4.40 J                         | 21.9                           | <1.0                           | 1                                                        |
|                               |                               |                               |                               |                               |                                |                                |                                |                                                          |

Footnotes/Qualifiers:

μg/l: Micrograms per liter

<: Analyzed for but not detected

l: Estimated value

Exceeds Class GA Standard or Guidance Value

The following compounds were detected at a concentration greater than Class GA Standards and Guidance Values in one or more groundwater samples: m,p-cresols, naphthalene and phenol. All of the concentrations detected above standards were detected in groundwater samples GW-5, GW-13, MW-F and MW-G, located downgradient of the on-site gas station. As discussed earlier, these groundwater samples exhibited slight petroleum odors and abnormally low dissolved oxygen and Eh readings. Sample GW-13 also exhibited a trace sheen. The source of these SVOCs can likely be attributed to the historical or current use of the Site (e.g., the on-site gasoline station), as well as off-site sources (e.g., adjoining upgradient gasoline station spill). Summaries of the analytical results for SVOCs in groundwater are presented in *Table 18*. The analytical data package is presented as *Appendix E*.

### 4.5.3 Total and Dissolved (Filtered) Metals in Groundwater

A review of the results of the total and filtered metal analyses of groundwater indicates that all 17 metals analyzed for were detected in one or more samples. A summary of the detected compounds at concentrations greater than the corresponding State Groundwater Standard or Guidance Value is provided below:

### PROPOSED PUBLIC SCHOOL

1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

# Table 11 Detected Total and Dissolved Metals Concentrations in Groundwater above State Criteria

| Sample ID | GW-1        | GW-1       | GW-5       | GW-5        | GW-7       | GW-7       | GW-9         | GW-9       |                                |
|-----------|-------------|------------|------------|-------------|------------|------------|--------------|------------|--------------------------------|
| Sampling  | 6/30/2014   | 0/00/004 4 | 6/23/2014  | 0/00/0044   | 6/25/2014  | 0/05/0044  | 6/25/2014    | 6/25/2014  | NYSDEC Class<br>GA Standard or |
| Date      |             | 6/30/2014  |            | 6/23/2014   |            | 6/25/2014  |              | dissolved  | Guidance Value                 |
| Analysis  | total       | dissolved  | total      | dissolved   | total      | dissolved  | total        |            | mg/l                           |
| Units     | mg/l        | mg/l       | mg/l       | mg/l        | mg/l       | mg/l       | mg/l         | mg/l       |                                |
| Beryllium | 0.00059 J   | <0.0005    | <0.0005    | <0.0005     | 0.0011     | <0.0005    | 0.00011 J    | <0.0005    | 0.003                          |
| Cadmium   | 0.0011      | 0.0011     | 0.0131     | <0.0005     | 0.001 J    | <0.0005    | 0.00024 J    | <0.0005    | 0.005                          |
| Chromium  | 0.0149      | 0.003      | 0.00308    | 0.00262     | 0.0377     | 0.00019 J  | 0.0099       | 0.0028     | 0.05                           |
| Lead      | 0.0487      | 0.000099 J | 0.313      | 0.00432     | 0.521      | <0.0005    | 0.0314       | 0.00023 J  | 0.025                          |
| Manganese | 13.5 D      | 14.4 D     | 3.44       | 3.46        | 3.34       | 0.0187     | 0.532        | 0.417      | 0.3                            |
| Mercury   | <0.0001     | <0.0001    | 0.000113 J | <0.0001     | 0.000955   | <0.0001    | <0.0001      | <0.0001    | 0.0007                         |
| Nickel    | 0.0505      | 0.0389     | 0.00845    | 0.00512     | 0.0545     | 0.00049 J  | 0.0276       | 0.014      | 0.1                            |
| Selenium  | 0.0036 J    | 0.003 J    | <0.0025    | 0.000859 J  | 0.004 J    | 0.0011 J   | 0.0155       | 0.0164     | 0.01                           |
| Silver    | 0.000048 J  | 0.000048 J | 0.000046 J | <0.0005     | 0.0011     | <0.0005    | 0.00054 J    | 0.000041 J | 0.05                           |
| Thallium  | 0.00014 J   | 0.000025 J | 0.00023 J  | 0.000062 J  | 0.00068 J  | <0.0005    | 0.00019 J    | 0.00013 J  | 0.0005                         |
| Sample ID | GW-11       | GW-11      | GW-13      | GW-13       | GW-15      | GW-15      | GW-16        | GW-16      | NYSDEC Class                   |
| Sampling  | 0.000.004.4 | 0/00/00/   | 0/00/00/   | 0.000.001.1 | 0/00/00/   | 0/00/00/   | 0.00.000.1.1 | 0/00/00/   | GA Standard or                 |
| Date      | 6/26/2014   | 6/26/2014  | 6/30/2014  | 6/30/2014   | 6/26/2014  | 6/26/2014  | 6/26/2014    | 6/26/2014  | Guidance Value                 |
| Analysis  | total       | dissolved  | total      | dissolved   | total      | dissolved  | total        | dissolved  | mg/l                           |
| Units     | mg/l        | mg/l       | mg/l       | mg/l        | mg/l       | mg/l       | mg/l         | mg/l       |                                |
| Beryllium | 0.0063      | <0.0005    | 0.0005 J   | <0.0005     | 0.0016     | <0.0005    | <0.0005      | <0.0005    | 0.003                          |
| Cadmium   | 0.0028      | 0.00037 J  | 0.00014 J  | <0.0005     | 0.003      | 0.001 J    | <0.0005      | <0.0005    | 0.005                          |
| Chromium  | 0.0718      | 0.00062 J  | 0.0131     | 0.0012 J    | 0.0506     | 0.00055 J  | 0.0026       | 0.00091 J  | 0.05                           |
| Lead      | 0.132       | 0.00065 J  | 0.0204     | 0.00012 J   | 0.082      | 0.000098 J | 0.0011       | 0.000053 J | 0.025                          |
| Manganese | 17.9 D      | 6.1        | 3.55       | 3.2         | 7.69       | 1.09       | 2.59         | 2.23       | 0.3                            |
| Mercury   | 0.000413    | <0.0001    | <0.0001    | <0.0001     | 0.000186 J | <0.0001    | <0.0001      | <0.0001    | 0.0007                         |
| Nickel    | 0.14        | 0.0261     | 0.0184     | 0.0042      | 0.112      | 0.0371     | 0.0121       | 0.0091     | 0.1                            |
| Selenium  | 0.0042 J    | 0.0028 J   | 0.0024 J   | 0.0018 J    | 0.0034 J   | 0.0039 J   | 0.0027 J     | 0.0023 J   | 0.01                           |
| Silver    | 0.0008 J    | <0.0005    | 0.0720 J   | <0.0005     | 0.00061 J  | <0.0005    | 0.0004 J     | <0.0005    | 0.05                           |
| Thallium  | 0.00079 J   | 0.000074 J | 0.00011 J  | <0.0005     | 0.00029 J  | 0.000021 J | <0.0005      | <0.0005    | 0.0005                         |
| Sample ID | GW-17       | GW-17      | GW-18      | GW-18       | MW-E       | MW-E       | MW-F         | MW-F       | NYSDEC Class                   |
| Sampling  |             |            |            |             |            |            |              |            | GA Standard or                 |
| Date      | 6/26/2014   | 6/26/2014  | 6/26/2014  | 6/26/2014   | 6/27/2014  | 6/27/2014  | 6/27/2014    | 6/27/2014  | Guidance Value                 |
| Analysis  | total       | dissolved  | total      | dissolved   | total      | dissolved  | total        | dissolved  | mg/l                           |
| Units     | mg/l        | mg/l       | mg/l       | mg/l        | mg/l       | mg/l       | mg/l         | mg/l       |                                |
| Beryllium | 0.00064 J   | <0.0005    | <0.0005    | <0.0005     | <0.0005    | <0.0005    | <0.0005      | <0.0005    | 0.003                          |
| Cadmium   | 0.00046 J   | 0.00023 J  | 0.00038 J  | 0.00019 J   | 0.00067 J  | 0.00062 J  | 0.00016 J    | <0.0005    | 0.005                          |
| Chromium  | 0.0129      | 0.00053 J  | 0.0044     | 0.0017 J    | 0.0024     | 0.00098 J  | 0.002 J      | 0.0003 J   | 0.05                           |
| Lead      | 0.0553      | 0.00017 J  | 0.002      | 0.00026 J   | 0.0084     | 0.00028 J  | 0.0074       | 0.000094 J | 0.025                          |
| Manganese | 3.7         | 3.37       | 2.05       | 1.63        | 15.4 D     | 13.8 D     | 3.58         | 3.05       | 0.3                            |
| Mercury   | 0.000683    | <0.0001    | <0.0001    | <0.0001     | <0.0001    | <0.0001    | <0.0001      | <0.0001    | 0.0007                         |
| Nickel    | 0.0315      | 0.0177     | 0.0626     | 0.053       | 0.0113     | 0.0075     | 0.0059       | 0.0036     | 0.1                            |
| Selenium  | 0.0158      | 0.0154     | 0.0033 J   | <0.0025     | 0.0033 J   | 0.003 J    | <0.0025      | <0.0025    | 0.01                           |
| Silver    | 0.00044 J   | <0.0005    | 0.00017 J  | 0.000058 J  | <0.0005    | <0.0005    | 0.000041 J   | <0.0005    | 0.05                           |
| Thallium  | 0.00011 J   | 0.00004 J  | 0.000047 J | 0.000028 J  | 0.000064 J | 0.000042 J | 0.000042 J   | 0.000027 J | 0.0005                         |

### PROPOSED PUBLIC SCHOOL

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

| Sample ID<br>Sampling<br>Date<br>Analysis<br>Units | MW-G<br>6/27/2014<br>total<br>mg/l | MW-G<br>6/27/2014<br>dissolved<br>mg/l | MW-H<br>6/27/2014<br>total<br>mg/l | MW-H<br>6/27/2014<br>dissolved<br>mg/l |  |  | NYSDEC Class<br>GA Standard or<br>Guidance Value<br>mg/l |
|----------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|--|--|----------------------------------------------------------|
| Beryllium                                          | < 0.0005                           | < 0.0005                               | < 0.0005                           | < 0.0005                               |  |  | 0.003                                                    |
| Cadmium                                            | 0.0005 J                           | < 0.0005                               | 0.0011                             | < 0.0005                               |  |  | 0.005                                                    |
| Chromium                                           | 0.0039                             | 0.0011 J                               | 0.0033                             | 0.00057 J                              |  |  | 0.05                                                     |
| Lead                                               | 0.0243                             | 0.00039 J                              | 0.023                              | 0.00018 J                              |  |  | 0.025                                                    |
| Manganese                                          | 2.78                               | 2.46                                   | 0.552                              | 0.0125                                 |  |  | 0.3                                                      |
| Mercury                                            | < 0.0001                           | < 0.0001                               | < 0.0001                           | < 0.0001                               |  |  | 0.0007                                                   |
| Nickel                                             | 0.0133                             | 0.0076                                 | 0.0045                             | 0.0016                                 |  |  | 0.1                                                      |
| Selenium                                           | 0.00095 J                          | < 0.0025                               | 0.0012 J                           | < 0.0025                               |  |  | 0.01                                                     |
| Silver                                             | 0.000049 J                         | < 0.0005                               | 0.000045 J                         | < 0.0005                               |  |  | 0.05                                                     |
| Thallium                                           | 0.0001 J                           | 0.000028 J                             | 0.000041 J                         | 0.000027 J                             |  |  | 0.0005                                                   |

#### Footnotes/Qualifiers:

- mg/l: Milligrams per liter
  - <: Analyzed for but not detected
  - --: No standard
  - J: Estimated value
  - D: Detected at a secondary dilution

Exceeds Class GA Standard or Guidance Value

As shown, although there were several exceedances of NYSDEC Class GA Groundwater Standards in the total metal analyses, there were only two metals (manganese and selenium) that exceeded for the dissolved (filtered) metals analyses. Therefore, the levels detected in the total metal analyses are related to turbidity in the samples and not to on-site contamination.

Manganese was detected above its Class GA Groundwater Standard of 0.3 mg/l in 12 of the 14 dissolved (filtered) metals analyses, with a maximum concentration of 14.4 mg/l detected in the upgradient location GW-1. Selenium was also detected slightly above the Class GA Groundwater Standard in two dissolved (filtered) metals analyses. These metals concentrations are not related to on-site contamination but to natural conditions. Summaries of the analytical results for metals in groundwater are presented in *Table 19*. The analytical data package is presented as *Appendix E*.

### 4.5.4 PCBs in Groundwater

The laboratory analytical results indicate that PCBs were not detected in the groundwater samples collected. A summary of the analytical results for PCBs in groundwater is presented in *Table 20*. The analytical data package is presented as *Appendix E*.

### 4.5.5 NYCDEP Discharge Parameters in Groundwater

Groundwater sample GW-17 was analyzed for New York City Department of Environmental Protection (NYCDEP) discharge parameters. All the NYCDEP discharge parameters were below their respective effluent limits with the exception of total suspended solids. Total suspended solids was detected at a concentration of 430 mg/l in GW-17, which is greater than the discharge limit of 350 mg/l. Note that this sample was brown in color and turbid. PCE was also detected at a concentration of 220  $\mu$ g/l in GW-17, which is greater than the discharge limit of 20  $\mu$ g/l. Petroleum contaminants such as BTEX compounds were also detected in other areas of the Site at concentrations above discharge limits. The source of these VOCs can likely be attributed to the historical or current use of the Site, as well as off-site sources.

### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET,

1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

If plans include discharging to the sewer system during dewatering at the Site, pre-filtering will be required to address total suspended solids, as well as treatment to address the on-site chlorinated VOC and petroleum contamination. The dewatering system design should also consider the off-site sources of contamination. A summary of the analytical results for NYCDEP Discharge Limits in groundwater is presented in *Table 19*. The analytical data package is presented in *Appendix E*.

### 4.6 Residual Waste and/or Pre-Design Waste Characterization Sampling Findings

### 4.6.1 Pre-Design Characterization Sampling Results

All waste characterization parameters were below their respective characteristic hazardous waste threshold values and no evidence of contamination was identified. Samples for TCLP analysis were collected and placed on-hold at the laboratory pending the results of the totals analyses. Based on totals concentrations of lead and chromium exceeding the 20 Times Rule, 10 samples were subsequently analyzed TCLP lead and 1 sample was analyzed for TCLP chromium. The laboratory results of the TCLP analyses indicate that those samples analyzed are below their respective TCLP Regulatory Level. A detailed summary of the analytical results for waste characterization sampling is presented in *Table 15*. The analytical data package is presented in *Appendix E*.

Based on a preliminary characterization of the soil quality in this investigation and a review of the analytical requirements for selected solid waste management facilities, elevated concentrations of select VOCs and SVOCs may require disposal as nonhazardous industrial waste or petroleum contaminated material.

### 4.6.2 Investigation Derived Waste Management and Disposal

Investigation derived waste (IDW) was not generated during the Phase II ESI. All surplus bored material (i.e., that not needed for sample collection) was used to backfill each borehole. In addition, all purged groundwater was introduced back into the borehole prior to backfill.

### 4.7 Summary of Findings

D&B performed a Phase II ESI consisting of a geophysical survey, soil borings and the collection and laboratory analysis of soil vapor, soil and groundwater samples within the proposed Site. The results of the Phase II ESI indicate the following:

- Based on observations made during the Phase II ESI, groundwater was encountered at the Site at approximately 9 to 22 feet below grade, and only 4 feet below the basement slab in the building on Lot 17. Groundwater is anticipated to flow in an overall south-southwesterly direction.
- The Phase I ESA identified historic fill of unknown origin as a REC/VEC for the Site. During the Phase II ESI, material consisting of brown silty sand, some fine-medium gravel, slag/cinders, concrete, brick, asphalt and rock fragments was encountered at most of the 19 boring locations, with a thickness of approximately 5 to 10 feet. Field observations of petroleum contamination were observed in at least five locations, including Locations 5, 6, 7, 13 and 14. Locations 5 and 13 exhibited the greatest evidence of contamination from field screening, with a strong petroleum odor and PID readings up to 500 ppm. These locations are generally located downgradient of the on-site gas station.

### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

- As discussed in the Phase I ESA, a FOIL review of the adjoining upgradient gasoline station located at 1881 East Tremont Avenue indicated that a significant release of petroleum occurred at that property in the mid 1980's which impacted groundwater on the Site (9 inches of floating product were observed in the on-site bowling alley sump pit at that time). Recovery systems were installed and operated to remove the petroleum impact. However, an open spill number still exists for that property and the FOIL review did not indicate that any remedial activities have occurred related to the spill since 2008.
- The geophysical survey identified numerous linear subsurface anomalies consistent with underground pipes and utilities. The boring locations were located in areas which did not conflict with these anomalies. In addition, the geophysical survey identified numerous utility lines and subsurface pipes throughout the Site. Two anomalies were confirmed to be consistent with the USTs located at the northwest corner of the project area. Also, the geophysical survey confirmed that the on-site storm water drains were connected to the public sewer system.
- Sixteen of the 18 soil vapor samples exhibited one or more VOCs at concentrations greater than the New York State Department of Health Air Guideline Values (AGVs) or the anticipated range of background levels, and 11 of the 18 soil vapor samples exhibited one or more VOCs at concentrations greater than the AGVs. Samples SV-8 and SV-15, which exhibited the maximum PCE concentrations of 31,193 μg/m³ and 15,596 μg/m³, respectively, are located in the vicinity of former on-site dry cleaners. Sample SV-5, which exhibited the maximum benzene concentration of 1,054 μg/m³, is located in the alleyway immediately downgradient of the on-site gas station. PCE was also detected above the AGV in 11 of the 18 soil vapor samples and TCE in two soil vapor samples at 128 μg/m³ and 178 μg/m³ in samples SV-8 and SV-15, respectively. At Locations 5, 8 and 17, the compounds detected in soil vapor above the anticipated range of background concentrations were also detected exceeding their respective regulatory standards in soil or groundwater samples collected from these locations, and were consistent with field observations of contamination. Therefore, the detected soil vapor concentrations are likely due to historical and/or current use of the Site (e.g., the on-site gasoline station and former dry cleaners), as well as off-site sources (e.g., adjoining upgradient gasoline station spill).
- For soil, most or all of the following VOCs (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, m,p-xylenes, o-xylene, toluene, naphthalene, n-butylbenzene and n-propylbenzene) were detected at a concentration greater than Unrestricted Use SCOs, SCLs and/or Supplemental SCOs in soil samples GP-5 (10 to 12 feet) and GP-13 (18 to 20 feet), located downgradient of the on-site gas station. These soil samples also exhibited one SVOC (2-methylnaphthalene) at a concentration slightly above the Supplemental SCO. Soil sample GP-8 (6 to 18 inches), located in the vicinity of a former on-site dry cleaner, exhibited a PCE concentration of 3.3 mg/kg, above the Unrestricted Use SCO of 1.3 mg/kg. The source of these VOCs and SVOCs can likely be attributed to the historical or current use of the Site (e.g., the on-site gasoline station), as well as off-site sources (e.g., adjoining upgradient gasoline station spill) for smear zone soil. Soil sample GP-17 (0 to 5 feet), located downgradient of the Site along Guerlain Street, exhibited seven PAHs at concentrations above Unrestricted Use SCOs and SCLs with no evidence of contamination during field screening. The source of the SVOCs in GP-17 can likely be attributed to the cinders and slag observed in the historic fill in this location.
- A total of 11 metals were detected in one or more soil samples at concentrations exceeding Unrestricted Use SCOs or Supplemental SCOs. One sample, GP-8 (6 to 18 inches) exhibited a

### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE

**BRONX, NEW YORK 10462** 

pesticide concentration above the Unrestricted Use SCO (4,4'-DDE). Given that the highest concentrations were detected in shallow soil and are generally not consistent with the soil samples exhibiting petroleum contamination, the source of these metals and pesticides can likely be attributed to historic fill located on-site. PCB concentrations did not exceed the Unrestricted Use SCOs. TPHs were detected in all soil samples collected, and can likely be attributed to historic fill located on-site and current use of the Site (e.g., the on-site gasoline station), as well as off-site sources (e.g., adjoining upgradient gasoline station spill) for smear zone soil.

- For groundwater, field screening observed evidence of petroleum contamination in four groundwater samples located downgradient of the on-site gas station (GW-5, GW-13, MW-F and MW-G), including petroleum odors. These samples exhibited the highest VOC concentrations in groundwater, with one or more of the following compounds detected above Class GA Groundwater Standards: 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, m,p-xylene, naphthalene, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene, MTBE and toluene. Two SVOCs were also detected above Class GA Groundwater Standards: phenol in MW-F and MW-G, and m,p-cresols in Three chlorinated VOCs (1,2-DCE, PCE and TCE) were detected above the groundwater standard of 5 µg/l in groundwater sample GW-17, located downgradient of the Site along Guerlain Street, with a PCE concentration of 220 µg/l. The upgradient groundwater sample collected from Location 1 did not exhibit VOC or SVOC concentrations in excess of the Class GA Groundwater Standards, with the exception of methyl tert-butyl ether (MTBE). Therefore, either the contamination detected in the on-site wells is emanating from an on-site source or Location 1 is not hydraulically upgradient of these locations (i.e., too far east to intercept the adjoining upgradient gasoline station spill). Therefore, the source of these VOCs and SVOCs can likely be attributed to the historical or current use of the Site (e.g., the on-site gasoline station and former dry cleaners) or off-site sources (e.g., adjoining upgradient gasoline station spill).
- Analysis of the groundwater samples also found that several metals exceeded NYSDEC Class GA
  groundwater standards on a totals basis but dissolved metals, with the exception of manganese
  and selenium, were below the groundwater standards. As a result, the total metal exceedances are
  related to sample turbidity and not to an on-site release. The presence of dissolved manganese and
  selenium is related to natural conditions. PCBs were not detected in any of the collected
  groundwater samples.
- One groundwater sample (i.e., GW-17) was analyzed for NYCDEP Sewer Use Discharge Limits.
   All the NYCDEP discharge parameters were below their respective effluent limits with the
   exception of total suspended solids. If discharging to the sewer system during dewatering at the
   Site, pre-filtering will be required to address total suspended solids, as well as treatment to
   address the on-site chlorinated VOC and petroleum contamination discussed earlier. The
   dewatering system design should also consider the off-site sources of contamination.
- Free phase product was not encountered during the field activities.
- All waste characterization parameters were below their respective characteristic hazardous waste
  threshold values and no evidence of contamination was identified. The laboratory results of the
  lead and chromium TCLP analyses indicate that those samples analyzed are below their
  respective TCLP Regulatory Level.

### PROPOSED PUBLIC SCHOOL

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

### 5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the Phase II Environmental Site Investigation (ESI), D&B concludes the following:

Based on the Phase II ESI results, the following can be concluded:

- The RECs/VECs identified in the Phase I ESA were adequately investigated.
- The geophysical survey found two anomalies that are consistent with the USTs located at the gas station on the northwest corner of the Site (Lot 8).
- Elevated VOC concentrations were detected in soil vapor throughout the Site, with 16 of the 18 soil vapor samples exhibiting one or more VOCs at concentrations greater than the New York State Department of Health Air Guideline Values (AGVs) or the anticipated range of background levels. Soil vapor samples SV-8 and SV-15, located in the vicinity of former on-site dry cleaners (1590 White Plains Road and 1597 Unionport Road), exhibited PCE concentrations up to 1,000 times the AGV and TCE concentrations up to 25 times the AGV near the former on-site dry cleaners. PCE was detected above the AGV in 11 of the 18 soil vapor samples. Soil vapor sample SV-5, which exhibited a benzene concentration nearly 100 times the maximum comparison value, is located in the alleyway immediately downgradient of the on-site gas station. Petroleum-related compounds were detected in soil gas in the western and northwestern portions of the Site. At these locations, compounds detected in soil vapor above the anticipated range of background concentrations were also detected exceeding their respective regulatory standards in soil or groundwater samples and were consistent with field observations of contamination. Therefore, the detected soil vapor concentrations are likely due to historical and/or current use of the Site (e.g., the on-site gasoline station and former dry cleaners), as well as off-site sources (e.g., adjoining upgradient gasoline station spill).
- The soil sample analyses indicate that most of the following petroleum-related VOCs and SVOCs (2-methylnaphthalene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, m,p-xylenes, o-xylene, toluene, naphthalene, n-butylbenzene and n-propylbenzene) were detected at concentrations greater than Unrestricted Use SCOs, SCLs and/or Supplemental SCOs in two soil samples located downgradient of the on-site gas station. The soil sample located in the vicinity of the former on-site dry cleaner formerly located at 1590 White Plains Road exhibited a PCE concentration of 3.3 mg/kg, above the Unrestricted Use SCO of 1.3 mg/kg. The source of these VOCs and SVOCs can likely be attributed to the historical or current use of the Site (e.g., the on-site gasoline station), as well as off-site sources (e.g., adjoining upgradient gasoline station spill) for smear zone soil.
- Various PAHs and one pesticide (4,4'-DDE) were detected above Unrestricted Use SCOs and SCLs in one shallow soil sample. In addition, a total of 11 metals were detected in one or more soil samples at concentrations exceeding Unrestricted Use SCOs or Supplemental SCOs. Given that the highest concentrations were detected in shallow soil and are generally not consistent with the soil samples exhibiting petroleum contamination, the source of these SVOCs, metals and pesticides can likely be attributed to historic fill located on-site. Historic fill was observed in most boring locations with a maximum thickness of approximately 10 feet.

### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

- The groundwater sample analyses indicate that most of the following VOCs and SVOCs (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, m,p-cresols, m,p-xylene, naphthalene, n-butylbenzene, n-propylbenzene, o-xylene, phenol, p-isopropyltoluene, sec-butylbenzene, MTBE and toluene) were detected at concentrations greater than Class GA Groundwater Standards in groundwater samples located downgradient of the on-site gas station. Groundwater sample GW-17, located downgradient of the Site, exhibited concentrations of three chlorinated VOCs (1,2-DCE, PCE and TCE) above the groundwater standard, with a PCE concentration over 40 times the standard. The upgradient sample did not exhibit concentrations of VOCs or SVOCs in excess of the Class GA Groundwater Standards, with the exception of MTBE. Therefore, the contamination detected in the on-site wells is either from an on-site source (e.g., the on-site gasoline station) or Location 1 is not hydraulically upgradient of these wells and off-site sources (e.g., adjoining upgradient gasoline station spill) may be impacting the Site.
- The analyses indicate that several metals were detected in one or more groundwater samples at
  concentrations exceeding their respective NYSDEC Class GA Groundwater Standards. The
  metals, with the exception of manganese and selenium, were only elevated in the total metals
  analysis and not the dissolved metals analysis and therefore are related to sample turbidity and
  not on-site release. The presence of dissolved manganese and selenium is related to natural
  conditions.
- Based on the soil vapor concentrations, a VEC exists. Based on the Phase II investigation, the VOCs detected in soil and groundwater may be the source of these concentrations. These impacts may be related to the historical or current use of the Site or off-site sources.
- Based on comparison of groundwater sampling results to NYCDEP discharge parameters, pre-filtering will be required to address total suspended solids if plans include discharging to the sewer system during dewatering at the Site. In addition, treatment to address the on-site chlorinated VOC and petroleum contamination may be necessary.
- The soil encountered at the Site can be classified as nonhazardous industrial waste as defined in the NYCSCA 02200 Earthwork Specification template.
- Given the extent of observed petroleum and chlorinated VOC contamination in soil vapor, soil
  and groundwater, it is likely that proceeding with the proposed school at this Site will require
  NYSDEC involvement. The Site may be eligible for management under the Brownfield Cleanup
  Program (BCP). Further discussion with the NYSDEC is recommended to determine eligibility.

Based on the results of the Phase II ESI, the following remedial actions and/or engineering controls are required to render the Site suitable for use as a public school facility:

- As a safeguard to prevent potential volatile organic compounds in soil vapor from entering the new school building in the future, a soil vapor barrier and sub-slab depressurization system should be integrated into the new school design including the integration with any proposed damp-proofing or waterproofing components of the new school design.
- To mitigate elevated concentrations of organic compounds, groundwater remediation should be completed followed by long-term groundwater monitoring both on-site and off-site.

### PROPOSED PUBLIC SCHOOL

#### 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

In addition, D&B recommends the following as part of the NYCSCA standard construction requirements:

- If soil is to be excavated during the development of the public school facility, D&B recommends properly characterizing the soil to identify appropriate material handling, reuse, and/or disposal requirements. Excavated material should be managed in accordance with applicable federal, state, and local laws and regulations and in consideration of the results of the characterization sampling and analysis. Based on the results of the analyses of soil samples collected during the Phase II ESI, material excavated from the Site is expected to be nonhazardous industrial waste, as defined in the standard NYCSCA 02200 Earthwork Specification section template, and should be identified as nonhazardous industrial waste for bidding purposes. Additionally, the project construction specifications should require completion of waste characterization sampling by the contractor.
- If dewatering is necessary during school construction activities, it is expected that treatment of dewatering effluent may be required prior to discharge to the municipal sewer. Dewatering, groundwater treatment, and disposal should be performed in accordance with applicable local, state, and federal regulations. Dewatering required during construction should be minimized to mitigate potential influx of contaminated water from off-site sources toward the Site.
- All tanks, piping and appurtenances on the Site should be removed (i.e. gasoline station), and all other underground/aboveground storage tanks should be removed from the Site.
- After the proposed new building and grounds are constructed, any exposed soil (landscaped areas) must be covered with at least two feet of environmentally clean fill.
- Suspect ACM, LBP, and/or PCB-containing materials should be properly managed during construction or demolition activities.

A description of the remedial engineering controls and associated cost estimates are included in *Appendix G*.

1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE **BRONX, NEW YORK 10462** 

#### 6.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

D&B Engineers and Architects, P.C. (D&B) has performed a Phase II Environmental Site Investigation (ESI) of the proposed public school facility located at 1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue in the Bronx, New York 10462. The scope of the Phase II ESI was consistent with the scope of work dated April 14, 2014 as stated in Section 2.0.

Manauright

Muhuel Mefer

D&B Engineers and Architects, P.C.

Prepared By:

Anthony Caniano

Senior Environmental Scientist

Technical Review By:

Maria Wright, P.E. Senior Engineer QA/QC Manager

Reviewed By:

Michael Hofgren

Senior Associate

### PROPOSED PUBLIC SCHOOL

# 1597-1627 UNIONPORT ROAD, 1889-1905 GUERLAIN STREET, 1572-1592 WHITE PLAINS ROAD AND 1880-1894 EAST TREMONT AVENUE BRONX, NEW YORK 10462

#### 7.0 REFERENCES

D&B Engineers and Architects, P.C., Phase I Environmental Site Assessment for the Proposed School Site located at 1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue in the Bronx, New York 10462, April 14, 2014.

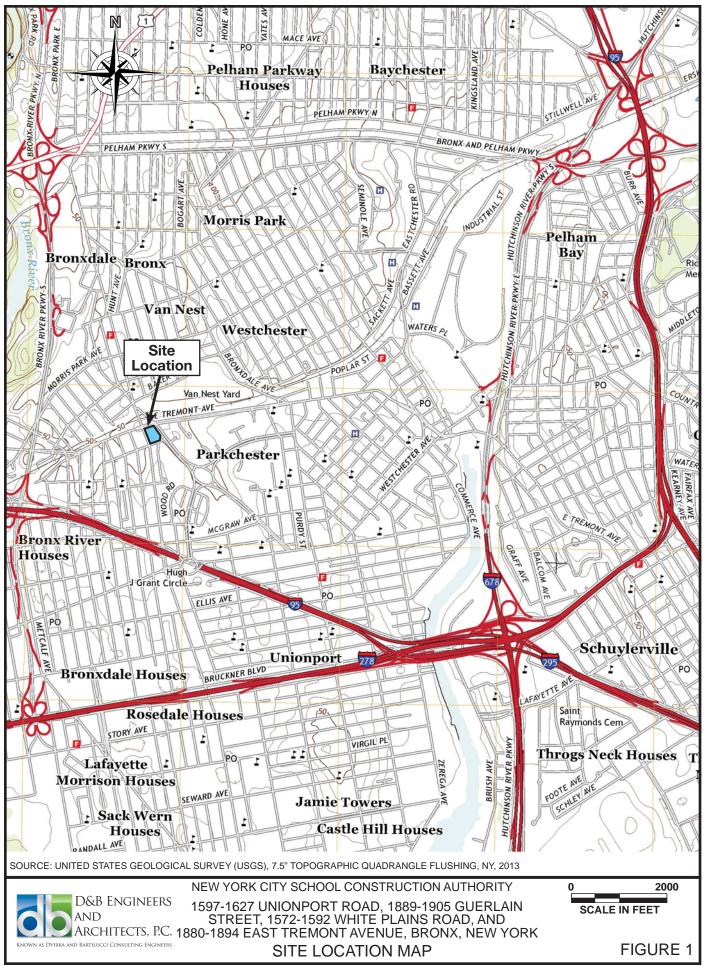
D&B Engineers and Architects, P.C., Phase II Environmental Site Investigation Scope of Work for the Proposed School Site located at 1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue in the Bronx, New York 10462, April 14, 2014.

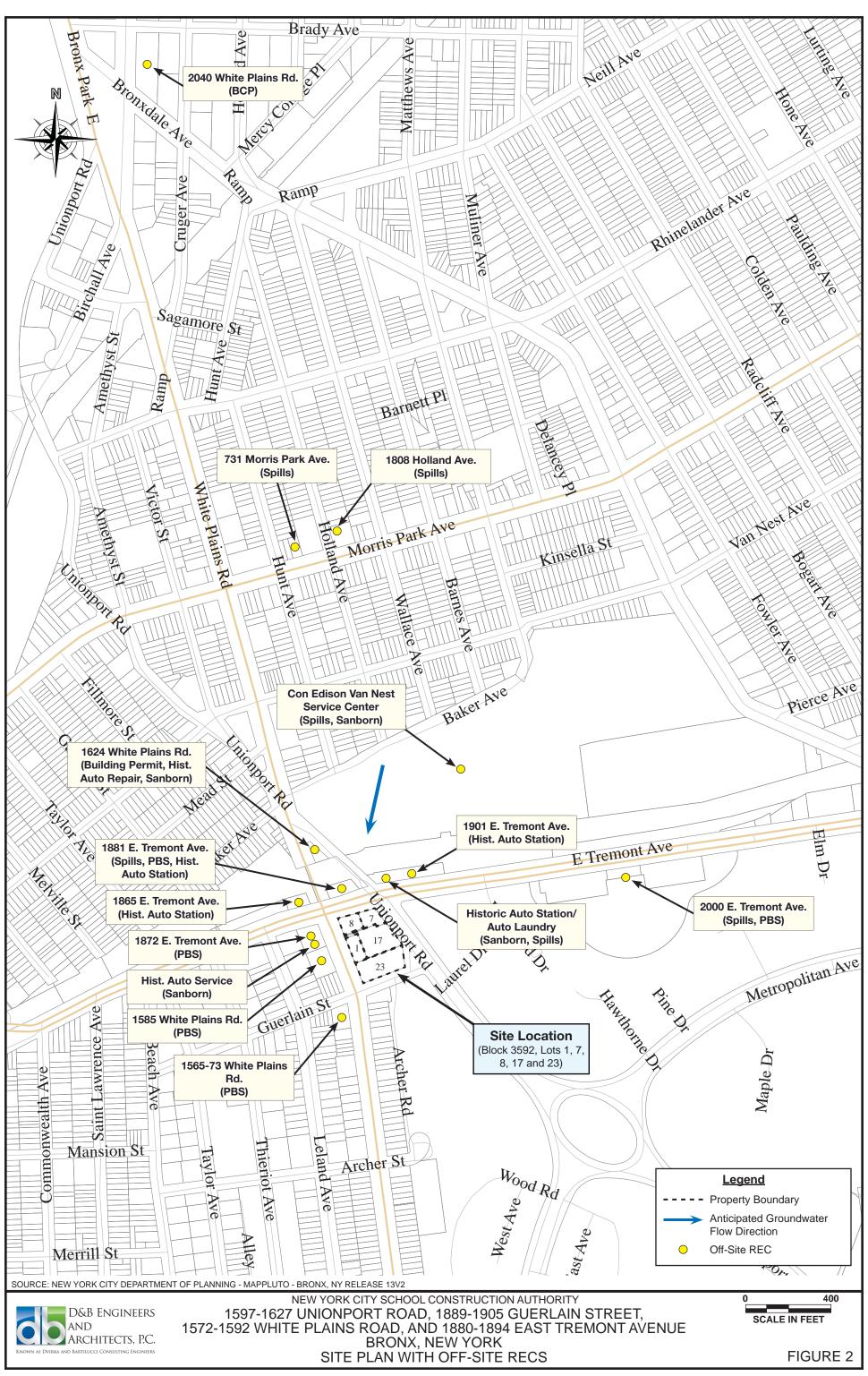
New York City School Construction Authority, Architecture & Engineering Test Fit/Sketch Study for Proposed New Primary School at 1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue in the Bronx, New York 10462, March 6, 2014.

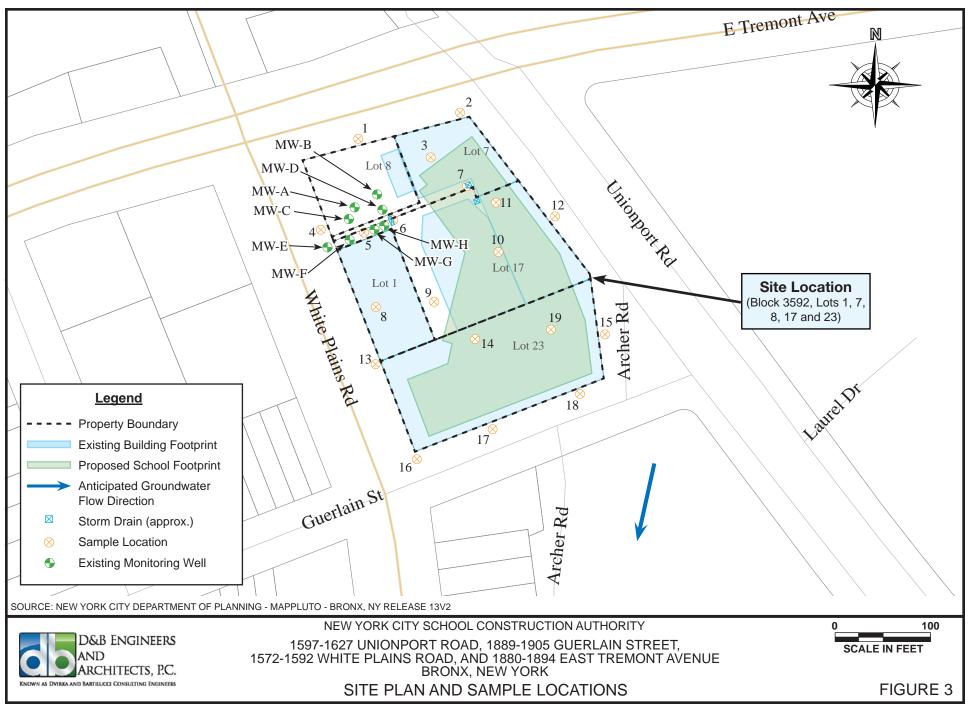
ASTM E 2600-10 "Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions"

Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006; prepared by the New York State Department of Health Center for Environmental Health, Bureau of Environmental Exposure Investigation.

6 NYCRR § 375, effective December 14, 2006; New York State Department of Environmental Conservation Rules and Regulations, Remedial Program Requirements.


6 NYCRR Chapter X § 700 – 706; New York State Department of Environmental Conservation Water Quality Regulations, Surface Water and Ground Water Classifications and Standards.


CP-51/Soil Cleanup Guidance; New York State Department of Environmental Conservation, October 21, 2010.


ASTM Standards Related to the Phase II Environmental Site Assessment Process, 2nd Edition.

DER-10 Technical Guidance for Site Investigation and Remediation (5/3/2010).

**FIGURES** 







**TABLES** 

Table 12
Unionport Road, Bronx, NY
Summary of Soil Vapor
Analytical Results
Volatile Organic Compounds

| Sample ID                        | SV-1      | SV-2      | SV-3      | SV-4      | SV-5      |                               | NYSDOH Table<br>C-1 Upper | NYSDOH Table<br>C-2 90th    | NYSDOH Table<br>C-5 95th    |
|----------------------------------|-----------|-----------|-----------|-----------|-----------|-------------------------------|---------------------------|-----------------------------|-----------------------------|
| Sampling Date                    | 6/24/2014 | 6/24/2014 | 6/24/2014 | 6/23/2014 | 6/23/2014 | NYSDOH Air<br>Guideline Value | Fence<br>Limit(indoor)    | Percentile<br>Value(indoor) | Percentile<br>Value(indoor) |
| Units                            | ug/m3     | ug/m3     | ug/m3     | ug/m3     | ug/m3     | ug/m3                         | ug/m3                     | ug/m3                       | ug/m3                       |
|                                  | 0.400     | 0.70      | 0.00      | 0.400     | 4.04      |                               | 0.5                       | 00.0                        |                             |
| 1,1,1-Trichloroethane (TCA)      | <0.160    | 0.76      | 0.98      | <0.160    | <1.64     |                               | 2.5                       | 20.6                        |                             |
| 1,1-Dichloroethane               | <0.400    | <0.400    | <0.400    | <0.400    | <4.05     |                               | 0.4                       | <0.7                        |                             |
| 1,1-Dichloroethene               | <0.400    | < 0.400   | <0.400    | <0.400    | <3.96     |                               | 0.4                       | <1.4                        |                             |
| 1,2,4-Trimethylbenzene           | 2.36 J    | 5.41      | 64.9      | 89.0 D    | 107       |                               | 9.8                       | 9.5                         |                             |
| 1,2-Dichlorobenzene              | <0.600    | <0.600    | <0.600    | <0.600    | <6.01     |                               | 0.5                       | <1.2                        |                             |
| 1,2-Dichloroethane               | <0.400    | <0.400    | <0.400    | <0.400    | <4.05     |                               | 0.4                       | <0.9                        |                             |
| 1,2-Dichloropropane              | <0.460    | <0.460    | <0.460    | <0.460    | <4.62     |                               | 0.4                       | <1.6                        |                             |
| 1,3,5-Trimethylbenzene           | 0.640 J   | 2.21 J    | 33.9      | 24.1      | 27        |                               | 3.9                       | 3.7                         |                             |
| 1,3-Dichlorobenzene              | <0.600    | <0.600    | <0.600    | <0.600    | <6.01     |                               | 0.5                       | <2.4                        |                             |
| Benzene                          | 1.73      | 7.99      | 40.6      | 10.9      | 1054 D    |                               | 13                        | 9.4                         | 10                          |
| Carbon Tetrachloride             | 0.38      | 0.38      | <0.190    | 0.38      | <1.89     |                               | 1.3                       | <1.3                        | 1.1                         |
| Chlorobenzene                    | <0.460    | <0.460    | <0.460    | <0.460    | <4.61     |                               | 0.4                       | <0.9                        |                             |
| Chloroethane                     | <0.260    | <0.260    | <0.260    | <0.260    | <2.64     |                               | 0.4                       | <1.1                        |                             |
| Chloromethane                    | 1.14      | 1.16      | 0.700 J   | <0.210    | <2.07     |                               | 4.2                       | 3.7                         |                             |
| cis-1,2-Dichloroethylene         | <0.400    | <0.400    | <0.400    | < 0.400   | <3.96     |                               | 0.4                       | <1.9                        |                             |
| Ethylbenzene                     | 1.87 J    | 3.65      | 137 D     | 38.2      | 127       |                               | 6.4                       | 5.7                         | 7.62                        |
| m,p-Xylenes                      | 5.65      | 11.7      | 380 D     | 143 D     | 68.6      |                               | 11                        | 22.2                        | 22.2                        |
| Methyl tert-Butyl Ether (MTBE)   | <0.360    | < 0.360   | < 0.360   | < 0.360   | <3.61     |                               | 14                        | 11.5                        | 36                          |
| Methylene Chloride               | 5.91      | 3.2       | < 0.350   | 1.29 J    | <3.47     | 60                            | 16                        | 10                          | 7.5                         |
| Naphthalene                      | <0.520    | < 0.520   | 1.63 J    | 66.6 D    | 15.2 J    |                               |                           | 5.1                         |                             |
| o-Xylene                         | 2.13 J    | 4.34      | 133 D     | 61.2      | 9.99 J    |                               | 7.1                       | 7.9                         | 7.24                        |
| Tetrachloroethylene (PCE)        | 0.75      | 45.4      | 745 D     | 54.2      | 456       | 30                            | 2.5                       | 15.9                        | 6.01                        |
| Toluene                          | 15.8      | 11.3      | 274 D     | 118 D     | 26.4      |                               | 57                        | 43                          | 39.8                        |
| trans-1,2-Dichloroethene         | < 0.400   | < 0.400   | < 0.400   | < 0.400   | <3.96     |                               |                           |                             |                             |
| Trichloroethylene (TCE)          | <0.160    | 0.48      | 0.27      | 0.7       | <1.61     | 5                             | 0.5                       | 4.2                         | 1.36                        |
| Vinyl Chloride                   | <0.0800   | <0.0800   | 0.18      | <0.0800   | <0.770    |                               | 0.4                       | <1.9                        |                             |
| Total Volatile Organic Compounds | 38.36     | 97.98     | 1812.16   | 607.57    | 1891.19   |                               |                           |                             |                             |

<: Analyzed but not detected

J: Estimated value

D: Detected at secondary dilution



Notes:

ug/m3: Micrograms per cubic meter

Exceeds the maximum concentration of NYSDOH Table C-1, C-2 or C-5

Exceeds the NYSDOH Air Guideline Value

Table 12
Unionport Road, Bronx, NY
Summary of Soil Vapor
Analytical Results
Volatile Organic Compounds

| Sample ID                        | SV-6      | SV-7      | SV-8      | SV-9      | SV-10     |                          | NYSDOH Table<br>C-1 Upper | NYSDOH Table<br>C-2 90th | NYSDOH Table<br>C-5 95th |
|----------------------------------|-----------|-----------|-----------|-----------|-----------|--------------------------|---------------------------|--------------------------|--------------------------|
| Sampling Date                    | 6/25/2014 | 6/25/2014 | 6/24/2014 | 6/25/2014 | 6/23/2014 | NYSDOH Air               | Fence                     | Percentile               | Percentile               |
| Units                            | ug/m3     | ug/m3     | ug/m3     | ug/m3     | ug/m3     | Guideline Value<br>ug/m3 | Limit(indoor)<br>ug/m3    | Value(indoor)<br>ug/m3   | Value(indoor)<br>ug/m3   |
|                                  |           |           |           |           |           |                          |                           |                          |                          |
| 1,1,1-Trichloroethane (TCA)      | <0.160    | <0.160    | <1.64     | <0.160    | <0.160    |                          | 2.5                       | 20.6                     |                          |
| 1,1-Dichloroethane               | <0.400    | <0.400    | <4.05     | <0.400    | <0.400    |                          | 0.4                       | <0.7                     |                          |
| 1,1-Dichloroethene               | <0.400    | <0.400    | <3.96     | <0.400    | <0.400    |                          | 0.4                       | <1.4                     |                          |
| 1,2,4-Trimethylbenzene           | 73.2      | 40.8      | 147       | 50.1      | 12.8      |                          | 9.8                       | 9.5                      |                          |
| 1,2-Dichlorobenzene              | < 0.600   | <0.600    | <6.01     | <0.600    | < 0.600   |                          | 0.5                       | <1.2                     |                          |
| 1,2-Dichloroethane               | <0.400    | < 0.400   | <4.05     | < 0.400   | 0.650 J   |                          | 0.4                       | <0.9                     |                          |
| 1,2-Dichloropropane              | <0.460    | < 0.460   | <4.62     | < 0.460   | < 0.460   |                          | 0.4                       | <1.6                     |                          |
| 1,3,5-Trimethylbenzene           | 19.2      | 9.34      | 70.3      | 12.3      | 3.15      |                          | 3.9                       | 3.7                      |                          |
| 1,3-Dichlorobenzene              | < 0.600   | <0.600    | <6.01     | <0.600    | < 0.600   |                          | 0.5                       | <2.4                     |                          |
| Benzene                          | 22.4      | 4.47      | 46        | 36.1      | 4.15      |                          | 13                        | 9.4                      | 10                       |
| Carbon Tetrachloride             | <0.190    | 0.44      | <1.89     | 0.38      | 0.44      |                          | 1.3                       | <1.3                     | 1.1                      |
| Chlorobenzene                    | <0.460    | < 0.460   | <4.61     | < 0.460   | < 0.460   |                          | 0.4                       | <0.9                     |                          |
| Chloroethane                     | <0.260    | <0.260    | <2.64     | 5.54      | <0.260    |                          | 0.4                       | <1.1                     |                          |
| Chloromethane                    | 0.950 J   | 1.05      | <2.07     | 21.9      | <0.210    |                          | 4.2                       | 3.7                      |                          |
| cis-1,2-Dichloroethylene         | <0.400    | <0.400    | <3.96     | <0.400    | <0.400    |                          | 0.4                       | <1.9                     |                          |
| Ethylbenzene                     | 108 D     | 23        | 133       | 20        | 6.08      |                          | 6.4                       | 5.7                      | 7.62                     |
| m,p-Xylenes                      | 204 D     | 53.9      | 477       | 55.6      | 23        |                          | 11                        | 22.2                     | 22.2                     |
| Methyl tert-Butyl Ether (MTBE)   | < 0.360   | 1.8       | <3.61     | 5.77      | < 0.360   |                          | 14                        | 11.5                     | 36                       |
| Methylene Chloride               | 1.46 J    | 9.38      | 167       | 3.47      | 2.26      | 60                       | 16                        | 10                       | 7.5                      |
| Naphthalene                      | 9.96      | 32        | <5.24     | 9.44      | 3.46      |                          |                           | 5.1                      |                          |
| o-Xylene                         | 70.4 D    | 19.6      | 117       | 23        | 10.9      |                          | 7.1                       | 7.9                      | 7.24                     |
| Tetrachloroethylene (PCE)        | 228 D     | 21        | 31193 D   | 47.5      | 7.46      | 30                       | 2.5                       | 15.9                     | 6.01                     |
| Toluene                          | 23.4      | 27.1      | 166       | 37.3      | 26        |                          | 57                        | 43                       | 39.8                     |
| trans-1,2-Dichloroethene         | <0.400    | <0.400    | <3.96     | <0.400    | <0.400    |                          |                           |                          |                          |
| Trichloroethylene (TCE)          | <0.160    | 0.21      | 128       | <0.160    | 0.16      | 5                        | 0.5                       | 4.2                      | 1.36                     |
| Vinyl Chloride                   | <0.0800   | <0.0800   | <0.770    | 6.9       | <0.0800   |                          | 0.4                       | <1.9                     |                          |
|                                  |           |           |           |           |           |                          |                           |                          |                          |
| Total Volatile Organic Compounds | 760.97    | 244.09    | 32644.3   | 335.3     | 100.51    |                          |                           |                          |                          |

<: Analyzed but not detected

J: Estimated value

D: Detected at secondary dilution



Notes:

ug/m3: Micrograms per cubic meter

Exceeds the maximum concentration of NYSDOH Table C-1, C-2 or C-5

Exceeds the NYSDOH Air Guideline Value

Table 12
Unionport Road, Bronx, NY
Summary of Soil Vapor
Analytical Results
Volatile Organic Compounds

| Sample ID Sampling Date          | SV-11<br>6/23/2014 | SV-12<br>6/25/2014 | SV-13<br>6/23/2014 | SV-14<br>6/25/2014 | SV-15<br>6/26/2014 | NYSDOH Air      | NYSDOH Table<br>C-1 Upper<br>Fence | NYSDOH Table<br>C-2 90th<br>Percentile | NYSDOH Table<br>C-5 95th<br>Percentile |
|----------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------|------------------------------------|----------------------------------------|----------------------------------------|
| Sampling Date                    | 0/23/2014          | 0/23/2014          | 0/23/2014          | 0/23/2014          | 0/20/2014          | Guideline Value | Limit(indoor)                      | Value(indoor)                          | Value(indoor)                          |
| Units                            | ug/m3              | ug/m3              | ug/m3              | ug/m3              | ug/m3              | ug/m3           | ug/m3                              | ug/m3                                  | ug/m3                                  |
|                                  |                    |                    |                    |                    |                    |                 |                                    |                                        |                                        |
| 1,1,1-Trichloroethane (TCA)      | <0.160             | <0.160             | <0.160             | <0.160             | <1.64              |                 | 2.5                                | 20.6                                   |                                        |
| 1,1-Dichloroethane               | <0.400             | <0.400             | <0.400             | <0.400             | <4.05              |                 | 0.4                                | <0.7                                   |                                        |
| 1,1-Dichloroethene               | <0.400             | <0.400             | <0.400             | <0.400             | <3.96              |                 | 0.4                                | <1.4                                   |                                        |
| 1,2,4-Trimethylbenzene           | 23.6               | 0.790 J            | 1.87 J             | 264 D              | 14.8 J             |                 | 9.8                                | 9.5                                    |                                        |
| 1,2-Dichlorobenzene              | <0.600             | <0.600             | <0.600             | <0.600             | <6.01              |                 | 0.5                                | <1.2                                   |                                        |
| 1,2-Dichloroethane               | <0.400             | <0.400             | <0.400             | <0.400             | <4.05              |                 | 0.4                                | <0.9                                   |                                        |
| 1,2-Dichloropropane              | <0.460             | <0.460             | <0.460             | <0.460             | <4.62              |                 | 0.4                                | <1.6                                   |                                        |
| 1,3,5-Trimethylbenzene           | 6.39               | <0.490             | <0.490             | 69.8               | 5.41 J             |                 | 3.9                                | 3.7                                    |                                        |
| 1,3-Dichlorobenzene              | <0.600             | <0.600             | <0.600             | <0.600             | <6.01              |                 | 0.5                                | <2.4                                   |                                        |
| Benzene                          | 20.4               | 0.580 J            | <0.320             | 2.91               | 7.03 J             |                 | 13                                 | 9.4                                    | 10                                     |
| Carbon Tetrachloride             | 0.44               | 0.44               | 0.38               | 0.63               | <1.89              |                 | 1.3                                | <1.3                                   | 1.1                                    |
| Chlorobenzene                    | <0.460             | <0.460             | <0.460             | <0.460             | <4.61              |                 | 0.4                                | <0.9                                   |                                        |
| Chloroethane                     | <0.260             | <0.260             | <0.260             | <0.260             | <2.64              |                 | 0.4                                | <1.1                                   |                                        |
| Chloromethane                    | 1.67               | 1.78               | <0.210             | 1.53               | 4.96 J             |                 | 4.2                                | 3.7                                    |                                        |
| cis-1,2-Dichloroethylene         | <0.400             | < 0.400            | <0.400             | 8.72               | <3.96              |                 | 0.4                                | <1.9                                   |                                        |
| Ethylbenzene                     | 16.1               | 0.480 J            | <0.430             | 16.1               | 6.52 J             |                 | 6.4                                | 5.7                                    | 7.62                                   |
| m,p-Xylenes                      | 52.1               | 1.56 J             | <0.870             | 59.5               | 21.3 J             |                 | 11                                 | 22.2                                   | 22.2                                   |
| Methyl tert-Butyl Ether (MTBE)   | < 0.360            | < 0.360            | < 0.360            | 1.12 J             | <3.61              |                 | 14                                 | 11.5                                   | 36                                     |
| Methylene Chloride               | 11.1               | 1.01 J             | 20.5               | 937 D              | 5.21 J             | 60              | 16                                 | 10                                     | 7.5                                    |
| Naphthalene                      | 5.24               | < 0.520            | 5.77               | 8.91               | 5.24 J             |                 |                                    | 5.1                                    |                                        |
| o-Xylene                         | 22.2               | 0.650 J            | 0.610 J            | 30.4               | 8.25 J             |                 | 7.1                                | 7.9                                    | 7.24                                   |
| Tetrachloroethylene (PCE)        | 4.48               | 0.34               | 65.8               | 143 D              | 15596 D            | 30              | 2.5                                | 15.9                                   | 6.01                                   |
| Toluene                          | 91.2 D             | 22.2               | 5.65               | 22.6               | 21.9               |                 | 57                                 | 43                                     | 39.8                                   |
| trans-1,2-Dichloroethene         | <0.400             | < 0.400            | <0.400             | 0.990 J            | <3.96              |                 |                                    |                                        |                                        |
| Trichloroethylene (TCE)          | <0.160             | <0.160             | 0.43               | 2.79               | 178                | 5               | 0.5                                | 4.2                                    | 1.36                                   |
| Vinyl Chloride                   | <0.0800            | <0.0800            | <0.0800            | 0.38               | <0.770             |                 | 0.4                                | <1.9                                   |                                        |
| Total Volatile Organic Compounds | 254.92             | 29.83              | 101.01             | 1570.38            | 15874.62           |                 |                                    |                                        |                                        |

<: Analyzed but not detected

J: Estimated value

D: Detected at secondary dilution



Notes:

ug/m3: Micrograms per cubic meter

Exceeds the maximum concentration of NYSDOH Table C-1, C-2 or C-5

Exceeds the NYSDOH Air Guideline Value

Table 12
Unionport Road, Bronx, NY
Summary of Soil Vapor
Analytical Results
Volatile Organic Compounds

| Sample ID Sampling Date          | SV-16<br>6/25/2014 | SV-17<br>6/25/2014 | SV-18<br>6/25/2014 | NYSDOH Air               | NYSDOH Table<br>C-1 Upper<br>Fence | NYSDOH Table<br>C-2 90th<br>Percentile | NYSDOH Table<br>C-5 95th<br>Percentile |
|----------------------------------|--------------------|--------------------|--------------------|--------------------------|------------------------------------|----------------------------------------|----------------------------------------|
| Units                            | ug/m3              | ug/m3              | ug/m3              | Guideline Value<br>ug/m3 | Limit(indoor)<br>ug/m3             | Value(indoor)<br>ug/m3                 | Value(indoor)<br>ug/m3                 |
|                                  | J                  | J                  |                    | u.gc                     | ugime                              | ug,me                                  | u.g,c                                  |
| 1,1,1-Trichloroethane (TCA)      | <0.160             | 0.6                | <0.160             |                          | 2.5                                | 20.6                                   |                                        |
| 1,1-Dichloroethane               | < 0.400            | < 0.400            | < 0.400            |                          | 0.4                                | <0.7                                   |                                        |
| 1,1-Dichloroethene               | < 0.400            | <0.400             | <0.400             |                          | 0.4                                | <1.4                                   |                                        |
| 1,2,4-Trimethylbenzene           | 15.2               | 259 D              | 65.4 D             |                          | 9.8                                | 9.5                                    |                                        |
| 1,2-Dichlorobenzene              | < 0.600            | <0.600             | <0.600             |                          | 0.5                                | <1.2                                   |                                        |
| 1,2-Dichloroethane               | < 0.400            | < 0.400            | <0.400             |                          | 0.4                                | <0.9                                   |                                        |
| 1,2-Dichloropropane              | < 0.460            | < 0.460            | <0.460             |                          | 0.4                                | <1.6                                   |                                        |
| 1,3,5-Trimethylbenzene           | 4.13               | 86.0 D             | 23.6               |                          | 3.9                                | 3.7                                    |                                        |
| 1,3-Dichlorobenzene              | <0.600             | <0.600             | <0.600             |                          | 0.5                                | <2.4                                   |                                        |
| Benzene                          | 1.98               | 3.51               | 9.58               |                          | 13                                 | 9.4                                    | 10                                     |
| Carbon Tetrachloride             | 0.5                | 0.69               | 0.57               |                          | 1.3                                | <1.3                                   | 1.1                                    |
| Chlorobenzene                    | <0.460             | < 0.460            | <0.460             |                          | 0.4                                | <0.9                                   |                                        |
| Chloroethane                     | <0.260             | 0.690 J            | <0.260             |                          | 0.4                                | <1.1                                   |                                        |
| Chloromethane                    | 1.84               | 0.870 J            | 1.01 J             |                          | 4.2                                | 3.7                                    |                                        |
| cis-1,2-Dichloroethylene         | <0.400             | <0.400             | <0.400             |                          | 0.4                                | <1.9                                   |                                        |
| Ethylbenzene                     | 3.26               | 15.2               | 46                 |                          | 6.4                                | 5.7                                    | 7.62                                   |
| m,p-Xylenes                      | 11.7               | 61.7               | 117 D              |                          | 11                                 | 22.2                                   | 22.2                                   |
| Methyl tert-Butyl Ether (MTBE)   | < 0.360            | < 0.360            | < 0.360            |                          | 14                                 | 11.5                                   | 36                                     |
| Methylene Chloride               | 6.95               | 14.6               | 41.3               | 60                       | 16                                 | 10                                     | 7.5                                    |
| Naphthalene                      | 1.99 J             | 29.9               | 16.8               |                          |                                    | 5.1                                    |                                        |
| o-Xylene                         | 5.65               | 40.8               | 63.8               |                          | 7.1                                | 7.9                                    | 7.24                                   |
| Tetrachloroethylene (PCE)        | 3.32               | 27.8               | 46.8               | 30                       | 2.5                                | 15.9                                   | 6.01                                   |
| Toluene                          | 12.1               | 26.8               | 99.9 D             |                          | 57                                 | 43                                     | 39.8                                   |
| trans-1,2-Dichloroethene         | <0.400             | <0.400             | <0.400             |                          |                                    |                                        |                                        |
| Trichloroethylene (TCE)          | <0.160             | 0.21               | 0.86               | 5                        | 0.5                                | 4.2                                    | 1.36                                   |
| Vinyl Chloride                   | <0.0800            | 0.18               | <0.0800            |                          | 0.4                                | <1.9                                   |                                        |
| Total Volatile Organic Compounds | 68.62              | 568.55             | 532.62             |                          | -                                  | -                                      |                                        |

<: Analyzed but not detected

J: Estimated value

D: Detected at secondary dilution

Notes:

ug/m3: Micrograms per cubic meter

Exceeds the maximum concentration of NYSDOH Table C-1, C-2 or C-5

Exceeds the NYSDOH Air Guideline Value



Table 13
Unionport Road, Bronx, NY
Summary of Soil Analytical Results
Volatile Organic Compounds

| Sample ID<br>Sampling Date<br>Start Depth<br>End Depth | GP-1(0-5)<br>6/24/2014<br>0 feet<br>5 feet | GP-2(0-5)<br>6/24/2014<br>0 feet<br>5 feet | GP-3(6-18)<br>6/24/2014<br>6 inches<br>18 inches | GP-4(0-5)<br>6/23/2014<br>0 feet<br>5 feet | GP-5(10-12)<br>6/23/2014<br>10 feet<br>12 feet | GP-5(18-20)<br>6/23/2014<br>18 feet<br>20 feet | GP-6(7-9)<br>6/25/2014<br>7 feet<br>9 feet | GP-6(12-14)<br>6/25/2014<br>12 feet<br>14 feet | NYCRR 6 Part375 Unrestricted Use Soil Cleanup Objectives (SCOs) | CP-51<br>Soil Cleanup<br>Levels Fuel Oil<br>Contaminated<br>Soil | CP-51 10-10<br>SCOs<br>Residential<br>Use |
|--------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------|
| Units                                                  | mg/Kg                                      | mg/Kg                                      | mg/Kg                                            | mg/Kg                                      | mg/Kg                                          | mg/Kg                                          | mg/kg                                      | mg/kg                                          | mg/Kg                                                           | mg/Kg                                                            | mg/kg                                     |
| VOLATILE COMPOUNDS                                     |                                            |                                            |                                                  |                                            |                                                |                                                |                                            |                                                |                                                                 |                                                                  |                                           |
| 1,1,1-Trichloroethane                                  | < 0.00053                                  | < 0.00054                                  | <0.00024                                         | < 0.00044                                  | <0.25                                          | < 0.00049                                      | <0.00052                                   | < 0.00059                                      | 0.68                                                            |                                                                  |                                           |
| 1,1,2,2-Tetrachloroethane                              | <0.00053                                   | <0.00054                                   | <0.00024                                         | <0.00044                                   | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       |                                                                 |                                                                  | 35                                        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane                  | < 0.00053                                  | <0.00054                                   | <0.00024                                         | <0.00044                                   | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       |                                                                 |                                                                  |                                           |
| 1,1,2-Trichloroethane                                  | <0.0011                                    | <0.0011                                    | <0.00049                                         | <0.00089                                   | <0.5                                           | <0.00098                                       | <0.001                                     | <0.0012                                        |                                                                 |                                                                  |                                           |
| 1,1-Dichloroethane                                     | <0.00053                                   | <0.00054                                   | <0.00024                                         | <0.00044                                   | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       | 0.27                                                            |                                                                  |                                           |
| 1,1-Dichloroethene                                     | <0.00053                                   | <0.00054                                   | <0.00024                                         | <0.00044                                   | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       | 0.33                                                            |                                                                  |                                           |
| 1,2,3-Trichlorobenzene                                 | <0.0011                                    | <0.0011                                    | <0.00049                                         | <0.00089                                   | < 0.5                                          | <0.00098                                       | <0.001                                     | <0.0012                                        |                                                                 |                                                                  |                                           |
| 1,2,4-Trichlorobenzene<br>1,2,4-Trimethylbenzene       | <0.00053                                   | <0.00054<br><0.00054                       | <0.00024<br><0.00024                             | <0.00044<br><0.00044                       | <0.25<br>28.1D                                 | <0.00049<br>0.0069                             | <0.00052<br><0.00052                       | <0.00059<br><0.00059                           | <br>3.6                                                         | <br>3.6                                                          |                                           |
| 1,2,4-1 rimethylbenzene<br>1,2-Dibromo-3-chloropropane | <0.00053<br><0.0053                        | <0.0054<br><0.0054                         | <0.0024                                          | <0.0044                                    | <2.5                                           | <0.0069                                        | <0.0052<br><0.0052                         | <0.0059                                        | 3.6                                                             | 3.0                                                              |                                           |
| 1,2-Dibromoethane (EDB)                                | <0.0053                                    | <0.0054                                    | <0.0024                                          | <0.0044                                    | <0.25                                          | <0.0049                                        | <0.0052                                    | <0.0059                                        | <br>                                                            |                                                                  |                                           |
| 1,2-Dichlorobenzene                                    | < 0.00053                                  | < 0.00054                                  | <0.00024                                         | < 0.00044                                  | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       | 1.1                                                             |                                                                  |                                           |
| 1,2-Dichloroethane                                     | < 0.00053                                  | < 0.00054                                  | <0.00021                                         | < 0.00044                                  | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       | 0.02                                                            |                                                                  |                                           |
| 1,2-Dichloropropane                                    | < 0.00053                                  | < 0.00054                                  | <0.00024                                         | <0.00044                                   | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       |                                                                 |                                                                  |                                           |
| 1,3,5-Trimethylbenzene                                 | < 0.00053                                  | < 0.00054                                  | < 0.00024                                        | < 0.00044                                  | 9.2D                                           | 0.0018 J                                       | <0.00052                                   | < 0.00059                                      | 8.4                                                             | 8.4                                                              |                                           |
| 1,3-Dichlorobenzene                                    | < 0.00053                                  | < 0.00054                                  | < 0.00024                                        | < 0.00044                                  | <0.25                                          | < 0.00049                                      | <0.00052                                   | < 0.00059                                      | 2.4                                                             |                                                                  |                                           |
| 1,4-Dichlorobenzene                                    | < 0.00053                                  | < 0.00054                                  | < 0.00024                                        | < 0.00044                                  | <0.25                                          | <0.00049                                       | <0.00052                                   | < 0.00059                                      | 1.8                                                             |                                                                  |                                           |
| 1,4-Dioxane                                            | <0.11                                      | <0.11                                      | <0.0488                                          | <0.0888                                    | <49.7                                          | < 0.0984                                       | <0.1                                       | <0.12                                          | 0.1                                                             |                                                                  |                                           |
| 2-Hexanone                                             | <0.0027                                    | <0.0027                                    | <0.0012                                          | < 0.0022                                   | <1.2                                           | < 0.0025                                       | <0.0026                                    | <0.003                                         |                                                                 |                                                                  |                                           |
| Acetone                                                | 0.0273                                     | 0.0434                                     | <0.0012                                          | 0.0486                                     | <1.2                                           | 0.0241 J                                       | 0.0576                                     | <0.003                                         | 0.05                                                            |                                                                  |                                           |
| Benzene                                                | <0.00053                                   | <0.00054                                   | <0.00024                                         | <0.00044                                   | 7                                              | 0.0164                                         | <0.00052                                   | <0.00059                                       | 0.06                                                            | 0.06                                                             |                                           |
| Bromochloromethane                                     | <0.00053                                   | <0.00054                                   | <0.00024                                         | <0.00044                                   | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       |                                                                 |                                                                  |                                           |
| Bromodichloromethane                                   | <0.00053                                   | <0.00054                                   | <0.00024                                         | <0.00044                                   | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       |                                                                 |                                                                  |                                           |
| Bromoform                                              | <0.0016                                    | <0.0016                                    | <0.00073                                         | <0.0013                                    | <0.75                                          | <0.0015                                        | <0.0016                                    | <0.0018                                        |                                                                 |                                                                  |                                           |
| Bromomethane<br>Carbon disulfide                       | <0.0011<br><0.00053                        | <0.0011<br><0.00054                        | <0.00049<br><0.00024                             | <0.00089<br><0.00044                       | <0.5                                           | <0.00098<br><0.00049                           | <0.001<br>0.0012 J                         | <0.0012<br><0.00059                            |                                                                 |                                                                  | <br>100                                   |
| Carbon distillide Carbon tetrachloride                 | <0.00053                                   | <0.00054                                   | <0.00024                                         | <0.00044                                   | <0.25<br><0.25                                 | <0.00049                                       | <0.00123                                   | <0.00059                                       | <br>0.76                                                        |                                                                  |                                           |
| Chlorobenzene                                          | <0.00053                                   | < 0.00054                                  | <0.00024                                         | <0.00044                                   | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       | 1.1                                                             |                                                                  |                                           |
| Chloroethane                                           | <0.00053                                   | < 0.00054                                  | <0.00024                                         | <0.00044                                   | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       |                                                                 |                                                                  |                                           |
| Chloroform                                             | <0.00053                                   | < 0.00054                                  | <0.00024                                         | < 0.00044                                  | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       | 0.37                                                            |                                                                  |                                           |
| Chloromethane                                          | < 0.00053                                  | < 0.00054                                  | < 0.00024                                        | <0.00044                                   | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       |                                                                 |                                                                  |                                           |
| cis-1,2-Dichloroethene                                 | < 0.00053                                  | < 0.00054                                  | < 0.00024                                        | < 0.00044                                  | <0.25                                          | < 0.00049                                      | <0.00052                                   | <0.00059                                       | 0.25                                                            |                                                                  |                                           |
| cis-1,3-Dichloropropene                                | < 0.00053                                  | < 0.00054                                  | < 0.00024                                        | < 0.00044                                  | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       |                                                                 |                                                                  |                                           |
| Cyclohexane                                            | <0.00053                                   | <0.00054                                   | <0.00024                                         | <0.00044                                   | 5.2D                                           | 0.0035 J                                       | <0.00052                                   | <0.00059                                       |                                                                 |                                                                  |                                           |
| Dibromochloromethane                                   | <0.00053                                   | <0.00054                                   | <0.00024                                         | <0.00044                                   | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       |                                                                 |                                                                  |                                           |
| Dichlorodifluoromethane                                | < 0.00053                                  | <0.00054                                   | <0.00024                                         | <0.00044                                   | <0.25                                          | <0.00049                                       | <0.00052                                   | <0.00059                                       |                                                                 |                                                                  |                                           |
| Ethylbenzene                                           | <0.00053                                   | <0.00054                                   | <0.00024                                         | <0.00044                                   | 7.7D                                           | 0.0019 J                                       | <0.00052                                   | <0.00059                                       | 1                                                               | 1                                                                |                                           |
| Isopropylbenzene                                       | <0.00053                                   | <0.00054                                   | <0.00024                                         | <0.00044                                   | 14.3                                           | <0.00049                                       | <0.00052                                   | <0.00059                                       |                                                                 | 2.3                                                              | 100                                       |
| m,p-Xylene                                             | <0.0011                                    | <0.0011                                    | <0.00049                                         | <0.00089                                   | 30.6D                                          | 0.0072 J                                       | <0.001                                     | <0.0012                                        | 0.26                                                            | 0.26                                                             |                                           |
| Methyl ethyl ketone (2-Butanone)                       | <0.008                                     | <0.0082                                    | < 0.0037                                         | <0.0067                                    | <3.7                                           | < 0.0074                                       | <0.0078                                    | <0.0089                                        | 0.12                                                            |                                                                  |                                           |

See next page for Footnotes/Qualifiers



# Table 13 Unionport Road, Bronx, NY Summary of Soil Analytical Results Volatile Organic Compounds

| Sample ID<br>Sampling Date<br>Start Depth<br>End Depth<br>Units | 0 feet<br>5 feet    | GP-2(0-5)<br>6/24/2014<br>0 feet<br>5 feet<br>mg/Kg | GP-3(6-18)<br>6/24/2014<br>6 inches<br>18 inches | GP-4(0-5)<br>6/23/2014<br>0 feet<br>5 feet<br>mg/Kg | GP-5(10-12)<br>6/23/2014<br>10 feet<br>12 feet<br>mg/Kg | GP-5(18-20)<br>6/23/2014<br>18 feet<br>20 feet<br>mg/Kg | GP-6(7-9)<br>6/25/2014<br>7 feet<br>9 feet<br>mg/kg | GP-6(12-14)<br>6/25/2014<br>12 feet<br>14 feet | NYCRR 6 Part375 Unrestricted Use Soil Cleanup Objectives (SCOs) mg/Kg | CP-51 Soil Cleanup Levels Fuel Oil Contaminated Soil | CP-51 10-10<br>SCOs<br>Residential<br>Use |
|-----------------------------------------------------------------|---------------------|-----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|
| COMPOUNDS CONTINUED                                             | ilig/Kg             | ilig/Kg                                             | ilig/Kg                                          | ilig/Kg                                             | ilig/Kg                                                 | ilig/Kg                                                 | ilig/kg                                             | mg/kg                                          | ilig/Kg                                                               | mg/Kg                                                | mg/kg                                     |
| Methyl isobutyl ketone                                          | <0.0027             | <0.0027                                             | <0.0012                                          | <0.0022                                             | <1.2                                                    | <0.0025                                                 | <0.0026                                             | < 0.003                                        |                                                                       |                                                      |                                           |
| Methyl Acetate                                                  | <0.0027             | <0.0027                                             | <0.0012                                          | <0.0022                                             | <0.5                                                    | <0.0025                                                 | <0.0026                                             | <0.003                                         |                                                                       |                                                      |                                           |
| Methylcyclohexane                                               | <0.0011             | <0.0011                                             | <0.00049                                         | <0.00089                                            | 7.6 D                                                   | <0.00098                                                | <0.001                                              | <0.0012                                        |                                                                       |                                                      |                                           |
| Methylene chloride                                              | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | <0.25                                                   | <0.00049                                                | 0.00032<br>0.0021 J                                 | <0.00059                                       | 0.05                                                                  |                                                      |                                           |
| o-Xylene                                                        | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | 5.9 D                                                   | 0.00049<br>0.0018J                                      | <0.00213                                            | <0.00059                                       | 0.05                                                                  |                                                      |                                           |
| Styrene                                                         | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | <0.25                                                   | <0.00183                                                | <0.00052                                            | <0.00059                                       | 0.20                                                                  |                                                      |                                           |
| Tert-butyl methyl ether                                         | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | <0.25<br><0.25                                          | 0.00049<br>0.0024J                                      | <0.00052                                            | <0.00059                                       | 0.93                                                                  |                                                      |                                           |
|                                                                 |                     | <0.00054                                            | 0.0109                                           | <0.00044                                            |                                                         | <0.00245                                                |                                                     |                                                | 0.93<br>1.3                                                           |                                                      |                                           |
| Tetrachloroethene                                               | 0.0049J<br><0.00053 | <0.00054                                            | <0.0109                                          | <0.00044                                            | <0.25<br>3.4                                            | <0.00049                                                | <0.00052<br><0.00052                                | <0.00059<br><0.00059                           | 1.3<br>0.7                                                            |                                                      |                                           |
| Toluene<br>trans-1.2-Dichloroethene                             | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | -                                                       | <0.00049                                                | <0.00052<br><0.00052                                |                                                | 0. <i>7</i><br>0.19                                                   | 0.7                                                  |                                           |
|                                                                 | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | <0.25<br><0.25                                          | <0.00049                                                | <0.00052<br><0.00052                                | <0.00059<br><0.00059                           |                                                                       |                                                      |                                           |
| trans-1,3-Dichloropropene                                       |                     |                                                     |                                                  |                                                     |                                                         |                                                         |                                                     |                                                | 0.47                                                                  |                                                      |                                           |
| Trichloroethene                                                 | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | <0.25                                                   | <0.00049                                                | <0.00052                                            | <0.00059                                       | 0.47                                                                  |                                                      |                                           |
| Trichlorofluoromethane                                          | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | <0.25                                                   | <0.00049                                                | <0.00052                                            | <0.00059                                       |                                                                       |                                                      | 100                                       |
| Vinyl chloride                                                  | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | <0.25                                                   | <0.00049                                                | <0.00052                                            | <0.00059                                       | 0.02                                                                  |                                                      |                                           |
| Naphthalene                                                     | <0.00053            | <0.00054                                            | <0.00024                                         | 0.0022J                                             | 32.3                                                    | 0.0014J                                                 | <0.00052                                            | <0.00059                                       | 12                                                                    |                                                      |                                           |
| n-Butylbenzene                                                  | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | 12.6                                                    | <0.00049                                                | <0.00052                                            | <0.00059                                       | 12                                                                    | 12                                                   |                                           |
| n-Propylbenzene                                                 | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | 41.1                                                    | <0.00049                                                | <0.00052                                            | <0.00059                                       | 3.9                                                                   | 3.9                                                  |                                           |
| p-Isopropyltoluene (p-Cymene)                                   | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | 3.3                                                     | <0.00049                                                | <0.00052                                            | <0.00059                                       |                                                                       | 10                                                   |                                           |
| sec-Butylbenzene                                                | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | 5.5                                                     | <0.00049                                                | 0.0041 J                                            | <0.00059                                       | 11                                                                    | 11                                                   |                                           |
| tert-Butylbenzene                                               | <0.00053            | <0.00054                                            | <0.00024                                         | <0.00044                                            | <0.25                                                   | <0.00049                                                | <0.00052                                            | <0.00059                                       | 5.9                                                                   | 5.9                                                  |                                           |
| Total Volatile Compounds                                        | 0.0322              | 0.0434                                              | 0.0109                                           | 0.0508                                              | 213.8                                                   | 0.0674                                                  | 0.065                                               | 0                                              |                                                                       | -                                                    |                                           |

Footnotes/Qualifiers

mg/kg: Milligrams per kilogram

<: Analyzed for but not detected

J: Estimated value

D: Dectected at secondary dilution

--: No standard

Exceeds Soil Cleanup Criteria



Table 13
Unionport Road, Bronx, NY
Summary of Soil Analytical Results
Volatile Organic Compounds

| Sample ID                                     | GP-7(9-11)           | GP-7(14-16)          | GP-8(6-18)           | GP-9(0-5)            | GP-10(6-19)          | GP-11(6-23)          | GP-12(0-5)           | NYCRR 6 Part375            | CP-51           | CP-51 10-10 |
|-----------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|-----------------|-------------|
| Sampling Date                                 | 6/25/2014            | 6/25/2014            | 6/24/2014            | 6/25/2014            | 6/23/2014            | 6/23/2014            | 6/24/2014            | Unrestricted               | Soil Cleanup    | SCOs        |
| Start Depth                                   | 9 feet               | 14 feet              | 6 inches             | 0 feet               | 6 inches             | 6 inches             | 0 feet               | Use Soil                   | Levels Fuel Oil | Residential |
| End Depth                                     | 11 feet              | 16 feet              | 18 inches            | 5 feet               | 19 inches            | 23 inches            | 5 feet               | Cleanup                    | Contaminated    | Use         |
| Units                                         | mg/kg                | Objectives (SCOs)<br>mg/Kg | Soil<br>mg/Kg   | mg/kg       |
| VOLATILE COMPOUNDS                            | 99                   |                      |                      |                      |                      | 9.1.9                | 99                   |                            |                 | g.r.ig      |
| 1,1,1-Trichloroethane                         | < 0.00044            | <0.00041             | <0.00026             | < 0.00047            | <0.00024             | <0.00026             | < 0.00056            | 0.68                       |                 |             |
| 1,1,2,2-Tetrachloroethane                     | < 0.00044            | <0.00041             | <0.00026             | < 0.00047            | <0.00024             | <0.00026             | < 0.00056            |                            |                 | 35          |
| 1,1,2-Trichloro-1,2,2-trifluoroethane         | < 0.00044            | <0.00041             | <0.00026             | < 0.00047            | < 0.00024            | <0.00026             | < 0.00056            |                            |                 |             |
| 1,1,2-Trichloroethane                         | <0.00088             | <0.00082             | <0.00052             | <0.00094             | < 0.00049            | < 0.00053            | <0.0011              |                            |                 |             |
| 1,1-Dichloroethane                            | < 0.00044            | <0.00041             | <0.00026             | < 0.00047            | <0.00024             | <0.00026             | < 0.00056            | 0.27                       |                 |             |
| 1,1-Dichloroethene                            | <0.00044             | <0.00041             | <0.00026             | < 0.00047            | < 0.00024            | <0.00026             | <0.00056             | 0.33                       |                 |             |
| 1,2,3-Trichlorobenzene                        | <0.00088             | <0.00082             | < 0.00052            | <0.00094             | <0.00049             | <0.00053             | <0.0011              |                            |                 |             |
| 1,2,4-Trichlorobenzene                        | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             |                            |                 |             |
| 1,2,4-Trimethylbenzene                        | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 3.6                        | 3.6             |             |
| 1,2-Dibromo-3-chloropropane                   | <0.0044              | <0.0041              | <0.0026              | <0.0047              | <0.0024              | <0.0026              | <0.0056              |                            |                 |             |
| 1,2-Dibromoethane (EDB)                       | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             |                            |                 |             |
| 1,2-Dichlorobenzene                           | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 1.1                        |                 |             |
| 1,2-Dichloroethane                            | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 0.02                       |                 |             |
| 1,2-Dichloropropane                           | <0.00044<br><0.00044 | <0.00041<br><0.00041 | <0.00026<br><0.00026 | <0.00047<br><0.00047 | <0.00024<br><0.00024 | <0.00026<br><0.00026 | <0.00056<br><0.00056 | <br>8.4                    | <br>8.4         |             |
| 1,3,5-Trimethylbenzene<br>1,3-Dichlorobenzene | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 6.4<br>2.4                 | 0.4             |             |
| 1,4-Dichlorobenzene                           | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 1.8                        |                 |             |
| 1,4-Dictiloroperizerie                        | <0.0883              | <0.0817              | <0.0524              | <0.0943              | <0.0024              | <0.0527              | <0.11                | 0.1                        |                 |             |
| 2-Hexanone                                    | <0.0022              | <0.0017              | <0.0013              | <0.0024              | <0.0012              | <0.0013              | <0.0028              |                            |                 |             |
| Acetone                                       | 0.0062 J             | 0.0066 J             | <0.0013              | 0.0087 J             | <0.0012              | <0.0013              | 0.007 J              | 0.05                       |                 |             |
| Benzene                                       | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 0.06                       | 0.06            |             |
| Bromochloromethane                            | < 0.00044            | <0.00041             | <0.00026             | < 0.00047            | <0.00024             | <0.00026             | < 0.00056            |                            |                 |             |
| Bromodichloromethane                          | < 0.00044            | <0.00041             | <0.00026             | <0.00047             | < 0.00024            | <0.00026             | <0.00056             |                            |                 |             |
| Bromoform                                     | < 0.0013             | < 0.0012             | < 0.00079            | < 0.0014             | < 0.00073            | < 0.00079            | < 0.0017             |                            |                 |             |
| Bromomethane                                  | <0.00088             | <0.00082             | <0.00052             | <0.00094             | < 0.00049            | < 0.00053            | <0.0011              |                            |                 |             |
| Carbon disulfide                              | < 0.00044            | <0.00041             | <0.00026             | < 0.00047            | < 0.00024            | <0.00026             | < 0.00056            |                            |                 | 100         |
| Carbon tetrachloride                          | <0.00044             | <0.00041             | <0.00026             | < 0.00047            | < 0.00024            | <0.00026             | <0.00056             | 0.76                       |                 |             |
| Chlorobenzene                                 | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 1.1                        |                 |             |
| Chloroethane                                  | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             |                            |                 |             |
| Chloroform                                    | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 0.37                       |                 |             |
| Chloromethane                                 | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             |                            |                 |             |
| cis-1,2-Dichloroethene                        | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 0.25                       |                 |             |
| cis-1,3-Dichloropropene                       | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             |                            |                 |             |
| Cyclohexane<br>Dibromochloromethane           | <0.00044<br><0.00044 | <0.00041<br><0.00041 | <0.00026<br><0.00026 | <0.00047<br><0.00047 | <0.00024<br><0.00024 | <0.00026<br><0.00026 | <0.00056<br><0.00056 |                            |                 |             |
| Dichlorodifluoromethane                       | <0.00044             | <0.00041             | <0.00026             | <0.00047<br><0.00047 | <0.00024             | <0.00026             | <0.00056             |                            |                 |             |
| Ethylbenzene                                  | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             | 1                          | 1               |             |
| Isopropylbenzene                              | <0.00044             | <0.00041             | <0.00026             | <0.00047             | <0.00024             | <0.00026             | <0.00056             |                            | 2.3             | 100         |
| m,p-Xylene                                    | <0.00088             | <0.00041             | <0.00052             | <0.00047             | <0.00024             | <0.00053             | <0.0011              | 0.26                       | 0.26            |             |
| Methyl ethyl ketone (2-Butanone)              | <0.0066              | <0.0061              | < 0.0032             | <0.00094             | <0.0037              | <0.004               | <0.0084              | 0.12                       |                 |             |
| vietnyi etnyi ketone (z-butanone)             | <0.000               | <0.000 I             | <0.0039              | <0.0071              | <0.0037              | <0.004               | <0.0064              | 0.1∠                       |                 |             |

See next page for Footnotes/Qualifiers



Table 13
Unionport Road, Bronx, NY
Summary of Soil Analytical Results
Volatile Organic Compounds

| Sample ID<br>Sampling Date<br>Start Depth<br>End Depth | GP-7(9-11)<br>6/25/2014<br>9 feet<br>11 feet | GP-7(14-16)<br>6/25/2014<br>14 feet<br>16 feet | GP-8(6-18)<br>6/24/2014<br>6 inches<br>18 inches | GP-9(0-5)<br>6/25/2014<br>0 feet<br>5 feet | GP-10(6-19)<br>6/23/2014<br>6 inches<br>19 inches | GP-11(6-23)<br>6/23/2014<br>6 inches<br>23 inches | GP-12(0-5)<br>6/24/2014<br>0 feet<br>5 feet | NYCRR 6 Part375 Unrestricted Use Soil Cleanup Objectives (SCOs) |       | CP-51 10-10<br>SCOs<br>Residential<br>Use |
|--------------------------------------------------------|----------------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------|-------|-------------------------------------------|
| Units                                                  | mg/kg                                        | mg/kg                                          | mg/Kg                                            | mg/kg                                      | mg/Kg                                             | mg/Kg                                             | mg/Kg                                       | mg/Kg                                                           | mg/Kg | mg/kg                                     |
| COMPOUNDS CONTINUED                                    |                                              |                                                |                                                  |                                            |                                                   |                                                   |                                             |                                                                 |       |                                           |
| Methyl isobutyl ketone                                 | <0.0022                                      | <0.002                                         | <0.0013                                          | < 0.0024                                   | <0.0012                                           | <0.0013                                           | <0.0028                                     |                                                                 |       |                                           |
| Methyl Acetate                                         | <0.00088                                     | <0.00082                                       | <0.00052                                         | < 0.00094                                  | <0.00049                                          | <0.00053                                          | <0.0011                                     |                                                                 |       |                                           |
| Methylcyclohexane                                      | <0.00044                                     | <0.00041                                       | <0.00026                                         | <0.00047                                   | <0.00024                                          | <0.00026                                          | <0.00056                                    |                                                                 |       |                                           |
| Methylene chloride                                     | <0.00044                                     | 0.0012 J                                       | <0.00026                                         | < 0.00047                                  | <0.00024                                          | <0.00026                                          | <0.00056                                    | 0.05                                                            |       |                                           |
| o-Xylene                                               | <0.00044                                     | <0.00041                                       | <0.00026                                         | <0.00047                                   | <0.00024                                          | <0.00026                                          | <0.00056                                    | 0.26                                                            |       |                                           |
| Styrene                                                | <0.00044                                     | <0.00041                                       | <0.00026                                         | < 0.00047                                  | <0.00024                                          | <0.00026                                          | <0.00056                                    |                                                                 |       |                                           |
| Tert-butyl methyl ether                                | <0.00044                                     | <0.00041                                       | <0.00026                                         | < 0.00047                                  | <0.00024                                          | <0.00026                                          | <0.00056                                    | 0.93                                                            |       |                                           |
| Tetrachloroethene                                      | <0.00044                                     | <0.00041                                       | 3.3 D                                            | 0.0011 J                                   | <0.00024                                          | 0.00097J                                          | <0.00056                                    | 1.3                                                             |       |                                           |
| Toluene                                                | <0.00044                                     | <0.00041                                       | 0.00063J                                         | < 0.00047                                  | <0.00024                                          | <0.00026                                          | <0.00056                                    | 0.7                                                             | 0.7   |                                           |
| trans-1,2-Dichloroethene                               | < 0.00044                                    | <0.00041                                       | <0.00026                                         | < 0.00047                                  | < 0.00024                                         | <0.00026                                          | < 0.00056                                   | 0.19                                                            |       |                                           |
| trans-1,3-Dichloropropene                              | <0.00044                                     | <0.00041                                       | <0.00026                                         | < 0.00047                                  | <0.00024                                          | <0.00026                                          | <0.00056                                    |                                                                 |       |                                           |
| Trichloroethene                                        | < 0.00044                                    | <0.00041                                       | <0.00026                                         | < 0.00047                                  | < 0.00024                                         | <0.00026                                          | < 0.00056                                   | 0.47                                                            |       |                                           |
| Trichlorofluoromethane                                 | < 0.00044                                    | <0.00041                                       | <0.00026                                         | < 0.00047                                  | < 0.00024                                         | <0.00026                                          | < 0.00056                                   |                                                                 |       | 100                                       |
| Vinyl chloride                                         | < 0.00044                                    | <0.00041                                       | <0.00026                                         | < 0.00047                                  | < 0.00024                                         | <0.00026                                          | < 0.00056                                   | 0.02                                                            |       |                                           |
| Naphthalene                                            | < 0.00044                                    | < 0.00041                                      | < 0.00026                                        | 0.001 J                                    | < 0.00024                                         | < 0.00026                                         | < 0.00056                                   | 12                                                              |       |                                           |
| n-Butylbenzene                                         | < 0.00044                                    | <0.00041                                       | < 0.00026                                        | < 0.00047                                  | < 0.00024                                         | <0.00026                                          | < 0.00056                                   | 12                                                              | 12    |                                           |
| n-Propylbenzene                                        | < 0.00044                                    | <0.00041                                       | < 0.00026                                        | < 0.00047                                  | < 0.00024                                         | <0.00026                                          | < 0.00056                                   | 3.9                                                             | 3.9   |                                           |
| p-Isopropyltoluene (p-Cymene)                          | < 0.00044                                    | <0.00041                                       | < 0.00026                                        | < 0.00047                                  | < 0.00024                                         | <0.00026                                          | < 0.00056                                   |                                                                 | 10    |                                           |
| sec-Butylbenzene                                       | <0.00044                                     | <0.00041                                       | <0.00026                                         | < 0.00047                                  | < 0.00024                                         | <0.00026                                          | < 0.00056                                   | 11                                                              | 11    |                                           |
| tert-Butylbenzene                                      | <0.00044                                     | <0.00041                                       | <0.00026                                         | < 0.00047                                  | < 0.00024                                         | <0.00026                                          | < 0.00056                                   | 5.9                                                             | 5.9   |                                           |
|                                                        |                                              |                                                |                                                  |                                            |                                                   |                                                   |                                             |                                                                 |       |                                           |
| Total Volatile Compounds                               | 0.0062                                       | 0.0078                                         | 3.30063                                          | 0.0108                                     | 0                                                 | 0.00097                                           | 0.007                                       |                                                                 |       |                                           |

Footnotes/Qualifiers

mg/kg: Milligrams per kilogram

<: Analyzed for but not detected

J: Estimated value

D: Dectected at secondary dilution

--: No standard

Exceeds Soil Cleanup Criteria



Table 13
Unionport Road, Bronx, NY
Summary of Soil Analytical Results
Volatile Organic Compounds

| Sample ID<br>Sampling Date<br>Start Depth<br>End Depth | GP-13(0-5)<br>6/23/2014<br>0 feet<br>5 feet | GP-13(18-20)<br>6/30/2014<br>18 feet<br>23 feet | GP-14(6-18)<br>6/25/2014<br>6 inches<br>18 inches | GP-15(6-20)<br>6/26/2014<br>6 inches<br>20 inches | GP-16(0-5)<br>6/26/2014<br>0 feet<br>5 feet | GP-17(0-5)<br>6/26/2014<br>0 feet<br>5 feet | GP-18(6-18)<br>6/26/2014<br>6 inches<br>18 inches | GP-19(10-24)<br>6/25/2014<br>10 inches<br>24 inches | NYCRR 6 Part375 Unrestricted Use Soil Cleanup Objectives (SCOs) | CP-51 Soil Cleanup Levels Fuel Oil Contaminated Soil | CP-51 10-10<br>SCOs<br>Residential<br>Use |
|--------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|
| Units                                                  | mg/Kg                                       | mg/Kg                                           | mg/Kg                                             | mg/Kg                                             | mg/kg                                       | mg/kg                                       | mg/Kg                                             | mg/Kg                                               | mg/Kg                                                           | mg/Kg                                                | mg/kg                                     |
| VOLATILE COMPOUNDS                                     |                                             |                                                 |                                                   |                                                   |                                             |                                             |                                                   |                                                     |                                                                 |                                                      |                                           |
| 1,1,1-Trichloroethane                                  | < 0.00049                                   | < 0.0103                                        | < 0.00017                                         | < 0.00022                                         | < 0.00047                                   | < 0.00052                                   | < 0.00016                                         | <0.00018                                            | 0.68                                                            |                                                      |                                           |
| 1,1,2,2-Tetrachloroethane                              | < 0.00049                                   | <0.0103                                         | < 0.00017                                         | <0.00022                                          | <0.00047                                    | < 0.00052                                   | <0.00016                                          | <0.00018                                            |                                                                 |                                                      | 35                                        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane                  | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            |                                                                 |                                                      |                                           |
| 1,1,2-Trichloroethane                                  | <0.00097                                    | <0.0206                                         | <0.00033                                          | <0.00045                                          | <0.00094                                    | <0.001                                      | <0.00032                                          | <0.00037                                            |                                                                 |                                                      |                                           |
| 1,1-Dichloroethane                                     | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            | 0.27                                                            |                                                      |                                           |
| 1,1-Dichloroethene                                     | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            | 0.33                                                            |                                                      |                                           |
| 1,2,3-Trichlorobenzene                                 | <0.00097                                    | <0.0206                                         | <0.00033                                          | <0.00045                                          | <0.00094                                    | <0.001                                      | <0.00032                                          | <0.00037                                            |                                                                 |                                                      |                                           |
| 1,2,4-Trichlorobenzene                                 | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            |                                                                 |                                                      |                                           |
| 1,2,4-Trimethylbenzene                                 | <0.00049                                    | 33.6 D                                          | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            | 3.6                                                             | 3.6                                                  |                                           |
| 1,2-Dibromo-3-chloropropane                            | <0.0049                                     | <0.100                                          | <0.0017                                           | <0.0022                                           | <0.0047                                     | <0.0052                                     | <0.0016                                           | <0.0018                                             |                                                                 |                                                      |                                           |
| 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene            | <0.00049<br><0.00049                        | <0.0103                                         | <0.00017<br><0.00017                              | <0.00022                                          | <0.00047<br><0.00047                        | <0.00052                                    | <0.00016                                          | <0.00018<br>0.002                                   | <br>1.1                                                         |                                                      |                                           |
| 1,2-Dichlorobenzene 1,2-Dichloroethane                 | <0.00049                                    | <0.0103<br><0.0103                              | <0.00017                                          | <0.00022<br><0.00022                              | <0.00047                                    | <0.00052<br><0.00052                        | <0.00016<br><0.00016                              | <0.002                                              | 0.02                                                            |                                                      |                                           |
| 1,2-Dichloropropane                                    | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            | 0.02                                                            |                                                      |                                           |
| 1,3,5-Trimethylbenzene                                 | <0.00049                                    | 11.0 D                                          | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            | 8.4                                                             | 8.4                                                  |                                           |
| 1,3-Dichlorobenzene                                    | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            | 2.4                                                             | 0.4                                                  |                                           |
| 1,4-Dichlorobenzene                                    | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | < 0.00047                                   | <0.00052                                    | <0.00016                                          | <0.00018                                            | 1.8                                                             |                                                      |                                           |
| 1,4-Dioxane                                            | < 0.0972                                    | <2.10                                           | < 0.033                                           | < 0.0449                                          | <0.0936                                     | <0.1                                        | <0.032                                            | < 0.037                                             | 0.1                                                             |                                                      |                                           |
| 2-Hexanone                                             | < 0.0024                                    | <0.0515                                         | <0.00083                                          | <0.0011                                           | <0.0023                                     | <0.0026                                     | <0.0008                                           | <0.00092                                            |                                                                 |                                                      |                                           |
| Acetone                                                | 0.0103 J                                    | < 0.0515                                        | 0.0226                                            | < 0.0011                                          | 0.0068 J                                    | 0.0109 J                                    | <0.0008                                           | < 0.00092                                           | 0.05                                                            |                                                      |                                           |
| Benzene                                                | < 0.00049                                   | < 0.0103                                        | < 0.00017                                         | <0.00022                                          | <0.00047                                    | < 0.00052                                   | <0.00016                                          | <0.00018                                            | 0.06                                                            | 0.06                                                 |                                           |
| Bromochloromethane                                     | < 0.00049                                   | < 0.0103                                        | <0.00017                                          | <0.00022                                          | < 0.00047                                   | < 0.00052                                   | <0.00016                                          | <0.00018                                            |                                                                 |                                                      |                                           |
| Bromodichloromethane                                   | < 0.00049                                   | < 0.0103                                        | <0.00017                                          | <0.00022                                          | <0.00047                                    | < 0.00052                                   | < 0.00016                                         | <0.00018                                            |                                                                 |                                                      |                                           |
| Bromoform                                              | < 0.0015                                    | < 0.0309                                        | < 0.0005                                          | < 0.00067                                         | < 0.0014                                    | < 0.0016                                    | <0.00048                                          | < 0.00055                                           |                                                                 |                                                      |                                           |
| Bromomethane                                           | < 0.00097                                   | <0.0206                                         | <0.00033                                          | < 0.00045                                         | <0.00094                                    | <0.001                                      | < 0.00032                                         | <0.00037                                            |                                                                 |                                                      |                                           |
| Carbon disulfide                                       | < 0.00049                                   | <0.0103                                         | 0.00084 J                                         | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            |                                                                 |                                                      | 100                                       |
| Carbon tetrachloride                                   | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            | 0.76                                                            |                                                      |                                           |
| Chlorobenzene                                          | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            | 1.1                                                             |                                                      |                                           |
| Chloroethane                                           | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            |                                                                 |                                                      |                                           |
| Chloroform                                             | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            | 0.37                                                            |                                                      |                                           |
| Chloromethane                                          | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            |                                                                 |                                                      |                                           |
| cis-1,2-Dichloroethene                                 | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            | 0.25                                                            |                                                      |                                           |
| cis-1,3-Dichloropropene                                | <0.00049                                    | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052                                    | <0.00016                                          | <0.00018                                            |                                                                 |                                                      |                                           |
| Cyclohexane<br>Dibromochloromethane                    | <0.00049<br><0.00049                        | <0.0103<br><0.0103                              | <0.00017<br><0.00017                              | <0.00022<br><0.00022                              | <0.00047<br><0.00047                        | <0.00052<br><0.00052                        | <0.00016<br><0.00016                              | <0.00018<br><0.00018                                |                                                                 |                                                      |                                           |
| Dichlorodifluoromethane                                | <0.00049<br><0.00049                        | <0.0103                                         | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00052<br><0.00052                        | <0.00016                                          | <0.00018                                            |                                                                 |                                                      |                                           |
| Ethylbenzene                                           | <0.00049                                    | <0.0103<br>13.5 D                               | <0.00017                                          | <0.00022                                          | <0.00047                                    | 0.00052<br>0.0011 J                         | <0.00016                                          | <0.00018                                            | 1                                                               | 1                                                    |                                           |
| Isopropylbenzene                                       | <0.00049                                    | 1.5                                             | <0.00017                                          | <0.00022                                          | <0.00047                                    | <0.00113                                    | <0.00016                                          | <0.00018                                            |                                                                 | 2.3                                                  | 100                                       |
| m,p-Xylene                                             | <0.00049                                    | 43.8 D                                          | <0.00017                                          | <0.00022                                          | <0.00047                                    | 0.00032<br>0.0019 J                         | <0.00010                                          | < 0.00018                                           | 0.26                                                            | 0.26                                                 |                                           |
| Methyl ethyl ketone (2-Butanone)                       | <0.00037                                    | <0.150                                          | <0.0025                                           | <0.0034                                           | <0.007                                      | <0.0078                                     | <0.0024                                           | <0.0028                                             | 0.12                                                            |                                                      |                                           |

See next page for Footnotes/Qualifiers



Table 13
Unionport Road, Bronx, NY
Summary of Soil Analytical Results
Volatile Organic Compounds

| Sample ID<br>Sampling Date<br>Start Depth<br>End Depth<br>Units | 0 feet<br>5 feet | GP-13(18-20)<br>6/30/2014<br>18 feet<br>23 feet<br>mg/Kg | GP-14(6-18)<br>6/25/2014<br>6 inches<br>18 inches | GP-15(6-20)<br>6/26/2014<br>6 inches<br>20 inches | GP-16(0-5)<br>6/26/2014<br>0 feet<br>5 feet<br>mg/kg | GP-17(0-5)<br>6/26/2014<br>0 feet<br>5 feet<br>mg/kg | GP-18(6-18)<br>6/26/2014<br>6 inches<br>18 inches | GP-19(10-24)<br>6/25/2014<br>10 inches<br>24 inches<br>mg/Kg | NYCRR 6 Part375 Unrestricted Use Soil Cleanup Objectives (SCOs) mg/Kg | CP-51 Soil Cleanup Levels Fuel Oil Contaminated Soil mg/Kg | CP-51 10-10<br>SCOs<br>Residential<br>Use<br>mg/kg |
|-----------------------------------------------------------------|------------------|----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|
| COMPOUNDS CONTINUED                                             | 99               | 9/119                                                    | 99                                                | 99                                                | 99                                                   | 9.1.9                                                | 9/.19                                             | 99                                                           | 9/9                                                                   | 9,9                                                        | 9,9                                                |
| Methyl isobutyl ketone                                          | < 0.0024         | <0.0515                                                  | <0.00083                                          | <0.0011                                           | <0.0023                                              | <0.0026                                              | <0.0008                                           | <0.00092                                                     |                                                                       |                                                            |                                                    |
| Methyl Acetate                                                  | <0.0024          | <0.0206                                                  | <0.00033                                          | <0.0045                                           | <0.0023                                              | <0.001                                               | <0.00032                                          | <0.00032                                                     |                                                                       |                                                            |                                                    |
| Methylcyclohexane                                               | < 0.00037        | 1.3                                                      | <0.00017                                          | <0.00043                                          | <0.00034                                             | <0.0001                                              | <0.00032                                          | <0.00037                                                     |                                                                       |                                                            |                                                    |
| Methylene chloride                                              | < 0.00049        | <0.0103                                                  | 0.0018                                            | <0.00022                                          | < 0.00047                                            | 0.0013 J                                             | <0.00016                                          | 0.0016J                                                      | 0.05                                                                  |                                                            |                                                    |
| o-Xylene                                                        | < 0.00049        | 12.7 D                                                   | <0.0017                                           | <0.00022                                          | <0.00047                                             | <0.00052                                             | <0.00016                                          | <0.00018                                                     | 0.26                                                                  |                                                            |                                                    |
| Styrene                                                         | < 0.00049        | <0.0103                                                  | < 0.00017                                         | < 0.00022                                         | < 0.00047                                            | <0.00052                                             | <0.00016                                          | <0.00018                                                     |                                                                       |                                                            |                                                    |
| Tert-butyl methyl ether                                         | < 0.00049        | < 0.0103                                                 | < 0.00017                                         | <0.00022                                          | <0.00047                                             | <0.00052                                             | <0.00016                                          | <0.00018                                                     | 0.93                                                                  |                                                            |                                                    |
| Tetrachloroethene                                               | 0.0021J          | < 0.0103                                                 | 0.0013J                                           | 0.022                                             | <0.00047                                             | 0.0041 J                                             | < 0.00016                                         | 0.13 D                                                       | 1.3                                                                   |                                                            |                                                    |
| Toluene                                                         | < 0.00049        | 0.16                                                     | <0.00017                                          | <0.00022                                          | <0.00047                                             | <0.00052                                             | < 0.00016                                         | <0.00018                                                     | 0.7                                                                   | 0.7                                                        |                                                    |
| trans-1,2-Dichloroethene                                        | < 0.00049        | < 0.0103                                                 | <0.00017                                          | <0.00022                                          | <0.00047                                             | < 0.00052                                            | < 0.00016                                         | <0.00018                                                     | 0.19                                                                  |                                                            |                                                    |
| trans-1,3-Dichloropropene                                       | < 0.00049        | < 0.0103                                                 | < 0.00017                                         | < 0.00022                                         | < 0.00047                                            | < 0.00052                                            | < 0.00016                                         | <0.00018                                                     |                                                                       |                                                            |                                                    |
| Trichloroethene                                                 | < 0.00049        | < 0.0103                                                 | < 0.00017                                         | <0.00022                                          | < 0.00047                                            | < 0.00052                                            | < 0.00016                                         | 0.00094 J                                                    | 0.47                                                                  |                                                            |                                                    |
| Trichlorofluoromethane                                          | < 0.00049        | < 0.0103                                                 | < 0.00017                                         | < 0.00022                                         | < 0.00047                                            | < 0.00052                                            | < 0.00016                                         | <0.00018                                                     |                                                                       |                                                            | 100                                                |
| Vinyl chloride                                                  | < 0.00049        | < 0.0103                                                 | <0.00017                                          | <0.00022                                          | <0.00047                                             | < 0.00052                                            | < 0.00016                                         | <0.00018                                                     | 0.02                                                                  |                                                            |                                                    |
| Naphthalene                                                     | < 0.00049        | 5.70 D                                                   | < 0.00017                                         | <0.00022                                          | <0.00047                                             | < 0.00052                                            | < 0.00016                                         | <0.00018                                                     | 12                                                                    |                                                            |                                                    |
| n-Butylbenzene                                                  | < 0.00049        | 2.30 D                                                   | < 0.00017                                         | <0.00022                                          | <0.00047                                             | < 0.00052                                            | < 0.00016                                         | <0.00018                                                     | 12                                                                    | 12                                                         |                                                    |
| n-Propylbenzene                                                 | < 0.00049        | 6.80 D                                                   | < 0.00017                                         | <0.00022                                          | < 0.00047                                            | < 0.00052                                            | <0.00016                                          | <0.00018                                                     | 3.9                                                                   | 3.9                                                        |                                                    |
| p-Isopropyltoluene (p-Cymene)                                   | < 0.00049        | 0.51                                                     | <0.00017                                          | <0.00022                                          | <0.00047                                             | < 0.00052                                            | < 0.00016                                         | <0.00018                                                     |                                                                       | 10                                                         |                                                    |
| sec-Butylbenzene                                                | < 0.00049        | 1.3                                                      | < 0.00017                                         | <0.00022                                          | < 0.00047                                            | < 0.00052                                            | <0.00016                                          | <0.00018                                                     | 11                                                                    | 11                                                         |                                                    |
| tert-Butylbenzene                                               | < 0.00049        | < 0.0103                                                 | < 0.00017                                         | <0.00022                                          | < 0.00047                                            | < 0.00052                                            | <0.00016                                          | <0.00018                                                     | 5.9                                                                   | 5.9                                                        |                                                    |
| Total Volatile Compounds                                        | 0.0124           | 134.17                                                   | 0.02654                                           | 0.022                                             | 0.0068                                               | 0.0193                                               | 0                                                 | 0.13454                                                      |                                                                       |                                                            |                                                    |

Footnotes/Qualifiers

mg/kg: Milligrams per kilogram

<: Analyzed for but not detected

- J: Estimated value
- D: Dectected at secondary dilution
- --: No standard

Exceeds Soil Cleanup Criteria



Table 14
Unionport Road, Bronx, NY
Summary of Soil Analytical ResultsSemi-Volatile Organic Compounds

| Sample ID                                   | GP-1(0-5)      | GP-2(0-5)          | GP-3(6-18)       | GP-4(0-5)          | GP-5(10-12)        | GP-5(18-20)        | GP-6(7-9)          | GP-6(12-14)        | GP-7(9-11)         | GP-7(14-16)      | NYCRR 6 Part375   | CP-51           | CP-51 10-10 |
|---------------------------------------------|----------------|--------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|-------------------|-----------------|-------------|
| Sampling Date                               |                | 6/24/2014          | 6/24/2014        | 6/23/2014          | 6/23/2014          | 6/23/2014          | 6/25/2014          | 6/25/2014          | 6/25/2014          | 6/25/2014        | Unrestricted      | Soil Cleanup    | SCOs        |
| Start Depth                                 | 0 feet         | 0 feet             | 6 inches         | 0 feet             | 10 feet            | 18 feet            | 7 feet             | 12 feet            | 9 feet             | 14 feet          | Use Soil          | Levels Fuel Oil | Residential |
| End Depth                                   | 5 feet         | 5 feet             | 18 inches        | 5 feet             | 12 feet            | 20 feet            | 9 feet             | 14 feet            | 11 feet            | 16 feet          | Cleanup           | Contaminated    | Use         |
|                                             |                |                    |                  |                    |                    |                    |                    |                    |                    |                  | Objectives (SCOs) |                 | _           |
| Units                                       | mg/Kg          | mg/Kg              | mg/Kg            | mg/Kg              | mg/Kg              | mg/Kg              | mg/Kg              | mg/Kg              | mg/Kg              | mg/Kg            | mg/Kg             | mg/Kg           | mg/kg       |
| SEMIVOLATILE COMPOUNDS                      | -0.27          | -0.0767            | <0.0383          | <0.0726            | <0.0402            | <0.0406            | -0.0407            | -0.0456            | -0.0204            | <0.037           |                   |                 | 100         |
| 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol | <0.37<br><0.37 | <0.0767<br><0.0767 | <0.0383          | <0.0726            | <0.0402<br><0.0402 | <0.0406<br><0.0406 | <0.0407<br><0.0407 | <0.0456<br><0.0456 | <0.0384<br><0.0384 | <0.037           |                   |                 | 100         |
| 2,4-Dichlorophenol                          | <0.37          | <0.0767            | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           |                   |                 | 100         |
| 2,4-Dimethylphenol                          | < 0.37         | <0.0767            | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           |                   |                 |             |
| 2,4-Dinitrophenol                           | <3             | <0.61              | <0.31            | <0.58              | <0.32              | <0.32              | <0.33              | <0.36              | <0.0304            | <0.037           |                   |                 | 100         |
| 2,4-Dinitrotoluene                          | <0.37          | <0.0767            | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           |                   |                 |             |
| 2,6-Dinitrotoluene                          | <0.37          | < 0.0767           | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           |                   |                 | 1           |
| 2-Chloronaphthalene                         | <0.37          | < 0.0767           | <0.0383          | < 0.0726           | <0.0402            | <0.0406            | < 0.0407           | <0.0456            | <0.0384            | < 0.037          |                   |                 | ·<br>       |
| 2-Chlorophenol                              | < 0.37         | < 0.0767           | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           |                   |                 | 100         |
| 2-Methylnaphthalene                         | <0.37          | < 0.0767           | <0.0383          | <0.0726            | 0.64               | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           |                   |                 | 0.41        |
| 2-Methylphenol                              | < 0.37         | < 0.0767           | < 0.0383         | < 0.0726           | <0.0402            | < 0.0406           | <0.0407            | < 0.0456           | < 0.0384           | < 0.037          | 0.33              |                 |             |
| 2-Nitroaniline                              | <0.37          | < 0.0767           | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | < 0.037          |                   |                 |             |
| 2-Nitrophenol                               | < 0.37         | < 0.0767           | < 0.0383         | < 0.0726           | < 0.0402           | < 0.0406           | < 0.0407           | < 0.0456           | < 0.0384           | < 0.037          |                   |                 |             |
| 3,3-Dichlorobenzidine                       | < 0.37         | < 0.0767           | < 0.0383         | < 0.0726           | < 0.0402           | < 0.0406           | < 0.0407           | < 0.0456           | < 0.0384           | < 0.037          |                   |                 |             |
| 3-Nitroaniline                              | < 0.74         | <0.15              | < 0.0767         | <0.15              | <0.0804            | < 0.0812           | < 0.0814           | < 0.0912           | < 0.0767           | < 0.074          |                   |                 |             |
| 4,6-Dinitro-2-methylphenol                  | <1.9           | <0.38              | < 0.19           | < 0.36             | <0.2               | <0.2               | <0.2               | <0.23              | < 0.19             | <0.19            |                   |                 |             |
| 4-Bromophenyl-phenylether                   | < 0.37         | < 0.0767           | <0.0383          | < 0.0726           | < 0.0402           | < 0.0406           | < 0.0407           | < 0.0456           | < 0.0384           | < 0.037          |                   |                 |             |
| 4-Chloro-3-methylphenol                     | < 0.37         | < 0.0767           | <0.0383          | < 0.0726           | < 0.0402           | < 0.0406           | <0.0407            | < 0.0456           | <0.0384            | < 0.037          |                   |                 |             |
| 4-Chloroaniline                             | < 0.37         | <0.0767            | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | < 0.0456           | <0.0384            | < 0.037          |                   |                 | 100         |
| 4-Chlorophenylphenyl ether                  | < 0.37         | <0.0767            | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | < 0.037          |                   |                 |             |
| 4-Nitroaniline                              | <0.74          | <0.15              | <0.0767          | <0.15              | <0.0804            | <0.0812            | <0.0814            | <0.0912            | <0.0767            | <0.074           |                   |                 |             |
| 4-Nitrophenol                               | <1.9           | <0.38              | <0.19            | <0.36              | <0.2               | <0.2               | <0.2               | <0.23              | <0.19              | <0.19            |                   |                 |             |
| Acenaphthene                                | <0.37          | <0.0767            | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           | 20                | 20              |             |
| Acenaphthylene                              | <0.37          | <0.0767            | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           | 100               | 100             |             |
| Acetophenone                                | <0.37          | <0.0767            | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           |                   |                 |             |
| Anthracene                                  | <0.37          | <0.0767            | <0.0383          | 0.22 J             | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           | 100               | 100             |             |
| Benzo(a)anthracene                          | 0.91 J         | 0.67 J             | 0.36 J           | 0.58 J             | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           | 1                 | 1               |             |
| Benzo(a)pyrene                              | 0.79 J         | 0.62 J             | 0.32 J           | 0.51 J             | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           | 1                 | 1<br>1          |             |
| Benzo(b)fluoranthene Benzo(ghi)perylene     | 1 J<br>0.9 J   | 0.79<br>0.44 J     | 0.37 J<br>0.23 J | 0.55 J<br>0.32 J   | <0.0402<br><0.0402 | <0.0406<br><0.0406 | <0.0407<br><0.0407 | <0.0456<br><0.0456 | <0.0384<br><0.0384 | <0.037<br><0.037 | 1<br>100          | 100             |             |
| 10 //                                       | <0.37          | 0.44 J<br>0.26 J   | 0.23 J<br>0.19 J | 0.32 J<br>0.29 J   | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           | 0.8               | 0.8             |             |
| Benzo(k)fluoranthene Benzyl butyl phthalate | <0.37<br><0.37 | 0.26 J<br><0.0767  | <0.193           | <0.29 J<br><0.0726 | <0.0402<br><0.0402 | <0.0406<br><0.0406 | <0.0407<br><0.0407 | <0.0456            | <0.0384            | <0.037           | 0.8               | 0.8<br>         |             |
| Bis(2-chloroethoxy)methane                  | <0.37          | <0.0767            | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           |                   |                 |             |
| Bis(2-chloroethyl)ether                     | < 0.37         | < 0.0767           | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | < 0.037          |                   |                 |             |
| Bis(2-chloroisopropyl)ether                 | < 0.37         | < 0.0767           | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | <0.037           |                   |                 |             |
| Bis(2-ethylhexyl)phthalate (BEHP)           | <0.37          | < 0.0767           | 0.28 J           | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | 0.17 J             | <0.037           |                   |                 | 50          |
| Carbazole                                   | <0.37          | < 0.0767           | <0.0383          | < 0.0726           | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | < 0.037          |                   |                 |             |
| Chrysene                                    | 0.8 J          | 0.66 J             | 0.31 J           | 0.56 J             | <0.0402            | <0.0406            | < 0.0407           | <0.0456            | <0.0384            | < 0.037          | 1                 | 1               |             |
| Cresols, M&P                                | <0.37          | <0.0767            | <0.0383          | <0.0726            | <0.0402            | <0.0406            | <0.0407            | <0.0456            | <0.0384            | < 0.037          | 0.33              |                 |             |
| Dibenzo(a,h)anthracene                      | < 0.37         | < 0.0767           | < 0.0383         | < 0.0726           | < 0.0402           | < 0.0406           | < 0.0407           | < 0.0456           | < 0.0384           | < 0.037          | 0.33              | 0.33            |             |

See next page for Footnotes/Qualifiers



Table 14
Unionport Road, Bronx, NY
Summary of Soil Analytical ResultsSemi-Volatile Organic Compounds

| Sample ID<br>Sampling Date   | GP-1(0-5)<br>6/24/2014 | GP-2(0-5)<br>6/24/2014 | GP-3(6-18)<br>6/24/2014 | GP-4(0-5)<br>6/23/2014 | GP-5(10-12)<br>6/23/2014 | GP-5(18-20)<br>6/23/2014 | GP-6(7-9)<br>6/25/2014 | GP-6(12-14)<br>6/25/2014 | GP-7(9-11)<br>6/25/2014 | GP-7(14-16)<br>6/25/2014 | NYCRR 6 Part375<br>Unrestricted | CP-51<br>Soil Cleanup | CP-51 10-10<br>SCOs |
|------------------------------|------------------------|------------------------|-------------------------|------------------------|--------------------------|--------------------------|------------------------|--------------------------|-------------------------|--------------------------|---------------------------------|-----------------------|---------------------|
| Start Depth                  | 0 feet                 | 0 feet                 | 6 inches                | 0 feet                 | 10 feet                  | 18 feet                  | 7 feet                 | 12 feet                  | 9 feet                  | 14 feet                  | Use Soil                        | Levels Fuel Oil       | Residential         |
| End Depth                    | 5 feet                 | 5 feet                 | 18 inches               | 5 feet                 | 12 feet                  | 20 feet                  | 9 feet                 | 14 feet                  | 11 feet                 | 16 feet                  | Cleanup                         | Contaminated          | Use                 |
|                              |                        |                        |                         |                        |                          |                          |                        |                          |                         |                          | Objectives (SCOs)               | Soil                  |                     |
| Units                        | mg/Kg                  | mg/Kg                  | mg/Kg                   | mg/Kg                  | mg/Kg                    | mg/Kg                    | mg/Kg                  | mg/Kg                    | mg/Kg                   | mg/Kg                    | mg/Kg                           | mg/Kg                 | mg/kg               |
| COMPOUNDS CONTINUED          |                        |                        |                         |                        |                          |                          |                        |                          |                         |                          |                                 |                       |                     |
| Dibenzofuran                 | < 0.37                 | < 0.0767               | < 0.0383                | < 0.0726               | <0.0402                  | < 0.0406                 | < 0.0407               | < 0.0456                 | < 0.0384                | < 0.037                  | 7                               |                       |                     |
| Diethyl phthalate            | < 0.37                 | < 0.0767               | < 0.0383                | < 0.0726               | < 0.0402                 | < 0.0406                 | < 0.0407               | < 0.0456                 | < 0.0384                | < 0.037                  |                                 |                       | 100                 |
| Dimethyl phthalate           | < 0.37                 | 0.74 J                 | 0.66                    | 0.46 J                 | 0.95                     | 0.82                     | 0.78                   | 0.5                      | 0.86                    | 0.93                     |                                 |                       | 100                 |
| Di-n-butyl phthalate         | < 0.37                 | < 0.0767               | < 0.0383                | < 0.0726               | < 0.0402                 | < 0.0406                 | < 0.0407               | < 0.0456                 | < 0.0384                | < 0.037                  |                                 |                       | 100                 |
| Di-n-octyl phthalate         | < 0.37                 | < 0.0767               | < 0.0383                | < 0.0726               | < 0.0402                 | < 0.0406                 | < 0.0407               | < 0.0456                 | < 0.0384                | < 0.037                  |                                 |                       | 100                 |
| Fluoranthene                 | 1.4 J                  | 1.3                    | 0.61                    | 1.1                    | < 0.0402                 | < 0.0406                 | < 0.0407               | < 0.0456                 | < 0.0384                | < 0.037                  | 100                             | 100                   |                     |
| Fluorene                     | < 0.37                 | < 0.0767               | <0.0383                 | < 0.0726               | <0.0402                  | <0.0406                  | < 0.0407               | < 0.0456                 | < 0.0384                | < 0.037                  | 30                              | 30                    |                     |
| Hexachlorobenzene            | < 0.37                 | < 0.0767               | <0.0383                 | < 0.0726               | <0.0402                  | <0.0406                  | < 0.0407               | < 0.0456                 | < 0.0384                | < 0.037                  | 0.33                            |                       | 0.41                |
| Hexachlorobutadiene          | < 0.37                 | < 0.0767               | < 0.0383                | < 0.0726               | < 0.0402                 | < 0.0406                 | < 0.0407               | < 0.0456                 | < 0.0384                | < 0.037                  |                                 |                       |                     |
| Hexachlorocyclopentadiene    | < 0.37                 | < 0.0767               | <0.0383                 | < 0.0726               | <0.0402                  | <0.0406                  | < 0.0407               | < 0.0456                 | < 0.0384                | < 0.037                  |                                 |                       |                     |
| Hexachloroethane             | < 0.37                 | < 0.0767               | < 0.0383                | < 0.0726               | <0.0402                  | <0.0406                  | < 0.0407               | < 0.0456                 | < 0.0384                | < 0.037                  |                                 |                       |                     |
| Indeno(1,2,3-cd)pyrene       | < 0.37                 | 0.36 J                 | 0.19 J                  | 0.28 J                 | <0.0402                  | <0.0406                  | < 0.0407               | < 0.0456                 | < 0.0384                | < 0.037                  | 0.5                             | 0.5                   |                     |
| Isophorone                   | < 0.37                 | < 0.0767               | < 0.0383                | < 0.0726               | <0.0402                  | <0.0406                  | < 0.0407               | < 0.0456                 | < 0.0384                | < 0.037                  |                                 |                       | 100                 |
| Naphthalene                  | <0.37                  | <0.0767                | <0.0383                 | < 0.0726               | 0.56                     | <0.0406                  | < 0.0407               | <0.0456                  | < 0.0384                | < 0.037                  | 12                              | 12                    |                     |
| Nitrobenzene                 | <0.37                  | <0.0767                | <0.0383                 | <0.0726                | <0.0402                  | <0.0406                  | <0.0407                | <0.0456                  | < 0.0384                | < 0.037                  |                                 |                       | 3.7                 |
| N-Nitroso-di-n-propylamine   | <0.37                  | <0.0767                | <0.0383                 | < 0.0726               | <0.0402                  | <0.0406                  | <0.0407                | <0.0456                  | < 0.0384                | < 0.037                  |                                 |                       |                     |
| N-Nitrosodiphenylamine       | <0.37                  | <0.0767                | <0.0383                 | < 0.0726               | <0.0402                  | <0.0406                  | < 0.0407               | <0.0456                  | < 0.0384                | < 0.037                  |                                 |                       |                     |
| Pentachlorophenol            | <0.37                  | <0.0767                | <0.0383                 | < 0.0726               | <0.0402                  | <0.0406                  | < 0.0407               | <0.0456                  | < 0.0384                | < 0.037                  | 0.8                             |                       |                     |
| Phenanthrene                 | 0.81 J                 | 0.53 J                 | 0.24 J                  | 0.77                   | <0.0402                  | <0.0406                  | <0.0407                | <0.0456                  | < 0.0384                | < 0.037                  | 100                             | 100                   |                     |
| Phenol                       | <0.37                  | <0.0767                | <0.0383                 | < 0.0726               | <0.0402                  | <0.0406                  | <0.0407                | <0.0456                  | < 0.0384                | < 0.037                  | 0.33                            |                       |                     |
| Pyrene                       | 1.2 J                  | 1.1                    | 0.52                    | 0.96                   | <0.0402                  | <0.0406                  | <0.0407                | <0.0456                  | < 0.0384                | < 0.037                  | 100                             | 100                   |                     |
| 1,1-Biphenyl                 | <0.37                  | <0.0767                | <0.0383                 | <0.0726                | <0.0402                  | <0.0406                  | <0.0407                | <0.0456                  | <0.0384                 | < 0.037                  |                                 |                       |                     |
| 1,2,4,5-Tetrachlorobenzene   | <0.37                  | <0.0767                | <0.0383                 | <0.0726                | <0.0402                  | <0.0406                  | <0.0407                | <0.0456                  | <0.0384                 | < 0.037                  |                                 |                       |                     |
| 2,3,4,6-Tetrachlorophenol    | <0.37                  | <0.0767                | <0.0383                 | <0.0726                | <0.0402                  | <0.0406                  | <0.0407                | <0.0456                  | <0.0384                 | < 0.037                  |                                 |                       |                     |
| Atrazine                     | < 0.37                 | <0.0767                | <0.0383                 | <0.0726                | <0.0402                  | <0.0406                  | <0.0407                | <0.0456                  | <0.0384                 | < 0.037                  |                                 |                       |                     |
| Benzaldehyde                 | <0.37                  | <0.0767                | <0.0383                 | <0.0726                | <0.0402                  | <0.0406                  | <0.0407                | <0.0456                  | <0.0384                 | < 0.037                  |                                 |                       |                     |
| Caprolactam                  | <0.74                  | <0.15                  | < 0.0767                | <0.15                  | <0.0804                  | <0.0812                  | <0.0814                | <0.0912                  | <0.0767                 | < 0.074                  |                                 |                       |                     |
|                              |                        |                        |                         |                        |                          |                          |                        |                          |                         |                          |                                 |                       |                     |
| Total Semivolatile Compounds | 7.81                   | 7.47                   | 4.28                    | 6.6                    | 2.15                     | 0.82                     | 0.78                   | 0.5                      | 1.03                    | 0.93                     |                                 |                       |                     |

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

<: Analyzed for but not detected

J: Estimated value

--: No standard

Exceeds Soil Cleanup Criteria



Table 14
Unionport Road, Bronx, NY
Summary of Soil Analytical ResultsSemi-Volatile Organic Compounds

| Sample ID                         | GP-8(6-18)      | GP-9(0-5)        | GP-10(6-19)      | GP-11(6-23)     | GP-12(0-5)       | GP-13(0-5)       | GP-13(18-20)      | GP-14(6-18)     | GP-15(6-20)      | GP-16(0-5)      | NYCRR 6 Part375   | CP-51           | CP-51 10-10 |
|-----------------------------------|-----------------|------------------|------------------|-----------------|------------------|------------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-------------|
| Sampling Date                     | 6/24/2014       | 6/25/2014        | 6/23/2014        | 6/23/2014       | 6/24/2014        | 6/23/2014        | 6/30/2014         | 6/25/2014       | 6/26/2014        | 6/26/2014       | Unrestricted      | Soil Cleanup    | SCOs        |
| Start Depth                       | 6 inches        | 0 feet           | 6 inches         | 6 inches        | 0 feet           | 0 feet           | 18 feet           | 6 inches        | 6 inches         | 0 feet          | Use Soil          | Levels Fuel Oil | Residential |
| End Depth                         | 18 inches       | 5 feet           | 19 inches        | 23 inches       | 5 feet           | 5 feet           | 23 feet           | 18 inches       | 20 inches        | 5 feet          | Cleanup           | Contaminated    | Use         |
|                                   |                 | 0.1001           |                  |                 |                  | 0.1007           |                   |                 |                  | - 1001          | Objectives (SCOs) |                 |             |
| Units                             | mg/Kg           | mg/Kg            | mg/Kg            | mg/Kg           | mg/Kg            | mg/Kg            | mg/kg             | mg/Kg           | mg/Kg            | mg/kg           | mg/Kg             | mg/Kg           | mg/kg       |
| SEMIVOLATILE COMPOUNDS            |                 |                  |                  |                 |                  |                  |                   |                 |                  |                 |                   |                 |             |
| 2,4,5-Trichlorophenol             | < 0.041         | < 0.0366         | < 0.0411         | < 0.0394        | <0.0378          | <0.0388          | < 0.0384          | < 0.0391        | <0.0383          | < 0.037         |                   |                 | 100         |
| 2,4,6-Trichlorophenol             | < 0.041         | < 0.0366         | < 0.0411         | < 0.0394        | <0.0378          | <0.0388          | < 0.0384          | < 0.0391        | <0.0383          | < 0.037         |                   |                 |             |
| 2,4-Dichlorophenol                | <0.041          | < 0.0366         | < 0.0411         | < 0.0394        | <0.0378          | <0.0388          | < 0.0384          | < 0.0391        | <0.0383          | < 0.037         |                   |                 | 100         |
| 2,4-Dimethylphenol                | <0.041          | < 0.0366         | < 0.0411         | < 0.0394        | <0.0378          | <0.0388          | 0.0896 J          | < 0.0391        | <0.0383          | < 0.037         |                   |                 |             |
| 2,4-Dinitrophenol                 | < 0.33          | <0.29            | < 0.33           | < 0.32          | <0.3             | <0.31            | <310              | <0.31           | <0.31            | < 0.3           |                   |                 | 100         |
| 2,4-Dinitrotoluene                | <0.041          | <0.0366          | <0.0411          | < 0.0394        | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | < 0.037         |                   |                 |             |
| 2,6-Dinitrotoluene                | <0.041          | <0.0366          | <0.0411          | <0.0394         | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | < 0.037         |                   |                 | 1           |
| 2-Chloronaphthalene               | <0.041          | <0.0366          | <0.0411          | <0.0394         | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | < 0.037         |                   |                 |             |
| 2-Chlorophenol                    | <0.041          | <0.0366          | <0.0411          | <0.0394         | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | < 0.037         |                   |                 | 100         |
| 2-Methylnaphthalene               | <0.041          | <0.0366          | <0.0411          | <0.0394         | <0.0378          | <0.0388          | 0.75              | <0.0391         | <0.0383          | <0.037          |                   |                 | 0.41        |
| 2-Methylphenol                    | <0.041          | <0.0366          | <0.0411          | <0.0394         | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | < 0.037         | 0.33              |                 |             |
| 2-Nitroaniline                    | <0.041          | <0.0366          | <0.0411          | <0.0394         | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | <0.037          |                   |                 |             |
| 2-Nitrophenol                     | <0.041          | <0.0366          | <0.0411          | <0.0394         | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | < 0.037         |                   |                 |             |
| 3,3-Dichlorobenzidine             | <0.041          | <0.0366          | <0.0411          | <0.0394         | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | <0.037          |                   |                 |             |
| 3-Nitroaniline                    | <0.0819         | <0.0732          | <0.0822          | <0.0789         | <0.0756          | <0.0775          | <0.0769           | <0.0781         | <0.0766          | <0.074          |                   |                 |             |
| 4,6-Dinitro-2-methylphenol        | <0.2            | <0.18            | <0.21            | <0.2            | <0.19            | <0.19            | <0.190            | <0.2            | <0.19            | <0.18           |                   |                 |             |
| 4-Bromophenyl-phenylether         | <0.041          | <0.0366          | <0.0411          | <0.0394         | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | <0.037          |                   |                 |             |
| 4-Chloro-3-methylphenol           | <0.041          | <0.0366          | <0.0411          | <0.0394         | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | <0.037          |                   |                 |             |
| 4-Chloroaniline                   | <0.041          | <0.0366          | <0.0411          | <0.0394         | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | <0.037          |                   |                 | 100         |
| 4-Chlorophenylphenyl ether        | <0.041          | <0.0366          | <0.0411          | <0.0394         | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | < 0.037         |                   |                 |             |
| 4-Nitroaniline<br>4-Nitrophenol   | <0.0819<br><0.2 | <0.0732<br><0.18 | <0.0822<br><0.21 | <0.0789<br><0.2 | <0.0756<br><0.19 | <0.0775<br><0.19 | <0.0769<br><0.190 | <0.0781<br><0.2 | <0.0766<br><0.19 | <0.074<br><0.18 |                   |                 |             |
| Acenaphthene                      | <0.2            | <0.16            | <0.21            | < 0.2           | <0.19            | <0.19            | <0.190            | <0.2            | <0.19            | <0.16           | 20                | 20              |             |
| Acenaphthylene                    | <0.041          | < 0.0366         | <0.0411          | < 0.0394        | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | < 0.037         | 100               | 100             |             |
| Acetophenone                      | <0.041          | <0.0366          | <0.0411          | < 0.0394        | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | < 0.037         |                   |                 |             |
| Anthracene                        | 0.16 J          | <0.0366          | 0.11 J           | < 0.0394        | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | < 0.037         | 100               | 100             |             |
| Benzo(a)anthracene                | 0.103           | <0.0366          | 0.113            | < 0.0394        | <0.0378          | 0.4              | <0.0384           | <0.0391         | <0.0383          | < 0.037         | 1                 | 1               |             |
| Benzo(a)pyrene                    | 0.4 J           | <0.0366          | 0.47             | <0.0394         | <0.0378          | 0.42             | <0.0384           | <0.0391         | <0.0383          | < 0.037         | 1                 | 1               |             |
| Benzo(b)fluoranthene              | 0.48            | < 0.0366         | 0.53             | < 0.0394        | <0.0378          | 0.49             | <0.0384           | <0.0391         | <0.0383          | < 0.037         | 1                 | 1               |             |
| Benzo(ghi)perylene                | 0.28 J          | < 0.0366         | 0.37 J           | < 0.0394        | <0.0378          | 0.3 J            | < 0.0384          | <0.0391         | <0.0383          | < 0.037         | 100               | 100             |             |
| Benzo(k)fluoranthene              | 0.2 J           | < 0.0366         | 0.27 J           | <0.0394         | <0.0378          | 0.23 J           | <0.0384           | <0.0391         | <0.0383          | < 0.037         | 0.8               | 0.8             |             |
| Benzyl butyl phthalate            | <0.041          | < 0.0366         | < 0.0411         | < 0.0394        | <0.0378          | <0.0388          | < 0.0384          | < 0.0391        | <0.0383          | < 0.037         |                   |                 |             |
| Bis(2-chloroethoxy)methane        | <0.041          | <0.0366          | <0.0411          | < 0.0394        | <0.0378          | <0.0388          | < 0.0384          | < 0.0391        | < 0.0383         | < 0.037         |                   |                 |             |
| Bis(2-chloroethyl)ether           | < 0.041         | <0.0366          | < 0.0411         | < 0.0394        | <0.0378          | <0.0388          | < 0.0384          | < 0.0391        | <0.0383          | < 0.037         |                   |                 |             |
| Bis(2-chloroisopropyl)ether       | <0.041          | <0.0366          | <0.0411          | < 0.0394        | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | < 0.037         |                   |                 |             |
| Bis(2-ethylhexyl)phthalate (BEHP) | 0.35 J          | <0.0366          | <0.0411          | < 0.0394        | <0.0378          | <0.0388          | <0.0384           | 0.96            | <0.0383          | < 0.037         |                   |                 | 50          |
| Carbazole                         | <0.041          | <0.0366          | <0.0411          | < 0.0394        | <0.0378          | <0.0388          | < 0.0384          | < 0.0391        | <0.0383          | < 0.037         |                   |                 |             |
| Chrysene                          | 0.47            | <0.0366          | 0.56             | < 0.0394        | <0.0378          | 0.36 J           | <0.0384           | <0.0391         | <0.0383          | < 0.037         | 1                 | 1               |             |
| Cresols, M&P                      | <0.041          | <0.0366          | <0.0411          | <0.0394         | <0.0378          | <0.0388          | <0.0384           | <0.0391         | <0.0383          | < 0.037         | 0.33              |                 |             |
| Dibenzo(a,h)anthracene            | < 0.041         | < 0.0366         | < 0.0411         | < 0.0394        | < 0.0378         | <0.0388          | < 0.0384          | < 0.0391        | < 0.0383         | < 0.037         | 0.33              | 0.33            |             |

See next page for Footnotes/Qualifi



Table 14
Unionport Road, Bronx, NY
Summary of Soil Analytical ResultsSemi-Volatile Organic Compounds

| Sample ID<br>Sampling Date   | GP-8(6-18)<br>6/24/2014 | GP-9(0-5)<br>6/25/2014 | GP-10(6-19)<br>6/23/2014 | GP-11(6-23)<br>6/23/2014 | GP-12(0-5)<br>6/24/2014 | GP-13(0-5)<br>6/23/2014 | GP-13(18-20)<br>6/30/2014 | GP-14(6-18)<br>6/25/2014 | GP-15(6-20)<br>6/26/2014 | GP-16(0-5)<br>6/26/2014 | NYCRR 6 Part375<br>Unrestricted | CP-51<br>Soil Cleanup | CP-51 10-10<br>SCOs |
|------------------------------|-------------------------|------------------------|--------------------------|--------------------------|-------------------------|-------------------------|---------------------------|--------------------------|--------------------------|-------------------------|---------------------------------|-----------------------|---------------------|
| Start Depth                  |                         | 0 feet                 | 6 inches                 | 6 inches                 | 0 feet                  | 0 feet                  | 18 feet                   | 6 inches                 | 6 inches                 | 0 feet                  | Use Soil                        | Levels Fuel Oil       | Residential         |
| End Depth                    | 18 inches               | 5 feet                 | 19 inches                | 23 inches                | 5 feet                  | 5 feet                  | 23 feet                   | 18 inches                | 20 inches                | 5 feet                  | Cleanup                         | Contaminated          | Use                 |
|                              |                         |                        |                          |                          |                         |                         |                           |                          |                          |                         | Objectives (SCOs)               |                       |                     |
| Units                        | mg/Kg                   | mg/Kg                  | mg/Kg                    | mg/Kg                    | mg/Kg                   | mg/Kg                   | mg/kg                     | mg/Kg                    | mg/Kg                    | mg/kg                   | mg/Kg                           | mg/Kg                 | mg/kg               |
| COMPOUNDS CONTINUED          |                         |                        |                          |                          |                         |                         |                           |                          |                          |                         |                                 |                       |                     |
| Dibenzofuran                 | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | < 0.0378                | <0.0388                 | < 0.0384                  | < 0.0391                 | <0.0383                  | < 0.037                 | 7                               |                       |                     |
| Diethyl phthalate            | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | < 0.0378                | <0.0388                 | < 0.0384                  | < 0.0391                 | <0.0383                  | < 0.037                 |                                 |                       | 100                 |
| Dimethyl phthalate           | 0.59                    | 0.61                   | 0.65                     | 0.54                     | 0.57                    | 0.72                    | 0.51                      | 0.76                     | 0.57                     | 0.54                    |                                 |                       | 100                 |
| Di-n-butyl phthalate         | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | < 0.0378                | <0.0388                 | < 0.0384                  | < 0.0391                 | <0.0383                  | < 0.037                 |                                 |                       | 100                 |
| Di-n-octyl phthalate         | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | <0.0378                 | <0.0388                 | < 0.0384                  | < 0.0391                 | < 0.0383                 | < 0.037                 |                                 |                       | 100                 |
| Fluoranthene                 | 0.92                    | 0.14 J                 | 0.97                     | < 0.0394                 | < 0.0378                | 0.63                    | < 0.0384                  | < 0.0391                 | 0.0973 J                 | < 0.037                 | 100                             | 100                   |                     |
| Fluorene                     | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | < 0.0378                | <0.0388                 | < 0.0384                  | 0.0841 J                 | < 0.0383                 | < 0.037                 | 30                              | 30                    |                     |
| Hexachlorobenzene            | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | < 0.0378                | <0.0388                 | < 0.0384                  | < 0.0391                 | < 0.0383                 | < 0.037                 | 0.33                            |                       | 0.41                |
| Hexachlorobutadiene          | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | <0.0378                 | <0.0388                 | < 0.0384                  | < 0.0391                 | <0.0383                  | < 0.037                 |                                 |                       |                     |
| Hexachlorocyclopentadiene    | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | <0.0378                 | <0.0388                 | < 0.0384                  | < 0.0391                 | < 0.0383                 | < 0.037                 |                                 |                       |                     |
| Hexachloroethane             | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | <0.0378                 | <0.0388                 | < 0.0384                  | < 0.0391                 | < 0.0383                 | < 0.037                 |                                 |                       |                     |
| Indeno(1,2,3-cd)pyrene       | 0.25 J                  | < 0.0366               | 0.3 J                    | < 0.0394                 | <0.0378                 | 0.26 J                  | < 0.0384                  | < 0.0391                 | < 0.0383                 | < 0.037                 | 0.5                             | 0.5                   |                     |
| Isophorone                   | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | <0.0378                 | <0.0388                 | < 0.0384                  | < 0.0391                 | < 0.0383                 | < 0.037                 |                                 |                       | 100                 |
| Naphthalene                  | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | <0.0378                 | <0.0388                 | 0.71                      | < 0.0391                 | < 0.0383                 | < 0.037                 | 12                              | 12                    |                     |
| Nitrobenzene                 | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | < 0.0378                | <0.0388                 | < 0.0384                  | < 0.0391                 | < 0.0383                 | < 0.037                 |                                 |                       | 3.7                 |
| N-Nitroso-di-n-propylamine   | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | < 0.0378                | <0.0388                 | < 0.0384                  | < 0.0391                 | < 0.0383                 | < 0.037                 |                                 |                       |                     |
| N-Nitrosodiphenylamine       | < 0.041                 | < 0.0366               | <0.0411                  | < 0.0394                 | < 0.0378                | <0.0388                 | < 0.0384                  | < 0.0391                 | < 0.0383                 | < 0.037                 |                                 |                       |                     |
| Pentachlorophenol            | < 0.041                 | < 0.0366               | <0.0411                  | < 0.0394                 | < 0.0378                | <0.0388                 | < 0.0384                  | < 0.0391                 | < 0.0383                 | < 0.037                 | 0.8                             |                       |                     |
| Phenanthrene                 | 0.8                     | 0.11 J                 | 0.74                     | < 0.0394                 | < 0.0378                | 0.18 J                  | < 0.0384                  | < 0.0391                 | < 0.0383                 | < 0.037                 | 100                             | 100                   |                     |
| Phenol                       | < 0.041                 | < 0.0366               | < 0.0411                 | < 0.0394                 | <0.0378                 | <0.0388                 | < 0.0384                  | < 0.0391                 | <0.0383                  | < 0.037                 | 0.33                            |                       |                     |
| Pyrene                       | 0.88                    | 0.0922 J               | 0.98                     | < 0.0394                 | < 0.0378                | 0.6                     | < 0.0384                  | 0.28 J                   | < 0.0383                 | < 0.037                 | 100                             | 100                   |                     |
| 1,1-Biphenyl                 | < 0.041                 | < 0.0366               | <0.0411                  | < 0.0394                 | <0.0378                 | < 0.0387                | < 0.0384                  | < 0.0391                 | <0.0383                  | < 0.037                 |                                 |                       |                     |
| 1,2,4,5-Tetrachlorobenzene   | < 0.041                 | < 0.0366               | <0.0411                  | < 0.0394                 | <0.0378                 | <0.0388                 | < 0.0384                  | < 0.0391                 | <0.0383                  | < 0.037                 |                                 |                       |                     |
| 2,3,4,6-Tetrachlorophenol    | < 0.041                 | <0.0366                | < 0.0411                 | < 0.0394                 | <0.0378                 | <0.0388                 | < 0.0384                  | < 0.0391                 | <0.0383                  | < 0.037                 |                                 |                       |                     |
| Atrazine                     | < 0.041                 | <0.0366                | < 0.0411                 | < 0.0394                 | <0.0378                 | <0.0388                 | < 0.0384                  | < 0.0391                 | <0.0383                  | < 0.037                 |                                 |                       |                     |
| Benzaldehyde                 | < 0.041                 | < 0.0366               | <0.0411                  | < 0.0394                 | <0.0378                 | <0.0388                 | < 0.0384                  | < 0.0391                 | <0.0383                  | < 0.037                 |                                 |                       |                     |
| Caprolactam                  | < 0.0819                | < 0.0732               | <0.0822                  | <0.0789                  | < 0.0756                | < 0.0775                | < 0.0769                  | <0.0781                  | < 0.0766                 | < 0.074                 |                                 |                       |                     |
|                              |                         |                        |                          |                          |                         |                         |                           |                          |                          |                         |                                 |                       |                     |
| Total Semivolatile Compounds | 6.29                    | 0.9522                 | 6.53                     | 0.54                     | 0.57                    | 4.59                    | 2.0596                    | 2.0841                   | 0.6673                   | 0.54                    |                                 |                       |                     |

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

<: Analyzed for but not detected

J: Estimated value

--: No standard

Exceeds Soil Cleanup Criteria



Table 14
Unionport Road, Bronx, NY
Summary of Soil Analytical ResultsSemi-Volatile Organic Compounds

| Sample ID                         | GP-17(0-5) | GP-18(6-18) | GP-19(10-24) | NYCRR 6 Part375   | CP-51           | CP-51 10-10 |
|-----------------------------------|------------|-------------|--------------|-------------------|-----------------|-------------|
| Sampling Date                     | 6/26/2014  | 6/26/2014   | 6/25/2014    | Unrestricted      | Soil Cleanup    | SCOs        |
| Start Depth                       | 0 feet     | 6 inches    | 10 inches    | Use Soil          | Levels Fuel Oil | Residential |
| End Depth                         | 5 feet     | 18 inches   | 24 inches    | Cleanup           | Contaminated    | Use         |
|                                   |            |             |              | Objectives (SCOs) | Soil            |             |
| Units                             | mg/kg      | mg/Kg       | mg/Kg        | mg/Kg             | mg/Kg           | mg/kg       |
| SEMIVOLATILE COMPOUNDS            |            |             |              |                   |                 |             |
| 2,4,5-Trichlorophenol             | <0.2       | < 0.0397    | <0.0419      |                   |                 | 100         |
| 2,4,6-Trichlorophenol             | <0.2       | <0.0397     | <0.0419      |                   |                 |             |
| 2,4-Dichlorophenol                | <0.2       | <0.0397     | <0.0419      |                   |                 | 100         |
| 2,4-Dimethylphenol                | <0.2       | < 0.0397    | <0.0419      |                   |                 |             |
| 2,4-Dinitrophenol                 | <1.6       | < 0.32      | < 0.34       |                   |                 | 100         |
| 2,4-Dinitrotoluene                | <0.2       | <0.0397     | <0.0419      |                   |                 |             |
| 2,6-Dinitrotoluene                | <0.2       | < 0.0397    | <0.0419      |                   |                 | 1           |
| 2-Chloronaphthalene               | <0.2       | < 0.0397    | <0.0419      |                   |                 |             |
| 2-Chlorophenol                    | <0.2       | < 0.0397    | < 0.0419     |                   |                 | 100         |
| 2-Methylnaphthalene               | <0.2       | < 0.0397    | < 0.0419     |                   |                 | 0.41        |
| 2-Methylphenol                    | <0.2       | < 0.0397    | <0.0419      | 0.33              |                 |             |
| 2-Nitroaniline                    | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| 2-Nitrophenol                     | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| 3,3-Dichlorobenzidine             | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| 3-Nitroaniline                    | <0.4       | < 0.0795    | <0.0838      |                   |                 |             |
| 4,6-Dinitro-2-methylphenol        | <1         | <0.2        | <0.21        |                   |                 |             |
| 4-Bromophenyl-phenylether         | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| 4-Chloro-3-methylphenol           | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| 4-Chloroaniline                   | <0.2       | < 0.0397    | < 0.0419     |                   |                 | 100         |
| 4-Chlorophenylphenyl ether        | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| 4-Nitroaniline                    | <0.4       | < 0.0795    | <0.0838      |                   |                 |             |
| 4-Nitrophenol                     | <1         | <0.2        | <0.21        |                   |                 |             |
| Acenaphthene                      | 0.56 J     | < 0.0397    | < 0.0419     | 20                | 20              |             |
| Acenaphthylene                    | 0.47 J     | < 0.0397    | < 0.0419     | 100               | 100             |             |
| Acetophenone                      | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| Anthracene                        | 1.7 J      | < 0.0397    | < 0.0419     | 100               | 100             |             |
| Benzo(a)anthracene                | 6.5        | 0.3 J       | < 0.0419     | 1                 | 1               |             |
| Benzo(a)pyrene                    | 5          | 0.31 J      | < 0.0419     | 1                 | 1               |             |
| Benzo(b)fluoranthene              | 5.8        | 0.4         | < 0.0419     | 1                 | 1               |             |
| Benzo(ghi)perylene                | 3.3        | 0.23 J      | < 0.0419     | 100               | 100             |             |
| Benzo(k)fluoranthene              | 2.7        | 0.15 J      | < 0.0419     | 0.8               | 0.8             |             |
| Benzyl butyl phthalate            | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| Bis(2-chloroethoxy)methane        | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| Bis(2-chloroethyl)ether           | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| Bis(2-chloroisopropyl)ether       | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| Bis(2-ethylhexyl)phthalate (BEHP) | <0.2       | 0.0874 J    | 0.18 J       |                   |                 | 50          |
| Carbazole                         | 0.51 J     | < 0.0397    | < 0.0419     |                   |                 |             |
| Chrysene                          | 5.3        | 0.33 J      | < 0.0419     | 1                 | 1               |             |
| Cresols, M&P                      | <0.2       | < 0.0397    | < 0.0419     | 0.33              |                 |             |
| Dibenzo(a,h)anthracene            | 0.76 J     | < 0.0397    | < 0.0419     | 0.33              | 0.33            |             |

See next page for Footnotes/Qualifi



Table 14
Unionport Road, Bronx, NY
Summary of Soil Analytical ResultsSemi-Volatile Organic Compounds

| Sample ID                    | GP-17(0-5) | GP-18(6-18) | GP-19(10-24) | NYCRR 6 Part375   | CP-51           | CP-51 10-10 |
|------------------------------|------------|-------------|--------------|-------------------|-----------------|-------------|
| Sampling Date                | 6/26/2014  | 6/26/2014   | 6/25/2014    | Unrestricted      | Soil Cleanup    | SCOs        |
| Start Depth                  | 0 feet     | 6 inches    | 10 inches    | Use Soil          | Levels Fuel Oil | Residential |
| End Depth                    | 5 feet     | 18 inches   | 24 inches    | Cleanup           | Contaminated    | Use         |
|                              |            |             |              | Objectives (SCOs) | Soil            |             |
| Units                        | mg/kg      | mg/Kg       | mg/Kg        | mg/Kg             | mg/Kg           | mg/kg       |
| COMPOUNDS CONTINUED          |            |             |              |                   |                 |             |
| Dibenzofuran                 | <0.2       | < 0.0397    | < 0.0419     | 7                 |                 |             |
| Diethyl phthalate            | <0.2       | < 0.0397    | < 0.0419     |                   |                 | 100         |
| Dimethyl phthalate           | 0.46 J     | 0.71        | 0.69         |                   |                 | 100         |
| Di-n-butyl phthalate         | <0.2       | < 0.0397    | <0.0419      |                   |                 | 100         |
| Di-n-octyl phthalate         | <0.2       | < 0.0397    | < 0.0419     |                   |                 | 100         |
| Fluoranthene                 | 11.9       | 0.52        | < 0.0419     | 100               | 100             |             |
| Fluorene                     | 0.49 J     | < 0.0397    | < 0.0419     | 30                | 30              |             |
| Hexachlorobenzene            | <0.2       | < 0.0397    | <0.0419      | 0.33              |                 | 0.41        |
| Hexachlorobutadiene          | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| Hexachlorocyclopentadiene    | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| Hexachloroethane             | <0.2       | < 0.0397    | < 0.0419     |                   |                 |             |
| Indeno(1,2,3-cd)pyrene       | 3.1        | 0.19 J      | <0.0419      | 0.5               | 0.5             |             |
| Isophorone                   | <0.2       | < 0.0397    | <0.0419      |                   |                 | 100         |
| Naphthalene                  | <0.2       | < 0.0397    | <0.0419      | 12                | 12              |             |
| Nitrobenzene                 | <0.2       | < 0.0397    | <0.0419      |                   |                 | 3.7         |
| N-Nitroso-di-n-propylamine   | <0.2       | < 0.0397    | <0.0419      |                   |                 |             |
| N-Nitrosodiphenylamine       | <0.2       | < 0.0397    | <0.0419      |                   |                 |             |
| Pentachlorophenol            | <0.2       | < 0.0397    | <0.0419      | 0.8               |                 |             |
| Phenanthrene                 | 6.7        | 0.21 J      | <0.0419      | 100               | 100             |             |
| Phenol                       | <0.2       | <0.0397     | <0.0419      | 0.33              |                 |             |
| Pyrene                       | 9.4        | 0.47        | <0.0419      | 100               | 100             |             |
| 1,1-Biphenyl                 | <0.2       | < 0.0397    | <0.0419      |                   |                 |             |
| 1,2,4,5-Tetrachlorobenzene   | <0.2       | <0.0397     | <0.0419      |                   |                 |             |
| 2,3,4,6-Tetrachlorophenol    | <0.2       | <0.0397     | <0.0419      |                   |                 |             |
| Atrazine                     | <0.2       | <0.0397     | <0.0419      |                   |                 |             |
| Benzaldehyde                 | <0.2       | <0.0397     | <0.0419      |                   |                 |             |
| Caprolactam                  | <0.4       | <0.0795     | <0.0838      |                   |                 |             |
|                              |            |             |              |                   |                 |             |
| Total Semivolatile Compounds | 64.65      | 3.9074      | 0.87         |                   |                 |             |

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

<: Analyzed for but not detected

J: Estimated value

--: No standard



### Table 15 Unionport Road, Bronx, NY Summary of Soil Analytical Results

Metals, Petroleum Hydrocarbons Analyses and Conventional Chemistry Parameters

| Sample ID<br>Sampling Date<br>Start Depth<br>End Depth | GP-1(0-5)<br>6/24/2014<br>0 feet<br>5 feet | GP-2(0-5)<br>6/24/2014<br>0 feet | GP-3(6-18)<br>6/24/2014<br>6 inches | GP-4(0-5)<br>6/23/2014<br>0 feet<br>5 feet | GP-5(10-12)<br>6/23/2014<br>10 feet | GP-5(18-20)<br>6/23/2014<br>18 feet | GP-6(7-9)<br>6/25/2014<br>7 feet<br>9 feet | GP-6(12-14)<br>6/25/2014<br>12 feet | GP-7(9-11)<br>6/25/2014<br>9 feet | NYCRR 6 Part375 Unrestricted Use Soil Cleanup | CP-51 10-10<br>SCOs<br>Residential<br>Use |
|--------------------------------------------------------|--------------------------------------------|----------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------------------|-------------------------------------------|
| Ena Depth                                              | o reet                                     | 5 feet                           | 18 inches                           | o reet                                     | 12 feet                             | 20 feet                             | 9 feet                                     | 14 feet                             | 11 feet                           | Objectives (SCOs)                             | USE                                       |
| Units                                                  | mg/Kg                                      | mg/Kg                            | mg/Kg                               | mg/Kg                                      | mg/Kg                               | mg/Kg                               | mg/Kg                                      | mg/Kg                               | mg/Kg                             | mg/Kg ′                                       | mg/kg                                     |
| <u>Metals</u>                                          |                                            |                                  |                                     |                                            |                                     |                                     |                                            |                                     |                                   |                                               |                                           |
| Antimony                                               | 4.52                                       | <1.17                            | 0.680 J                             | <1.16                                      | <1.31                               | <1.25                               | 0.627 J                                    | 1.08 J                              | <1.22                             |                                               |                                           |
| Arsenic                                                | 8.1                                        | 3.97                             | 7.81                                | 5.18                                       | 1.88                                | 0.473 J                             | 3.08                                       | 1.44                                | 3.46                              | 13                                            |                                           |
| Barium                                                 | 172                                        | 100                              | 286                                 | 154                                        | 73.7                                | 7.86                                | 68.4                                       | 167                                 | 113                               | 350                                           |                                           |
| Beryllium                                              | 0.506                                      | 0.66                             | 0.754                               | 0.595                                      | 0.629                               | 1.59                                | 0.773                                      | 5.08                                | 0.526                             | 7.2                                           |                                           |
| Cadmium                                                | 0.608                                      | < 0.141                          | 0.679                               | < 0.139                                    | < 0.157                             | <0.150                              | <0.158                                     | 0.384                               | <0.147                            | 2.5                                           |                                           |
| Chromium                                               | 20.1                                       | 22.3                             | 28.3                                | 24.1                                       | 31.6                                | 70.2                                | 28.9                                       | 102                                 | 20.9                              | 30                                            |                                           |
| Cobalt                                                 | 9.91                                       | 14.2                             | 17                                  | 11.5                                       | 13                                  | 5.05                                | 15.4                                       | 47                                  | 9.88                              |                                               | 30                                        |
| Copper                                                 | 146                                        | 39.3                             | 82.6                                | 52.3                                       | 21.8                                | 34.4                                | 25.3                                       | 14.3                                | 26.2                              | 50                                            |                                           |
| Lead                                                   | 508                                        | 116                              | 461                                 | 232                                        | 11.4                                | 19.4                                | 26.2                                       | 16.2                                | 71.1                              | 63                                            |                                           |
| Manganese                                              | 277                                        | 381                              | 398                                 | 306 D                                      | 249                                 | 359                                 | 277                                        | 596                                 | 184                               | 1600                                          |                                           |
| Mercury                                                | 0.184                                      | 0.168                            | 0.0060 J                            | 0.15                                       | 0.023                               | < 0.0060                            | 0.074                                      | 0.014                               | 0.118                             | 0.18                                          |                                           |
| Nickel                                                 | 28.3                                       | 24.5                             | 31.2                                | 20.9                                       | 21.8                                | 8.38                                | 23.5                                       | 80.8                                | 19.8                              | 30                                            |                                           |
| Selenium                                               | 1.51                                       | 1.3                              | 1.96                                | 1.37                                       | 1.4                                 | 0.828 J                             | 1.46                                       | 2.16                                | 0.877 J                           | 3.9                                           |                                           |
| Silver                                                 | 1.54                                       | 0.821                            | 2.27                                | 0.925                                      | 0.755                               | 0.886                               | 1.28                                       | 1.77                                | 0.746                             | 2                                             |                                           |
| Thallium                                               | < 0.930                                    | < 0.938                          | < 0.934                             | < 0.929                                    | <1.05                               | <1.00                               | <1.06                                      | <1.19                               | < 0.977                           |                                               |                                           |
| Vanadium                                               | 26                                         | 32.4                             | 36.5                                | 32.9                                       | 37.5                                | 43.4                                | 37.2                                       | 49                                  | 25.7                              |                                               | 100                                       |
| Zinc                                                   | 385                                        | 112                              | 447                                 | 215                                        | 55.1                                | 18.9                                | 61.3                                       | 191                                 | 109                               | 109                                           |                                           |
| Petroleum Hydrocarbons Analyses                        |                                            |                                  |                                     |                                            |                                     |                                     |                                            |                                     |                                   |                                               |                                           |
| Gasoline Range Organics (GRO)                          |                                            |                                  | < 0.025                             |                                            |                                     |                                     |                                            |                                     | 0.026 J                           |                                               |                                           |
| Diesel Range Organics                                  |                                            |                                  | 310.52                              |                                            |                                     |                                     |                                            |                                     | 4.79                              |                                               |                                           |
| 2.000 Hange Organics                                   |                                            |                                  | 0.0.02                              |                                            |                                     |                                     |                                            |                                     | 0                                 |                                               |                                           |
| Conventional Chemistry Parameters                      |                                            |                                  |                                     |                                            |                                     |                                     |                                            |                                     |                                   |                                               |                                           |
| Cyanide                                                | <0.130                                     | < 0.134                          | 1.82                                | <0.128                                     | <0.146                              | <0.150                              | < 0.146                                    | <0.162                              | <0.134                            | 27                                            |                                           |
| Hexavalent Chromium                                    | <0.216                                     | 0.0910 J                         | <0.229                              | 0.0870 J                                   | <0.240                              | 0.674                               | 0.0960 J                                   | 0.488 J                             | 0.360 J                           | 1                                             |                                           |
| Reactive Cyanide                                       |                                            |                                  | <0.0500                             |                                            |                                     |                                     |                                            |                                     | <0.0500                           |                                               |                                           |
| Reactive Sulfide                                       |                                            |                                  | 11                                  |                                            |                                     |                                     |                                            |                                     | 27                                |                                               |                                           |
| Ignitability                                           |                                            |                                  | NO                                  |                                            |                                     |                                     |                                            |                                     | NO                                |                                               |                                           |
| Corrosivity                                            |                                            |                                  | 8.75                                |                                            |                                     |                                     |                                            |                                     | 8.79                              |                                               |                                           |
|                                                        |                                            |                                  |                                     |                                            |                                     |                                     |                                            |                                     |                                   |                                               |                                           |
| TCLP (mg/L)                                            |                                            |                                  |                                     |                                            |                                     |                                     |                                            |                                     |                                   |                                               |                                           |
| Chromium                                               |                                            |                                  |                                     |                                            |                                     |                                     |                                            | 0.025                               |                                   | 5                                             |                                           |
| Lead                                                   | 0.62                                       | 0.104                            | 0.0905                              | 0.188                                      |                                     |                                     |                                            |                                     |                                   | 5                                             |                                           |
|                                                        |                                            |                                  |                                     |                                            |                                     |                                     |                                            |                                     |                                   |                                               |                                           |

#### Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

- <: Analyzed for but not detected
- --: No standard
- J: Estimated value
- D: Detected at secondary dilution



# Table 15 Unionport Road, Bronx, NY Summary of Soil Analytical Results Metals, Petroleum Hydrocarbons Analyses and Conventional Chemistry Parameters

| Sample ID<br>Sampling Date<br>Start Depth           | 6/25/2014        | GP-8(6-18)<br>6/24/2014<br>6 inches | GP-9(0-5)<br>6/25/2014<br>0 feet | GP-10(6-19)<br>6/23/2014<br>6 inches | GP-11(6-23)<br>6/23/2014<br>6 inches | GP-12(0-5)<br>6/24/2014<br>0 feet | GP-13(0-5)<br>6/23/2014<br>0 feet | GP-13(18-20)<br>6/30/2014<br>18 feet | GP-14(6-18)<br>6/25/2014<br>6 inches | NYCRR 6 Part375 Unrestricted Use Soil | CP-51 10-10<br>SCOs<br>Residential |
|-----------------------------------------------------|------------------|-------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|------------------------------------|
| End Depth                                           |                  | 18 inches                           | 5 feet                           | 19 inches                            | 23 inches                            | 5 feet                            | 5 feet                            | 23 feet                              | 18 inches                            | Cleanup                               | Use                                |
|                                                     |                  |                                     |                                  |                                      |                                      |                                   |                                   |                                      |                                      | Objectives (SCOs)                     |                                    |
| Units                                               | mg/Kg            | mg/Kg                               | mg/Kg                            | mg/Kg                                | mg/Kg                                | mg/Kg                             | mg/Kg                             | mg/Kg                                | mg/Kg                                | mg/Kg                                 | mg/kg                              |
| Metals Antimony                                     | <1.15            | 0.883 J                             | <1.16                            | <1.27                                | <1.21                                | <1.19                             | <1.19                             | <1.20                                | 1.00 J                               |                                       |                                    |
| Antimony                                            | 1.13             | 22.6                                | 3.94                             | 5.79                                 | 4.14                                 | 2.82                              | 4.43                              | 2.25                                 | 3.61                                 | 13                                    |                                    |
| Barium                                              | 84.4             | 1410                                | 359                              | 104                                  | 47.1                                 | 91.4                              | 142                               | 33.8                                 | 68.6                                 | 350                                   |                                    |
| Beryllium                                           | 0.58             | 0.906                               | 0.595                            | 0.74                                 | 0.686                                | 0.632                             | 0.669                             | 0.54                                 | 1.63                                 | 7.2                                   |                                    |
| Cadmium                                             | <0.138           | 5.77                                | 0.224 J                          | <0.152                               | <0.145                               | <0.143                            | <0.143                            | <0.144                               | 0.179 J                              | 2.5                                   |                                    |
| Chromium                                            | 18.3             | 60.1                                | 28.6                             | 22.5                                 | 20.4                                 | 24.7                              | 29.2                              | 14.9                                 | 21.1                                 | 30                                    |                                    |
| Cobalt                                              | 19.6             | 13.3                                | 11                               | 13.1                                 | 7.39                                 | 25.2                              | 12.4                              | 9.04                                 | 75.1                                 |                                       | 30                                 |
| Copper                                              | 28.5             | 82.5                                | 29.9                             | 28.8                                 | 7.86                                 | 25                                | 36.2                              | 27.1                                 | 61.1                                 | 50                                    |                                    |
| Lead                                                | 36.4             | 1060                                | 827                              | 405                                  | 9.84                                 | 20.6                              | 151                               | 11.1                                 | 11.4                                 | 63                                    |                                    |
| Manganese                                           | 582              | 644                                 | 288                              | 512                                  | 264                                  | 658                               | 374                               | 194                                  | 1580                                 | 1600                                  |                                    |
| Mercury                                             | < 0.0050         | 0.382                               | 0.239                            | 0.269                                | 0.039                                | 0.029                             | 0.258                             | 0.0100 J                             | 0.0100 J                             | 0.18                                  |                                    |
| Nickel                                              | 25.8             | 34.5                                | 25                               | 21                                   | 13.3                                 | 26.4                              | 25.6                              | 24.8                                 | 73.3                                 | 30                                    |                                    |
| Selenium                                            | 0.898 J          | 2.74                                | 0.729 J                          | 1.9                                  | 1.55                                 | 1.52                              | 1.18                              | 0.716 J                              | 2.03                                 | 3.9                                   |                                    |
| Silver                                              | 0.765            | 2.6                                 | 0.807                            | 1.21                                 | 1.1                                  | 1.14                              | 1.3                               | 0.791                                | 2.12                                 | 2                                     |                                    |
| Thallium                                            | < 0.922          | <1.02                               | < 0.926                          | <1.02                                | < 0.966                              | <0.951                            | < 0.950                           | <0.961                               | <0.989                               |                                       |                                    |
| Vanadium                                            | 23.9             | 36                                  | 29.3                             | 31.3                                 | 48.8                                 | 36.3                              | 30                                | 15.8                                 | 33.5                                 |                                       | 100                                |
| Zinc                                                | 71.6             | 1710                                | 265                              | 238                                  | 32.3                                 | 74.7                              | 203                               | 64.5                                 | 104                                  | 109                                   |                                    |
| Dataslavia I buda aada aa Aaabaaa                   |                  |                                     |                                  |                                      |                                      |                                   |                                   |                                      |                                      |                                       |                                    |
| Petroleum Hydrocarbons Analyses                     | 0.007.1          |                                     |                                  | -0.007                               | .0.000                               |                                   |                                   |                                      | .0.000                               |                                       |                                    |
| Gasoline Range Organics (GRO) Diesel Range Organics | 0.027 J<br>2.995 |                                     |                                  | <0.027<br>153.91                     | <0.026<br>4.097                      |                                   |                                   |                                      | <0.026<br>26.883                     |                                       |                                    |
| Diesei Range Organics                               | 2.995            |                                     |                                  | 153.91                               | 4.097                                |                                   |                                   |                                      | 20.883                               |                                       |                                    |
| Conventional Chemistry Parameters                   |                  |                                     |                                  |                                      |                                      |                                   |                                   |                                      |                                      |                                       |                                    |
| Cyanide                                             | <0.132           | 0.639                               | <0.126                           | <0.148                               | <0.141                               | <0.138                            | <0.142                            | <0.142                               | <0.136                               | 27                                    |                                    |
| Hexavalent Chromium                                 | <0.220           | <0.245                              | <0.218                           | <0.239                               | 0.0940 J                             | 0.0900 J                          | <0.225                            | 0.0920 J                             | 0.0920 J                             | 1                                     |                                    |
| Reactive Cyanide                                    | < 0.0500         |                                     |                                  | < 0.0500                             | < 0.0500                             |                                   |                                   |                                      | < 0.0500                             |                                       |                                    |
| Reactive Sulfide                                    | 20               |                                     |                                  | <10.0                                | <10.0                                |                                   |                                   |                                      | 48                                   |                                       |                                    |
| Ignitability                                        | NO               |                                     |                                  | NO                                   | NO                                   |                                   |                                   |                                      | NO                                   |                                       |                                    |
| Corrosivity                                         | 8.66             |                                     |                                  | 8.68                                 | 5.22                                 |                                   |                                   |                                      | 9.83                                 |                                       |                                    |
|                                                     |                  |                                     |                                  |                                      |                                      |                                   |                                   |                                      |                                      |                                       |                                    |
| TCLP (mg/L)                                         |                  |                                     |                                  |                                      |                                      |                                   |                                   |                                      |                                      |                                       |                                    |
| Chromium                                            |                  |                                     |                                  |                                      |                                      |                                   |                                   |                                      |                                      | 5                                     |                                    |
| Lead                                                |                  | 0.202                               | 1.76                             | 0.105                                |                                      |                                   | 0.0277                            |                                      |                                      | 5                                     |                                    |
|                                                     |                  |                                     |                                  |                                      |                                      |                                   |                                   |                                      |                                      |                                       |                                    |

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

- <: Analyzed for but not detected
- --: No standard
- J: Estimated value
- D: Detected at secondary dilution



#### Table 15 Unionport Road, Bronx, NY Summary of Soil Analytical Results

#### Metals, Petroleum Hydrocarbons Analyses and Conventional Chemistry Parameters

| Arsenic   3.19   2.4   6.82   4.36   2.65   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample ID                         | GP-15(6-20) | GP-16(0-5) | GP-17(0-5) | GP-18(6-18) | GP-19(10-24) | NYCRR 6 Part375   | CP-51 10-10 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------|------------|------------|-------------|--------------|-------------------|-------------|
| Start Depth   20 inches   5 feet   5 feet   5 feet   18 inches   24 inches   | Sampling Date                     | 6/26/2014   | 6/26/2014  | 6/26/2014  | 6/26/2014   | 6/25/2014    | Unrestricted      | SCOs        |
| Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |             | 0 feet     | 0 feet     | 6 inches    | 10 inches    | Use Soil          | Residential |
| Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | End Depth                         | 20 inches   | 5 feet     | 5 feet     | 18 inches   | 24 inches    | Cleanup           | Use         |
| Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |             |            |            |             |              | Objectives (SCOs) |             |
| Antimony   0.770   0.770   0.770   0.770   0.770   0.770   0.770   0.770   0.770   0.770   0.770   0.770   0.872   0.884   0.71   0.487   0.72   0.72   0.710   0.487   0.72   0.72   0.710   0.487   0.72   0.72   0.710   0.487   0.72   0.72   0.710   0.487   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0.72   0 | Units                             | mg/Kg       | mg/Kg      | mg/Kg      | mg/Kg       | mg/Kg        | mg/Kg             | mg/kg       |
| Arsenic   3.19   2.4   6.82   4.36   2.65   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>Metals</u>                     |             |            |            |             |              |                   |             |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Antimony                          | 0.770 J     |            | <1.24      | 0.884 J     |              |                   |             |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arsenic                           | 3.19        | 2.4        | 6.82       | 4.36        | 2.65         | 13                |             |
| Cadmium         <0.151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barium                            | 79.8        | 91.6       | 748        | 539         | 87           | 350               |             |
| Chromium   22.8   20.2   24.4   25.4   23   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Beryllium                         | 0.582       | 0.422      | 0.634      | 0.71        | 0.487        | 7.2               |             |
| Cobalt         14.2         13.5         14         30         10.1          30           Copper         26.8         19.7         51         44.8         23.6         50            Lead         28.1         39.3         3240         2140         26.4         63            Manganese         367         700         607         542         400         1600            Mercury         0.208         0.039         0.681 D         0.03         0.0070 J         0.18            Nickel         22.1         15.4         19.1         30.5         18.6         30            Selenium         1.1         0.847 J         1.33         1.32         0.951 J         3.9            Silver         0.971         0.809         1.27         1.4         0.802         2         2            Thallium         <1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cadmium                           | <0.151      | < 0.137    | 0.79       | 0.0680 J    | < 0.161      | 2.5               |             |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chromium                          | 22.8        | 20.2       | 24.4       | 25.4        | 23           | 30                |             |
| Lead   28.1   39.3   3240   2140   26.4   63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cobalt                            | 14.2        | 13.5       | 14         | 30          | 10.1         |                   | 30          |
| Manganese         367         700         607         542         400         1600            Mercury         0.208         0.039         0.681 D         0.03         0.0070 J         0.18            Nickel         22.1         15.4         19.1         30.5         18.6         30            Selenium         1.1         0.847 J         1.33         1.32         0.951 J         3.9            Silver         0.971         0.809         1.27         1.4         0.802         2            Thallium         <1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Copper                            | 26.8        | 19.7       | 51         | 44.8        | 23.6         | 50                |             |
| Mercury   0.208   0.039   0.681 D   0.03   0.0070 J   0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lead                              | 28.1        | 39.3       | 3240       | 2140        | 26.4         | 63                |             |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Manganese                         | 367         | 700        | 607        | 542         | 400          | 1600              |             |
| Selenium   1.1   0.847 J   1.33   1.32   0.951 J   3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mercury                           | 0.208       | 0.039      | 0.681 D    | 0.03        | 0.0070 J     | 0.18              |             |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nickel                            | 22.1        | 15.4       | 19.1       | 30.5        | 18.6         | 30                |             |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Selenium                          | 1.1         | 0.847 J    | 1.33       | 1.32        | 0.951 J      | 3.9               |             |
| Vanadium Zinc         30.5 63.1         29.8 50.6         29.2 38.4 50.6         30.1 50.6         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <th>Silver</th> <th>0.971</th> <th>0.809</th> <th>1.27</th> <th>1.4</th> <th>0.802</th> <th>2</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Silver                            | 0.971       | 0.809      | 1.27       | 1.4         | 0.802        | 2                 |             |
| Petroleum Hydrocarbons Analyses   Gasoline Range Organics (GRO)       <0.026   <0.026   <0.028       <-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thallium                          | <1.00       | < 0.912    | < 0.992    | <1.04       | <1.08        |                   |             |
| Petroleum Hydrocarbons Analyses   Gasoline Range Organics (GRO)       <0.026   <0.026   <0.028                 Diesel Range Organics   Conventional Chemistry Parameters   Cyanide                 | Vanadium                          | 30.5        | 29.8       | 29.2       | 38.4        | 30.1         |                   | 100         |
| Conventional Chemistry Parameters   Cyanide   Cyanide  | Zinc                              | 63.1        | 50.6       | 561        | 186         | 59.7         | 109               |             |
| Conventional Chemistry Parameters   Cyanide   Cyanide  | Detectors I hadronesh are Archare |             |            |            |             |              |                   |             |
| Diesel Range Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |             |            | 0.000      | 0.000       | 0.000        |                   |             |
| Conventional Chemistry Parameters         0.209 J         0.0480 J         0.189 J         0.0430 J         <0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 5 \ ,                           |             |            |            |             |              |                   |             |
| Cyanide         0.209 J         0.0480 J         0.189 J         0.0430 J         <0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Diesei Range Organics             |             |            | 98.21      | 66.463      | 2.096        |                   |             |
| Cyanide         0.209 J         0.0480 J         0.189 J         0.0430 J         <0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conventional Chemistry Parameters |             |            |            |             |              |                   |             |
| Hexavalent Chromium         0.361 J         <0.222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 0.200.1     | 0.0490.1   | 0.190 I    | 0.0430.1    | ∠0.150       | 27                | _           |
| Reactive Cyanide           <0.0500         <0.0500 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |             |            |            |             |              |                   |             |
| Reactive Sulfide           19         38         <10.0 <th></th> <th>0.5013</th> <th>_</th> <th></th> <th></th> <th></th> <th><u>'</u></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 0.5013      | _          |            |             |              | <u>'</u>          |             |
| Ignitability           NO         NO         NO                                  5            Chromium              5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                 |             |            |            |             |              |                   |             |
| Corrosivity           8.71         8.29         8.88             TCLP (mg/L)         Chromium             5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |             |            | -          |             |              |                   |             |
| TCLP (mg/L) Chromium 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                 |             |            | _          | _           | _            |                   |             |
| Chromium 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Corrosivity                       |             | ==         | 0.7 1      | 0.23        | 0.00         |                   |             |
| Chromium 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TCLP (mg/L)                       |             |            |            |             |              |                   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chromium                          |             |            |            |             |              | 5                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |             |            | 0.295      | 0.0334      |              |                   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |             |            |            |             |              | -                 |             |

#### Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

- <: Analyzed for but not detected
- --: No standard
- J: Estimated value
- D: Detected at secondary dilution



| Sample ID<br>Sampling Date<br>Start Depth<br>End Depth | GP-1(0-5)<br>6/24/2014<br>0 feet<br>5 feet | GP-2(0-5)<br>6/24/2014<br>0 feet<br>5 feet | GP-3(6-18)<br>6/24/2014<br>6 inches<br>18 inches | GP-4(0-5)<br>6/23/2014<br>0 feet<br>5 feet | GP-5(10-12)<br>6/23/2014<br>10 feet<br>12 feet | NYCRR 6 Part375<br>Unrestricted<br>Use Soil<br>Cleanup | CP-51 10-10<br>SCOs<br>Residential<br>Use |
|--------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------------------|-------------------------------------------|
| Units                                                  | ug/kg                                      | ug/kg                                      | ug/kg                                            | ug/kg                                      | ug/kg                                          | Objectives (SCOs)<br>ug/Kg                             | ug/kg                                     |
| PESTICIDES                                             |                                            |                                            |                                                  |                                            |                                                |                                                        |                                           |
| Aldrin                                                 | <0.368                                     | <0.38                                      | <0.38                                            | < 0.36                                     | < 0.399                                        | 5                                                      |                                           |
| alpha BHC                                              | <0.368                                     | <0.38                                      | <0.38                                            | < 0.36                                     | < 0.399                                        | 20                                                     |                                           |
| alpha Endosulfan                                       | < 0.368                                    | < 0.38                                     | < 0.38                                           | < 0.36                                     | < 0.399                                        | 2400                                                   |                                           |
| beta-BHC                                               | <0.368                                     | <0.38                                      | <0.38                                            | < 0.36                                     | < 0.399                                        | 36                                                     |                                           |
| beta-Endosulfan                                        | <0.368                                     | <0.38                                      | <0.38                                            | < 0.36                                     | < 0.399                                        | 2,400                                                  |                                           |
| alpha-Chlordane                                        | <0.368                                     | <0.38                                      | <0.38                                            | < 0.36                                     | < 0.399                                        | 94                                                     |                                           |
| gamma-Chlordane                                        | <0.368                                     | <0.38                                      | < 0.38                                           | < 0.36                                     | < 0.399                                        | 94                                                     | 0.00054                                   |
| delta-BHC                                              | <0.368                                     | <0.38                                      | <0.38                                            | <0.36                                      | < 0.399                                        | 40                                                     |                                           |
| Dieldrin                                               | < 0.368                                    | <0.38                                      | <0.38                                            | <0.36                                      | < 0.399                                        | 5                                                      |                                           |
| Endosulfan sulfate                                     | < 0.368                                    | <0.38                                      | <0.38                                            | <0.36                                      | < 0.399                                        | 2400                                                   |                                           |
| Endrin                                                 | < 0.368                                    | <0.38                                      | < 0.38                                           | < 0.36                                     | < 0.399                                        | 14                                                     |                                           |
| Endrin aldehyde                                        | <0.368                                     | <0.38                                      | <0.38                                            | < 0.36                                     | < 0.399                                        |                                                        |                                           |
| Endrin ketone                                          | < 0.368                                    | <0.38                                      | < 0.38                                           | < 0.36                                     | < 0.399                                        |                                                        |                                           |
| gamma-BHC (Lindane)                                    | <0.368                                     | <0.38                                      | < 0.38                                           | < 0.36                                     | < 0.399                                        | 100                                                    |                                           |
| Heptachlor                                             | <0.368                                     | <0.38                                      | <0.38                                            | < 0.36                                     | < 0.399                                        | 42                                                     |                                           |
| Heptachlor epoxide                                     | <0.368                                     | <0.38                                      | <0.38                                            | < 0.36                                     | < 0.399                                        |                                                        | 77                                        |
| Methoxychlor                                           | <0.368                                     | <0.38                                      | <0.38                                            | < 0.36                                     | < 0.399                                        |                                                        | 0.1                                       |
| 4,4'-DDD                                               | <0.368                                     | <0.38                                      | <0.38                                            | < 0.36                                     | < 0.399                                        | 3.3                                                    |                                           |
| 4,4'-DDE                                               | <0.368                                     | <0.38                                      | <0.38                                            | < 0.36                                     | < 0.399                                        | 3.3                                                    |                                           |
| 4,4'-DDT                                               | <0.368                                     | <0.38                                      | <0.38                                            | < 0.36                                     | < 0.399                                        | 3.3                                                    |                                           |
| Toxaphene                                              | <3.7                                       | <3.8                                       | <3.8                                             | <3.6                                       | <4                                             |                                                        |                                           |
| PCBS                                                   |                                            |                                            |                                                  |                                            |                                                |                                                        |                                           |
| Aroclor-1016                                           | <3.7                                       | <3.8                                       | <3.8                                             | <3.6                                       | <4                                             | 100                                                    |                                           |
| Aroclor-1221                                           | <3.7                                       | <3.8                                       | <3.8                                             | <3.6                                       | <4                                             | 100                                                    |                                           |
| Aroclor-1232                                           | <3.7                                       | <3.8                                       | <3.8                                             | <3.6                                       | <4                                             | 100                                                    |                                           |
| Aroclor-1242                                           | <3.7                                       | <3.8                                       | <3.8                                             | <3.6                                       | <4                                             | 100                                                    |                                           |
| Aroclor-1248                                           | <3.7                                       | <3.8                                       | <3.8                                             | <3.6                                       | <4                                             | 100                                                    |                                           |
| Aroclor-1254                                           | 59.0 J                                     | 7.00 J                                     | <3.8                                             | 14.3 J                                     | 15.9 J                                         | 100                                                    |                                           |
| Aroclor-1260                                           | <3.7                                       | <3.8                                       | <3.8                                             | <3.6                                       | <4                                             | 100                                                    |                                           |
| Total PCBs                                             | 59                                         | 7                                          | 0                                                | 14.3                                       | 15.9                                           | 100                                                    |                                           |
| HERBICIDES                                             |                                            |                                            |                                                  |                                            |                                                |                                                        |                                           |
| 2,4,5-T                                                | <18.6                                      | <19.2                                      | <19.2                                            | <18.2                                      | <20.1                                          |                                                        | 0.1                                       |
| Silvex                                                 | <18.6                                      | <19.2                                      | <19.2                                            | <18.2                                      | <20.1                                          | 3,800                                                  |                                           |
| 2,4-D                                                  | <18.6                                      | <19.2                                      | <19.2                                            | <18.2                                      | <20.1                                          |                                                        | 0.1                                       |
| 2,4-DB                                                 | <18.6                                      | <19.2                                      | <19.2                                            | <18.2                                      | <20.1                                          |                                                        |                                           |
| Dicamba                                                | <18.6                                      | <19.2                                      | <19.2                                            | <18.2                                      | <20.1                                          |                                                        |                                           |
| Dichlorprop                                            | <18.6                                      | <19.2                                      | <19.2                                            | <18.2                                      | <20.1                                          |                                                        |                                           |
| Dinoseb                                                | <18.6                                      | <19.2                                      | <19.2                                            | <18.2                                      | <20.1                                          |                                                        |                                           |

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram

<: Analyzed for but not detected

J: Estimated value

--: No standard or not analyzed



| Sample ID<br>Sampling Date<br>Start Depth | GP-5(18-20)<br>6/23/2014<br>18 feet | GP-6(12-14)<br>6/25/2014<br>7 feet | GP-6(7-9)<br>6/25/2014<br>12 feet | GP-7(14-16)<br>6/25/2014<br>9 feet | GP-7(9-11)<br>6/25/2014<br>14 feet | NYCRR 6 Part375 Unrestricted Use Soil | CP-51 10-10<br>SCOs<br>Residential |
|-------------------------------------------|-------------------------------------|------------------------------------|-----------------------------------|------------------------------------|------------------------------------|---------------------------------------|------------------------------------|
| End Depth                                 | 20 feet                             | 9 feet                             | 14 feet                           | 11 feet                            | 16 feet                            | Cleanup                               | Use                                |
|                                           |                                     |                                    |                                   |                                    |                                    | Objectives (SCOs)                     |                                    |
| Units                                     | ug/kg                               | ug/kg                              | ug/kg                             | ug/kg                              | ug/kg                              | ug/Kg                                 | ug/kg                              |
| PESTICIDES                                |                                     |                                    |                                   |                                    |                                    |                                       |                                    |
| Aldrin                                    | <0.401                              | <0.452                             | < 0.403                           | <0.366                             | <0.38                              | 5                                     |                                    |
| alpha BHC                                 | <0.401                              | <0.452                             | < 0.403                           | <0.366                             | <0.38                              | 20                                    |                                    |
| alpha Endosulfan                          | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              | 2400                                  |                                    |
| beta-BHC                                  | <0.401                              | <0.452                             | < 0.403                           | <0.366                             | <0.38                              | 36                                    |                                    |
| beta-Endosulfan                           | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              | 2,400                                 |                                    |
| alpha-Chlordane                           | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              | 94                                    |                                    |
| gamma-Chlordane                           | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              | 94                                    | 0.00054                            |
| delta-BHC                                 | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              | 40                                    |                                    |
| Dieldrin                                  | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              | 5                                     |                                    |
| Endosulfan sulfate                        | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              | 2400                                  |                                    |
| Endrin                                    | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              | 14                                    |                                    |
| Endrin aldehyde                           | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              |                                       |                                    |
| Endrin ketone                             | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              |                                       |                                    |
| gamma-BHC (Lindane)                       | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              | 100                                   |                                    |
| Heptachlor                                | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              | 42                                    |                                    |
| Heptachlor epoxide                        | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              |                                       | 77                                 |
| Methoxychlor                              | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              |                                       | 0.1                                |
| 4,4'-DDD                                  | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              | 3.3                                   |                                    |
| 4,4'-DDE                                  | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              | 3.3                                   |                                    |
| 4,4'-DDT<br>                              | <0.401                              | <0.452                             | <0.403                            | <0.366                             | <0.38                              | 3.3                                   |                                    |
| Toxaphene                                 | <4.1                                | <4.6                               | <4.1                              | <3.7                               | <3.8                               |                                       |                                    |
| PCBS                                      |                                     |                                    |                                   |                                    |                                    |                                       |                                    |
| Aroclor-1016                              | <4                                  | <4.10                              | <4.60                             | <3.80                              | <3.70                              | 100                                   |                                    |
| Aroclor-1010<br>Aroclor-1221              | <4                                  | <4.10<br><4.10                     | <4.60                             | <3.80                              | <3.70                              | 100                                   |                                    |
| Aroclor-1221<br>Aroclor-1232              | <4<br><4                            | <4.10<br><4.10                     | <4.60<br><4.60                    | <3.80                              | <3.70                              | 100                                   |                                    |
| Aroclor-1232<br>Aroclor-1242              | <4<br><4                            | <4.10                              | <4.60                             | <3.80                              | <3.70                              | 100                                   |                                    |
| Aroclor-1248                              | <4<br><4                            | <4.10<br><4.10                     | <4.60                             | <3.80                              | <3.70                              | 100                                   |                                    |
| Aroclor-1254                              | <4                                  | <4.10<br><4.10                     | <4.60                             | <3.80                              | <3.70                              | 100                                   |                                    |
| Aroclor-1260                              | <4<br><4                            | <4.10                              | <4.60                             | <3.80                              | <3.70                              | 100                                   |                                    |
| A100101-1200                              | <b>\4</b>                           | V <del>4</del> .10                 | <b>\4.00</b>                      | <b>\3.00</b>                       | <b>\\ 3.70</b>                     | 100                                   |                                    |
| Total PCBs                                | 0                                   | 0                                  | 0                                 | 0                                  | 0                                  | 100                                   |                                    |
| Total T ODS                               | Ü                                   | Ü                                  | Ü                                 | Ü                                  | Ü                                  | 100                                   |                                    |
| HERBICIDES                                |                                     |                                    |                                   |                                    |                                    |                                       |                                    |
| 2,4,5-T                                   | <20.3                               | <20.4                              | <22.8                             | <19.2                              | <18.5                              |                                       | 0.1                                |
| Silvex                                    | <20.3                               | <20.4                              | <22.8 <19.2 <18.5 3,800           |                                    |                                    |                                       |                                    |
| 2,4-D                                     | <20.3                               | <20.4                              | <22.8                             | <19.2                              | <18.5                              |                                       | 0.1                                |
| 2,4-DB                                    | <20.3                               | <20.4                              | <22.8                             | <19.2                              | <18.5                              |                                       |                                    |
| Dicamba                                   | <20.3                               | <20.4                              | <22.8                             | <19.2                              | <18.5                              |                                       |                                    |
| Dichlorprop                               | <20.3                               | <20.4                              | <22.8                             | <19.2                              | <18.5                              |                                       |                                    |
| Dinoseb                                   | <20.3                               | <20.4                              | <22.8                             | <19.2                              | <18.5                              |                                       |                                    |

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram

<: Analyzed for but not detected

J: Estimated value

--: No standard or not analyzed



| Sample ID<br>Sampling Date<br>Start Depth<br>End Depth | GP-8(6-18)<br>6/24/2014<br>6 inches<br>18 inches | GP-9(0-5)<br>6/25/2014<br>0 feet<br>5 feet | GP-10(6-19)<br>6/23/2014<br>6 inches<br>19 inches | GP-11(6-23)<br>6/23/2014<br>6 inches<br>23 inches | GP-12(0-5)<br>6/24/2014<br>0 feet<br>5 feet | NYCRR 6 Part375 Unrestricted Use Soil Cleanup | CP-51 10-10<br>SCOs<br>Residential<br>Use |
|--------------------------------------------------------|--------------------------------------------------|--------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------|-----------------------------------------------|-------------------------------------------|
| Units                                                  | ug/kg                                            | ug/kg                                      | ug/kg                                             | ug/kg                                             | ug/kg                                       | Objectives (SCOs)<br>ug/Kg                    | ug/kg                                     |
| PESTICIDES                                             |                                                  |                                            |                                                   |                                                   |                                             | _                                             |                                           |
| Aldrin                                                 | <0.404                                           | <0.362                                     | <0.406                                            | <0.39                                             | <0.374                                      | 5                                             |                                           |
| alpha BHC                                              | <0.404                                           | <0.362                                     | <0.406                                            | <0.39                                             | <0.374                                      | 20                                            |                                           |
| alpha Endosulfan                                       | <0.404                                           | <0.362                                     | <0.406                                            | <0.39                                             | <0.374                                      | 2400                                          |                                           |
| beta-BHC<br>beta-Endosulfan                            | <0.404<br><0.404                                 | <0.362<br><0.362                           | <0.406<br><0.406                                  | <0.39<br><0.39                                    | <0.374<br><0.374                            | 36<br>2,400                                   |                                           |
| alpha-Chlordane                                        | <0.404                                           | <0.362<br><0.362                           | <0.406                                            | <0.39<br><0.39                                    | <0.374<br><0.374                            | 2,400<br>94                                   |                                           |
| gamma-Chlordane                                        | <0.404                                           | <0.362                                     | <0.406                                            | <0.39                                             | <0.374                                      | 94                                            | 0.00054                                   |
| delta-BHC                                              | <0.404                                           | <0.362                                     | <0.406                                            | <0.39                                             | <0.374                                      | 40                                            | 0.00034                                   |
| Dieldrin                                               | <0.404                                           | <0.362                                     | <0.406                                            | <0.39                                             | <0.374                                      | 5                                             |                                           |
| Endosulfan sulfate                                     | <0.404                                           | <0.362                                     | <0.406                                            | <0.39                                             | <0.374                                      | 2400                                          |                                           |
| Endrin                                                 | <0.404                                           | <0.362                                     | <0.406                                            | <0.39                                             | < 0.374                                     | 14                                            |                                           |
| Endrin aldehyde                                        | <0.404                                           | <0.362                                     | <0.406                                            | <0.39                                             | < 0.374                                     |                                               |                                           |
| Endrin ketone                                          | <0.404                                           | <0.362                                     | <0.406                                            | <0.39                                             | <0.374                                      |                                               |                                           |
| gamma-BHC (Lindane)                                    | <0.404                                           | <0.362                                     | <0.406                                            | <0.39                                             | <0.374                                      | 100                                           |                                           |
| Heptachlor                                             | <0.404                                           | <0.362                                     | < 0.406                                           | <0.39                                             | < 0.374                                     | 42                                            |                                           |
| Heptachlor epoxide                                     | <0.404                                           | <0.362                                     | < 0.406                                           | <0.39                                             | < 0.374                                     |                                               | 77                                        |
| Methoxychlor                                           | <0.404                                           | <0.362                                     | <0.406                                            | < 0.39                                            | < 0.374                                     |                                               | 0.1                                       |
| 4,4'-DDD                                               | < 0.404                                          | < 0.362                                    | < 0.406                                           | < 0.39                                            | < 0.374                                     | 3.3                                           |                                           |
| 4,4'-DDE                                               | 4.7                                              | < 0.362                                    | < 0.406                                           | < 0.39                                            | < 0.374                                     | 3.3                                           |                                           |
| 4,4'-DDT                                               | 2.2                                              | < 0.362                                    | < 0.406                                           | < 0.39                                            | < 0.374                                     | 3.3                                           |                                           |
| Toxaphene                                              | <4.1                                             | <3.6                                       | <4.1                                              | <3.9                                              | <3.8                                        |                                               |                                           |
| PCBS                                                   |                                                  |                                            |                                                   |                                                   |                                             |                                               |                                           |
| Aroclor-1016                                           | <4.1                                             | <3.60                                      | <4.1                                              | <3.9                                              | <3.8                                        | 100                                           |                                           |
| Aroclor-1221                                           | <4.1                                             | <3.60                                      | <4.1                                              | <3.9                                              | <3.8                                        | 100                                           |                                           |
| Aroclor-1232                                           | <4.1                                             | <3.60                                      | <4.1                                              | <3.9                                              | <3.8                                        | 100                                           |                                           |
| Aroclor-1242                                           | <4.1                                             | <3.60                                      | <4.1                                              | <3.9                                              | <3.8                                        | 100                                           |                                           |
| Aroclor-1248                                           | <4.1                                             | <3.60                                      | <4.1                                              | <3.9                                              | <3.8                                        | 100                                           |                                           |
| Aroclor-1254                                           | <4.1                                             | <3.60                                      | <4.1                                              | <3.9                                              | <3.8                                        | 100                                           |                                           |
| Aroclor-1260                                           | <4.1                                             | <3.60                                      | <4.1                                              | <3.9                                              | <3.8                                        | 100                                           |                                           |
| Total PCBs                                             | 0                                                | 0                                          | 0                                                 | 0                                                 | 0                                           | 100                                           |                                           |
| HERBICIDES                                             |                                                  |                                            |                                                   |                                                   |                                             |                                               |                                           |
| 2,4,5-T                                                | <20.5                                            | <18.3                                      | <20.6                                             | <19.7                                             | <18.9                                       |                                               | 0.1                                       |
| Silvex                                                 | <20.5                                            | <18.3                                      | <20.6 <19.7 <18.9                                 |                                                   | 3,800                                       |                                               |                                           |
| 2,4-D                                                  | <20.5                                            | <18.3                                      | <20.6                                             | <19.7                                             | <18.9                                       |                                               | 0.1                                       |
| 2,4-DB                                                 | <20.5                                            | <18.3                                      | <20.6                                             | <19.7                                             | <18.9                                       |                                               |                                           |
| Dicamba                                                | <20.5                                            | <18.3                                      | <20.6                                             | <19.7                                             | <18.9                                       |                                               |                                           |
| Dichlorprop                                            | <20.5                                            | <18.3                                      | <20.6                                             | <19.7                                             | <18.9                                       |                                               |                                           |
| Dinoseb                                                | <20.5                                            | <18.3                                      | <20.6                                             | <19.7                                             | <18.9                                       |                                               |                                           |

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram

<: Analyzed for but not detected

J: Estimated value

--: No standard or not analyzed



| Sample ID           | GP-13(0-5) | GP-13(18-20) | GP-14(6-18) | GP-15(6-20) | GP-16(0-5) | NYCRR 6 Part375   | CP-51 10-10 |
|---------------------|------------|--------------|-------------|-------------|------------|-------------------|-------------|
| Sampling Date       | 6/23/2014  | 6/30/2014    | 6/25/2014   | 6/26/2014   | 6/26/2014  | Unrestricted      | SCOs        |
| Start Depth         | 0 feet     | 18 feet      | 6 inches    | 6 inches    | 0 feet     | Use Soil          | Residential |
| End Depth           | 5 feet     | 23 feet      | 18 inches   | 20 inches   | 5 feet     | Cleanup           | Use         |
|                     |            |              |             |             |            | Objectives (SCOs) |             |
| Units               | ug/kg      | ug/kg        | ug/kg       | ug/kg       | ug/kg      | ug/Kg             | ug/kg       |
| PESTICIDES          |            |              |             |             |            |                   |             |
| Aldrin              | < 0.384    | <0.380       | <0.386      | < 0.379     | < 0.366    | 5                 |             |
| alpha BHC           | < 0.384    | <0.380       | <0.386      | < 0.379     | < 0.366    | 20                |             |
| alpha Endosulfan    | <0.384     | <0.380       | <0.386      | < 0.379     | < 0.366    | 2400              |             |
| beta-BHC            | <0.384     | <0.380       | <0.386      | < 0.379     | < 0.366    | 36                |             |
| beta-Endosulfan     | <0.384     | <0.380       | <0.386      | < 0.379     | < 0.366    | 2,400             |             |
| alpha-Chlordane     | <0.384     | <0.380       | <0.386      | < 0.379     | < 0.366    | 94                |             |
| gamma-Chlordane     | <0.384     | <0.380       | <0.386      | <0.379      | < 0.366    | 94                | 0.00054     |
| delta-BHC           | <0.384     | <0.380       | <0.386      | <0.379      | <0.366     | 40                |             |
| Dieldrin            | <0.384     | <0.380       | <0.386      | <0.379      | <0.366     | 5                 |             |
| Endosulfan sulfate  | <0.384     | <0.380       | <0.386      | <0.379      | < 0.366    | 2400              |             |
| Endrin              | <0.384     | <0.380       | <0.386      | <0.379      | < 0.366    | 14                |             |
| Endrin aldehyde     | < 0.384    | <0.380       | <0.386      | <0.379      | <0.366     |                   |             |
| Endrin ketone       | <0.384     | <0.380       | <0.386      | <0.379      | < 0.366    |                   |             |
| gamma-BHC (Lindane) | <0.384     | <0.380       | <0.386      | <0.379      | <0.366     | 100               |             |
| Heptachlor          | <0.384     | <0.380       | <0.386      | <0.379      | <0.366     | 42                |             |
| Heptachlor epoxide  | <0.384     | <0.380       | <0.386      | <0.379      | <0.366     |                   | 77          |
| Methoxychlor        | <0.384     | <0.380       | <0.386      | <0.379      | <0.366     |                   | 0.1         |
| 4,4'-DDD            | <0.384     | <0.380       | <0.386      | <0.379      | <0.366     | 3.3               |             |
| 4,4'-DDE            | <0.384     | <0.380       | <0.386      | <0.379      | <0.366     | 3.3               |             |
| 4,4'-DDT            | <0.384     | <0.380       | <0.386      | <0.379      | <0.366     | 3.3               |             |
| Toxaphene           | <3.9       | <3.80        | <3.90       | <3.80       | <3.70      |                   |             |
| PCBS                |            |              |             |             |            |                   |             |
| Aroclor-1016        | <3.9       | <3.3         | <3.90       | <3.80       | <3.70      | 100               |             |
| Aroclor-1221        | <3.9       | <3.3         | <3.90       | <3.80       | <3.70      | 100               |             |
| Aroclor-1232        | <3.9       | <3.3         | <3.90       | <3.80       | <3.70      | 100               |             |
| Aroclor-1242        | <3.9       | <3.3         | <3.90       | <3.80       | <3.70      | 100               |             |
| Aroclor-1248        | <3.9       | <3.3         | <3.90       | <3.80       | <3.70      | 100               |             |
| Aroclor-1254        | 21.2       | <3.3         | <3.90       | <3.80       | <3.70      | 100               |             |
| Aroclor-1260        | <3.9       | <3.3         | <3.90       | <3.80       | <3.70      | 100               |             |
|                     |            |              |             |             |            |                   |             |
| Total PCBs          | 21.2       | 0            | 0           | 0           | 0          | 100               |             |
|                     |            |              |             |             |            |                   |             |
| HERBICIDES          |            |              |             |             |            |                   |             |
| 2,4,5-T             | <19.4      | <19.2        | <19.5       | <19.1       | <18.5      |                   | 0.1         |
| Silvex              | <19.4      | <19.2        | <19.5       | <19.1       | <18.5      | 3,800             |             |
| 2,4-D               | <19.4      | <19.2        | <19.5       | <19.1       | <18.5      |                   | 0.1         |
| 2,4-DB              | <19.4      | <19.2        | <19.5       | <19.1       | <18.5      |                   |             |
| Dicamba             | <19.4      | <19.2        | <19.5       | <19.1       | <18.5      |                   |             |
| Dichlorprop         | <19.4      | <19.2        | <19.5       | <19.1       | <18.5      |                   |             |
| Dinoseb             | <19.4      | <19.2        | <19.5       | <19.1       | <18.5      |                   |             |

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram

<: Analyzed for but not detected

J: Estimated value

--: No standard or not analyzed



| Sample ID<br>Sampling Date<br>Start Depth<br>End Depth | GP-17(0-5)<br>6/26/2014<br>0 feet<br>5 feet | GP-18(6-18)<br>6/26/2014<br>6 inches<br>18 inches | GP-19(10-24)<br>6/25/2014<br>10 inches<br>24 inches | NYCRR 6 Part375 Unrestricted Use Soil Cleanup | CP-51 10-10<br>SCOs<br>Residential<br>Use |
|--------------------------------------------------------|---------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|-------------------------------------------|
| Units                                                  | ug/kg                                       | ug/kg                                             | ug/kg                                               | Objectives (SCOs)<br>ug/Kg                    | ug/kg                                     |
| PESTICIDES                                             |                                             |                                                   |                                                     | _                                             |                                           |
| Aldrin                                                 | <0.395                                      | <0.394                                            | <0.415                                              | 5                                             |                                           |
| alpha BHC                                              | <0.395                                      | <0.394                                            | <0.415                                              | 20                                            |                                           |
| alpha Endosulfan                                       | <0.395                                      | <0.394                                            | <0.415                                              | 2400                                          |                                           |
| beta-BHC                                               | <0.395                                      | <0.394                                            | <0.415                                              | 36                                            |                                           |
| beta-Endosulfan                                        | <0.395                                      | <0.394                                            | <0.415                                              | 2,400                                         |                                           |
| alpha-Chlordane                                        | <0.395                                      | <0.394                                            | <0.415                                              | 94<br>94                                      | 0.00054                                   |
| gamma-Chlordane                                        | <0.395                                      | <0.394                                            | <0.415                                              | -                                             | 0.00054                                   |
| delta-BHC                                              | <0.395                                      | <0.394                                            | <0.415                                              | 40                                            |                                           |
| Dieldrin<br>Endosulfan sulfate                         | <0.395<br><0.395                            | <0.394<br><0.394                                  | <0.415<br><0.415                                    | 5<br>2400                                     |                                           |
| Endosultan sultate<br>Endrin                           |                                             | <0.394<br><0.394                                  | <0.415<br><0.415                                    | 2400<br>14                                    |                                           |
| Endrin aldehyde                                        | <0.395<br><0.395                            | <0.394                                            | <0.415<br><0.415                                    | 14                                            |                                           |
| Endrin aldenyde<br>Endrin ketone                       | <0.395                                      | <0.394                                            | <0.415                                              |                                               |                                           |
| gamma-BHC (Lindane)                                    | <0.395<br><0.395                            | <0.394                                            | <0.415<br><0.415                                    | 100                                           |                                           |
| Heptachlor                                             | <0.395                                      | <0.394                                            | <0.415                                              | 42                                            |                                           |
| Heptachlor epoxide                                     | <0.395                                      | <0.394                                            | <0.415                                              |                                               | <br>77                                    |
| Methoxychlor                                           | <0.395                                      | <0.394                                            | <0.415                                              |                                               | 0.1                                       |
| 4,4'-DDD                                               | <0.395                                      | <0.394                                            | <0.415                                              | 3.3                                           | U. I<br>                                  |
| 4,4'-DDE                                               | <0.395                                      | <0.394                                            | <0.415                                              | 3.3                                           |                                           |
| 4,4'-DDT                                               | <0.395                                      | <0.394                                            | <0.415                                              | 3.3                                           |                                           |
| Toxaphene                                              | <4.00                                       | <4.00                                             | <4.20                                               | 3.3                                           |                                           |
| Тохарпене                                              | <b>V4.00</b>                                | <b>V4.00</b>                                      | <b>&lt;4.20</b>                                     |                                               |                                           |
| PCBS                                                   |                                             |                                                   |                                                     |                                               |                                           |
| Aroclor-1016                                           | <4.00                                       | <4.00                                             | <4.20                                               | 100                                           |                                           |
| Aroclor-1221                                           | <4.00                                       | <4.00                                             | <4.20                                               | 100                                           |                                           |
| Aroclor-1232                                           | <4.00                                       | <4.00                                             | <4.20                                               | 100                                           |                                           |
| Aroclor-1242                                           | <4.00                                       | <4.00                                             | <4.20                                               | 100                                           |                                           |
| Aroclor-1248                                           | <4.00                                       | <4.00                                             | <4.20                                               | 100                                           |                                           |
| Aroclor-1254                                           | <4.00                                       | <4.00                                             | <4.20                                               | 100                                           |                                           |
| Aroclor-1260                                           | <4.00                                       | <4.00                                             | <4.20                                               | 100                                           |                                           |
|                                                        |                                             |                                                   |                                                     |                                               |                                           |
| Total PCBs                                             | 0                                           | 0                                                 | 0                                                   | 100                                           |                                           |
|                                                        |                                             |                                                   |                                                     |                                               |                                           |
| HERBICIDES                                             |                                             |                                                   |                                                     |                                               |                                           |
| 2,4,5-T                                                | <20.0                                       | <19.9                                             | <21.0                                               |                                               | 0.1                                       |
| Silvex                                                 | <20.0                                       | <19.9                                             | <21.0                                               | 3,800                                         |                                           |
| 2,4-D                                                  | <20.0                                       | <19.9                                             | <21.0                                               |                                               | 0.1                                       |
| 2,4-DB                                                 | <20.0                                       | <19.9                                             | <21.0                                               |                                               |                                           |
| Dicamba                                                | <20.0                                       | <19.9                                             | <21.0                                               |                                               |                                           |
| Dichlorprop                                            | <20.0                                       | <19.9                                             | <21.0                                               |                                               |                                           |
| Dinoseb                                                | <20.0                                       | <19.9                                             | <21.0                                               |                                               |                                           |

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram

<: Analyzed for but not detected

J: Estimated value

--: No standard or not analyzed



| Sample ID                                         | GW-1      | GW-5      | GW-7      | GW-9      | GW-11     | GW-13     | GW-15     | GW-16     | GW-17     | GW-18     | NYSDEC Class GA   |
|---------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------------|
| Sampling Date                                     | 6/30/2014 | 6/23/2014 | 6/25/2014 | 6/25/2014 | 6/26/2014 | 6/30/2014 | 6/26/2014 | 6/26/2014 | 6/26/2014 | 6/26/2014 | Standard          |
|                                                   |           |           |           |           |           |           |           |           |           |           | or Guidance Value |
| Units                                             | ug/L              |
| VOLATILE COMPOUNDS                                |           |           |           |           |           |           |           |           |           |           |                   |
| 1,1,1-Trichloroethane                             | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,1,2,2-Tetrachloroethane                         | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,1,2-Trichloroethane                             | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 1                 |
| 1,1-Dichloroethane                                | < 0.200   | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,1-Dichloroethene                                | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,2,3-Trichlorobenzene                            | < 0.200   | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,2,4-Trichlorobenzene                            | < 0.200   | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,2,4-Trimethylbenzene                            | <0.200    | 220 D     | <0.200    | <0.200    | <0.200    | 2600      | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,2-Dibromo-3-Chloropropane                       | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 0.04              |
| 1,2-Dibromoethane                                 | < 0.200   | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 0.0006            |
| 1,2-Dichlorobenzene                               | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | 0.810 J   | <0.200    | 3                 |
| 1,2-Dichloroethane                                | < 0.200   | <0.200    | <0.200    | <0.200    | < 0.200   | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 0.6               |
| 1,2-Dichloropropane                               | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 1                 |
| 1,3,5-Trimethylbenzene                            | <0.200    | 84.2      | <0.200    | < 0.200   | < 0.200   | 750       | <0.200    | <0.200    | <0.200    | < 0.200   | 5                 |
| 1,3-Dichlorobenzene                               | <0.200    | <0.200    | <0.200    | < 0.200   | < 0.200   | <10       | <0.200    | <0.200    | <0.200    | < 0.200   | 3                 |
| 1,4-Dichlorobenzene                               | <0.200    | <0.200    | <0.200    | < 0.200   | < 0.200   | <10       | <0.200    | < 0.200   | <0.200    | < 0.200   | 3                 |
| 1,4-Dioxane                                       | <100      | <100      | <100      | <100      | <100      | <5000     | <100      | <100      | <100      | <100      |                   |
| 2-Hexanone                                        | <2.50     | <2.50     | <2.50     | <2.50     | <2.50     | <130      | <2.50     | <2.50     | <2.50     | <2.50     | 50                |
| Acetone                                           | <1.00     | <1.00     | <1.00     | <1.00     | 7.1       | <50.0     | <1.00     | <1.00     | <1.00     | <1.00     | 50                |
| Benzene                                           | < 0.200   | 4000 D    | <0.200    | <0.200    | < 0.200   | <10       | <0.200    | 2         | <0.200    | < 0.200   | 1                 |
| Bromochloromethane                                | < 0.500   | <0.500    | < 0.500   | < 0.500   | < 0.500   | <25.0     | < 0.500   | <0.500    | < 0.500   | < 0.500   | 5                 |
| Bromodichloromethane                              | < 0.200   | <0.200    | <0.200    | < 0.200   | < 0.200   | <10       | <0.200    | < 0.200   | <0.200    | 0.970 J   | 50                |
| Bromoform                                         | < 0.200   | <0.200    | <0.200    | <0.200    | < 0.200   | <10       | <0.200    | <0.200    | <0.200    | < 0.200   | 50                |
| Bromomethane                                      | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| Carbon Disulfide                                  | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 60                |
| Carbon Tetrachloride                              | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| Chlorobenzene                                     | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| Chloroethane                                      | < 0.500   | < 0.500   | < 0.500   | < 0.500   | < 0.500   | <25.0     | < 0.500   | < 0.500   | < 0.500   | < 0.500   | 5                 |
| Chloroform                                        | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | 0.870 J   | 15.8      | 7                 |
| Chloromethane                                     | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |

See next page for Footnotes/Qualifiers.



| Sample ID                     | GW-1      | GW-5      | GW-7      | GW-9      | GW-11     | GW-13     | GW-15     | GW-16     | GW-17     | <b>GW-18</b> | NYSDEC Class GA   |
|-------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-------------------|
| Sampling Date                 | 6/30/2014 | 6/23/2014 | 6/25/2014 | 6/25/2014 | 6/26/2014 | 6/30/2014 | 6/26/2014 | 6/26/2014 | 6/26/2014 | 6/26/2014    | Standard          |
|                               |           |           |           |           |           |           |           |           |           |              | or Guidance Value |
| Units                         | ug/L         | ug/l              |
| COMPOUNDS CONTINUED           |           |           |           |           |           |           |           |           |           |              |                   |
| Cis-1,2-Dichloroethylene      | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | 7.6       | 5.9       | <0.200       | 5                 |
| Cis-1,3-Dichloropropene       | <0.200    | <0.200    | <0.200    | < 0.200   | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200       | 0.4               |
| Cyclohexane                   | <0.200    | 200       | <0.200    | < 0.200   | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200       |                   |
| Dibromochloromethane          | < 0.200   | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200       | 50                |
| Dichlorodifluoromethane       | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200       | 5                 |
| Ethylbenzene                  | <0.200    | 720 D     | <0.200    | <0.200    | <0.200    | 4600      | <0.200    | <0.200    | <0.200    | <0.200       | 5                 |
| Isopropylbenzene              | <0.200    | 45.7      | <0.200    | <0.200    | <0.200    | 130       | <0.200    | <0.200    | <0.200    | <0.200       | 5                 |
| m,p-Xylene                    | < 0.400   | 960 D     | < 0.400   | < 0.400   | < 0.400   | 13800     | < 0.400   | < 0.400   | < 0.400   | < 0.400      | 5                 |
| Methyl Acetate                | < 0.500   | <0.500    | < 0.500   | < 0.500   | < 0.500   | <25.0     | <0.500    | <0.500    | <0.500    | <0.500       |                   |
| Methyl Ethyl Ketone           | <2.50     | 12.2      | <2.50     | <2.50     | <2.50     | <130      | <2.50     | <2.50     | <2.50     | <2.50        | 50                |
| Methyl Isobutyl Ketone        | <1.00     | <1.00     | <1.00     | <1.00     | <1.00     | <50.0     | <1.00     | <1.00     | <1.00     | <1.00        |                   |
| Methylcyclohexane             | <0.200    | 76.3      | <0.200    | <0.200    | <0.200    | 130       | <0.200    | <0.200    | <0.200    | <0.200       |                   |
| Methylene Chloride            | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200       | 5                 |
| Naphthalene                   | <0.200    | 210 D     | <0.200    | <0.200    | <0.200    | 500       | <0.200    | <0.200    | <0.200    | <0.200       | 10                |
| N-Butylbenzene                | <0.200    | 5.8       | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200       | 5                 |
| N-Propylbenzene               | <0.200    | 98.4      | <0.200    | <0.200    | <0.200    | 400       | <0.200    | <0.200    | <0.200    | <0.200       | 5                 |
| O-Xylene                      | <0.200    | 170       | <0.200    | <0.200    | <0.200    | 5100      | <0.200    | <0.200    | <0.200    | <0.200       | 5                 |
| p-Isopropyltoluene (p-Cymene) | <0.200    | 1.6       | <0.200    | <0.200    | <0.200    | 14.5 J    | <0.200    | <0.200    | <0.200    | <0.200       | 5                 |
| Sec-Butylbenzene              | <0.200    | 3.8       | <0.200    | <0.200    | <0.200    | 30.0 J    | <0.200    | <0.200    | <0.200    | <0.200       | 5                 |
| Styrene                       | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200       | 5                 |
| T-Butylbenzene                | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200       | 5                 |
| Tert-Butyl Methyl Ether       | 39.6      | 46.9      | < 0.500   | 1.6       | < 0.500   | <25.0     | < 0.500   | 5.5       | <0.500    | <0.500       | 10                |
| Tetrachloroethylene           | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | 1         | 0.550 J   | 220 D     | 0.760 J      | 5                 |
| Toluene                       | <0.200    | 140       | <0.200    | <0.200    | <0.200    | 530       | <0.200    | <0.200    | <0.200    | <0.200       | 5                 |
| Trans-1,2-Dichloroethene      | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | 2.6       | 1.3       | <0.200       | 5                 |
| Trans-1,3-Dichloropropene     | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200       | 0.4               |
| Trichloroethylene             | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | 8         | <0.200       | 5                 |
| Trichlorofluoromethane        | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | <0.200    | <0.200    | <0.200       | 5                 |
| Vinyl Chloride                | <0.200    | <0.200    | <0.200    | <0.200    | <0.200    | <10       | <0.200    | 1.3       | <0.200    | <0.200       | 2                 |
| Total Volatile Compounds      | 39.6      | 6994.9    | 0         | 1.6       | 7.1       | 28584.5   | 1         | 19.55     | 236.88    | 17.53        |                   |

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: No standard

- <: Analyzed for but not detected
- J: Estimated value
- D: Dectected at secondary dilution



| Sample ID                                         | MW-E      | MW-F      | MW-G      | MW-H      | NYSDEC Class GA   |
|---------------------------------------------------|-----------|-----------|-----------|-----------|-------------------|
| Sampling Date                                     | 6/27/2014 | 6/27/2014 | 6/27/2014 | 6/27/2014 | Standard          |
|                                                   |           |           |           |           | or Guidance Value |
| Units                                             | ug/L      | ug/L      | ug/L      | ug/L      | ug/l              |
| VOLATILE COMPOUNDS                                |           |           |           |           |                   |
| 1,1,1-Trichloroethane                             | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,1,2,2-Tetrachloroethane                         | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,1,2-Trichloroethane                             | <0.200    | <0.200    | <0.200    | <0.200    | 1                 |
| 1,1-Dichloroethane                                | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,1-Dichloroethene                                | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,2,3-Trichlorobenzene                            | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,2,4-Trichlorobenzene                            | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| 1,2,4-Trimethylbenzene                            | <0.200    | 4.9       | 130       | 0.810 J   | 5                 |
| 1,2-Dibromo-3-Chloropropane                       | <0.200    | <0.200    | <0.200    | <0.200    | 0.04              |
| 1,2-Dibromoethane                                 | <0.200    | <0.200    | <0.200    | <0.200    | 0.0006            |
| 1,2-Dichlorobenzene                               | <0.200    | <0.200    | <0.200    | <0.200    | 3                 |
| 1,2-Dichloroethane                                | <0.200    | <0.200    | <0.200    | <0.200    | 0.6               |
| 1,2-Dichloropropane                               | <0.200    | <0.200    | <0.200    | <0.200    | 1                 |
| 1,3,5-Trimethylbenzene                            | <0.200    | 4.8       | 56.6      | <0.200    | 5                 |
| 1,3-Dichlorobenzene                               | <0.200    | <0.200    | <0.200    | <0.200    | 3                 |
| 1,4-Dichlorobenzene                               | <0.200    | <0.200    | <0.200    | <0.200    | 3                 |
| 1,4-Dioxane                                       | <100      | <100      | <100      | <100      |                   |
| 2-Hexanone                                        | <2.50     | <2.50     | <2.50     | <2.50     | 50                |
| Acetone                                           | <1.00     | <1.00     | <1.00     | <1.00     | 50                |
| Benzene                                           | <0.200    | 640 D     | 1200 D    | <0.200    | 1                 |
| Bromochloromethane                                | <0.500    | <0.500    | < 0.500   | <0.500    | 5                 |
| Bromodichloromethane                              | <0.200    | <0.200    | <0.200    | <0.200    | 50                |
| Bromoform                                         | <0.200    | <0.200    | <0.200    | <0.200    | 50                |
| Bromomethane                                      | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| Carbon Disulfide                                  | <0.200    | <0.200    | <0.200    | <0.200    | 60                |
| Carbon Tetrachloride                              | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| Chlorobenzene                                     | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |
| Chloroethane                                      | <0.500    | <0.500    | <0.500    | <0.500    | 5                 |
| Chloroform                                        | <0.200    | <0.200    | <0.200    | <0.200    | 7                 |
| Chloromethane                                     | <0.200    | <0.200    | <0.200    | <0.200    | 5                 |

See next page for Footnotes/Qualifiers.



| 0 1 10                        |           | rgarno coi | •         |           | NIVODEO OL CA     |
|-------------------------------|-----------|------------|-----------|-----------|-------------------|
| Sample ID                     |           | MW-F       | MW-G      | MW-H      | NYSDEC Class GA   |
| Sampling Date                 | 6/27/2014 | 6/27/2014  | 6/27/2014 | 6/27/2014 | Standard          |
|                               |           |            |           |           | or Guidance Value |
| Units                         | ug/L      | ug/L       | ug/L      | ug/L      | ug/l              |
| COMPOUNDS CONTINUED           |           |            |           |           |                   |
| Cis-1,2-Dichloroethylene      | < 0.200   | <0.200     | <0.200    | <0.200    | 5                 |
| Cis-1,3-Dichloropropene       | <0.200    | <0.200     | <0.200    | <0.200    | 0.4               |
| Cyclohexane                   | <0.200    | 160        | 46        | <0.200    |                   |
| Dibromochloromethane          | <0.200    | <0.200     | <0.200    | <0.200    | 50                |
| Dichlorodifluoromethane       | <0.200    | <0.200     | <0.200    | <0.200    | 5                 |
| Ethylbenzene                  | <0.200    | 190 D      | 140 D     | 1.4       | 5                 |
| Isopropylbenzene              | <0.200    | 14.7       | 10.5      | <0.200    | 5                 |
| m,p-Xylene                    | < 0.400   | 110        | 380 D     | 2.5       | 5                 |
| Methyl Acetate                | <0.500    | <0.500     | <0.500    | <0.500    |                   |
| Methyl Ethyl Ketone           | <2.50     | <2.50      | <2.50     | <2.50     | 50                |
| Methyl Isobutyl Ketone        | <1.00     | <1.00      | <1.00     | <1.00     |                   |
| Methylcyclohexane             | <0.200    | 48.1       | 17.5      | <0.200    |                   |
| Methylene Chloride            | < 0.200   | <0.200     | <0.200    | <0.200    | 5                 |
| Naphthalene                   | <0.200    | 55.9       | 53.8      | <0.200    | 10                |
| N-Butylbenzene                | <0.200    | 1.7        | 1.4       | <0.200    | 5                 |
| N-Propylbenzene               | <0.200    | 24.7       | 20.4      | <0.200    | 5                 |
| O-Xylene                      | <0.200    | 5.4        | 20.8      | 1.3       | 5                 |
| p-Isopropyltoluene (p-Cymene) | <0.200    | 0.330 J    | 0.910 J   | <0.200    | 5                 |
| Sec-Butylbenzene              | 1.7       | 1.6        | 1.1       | <0.200    | 5                 |
| Styrene                       | <0.200    | <0.200     | <0.200    | <0.200    | 5                 |
| T-Butylbenzene                | <0.200    | <0.200     | <0.200    | <0.200    | 5                 |
| Tert-Butyl Methyl Ether       | < 0.500   | 18.8       | 20.8      | <0.500    | 10                |
| Tetrachloroethylene           | < 0.200   | <0.200     | <0.200    | <0.200    | 5                 |
| Toluene                       | <0.200    | 37.6       | 71.8      | <0.200    | 5                 |
| Trans-1,2-Dichloroethene      | <0.200    | <0.200     | <0.200    | <0.200    | 5                 |
| Trans-1,3-Dichloropropene     | <0.200    | <0.200     | <0.200    | <0.200    | 0.4               |
| Trichloroethylene             | <0.200    | <0.200     | <0.200    | <0.200    | 5                 |
| Trichlorofluoromethane        | <0.200    | <0.200     | <0.200    | <0.200    | 5                 |
| Vinyl Chloride                | <0.200    | <0.200     | <0.200    | <0.200    | 2                 |
|                               |           |            |           |           |                   |
| Total Volatile Compounds      | 1.7       | 1318.53    | 2171.61   | 6.01      |                   |

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: No standard

- <: Analyzed for but not detected
- J: Estimated value
- D: Dectected at secondary dilution



Table 18 Unionport Road, Bronx, NY **Summary of Groundwater Analytical Results Semi-Volatile Organic Compounds** 

| O amounts ID               | 011/4             | OW F              |                   | le Organic Co     |                    | OW 40              | OW 45              | OW 40              | NVODEO OL OA                |
|----------------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|-----------------------------|
| Sample ID                  | GW-1<br>6/30/2014 | GW-5<br>6/23/2014 | GW-7<br>6/25/2014 | GW-9<br>6/25/2014 | GW-11<br>6/26/2014 | GW-13<br>6/30/2014 | GW-15<br>6/26/2014 | GW-16<br>6/26/2014 | NYSDEC Class GA<br>Standard |
| Sampling Date              | 0/30/2014         | 0/23/2014         | 6/23/2014         | 6/25/2014         | 0/20/2014          | 6/30/2014          | 0/20/2014          | 0/20/2014          | or Guidance Value           |
| Units                      | ug/L              | ug/L              | ug/L              | ug/L              | ug/L               | ug/L               | ug/L               | ug/L               | ug/l                        |
| SEMIVOLATILE COMPOUNDS     | ug/L              | ug/L              | ug/L              | ug/L              | ug/L               | ug/L               | ug/L               | ug/L               | ugn                         |
| 1,1-Biphenyl               | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | 3.7 J              | <1.0               | <1.0               | 5                           |
| 1,2,4,5-Tetrachlorobenzene | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 5                           |
| 2,3,4,6-Tetrachlorophenol  | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | <del></del>                 |
| 2,4,5-Trichlorophenol      | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 1                           |
| 2,4,6-Trichlorophenol      | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 1                           |
| 2,4-Dichlorophenol         | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 5                           |
| 2,4-Dimethylphenol         | <1.0              | 17.2              | <1.0              | <1.0              | <1.0               | 7.7 J              | <1.0               | <1.0               | 50                          |
| 2,4-Dinitrophenol          | <8.0              | <8.0              | <8.0              | <8.0              | <8.0               | <8.2               | <8.0               | <8.0               | 10                          |
| 2,4-Dinitrotoluene         | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 5                           |
| 2,6-Dinitrotoluene         | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 5                           |
| 2-Chloronaphthalene        | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 10                          |
| 2-Chlorophenol             | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 1                           |
| 2-Methylnaphthalene        | <1.0              | 68.9              | <1.0              | <1.0              | <1.0               | 110 D              | <1.0               | <1.0               |                             |
| 2-Methylphenol             | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 1                           |
| 2-Nitroaniline             | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 5                           |
| 2-Nitrophenol              | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 1                           |
| 3,3-Dichlorobenzidine      | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 5                           |
| 3-Nitroaniline             | <1.0              | <2.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 5                           |
| 4,6-Dinitro-2-methylphenol | <2.0              | <5.0              | <2.0              | <2.0              | <2.0               | <2.0               | <2.0               | <2.0               | 1                           |
| 4-Bromophenyl-phenylether  | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               |                             |
| 4-Chloro-3-methylphenol    | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 1                           |
| 4-Chloroaniline            | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 5                           |
| 4-Chlorophenylphenyl ether | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               |                             |
| 4-Nitroaniline             | <2.0              | <2.0              | <2.0              | <2.0              | <2.0               | <2.0               | <2.0               | <2.0               | 5                           |
| 4-Nitrophenol              | <5.0              | <5.0              | <5.0              | <5.0              | <5.0               | <5.1               | <5.0               | <5.0               | 1                           |
| Acenaphthene               | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 20                          |
| Acenaphthylene             | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               |                             |
| Acetophenone               | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               |                             |
| Anthracene                 | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 50                          |
| Atrazine                   | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 7.5                         |
| Benzaldehyde               | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               |                             |
| Benzo(a)anthracene         | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 0.002                       |
| Benzo(a)pyrene             | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | ND                          |
| Benzo(b)fluoranthene       | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 0.002                       |
| Benzo(ghi)perylene         | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               |                             |
| Benzo(k)fluoranthene       | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 0.002                       |
| Benzyl butyl phthalate     | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 50<br>5                     |
| Bis(2-chloroethoxy)methane | <1.0              | <1.0              | <1.0              | <1.0              | <1.0               | <1.0               | <1.0               | <1.0               | 5                           |



Table 18
Unionport Road, Bronx, NY
Summary of Groundwater Analytical Results
Semi-Volatile Organic Compounds

| Sample ID                         | GW-1      | GW-5      | GW-7      | GW-9      | GW-11     | GW-13     | GW-15     | GW-16     | NYSDEC Class GA   |
|-----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------------|
| Sampling Date                     | 6/30/2014 | 6/23/2014 | 6/25/2014 | 6/25/2014 | 6/26/2014 | 6/30/2014 | 6/26/2014 | 6/26/2014 | Standard          |
|                                   |           |           |           |           |           |           |           |           | or Guidance Value |
| Units                             | ug/L              |
| COMPOUNDS CONTINUED               |           |           |           |           |           |           |           |           |                   |
| Bis(2-chloroethyl)ether           | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 1                 |
| Bis(2-chloroisopropyl)ether       | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| Bis(2-ethylhexyl)phthalate (BEHP) | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| Caprolactam                       | <1.0      | <2.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| Carbazole                         | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| Chrysene                          | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 0.002             |
| Cresols, M&P                      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 1                 |
| Dibenzo(a,h)anthracene            | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| Dibenzofuran                      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| Diethyl phthalate                 | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Dimethyl phthalate                | 2.6 J     | <1.0      | 4.40 J    | 3.80 J    | 5.0 J     | 3.6 J     | 7.20 J    | 3.10 J    | 50                |
| Di-n-butyl phthalate              | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Di-n-octyl phthalate              | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Fluoranthene                      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Fluorene                          | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Hexachlorobenzene                 | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 0.04              |
| Hexachlorobutadiene               | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 0.5               |
| Hexachlorocyclopentadiene         | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| Hexachloroethane                  | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| Indeno(1,2,3-cd)pyrene            | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 0.002             |
| Isophorone                        | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Naphthalene                       | <1.0      | 210 D     | <1.0      | <1.0      | <1.0      | 390 D     | <1.0      | <1.0      | 10                |
| Nitrobenzene                      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 0.4               |
| N-Nitroso-di-n-propylamine        | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| N-Nitrosodiphenylamine            | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Pentachlorophenol                 | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 1                 |
| Phenanthrene                      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Phenol                            | <1.0      | 14.5      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 1                 |
| Pyrene                            | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Total Semivolatile Compounds      | 2.6       | 310.6     | 4.4       | 3.8       | 5         | 515       | 7.2       | 3.1       |                   |

Footnotes/Qualifiers:

ug/I: Micrograms per liter

--: No standard

<: Analyzed for but not detected

J: Estimated value

ND: If detected exceed standands



Table 18
Unionport Road, Bronx, NY
Summary of Groundwater Analytical Results
Semi-Volatile Organic Compounds

| Sample ID                  | GW-17     | GW-18     | MW-E      | MW-F      | MW-G      | MW-H      | NYSDEC Class GA   |
|----------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------------|
| Sampling Date              | 6/26/2014 | 6/26/2014 | 6/27/2014 | 6/27/2014 | 6/27/2014 | 6/27/2014 | Standard          |
| January January            | 0,20,2011 | 0,20,2011 | 0,21,2011 | 0,21,2011 | 0,21,2011 | 0,21,2011 | or Guidance Value |
| Units                      | ug/L              |
| SEMIVOLATILE COMPOUNDS     |           |           |           |           |           |           |                   |
| 1,1-Biphenyl               | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| 1,2,4,5-Tetrachlorobenzene | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| 2,3,4,6-Tetrachlorophenol  | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| 2,4,5-Trichlorophenol      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 1                 |
| 2,4,6-Trichlorophenol      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 1                 |
| 2,4-Dichlorophenol         | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| 2,4-Dimethylphenol         | <1.0      | <1.0      | <1.0      | <1.0      | 12.5      | <1.0      | 50                |
| 2,4-Dinitrophenol          | <8.0      | <8.0      | <8.0      | <8.0      | <8.0      | <8.0      | 10                |
| 2,4-Dinitrotoluene         | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| 2,6-Dinitrotoluene         | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| 2-Chloronaphthalene        | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 10                |
| 2-Chlorophenol             | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 1                 |
| 2-Methylnaphthalene        | <1.0      | <1.0      | <1.0      | 14.2      | 8.60 J    | <1.0      |                   |
| 2-Methylphenol             | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 1                 |
| 2-Nitroaniline             | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| 2-Nitrophenol              | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 1                 |
| 3,3-Dichlorobenzidine      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| 3-Nitroaniline             | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| 4,6-Dinitro-2-methylphenol | <2.0      | <2.0      | <2.0      | <2.0      | <2.0      | <2.0      | 1                 |
| 4-Bromophenyl-phenylether  | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| 4-Chloro-3-methylphenol    | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 1                 |
| 4-Chloroaniline            | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| 4-Chlorophenylphenyl ether | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| 4-Nitroaniline             | <2.0      | <2.0      | <2.0      | <2.0      | <2.0      | <2.0      | 5                 |
| 4-Nitrophenol              | <5.0      | <5.0      | <5.0      | <5.0      | <5.0      | <5.0      | 1                 |
| Acenaphthene               | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 20                |
| Acenaphthylene             | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| Acetophenone               | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| Anthracene                 | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Atrazine                   | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 7.5               |
| Benzaldehyde               | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| Benzo(a)anthracene         | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 0.002             |
| Benzo(a)pyrene             | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | ND                |
| Benzo(b)fluoranthene       | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 0.002             |
| Benzo(ghi)perylene         | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| Benzo(k)fluoranthene       | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 0.002             |
| Benzyl butyl phthalate     | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Bis(2-chloroethoxy)methane | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |

See next page for Footnotes/Qualifiers.



Table 18
Unionport Road, Bronx, NY
Summary of Groundwater Analytical Results
Semi-Volatile Organic Compounds

| Sample ID                         | GW-17     | GW-18     | MW-E      | MW-F      | MW-G      | MW-H      | NYSDEC Class GA   |
|-----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------------|
| Sampling Date                     | 6/26/2014 | 6/26/2014 | 6/27/2014 | 6/27/2014 | 6/27/2014 | 6/27/2014 | Standard          |
| Units                             | /!        | /!        | /!        | /!        | /1        | /!        | or Guidance Value |
|                                   | ug/L              |
| COMPOUNDS CONTINUED               | 4.0       | 4.0       | 4.0       | 4.0       | 4.0       | 4.0       | ,                 |
| Bis(2-chloroethyl)ether           | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 1                 |
| Bis(2-chloroisopropyl)ether       | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <br>-             |
| Bis(2-ethylhexyl)phthalate (BEHP) | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| Caprolactam                       | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| Carbazole                         | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| Chrysene                          | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 0.002             |
| Cresols, M&P                      | <1.0      | <1.0      | <1.0      | <1.0      | 3.20 J    | <1.0      | 1                 |
| Dibenzo(a,h)anthracene            | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| Dibenzofuran                      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| Diethyl phthalate                 | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Dimethyl phthalate                | 2.90 J    | 5.70 J    | 2.70 J    | 5.80 J    | 5.30 J    | 3.50 J    | 50                |
| Di-n-butyl phthalate              | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Di-n-octyl phthalate              | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Fluoranthene                      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Fluorene                          | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Hexachlorobenzene                 | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 0.04              |
| Hexachlorobutadiene               | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 0.5               |
| Hexachlorocyclopentadiene         | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| Hexachloroethane                  | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 5                 |
| Indeno(1,2,3-cd)pyrene            | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 0.002             |
| Isophorone                        | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Naphthalene                       | <1.0      | <1.0      | <1.0      | 53.6      | 18.8      | <1.0      | 10                |
| Nitrobenzene                      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 0.4               |
| N-Nitroso-di-n-propylamine        | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      |                   |
| N-Nitrosodiphenylamine            | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Pentachlorophenol                 | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 1                 |
| Phenanthrene                      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
| Phenol                            | <1.0      | <1.0      | <1.0      | 4.40 J    | 21.9      | <1.0      | 1                 |
| Pyrene                            | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | <1.0      | 50                |
|                                   |           |           |           |           |           |           |                   |
| Total Semivolatile Compounds      | 2.9       | 5.7       | 2.7       | 78        | 70.3      | 3.5       |                   |

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: No standard

<: Analyzed for but not detected

J: Estimated value

ND: If detected exceed standands



| Sample ID<br>Sampling Date<br>Analysis<br>Units |            | GW-1<br>6/30/2014<br>dissolved<br>mg/l | GW-5<br>6/23/2014<br>total<br>mg/l | GW-5<br>6/23/2014<br>dissolved<br>mg/l | GW-7<br>6/25/2014<br>total<br>mg/l | GW-7<br>6/25/2014<br>dissolved<br>mg/l | GW-9<br>6/25/2014<br>total<br>mg/l | GW-9<br>6/25/2014<br>dissolved<br>mg/l | NYSDEC Class GA Standard or Guidance Value mg/l |
|-------------------------------------------------|------------|----------------------------------------|------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|-------------------------------------------------|
| METALS                                          |            |                                        |                                    | _                                      | _                                  |                                        |                                    |                                        | _                                               |
| Antimony                                        | 0.00076 J  | 0.00054 J                              | 0.000968 J                         | 0.000219 J                             | 0.00051 J                          | <0.001                                 | 0.00053 J                          | 0.00033 J                              | 0.003                                           |
| Arsenic                                         | 0.00054 J  | 0.0013                                 | 0.00318                            | 0.000758 J                             | 0.0023                             | < 0.0005                               | 0.00042 J                          | 0.00043 J                              | 0.025                                           |
| Barium                                          | 0.166      | 0.143                                  | 0.26                               | 0.124                                  | 0.735                              | 0.0013 J                               | 0.0313                             | 0.0323                                 | 1                                               |
| Beryllium                                       | 0.00059 J  | < 0.0005                               | < 0.0005                           | < 0.0005                               | 0.0011                             | < 0.0005                               | 0.00011 J                          | < 0.0005                               | 0.003                                           |
| Cadmium                                         | 0.0011     | 0.0011                                 | 0.0131                             | < 0.0005                               | 0.001 J                            | < 0.0005                               | 0.00024 J                          | < 0.0005                               | 0.005                                           |
| Chromium                                        | 0.0149     | 0.003                                  | 0.00308                            | 0.00262                                | 0.0377                             | 0.00019 J                              | 0.0099                             | 0.0028                                 | 0.05                                            |
| Cobalt                                          | 0.0152     | 0.0123                                 | 0.00483                            | 0.00423                                | 0.0446                             | 0.00025 J                              | 0.0077                             | 0.0057                                 |                                                 |
| Copper                                          | 0.0204     | 0.0084                                 | 0.00601                            | 0.00155 J                              | 0.0433                             | <0.001                                 | 0.0054                             | 0.0013 J                               | 0.2                                             |
| Lead                                            | 0.0487     | 0.000099 J                             | 0.313                              | 0.00432                                | 0.521                              | < 0.0005                               | 0.0314                             | 0.00023 J                              | 0.025                                           |
| Manganese                                       | 13.5 D     | 14.4 D                                 | 3.44                               | 3.46                                   | 3.34                               | 0.0187                                 | 0.532                              | 0.417                                  | 0.3                                             |
| Mercury                                         | <0.0001    | <0.0001                                | 0.000113 J                         | <0.0001                                | 0.000955                           | <0.0001                                | <0.0001                            | <0.0001                                | 0.0007                                          |
| Nickel                                          | 0.0505     | 0.0389                                 | 0.00845                            | 0.00512                                | 0.0545                             | 0.00049 J                              | 0.0276                             | 0.014                                  | 0.1                                             |
| Selenium                                        | 0.0036 J   | 0.003 J                                | < 0.0025                           | 0.000859 J                             | 0.004 J                            | 0.0011 J                               | 0.0155                             | 0.0164                                 | 0.01                                            |
| Silver                                          | 0.000048 J | 0.000048 J                             | 0.000046 J                         | < 0.0005                               | 0.0011                             | < 0.0005                               | 0.00054 J                          | 0.000041 J                             | 0.05                                            |
| Thallium                                        | 0.00014 J  | 0.000025 J                             | 0.00023 J                          | 0.000062 J                             | 0.00068 J                          | < 0.0005                               | 0.00019 J                          | 0.00013 J                              | 0.0005                                          |
| Vanadium                                        | 0.0072     | < 0.0025                               | 0.00131 J                          | 0.000428 J                             | 0.0286                             | < 0.0025                               | 0.00035 J                          | < 0.0025                               |                                                 |
| Zinc                                            | 0.0525     | 0.0144                                 | 0.0648                             | 0.0153                                 | 0.396                              | 0.00054 J                              | 0.159                              | 0.012                                  | 2                                               |
| Conventional Chemistry Parameters               |            |                                        |                                    |                                        |                                    |                                        |                                    |                                        |                                                 |
| Flashpoint                                      |            |                                        |                                    |                                        |                                    |                                        |                                    |                                        |                                                 |
| Carbonaceous BOD                                |            |                                        |                                    |                                        |                                    |                                        |                                    |                                        |                                                 |
| Chloride                                        |            |                                        |                                    |                                        |                                    |                                        |                                    |                                        | 250                                             |
| Hexavalent Chromium                             |            |                                        |                                    |                                        |                                    |                                        |                                    |                                        | 0.05                                            |
| Nitrate/Nitrite as N                            |            |                                        |                                    |                                        |                                    |                                        |                                    |                                        | 10                                              |
| Total Solids                                    |            |                                        |                                    |                                        |                                    |                                        |                                    |                                        |                                                 |
| Total Suspended Solids                          |            |                                        |                                    |                                        |                                    |                                        |                                    |                                        |                                                 |
| Total Kjeldahl Nitrogen                         |            |                                        |                                    |                                        |                                    |                                        |                                    |                                        |                                                 |
| Total Nitrogen                                  |            |                                        |                                    |                                        |                                    |                                        |                                    |                                        |                                                 |
| Nonpolar Material                               |            |                                        |                                    |                                        |                                    |                                        |                                    |                                        |                                                 |

Footnotes/Qualifiers:

mg/l: Milligrams per liter

- --: Not analyzed or no standard
- <: Analyzed for but not detected
- J: Estimated value
- D: Detected at a secondary dilution



| Sample ID<br>Sampling Date        | GW-11<br>6/26/2014 | GW-11<br>6/26/2014  | GW-13<br>6/30/2014    | GW-13<br>6/30/2014 | GW-15<br>6/26/2014     | GW-15<br>6/26/2014   | GW-16<br>6/26/2014 | GW-16<br>6/26/2014    | NYSDEC Class GA<br>Standard |
|-----------------------------------|--------------------|---------------------|-----------------------|--------------------|------------------------|----------------------|--------------------|-----------------------|-----------------------------|
| Analysis<br>Units                 | total              | dissolved           | total                 | dissolved          | total                  | dissolved            | total              | dissolved             | or Guidance Value           |
| METALS                            | mg/l               | mg/l                | mg/l                  | mg/l               | mg/l                   | mg/l                 | mg/l               | mg/l                  | mg/l                        |
| METALS<br>Antimony                | 0.00048 J          | <0.001              | 0.00031 J             | 0.00022 J          | 0.00024 J              | 0.00014 J            | 0.00029 J          | 0.00029 J             | 0.003                       |
| Arsenic                           | 0.0024             | 0.0012              | 0.0033                | 0.00022 3          | 0.00024 J<br>0.00071 J | 0.00014 J            | 0.0029 3           | 0.0019                | 0.005                       |
| Barium                            | 0.734              | 0.182               | 0.0033                | 0.0689             | 0.452                  | 0.0577               | 0.004              | 0.089                 | 0.023                       |
| Beryllium                         | 0.0063             | <0.0005             | 0.0005 J              | <0.0005            | 0.0016                 | <0.0005              | <0.0005            | <0.005                | 0.003                       |
| Cadmium                           | 0.0003             | 0.0003<br>0.00037 J | 0.0003 J<br>0.00014 J | <0.0005            | 0.003                  | 0.0003<br>0.001 J    | <0.0005            | <0.0005               | 0.005                       |
| Chromium                          | 0.0028             | 0.00067 J           | 0.000143              | 0.0012 J           | 0.0506                 | 0.00013<br>0.00055 J | 0.0026             | 0.00091 J             | 0.005                       |
| Cobalt                            | 0.122              | 0.0276              | 0.006                 | 0.00123            | 0.0300                 | 0.00033 3            | 0.0020             | 0.0026                | 0.03                        |
| Copper                            | 0.144              | 0.0062              | 0.0556                | 0.006              | 0.0422                 | 0.004                | 0.0034             | 0.0020                | 0.2                         |
| Lead                              | 0.132              | 0.0005 J            | 0.0204                | 0.00012 J          | 0.082                  | 0.00098 J            | 0.0011             | 0.00021<br>0.000053 J | 0.025                       |
| Manganese                         | 17.9 D             | 6.1                 | 3.55                  | 3.2                | 7.69                   | 1.09                 | 2.59               | 2.23                  | 0.3                         |
| Mercury                           | 0.000413           | <0.0001             | <0.0001               | <0.0001            | 0.000186 J             | <0.0001              | <0.0001            | <0.0001               | 0.0007                      |
| Nickel                            | 0.14               | 0.0261              | 0.0184                | 0.0042             | 0.112                  | 0.0371               | 0.0121             | 0.0091                | 0.1                         |
| Selenium                          | 0.0042 J           | 0.0028 J            | 0.0024 J              | 0.0018 J           | 0.0034 J               | 0.0039 J             | 0.0027 J           | 0.0023 J              | 0.01                        |
| Silver                            | 0.000 J            | <0.0005             | 0.0720 J              | <0.0005            | 0.00061 J              | <0.0005              | 0.0004 J           | < 0.0005              | 0.05                        |
| Thallium                          | 0.00079 J          | 0.000074 J          | 0.00011 J             | <0.0005            | 0.00029 J              | 0.000021 J           | <0.0005            | <0.0005               | 0.0005                      |
| Vanadium                          | 0.0546             | <0.0025             | 0.012                 | 0.00058 J          | 0.0161                 | <0.0025              | <0.0025            | <0.0025               |                             |
| Zinc                              | 0.394              | 0.0067              | 0.0402                | 0.0043             | 0.271                  | 0.0129               | 0.0128             | 0.0019 J              | 2                           |
|                                   | 0.00               | 0.000.              | 0.0.02                | 0.00.0             | 0.2                    | 0.0.20               | 0.0.20             | 0.00.00               | _                           |
| Conventional Chemistry Parameters |                    |                     |                       |                    |                        |                      |                    |                       |                             |
| Flashpoint                        |                    |                     |                       |                    |                        |                      |                    |                       |                             |
| Carbonaceous BOD                  |                    |                     |                       |                    |                        |                      |                    |                       |                             |
| Chloride                          |                    |                     |                       |                    |                        |                      |                    |                       | 250                         |
| Hexavalent Chromium               |                    |                     |                       |                    |                        |                      |                    |                       | 0.05                        |
| Nitrate/Nitrite as N              |                    |                     |                       |                    |                        |                      |                    |                       | 10                          |
| Total Solids                      |                    |                     |                       |                    |                        |                      |                    |                       |                             |
| Total Suspended Solids            |                    |                     |                       |                    |                        |                      |                    |                       |                             |
| Total Kjeldahl Nitrogen           |                    |                     |                       |                    |                        |                      |                    |                       |                             |
| Total Nitrogen                    |                    |                     |                       |                    |                        |                      |                    |                       |                             |
| Nonpolar Material                 |                    |                     |                       |                    |                        |                      |                    |                       |                             |

Footnotes/Qualifiers:

mg/l: Milligrams per liter

- --: Not analyzed or no standard
- <: Analyzed for but not detected
- J: Estimated value
- D: Detected at a secondary dilution



| Sample ID<br>Sampling Date<br>Analysis<br>Units | GW-17<br>6/26/2014<br>total<br>mg/l | GW-17<br>6/26/2014<br>dissolved<br>mg/l | GW-18<br>6/26/2014<br>total<br>mg/l | GW-18<br>6/26/2014<br>dissolved<br>mg/l | MW-E<br>6/27/2014<br>total<br>mg/l | MW-E<br>6/27/2014<br>dissolved<br>mg/l | MW-F<br>6/27/2014<br>total<br>mg/l | MW-F<br>6/27/2014<br>dissolved<br>mg/l | NYSDEC Class GA<br>Standard<br>or Guidance Value<br>mg/l |
|-------------------------------------------------|-------------------------------------|-----------------------------------------|-------------------------------------|-----------------------------------------|------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|----------------------------------------------------------|
| <u>METALS</u>                                   |                                     |                                         |                                     |                                         |                                    |                                        |                                    |                                        |                                                          |
| Antimony                                        | 0.00031 J                           | 0.00018 J                               | 0.00017 J                           | 0.0003 J                                | 0.00057 J                          | 0.00054 J                              | 0.00076 J                          | 0.00025 J                              | 0.003                                                    |
| Arsenic                                         | 0.0019                              | 0.0013                                  | 0.00063 J                           | 0.00056 J                               | 0.00082 J                          | 0.00075 J                              | 0.0111                             | 0.00098 J                              | 0.025                                                    |
| Barium                                          | 0.106                               | 0.0692                                  | 0.12                                | 0.106                                   | 0.211                              | 0.194                                  | 0.221                              | 0.155                                  | 1                                                        |
| Beryllium                                       | 0.00064 J                           | < 0.0005                                | < 0.0005                            | < 0.0005                                | < 0.0005                           | < 0.0005                               | < 0.0005                           | < 0.0005                               | 0.003                                                    |
| Cadmium                                         | 0.00046 J                           | 0.00023 J                               | 0.00038 J                           | 0.00019 J                               | 0.00067 J                          | 0.00062 J                              | 0.00016 J                          | < 0.0005                               | 0.005                                                    |
| Chromium                                        | 0.0129                              | 0.00053 J                               | 0.0044                              | 0.0017 J                                | 0.0024                             | 0.00098 J                              | 0.002 J                            | 0.0003 J                               | 0.05                                                     |
| Cobalt                                          | 0.0557                              | 0.0416                                  | 0.0269                              | 0.0213                                  | 0.0085                             | 0.0053                                 | 0.003                              | 0.0019                                 |                                                          |
| Copper                                          | 0.0151                              | 0.0036                                  | 0.0097                              | 0.006                                   | 0.0134                             | 0.0066                                 | 0.0046                             | 0.00063 J                              | 0.2                                                      |
| Lead                                            | 0.0553                              | 0.00017 J                               | 0.002                               | 0.00026 J                               | 0.0084                             | 0.00028 J                              | 0.0074                             | 0.000094 J                             | 0.025                                                    |
| Manganese                                       | 3.7                                 | 3.37                                    | 2.05                                | 1.63                                    | 15.4 D                             | 13.8 D                                 | 3.58                               | 3.05                                   | 0.3                                                      |
| Mercury                                         | 0.000683                            | <0.0001                                 | <0.0001                             | < 0.0001                                | < 0.0001                           | < 0.0001                               | < 0.0001                           | < 0.0001                               | 0.0007                                                   |
| Nickel                                          | 0.0315                              | 0.0177                                  | 0.0626                              | 0.053                                   | 0.0113                             | 0.0075                                 | 0.0059                             | 0.0036                                 | 0.1                                                      |
| Selenium                                        | 0.0158                              | 0.0154                                  | 0.0033 J                            | < 0.0025                                | 0.0033 J                           | 0.003 J                                | < 0.0025                           | < 0.0025                               | 0.01                                                     |
| Silver                                          | 0.00044 J                           | <0.0005                                 | 0.00017 J                           | 0.000058 J                              | < 0.0005                           | < 0.0005                               | 0.000041 J                         | < 0.0005                               | 0.05                                                     |
| Thallium                                        | 0.00011 J                           | 0.00004 J                               | 0.000047 J                          | 0.000028 J                              | 0.000064 J                         | 0.000042 J                             | 0.000042 J                         | 0.000027 J                             | 0.0005                                                   |
| Vanadium                                        | 0.0085                              | < 0.0025                                | 0.0026 J                            | < 0.0025                                | 0.0022 J                           | 0.00016 J                              | 0.00075 J                          | < 0.0025                               |                                                          |
| Zinc                                            | 0.123                               | 0.011                                   | 0.0267                              | 0.0212                                  | 0.0177                             | 0.0072                                 | 0.0323                             | 0.008                                  | 2                                                        |
| Conventional Chemistry Parameters               |                                     |                                         |                                     |                                         |                                    |                                        |                                    |                                        |                                                          |
| Flashpoint                                      | >212                                |                                         |                                     |                                         |                                    |                                        |                                    |                                        |                                                          |
| Carbonaceous BOD                                | <2                                  |                                         |                                     |                                         |                                    |                                        |                                    |                                        |                                                          |
| Chloride                                        | 1030                                |                                         |                                     |                                         |                                    |                                        |                                    |                                        | 250                                                      |
| Hexavalent Chromium                             | < 0.005                             |                                         |                                     |                                         |                                    |                                        |                                    |                                        | 0.05                                                     |
| Nitrate/Nitrite as N                            | 14.6 D                              |                                         |                                     |                                         |                                    |                                        |                                    |                                        | 10                                                       |
| Total Solids                                    | 2903                                |                                         |                                     |                                         |                                    |                                        |                                    |                                        |                                                          |
| Total Suspended Solids                          | 430                                 |                                         |                                     |                                         |                                    |                                        |                                    |                                        |                                                          |
| Total Kjeldahl Nitrogen                         | 0.305 J                             |                                         |                                     |                                         |                                    |                                        |                                    |                                        |                                                          |
| Total Nitrogen                                  | 14.9                                |                                         |                                     |                                         |                                    |                                        |                                    |                                        |                                                          |
| Nonpolar Material                               | 1.5 J                               | -                                       |                                     |                                         |                                    |                                        |                                    |                                        |                                                          |

Footnotes/Qualifiers:

- mg/l: Milligrams per liter
  - --: Not analyzed or no standard
  - <: Analyzed for but not detected
  - J: Estimated value
  - D: Detected at a secondary dilution



| Sample ID<br>Sampling Date<br>Analysis | MW-G<br>6/27/2014<br>total | MW-G<br>6/27/2014<br>dissolved | MW-H<br>6/27/2014<br>total | MW-H<br>6/27/2014<br>dissolved | NYSDEC Class GA<br>Standard<br>or Guidance Value |
|----------------------------------------|----------------------------|--------------------------------|----------------------------|--------------------------------|--------------------------------------------------|
| Units                                  | mg/l                       | mg/l                           | mg/l                       | mg/l                           | mg/l                                             |
| <u>METALS</u>                          |                            |                                |                            |                                |                                                  |
| Antimony                               | 0.002 J                    | 0.00058 J                      | 0.0016 J                   | 0.001 J                        | 0.003                                            |
| Arsenic                                | 0.0045                     | 0.00056 J                      | 0.0018                     | 0.00048 J                      | 0.025                                            |
| Barium                                 | 0.148                      | 0.0871                         | 0.158                      | 0.113                          | 1                                                |
| Beryllium                              | <0.0005                    | <0.0005                        | <0.0005                    | <0.0005                        | 0.003                                            |
| Cadmium                                | 0.0005 J                   | < 0.0005                       | 0.0011                     | <0.0005                        | 0.005                                            |
| Chromium                               | 0.0039                     | 0.0011 J                       | 0.0033                     | 0.00057 J                      | 0.05                                             |
| Cobalt                                 | 0.0151                     | 0.0068                         | 0.0017                     | 0.0002 J                       |                                                  |
| Copper                                 | 0.0206                     | 0.00068 J                      | 0.0077                     | 0.0017 J                       | 0.2                                              |
| Lead                                   | 0.0243                     | 0.00039 J                      | 0.023                      | 0.00018 J                      | 0.025                                            |
| Manganese                              | 2.78                       | 2.46                           | 0.552                      | 0.0125                         | 0.3                                              |
| Mercury                                | <0.0001                    | <0.0001                        | <0.0001                    | <0.0001                        | 0.0007                                           |
| Nickel                                 | 0.0133                     | 0.0076                         | 0.0045                     | 0.0016                         | 0.1                                              |
| Selenium                               | 0.00095 J                  | <0.0025                        | 0.0012 J                   | <0.0025                        | 0.01                                             |
| Silver                                 | 0.000049 J                 | < 0.0005                       | 0.000045 J                 | <0.0005                        | 0.05                                             |
| Thallium                               | 0.0001 J                   | 0.000028 J                     | 0.000041 J                 | 0.000027 J                     | 0.0005                                           |
| Vanadium                               | 0.0033 J                   | <0.0025                        | 0.0044 J                   | 0.0017 J                       |                                                  |
| Zinc                                   | 0.214                      | 0.0131                         | 0.0481                     | 0.0107                         | 2                                                |
|                                        |                            |                                |                            |                                |                                                  |
| Conventional Chemistry Parameters      |                            |                                |                            |                                |                                                  |
| Flashpoint                             |                            |                                |                            |                                |                                                  |
| Carbonaceous BOD                       |                            |                                |                            |                                |                                                  |
| Chloride                               |                            |                                |                            |                                | 250                                              |
| Hexavalent Chromium                    |                            |                                |                            |                                | 0.05                                             |
| Nitrate/Nitrite as N                   |                            |                                |                            |                                | 10                                               |
| Total Solids                           |                            |                                |                            |                                |                                                  |
| Total Suspended Solids                 |                            |                                |                            |                                |                                                  |
| Total Kjeldahl Nitrogen                |                            |                                |                            |                                |                                                  |
| Total Nitrogen                         |                            |                                |                            |                                | ==                                               |
| Nonpolar Material                      |                            |                                |                            |                                |                                                  |

Footnotes/Qualifiers:

mg/l: Milligrams per liter

- --: Not analyzed or no standard
- <: Analyzed for but not detected
- J: Estimated value
- D: Detected at a secondary dilution



Table 20
Unionport Road, Bronx, NY
Summary of Groundwater Analytical Results
Polychlorinated Biphenyls (PCBs)

| Sample ID<br>Sampling Date<br>Units | GW-1<br>6/30/2014<br>ug/L | GW-5<br>6/23/2014<br>ug/L | GW-7<br>6/25/2014<br>ug/L | GW-9<br>6/25/2014<br>ug/L | GW-11<br>6/26/2014<br>ug/L | GW-13<br>6/30/2014<br>ug/L | GW-15<br>6/26/2014<br>ug/L | GW-16<br>6/26/2014<br>ug/L | NYSDEC Class GA<br>Standard<br>or Guidance Value<br>ug/l |
|-------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------------------------------------|
|                                     |                           |                           |                           |                           |                            |                            |                            |                            |                                                          |
| <u>PCBS</u>                         |                           |                           |                           |                           |                            |                            |                            |                            |                                                          |
| Aroclor-1016                        | <0.101                    | <0.100                    | <0.102                    | <0.101                    | <0.0250                    | <0.100                     | <0.0250                    | <0.100                     | 0.09                                                     |
| Aroclor-1221                        | <0.101                    | < 0.100                   | < 0.102                   | <0.101                    | < 0.0250                   | <0.100                     | < 0.0250                   | <0.100                     | 0.09                                                     |
| Aroclor-1232                        | <0.101                    | < 0.100                   | <0.102                    | <0.101                    | < 0.0250                   | <0.100                     | < 0.0250                   | <0.100                     | 0.09                                                     |
| Aroclor-1242                        | <0.101                    | < 0.100                   | <0.102                    | <0.101                    | < 0.0250                   | <0.100                     | <0.0250                    | <0.100                     | 0.09                                                     |
| Aroclor-1248                        | <0.101                    | <0.100                    | <0.102                    | <0.101                    | <0.0250                    | <0.100                     | < 0.0250                   | <0.100                     | 0.09                                                     |
| Aroclor-1254                        | <0.101                    | < 0.100                   | <0.102                    | <0.101                    | < 0.0250                   | <0.100                     | <0.0250                    | <0.100                     | 0.09                                                     |
| Aroclor-1260                        | <0.101                    | <0.100                    | <0.102                    | <0.101                    | <0.0250                    | <0.100                     | <0.0250                    | <0.100                     | 0.09                                                     |
| Total PCBs                          | 0                         | 0                         | 0                         | 0                         | 0                          | 0                          | 0                          | 0                          | 0.09                                                     |

Footnotes/Qualifiers:

ug/l: Micrograms per liter

<: Analyzed for but not detected



Table 20
Unionport Road, Bronx, NY
Summary of Groundwater Analytical Results
Polychlorinated Biphenyls (PCBs)

| Sample ID<br>Sampling Date<br>Units | 6/25/2014 | GW-18<br>6/26/2014<br>ug/L | MW-E<br>6/27/2014<br>ug/L | MW-F<br>6/27/2014<br>ug/L | MW-G<br>6/27/2014<br>ug/L | MW-H<br>6/27/2014<br>ug/L | NYSDEC Class GA<br>Standard<br>or Guidance Value<br>ug/l |
|-------------------------------------|-----------|----------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------------------------------------|
| PCBS                                |           |                            |                           |                           |                           |                           |                                                          |
| Aroclor-1016                        | <0.0250   | <0.0250                    | <0.0250                   | <0.0250                   | <0.0250                   | <0.0250                   | 0.09                                                     |
| Aroclor-1221                        | < 0.0250  | < 0.0250                   | <0.0250                   | <0.0250                   | <0.0250                   | <0.0250                   | 0.09                                                     |
| Aroclor-1232                        | < 0.0250  | < 0.0250                   | < 0.0250                  | < 0.0250                  | < 0.0250                  | < 0.0250                  | 0.09                                                     |
| Aroclor-1242                        | < 0.0250  | <0.0250                    | < 0.0250                  | < 0.0250                  | < 0.0250                  | < 0.0250                  | 0.09                                                     |
| Aroclor-1248                        | < 0.0250  | < 0.0250                   | < 0.0250                  | < 0.0250                  | < 0.0250                  | < 0.0250                  | 0.09                                                     |
| Aroclor-1254                        | < 0.0250  | < 0.0250                   | < 0.0250                  | < 0.0250                  | < 0.0250                  | < 0.0250                  | 0.09                                                     |
| Aroclor-1260                        | <0.0250   | <0.0250                    | <0.0250                   | <0.0250                   | <0.0250                   | <0.0250                   | 0.09                                                     |
| Total PCBs                          | 0         | 0                          | 0                         | 0                         | 0                         | 0                         | 0.09                                                     |

Footnotes/Qualifiers:

ug/l: Micrograms per liter

<: Analyzed for but not detected



### APPENDIX A

SITE INVESTIGATION PHOTOGRAPHS



Photo 1: Location 1 prior to drilling activities.



Photo 2: Location 1 during hollow-stem auger activities.



Photo 3: Location 1 following sample collection.



Photo 4: Location 4 during drilling activities.



Photo 5: Soil core from Location 4.



Photo 6: Soil core from Location 5.



Photo 7: Location 5 during sample collection activities.



Photo 8: Location 8 during sample collection.



Photo 9: Location 12 during dilling activities.



Photo 10: Location 12 after sample collection.



Photo 11: Location 13 prior to drilling activities.



Photo 12: Location 13 during drilling activities.

APPENDIX B

GEOPHYSICAL SURVEY REPORT

## GEOPHYSICAL ENGINEERING SURVEY REPORT

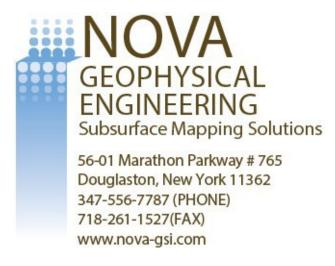
**COMMERCIAL PROPERTIES** 

1597-1627 Unionport Rd, 1889-1905 Guerlain St, 1572-1592 White Plains Road & 1880-1894 E. Tremont Ave, Bronx, NY 10462

#### NOVA PROJECT NUMBER

14-0293

### **DATED**


**JUNE 23, 2014** 

### PREPARED FOR:



330 Crossways Park Drive Woodbury, New York 11797 www.dvirkaandbartilucci.com

### PREPARED BY:



# **NOVAGEOPHYSICALSERVICES**

### **SUBSURFACEMAPPINGSOLUTIONS**

56-01 Marathon Parkway, #765, Douglaston, New York 11362 Ph. 347-556-7787 Fax. 718-261-1527 www.nova-gsi.com

June 23, 2014

Maria Wright, P.E.

Senior Engineer

D&B Engineers & Architects, P.C.

330 Crossways Park Drive Woodbury, NY 11797 P: 516-364-9890 ext. 3060

F: 516-364-9045

E: MWright@db-eng.com

Re: Geophysical Engineering Survey (GES) Report

Commercial Properties

1597-1627 Unionport Rd, 1889-1905 Guerlain St,

1572-1592 White Plains Road & 1880-1894 E. Tremont Ave,

Bronx, NY 10462

Dear Ms. Wright:

Nova Geophysical Services (NOVA) is pleased to provide findings of the geophysical engineering survey (GES) at the above referenced project sites: 1597-1627 Unionport Rd, 1889-1905 Guerlain St, 1572-1592 White Plains Road & 1880-1894 E. Tremont Ave, Bronx, NY 10462 (the "Site"). Please see attached Site Location and Geophysical Survey maps for more details.

### INTRODUCTION TO GEOPHYSICAL ENGINEERING SURVEY (GES)

NOVA performed a Geophysical engineering surveys (GES) consisting of Ground Penetrating Radar (GPR) and Electromagnetic (EM) surveys at the project Site. The purpose of this survey is to locate and identify anomalies, utilities and other substructures and to clear and mark proposed environmental boring areas on June 16<sup>th</sup>, 2014.

The equipment selected for this investigation was an Electromagnetic Utility Detector (EUD-3) and Noggin's 250 MHz ground penetrating radar (GPR) shielded antenna.

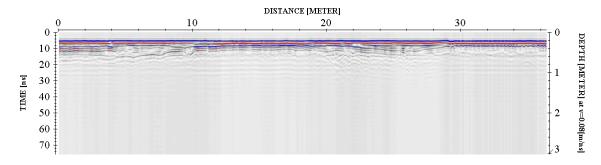
A GPR system consists of a radar control unit, control cable and a transducer (antenna). The control unit transmits a trigger pulse at a normal repetition rate of 250 MHz. The trigger pulse is sent to the transmitter electronics in the transducer via the control cable. The transmitter electronics amplify the trigger pulses into bipolar pulses that are radiated to the surface. The transformed pulses vary in shape and frequency according to the transducer used. In the subsurface, variations of the signal occur at boundaries where there is a dielectric contrast (void, steel, soil type, etc.). Signal reflections travel back to the control unit and are represented as color graphic images for interpolation.



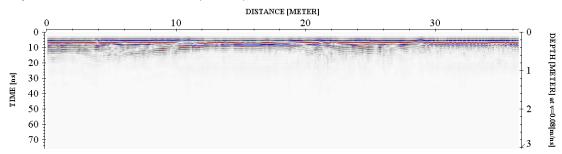
#### GEOPHYSICALENGINEERING SURVEY/GESREPORT

Commercial Properties 1597-1627 Unionport Rd, 1889-1905 Guerlain St, 1572-1592 White Plains Road & 1880-1894 E. Tremont Ave, Bronx, NY 10462

#### **GEOPHYSICAL METHODS**


The project site was first screened using the Geonics(tm) electromagnetic detector by carrying the instrument over the project area at the site in 4' x 4' traverses. Finally, GPR profiles were collected over each anomaly and inspected for reflections, which could be indicative of major anomalies and substructures. Nova performed full scale multi-frequency GPR surveys for the targeted depths of approximately 3 to 10 feet below ground surface (bgs) pending quality of the data and sediments settings.

GPR data profiles were collected for the areas of the Site specified by the client. The surveyed areas consisted of paved areas.

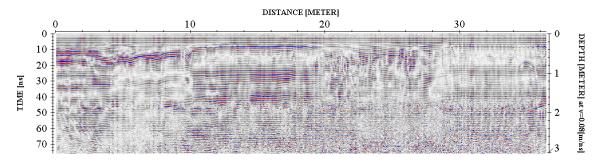

#### **DATA PROCESSING**

In order to improve the quality of the results and to better identify subsurface anomalies NOVA processed the collected data. The processes flow is briefly described at this section.

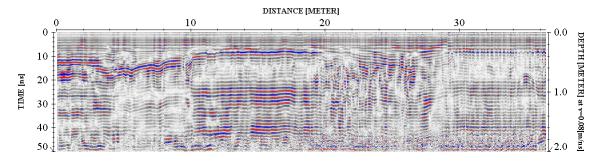
Step 1. Import raw RAMAC data to standard processing format



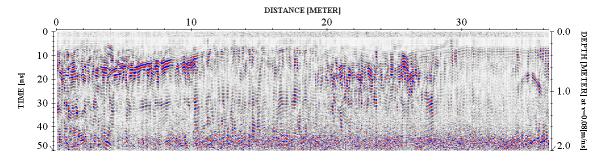
Step 2. Remove instrument noise (dewow)







#### GEOPHYSICALENGINEERING SURVEY/GESREPORT

Commercial Properties 1597-1627 Unionport Rd, 1889-1905 Guerlain St, 1572-1592 White Plains Road & 1880-1894 E. Tremont Ave, Bronx, NY 10462


Step 3. Correct for attenuation losses (energy decay function)



**Step 4.** Remove static from bottom of profile (time cut)



Step 5. Mute horizontal ringing/noise (subtracting average)



The above example shows the significance of data processing. The last image (step 5) has higher resolution than the starting image (raw data – step 1) and describes the subsurface anomalies more accurately.



GEOPHYSICALENGINEERINGSURVEY/GESREPORT

Commercial Properties

1597-1627 Unionport Rd, 1889-1905 Guerlain St,

1572-1592 White Plains Road & 1880-1894 E. Tremont Ave,

Bronx, NY 10462

**PHYSICAL SETTINGS** 

Nova observed following physical conditions at the time of the survey:

The weather: Clear.

Temp: 72 Degrees (F).

Surface: Paved (concrete-asphalt).

**Geophysical Noise Level (GNL):** Geophysical Noise Level (GNL) was medium to <u>high</u> at the time of the survey due to on-site business activities moving and parked buses/cars and on-site storage of metal containing materials, and etc. at the time of the survey.

**RESULTS** 

The results of the geophysical engineering survey (GES) identified following at the project Site:

GES identified anomalies located throughout of the project area. Based on their reflection rates, these
anomalies were consistent with utilities (gas, electric, sewer line, and water line) and were located approximately 1
feet below ground surface (bgs) to 10 feet bgs.

GES identified and confirmed anomalies that are consistent with the USTs (gasoline tanks) at the northwest corner
of the project area.

 Nova observed number an above ground storage tank (AST) located along the center east portion of the project site.

 All minor and scattered anomalies including identified utilities were clearly marked during the field survey.

 Due to excessive geophysical noise identified during the survey, Nova could not collect DATA using EM at the project site at the time of the survey.

Nova cleared and marked all of the proposed boring locations at the time of the survey.

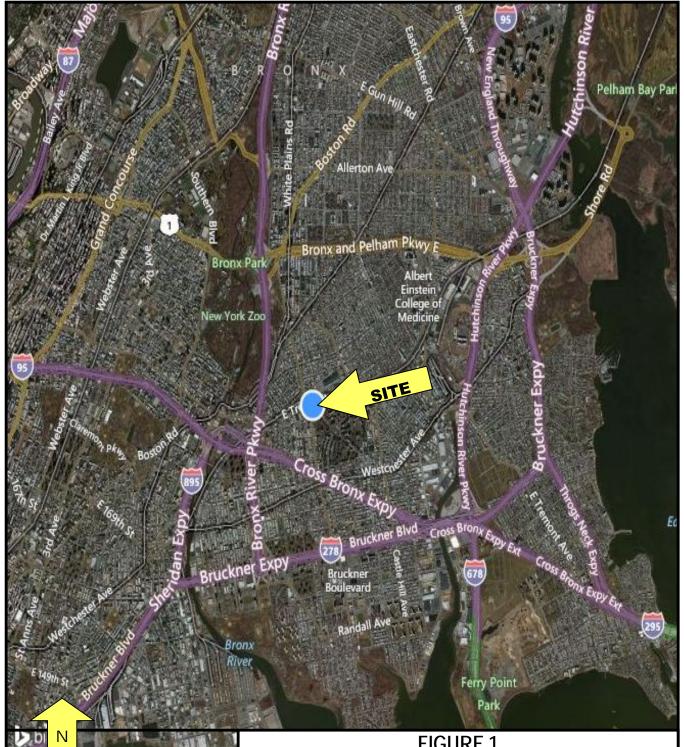
Geophysical Survey Plan portrays the areas investigated during the geophysical survey.



#### GEOPHYSICALENGINEERINGSURVEY/GESREPORT

Commercial Properties 1597-1627 Unionport Rd, 1889-1905 Guerlain St, 1572-1592 White Plains Road & 1880-1894 E. Tremont Ave, Bronx, NY 10462

If you have any questions please do not hesitate to contact the undersigned. Sincerely,


**NOVA Geophysical Services** 

Levent Eskicakit, P.G., E.P.

Project Engineer

Attachments:

Figure 1 Site Location Map Geophysical Survey Plan Geophysical Images



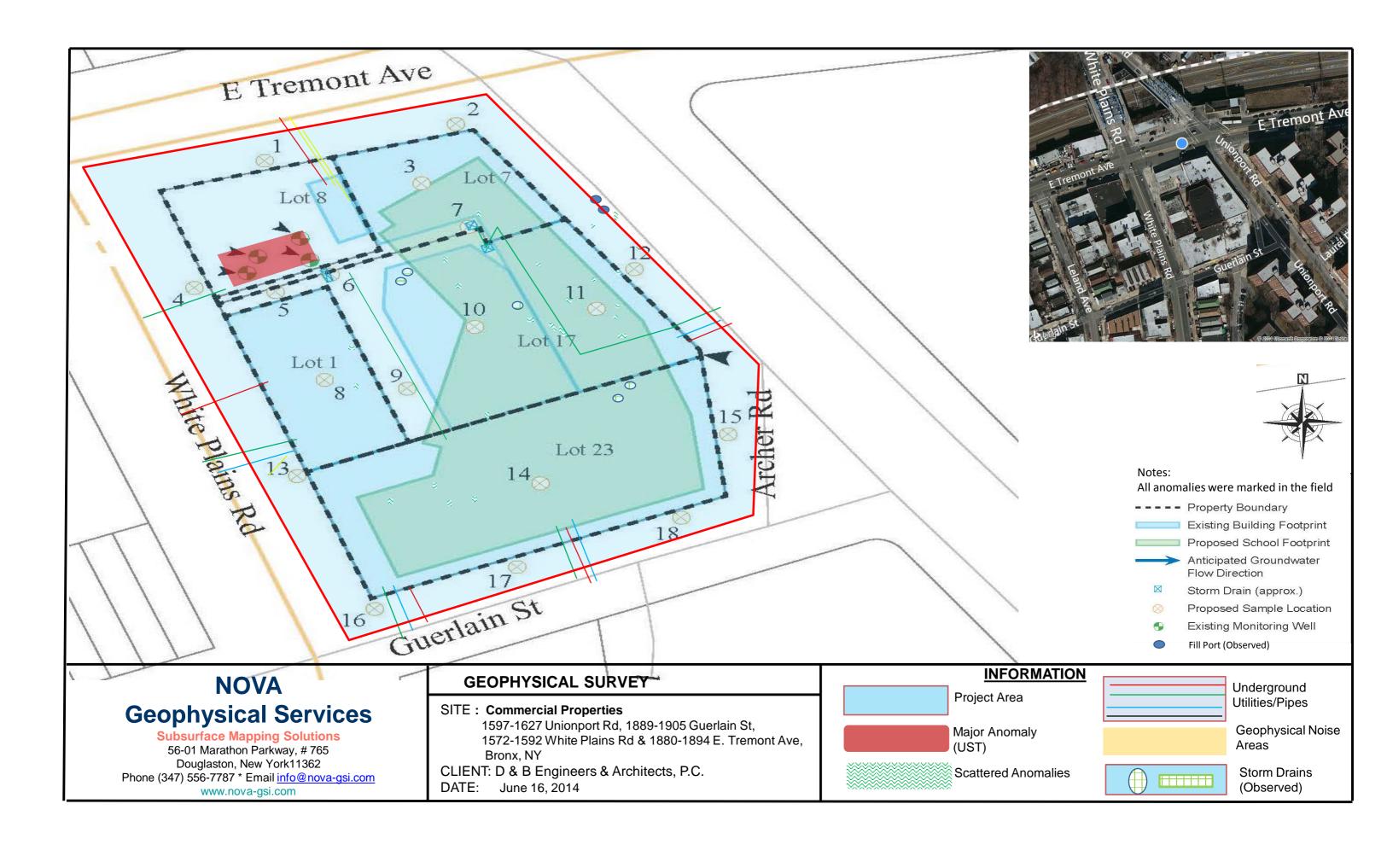
**NOVA** 

**Geophysical Services** 

**Subsurface Mapping Solutions** 

56-01 Marathon Pkwy, # 765, Douglaston, NY11362 (347) 556-7787 Fax (718) 261-1528

www.nova-gsi.com


FIGURE 1
SITE LOCATION MAP

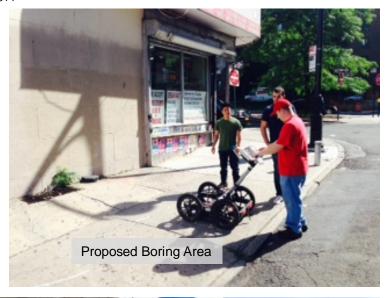
SITE: Commercial Properties

1597-1627 Unionport Rd, 1889-1905 Guerlain St,

1572-1592 White Plains Road & 1880-1894 E.Tremont Ave,

Bronx, NY SCALE: See Map



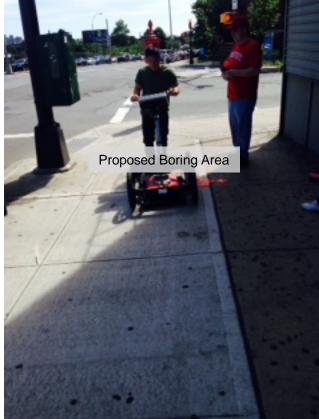

#### **GEOPHYSICAL IMAGES**

#### **Commercial Properties**

1597-1627 Unionport Rd, 1889-1905 Guerlain St, 1572-1592 White Plains Road & 1880-1894 E. Tremont Ave, Bronx, NY June 16, 2014

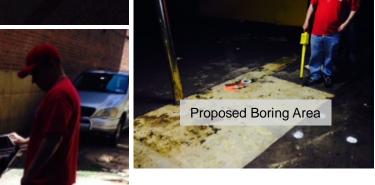









#### **GEOPHYSICAL IMAGES**


#### **Commercial Properties**

1597-1627 Unionport Rd, 1889-1905 Guerlain St, 1572-1592 White Plains Road & 1880-1894 E. Tremont Ave, Bronx, NY June 16, 2014















**APPENDIX C** 

**SOIL BORING LOGS** 



1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road

1572-1592 White Plains Road and 1880-1894 East Tremont Avenue Bronx, New York 10462 Boring No.: GP-1
Sheet <u>1</u> of <u>1</u>

By: Keith Robins

**Drilling Contractor:** ADT

Drill Rig: Track mounted 6620 DT/Drill Rig Drilling Method: Geoprobe/HSA

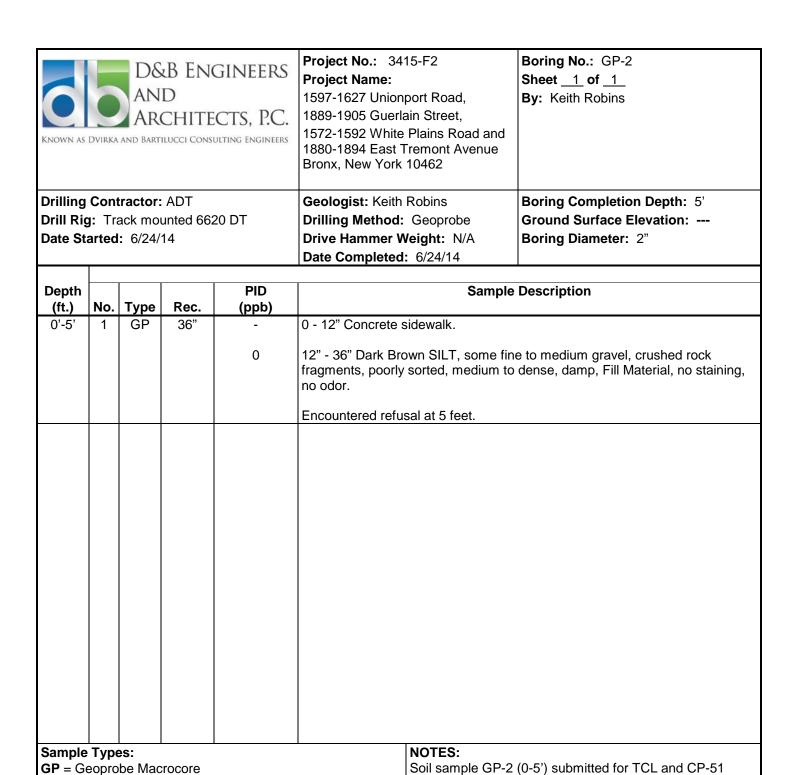
Date Started: 6/24/14

Geologist: Keith Robins

**Drilling Method:** Geoprobe/HSA **Drive Hammer Weight:** N/A

Date Completed: 6/30/14

Boring Completion Depth: 11'
Ground Surface Elevation: --Boring Diameter: 2" Geoprobe


8" HSA

| Depth<br>(ft.) | No. | Туре | Rec. | PID<br>(ppb) | Sample Description                                                                                                                                                                                                                                                                                                                |
|----------------|-----|------|------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0'-5'          | 1   | GP   | 36"  | -            | 0 - 12" Concrete sidewalk.                                                                                                                                                                                                                                                                                                        |
|                |     |      |      | 89           | 12" - 36" Dark Brown - Black silty SAND, some concrete with trace red brick fragments, asphalt and fine gravel, poorly sorted, loose, dry, Fill Material, no staining, no odor.                                                                                                                                                   |
| 5'-10'         | 2   | GP   | 12"  | 0            | 0" - 12" Dark Brown silty SAND, trace fine gravel, red brick, rock fragments, poorly sorted, loose, damp to dry, Fill Material, no staining, no odor.                                                                                                                                                                             |
| 10'-11'        | 2   | GP   | 12"  | 0            | 0" – 12" Dark Brown fine SAND, some silt, fine gravel, crushed subangular rock, poorly sorted, loose, dry, Fill Material, no staining, no odor.  Encountered refusal at 11 feet.  Note: On 6/30/14, redrilled down to 36 feet with drill rig using HSA. No soil samples collected from (11'-36'). Encountered refusal at 36 feet. |

Sample Types: GP = Geoprobe Macrocore HSA = Hollow Stem Auger NOTES:

Soil sample GP-1 (0-5') submitted for TCL and CP-51 listed VOCs plus TICs and TCL SVOCs and CP-51 plus TICs, PCBs, selected TAL Metals, TCL Pesticides/Herbicides, Cyanide and Hexavalent Chromium.

PID background was 140 ppb.



listed VOCs plus TICs and TCL SVOCs and CP-51 plus

Pesticides/Herbicides, Cyanide and Hexavalent Chromium.

TICs, PCBs, selected TAL Metals, TCL

PID background 140 ppb.



KNOWN AS DVIRKA AND BARTILUCCI CONSULTING ENGINEERS

Project No.: 3415-F2
Project Name:

1597-1627 Unionport Road, 1889-1905 Guerlain Street,

1572-1592 White Plains Road and

1880-1894 East Tremont Avenue Bronx, New York 10462 **Boring No.:** GP-3 **Sheet** <u>1</u> **of** <u>1</u>

By: Kumar Chakraborty

**Drill Rig:** Remote Unit

Date Started: 6/24/14

Geologist: Kumar Chakraborty Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: 6/24/14 **Boring Completion Depth:** 9' **Ground Surface Elevation:** ---

**Boring Diameter: 2**"

| Depth |     | _  | _    | PID   | Sample Description                                                                                                                                                     |
|-------|-----|----|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ft.) | No. |    | Rec. | (ppb) |                                                                                                                                                                        |
| 0'-3' | 1   | GP | 12"  | -     | 0 - 4" Concrete                                                                                                                                                        |
|       |     |    |      | 0     | 4" - 12" Light to Dark Brown silty SAND, some stone, gravel, trace asphalt, trace ceramic material, poorly sorted, medium, moist, Fill Material, no staining, no odor. |
| 3'-6' | 2   | GP | 11"  | 0     | 0-11" Light Brown silty SAND, trace brick, trace silt, poorly sorted, medium, moist, no staining, no odor.                                                             |
| 6'-9' | 3   | GP | 36"  | 0     | 0 – 6" Light Brown silty SAND, poorly sorted, no staining, no odor.                                                                                                    |
|       |     |    |      | 0     | 6"-30" Light Brown to Orange silty SAND, trace clay, medium, moist, no staining, no odor.                                                                              |
|       |     |    |      | 0     | 30"-36" Black SAND and gravel, trace silt, loose, moist, no staining, no odor.                                                                                         |
|       |     |    |      |       | Encountered refusal at 9.3 feet.                                                                                                                                       |
|       |     |    |      |       |                                                                                                                                                                        |
|       |     |    |      |       |                                                                                                                                                                        |
|       |     |    |      |       |                                                                                                                                                                        |
|       |     |    |      |       |                                                                                                                                                                        |
|       |     |    |      |       |                                                                                                                                                                        |
|       |     |    |      |       |                                                                                                                                                                        |
|       |     |    |      |       |                                                                                                                                                                        |
|       |     |    |      |       |                                                                                                                                                                        |

Sample Types:

**GP** = Geoprobe Macrocore

**NOTES:** 

Soil sample GP-3 (6"-18") submitted for TCL and CP-51 listed VOCs plus TICs and TCL SVOCs and CP-51 plus TICs, PCBs, selected TAL Metals, TCL Pesticides/Herbicides, Cyanide, Hexavalent Chromium,

TPH DRO/GRO and RCRA Characteristics. PID

background 0 ppb.



1597-1627 Unionport Road, 1889-1905 Guerlain Street,

1572-1592 White Plains Road and 1880-1894 East Tremont Avenue Bronx, New York 10462 Boring No.: GP-4
Sheet 1 of 1

By: Keith Robins

**Drilling Contractor: ADT** 

Drill Rig: Track mounted 6620 DT

Date Started: 6/23/14

Geologist: Keith Robins

Drilling Method: Geoprobe

Drive Hammer Weight: N/A

Date Completed: 6/23/14

**Boring Completion Depth: 11' Ground Surface Elevation: ---**

Boring Diameter: 2"

| Depth<br>(ft.) | No.  | Туре | Rec. | PID<br>(ppb) | Sample Description                                                                                                                    |
|----------------|------|------|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 0'-5'          | 1    | GP   | 36"  | -            | 0 - 12" Concrete sidewalk.                                                                                                            |
|                |      |      |      | 312 ppb      | 12" - 18" Dark Brown silty SAND, some gravel, trace clay, no staining, no odor.                                                       |
|                |      |      |      | 10 ppb       | 18" - 24" Fill Material, some gravel, asphalt, crushed cement, no staining, no odor.                                                  |
|                |      |      |      | 10 ppb       | 24" - 30" Light Brown silty SAND, poorly sorted, damp, no staining, no odor.                                                          |
|                |      |      |      | 10 ppb       | 30" - 36" Crushed white quartz, rock, dry, no staining, no odor.                                                                      |
| 5'-10'         | 2    | GP   | 36"  | 0            | 0 - 3" Crushed rock, poorly sorted, loose, dry, no staining, no odor.                                                                 |
|                |      |      |      | 0            | 3" - 15" Brown silty CLAY, trace fine sand, trace fine gravel, trace red brick fragment, medium to dense, damp, no staining, no odor. |
|                |      |      |      | 0            | 15" - 36" Brown crushed weathered rock, loose, dry, no staining, no odor.                                                             |
| 10'-11'        | 3    | GP   | 18"  | 0            | 0 - 6" Dark Brown SILT, some mica flakes, trace fine gravel, damp, no staining, no odor.                                              |
|                |      |      |      | 0            | 6" - 18" White-Gray crushed weathered rock, pulverized rock powder with mica fakes, poorly sorted, dry, no staining, no odor.         |
|                |      |      |      |              | Encountered refusal at 11 feet.                                                                                                       |
|                |      |      |      |              |                                                                                                                                       |
| Sample         | Type |      |      |              | NOTES:                                                                                                                                |

**GP** = Geoprobe Macrocore

Soil sample GP-4 (0-5') submitted for TCL and CP-51 listed VOCs plus TICs and TCL SVOCs and CP-51 plus TICs, PCBs, selected TAL Metals, TCL Pesticides/Herbicides, Cyanide and Hexavalent Chromium. PID background 0 ppb.



Project No.: 3415-F2
Project Name:
1597-1627 Unionport Road,

Boring No.: GP-5
Sheet 1 of 1
By: Keith Robins

Known as Dvirka and Bartilucci Consulting Engineers

1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue Bronx, New York 10462

> Boring Completion Depth: 20' Ground Surface Elevation: ---

Boring Diameter: 2"

**Drilling Contractor:** ADT

Drill Rig: Track mounted 6620 DT

Date Started: 6/23/14

Drive Hammer Weight: N/A Date Completed: 6/23/14

Geologist: Keith Robins

**Drilling Method:** Geoprobe

|                   |     |      |        |                  | Date Completed: 6/23/14                                                                                                                                                                                                                                |
|-------------------|-----|------|--------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.)    | No. | Туре | Rec.   | PID<br>(ppb)     | Sample Description                                                                                                                                                                                                                                     |
| 0'-5'             | 1   | GP   | 36"    | -                | 0 - 6" Asphalt                                                                                                                                                                                                                                         |
|                   |     |      |        | 10 ppb           | 6" - 10" Crushed concrete, Fill Material, dry, no staining, no odor.                                                                                                                                                                                   |
|                   |     |      |        | 10 ppb           | 10" - 24" Dark Brown SAND, gravel, crushed red brick, trace silt, Fill Material, dry, no staining, no odor.                                                                                                                                            |
|                   |     |      |        | 10 ppb           | 24" 20" Proug fine SAND trace brown fine brick trace grovel dry no                                                                                                                                                                                     |
|                   |     |      |        | 10 ppb           | 24" - 30" Brown fine SAND, trace brown fine brick, trace gravel, dry, no staining, no odor.                                                                                                                                                            |
|                   |     |      |        | 10 ppb           | 30" - 36" Black fine medium SAND and crushed slag/cinder, damp, Fill Material, no staining, no odor.                                                                                                                                                   |
| 5'-8'             | 2   | GP   | 36"    | 500-1,000<br>ppb | 0 - 6" Brown SILT, crushed weathered rock, trace red brick fragments, poorly sorted, loose, dry, no staining, no odor.                                                                                                                                 |
|                   |     |      |        | 6,800 ppb        | 6" - 24" Black-Dark Gray SILT, trace fine subangular gravel, trace fine sand, damp, no staining, slight petroleum odor.                                                                                                                                |
| 9'-10'            | 3   | GP   | 0"     | -                | Hit refusal, no sample taken. Relocated Geoprobe location and continued sampling.                                                                                                                                                                      |
| 10'-15'           | 4   | GP   | 48"    | 500 ppm          | 10' – 11' Brown-Olive SILT, trace clay, very moist, no staining, petroleum odor.                                                                                                                                                                       |
|                   |     |      |        | 500 ppm          | 11' – 11.5' Gray-Black SILT, trace clay, soft, wet, no staining, very strong petroleum odor.                                                                                                                                                           |
|                   |     |      |        | 100 ppm          | 11.5' – 15' Olive Green-Brown SILT, some fine sand, trace fine gravel, well sorted, medium to dense, very moist, no staining, strong petroleum odor.                                                                                                   |
| 15'-20'           | 5   | GP   | 48"    | 5,000 ppb        | 15'-17' Gray silty SAND, medium to dense, moist, slight petroleum odor.                                                                                                                                                                                |
|                   |     |      |        |                  | 17'-20' Orange-White SILT and highly weathered rock, trace clay, medium to dense, dry to damp, no staining, trace odor.                                                                                                                                |
| Sample<br>GP = Ge |     |      | rocore |                  | NOTES: Soil sample GP-5 (10'-12') and GP-5 (18'-20') submitted for TCL and CP-51 listed VOCs plus TICs and TCL SVOCs and CP-51 plus TICs, PCBs, selected TAL Metals, TCL Pesticides/Herbicides, Cyanide and Hexavalent Chromium. PID background 0 ppb. |



Bronx, New York 10462

Geologist: Keith Robins

Boring No.: GP-6 Sheet 1 of 1 By: Keith Robins

1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue

**Boring Completion Depth: 20'** 

Ground Surface Elevation: ---

Boring Diameter: 2"

**Drilling Contractor: ADT** 

Drill Rig: Track mounted 6620 DT

Date Started: 6/25/14

**Drilling Method:** Geoprobe Drive Hammer Weight: N/A Date Completed: 6/25/14

Depth PID Sample Description (ft.) No. Type Rec. (ppb) 0'-5' GP 24" 0 - 6" Asphalt 6" - 12" Crushed concrete, loose, no staining, no odor. 12" - 20" Brown silty SAND, gravel, crushed red brick, trace black clay, trace 5,000 ppb crushed stone, Fill Material, poorly sorted, dry, no staining, no odor. 20" – 24" Crushed red brick, dry, no staining, no odor. 2 GP 5'-10' 36" 0 0 - 12" Red brick fragments, loose, dry, no staining, no odor. 4,000 ppb 12" - 24" Olive Green-Gray SILT, trace clay, no staining, no odor. 24"-30" Black-Gray silty SAND, discolored soils, slight petroleum odor. 27 ppm 0 30"-36" Orange-Brown silty SAND, trace mica, trace fine gravel, no staining, slight petroleum odor. 10'-15' 3 GP 24" 0 10' - 15' Brown-Yellow Silver-Gray SILT, highly weathered decomposed bedrock, trace clay, trace small rock fragments, trace gray fine sand, some mica/biotite flakes, poorly sorted, medium, damp to very moist, no staining, no odor. 15'-20' 5 GP 48" 0 0"-24" Gray-Silver SILT and weathered decomposed rock with abundant mica flakes, dense, dry, no staining, no odor. 24"- 36" Dark Brown-Orange SILT, trace clay, compacted, dry, no staining, no odor. 36"-48" Dark Brown-Gray SILT, trace clay, some weathered rock, trace gravel, poorly sorted, wet, no staining, no odor. Sample Types: NOTES: Soil sample GP-6 (7'-9') and GP-6 (12'-14') submitted for **GP** = Geoprobe Macrocore TCL and CP-51 listed VOCs plus TICs and TCL SVOCs and CP-51 plus TICs, PCBs, selected TAL Metals, TCL Pesticides/Herbicides, Cyanide and Hexavalent Chromium. PID background 0 ppb.



Project No.: 3415-F2
Project Name:
1597-1627 Unionport Road,

Geologist: Keith Robins

**Drilling Method:** Geoprobe

**Drive Hammer Weight:** N/A

Boring No.: GP-7
Sheet 1 of 1
By: Keith Robins

Known as Dvirka and Bartilucci Consulting Engineers

1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue Bronx, New York 10462

> Boring Completion Depth: 20' Ground Surface Elevation: ---

Boring Diameter: 2"

**Drilling Contractor:** ADT

Drill Rig: Track mounted 6620 DT

Date Started: 6/25/14

|                   |     | - 0, -0, |        |          | Ziivo mammor trongina 147 t                                                                             | Doming Diamoton: 2                                                                                                                                                             |
|-------------------|-----|----------|--------|----------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |     |          |        |          | Date Completed: 6/25/14                                                                                 |                                                                                                                                                                                |
|                   |     | I I      |        |          |                                                                                                         |                                                                                                                                                                                |
| Depth             |     |          | D      | PID      | Sample                                                                                                  | Description                                                                                                                                                                    |
| (ft.)             | No. | Туре     | Rec.   | (ppb)    | 0.000                                                                                                   |                                                                                                                                                                                |
| 0'-5'             | 1   | GP       | 24"    | -        | 0 - 6" Concrete                                                                                         |                                                                                                                                                                                |
|                   |     |          |        | 0        | 6" - 18" Brown SILT, trace gravel, tr<br>loose, Fill Material, no staining, no oc                       | race fine sand, trace brick, poorly sorted, dor.                                                                                                                               |
|                   |     |          |        | 0        | 18" - 24" Gray crushed rock and red staining, no odor.                                                  | brick, loose, dry, Fill Material, no                                                                                                                                           |
| 5'-10'            | 2   | GP       | 30"    | 0        | 0 - 6" Red brick fragments, loose, dry                                                                  | y, no staining, no odor.                                                                                                                                                       |
|                   |     |          |        | 1000 ppb | 6" - 12" Black SAND, gravel, some c<br>Material, no staining, slight to trace p                         |                                                                                                                                                                                |
|                   |     |          |        | 0        | 12"-30" Gray-Brown SILT, medium to                                                                      | o dense, dry, no staining, no odor.                                                                                                                                            |
| 10'-15'           | 3   | GP       | 39"    | 0        | 0 - 6" Brown clayey, firm, SILT, trace no staining, no odor.                                            | subrounded rock fragments, very moist,                                                                                                                                         |
|                   |     |          |        | 0        | 6"-18" Olive-Brown silty fine SAND, o                                                                   | damp, no staining, no odor.                                                                                                                                                    |
|                   |     |          |        | 0        | 18"-39" Dark Brown-Olive silty fine S rock, trace fine gravel, some muscov moist, no staining, no odor. | AND, trace weathered decomposed vite/biotite flakes, poorly sorted, damp to                                                                                                    |
| 15'-20'           | 5   | GP       | 40"    | 0        | 0"-18" Dark Brown-Dark Red fine-me poorly sorted, loose to medium, wet,                                 | edium SAND, some silt, trace fine gravel, no staining, no odor.                                                                                                                |
|                   |     |          |        | 0        | 18"- 24" Gray silty decomposed weat                                                                     | thered rock, moist, no staining, no odor.                                                                                                                                      |
|                   |     |          |        | 0        | 24"-40" Tan-Gray SILT and highly de                                                                     | ecomposed weathered rock, mica flakes,                                                                                                                                         |
|                   |     |          |        |          | dry to damp, no staining, no odor.                                                                      |                                                                                                                                                                                |
| Sample<br>GP = Ge |     |          | rocore |          | TCL and CP-51 lis<br>and CP-51 plus TI<br>Pesticides/Herbici                                            | (9'-11') and GP-7 (14'-16') submitted for sted VOCs plus TICs and TCL SVOCs ICs, PCBs, selected TAL Metals, TCL des, Cyanide, Hexavalent Chromium nd RCRA Characteristics. PID |

background 0 ppb.



| Sample Types:           | NOTES:                                                                                                                                        |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| GP = Geoprobe Macrocore | Soil sample GP-8 (6"-18") submitted for TCL and CP-51 listed VOCs plus TICs and TCL SVOCs and CP-51 plus TICs, PCBs, selected TAL Metals, TCL |
|                         | Pesticides/Herbicides, Cyanide and Hexavalent                                                                                                 |



Boring No.: GP-9
Sheet 1 of 1
By: Keith Robins

Known as Dvirka and Bartilucci Consulting Engineers

1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue Bronx, New York 10462

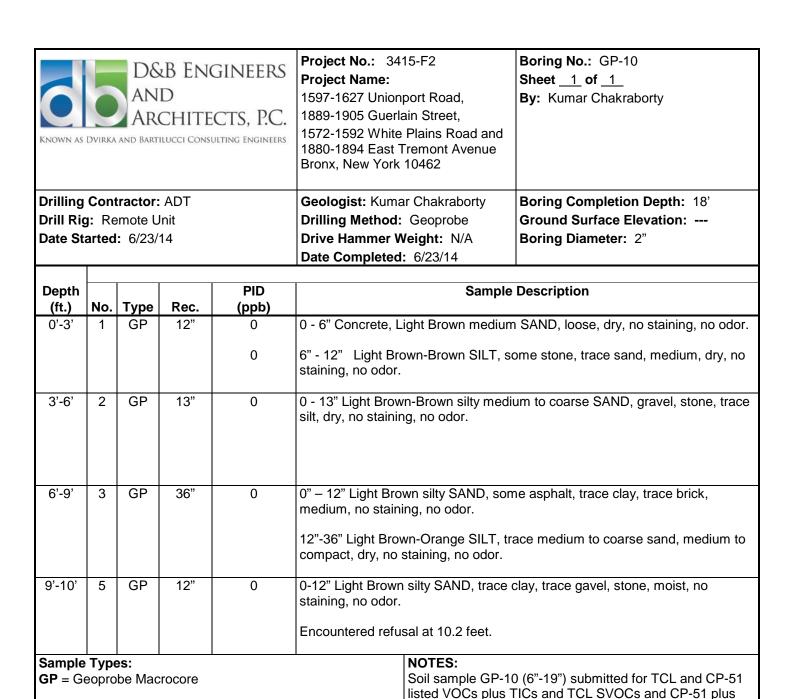
> Boring Completion Depth: 25' Ground Surface Elevation: ---

Boring Diameter: 2"

**Drilling Contractor:** ADT

Drill Rig: Track mounted 6620 DT

Date Started: 6/25/14


Drive Hammer Weight: N/A
Date Completed: 6/25/14

Geologist: Keith Robins

**Drilling Method:** Geoprobe

|                  |     |      |        |              | Date Completed: 0/20/14                                                                                                                                                            |
|------------------|-----|------|--------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.)   | No. | Туре | Rec.   | PID<br>(ppb) | Sample Description                                                                                                                                                                 |
| 0'-5'            | 1   | GP   | 36"    | -            | 0 - 12" Concrete                                                                                                                                                                   |
|                  |     |      |        | 0            | 12" - 36" Dark Brown SILT, trace fine sand, trace subrounded gravel, some red brick fragments, trace cinder/slag, poorly sorted, medium, dry, Fill Material, no staining, no odor. |
| 5'-10'           | 2   | GP   | 38"    | 0            | 0 - 38" Brown SILT and crushed red brick pieces, trace gravel, subangular rock fragments, poorly sorted, very loose, dry, Fill Material, no staining, no odor.                     |
| 10'-15'          | 3   | GP   | 36"    | 0            | 0" – 6" Crushed red brick, loose, dry, Fill Material, no staining, no odor.                                                                                                        |
|                  |     |      |        | 0            | 6"-10" Dark Brown SILT, trace clay, damp, no staining, no odor.                                                                                                                    |
|                  |     |      |        | 0            | 10"-30" Brown-Gray SILT, trace clay, trace subrounded gravel, well sorted, damp to moist, no staining, no odor.                                                                    |
|                  |     |      |        | 0            | 30" – 36" Dark Brown- Brown SILT, trace fine sand, trace fine gravel, trace muscovite, trace weathered decomposed rock, no staining, no odor.                                      |
| 15'-20'          | 5   | GP   | 30"    | 0            | 0"- 24" Dark Brown SILT, trace clay, some mica flakes, poorly sorted, loose to medium, damp to moist, no staining, no odor.                                                        |
|                  |     |      |        | 0            | 24"- 30" Crushed rock fragments, loose, dry, no staining, no odor.                                                                                                                 |
| 20'-25'          | 6   | GP   | 48"    | 0            | 0 -18" Brown silty SAND, some gravel, poorly sorted, loose, wet, no staining, no odor.                                                                                             |
|                  |     |      |        | 0            | 18"- 20" Silver-Gray weathered bedrock (micaschist), dry, no staining, no odor.                                                                                                    |
|                  |     |      |        | 0            | 20"- 48" Silver-Brown to Orange-Yellow SILT, trace clay, trace decomposed weathered rock, poorly sorted, dry, no staining, no odor.                                                |
| Sample<br>GP = G |     |      | rocore |              | NOTES: Soil sample GP-9 (0-5') submitted for TCL and CP-51 listed VOCs plus TICs and TCL SVOCs and CP-51 plus                                                                      |

Soil sample GP-9 (0-5') submitted for TCL and CP-51 listed VOCs plus TICs and TCL SVOCs and CP-51 plus TICs, PCBs, selected TAL Metals, TCL Pesticides/Herbicides, Cyanide and Hexavalent Chromium. PID background 0 ppb.



TICs, PCBs, selected TAL Metals, TCL

background 0 ppb.

Pesticides/Herbicides, Cyanide, Hexavalent Chromium, TPH DRO/GRO and RCRA Characteristics. PID



Bronx, New York 10462

1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue **Boring No.**: GP-11 **Sheet** <u>1</u> **of** <u>1</u>

By: Kumar Chakraborty

Drilling Contractor: ADT Drill Rig: Remote Unit Date Started: 6/23/14

Geologist: Kumar Chakraborty Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: 6/23/14 Boring Completion Depth: 9' Ground Surface Elevation: ---

**Boring Diameter: 2"** 

listed VOCs plus TICs and TCL SVOCs and CP-51 plus

Pesticides/Herbicides, Cyanide, Hexavalent Chromium,

TPH DRO/GRO and RCRA Characteristics. PID

TICs, PCBs, selected TAL Metals, TCL

background 0 ppb.

| Depth<br>(ft.) | No.  | Туре | Rec.   | PID<br>(ppb) | Sample Description                                                                                     |
|----------------|------|------|--------|--------------|--------------------------------------------------------------------------------------------------------|
| 0'-3'          | 1    | GP   | 36"    | 0            | 0 - 6" Concrete, trace sand, trace gravel, loose, dry, no staining, slight odor.                       |
|                |      |      |        | 0            | 6" - 12" Light Brown SILT, trace sand, trace asphalt, medium, moist, no staining, no odor.             |
|                |      |      |        | 0            | 12"-36" Light Brown-Orange SILT, trace sand, well sorted, medium, no staining, no odor.                |
| 3'-6'          | 2    | GP   | 36"    | 0            | 0 - 12" Dark crushed stone, gravel, silty SAND, loose, moist, no staining, no odor.                    |
|                |      |      |        | 0            | 12" - 24" Light Brown SAND, some silt, moist, no staining, no odor.                                    |
|                |      |      |        | 0            | 24"-36" Light Brown-Orange SILT, trace clay, trace brick, loose, moist to wet no staining, no odor.    |
| 6'-9'          | 3    | GP   | 36"    | 0            | 0" – 18" Light Brown SAND, trace stone, trace silt, medium, moist to wet, no staining, no odor.        |
|                |      |      |        |              | 18"-36" Light Brown-Orange medium to coarse SAND, well sorted, wet to saturated, no staining, no odor. |
| Sample         | Type | )e.  |        |              | NOTES:                                                                                                 |
| GP = G         |      |      | rocore |              | Soil sample GP-11 (6"-23") submitted for TCL and CP-51                                                 |



1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and

1880-1894 East Tremont Avenue Bronx, New York 10462 Boring No.: GP-12 Sheet <u>1</u> of <u>1</u>

By: Keith Robins

**Drilling Contractor:** ADT

Drill Rig: Track mounted 6620 DT

**Date Started:** 6/24/14

**Geologist:** Keith Robins **Drilling Method:** Geoprobe **Drive Hammer Weight:** N/A

Date Completed: 6/24/14

**Boring Completion Depth:** 13' **Ground Surface Elevation:** ---

Boring Diameter: 2"

|                  | 1       |      |         |              | Date Completed. 0/24/14                                                                                                                                                     |
|------------------|---------|------|---------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.)   | No.     | Туре | Rec.    | PID<br>(ppb) | Sample Description                                                                                                                                                          |
| 0'-5'            | 1       | GP   | 36"     | -            | 0 - 12" Concrete                                                                                                                                                            |
|                  |         |      |         | 0            | 12" - 16" Black crushed cinder and gravel, loose, dry, Fill Material, no staining, no odor.                                                                                 |
|                  |         |      |         | 0            | 16" - 36" Dark Brown – Orange SILT, trace fine subangular gravel, some mica flakes, trace weathered rock, poorly sorted, medium, damp, Fill Material, no staining, no odor. |
| 5'-10'           | 2       | GP   | 36"     | 0            | 0 - 36" Brown-Orange SILT, trace fine subrounded gravel, trace weathered rock, trace mica flakes, poorly sorted, soft to medium, dry to damp, no staining, no odor.         |
| 10'-13'          | 3       | GP   | -       | -            | Geoprobe soil ampler broke off in ground and never retrieved.                                                                                                               |
|                  |         |      |         |              | Encountered refusal at 13 feet.                                                                                                                                             |
| Sample<br>GP = G |         |      | rocore  |              | NOTES: Soil sample GP-12 (0-5') submitted for TCL and CP-51                                                                                                                 |
| 2. 0             | - op 10 | imae | . 20010 |              | listed VOCs plus TICs and TCL SVOCs and CP-51 plus TICs, PCBs, selected TAL Metals, TCL Pesticides/Herbicides, Cyanide and Hexavalent Chromium                              |

PID background 0 ppb.



1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and

1880-1894 East Tremont Avenue Bronx, New York 10462

Boring No.: GP-13 Sheet \_ 1 of \_ 1

By: Keith Robins

Soil sample GP-13 (0-5') and GP-13 (18'-20') submitted for

TCL and CP-51 listed VOCs plus TICs and TCL SVOCs

and CP-51 plus TICs, PCBs, selected TAL Metals, TCL Pesticides/Herbicides, Cyanide and Hexavalent Chromium.

**Drilling Contractor:** ADT

Drill Rig: Track mounted 6620 DT/Drill Rig Drilling Method: Geoprobe/HSA

Date Started: 6/23/14

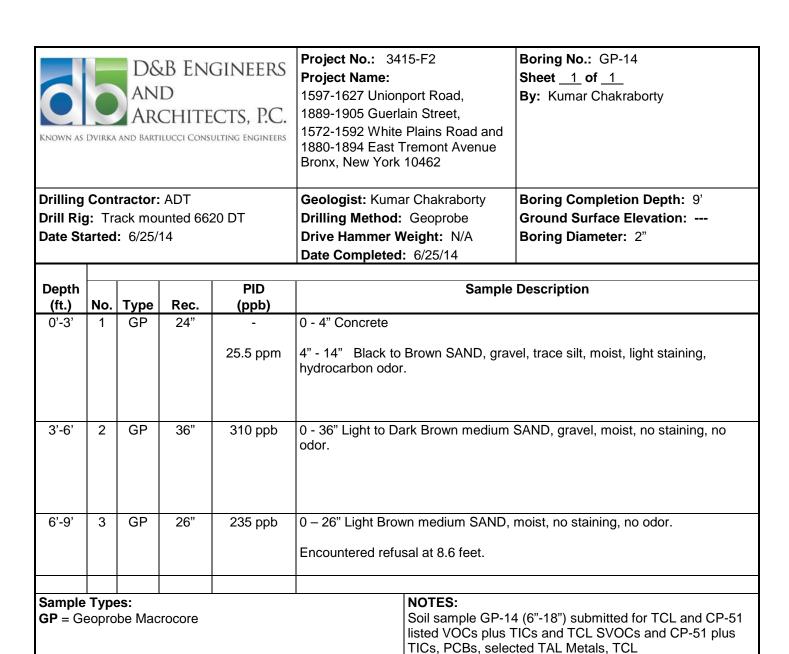
Sample Types:

**GP** = Geoprobe Macrocore

**HSA** = Hollow Stem Auger

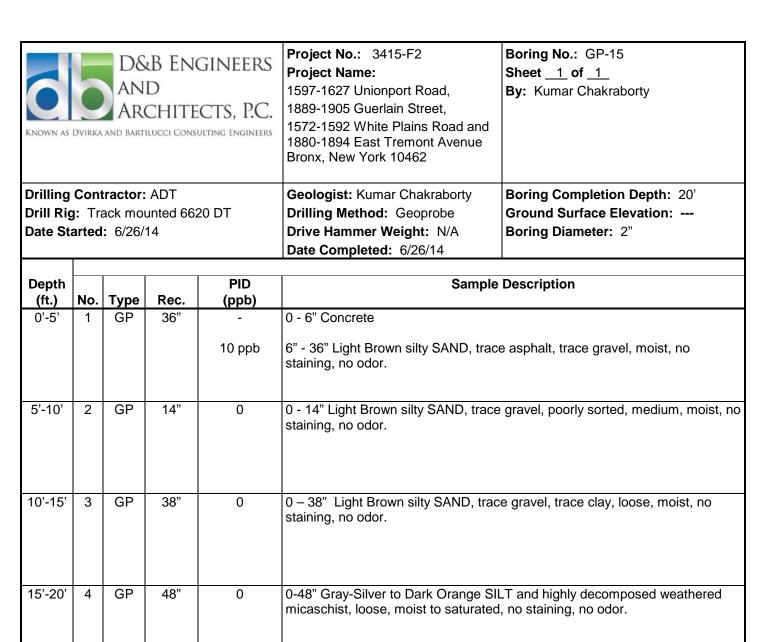
Geologist: Keith Robins

Drive Hammer Weight: N/A Date Completed: 6/30/14


**Boring Completion Depth: 20'** Ground Surface Elevation: ---Boring Diameter: 2" Geoprobe

8" HSA

| Depth   |     | _    | _    | PID     | Sample Description                                                                                                                |
|---------|-----|------|------|---------|-----------------------------------------------------------------------------------------------------------------------------------|
| (ft.)   | No. | Type | Rec. | (ppb)   |                                                                                                                                   |
| 0'-5'   | 1   | GP   | 26"  | -       | 0 - 12" Concrete                                                                                                                  |
|         |     |      |      | 0       | 12" - 20" Dark Brown silty SAND, some gravel, asphalt, medium, no staining, no odor.                                              |
|         |     |      |      | 0       | 20" - 26" Light Brown silty SAND, weathered crushed rock, loose, dry, no staining, no odor.                                       |
| 5'-10'  | 2   | GP   | 36"  | 0       | 0 - 36" Light brown crushed rock, some sand, trace stone, dry, no staining, no odor.                                              |
|         |     |      |      |         | Encountered refusal at 10 feet.                                                                                                   |
|         |     |      |      |         | Redrilled new boring using drill rig with hollow stem auger on 6/30/14. No soil sampling from 10'-20'.                            |
| 15'-20' | -   | HSA  | -    | 300 ppm | 15' – 20' Brown-Gray silty SAND, wet, strong petroleum odor, trace sheen on soil, noted off soil cuttings from hollow stem auger. |
|         |     |      |      |         |                                                                                                                                   |


NOTES:

PID background 0 ppb.



Pesticides/Herbicides, Cyanide, Hexavalent Chromium, TPH DRO/GRO and RCRA Characteristics. PID

background 0 ppb.



| Sample                         | Туре | es: |  | NOTES:                                                  |
|--------------------------------|------|-----|--|---------------------------------------------------------|
| <b>GP</b> = Geoprobe Macrocore |      |     |  | Soil sample GP-15 (6"-20") submitted for TCL and CP-51  |
|                                | -    |     |  | listed VOCs plus TICs and TCL SVOCs and CP-51 plus      |
|                                |      |     |  | TICs, PCBs, selected TAL Metals, TCL                    |
|                                |      |     |  | Pesticides/Herbicides, Cyanide and Hexavalent Chromium. |
|                                |      |     |  | PID background 0 ppb.                                   |



1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and

1880-1894 East Tremont Avenue Bronx, New York 10462 **Boring No.**: GP-16 **Sheet** <u>1</u> **of** <u>1</u>

By: Keith Robins

**Drilling Contractor:** ADT

Drill Rig: Track mounted 6620 DT

Date Started: 6/26/14

**Geologist:** Keith Robins **Drilling Method:** Geoprobe **Drive Hammer Weight:** N/A

Date Completed: 6/26/14

Boring Completion Depth: 17'
Ground Surface Elevation: ---

**Boring Diameter: 2**"

|                   |     |    | 1      |       |                                                                                                                                                                                                                                   |
|-------------------|-----|----|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth             | Na  | T  | Daa    | PID   | Sample Description                                                                                                                                                                                                                |
| (ft.)             | No. |    | Rec.   | (ppb) | 0.000                                                                                                                                                                                                                             |
| 0'-5'             | 1   | GP | 18"    | -     | 0 - 6" Concrete                                                                                                                                                                                                                   |
|                   |     |    |        | 0     | 6" - 18" Dark Brown-Brown fine-medium SAND, trace silt, trace slag/cinders, rock fragments, poorly sorted, dry, Fill Material, no staining, no odor.                                                                              |
| 5'-10'            | 2   | GP | 40"    | 0     | 0 - 6" Black cinder, crushed micaschist, rock, dry, Fill Material, no staining, no odor.                                                                                                                                          |
|                   |     |    |        | 0     | 6" - 10" Dark Brown SILT, trace clay, damp, Fill Material, no staining, no odor.                                                                                                                                                  |
|                   |     |    |        | 0     | 10"-14" Black-Gray SILT, trace clay, trace organic decomposed wood, damp, Fill Material, no staining, no odor.                                                                                                                    |
|                   |     |    |        | 0     | 14"-18" Gray silty CLAY, medium to dense, damp, no staining, no odor.                                                                                                                                                             |
|                   |     |    |        | 0     | 18"- 40" Gray-Tan SILT, trace clay, medium to dense, dry, no staining, no odor.                                                                                                                                                   |
| 10'-15'           | 3   | GP | 36"    | 0     | 0 - 20" Brown-Orange SILT, trace fine gravel, some crushed weathered decomposed rock, mica flakes, poorly sorted, medium, no staining, no odor.                                                                                   |
|                   |     |    |        | 0     | 20"- 36" Brown-Orange crushed rock gneiss/micaschist and coarse SAND, mica flakes, poorly sorted, loose, no staining, no odor.                                                                                                    |
| 15'-17'           | 4   | GP | 24"    | 0     | 0"-14" Dark Brown silty SAND, some gravel, poorly sorted, loose, wet, no                                                                                                                                                          |
| 15-17             | 4   | GF | 24     | U     | staining, no odor.                                                                                                                                                                                                                |
|                   |     |    |        | 0     | 14"-24" Weathered rock, dry, no staining, no odor.                                                                                                                                                                                |
|                   |     |    |        |       | Encountered refusal at 17 feet.                                                                                                                                                                                                   |
| Sample<br>GP = Ge |     |    | rocore |       | NOTES: Soil sample GP-16 (0-5') submitted for TCL and CP-51 listed VOCs plus TICs and TCL SVOCs and CP-51 plus TICs, PCBs, selected TAL Metals, TCL Pesticides/Herbicides, Cyanide and Hexavalent Chromium. PID background 0 ppb. |



Geologist: Keith Robins

**Drilling Method:** Geoprobe

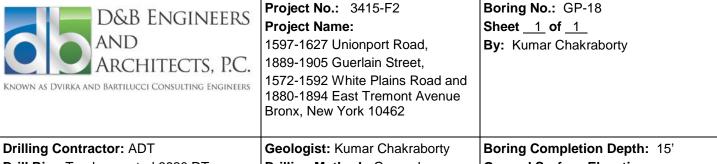
Drive Hammer Weight: N/A
Date Completed: 6/26/14

Boring No.: GP-17
Sheet 1 of 1
By: Keith Robins

Known as Dvirka and Bartilucci Consulting Engineers

1597-1627 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains Road and 1880-1894 East Tremont Avenue Bronx, New York 10462

Boring Completion Depth: 20'
Ground Surface Elevation: ---


**Boring Diameter: 2**"

**Drilling Contractor:** ADT

Drill Rig: Track mounted 6620 DT

Date Started: 6/26/14

|                |      |      |        |              | Date Completed. 0/20/14                                                                                                                                                                                                                                                          |  |  |  |  |  |
|----------------|------|------|--------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Depth<br>(ft.) | No.  | Туре | Rec.   | PID<br>(ppb) | Sample Description                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 0'-5'          | 1    | GP   | 36"    | -            | 0 - 6" Concrete                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                |      |      |        | -            | 6" - 12" Asphalt, stones                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                |      |      |        | 440 ppb      | 12" - 18" Brown SILT, trace fine gravel, poorly sorted, dry, Fill Material, no staining, no odor.                                                                                                                                                                                |  |  |  |  |  |
|                |      |      |        | 440 ppb      | 18"- 20" Concrete, loose, no staining, no odor.                                                                                                                                                                                                                                  |  |  |  |  |  |
|                |      |      |        | 440 ppb      | 20"- 24" Crushed cinder/slag, trace fine sand, dry, no staining, no odor.                                                                                                                                                                                                        |  |  |  |  |  |
|                |      |      |        | 440 ppb      | 24"- 36" Dark Brown SILT, trace fine to medium sand, some crushed rock, stones, trace clay, trace glass fragments, dry to damp, Fill Material, no staining, no odor.                                                                                                             |  |  |  |  |  |
| 5'-10'         | 2    | GP   | 24"    | 0            | 0 - 12" Brown clayey SILT, trace fine sand, trace subangular gravel, no staining, no odor.                                                                                                                                                                                       |  |  |  |  |  |
|                |      |      |        | 0            | 12"-14" Crushed rock, no staining, no odor.                                                                                                                                                                                                                                      |  |  |  |  |  |
|                |      |      |        | 0            | 14"- 24" Gray CLAY, trace silt, medium to dense, dry, no staining, no odor.                                                                                                                                                                                                      |  |  |  |  |  |
| 10'-15'        | 3    | GP   | 48"    | 0            | 0 - 16" Gray clayey SILT, dense, dry, no staining, no odor.                                                                                                                                                                                                                      |  |  |  |  |  |
|                |      |      |        | 0            | 16"- 48" Dark Brown-Orange fine-medium SAND, trace silt, trace gravel, well sorted, wet, no staining, no odors.                                                                                                                                                                  |  |  |  |  |  |
| 15'-20'        | 4    | GP   | 48"    | 0            | 0 - 36" Dark Brown fine-medium SAND, some fine gravel, trace mica flakes,                                                                                                                                                                                                        |  |  |  |  |  |
| 10 20          |      |      | 40     |              | well sorted, wet, no staining, no odor.                                                                                                                                                                                                                                          |  |  |  |  |  |
|                |      |      |        | 0            | 36"- 48" Brown-Orange fine-medium SAND, some rock and subangular gravel, poorly sorted, dry, no staining, no odor.                                                                                                                                                               |  |  |  |  |  |
| Sample         | Type | es:  |        |              | NOTES:                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| GP = Ge        |      |      | rocore |              | Soil sample GP-17 (0-5') submitted for TCL and CP-51 listed VOCs plus TICs and TCL, SVOCs and CP-51 plus TICs, PCBs, selected TAL Metals, TCL Pesticides/Herbicides, Cyanide, Hexavalent Chromium, TPH DRO/GRO and RCRA Characteristics. PID background was approximately 0 ppb. |  |  |  |  |  |



Drilling Contractor: ADT

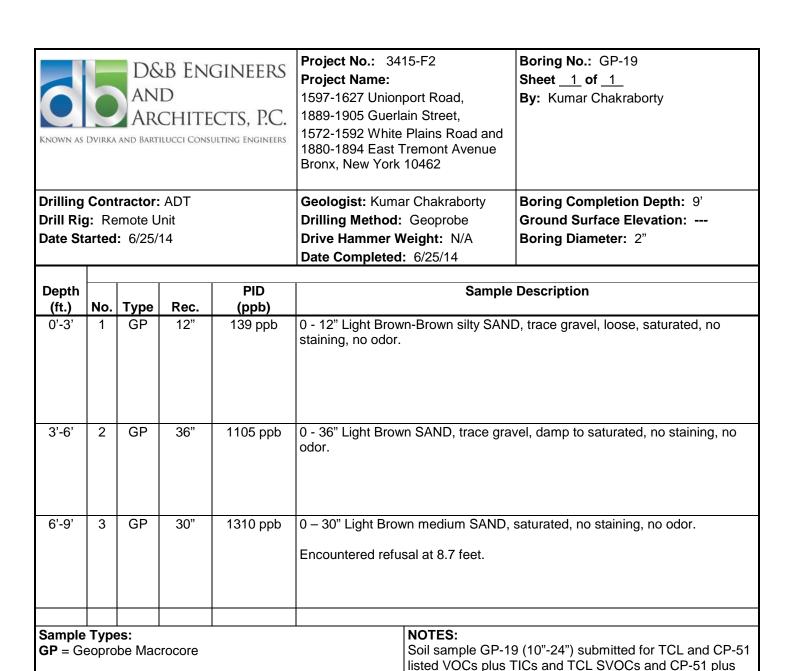
Geologist: Rumar Chakraborty

Drilling Method: Geoprobe

Date Started: 6/26/14

Drive Hammer Weight: N/A

Date Completed: 6/26/14


Boring Completion Depth: 15'

Ground Surface Elevation: --
Boring Completion Depth: 15'

Ground Surface Elevation: --
Drive Hammer Weight: N/A

Date Completed: 6/26/14

|                                       |     |      |        |              | Date Completed: 6/26/14                                                                                                                               |  |  |  |  |
|---------------------------------------|-----|------|--------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Depth<br>(ft.)                        | No. | Туре | Rec.   | PID<br>(ppb) | Sample Description                                                                                                                                    |  |  |  |  |
| 0'-5'                                 | 1   | GP   | 24"    | -            | 0 - 6" Concrete                                                                                                                                       |  |  |  |  |
|                                       |     |      |        | -            | 6" - 9" Asphalt, Brick.                                                                                                                               |  |  |  |  |
|                                       |     |      |        | 0            | 9" - 24" Dark Brown-Brown silty SAND, weathered rock, trace gravel, trace clay, medium, damp, no staining, no odor.                                   |  |  |  |  |
| 5'-10'                                | 2   | GP   | 40"    | 0            | 0 - 25" Light Brown silty SAND, gravel, weathered rock, trace clay, medium, damp, no staining, no odor.                                               |  |  |  |  |
|                                       |     |      |        | 0            | 25" – 40" Light Brown-Orange silty SAND, trace weathered gravel, medium, damp to moist, no staining, no odor.                                         |  |  |  |  |
| 10'-15'                               | 3   | GP   | 36"    | 0            | 0 – 36" Light Brown-Orange silty SAND, trace weathered gravel, medium, moist to saturated, no staining, no odor.                                      |  |  |  |  |
| Sample Types: GP = Geoprobe Macrocore |     |      | rocore |              | NOTES: Soil sample GP-18 (6"-18") submitted for TCL and CP-51 listed VOCs plus TICs and TCL SVOCs and CP-51 plus                                      |  |  |  |  |
|                                       |     |      |        |              | TICs, PCBs, selected TAL Metals, TCL Pesticides/Herbicides, Cyanide, Hexavalent Chromium, TPH DRO/GRO and RCRA Characteristics. PID background 0 ppb. |  |  |  |  |



TICs, PCBs, selected TAL Metals, TCL

background 0 ppb.

Pesticides/Herbicides, Cyanide, Hexavalent Chromium, TPH DRO/GRO and RCRA Characteristics. PID

APPENDIX D

SAMPLE COLLECTION LOGS



# SAMPLE INFORMATION RECORD

| Site:                                | 1597-1627 Unionpor<br>1889-1905 Guerlain &<br>1572-1592 White Pla<br>East Tremont Avenue | Street,<br>ins Road |                                | Sample Crew:       | Keith R   | Robins              |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------|---------------------|--------------------------------|--------------------|-----------|---------------------|--|--|
| Sampl                                | e Location/Well No.                                                                      | Locati              | on 1                           |                    |           |                     |  |  |
| Field S                              | Sample I.D. Number                                                                       | GP-1 (              | 0-5')                          | Time               | 9:25 an   | n                   |  |  |
| Weath                                | er Partly Cloudy                                                                         |                     |                                | Temperature        | 75°F      |                     |  |  |
| Sampl                                | e Type:                                                                                  |                     |                                |                    |           |                     |  |  |
| Groun                                | ndwater                                                                                  |                     | Sediment                       |                    |           |                     |  |  |
| Surfac                               | ce Water/Stream                                                                          |                     |                                | Air                |           |                     |  |  |
| Soil Soil sample from 0 – 5 feet bgs |                                                                                          |                     | Other (describe water, septage | •                  |           |                     |  |  |
|                                      | nformation (fill out f                                                                   | _                   | _                              |                    | Nothed    |                     |  |  |
|                                      | to Water                                                                                 |                     |                                |                    |           |                     |  |  |
| -                                    |                                                                                          |                     |                                |                    | D 135 4 1 |                     |  |  |
| Volun                                | ne Removed                                                                               |                     |                                | Removal Metho      | od        |                     |  |  |
| Field 7                              | Test Results                                                                             |                     |                                |                    |           |                     |  |  |
| Color                                | Black, Dark Brown                                                                        |                     | pH                             |                    | Odor      | No Odor             |  |  |
| Temp                                 | erature (°F)                                                                             |                     | _ Specific Cor                 | nductance (umhos/c | m)        |                     |  |  |
| Other                                | (OVA, Methane Met                                                                        | er, etc.            | PID readings u                 | p to 89 ppb.       |           |                     |  |  |
| No ode                               | or or staining observed                                                                  | l.                  |                                |                    |           |                     |  |  |
| Const                                | ituents Sampled                                                                          |                     |                                |                    |           |                     |  |  |
|                                      | L and CP-51<br>OCs + TICs                                                                |                     | and CP-51<br>OCs + TICs        | PCBs               |           | Selected TAL Metals |  |  |
| Pestic                               | TCL ides/Herbicides                                                                      | (                   | Cyanide                        | Hexavalent Ch      | romium    |                     |  |  |
| Rema                                 | rks:                                                                                     |                     |                                |                    |           |                     |  |  |
| Soil B                               | oring Logs are located                                                                   | in Apper            | ndix C                         |                    |           |                     |  |  |
|                                      |                                                                                          |                     |                                |                    |           |                     |  |  |



# SAMPLE INFORMATION RECORD

| Site:                                                                              |                            |                                | Sample Crew:  | Keith Rob                              | ins                 |  |  |
|------------------------------------------------------------------------------------|----------------------------|--------------------------------|---------------|----------------------------------------|---------------------|--|--|
| Sampl                                                                              | e Location/Well No.        | Location 2                     |               |                                        |                     |  |  |
| Field S                                                                            | Sam <u>ple I.D. Number</u> | GP-2 (0-5')                    | Time          | 12:50 pm                               |                     |  |  |
| Weath                                                                              | er Partly Cloudy           |                                | Temperature   | 75°F                                   |                     |  |  |
| Sampl                                                                              | e Type:                    |                                |               |                                        |                     |  |  |
| Groun                                                                              | ndwater                    |                                | Sediment      |                                        |                     |  |  |
| Surfac                                                                             | ce Water/Stream            |                                |               |                                        |                     |  |  |
| Soil _                                                                             | Soil sample from $0-5$     | Other (describe water, septage | , i.e         |                                        |                     |  |  |
| Well Information (fill out for groundwater samples)  Depth to Water  Depth of Well |                            |                                | Measurement N | Measurement Method  Measurement Method |                     |  |  |
| -                                                                                  |                            |                                |               |                                        |                     |  |  |
|                                                                                    | Test Results               |                                |               |                                        |                     |  |  |
|                                                                                    | Dark Brown                 | pH                             |               | Odor N                                 | lo Odor             |  |  |
| Temp                                                                               | erature (°F)               |                                |               |                                        |                     |  |  |
|                                                                                    | OVA, Methane Meta          | er, etc. PID readings 0        | ppb.          |                                        |                     |  |  |
| Consti                                                                             | tuents Sampled             |                                |               |                                        |                     |  |  |
|                                                                                    | L and CP-51<br>OCs + TICs  | TCL and CP-51<br>SVOCs + TICs  | PCBs          |                                        | Selected TAL Metals |  |  |
| Pestic                                                                             | TCL<br>ides/Herbicides     | Cyanide                        | Hexavalent Ch | romium                                 |                     |  |  |
| Rema                                                                               | rks:                       |                                |               |                                        |                     |  |  |
| Soil B                                                                             | oring Logs are located     | in Appendix C                  |               |                                        |                     |  |  |
|                                                                                    |                            |                                |               |                                        |                     |  |  |



### SAMPLE INFORMATION RECORD

| Site: 1597-1627 Unionport Road, |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Crew:       | hakraborty |                     |  |
|---------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|---------------------|--|
|                                 | 1889-1905 Guerlain S     | , and the second |                    |            |                     |  |
|                                 |                          | ins Road and 1880-1894<br>Bronx, New York 10462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                     |  |
| Sampl                           | e Location/Well No.      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |            |                     |  |
| Field S                         | Sample I.D. Number       | GP-3 (6"-18")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time               | 11:25 am   |                     |  |
| Weath                           | ner Partly Cloudy        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temperature        | 75°F       |                     |  |
| Sampl                           | le Type:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                     |  |
| Grour                           | ndwater                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sediment           |            |                     |  |
| Surfac                          | ce Water/Stream          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                     |  |
| Soil _                          | Soil sample from 6 – 1   | 8 inches bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ Other (describe  | , i.e      |                     |  |
|                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | water, septage     | e, etc.)   |                     |  |
| Well I                          | nformation (fill out fo  | or groundwater samples)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |            |                     |  |
| Depth                           | to Water                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measurement Method |            |                     |  |
| Depth                           | of Well                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measurement Method |            |                     |  |
| Volun                           | ne Removed               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ Removal Metho    | od         |                     |  |
| Field '                         | Test Results             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                     |  |
| Color                           | Black, Light - Dark I    | Brown pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | Odor N     | lo Odor             |  |
|                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                     |  |
| Other                           | (OVA, Methane Meto       | er, etc. PID readings 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | opb.               |            |                     |  |
| No od                           | or or staining observed. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                     |  |
| Const                           | ituents Sampled          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                     |  |
| TC                              | L and CP-51              | TCL and CP-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |            |                     |  |
| V                               | OCs + TICs               | SVOCs + TICs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PCBs               |            | Selected TAL Metals |  |
| Pestic                          | TCL<br>ides/Herbicides   | Cyanide and Hexavalent Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RCRA Charact       | teristics  | TPH DRO/GRO         |  |
|                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                     |  |
| Rema                            |                          | ' A 1' C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |            |                     |  |
| 2011 R                          | oring Logs are located   | ın Appenaix C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |            |                     |  |



# SAMPLE INFORMATION RECORD

| <u>,                                    </u> |                                                                                                            |  |  |               |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|---------------|
|                                              |                                                                                                            |  |  |               |
| Time                                         | 11:30 am                                                                                                   |  |  |               |
| Temperature                                  | 80°F                                                                                                       |  |  |               |
|                                              |                                                                                                            |  |  |               |
| Sediment                                     |                                                                                                            |  |  |               |
|                                              |                                                                                                            |  |  |               |
| Other (describe                              | , i.e                                                                                                      |  |  |               |
| Measurement Method                           |                                                                                                            |  |  |               |
|                                              |                                                                                                            |  |  | Removal Metho |
|                                              |                                                                                                            |  |  |               |
|                                              | Odor No Odor                                                                                               |  |  |               |
| ductance (umhos/ci                           | m)                                                                                                         |  |  |               |
| p to 312 ppb.                                |                                                                                                            |  |  |               |
|                                              |                                                                                                            |  |  |               |
|                                              |                                                                                                            |  |  |               |
| PCBs                                         | Selected TAL Metals                                                                                        |  |  |               |
| Hexavalent Chi                               | romium<br>                                                                                                 |  |  |               |
|                                              |                                                                                                            |  |  |               |
|                                              |                                                                                                            |  |  |               |
|                                              | Sediment Air Other (describe, water, septage) Measurement M Measurement M Removal Metho ductance (umhos/cr |  |  |               |



# SAMPLE INFORMATION RECORD

| Site: 1597-1627 Unionport 1889-1905 Guerlain S |                         | Sample Crew:       | Sample Crew: Keith Robins              |                                |  |  |
|------------------------------------------------|-------------------------|--------------------|----------------------------------------|--------------------------------|--|--|
|                                                | ins Road and 1880-1894  |                    |                                        |                                |  |  |
|                                                | e Bronx, New York 10462 | 2                  |                                        |                                |  |  |
| Sample Location/Well No.                       | Location 5              |                    |                                        |                                |  |  |
| Field Sample I.D. Number                       | GP-5 (10'-12') and      | Time               | 1:20 pı                                | n and                          |  |  |
|                                                | GP-5 (18'-20')          |                    | 1:45 pı                                | n                              |  |  |
| Weather Sunny                                  | Temperature             |                    |                                        |                                |  |  |
| Sample Type:                                   |                         |                    |                                        |                                |  |  |
| Groundwater                                    |                         | Sediment           |                                        |                                |  |  |
| G 6 TT / /G/                                   |                         |                    |                                        |                                |  |  |
| Soil Soil samples from 10 -                    | -20 feet bgs            | Other (describe    | , i.e.                                 |                                |  |  |
|                                                |                         | water, septage     | e, etc.)                               |                                |  |  |
| Well Information (fill out fo                  | or groundwater samples  | <b>s</b> )         |                                        |                                |  |  |
| Depth to Water                                 |                         | Measurement N      | Measurement Method  Measurement Method |                                |  |  |
| Depth of Well                                  |                         |                    |                                        |                                |  |  |
| Volume Removed                                 |                         | Removal Metho      |                                        |                                |  |  |
| Field Test Results                             |                         |                    |                                        |                                |  |  |
| Color Dark Brown to Gray                       | pH                      |                    | Odor                                   | Petroleum Odor in both samples |  |  |
| Temperature (°F)                               | Specific Cor            | nductance (umhos/c | m)                                     |                                |  |  |
| Other (OVA, Methane Met                        | er, etc. PID readings u | p to 500 ppm.      |                                        |                                |  |  |
| No staining, petroleum odors                   | observed.               |                    |                                        |                                |  |  |
| Constituents Sampled                           |                         |                    |                                        |                                |  |  |
| TCL and CP-51                                  | TCL and CP-51           |                    |                                        |                                |  |  |
| VOCs + TICs                                    | SVOCs + TICs            | PCBs               |                                        | Selected TAL Metals            |  |  |
| TCL Pesticides/Herbicides                      | Cyanide                 | Hexavalent Ch      | romium                                 |                                |  |  |
| Remarks:                                       |                         |                    |                                        |                                |  |  |
| Soil Boring Logs are located                   | in Appendix C           |                    |                                        |                                |  |  |



# SAMPLE INFORMATION RECORD

|                                               |                               |                                | Keith Robins                                 |  |  |  |
|-----------------------------------------------|-------------------------------|--------------------------------|----------------------------------------------|--|--|--|
| Sample Location/Well No.                      | Location 6                    |                                |                                              |  |  |  |
| Field Sample I.D. Number                      | GP-6 (7'-9') and              | Time                           | 9:55 am and                                  |  |  |  |
|                                               | GP-6 (12'-14')                |                                | 10:20 am                                     |  |  |  |
| Weather Partly Cloudy                         |                               | Temperature                    | 75°F                                         |  |  |  |
| Sample Type:                                  |                               |                                |                                              |  |  |  |
| Groundwater                                   |                               | Sediment                       |                                              |  |  |  |
| Surface Water/Stream                          |                               |                                |                                              |  |  |  |
| Soil Soil samples from 7 – 1                  | 4 feet bgs                    | Other (describe water, septage | e, etc.)                                     |  |  |  |
| Well Information (fill out for Depth to Water | 2                             |                                | Measurement Method                           |  |  |  |
| Depth of Well                                 |                               | Measurement N                  | Measurement Method                           |  |  |  |
| Volume Removed                                |                               | Removal Metho                  | Removal Method                               |  |  |  |
| Field Test Results                            |                               |                                |                                              |  |  |  |
| Color Dark Brown, Olive<br>Orange-Brown       | e-Green, <b>pH</b>            |                                | Odor Petroleum Odor  Noted in sample (7'-9') |  |  |  |
| Temperature (°F)                              | Specific Con                  | nductance (umhos/c             | m)                                           |  |  |  |
| Other (OVA, Methane Met                       | er, etc. PID readings u       | ıp to 27 ppm.                  |                                              |  |  |  |
| No staining, petroleum odors                  | observed.                     |                                |                                              |  |  |  |
| <b>Constituents Sampled</b>                   |                               |                                |                                              |  |  |  |
| TCL and CP-51<br>VOCs + TICs                  | TCL and CP-51<br>SVOCs + TICs | PCBs                           | Selected TAL Metals                          |  |  |  |
| TCL Pesticides/Herbicides                     | Cyanide                       | Hexavalent Ch                  | romium<br>                                   |  |  |  |
| Remarks:                                      |                               |                                |                                              |  |  |  |
| Soil Boring Logs are located D&B_SIR/kb       | in Appendix C                 |                                | Rev. 10/2011                                 |  |  |  |



### SAMPLE INFORMATION RECORD

| Site: 1597-1627 Unionport<br>1889-1905 Guerlain S |                          | Sample Crew:      | Keith Robins  |                          |  |
|---------------------------------------------------|--------------------------|-------------------|---------------|--------------------------|--|
|                                                   | Bronx, New York 10462    |                   |               |                          |  |
| Sample Location/Well No.                          |                          | _                 |               |                          |  |
| Field Sample I.D. Number                          | GP-7 (9'-11') and        | Time              | 2:30 pi       | n and                    |  |
| 1                                                 | GP-7 (14'-16')           |                   | 2:45 pr       |                          |  |
| Weather Partly Cloudy                             | , ,                      | Temperature       |               |                          |  |
| Sample Type:                                      |                          |                   |               |                          |  |
|                                                   |                          | Sediment          |               |                          |  |
| G 6 XX / /G/                                      |                          |                   |               |                          |  |
| Soil Soil samples from 9 - 1                      |                          | Other (describe   |               |                          |  |
|                                                   |                          | water, septage    | e, etc.)      |                          |  |
| Well Information (fill out fo                     | or groundwater samples)  |                   |               |                          |  |
| Depth to Water                                    |                          | _ Measurement N   | <b>Method</b> |                          |  |
| Depth of Well                                     |                          | _ Measurement N   | <b>Aethod</b> |                          |  |
| Volume Removed                                    | _ Removal Metho          | od                |               |                          |  |
| Field Test Results                                |                          |                   |               |                          |  |
| Color Dark Brown, Gray                            | -Brown, <b>pH</b>        |                   | Odor          | Slight Petroleum Odor    |  |
| Olive-Brown                                       |                          |                   |               | Noted in sample (9'-11') |  |
| Temperature (°F)                                  | Specific Cond            | luctance (umhos/c | m)            |                          |  |
| Other (OVA, Methane Met                           | er, etc. PID readings up | to 1,000 ppb.     |               |                          |  |
| No staining, slight petroleum                     | odors observed.          |                   |               |                          |  |
| <b>Constituents Sampled</b>                       |                          |                   |               |                          |  |
| TCL and CP-51                                     | TCL and CP-51            |                   |               |                          |  |
| VOCs + TICs                                       | SVOCs + TICs             | PCBs              |               | Selected TAL Metals      |  |
| TCL Pasticidas/Harbicidas                         | Cyanide and              | RCRA Charac       | teristics     | TPH DRO/GRO              |  |
| Pesticides/Herbicides                             | Hexavalent Chromium      |                   |               | _                        |  |
| Remarks:                                          |                          |                   |               |                          |  |
| Soil Boring Logs are located                      | in Appendix C            |                   |               | D 10/2011                |  |
| D&B_SIR/kb                                        |                          |                   |               | Rev. 10/2011             |  |



### SAMPLE INFORMATION RECORD

| Site: 1597-1627 Unionport Road, |                          |                                                 | Sample Crew:                                  | akraborty          |                     |  |  |
|---------------------------------|--------------------------|-------------------------------------------------|-----------------------------------------------|--------------------|---------------------|--|--|
|                                 | 1889-1905 Guerlain S     | •                                               |                                               |                    |                     |  |  |
|                                 |                          | ins Road and 1880-1894<br>Bronx, New York 10462 | ,                                             |                    |                     |  |  |
| Sampl                           | e Location/Well No.      |                                                 | <u>-                                     </u> |                    |                     |  |  |
| Field S                         | Sample I.D. Number       | GP-8 (6"-18")                                   | Time                                          | 2:35 pm            |                     |  |  |
| Weath                           | ner Partly Cloudy        |                                                 | Temperature                                   | 75°F               |                     |  |  |
| Sampl                           | e Type:                  |                                                 |                                               |                    |                     |  |  |
| Grour                           | ndwater                  |                                                 | Sediment                                      |                    |                     |  |  |
| Surfac                          | ce Water/Stream          |                                                 |                                               |                    |                     |  |  |
| Soil _                          | Soil sample from 6 – 1   | 8 inches bgs                                    | Other (describe                               | , i.e              |                     |  |  |
|                                 |                          |                                                 | water, septage                                | e, etc.)           |                     |  |  |
| Well I                          | nformation (fill out fo  | or groundwater samples                          | )                                             |                    |                     |  |  |
| Depth                           | to Water                 |                                                 | Measurement N                                 | Measurement Method |                     |  |  |
| Depth                           | of Well                  |                                                 | Measurement N                                 | Measurement Method |                     |  |  |
| Volun                           | ne Removed               |                                                 | Removal Metho                                 | Removal Method     |                     |  |  |
| Field '                         | Test Results             |                                                 |                                               |                    |                     |  |  |
| Color                           | Light Brown              | pH                                              |                                               | Odor No            | o Odor              |  |  |
| Temp                            | erature (°F)             | Specific Con                                    | ductance (umhos/c                             | m)                 |                     |  |  |
| Other                           | (OVA, Methane Mete       | er, etc. PID readings u                         | p to 50 ppb.                                  |                    |                     |  |  |
| No od                           | or or staining observed. |                                                 |                                               |                    |                     |  |  |
| Const                           | ituents Sampled          |                                                 |                                               |                    |                     |  |  |
| TC                              | L and CP-51              | TCL and CP-51                                   |                                               |                    |                     |  |  |
| V                               | OCs + TICs               | SVOCs + TICs                                    | PCBs                                          |                    | Selected TAL Metals |  |  |
| Do -4'                          | TCL                      | Cyanide                                         | Hexavalent Ch                                 | romium             |                     |  |  |
| Pestic                          | ides/Herbicides          |                                                 |                                               |                    |                     |  |  |
| Rema                            | rks:                     |                                                 |                                               |                    |                     |  |  |
| Soil B                          | oring Logs are located   | in Appendix C                                   |                                               |                    |                     |  |  |



# SAMPLE INFORMATION RECORD

|                                    |                                | Sample Crew:  | Keith Ro           | bins                |  |  |
|------------------------------------|--------------------------------|---------------|--------------------|---------------------|--|--|
| Sample Location/Well No.           | Location 9                     |               |                    |                     |  |  |
| Field Sample I.D. Number           | GP-9 (0'-5')                   | Time          | 12:10 pm           | 1                   |  |  |
| Weather Partly Cloudy              | Temperature                    | 75°F          |                    |                     |  |  |
| Sample Type:                       |                                |               |                    |                     |  |  |
| Groundwater                        |                                | Sediment      |                    |                     |  |  |
| Surface Water/Stream               |                                | Air           |                    |                     |  |  |
| <b>Soil</b> Soil samples from 0 –5 | Other (describe water, septage |               |                    |                     |  |  |
| Well Information (fill out fo      | or groundwater samples         | )             |                    |                     |  |  |
| Depth to Water                     |                                | Measurement N | Measurement Method |                     |  |  |
|                                    |                                |               | Measurement Method |                     |  |  |
| Volume Removed                     |                                |               | Removal Method     |                     |  |  |
| Field Test Results                 |                                |               |                    |                     |  |  |
| Color Dark Brown                   | pH                             |               | Odor 1             | No Odor             |  |  |
|                                    |                                |               |                    |                     |  |  |
| Other (OVA, Methane Meta           | er, etc. PID readings 0        | ppm.          |                    |                     |  |  |
| No staining or odors observed      | 1.                             |               |                    |                     |  |  |
| <b>Constituents Sampled</b>        |                                |               |                    |                     |  |  |
| TCL and CP-51<br>VOCs + TICs       | TCL and CP-51<br>SVOCs + TICs  | PCBs          |                    | Selected TAL Metals |  |  |
| TCL<br>Pesticides/Herbicides       | Hexavalent Ch                  | romium        |                    |                     |  |  |
| Remarks:                           |                                |               |                    |                     |  |  |
| Soil Boring Logs are located:      | in Appendix C                  |               |                    |                     |  |  |



# SAMPLE INFORMATION RECORD

| Site: 1597-1627 Unionport<br>1889-1905 Guerlain S<br>1572-1592 White Pla<br>East Tremont Avenue | Sample Crew:                                | Kumar              | Chakraborty |                     |  |
|-------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------|-------------|---------------------|--|
| Sample Location/Well No.                                                                        | Location 10                                 |                    |             |                     |  |
| Field Sample I.D. Number                                                                        | GP-10 (6"-19")                              | Time               | 1:20 pm     | 1                   |  |
| Weather Sunny                                                                                   |                                             | Temperature        | 80°F        |                     |  |
| Sample Type:                                                                                    |                                             |                    |             |                     |  |
| Groundwater                                                                                     |                                             | Sediment           |             |                     |  |
| Surface Water/Stream                                                                            |                                             |                    |             |                     |  |
| Soil Soil samples from 6 –                                                                      | Other (describe, i.e. water, septage, etc.) |                    |             |                     |  |
| Well Information (fill out fo                                                                   | or groundwater samples)                     |                    |             |                     |  |
| Depth to Water                                                                                  |                                             | Measurement Method |             |                     |  |
| Depth of Well                                                                                   |                                             | Measurement Method |             |                     |  |
| Volume Removed                                                                                  |                                             | Removal Method     |             |                     |  |
| Field Test Results                                                                              |                                             |                    |             |                     |  |
| Color Light Brown                                                                               | pH                                          |                    | Odor        | No Odor             |  |
| Temperature (°F)                                                                                |                                             |                    |             |                     |  |
| Other (OVA, Methane Met                                                                         | er, etc. PID readings 0 p                   | opb.               |             |                     |  |
| No staining or odors observed                                                                   | d.                                          |                    |             |                     |  |
| Constituents Sampled                                                                            |                                             |                    |             |                     |  |
| TCL and CP-51<br>VOCs + TICs                                                                    | TCL and CP-51<br>SVOCs + TICs               | PCBs               |             | Selected TAL Metals |  |
| TCL Pesticides/Herbicides                                                                       | Cyanide and Hexavalent Chromium             | RCRA Charact       | eristics    | TPH DRO/GRO         |  |
| Remarks:                                                                                        |                                             |                    |             |                     |  |
| Soil Boring Logs are located                                                                    | in Appendix C                               |                    |             |                     |  |



# SAMPLE INFORMATION RECORD

|                                         |                                 | Sample Crew:                   | Kumar         | Chakraborty         |
|-----------------------------------------|---------------------------------|--------------------------------|---------------|---------------------|
| Sample Location/Well No.                | Location 11                     |                                |               |                     |
| Field Sample I.D. Number                | GP-11 (6"-23")                  | Time                           | 12:00 p       | om                  |
| Weather Sunny                           |                                 | Temperature                    | 80°F          |                     |
| Sample Type:                            |                                 |                                |               |                     |
| Groundwater                             | Sediment                        |                                |               |                     |
| Surface Water/Stream                    |                                 |                                |               |                     |
| Soil Soil samples from 6 –23 inches bgs |                                 | Other (describe water, septage | , i.e.        |                     |
| Well Information (fill out fo           | or groundwater samples)         |                                |               |                     |
| Depth to Water                          |                                 | _ Measurement M                | <b>Iethod</b> |                     |
|                                         |                                 | Measurement Method             |               |                     |
| Volume Removed                          |                                 |                                |               |                     |
| Field Test Results                      |                                 |                                |               |                     |
| Color Light Brown-Orange                | рН                              |                                | Odor          | No Odor             |
| Temperature (°F)                        |                                 |                                | <b>m</b> )    |                     |
| Other (OVA, Methane Met                 | er, etc. PID readings 0 p       | opb.                           |               |                     |
| No staining or odors observe            | d.                              |                                |               |                     |
| Constituents Sampled                    |                                 |                                |               |                     |
| TCL and CP-51                           | TCL and CP-51                   |                                |               |                     |
| VOCs + TICs                             | SVOCs + TICs                    | PCBs                           |               | Selected TAL Metals |
| TCL Pesticides/Herbicides               | Cyanide and Hexavalent Chromium | RCRA Charact                   | eristics      | TPH DRO/GRO         |
| Remarks:                                |                                 |                                |               |                     |
| Soil Boring Logs are located            | in Appendix C                   |                                |               |                     |



# SAMPLE INFORMATION RECORD

| <u> </u>                         | Keith Robins                                                                                                                                    |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                  |                                                                                                                                                 |  |
| Time                             | 1:40 pm                                                                                                                                         |  |
| Temperature                      | 75°F                                                                                                                                            |  |
|                                  |                                                                                                                                                 |  |
| Sediment                         |                                                                                                                                                 |  |
|                                  |                                                                                                                                                 |  |
| Other (describe, water, septage, | i.e                                                                                                                                             |  |
|                                  | ethod                                                                                                                                           |  |
|                                  |                                                                                                                                                 |  |
| Removal Method                   |                                                                                                                                                 |  |
|                                  |                                                                                                                                                 |  |
|                                  | Odor No Odor                                                                                                                                    |  |
| nductance (umhos/cm              | n)                                                                                                                                              |  |
| ppb.                             |                                                                                                                                                 |  |
|                                  |                                                                                                                                                 |  |
|                                  |                                                                                                                                                 |  |
| PCBs                             | Selected TAL Metals                                                                                                                             |  |
| Hexavalent Chro                  | omium<br>                                                                                                                                       |  |
|                                  |                                                                                                                                                 |  |
|                                  |                                                                                                                                                 |  |
|                                  | Time Temperature Sediment Air Other (describe, water, septage, Water, septage, Measurement Mo Measurement Mo Removal Method aductance (umhos/cm |  |



# SAMPLE INFORMATION RECORD

| Site:                                           | 1597-1627 Unionport      |                                                | Sample Crew:                                  | Keith Robi | ns                  |
|-------------------------------------------------|--------------------------|------------------------------------------------|-----------------------------------------------|------------|---------------------|
|                                                 | 1889-1905 Guerlain S     | *                                              |                                               |            |                     |
|                                                 |                          | ns Road and 1880-1894<br>Bronx, New York 10462 | )                                             |            |                     |
| Sampl                                           | e Location/Well No.      | ·                                              | <u>-                                     </u> |            |                     |
| Field S                                         | Sample I.D. Number       | GP-13 (0-5')                                   | Time                                          | 12:30 pm   |                     |
| Weath                                           | ner Sunny                |                                                | Temperature                                   | 80°F       |                     |
|                                                 | e Type:                  |                                                |                                               |            |                     |
| Grour                                           | ndwater                  |                                                | Sediment                                      |            |                     |
| Surface Water/Stream                            |                          |                                                |                                               |            |                     |
| Soil Soil sample from 0 –5 and 18 – 20 feet bgs |                          |                                                | io                                            |            |                     |
|                                                 |                          |                                                | water, septage                                | e, etc.)   |                     |
| Well I                                          | nformation (fill out fo  | or groundwater samples                         | )                                             |            |                     |
| Depth to Water                                  |                          | Measurement Method                             |                                               |            |                     |
| Depth                                           | of Well                  |                                                | Measurement Method                            |            |                     |
| Volun                                           | ne Removed               |                                                | Removal Method                                |            |                     |
| Field '                                         | Test Results             |                                                |                                               |            |                     |
| Color                                           | Dark Brown, Light B      | rown pH                                        |                                               | Odor No    | o Odor              |
| Temp                                            | erature (°F)             | Specific Con                                   | ductance (umhos/c                             | m)         |                     |
| Other                                           | (OVA, Methane Mete       | er, etc. PID readings u                        | p to 300 ppb.                                 |            |                     |
| No od                                           | or or staining observed. |                                                |                                               |            |                     |
| Const                                           | ituents Sampled          |                                                |                                               |            |                     |
| TC                                              | L and CP-51              | TCL and CP-51                                  |                                               |            |                     |
| V                                               | OCs + TICs               | SVOCs + TICs                                   | PCBs                                          |            | Selected TAL Metals |
| D                                               | TCL                      | Cyanide                                        | Hexavalent Ch                                 | romium     |                     |
| Pestic                                          | ides/Herbicides          |                                                |                                               |            |                     |
| Rema                                            | rks:                     |                                                |                                               |            |                     |
| Soil B                                          | oring Logs are located i | n Appendix C                                   |                                               |            |                     |



# SAMPLE INFORMATION RECORD

| Site:                                                  | 1889-1905 Guerlain S<br>1572-1592 White Plai<br>East Tremont Avenue | Street,<br>ins Road |                                | Sample Crew:       | Keith F       | Robins                |
|--------------------------------------------------------|---------------------------------------------------------------------|---------------------|--------------------------------|--------------------|---------------|-----------------------|
| Sampl                                                  | e Location/Well No.                                                 | Location            | on 13                          |                    |               |                       |
| Field S                                                | Sam <u>ple I.D. Number</u>                                          | GP-13               | (18'-20')                      | Time               | 1:00 pr       | n                     |
| Weath                                                  | er Partly Cloudy                                                    |                     |                                | _ Temperature      | 75°F          |                       |
| Sampl                                                  | e Type:                                                             |                     |                                |                    |               |                       |
| Groun                                                  | ndwater                                                             |                     |                                | Sediment           |               |                       |
| Surface Water/Stream                                   |                                                                     |                     |                                |                    |               |                       |
| <b>Soil</b> Soil sample from 18 –20 and 0 – 5 feet bgs |                                                                     |                     | Other (describe water, septage | , i.e.             |               |                       |
|                                                        | nformation (fill out fo                                             | O                   | •                              | _ Measurement N    | <b>1ethod</b> |                       |
| Depth                                                  | of Well                                                             |                     |                                | Measurement Method |               |                       |
| Volun                                                  |                                                                     |                     |                                |                    | od            |                       |
| Field 7                                                | Test Results                                                        |                     |                                |                    |               |                       |
| Color                                                  | Dark Brown, Light B                                                 | Brown               | рН                             |                    | Odor          | Strong Petroleum Odor |
| Temp                                                   | erature (°F)                                                        |                     | Specific Cond                  | luctance (umhos/c  | m)            |                       |
| Other                                                  | (OVA, Methane Mete                                                  | er, etc.            | PID readings up                | to 300 ppm.        |               |                       |
| Trace                                                  | sheen and petroleum oc                                              | dors obse           | rved.                          |                    |               |                       |
| Const                                                  | ituents Sampled                                                     |                     |                                |                    |               |                       |
|                                                        | L and CP-51<br>OCs + TICs                                           |                     | and CP-51<br>OCs + TICs        | PCBs               |               | Selected TAL Metals   |
| Pestic                                                 | TCL<br>ides/Herbicides                                              | (                   | Cyanide                        | Hexavalent Ch      | romium        |                       |
| Rema                                                   | rks:                                                                |                     |                                |                    |               |                       |
| Soil B                                                 | oring Logs are located                                              | in Apper            | dix C                          |                    |               |                       |
|                                                        |                                                                     |                     |                                |                    |               |                       |



# SAMPLE INFORMATION RECORD

|                                                       |                                    | Sample Crew:       | Kumar         | Chakraborty         |
|-------------------------------------------------------|------------------------------------|--------------------|---------------|---------------------|
| Sample Location/Well N                                | o. Location 14                     |                    |               |                     |
| Field Sample I.D. Number                              | er GP-14 (6"-18")                  | Time               | 10:00 a       | am                  |
| Weather Partly Cloudy                                 | ,                                  | Temperature        | 75°F          |                     |
| Sample Type:                                          |                                    |                    |               |                     |
| Groundwater                                           | Sediment                           |                    |               |                     |
| Surface Water/Stream                                  |                                    | Air                |               |                     |
| Soil Soil samples from 6 –18 inches bgs               |                                    |                    |               |                     |
| Well Information (fill ou                             | t for groundwater samples)         |                    |               |                     |
| Depth to Water                                        |                                    | Measurement N      | <b>Iethod</b> |                     |
|                                                       |                                    | Measurement Method |               |                     |
| Volume Removed                                        |                                    | Removal Method     |               |                     |
| Field Test Results                                    |                                    |                    |               |                     |
| Color Light Brown-Dar                                 | k Brown <b>pH</b>                  |                    | Odor          | Hydrocarbon Odor    |
| Temperature (°F)                                      |                                    |                    |               |                     |
| Other (OVA, Methane M                                 | <b>Ieter, etc.</b> PID readings 25 | 5.5 ppm.           |               |                     |
| No staining, hydrocarbon                              | odors observed.                    |                    |               |                     |
| <b>Constituents Sampled</b>                           |                                    |                    |               |                     |
| TCL and CP-51 VOCs + TICs  TCL and CP-51 SVOCs + TICs |                                    | PCBs               |               | Selected TAL Metals |
| TCL<br>Pesticides/Herbicides                          | <b>-</b>                           |                    | teristics     | TPH DRO/GRO         |
| Remarks:                                              |                                    |                    |               |                     |
| Soil Boring Logs are locat                            | ed in Appendix C                   |                    |               |                     |



# SAMPLE INFORMATION RECORD

|                                         |                         | Sample Crew:                   | Kumar         | Chakraborty         |  |
|-----------------------------------------|-------------------------|--------------------------------|---------------|---------------------|--|
| Sample Location/Well No.                | Location 15             |                                |               |                     |  |
| Field Sample I.D. Number                | GP-15 (6"-20")          | Time                           | 10:30 a       | ım                  |  |
| Weather Overcast                        |                         | Temperature                    | 78°F          |                     |  |
| Sample Type:                            |                         |                                |               |                     |  |
| Groundwater                             | Sediment                |                                |               |                     |  |
| Surface Water/Stream                    |                         |                                |               |                     |  |
| Soil Soil samples from 6- 20 inches bgs |                         | Other (describe water, septage | , i.e.        |                     |  |
| Well Information (fill out fo           | or groundwater samples  | s)                             |               |                     |  |
| Depth to Water                          |                         | Measurement M                  | <b>Iethod</b> |                     |  |
|                                         |                         |                                |               |                     |  |
| Volume Removed                          |                         | Removal Metho                  |               |                     |  |
| Field Test Results                      |                         |                                |               |                     |  |
| Color Light Brown                       | рН                      |                                | Odor          | No Odor             |  |
| Temperature (°F)                        |                         |                                |               |                     |  |
| Other (OVA, Methane Mete                | er, etc. PID readings u | p to 10 ppb.                   |               |                     |  |
| No staining or odors observed           | 1.                      |                                |               |                     |  |
| Constituents Sampled                    |                         |                                |               |                     |  |
| TCL and CP-51                           | TCL and CP-51           | 5.05                           |               |                     |  |
| VOCs + TICs                             | SVOCs + TICs            | PCBs                           |               | Selected TAL Metals |  |
| TCL Pesticides/Herbicides               | Cyanide                 | Hexavalent Chr                 | romium        | -                   |  |
| Remarks:                                |                         |                                |               |                     |  |
| Soil Boring Logs are located            | in Appendix C           |                                |               |                     |  |



# SAMPLE INFORMATION RECORD

|                                      |                               | Sample Crew:                   | Keith Ro           | bbins               |  |
|--------------------------------------|-------------------------------|--------------------------------|--------------------|---------------------|--|
| Sample Location/Well No.             | Location 16                   |                                |                    |                     |  |
| Field Sample I.D. Number             | GP-16 (0'-5')                 | Time                           | 10:45 am           | 1                   |  |
| Weather Overcast                     |                               | Temperature                    | 78°F               |                     |  |
| Sample Type:                         |                               |                                |                    |                     |  |
| Groundwater                          | Sediment                      |                                |                    |                     |  |
| Surface Water/Stream                 |                               |                                |                    |                     |  |
| Soil Soil samples from 0- 5 feet bgs |                               | Other (describe water, septage | · —                |                     |  |
| Well Information (fill out fo        | or groundwater samples        | s)                             |                    |                     |  |
| Depth to Water                       |                               | Measurement N                  | Measurement Method |                     |  |
|                                      |                               |                                |                    |                     |  |
| Volume Removed                       |                               | Removal Metho                  | od                 |                     |  |
| Field Test Results                   |                               |                                |                    |                     |  |
| Color Dark Brown-Orange              | pН                            |                                | Odor I             | No Odor             |  |
|                                      |                               |                                |                    |                     |  |
| Other (OVA, Methane Mete             |                               |                                |                    |                     |  |
| No staining or odors observed        |                               |                                |                    |                     |  |
| Constituents Sampled                 |                               |                                |                    |                     |  |
| TCL and CP-51<br>VOCs + TICs         | TCL and CP-51<br>SVOCs + TICs | PCBs                           |                    | Selected TAL Metals |  |
| TCL Cyanide Pesticides/Herbicides    |                               | Hexavalent Ch                  | romium             |                     |  |
| Remarks:                             |                               |                                |                    |                     |  |
| Soil Boring Logs are located:        | in Appendix C                 |                                |                    |                     |  |



# SAMPLE INFORMATION RECORD

|                                                           | •                             | Sample Crew:                      | Keith F  | Robins              |  |
|-----------------------------------------------------------|-------------------------------|-----------------------------------|----------|---------------------|--|
| Sample Location/Well                                      | No. Location 17               |                                   |          |                     |  |
| Field Sample I.D. Nun                                     | <b>nber</b> GP-17 (0'-5')     | Time                              | 9:00 an  | n                   |  |
| Weather Overcast                                          |                               | Temperature                       | 78°F     |                     |  |
| Sample Type:                                              |                               |                                   |          |                     |  |
| Groundwater                                               | Sediment                      |                                   |          |                     |  |
| Surface Water/Stream                                      | l                             | Air                               |          |                     |  |
| Soil Soil samples from 0- 5 feet bgs                      |                               | _ Other (describe, water, septage |          |                     |  |
| Well Information (fill                                    | out for groundwater samples)  | 1                                 |          |                     |  |
| Depth to Water                                            |                               | Measurement Method                |          |                     |  |
|                                                           |                               | Measurement Method                |          |                     |  |
|                                                           |                               |                                   |          |                     |  |
| Field Test Results                                        |                               |                                   |          |                     |  |
| Color Dark Brown-O                                        | range pH                      |                                   | Odor     | No Odor             |  |
|                                                           |                               |                                   |          |                     |  |
| Other (OVA, Methano                                       | e Meter, etc. PID readings up |                                   |          |                     |  |
| No staining or odors ob                                   | served.                       |                                   |          |                     |  |
| <b>Constituents Sampled</b>                               |                               |                                   |          |                     |  |
| TCL and CP-51<br>VOCs + TICs                              | TCL and CP-51<br>SVOCs + TICs | PCBs                              |          | Selected TAL Metals |  |
| TCL Cyanide and Pesticides/Herbicides Hexavalent Chromium |                               | RCRA Charact                      | eristics | TPH DRO/GRO         |  |
| Remarks:                                                  |                               |                                   |          |                     |  |
| Soil Boring Logs are lo                                   | cated in Appendix C           |                                   |          |                     |  |



Date: 6/26/14

# SAMPLE INFORMATION RECORD

|                                         |                                 | Sample Crew:                   | Kumar C  | hakraborty           |
|-----------------------------------------|---------------------------------|--------------------------------|----------|----------------------|
| Sample Location/Well No.                | Location 18                     |                                |          |                      |
| Field Sample I.D. Number                | GP-18 (6"-18")                  | Time                           | 12:30 pm | l                    |
| Weather Overcast                        |                                 | Temperature                    | 78°F     |                      |
| Sample Type:                            |                                 |                                |          |                      |
| Groundwater                             | Sediment                        |                                |          |                      |
| Surface Water/Stream                    |                                 |                                |          |                      |
| Soil Soil samples from 6- 18 inches bgs |                                 | Other (describe water, septage | , i.e    |                      |
| Well Information (fill out fo           | or groundwater samples)         |                                |          |                      |
| Depth to Water                          |                                 | _ Measurement M                | Iethod   |                      |
|                                         |                                 | Measurement Method             |          |                      |
| Volume Removed                          |                                 | Removal Method                 |          |                      |
| Field Test Results                      |                                 |                                |          |                      |
| Color Light Brown-Orange                | рН                              |                                | Odor 1   | No Odor              |
| Temperature (°F)                        |                                 |                                | m)       |                      |
| Other (OVA, Methane Met                 | er, etc. PID readings 0 p       | opb.                           |          |                      |
| No staining or odors observe            | d.                              |                                |          |                      |
| Constituents Sampled                    |                                 |                                |          |                      |
| TCL and CP-51                           | TCL and CP-51                   |                                |          |                      |
| VOCs + TICs                             | SVOCs + TICs                    | PCBs                           |          | Selected TAL Metals  |
| TCL Pesticides/Herbicides               | Cyanide and Hexavalent Chromium | TPH DRO/0                      | GRO      | RCRA Characteristics |
| Remarks:                                |                                 |                                |          |                      |
| Soil Boring Logs are located            | in Appendix C                   |                                |          |                      |



# SAMPLE INFORMATION RECORD

|                                          |                                 | Sample Crew:                   | Kumar         | Chakraborty         |
|------------------------------------------|---------------------------------|--------------------------------|---------------|---------------------|
| Sample Location/Well No.                 | Location 19                     |                                |               |                     |
| Field Sample I.D. Number                 | GP-19 (10"-14")                 | Time                           | 11:45 a       | ım                  |
| Weather Partly Cloudy                    |                                 | Temperature                    | 75°F          |                     |
| Sample Type:                             |                                 |                                |               |                     |
| Groundwater                              | Sediment                        |                                |               |                     |
| Surface Water/Stream                     |                                 |                                |               |                     |
| Soil Soil samples from 10 –14 inches bgs |                                 | Other (describe water, septage | , i.e.        |                     |
| Well Information (fill out fe            | or groundwater samples)         |                                |               |                     |
| Depth to Water                           |                                 | Measurement M                  | <b>Iethod</b> |                     |
|                                          |                                 |                                |               |                     |
| Volume Removed                           |                                 | Removal Method                 |               |                     |
| Field Test Results                       |                                 |                                |               |                     |
| Color Light Brown                        | pН                              |                                | Odor          | No Odor             |
| Temperature (°F)                         |                                 |                                | m)            |                     |
| Other (OVA, Methane Met                  | er, etc. PID readings up        | to 1,310 ppb.                  |               |                     |
| No staining or odors observe             | d.                              |                                |               |                     |
| Constituents Sampled                     |                                 |                                |               |                     |
| TCL and CP-51                            | TCL and CP-51                   |                                |               |                     |
| VOCs + TICs                              | SVOCs + TICs                    | PCBs                           |               | Selected TAL Metals |
| TCL Pesticides/Herbicides                | Cyanide and Hexavalent Chromium | RCRA Charact                   | eristics      | TPH DRO/GRO         |
| Remarks:                                 |                                 |                                |               |                     |
| Soil Boring Logs are located             | in Appendix C                   |                                |               |                     |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew: Keith Robins    |  |  |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|------------------------------|--|--|--|
| Sampl   | e Location/Well No. Location                                                            | on 1              |                              |  |  |  |
| Field S | Sample I.D. Number SV-1                                                                 |                   | <b>Time</b> 10:52 am-2:27 pm |  |  |  |
| Weath   | er Partly Cloudy                                                                        |                   | Temperature 75°F             |  |  |  |
| Sampl   | e Type:                                                                                 |                   |                              |  |  |  |
| Groun   | ndwater                                                                                 |                   | Sediment                     |  |  |  |
| Surfac  | ce Water/Stream                                                                         |                   | Air Soil Vapor               |  |  |  |
| Soil    |                                                                                         |                   |                              |  |  |  |
| Well I  | nformation (fill out for groun                                                          | dwater samples)   |                              |  |  |  |
| Depth   | to Water                                                                                |                   | Measurement Method           |  |  |  |
| Depth   | of Well                                                                                 |                   |                              |  |  |  |
| Volun   | ne Removed                                                                              |                   | Removal Method               |  |  |  |
| Field 7 | Test Results                                                                            |                   |                              |  |  |  |
| Color   |                                                                                         | pH                | Odor No Odor                 |  |  |  |
| Temp    | erature (°F)                                                                            |                   | uctance (umhos/cm)           |  |  |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 1 | .2ppm                        |  |  |  |
| Const   | ituents Sampled                                                                         |                   |                              |  |  |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                              |  |  |  |
| Rema    | rks:                                                                                    |                   |                              |  |  |  |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew: Keith Robins     |  |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|-------------------------------|--|--|
| Sampl   | e Location/Well No. Locati                                                              | on 2              |                               |  |  |
| Field S | Sample I.D. Number SV-2                                                                 |                   | <b>Time</b> 11:37 am-12:07 pm |  |  |
| Weath   | er Partly Cloudy                                                                        |                   | Temperature _75°F             |  |  |
| Sampl   | e Type:                                                                                 |                   |                               |  |  |
| Groun   | ndwater                                                                                 |                   | Sediment                      |  |  |
| Surfac  | ce Water/Stream                                                                         |                   | Air Soil Vapor                |  |  |
| Soil    |                                                                                         |                   |                               |  |  |
| Well I  | nformation (fill out for groun                                                          | dwater samples)   |                               |  |  |
| Depth   | to Water                                                                                |                   |                               |  |  |
| Depth   | of Well                                                                                 |                   |                               |  |  |
| Volun   | ne Removed                                                                              |                   | Removal Method                |  |  |
| Field 7 | Test Results                                                                            |                   |                               |  |  |
| Color   |                                                                                         | pH                | Odor No Odor                  |  |  |
| Temp    | erature (°F)                                                                            |                   | uctance (umhos/cm)            |  |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 4 | 143 ppb                       |  |  |
| Const   | ituents Sampled                                                                         |                   |                               |  |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                               |  |  |
| Rema    | rks:                                                                                    |                   |                               |  |  |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew: Kumar Chakraborty |  |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|--------------------------------|--|--|
| Sampl   | le Location/Well No. Locati                                                             | on 3              |                                |  |  |
| Field S | Sample I.D. Number SV-3                                                                 |                   | <b>Time</b> 11:40 am-12:10 pm  |  |  |
| Weath   | er Partly Cloudy                                                                        |                   | Temperature _75°F              |  |  |
| Sampl   | le Type:                                                                                |                   |                                |  |  |
| Groun   | ndwater                                                                                 |                   | Sediment                       |  |  |
| Surfac  | ce Water/Stream                                                                         |                   |                                |  |  |
| Soil    |                                                                                         |                   |                                |  |  |
| Well I  | nformation (fill out for grour                                                          | ndwater samples)  |                                |  |  |
| Depth   | to Water                                                                                |                   | Measurement Method             |  |  |
|         |                                                                                         |                   | Measurement Method             |  |  |
| Volun   | ne Removed                                                                              |                   |                                |  |  |
| Field 7 | Test Results                                                                            |                   |                                |  |  |
| Color   |                                                                                         | _ pH              | Odor No Odor                   |  |  |
| Temp    | erature (°F)                                                                            | Specific Cond     | uctance (umhos/cm)             |  |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 2 | 2,810 ppb                      |  |  |
| Const   | ituents Sampled                                                                         |                   |                                |  |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                                |  |  |
| Rema    | rks:                                                                                    |                   |                                |  |  |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew:       | Keith Robins    |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|--------------------|-----------------|--|
| Sampl   | e Location/Well No. Location                                                            | on 4              |                    |                 |  |
| Field S | Sample I.D. Number SV-4                                                                 |                   | _ Time             | 9:22 am-9:48 am |  |
| Weath   | er Sunny                                                                                |                   | <b>Temperature</b> | 80°F            |  |
| Sampl   | e Type:                                                                                 |                   |                    |                 |  |
| Groun   | ndwater                                                                                 |                   | Sediment           |                 |  |
| Surfac  | ce Water/Stream                                                                         |                   |                    | r               |  |
| Soil    |                                                                                         |                   |                    | , i.e.          |  |
| Well I  | nformation (fill out for groun                                                          | dwater samples)   |                    |                 |  |
| Depth   | to Water                                                                                |                   | Measurement Method |                 |  |
| Depth   | of Well                                                                                 |                   |                    |                 |  |
| Volun   | ne Removed                                                                              |                   |                    |                 |  |
| Field 7 | Test Results                                                                            |                   |                    |                 |  |
| Color   |                                                                                         | _ pH              |                    | Odor No Odor    |  |
| Temp    | erature (°F)                                                                            |                   |                    | m)              |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 1 | 110 ppb            |                 |  |
| Const   | ituents Sampled                                                                         |                   |                    |                 |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                    |                 |  |
| Rema    | rks:                                                                                    |                   |                    |                 |  |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew:       | Keith Robins    |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|--------------------|-----------------|--|
| Sampl   | le Location/Well No. Locati                                                             | on 5              |                    |                 |  |
| Field S | Sample I.D. Number SV-5                                                                 |                   | _ Time _           | 2:33 pm-3:03 pm |  |
| Weath   | ner Sunny                                                                               |                   | _ Temperature _    | 80°F            |  |
| Sampl   | le Type:                                                                                |                   |                    |                 |  |
| Groun   | ndwater                                                                                 |                   | Sediment           |                 |  |
| Surfac  | ce Water/Stream                                                                         |                   |                    |                 |  |
| Soil    |                                                                                         |                   |                    |                 |  |
| Well I  | nformation (fill out for groun                                                          | ndwater samples)  |                    |                 |  |
| Depth   | to Water                                                                                |                   | Measurement Method |                 |  |
|         |                                                                                         |                   |                    |                 |  |
| Volun   | ne Removed                                                                              |                   |                    |                 |  |
| Field 7 | Test Results                                                                            |                   |                    |                 |  |
| Color   |                                                                                         | _ pH              |                    | Odor No Odor    |  |
| Temp    | erature (°F)                                                                            | _ Specific Condu  | uctance (umhos/cr  | m)              |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 5 | 0 ppm              |                 |  |
| Const   | ituents Sampled                                                                         |                   |                    |                 |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                    |                 |  |
| Rema    | rks:                                                                                    |                   |                    |                 |  |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew: Keith Robins     |  |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|-------------------------------|--|--|
| Sampl   | e Location/Well No. Locati                                                              | on 6              |                               |  |  |
| Field S | Sample I.D. Number SV-6                                                                 |                   | <b>Time</b> 11:13 am-11:43 am |  |  |
| Weath   | er Partly Cloudy                                                                        |                   | Temperature 75°F              |  |  |
| Sampl   | e Type:                                                                                 |                   |                               |  |  |
| Groun   | ndwater                                                                                 |                   | Sediment                      |  |  |
| Surfac  | ce Water/Stream                                                                         |                   | Air Soil Vapor                |  |  |
| Soil    |                                                                                         |                   |                               |  |  |
| Well I  | nformation (fill out for grour                                                          | ndwater samples)  |                               |  |  |
| Depth   | to Water                                                                                |                   | Measurement Method            |  |  |
| Depth   | of Well                                                                                 |                   |                               |  |  |
| Volun   | ne Removed                                                                              |                   |                               |  |  |
| Field 7 | Test Results                                                                            |                   |                               |  |  |
| Color   |                                                                                         | _ pH              | Odor No Odor                  |  |  |
| Temp    | erature (°F)                                                                            |                   | uctance (umhos/cm)            |  |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 2 | 2,000 ppm                     |  |  |
| Consti  | ituents Sampled                                                                         |                   |                               |  |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                               |  |  |
| Rema    | rks:                                                                                    |                   |                               |  |  |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew: Keith Robins   |  |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|-----------------------------|--|--|
| Sampl   | e Location/Well No. Locati                                                              | on 7              |                             |  |  |
| Field S | Sample I.D. Number SV-7                                                                 |                   | <b>Time</b> 4:03 pm-4:33 pm |  |  |
| Weath   | er Partly Cloudy                                                                        |                   | Temperature 75°F            |  |  |
| Sampl   | e Type:                                                                                 |                   |                             |  |  |
| Groun   | dwater                                                                                  |                   | Sediment                    |  |  |
| Surfac  | e Water/Stream                                                                          |                   | Air Soil Vapor              |  |  |
| Soil    |                                                                                         |                   |                             |  |  |
| Well I  | nformation (fill out for groun                                                          | ndwater samples)  |                             |  |  |
| Depth   | to Water                                                                                |                   | Measurement Method          |  |  |
| Depth   | of Well                                                                                 |                   |                             |  |  |
| Volum   | ne Removed                                                                              |                   |                             |  |  |
| Field 7 | Test Results                                                                            |                   |                             |  |  |
| Color   |                                                                                         | _ pH              | Odor No Odor                |  |  |
| Tempe   | erature (°F)                                                                            | _ Specific Cond   | uctance (umhos/cm)          |  |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 1 | ,800 ppb                    |  |  |
| Consti  | tuents Sampled                                                                          |                   |                             |  |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                             |  |  |
| Remai   | rks:                                                                                    |                   |                             |  |  |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew:       | Kumar Chakraborty |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|--------------------|-------------------|--|
| Sampl   | e Location/Well No. Locati                                                              | on 8              |                    |                   |  |
| Field S | Sample I.D. Number SV-8                                                                 |                   | _ Time             | 3:05 pm-3:36 pm   |  |
| Weath   | er Partly Cloudy                                                                        |                   | <b>Temperature</b> | 75°F              |  |
| Sampl   | e Type:                                                                                 |                   |                    |                   |  |
| Groun   | dwater                                                                                  |                   | Sediment           |                   |  |
| Surfac  | e Water/Stream                                                                          |                   |                    | r                 |  |
| Soil    |                                                                                         |                   |                    |                   |  |
| Well I  | nformation (fill out for groun                                                          | ndwater samples)  |                    |                   |  |
| Depth   | to Water                                                                                |                   | Measurement Method |                   |  |
| Depth   | of Well                                                                                 |                   |                    |                   |  |
| Volum   | ne Removed                                                                              |                   |                    |                   |  |
| Field 7 | Test Results                                                                            |                   |                    |                   |  |
| Color   |                                                                                         | _ pH              |                    | Odor No Odor      |  |
| Tempo   | erature (°F)                                                                            |                   |                    | m)                |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 1 | 1,810 ppb          |                   |  |
| Consti  | tuents Sampled                                                                          |                   |                    |                   |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                    |                   |  |
| Remai   | rks:                                                                                    |                   |                    |                   |  |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew: Keith Robins   |  |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|-----------------------------|--|--|
| Sampl   | e Location/Well No. Locati                                                              | on 9              |                             |  |  |
| Field S | Sample I.D. Number SV-9                                                                 |                   | <b>Time</b> 1:55 pm-2:20 pm |  |  |
| Weath   | er Partly Cloudy                                                                        |                   | Temperature _75°F           |  |  |
| Sampl   | e Type:                                                                                 |                   |                             |  |  |
| Groun   | ndwater                                                                                 |                   | Sediment                    |  |  |
| Surfac  | ce Water/Stream                                                                         |                   | Air Soil Vapor              |  |  |
| Soil    |                                                                                         |                   |                             |  |  |
| Well I  | nformation (fill out for grour                                                          | ndwater samples)  |                             |  |  |
| Depth   | to Water                                                                                |                   | Measurement Method          |  |  |
| Depth   | of Well                                                                                 |                   | Measurement Method          |  |  |
| Volun   | ne Removed                                                                              |                   |                             |  |  |
| Field 7 | Test Results                                                                            |                   |                             |  |  |
| Color   |                                                                                         | _ pH              | Odor No Odor                |  |  |
| Temp    | erature (°F)                                                                            |                   | uctance (umhos/cm)          |  |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 5 | 530 ppb                     |  |  |
| Const   | ituents Sampled                                                                         |                   |                             |  |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                             |  |  |
| Rema    | rks:                                                                                    |                   |                             |  |  |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew:       | Kumar Chakraborty |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|--------------------|-------------------|--|
| Sampl   | le Location/Well No. Locati                                                             | on 10             |                    |                   |  |
| Field S | Sample I.D. Number SV-10                                                                |                   | Time               | 1:40 pm-2:06 pm   |  |
| Weath   | Weather Sunny                                                                           |                   | Temperature        | 80°F              |  |
| Sampl   | le Type:                                                                                |                   |                    |                   |  |
| Groun   | ndwater                                                                                 |                   | Sediment           |                   |  |
| Surfac  | ce Water/Stream                                                                         |                   |                    | <u>r</u>          |  |
| Soil    |                                                                                         |                   |                    |                   |  |
| Well I  | nformation (fill out for grour                                                          | ndwater samples)  |                    |                   |  |
| Depth   | to Water                                                                                |                   | Measurement Method |                   |  |
| Depth   | of Well                                                                                 |                   |                    |                   |  |
| Volun   | ne Removed                                                                              |                   |                    |                   |  |
| Field 7 | Test Results                                                                            |                   |                    |                   |  |
| Color   |                                                                                         | _ pH              |                    | Odor No Odor      |  |
| Temp    | erature (°F)                                                                            | _ Specific Cond   | uctance (umhos/ci  | m)                |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 0 | ) ppb              |                   |  |
| Const   | ituents Sampled                                                                         |                   |                    |                   |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                    |                   |  |
| Rema    | rks:                                                                                    |                   |                    |                   |  |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew: Kumar Chakraborty |  |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|--------------------------------|--|--|
| Sampl   | le Location/Well No. Locati                                                             | on 11             |                                |  |  |
| Field S | Sample I.D. Number SV-11                                                                |                   | <b>Time</b> 11:56 am-12:23 pm  |  |  |
| Weath   | ner Sunny                                                                               |                   | Temperature 80°F               |  |  |
| Sampl   | le Type:                                                                                |                   |                                |  |  |
| Groun   | ndwater                                                                                 |                   | Sediment                       |  |  |
| Surfac  | ce Water/Stream                                                                         |                   |                                |  |  |
| Soil    |                                                                                         |                   |                                |  |  |
| Well I  | nformation (fill out for groun                                                          | ndwater samples)  |                                |  |  |
| Depth   | to Water                                                                                |                   | Measurement Method             |  |  |
| Depth   | of Well                                                                                 |                   | Measurement Method             |  |  |
| Volun   | ne Removed                                                                              |                   | Removal Method                 |  |  |
| Field 7 | Test Results                                                                            |                   |                                |  |  |
| Color   |                                                                                         | _ pH              | Odor No Odor                   |  |  |
| Temp    | erature (°F)                                                                            | _ Specific Cond   | uctance (umhos/cm)             |  |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 0 | ) ppb                          |  |  |
| Const   | ituents Sampled                                                                         |                   |                                |  |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                                |  |  |
| Rema    | rks:                                                                                    |                   |                                |  |  |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew: 1     | Kumar Chakraborty |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|--------------------|-------------------|--|
| Sampl   | le Location/Well No. Location                                                           | on 12             |                    |                   |  |
| Field S | Sample I.D. Number SV-12                                                                |                   | Time _9            | 9:28 am-9:46 am   |  |
| Weath   | Weather Overcast                                                                        |                   | Temperature        | 78°F              |  |
| Sampl   | le Type:                                                                                |                   |                    |                   |  |
| Groun   | ndwater                                                                                 |                   | Sediment           |                   |  |
| Surfac  | ce Water/Stream                                                                         |                   |                    |                   |  |
| Soil    |                                                                                         |                   |                    |                   |  |
| Well I  | nformation (fill out for groun                                                          | ndwater samples)  |                    |                   |  |
| Depth   | to Water                                                                                |                   | Measurement Method |                   |  |
|         |                                                                                         |                   | Measurement Method |                   |  |
| Volun   | ne Removed                                                                              |                   | Removal Method     |                   |  |
| Field 7 | Test Results                                                                            |                   |                    |                   |  |
| Color   |                                                                                         | _ pH              | (                  | Odor No Odor      |  |
| Temp    | erature (°F)                                                                            | _ Specific Cond   | uctance (umhos/cm  | )                 |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 6 | 45 ppb             |                   |  |
| Const   | ituents Sampled                                                                         |                   |                    |                   |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                    |                   |  |
| Rema    | rks:                                                                                    |                   |                    |                   |  |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew: Keith Robins    |  |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|------------------------------|--|--|
| Sampl   | e Location/Well No. Locati                                                              | on 13             |                              |  |  |
| Field S | Sample I.D. Number SV-13                                                                |                   | <b>Time</b> 9:55 am-10:25 am |  |  |
| Weath   | ner Sunny                                                                               |                   | Temperature 80°F             |  |  |
| Sampl   | e Type:                                                                                 |                   |                              |  |  |
| Groun   | ndwater                                                                                 |                   | Sediment                     |  |  |
| Surfac  | ce Water/Stream                                                                         |                   |                              |  |  |
| Soil    |                                                                                         |                   |                              |  |  |
| Well I  | nformation (fill out for groun                                                          | dwater samples)   |                              |  |  |
| Depth   | to Water                                                                                |                   | Measurement Method           |  |  |
| Depth   | of Well                                                                                 |                   |                              |  |  |
| Volum   | ne Removed                                                                              |                   |                              |  |  |
| Field T | Γest Results                                                                            |                   |                              |  |  |
| Color   |                                                                                         | pH                | Odor No Odor                 |  |  |
| Tempe   | erature (°F)                                                                            |                   | uctance (umhos/cm)           |  |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 3 | 300 ppb                      |  |  |
| Consti  | ituents Sampled                                                                         |                   |                              |  |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                              |  |  |
| Remai   | rks:                                                                                    |                   |                              |  |  |



# SAMPLE INFORMATION RECORD

| Site:   | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew: Kumar Chakraborty |  |  |
|---------|-----------------------------------------------------------------------------------------|-------------------|--------------------------------|--|--|
| Sampl   | e Location/Well No. Locati                                                              | on 14             |                                |  |  |
| Field S | Sample I.D. Number SV-14                                                                |                   | <b>Time</b> 12:30 pm-1:05 pm   |  |  |
| Weath   | er Partly Cloudy                                                                        |                   | Temperature 75°F               |  |  |
| Sampl   | e Type:                                                                                 |                   |                                |  |  |
| Groun   | ndwater                                                                                 |                   | Sediment                       |  |  |
| Surfac  | ce Water/Stream                                                                         |                   | Air Soil Vapor                 |  |  |
| Soil    |                                                                                         |                   |                                |  |  |
| Well I  | nformation (fill out for groun                                                          | ndwater samples)  |                                |  |  |
| Depth   | to Water                                                                                |                   | Measurement Method             |  |  |
| Depth   | of Well                                                                                 |                   |                                |  |  |
| Volun   | ne Removed                                                                              |                   |                                |  |  |
| Field 7 | Test Results                                                                            |                   |                                |  |  |
| Color   |                                                                                         | _ pH              | Odor No Odor                   |  |  |
| Temp    | erature (°F)                                                                            |                   | uctance (umhos/cm)             |  |  |
| Other   | (OVA, Methane Meter, etc.                                                               | PID readings at 2 | 255 ppb                        |  |  |
| Const   | ituents Sampled                                                                         |                   |                                |  |  |
|         | 5 with Selective onitoring (SIM)                                                        |                   |                                |  |  |
| Rema    | rks:                                                                                    |                   |                                |  |  |



Date: 6/26/14

# SAMPLE INFORMATION RECORD

| Site:            | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew:       | Kumar Chakraborty |  |  |  |
|------------------|-----------------------------------------------------------------------------------------|-------------------|--------------------|-------------------|--|--|--|
| Sampl            | e Location/Well No. Locati                                                              | on 15             |                    |                   |  |  |  |
| Field S          | Sample I.D. Number SV-15                                                                |                   | Time               | 8:40 am-9:13 am   |  |  |  |
| Weather Overcast |                                                                                         |                   | <b>Temperature</b> | 78°F              |  |  |  |
| Sampl            | e Type:                                                                                 |                   |                    |                   |  |  |  |
| Groun            | ndwater                                                                                 |                   | Sediment           |                   |  |  |  |
| Surfac           | ce Water/Stream                                                                         |                   |                    | r                 |  |  |  |
| Soil             |                                                                                         |                   |                    |                   |  |  |  |
| Well I           | nformation (fill out for groun                                                          | dwater samples)   |                    |                   |  |  |  |
| Depth            | to Water                                                                                |                   |                    |                   |  |  |  |
| Depth            | of Well                                                                                 |                   |                    |                   |  |  |  |
| Volun            | ne Removed                                                                              |                   | Removal Method     |                   |  |  |  |
| Field 7          | Test Results                                                                            |                   |                    |                   |  |  |  |
| Color            | -                                                                                       | _ pH              |                    | Odor No Odor      |  |  |  |
| Temp             | erature (°F)                                                                            |                   |                    | m)                |  |  |  |
| Other            | (OVA, Methane Meter, etc.                                                               | PID readings at 4 | 1,015 ppb          |                   |  |  |  |
| Const            | ituents Sampled                                                                         |                   |                    |                   |  |  |  |
|                  | 5 with Selective onitoring (SIM)                                                        |                   |                    |                   |  |  |  |
| Rema             | rks:                                                                                    |                   |                    |                   |  |  |  |



# SAMPLE INFORMATION RECORD

| Site:                 | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew: Kumar Chakraborty         |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------|-------------------|----------------------------------------|--|--|--|
| Sampl                 | le Location/Well No. Locati                                                             | on 16             |                                        |  |  |  |
| Field S               | Sample I.D. Number SV-16                                                                | j <u></u>         | <b>Time</b> 1:10 pm-1:29 pm            |  |  |  |
| Weather Partly Cloudy |                                                                                         |                   | Temperature 75°F                       |  |  |  |
| Sampl                 | le Type:                                                                                |                   |                                        |  |  |  |
| Groun                 | ndwater                                                                                 |                   | Sediment                               |  |  |  |
| Surfac                | ce Water/Stream                                                                         |                   |                                        |  |  |  |
| Soil _                |                                                                                         |                   |                                        |  |  |  |
| Well I                | nformation (fill out for groun                                                          | ndwater samples)  |                                        |  |  |  |
| Depth                 | to Water                                                                                |                   | Measurement Method  Measurement Method |  |  |  |
|                       |                                                                                         |                   |                                        |  |  |  |
| Volun                 | ne Removed                                                                              |                   | Removal Method                         |  |  |  |
| Field 7               | Γest Results                                                                            |                   |                                        |  |  |  |
| Color                 |                                                                                         | _ pH              | Odor No Odor                           |  |  |  |
| Temp                  | erature (°F)                                                                            | Specific Cond     | uctance (umhos/cm)                     |  |  |  |
| Other                 | (OVA, Methane Meter, etc.                                                               | PID readings at 9 | 76 ppb                                 |  |  |  |
| Const                 | ituents Sampled                                                                         |                   |                                        |  |  |  |
|                       | 5 with Selective onitoring (SIM)                                                        |                   |                                        |  |  |  |
| Rema                  | rks:                                                                                    |                   |                                        |  |  |  |



# SAMPLE INFORMATION RECORD

| Site:                 | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew:       | Kumar Chakraborty |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------|-------------------|--------------------|-------------------|--|--|--|
| Sampl                 | e Location/Well No. Location                                                            | on 17             |                    |                   |  |  |  |
| Field S               | Sample I.D. Number SV-17                                                                |                   | Time               | 3:55 pm-4:33 pm   |  |  |  |
| Weather Partly Cloudy |                                                                                         |                   | <b>Temperature</b> | 75°F              |  |  |  |
| Sampl                 | e Type:                                                                                 |                   |                    |                   |  |  |  |
| Groun                 | ndwater                                                                                 |                   | Sediment           |                   |  |  |  |
| Surfac                | ce Water/Stream                                                                         |                   |                    | <u>r</u>          |  |  |  |
| Soil                  |                                                                                         |                   |                    |                   |  |  |  |
| Well I                | nformation (fill out for groun                                                          | dwater samples)   |                    |                   |  |  |  |
| Depth                 | to Water                                                                                |                   | Measurement Method |                   |  |  |  |
| Depth                 | of Well                                                                                 |                   |                    |                   |  |  |  |
| Volun                 | ne Removed                                                                              |                   | Removal Method     |                   |  |  |  |
| Field 7               | Test Results                                                                            |                   |                    |                   |  |  |  |
| Color                 |                                                                                         | pH                |                    | Odor No Odor      |  |  |  |
| Temp                  | erature (°F)                                                                            |                   |                    | m)                |  |  |  |
| Other                 | (OVA, Methane Meter, etc.                                                               | PID readings at 6 | ó15 ppb            |                   |  |  |  |
| Const                 | ituents Sampled                                                                         |                   |                    |                   |  |  |  |
|                       | 5 with Selective onitoring (SIM)                                                        |                   |                    |                   |  |  |  |
| Rema                  | rks:                                                                                    |                   |                    |                   |  |  |  |



# SAMPLE INFORMATION RECORD

| Site:                 | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew: Kumar Chakraborty |  |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------|-------------------|--------------------------------|--|--|--|--|
| Sampl                 | e Location/Well No. Locati                                                              | on 18             |                                |  |  |  |  |
| Field S               | Sample I.D. Number SV-18                                                                |                   | <b>Time</b> 1:56 pm-4:33 pm    |  |  |  |  |
| Weather Partly Cloudy |                                                                                         |                   | Temperature _75°F              |  |  |  |  |
| Sampl                 | e Type:                                                                                 |                   |                                |  |  |  |  |
| Groun                 | ndwater                                                                                 |                   | Sediment                       |  |  |  |  |
| Surfac                | ce Water/Stream                                                                         |                   | Air Soil Vapor                 |  |  |  |  |
| Soil                  |                                                                                         |                   |                                |  |  |  |  |
| Well I                | nformation (fill out for groun                                                          | dwater samples)   |                                |  |  |  |  |
| Depth                 | to Water                                                                                |                   | Measurement Method             |  |  |  |  |
| Depth                 | of Well                                                                                 |                   |                                |  |  |  |  |
| Volum                 | ne Removed                                                                              |                   | Removal Method                 |  |  |  |  |
| Field T               | Test Results                                                                            |                   |                                |  |  |  |  |
| Color                 |                                                                                         | _ pH              | Odor No Odor                   |  |  |  |  |
| Tempe                 | erature (°F)                                                                            | _ Specific Cond   | uctance (umhos/cm)             |  |  |  |  |
| Other                 | (OVA, Methane Meter, etc.                                                               | PID readings at 5 | 511 ppb                        |  |  |  |  |
| Consti                | tuents Sampled                                                                          |                   |                                |  |  |  |  |
|                       | 5 with Selective onitoring (SIM)                                                        |                   |                                |  |  |  |  |
| Remai                 | rks:                                                                                    |                   |                                |  |  |  |  |



# SAMPLE INFORMATION RECORD

| Site:                 | 1889-1905 Guerlain Street,<br>1572-1592 White Plains Road<br>East Tremont Avenue Bronx, |                   | Sample Crew: Kumar Chakraborty |  |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------|-------------------|--------------------------------|--|--|--|--|
| Sampl                 | le Location/Well No. Locati                                                             | on 19             |                                |  |  |  |  |
| Field S               | Sample I.D. Number SV-19                                                                | )                 | <b>Time</b> 10:30 am-10:55 am  |  |  |  |  |
| Weather Partly Cloudy |                                                                                         |                   | Temperature _75°F              |  |  |  |  |
| Sampl                 | le Type:                                                                                |                   |                                |  |  |  |  |
| Groun                 | ndwater                                                                                 |                   | Sediment                       |  |  |  |  |
| Surfac                | ce Water/Stream                                                                         |                   |                                |  |  |  |  |
| Soil                  |                                                                                         |                   |                                |  |  |  |  |
| Well I                | nformation (fill out for groun                                                          | ndwater samples)  |                                |  |  |  |  |
| Depth                 | to Water                                                                                |                   | Measurement Method             |  |  |  |  |
| Depth                 | of Well                                                                                 |                   | Measurement Method             |  |  |  |  |
| Volun                 | ne Removed                                                                              |                   | Removal Method                 |  |  |  |  |
| Field 7               | Test Results                                                                            |                   |                                |  |  |  |  |
| Color                 |                                                                                         | pH                | Odor No Odor                   |  |  |  |  |
| Temp                  | erature (°F)                                                                            | Specific Cond     | uctance (umhos/cm)             |  |  |  |  |
| Other                 | (OVA, Methane Meter, etc.                                                               | PID readings at 1 | ,735 ppb                       |  |  |  |  |
| Const                 | ituents Sampled                                                                         |                   |                                |  |  |  |  |
|                       | 5 with Selective onitoring (SIM)                                                        |                   |                                |  |  |  |  |
| Rema                  | rks:                                                                                    |                   |                                |  |  |  |  |



# SAMPLE INFORMATION RECORD

| Site:                  | 1889-1905 Guerla                    |               |                     | Sample Crew:                    | Keith I               | Robins                    |
|------------------------|-------------------------------------|---------------|---------------------|---------------------------------|-----------------------|---------------------------|
| _                      | 1572-1592 White<br>East Tremont Ave |               |                     |                                 |                       |                           |
| Sampl                  | e Location/Well N                   | o. Location   | 1                   |                                 |                       |                           |
| Field S                | Sample I.D. Numbe                   | er GW-1       |                     | Time                            | 11:00 a               | am                        |
| Weath                  | er Partly Cloudy                    |               |                     | Temperature _                   | 75°F                  |                           |
| Sampl                  | е Туре:                             |               |                     |                                 |                       |                           |
| Groun                  | dwater groundwa                     | ater          |                     | Sediment                        |                       |                           |
|                        | e Water/Stream                      |               |                     | A •                             |                       |                           |
| Soil _                 |                                     |               |                     | Other (describe, water, septage |                       |                           |
| Well I                 | nformation (fill ou                 | t for groundw | ater samples        | )                               |                       |                           |
| Depth                  | to Water 22 feet                    | bgs           |                     | Measurement M                   | <b>Iethod</b>         | Water Level Meter         |
| Depth<br>Tempo<br>Well |                                     | ogs           |                     | Measurement M                   | Iethod                | Water Level Meter         |
| Volum                  | e Removed App                       | roximately Tw | o gallons           | Removal Metho                   | <b>d</b> Pol          | y tubing with check valve |
| Field T                | Test Results                        |               |                     |                                 |                       |                           |
| Color                  | Brown                               | р             | <b>H</b> 6.01       |                                 | Odor                  | No Odor                   |
| Tempe                  | erature (°C) 25.                    | 11            | Specific            | Conductance (ms/cr              | <b>m</b> ) <u>7.8</u> | 1                         |
| Other                  | (OVA, Methane M                     | leter, etc. D | OO = 4.24  (mg)     | /l), ORP = 70 (mu), 7           | Turbidit              | ty = >1000  (NTUs)        |
|                        |                                     | N             | o sheen.            |                                 |                       |                           |
| Consti                 | tuents Sampled                      |               |                     |                                 |                       |                           |
|                        | L and CP-51<br>OCs + TICs           |               | d CP-51<br>s + TICs | PCBs                            |                       | Selected TAL Metals       |
| V (                    | <u> </u>                            | 3,000         | 5 + 11CS            | LCD8                            |                       | _                         |
|                        |                                     |               |                     |                                 |                       | (Total and Dissolved)     |
| Remar                  | ·ks:                                |               |                     |                                 |                       |                           |



## SAMPLE INFORMATION RECORD

| Site: 1597-1627 Unionport 1889-1905 Guerlain S |                                                  | Sample Crew: Keith Ro                       | bbins                    |  |
|------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------|--|
|                                                | nins Road and 1880-1894<br>Bronx, New York 10462 |                                             |                          |  |
| Sample Location/Well No.                       | Location 5                                       |                                             |                          |  |
| Field Sam <u>ple I.D. Number</u>               | GW-5                                             | <b>Time</b> 3:00 pm                         |                          |  |
| Weather Sunny                                  |                                                  | Temperature 80°F                            |                          |  |
| Sample Type:                                   |                                                  |                                             |                          |  |
| Groundwater groundwater                        |                                                  | Sediment                                    |                          |  |
| Surface Water/Stream                           |                                                  |                                             |                          |  |
| Soil                                           |                                                  | Other (describe, i.e. water, septage, etc.) |                          |  |
| Well Information (fill out fo                  | or groundwater samples)                          |                                             |                          |  |
| <b>Depth to Water</b> 12 feet bgs              | <u> </u>                                         | Measurement Method                          | Water Level Meter        |  |
| Depth of Temporary Well 19 feet bgs            |                                                  | Measurement Method                          | Water Level Meter        |  |
| Volume Removed Approx                          | imately Two gallons                              | Removal Method Poly                         | tubing with check valve  |  |
| Field Test Results                             |                                                  |                                             |                          |  |
| Color Gray                                     | <b>pH</b> 6.66                                   | Odor _                                      | Slight petroleum odor    |  |
| Temperature (°C) 21.33                         | Specific Co                                      | onductance (ms/cm) 1.92                     |                          |  |
| Other (OVA, Methane Mete                       | er, etc. $DO = 0.82 (mg/l)$                      | , ORP = -116 (mu), Turbidit                 | y = 76 (NTUs), No sheen. |  |
| Constituents Sampled                           |                                                  |                                             |                          |  |
| TCL and CP-51<br>VOCs + TICs                   | TCL and CP-51<br>SVOCs + TICs                    | PCBs                                        | Selected TAL Metals      |  |
|                                                |                                                  |                                             | (Total and Dissolved)    |  |
| Remarks:                                       |                                                  |                                             | <u> </u>                 |  |



# SAMPLE INFORMATION RECORD

| Site: 1597-1627 Unionpo            |                                                      | Sample Crew: Keith R                        | obins                                      |  |
|------------------------------------|------------------------------------------------------|---------------------------------------------|--------------------------------------------|--|
|                                    | Plains Road and 1880-189<br>ue Bronx, New York 10462 |                                             |                                            |  |
| Sample Location/Well No.           | Location 7                                           |                                             |                                            |  |
| Field Sam <u>ple I.D. Number</u>   | : GW-7                                               | <b>Time</b> 3:15 pm                         | 1                                          |  |
| Weather Partly Cloudy              |                                                      | Temperature 70°F                            |                                            |  |
| Sample Type:                       |                                                      |                                             |                                            |  |
| Groundwater groundwat              | er                                                   | Sediment                                    |                                            |  |
| Surface Water/Stream _             |                                                      | Air                                         |                                            |  |
| Soil                               |                                                      | Other (describe, i.e. water, septage, etc.) |                                            |  |
| Well Information (fill out         | for groundwater samples                              | 3)                                          |                                            |  |
| Depth to Water 9 feet bg           | S                                                    | Measurement Method Water Level Meter        |                                            |  |
| Depth of Temporary Well 17 feet bg | 5S                                                   | Measurement Method                          | Water Level Meter                          |  |
| Volume Removed Appro               | oximately Two gallons                                | Removal Method Poly                         | tubing with check valve                    |  |
| Field Test Results                 |                                                      |                                             |                                            |  |
| Color Brown                        | <b>pH</b> 6.96                                       | Odor                                        | No odor                                    |  |
| Temperature (°C) 19.52             | 2 Specific                                           | Conductance (ms/cm) 5.14                    | <u> </u>                                   |  |
| Other (OVA, Methane Me             | eter, etc. $DO = 2.02$ (mg                           | g/l), ORP = -8 (mu), Turbidity              | t = >1000  (NTUs),                         |  |
|                                    | No sheen.                                            |                                             |                                            |  |
| Constituents Sampled               |                                                      |                                             |                                            |  |
| TCL and CP-51                      | TCL and CP-51                                        | DCD.                                        | Colooted TAI Motels                        |  |
| VOCs + TICs                        | SVOCs + TICs                                         | PCBs                                        | Selected TAL Metals  (Total and Disselved) |  |
|                                    |                                                      |                                             | (Total and Dissolved)                      |  |
| Remarks:                           |                                                      |                                             |                                            |  |



# SAMPLE INFORMATION RECORD

| 1889-1905 Guer                | •                                                           | Sample Crew: Keith R                       | obins                      |
|-------------------------------|-------------------------------------------------------------|--------------------------------------------|----------------------------|
|                               | te Plains Road and 1880-1894<br>venue Bronx, New York 10462 |                                            |                            |
| Sample Location/Well          | No. Location 9                                              |                                            |                            |
| Field Sam <u>ple I.D. Nun</u> | nber GW-9                                                   | <b>Time</b> 12:45 pt                       | n                          |
| Weather Partly Clou           | dy                                                          | Temperature 70°F                           |                            |
| Sample Type:                  |                                                             |                                            |                            |
| Groundwater ground            | water                                                       | Sediment                                   |                            |
|                               | ı                                                           |                                            |                            |
|                               |                                                             | Other (describe, i.e water, septage, etc.) |                            |
| Well Information (fill        | out for groundwater samples)                                | )                                          |                            |
| Depth to Water 20 fe          | et bgs                                                      | Measurement Method                         | Water Level Meter          |
| Depth of<br>Temporary<br>Well | et bgs                                                      | Measurement Method                         | Water Level Meter          |
| Volume Removed A              | pproximately Two gallons                                    | Removal Method Poly                        | tubing with check valve    |
| Field Test Results            |                                                             |                                            |                            |
| Color Brown                   | <b>pH</b> 7.51                                              | Odor                                       | No odor                    |
| Temperature (°C) 2            | 3.50 Specific (                                             | Conductance (ms/cm) 1.89                   |                            |
| Other (OVA, Methane           | Meter, etc. $DO = 6.26$ (mg/                                | /l), ORP = 122 (mu), Turbidit              | xy = 472 (NTUs), No sheen. |
| Constituents Sampled          |                                                             |                                            |                            |
| TCL and CP-51<br>VOCs + TICs  | TCL and CP-51<br>SVOCs + TICs                               | PCBs                                       | Selected TAL Metals        |
| v OC3 + 11C3                  |                                                             | 1 CD3                                      | (Total and Dissolved)      |
|                               |                                                             |                                            | (10tal and Dissolved)      |
| Remarks:                      |                                                             |                                            |                            |



# SAMPLE INFORMATION RECORD

| Site:                                                 | 1897-1627 Unionpor<br>1889-1905 Guerlain |                                                     | Sample Crew: I                  | Kumar Chakraborty                           |  |  |
|-------------------------------------------------------|------------------------------------------|-----------------------------------------------------|---------------------------------|---------------------------------------------|--|--|
|                                                       |                                          | lains Road and 1880-1894<br>e Bronx, New York 10462 |                                 |                                             |  |  |
| Sampl                                                 | le Location/Well No.                     | Location 11                                         |                                 |                                             |  |  |
| Field S                                               | Sample I.D. Number                       | GW-11                                               | <b>Time</b> 1                   | 1:30 am                                     |  |  |
| Weath                                                 | ner Overcast                             |                                                     | Temperature7                    | 78°F                                        |  |  |
| Sampl                                                 | le Type:                                 |                                                     |                                 |                                             |  |  |
| Groun                                                 | ndwater groundwate                       | r                                                   | Sediment                        |                                             |  |  |
| Surfac                                                | ce Water/Stream                          |                                                     | . •                             |                                             |  |  |
| Soil                                                  |                                          |                                                     | <del>-</del> ' '                | Other (describe, i.e. water, septage, etc.) |  |  |
| Well I                                                | nformation (fill out f                   | or groundwater samples)                             |                                 |                                             |  |  |
| Depth                                                 | to Water 4 feet bgs                      |                                                     | _ Measurement Me                | thod Water Level Meter                      |  |  |
| Depth of Temporary Well 8 feet bgs                    |                                          | Measurement Method Water Level Meter                |                                 |                                             |  |  |
| Volun                                                 | ne Removed Approx                        | ximately Two gallons                                | Removal Method                  | Poly tubing with check valve                |  |  |
| Field 7                                               | <b>Γest Results</b>                      |                                                     |                                 |                                             |  |  |
| Color                                                 | Brown                                    | <b>pH</b> 6.93                                      | C                               | Odor No odor                                |  |  |
| Temp                                                  | erature (°C) 22.15                       | Specific C                                          | Conductance (ms/cm              | 4.67                                        |  |  |
| Other                                                 | (OVA, Methane Met                        | zer, etc. $DO = 4.32 \text{ (mg/J)}$                | ), $ORP = -54 \text{ (mu)}$ , T | Surbidity = 0 (NTUs), No sheen.             |  |  |
| Const                                                 | ituents Sampled                          |                                                     |                                 |                                             |  |  |
| TCL and CP-51 VOCs + TICs  TCL and CP-51 SVOCs + TICs |                                          | PCBs                                                | Selected TAL Metals             |                                             |  |  |
|                                                       |                                          |                                                     |                                 | (Total and Dissolved)                       |  |  |
| Rema                                                  | rks:                                     |                                                     |                                 |                                             |  |  |



# SAMPLE INFORMATION RECORD

| Site:                                                 | 1597-1627 Unionpo<br>1889-1905 Guerlair | ,             |                                     | Sample Crew:        | Keith I               | Robins                     |
|-------------------------------------------------------|-----------------------------------------|---------------|-------------------------------------|---------------------|-----------------------|----------------------------|
|                                                       | 1572-1592 White East Tremont Aven       |               |                                     | <b>1</b>            |                       |                            |
| Sampl                                                 | e Location/Well No                      | . Location    | on 13                               |                     |                       |                            |
| Field S                                               | Sam <u>ple I.D. Numbe</u>               | r GW-13       | 3                                   | Time                | 1:30 pı               | m                          |
| Weath                                                 | ner Partly Cloudy                       |               |                                     | Temperature         | 75°F                  |                            |
| Sampl                                                 | le Type:                                |               |                                     |                     |                       |                            |
| Groun                                                 | ndwater groundwat                       | ter           |                                     | Sediment            |                       |                            |
| Surfac                                                | ce Water/Stream _                       |               |                                     | Air                 |                       |                            |
| Soil                                                  |                                         |               | _ Other (describe<br>water, septage | <i>'</i>            |                       |                            |
| Well I                                                | nformation (fill out                    | for groun     | dwater samples)                     |                     |                       |                            |
| Depth                                                 | to Water 18 feet b                      | ogs           |                                     | Measurement M       | <b>Iethod</b>         | Water Level Meter          |
| Depth of Temporary Well 20 feet bgs                   |                                         | Measurement N | Water Level Meter                   |                     |                       |                            |
| Volum                                                 | ne Removed Appro                        | oximately '   | Γwo gallons                         | Removal Metho       | od Pol                | ly tubing with check valve |
| Field T                                               | <b>Fest Results</b>                     |               |                                     |                     |                       |                            |
| Color                                                 | Brown                                   |               | <b>pH</b> 7.11                      |                     | Odor                  | Slight Petroleum odor      |
| Tempe                                                 | erature (°C) 24.2                       | 2             | Specific (                          | Conductance (ms/c   | <b>m</b> ) <u>1.8</u> | 37                         |
| Other                                                 | (OVA, Methane Me                        | eter, etc.    | DO = 2.18 (mg/sheen.                | l), ORP = -135 (mu  | ), Turbi              | dity = >1000 (NTUs), Trace |
| Consti                                                | ituents Sampled                         |               |                                     |                     |                       |                            |
| TCL and CP-51 VOCs + TICs  TCL and CP-51 SVOCs + TICs |                                         | PCBs          |                                     | Selected TAL Metals |                       |                            |
|                                                       |                                         |               |                                     |                     |                       | (Total and Dissolved)      |
| Remai                                                 |                                         |               |                                     |                     |                       |                            |
|                                                       | sheen and netroleum                     | odor          |                                     |                     |                       |                            |



# SAMPLE INFORMATION RECORD

| Site:                                                 | 1597-1627 Unic<br>1889-1905 Guer | •                                       |                                             | Sample Crew:        | Kumar C         | Chakraborty               |
|-------------------------------------------------------|----------------------------------|-----------------------------------------|---------------------------------------------|---------------------|-----------------|---------------------------|
|                                                       |                                  | ite Plains Road and<br>venue Bronx, New |                                             | _                   |                 |                           |
| Sampl                                                 | le Location/Well                 | No. Location 15                         |                                             |                     |                 |                           |
| Field S                                               | Sam <u>ple I.D. Nun</u>          | nber GW-15                              |                                             | Time                | 10:30 an        | 1                         |
| Weath                                                 | ner Overcast                     |                                         |                                             | _ Temperature       | 78°F            |                           |
| Sampl                                                 | le Type:                         |                                         |                                             |                     |                 |                           |
| Groun                                                 | Groundwater groundwater          |                                         |                                             | Sediment            |                 |                           |
| Surfac                                                | ce Water/Stream                  | ı                                       |                                             |                     |                 |                           |
| Soil                                                  |                                  |                                         | Other (describe, i.e. water, septage, etc.) |                     |                 |                           |
| Well I                                                | information (fill                | out for groundwat                       | er samples)                                 |                     |                 |                           |
| Depth                                                 | to Water 12 fe                   | eet bgs                                 |                                             | _ Measurement M     | Iethod _        | Water Level Meter         |
| Depth of Temporary Well 19 feet bgs                   |                                  | Measurement M                           | <b>Iethod</b>                               | Water Level Meter   |                 |                           |
| Volun                                                 | ne Removed A                     | pproximately Two g                      | gallons                                     | Removal Metho       | d Poly          | tubing with check valve   |
| Field '                                               | Test Results                     |                                         |                                             |                     |                 |                           |
| Color                                                 | Brown                            | рН                                      | 6.43                                        |                     | Odor _          | No odor                   |
| Temp                                                  | erature (°C) 2                   | 22.41                                   | Specific C                                  | onductance (ms/c    | <b>m</b> ) 4.23 |                           |
| Other                                                 | (OVA, Methane                    | e Meter, etc. DO                        | = 3.04  (mg/l)                              | ), $ORP = 109 (mu)$ | , Turbidit      | y = 273 (NTUs), No sheen. |
| Const                                                 | ituents Sampled                  |                                         |                                             |                     |                 |                           |
| TCL and CP-51 VOCs + TICs  TCL and CP-51 SVOCs + TICs |                                  | PCBs                                    |                                             | Selected TAL Metals |                 |                           |
|                                                       |                                  | _                                       |                                             |                     |                 | (Total and Dissolved)     |
| Rema                                                  | rks:                             |                                         |                                             |                     |                 | ·                         |



# SAMPLE INFORMATION RECORD

| Site: 1397-1627 Unionport Road,<br>1889-1905 Guerlain Street,                         | Sample Crew: Keith Robins                                |
|---------------------------------------------------------------------------------------|----------------------------------------------------------|
| 1572-1592 White Plains Road and 1880-189<br>East Tremont Avenue Bronx, New York 10462 |                                                          |
| Sample Location/Well No. Location 16                                                  |                                                          |
| Field Sample I.D. Number GW-16                                                        | <b>Time</b> 11:30 am                                     |
| Weather Overcast                                                                      | Temperature 78°F                                         |
| Sample Type:                                                                          |                                                          |
| Groundwater groundwater                                                               | Sediment                                                 |
| Surface Water/Stream                                                                  |                                                          |
| Soil                                                                                  | Other (describe, i.e. water, septage, etc.)              |
| Well Information (fill out for groundwater samples                                    | )                                                        |
| Depth to Water 11 feet bgs                                                            | Measurement Method Water Level Meter                     |
| Depth of Temporary 16 feet bgs                                                        | Measurement Method Water Level Meter                     |
| Volume Removed Approximately Two gallons                                              | Removal Method Poly tubing with check valve              |
| Field Test Results                                                                    |                                                          |
| Color Brown pH 7.22                                                                   | Odor No odor                                             |
|                                                                                       | Conductance (ms/cm) 1.87                                 |
| Other (OVA, Methane Meter, etc. DO = 8.94 (mg                                         | (y/l), ORP = 104 (mu), Turbidity = 266 (NTUs), No sheen. |
| Constituents Sampled                                                                  |                                                          |
| TCL and CP-51 VOCs + TICs  TCL and CP-51 SVOCs + TICs                                 | PCBs Selected TAL Metals                                 |
| VOCS + 11CS                                                                           |                                                          |
|                                                                                       | (Total and Dissolved)                                    |
| Remarks:                                                                              |                                                          |



# SAMPLE INFORMATION RECORD

| Site: 1597-1627 Unionport Road, 1889-1905 Guerlain Street,                           | Sample Crew: Keith Robins                              |
|--------------------------------------------------------------------------------------|--------------------------------------------------------|
| 1572-1592 White Plains Road and 1880-189<br>East Tremont Avenue Bronx, New York 1046 |                                                        |
| Sample Location/Well No. Location 17                                                 |                                                        |
| Field Sample I.D. Number GW-17                                                       | <b>Time</b> 10:00 am                                   |
| Weather Overcast                                                                     | Temperature 78°F                                       |
| Sample Type:                                                                         |                                                        |
| Groundwater groundwater                                                              | Sediment                                               |
| Surface Water/Stream                                                                 | Air                                                    |
| Soil                                                                                 | Other (describe, i.e. water, septage, etc.)            |
| Well Information (fill out for groundwater samples  Depth to Water 11 feet bgs       | Measurement Method Water Level Meter                   |
| Depth of Temporary Well 17 feet bgs                                                  | Measurement Method Water Level Meter                   |
| Volume Removed Approximately Two gallons                                             | Removal Method Poly tubing with check valve            |
| Field Test Results                                                                   |                                                        |
| Color Brown pH 6.52                                                                  | Odor No odor                                           |
| Temperature (°C) 18.29 Specific                                                      | Conductance (ms/cm) _3.58                              |
| Other (OVA, Methane Meter, etc. DO = 0.90 (mg                                        | g/l), ORP = 12 (mu), Turbidity = 824 (NTUs), No sheen. |
| Constituents Sampled                                                                 |                                                        |
| TCL and CP-51 VOCs + TICs  TCL and CP-51 SVOCs + TICs                                | PCBs Selected TAL Metals                               |
| NYCDEP Sewer Discharge Parameters                                                    | (Total and Dissolved)                                  |
| Remarks:                                                                             |                                                        |



Date: 6/26/14

### SAMPLE INFORMATION RECORD

| Site:                  | 1889-1905 Guerlain        |                                                       | Sample Crew:                   | Kumar Chakraborty                    |
|------------------------|---------------------------|-------------------------------------------------------|--------------------------------|--------------------------------------|
|                        |                           | Plains Road and 1880-1894<br>ue Bronx, New York 10462 | _                              |                                      |
| Sampl                  | le Location/Well No       | Location 18                                           |                                |                                      |
| Field S                | Sam <u>ple I.D. Numbe</u> | r GW-18                                               | _ Time                         | 12:30 pm                             |
| Weath                  | ner Overcast              |                                                       | _ Temperature                  | 78°F                                 |
| Sampl                  | le Type:                  |                                                       |                                |                                      |
| Groun                  | ndwater groundwar         | ter                                                   | Sediment                       |                                      |
| Surfac                 | ce Water/Stream _         |                                                       |                                |                                      |
| Soil _                 |                           |                                                       | Other (describe water, septage | , i.e                                |
| Well I                 | nformation (fill out      | for groundwater samples)                              |                                |                                      |
| Depth                  | to Water 12 feet b        | ogs                                                   | _ Measurement M                | <b>Iethod</b> Water Level Meter      |
| Depth<br>Tempo<br>Well |                           | gs                                                    | Measurement M                  | <b>lethod</b> Water Level Meter      |
| Volun                  | ne Removed Appro          | oximately Two gallons                                 | _ Removal Metho                | d Poly tubing with check valve       |
| Field '                | Test Results              |                                                       |                                |                                      |
| Color                  | Brown                     | <b>pH</b> 6.50                                        |                                | Odor No odor                         |
| Temp                   | erature (°C) 19.0         | 4 Specific C                                          | onductance (ms/c               | <b>m</b> ) 5.63                      |
| Other                  | (OVA, Methane M           | eter, etc. $DO = 4.11 \text{ (mg/l)}$                 | ), $ORP = 109 \text{ (mu)}$    | , Turbidity = 70.5 (NTUs), no sheen. |
| Const                  | ituents Sampled           |                                                       |                                |                                      |
|                        | L and CP-51               | TCL and CP-51                                         | 202                            |                                      |
| V                      | OCs + TICs                | SVOCs + TICs                                          | PCBs                           | Selected TAL Metals                  |
|                        |                           |                                                       |                                | (Total and Dissolved)                |
| Rema                   | rks:                      |                                                       |                                |                                      |



# SAMPLE INFORMATION RECORD

| Site:                 | 1597-1627 Unionpo                 |            |         | Sample Crew:  | Keith F                                     | eith Robins           |                            |  |  |  |
|-----------------------|-----------------------------------|------------|---------|---------------|---------------------------------------------|-----------------------|----------------------------|--|--|--|
|                       | 1572-1592 White East Tremont Aven |            |         |               | _                                           |                       |                            |  |  |  |
| Sampl                 | e Location/Well No                | . Locati   | on MV   | V-E           |                                             |                       |                            |  |  |  |
| Field S               | Sample I.D. Numbe                 | r MW-E     | E       |               | Time                                        | 9:45 an               | n                          |  |  |  |
| Weath                 | er Partly Cloudy                  |            |         |               | Temperature                                 | 75°F                  |                            |  |  |  |
| Sampl                 | e Type:                           |            |         |               |                                             |                       |                            |  |  |  |
| Groun                 | dwater groundwa                   | ter        |         |               | Sediment                                    |                       |                            |  |  |  |
| Surfac                | ee Water/Stream                   |            |         |               |                                             |                       |                            |  |  |  |
| Soil _                |                                   |            |         |               | Other (describe, i.e. water, septage, etc.) |                       |                            |  |  |  |
| Well I                | nformation (fill out              | for groun  | dwate   | er samples)   |                                             |                       |                            |  |  |  |
| Depth                 | to Water 16.11 fe                 | et bgs     |         |               | _ Measurement N                             | <b>Aethod</b>         | Water Level Meter          |  |  |  |
| Depth                 | of Well 22.7 feet                 | bgs        |         |               | Measurement Method Water Level Meter        |                       |                            |  |  |  |
| Volum                 | ne Removed Appro                  | oximately  | 6 gallo | ns            | Removal Method Low Flow Bladder Pump        |                       |                            |  |  |  |
| Field 7               | <b>Γest Results</b>               |            |         |               |                                             |                       |                            |  |  |  |
| Color                 | Clear                             |            | _ pH    | 6.70          |                                             | Odor                  | No odor                    |  |  |  |
| Tempe                 | erature (°C) <u>15.6</u>          | 3          | _       | Specific C    | onductance (ms/c                            | <b>m</b> ) <u>3.0</u> | 0                          |  |  |  |
| Other                 | (OVA, Methane M                   | eter, etc. | DO =    | = 2.00 (mg/l) | ), ORP = 174 (mu)                           | ), Turbid             | ity = 31 (NTUs), No sheen. |  |  |  |
| Consti                | tuents Sampled                    |            |         |               |                                             |                       |                            |  |  |  |
| TCL and CP-51 TCL and |                                   |            |         |               | D.C.D.                                      |                       |                            |  |  |  |
| V                     | OCs + TICs                        | SVO        | OCs + ' | TICs          | PCBs                                        |                       | Selected TAL Metals        |  |  |  |
|                       |                                   |            |         |               |                                             |                       | (Total and Dissolved)      |  |  |  |
| Remai                 | rks:                              |            |         |               |                                             |                       |                            |  |  |  |



# SAMPLE INFORMATION RECORD

| Site:                   | 1597-1627 Unionp<br>1889-1905 Guerla |             |         |               | Sample Crew:                                | le Crew: Keith Robins   |                           |  |  |  |
|-------------------------|--------------------------------------|-------------|---------|---------------|---------------------------------------------|-------------------------|---------------------------|--|--|--|
|                         | 1572-1592 White<br>East Tremont Ave  |             |         |               | _                                           |                         |                           |  |  |  |
| Sampl                   | e Location/Well N                    | Locati      | on MV   | V-F           |                                             |                         |                           |  |  |  |
| Field S                 | Sample I.D. Numb                     | er MW-F     | 7       |               | Time                                        | 4:00 pn                 | m                         |  |  |  |
| Weath                   | er Partly Cloudy                     |             |         |               | Temperature                                 | 75°F                    |                           |  |  |  |
| Sampl                   | е Туре:                              |             |         |               |                                             |                         |                           |  |  |  |
| Groun                   | dwater groundwa                      | iter        |         |               | Sediment                                    |                         |                           |  |  |  |
| Surfac                  | e Water/Stream                       |             |         |               | Air                                         |                         |                           |  |  |  |
| Soil _                  |                                      |             |         |               | Other (describe, i.e. water, septage, etc.) |                         |                           |  |  |  |
| Well I                  | nformation (fill ou                  | t for groun | dwate   | r samples)    |                                             |                         |                           |  |  |  |
| Depth                   | to Water 12.60 f                     | eet bgs     |         |               | _ Measurement N                             | <b>Iethod</b>           | Water Level Meter         |  |  |  |
| Depth                   | of Well 23.20 fe                     | et bgs      |         |               | Measurement Method Water Level Meter        |                         |                           |  |  |  |
| Volum                   | e Removed App                        | oximately   | 7.25 ga | allons        | Removal Method Low Flow Bladder Pump        |                         |                           |  |  |  |
| Field 7                 | Test Results                         |             |         |               |                                             |                         |                           |  |  |  |
| Color                   | Clear                                |             | _ pH    | 6.62          |                                             | Odor                    | Trace petroleum odor      |  |  |  |
| Tempe                   | erature (°C) <u>17.</u>              | 19          | _       | Specific Co   | onductance (ms/c                            | <b>m</b> ) <u>0.8</u> 6 | 66                        |  |  |  |
| Other                   | (OVA, Methane M                      | leter, etc. | DO :    | = 2.15 (mg/l) | ), ORP = -99 (mu)                           | , Turbidi               | ty = 36 (NTUs), No sheen. |  |  |  |
| Consti                  | tuents Sampled                       |             |         |               |                                             |                         |                           |  |  |  |
| TCL and CP-51 TCL and C |                                      |             |         |               |                                             |                         |                           |  |  |  |
| V                       | OCs + TICs                           | SVO         | OCs + ' | <u> TICs</u>  | PCBs                                        |                         | Selected TAL Metals       |  |  |  |
|                         |                                      |             |         |               |                                             |                         | (Total and Dissolved)     |  |  |  |
| Remai                   | rks:                                 |             |         |               |                                             |                         |                           |  |  |  |



# SAMPLE INFORMATION RECORD

| Ditt.                       | 1597-1627 Unionport<br>1889-1905 Guerlain S |             |       |              | Sample Crew:                                | Robins                 |                           |  |  |  |
|-----------------------------|---------------------------------------------|-------------|-------|--------------|---------------------------------------------|------------------------|---------------------------|--|--|--|
|                             | 1572-1592 White Plast Tremont Avenue        |             |       |              | -                                           |                        |                           |  |  |  |
| Sample                      | Location/Well No.                           | Location    | MW    | -G           |                                             |                        |                           |  |  |  |
| Field Sa                    | ample I.D. Number                           | MW-G        |       |              | Time                                        | 5:00 pr                | n                         |  |  |  |
| Weathe                      | er Partly Cloudy                            |             |       |              | Temperature                                 | 75°F                   |                           |  |  |  |
| Sample                      | Type:                                       |             |       |              |                                             |                        |                           |  |  |  |
| Ground                      | lwater groundwater                          | •           |       |              | Sediment                                    |                        |                           |  |  |  |
| Surface                     | e Water/Stream                              |             |       |              |                                             |                        |                           |  |  |  |
| Soil                        |                                             |             |       |              | Other (describe, i.e. water, septage, etc.) |                        |                           |  |  |  |
| Well In                     | formation (fill out fo                      | or groundy  | vatei | r samples)   |                                             |                        |                           |  |  |  |
| Depth t                     | to Water 12.15 feet                         | bgs         |       |              | Measurement M                               | <b>Iethod</b>          | Water Level Meter         |  |  |  |
| Depth o                     | of Well 18.25 feet b                        | ogs         |       |              | Measurement Method Water Level Meter        |                        |                           |  |  |  |
| Volume                      | e Removed Approx                            | imately 5 g | allor | ns           | Removal Method Low Flow Bladder Pump        |                        |                           |  |  |  |
| Field To                    | est Results                                 |             |       |              |                                             |                        |                           |  |  |  |
| Color                       | Slightly Cloudy                             | p           | Н     | 6.60         |                                             | Odor                   | Trace petroleum odor      |  |  |  |
| Temper                      | rature (°C) 16.70                           |             |       | Specific Co  | onductance (ms/c                            | <b>m</b> ) <u>0.79</u> | 94                        |  |  |  |
| Other (                     | OVA, Methane Met                            | er, etc [   | OO =  | 3.50 (mg/l)  | ORP = -81  (mu)                             | , Turbidi              | ty = 28 (NTUs), no sheen. |  |  |  |
| Constit                     | uents Sampled                               |             |       |              |                                             |                        |                           |  |  |  |
| TCL and CP-51 TCL and CP-51 |                                             |             |       |              |                                             |                        |                           |  |  |  |
| VO                          | OCs + TICs                                  | SVOC        | s + T | <u> TICs</u> | PCBs                                        |                        | Selected TAL Metals       |  |  |  |
|                             |                                             |             |       |              |                                             |                        | (Total and Dissolved)     |  |  |  |
| Remark                      | ks:                                         |             |       |              |                                             |                        |                           |  |  |  |



# SAMPLE INFORMATION RECORD

| Site: 1597-1627 Unionport Road, 1889-1905 Guerlain Street,                            | Sample Crew: Keith Robins                               |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|--|--|--|
| 1572-1592 White Plains Road and 1880-189<br>East Tremont Avenue Bronx, New York 10462 |                                                         |  |  |  |  |  |  |  |
| Sample Location/Well No. Location MW-H                                                |                                                         |  |  |  |  |  |  |  |
| Field Sample I.D. Number MW-H                                                         | <b>Time</b> 5:30 pm                                     |  |  |  |  |  |  |  |
| Weather Partly Cloudy                                                                 | Temperature 75°F                                        |  |  |  |  |  |  |  |
| Sample Type:                                                                          |                                                         |  |  |  |  |  |  |  |
| Groundwater groundwater                                                               | Sediment                                                |  |  |  |  |  |  |  |
| Surface Water/Stream                                                                  | Air                                                     |  |  |  |  |  |  |  |
| Soil                                                                                  | Other (describe, i.e. water, septage, etc.)             |  |  |  |  |  |  |  |
| Well Information (fill out for groundwater samples                                    | s)                                                      |  |  |  |  |  |  |  |
| Depth to Water 10.00 feet bgs                                                         | <b>Measurement Method</b> Water Level Meter             |  |  |  |  |  |  |  |
| Depth of Well 24.80 feet bgs                                                          | Measurement Method Water Level Meter                    |  |  |  |  |  |  |  |
| Volume Removed Approximately 10 gallons                                               | Removal Method Low Flow Bladder Pump                    |  |  |  |  |  |  |  |
| Field Test Results                                                                    |                                                         |  |  |  |  |  |  |  |
| Color Cloudy pH 7.52                                                                  | Odor No odor                                            |  |  |  |  |  |  |  |
| Temperature (°C) 17.70 Specific                                                       | Conductance (ms/cm) 0.804                               |  |  |  |  |  |  |  |
| Other (OVA, Methane Meter, etc. DO = 9.46 (mg                                         | g/l), ORP = 118 (mu), Turbidity = 230 (NTUs), no sheen. |  |  |  |  |  |  |  |
| Constituents Sampled                                                                  |                                                         |  |  |  |  |  |  |  |
| TCL and CP-51  TCL and CP-51  AND GROUP TYCE                                          |                                                         |  |  |  |  |  |  |  |
| VOCs + TICs SVOCs + TICs                                                              | PCBs Selected TAL Metals                                |  |  |  |  |  |  |  |
|                                                                                       | (Total and Dissolved)                                   |  |  |  |  |  |  |  |
| Remarks:                                                                              |                                                         |  |  |  |  |  |  |  |

#### APPENDIX E

LABORATORY ANALYTICAL DATA REPORTS



#### **DATA FOR**

# VOLATILE ORGANICS SEMI-VOLATILE ORGANICS GC SEMI-VOLATILES METALS GENERAL CHEMISTRY

**PROJECT NAME: NYCSCA UNIONPORT ROAD BRONX** 

DVIRKA & BARTILUCCI
330 Crossways Park Drive

Woodbury, NY - 11797

Phone No: 516-364-9890

ORDER ID: F2875

ATTENTION: MARIA WRIGHT







Date: 07/01/2014

Dear MARIA WRIGHT,

3 water and 22 soil samples for the NYCSCA Unionport Road Bronx project were received on 06/24/2014. The analytical fax results for those samples requested for an expedited turn around time may be seen in this report. Please contact me if you have any questions or concerns regarding this report.

Regards,

Corey J. Petitt

Corey@chemtech.net



# 284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

| COC Number 031794    | <br>275 |
|----------------------|---------|
| QUOTE NO.            | ` N.    |
| CHEMTECH PROJECT NO. |         |

|                     |                              | 3                      | www.chenitech.net      |                            |            |                              |          |             | COC Number 031794 |                            |                 |                 |                   |                  |             |                 |                |                   |                     |
|---------------------|------------------------------|------------------------|------------------------|----------------------------|------------|------------------------------|----------|-------------|-------------------|----------------------------|-----------------|-----------------|-------------------|------------------|-------------|-----------------|----------------|-------------------|---------------------|
|                     | CLIENT INFORMATION           |                        |                        | CLIENT PROJECT INFORMATION |            |                              |          |             |                   | CLIENT BILLING INFORMATION |                 |                 |                   |                  |             |                 |                |                   |                     |
| COMPANY: D          | DIKEABUTIONES ENTTO:         | ynees                  | PROJECT                | NAME:                      | SCA        | -Un                          | ips/     | 1 B         | vnk               |                            | BILL TO         | , Y             | DiB Engineers por |                  |             |                 |                |                   |                     |
| ADDRESS:            |                              |                        |                        |                            |            |                              |          | 33          | 10 (              |                            |                 | P.A             | CON               | el.              |             |                 |                |                   |                     |
|                     | oadbun STATE: No             |                        |                        | O V N D ray                |            |                              |          |             |                   |                            |                 |                 |                   |                  | 13          | IM              | 1 11           | 207               |                     |
| ATTENTION: K        | TYL Robins                   |                        | e-mail:                | AIA II A                   |            |                              |          |             |                   |                            |                 | STAT            |                   | ZIP:             | 271         |                 |                |                   |                     |
|                     | 364-8890 FAX: 5163           | 14-504                 | 511 212 6460           |                            |            |                              |          |             |                   | PHO                        | VE: 3 (         | -509-           | 4820              |                  |             |                 |                |                   |                     |
|                     | TA TURNAROUND INFORMATIO     |                        | PHONE:                 |                            |            | RABLE IN                     |          |             | 67-71             | 178                        | plets           | 200             | 00                | Nu               | NA.         | LTSIS           | المراش         |                   | (ap)                |
| FAX:                |                              | DAYS*                  | O LEVEL 1              |                            |            |                              |          | ATION       |                   |                            | Stab            | 100             | F.W.              | Mila             | /           | CON             | id)            | XX                | Relie               |
| HARD COPY:          | Sdays)                       | DAYS -                 | LEVEL 2                | : Result                   | s + QC     |                              | Others_  |             |                   | 30                         | 52              | cas             |                   | 3                | Cont.       | 20              | 10/            | Wednes            | \$ 600 P            |
| EDD:                | TAT: Q YES Q NO              | DAYS *                 | □ LEVEL 3<br>□ LEVEL 4 | : Result                   | s (plus re | sults raw d                  | data) +  | QC          | Ry                | O CR                       | THE             | X R             | 100               | 10 J             | 1           | 2,6             | S No           | CAG               | 200                 |
| STANDARD TUR        | NAROUND THE IS 10 BUSINES    | SS DAYS                | □ EDD For              |                            | 3 T QU (a  | II I AW UAIA                 | y<br>    | 13          | 1 / AL            | 15P                        | Jes A           | 5               |                   | 7                | <b>1</b> /8 | V 9             | A Veil         | V                 | -1 4                |
| CHEMTECH            |                              |                        | 6 .                    | AMPLE                      |            | <b>IPLE</b>                  | FS.      |             | <u> </u>          |                            | PRES            | ERVAT           | TIVES             |                  |             |                 |                | COMME             |                     |
| SAMPLE ID           | PROJECT<br>Sample identifica | TION                   | DAME CE                | TYPE                       |            | ЕСПОН                        | BOTTLES  | EL          | 5                 | المدسمة                    | (E)             | E               | 包                 | E                | E           | E               | A-H            | ICI B             | servatives<br>-HNO₃ |
|                     | - 16                         |                        | Name of Street         | GRAB                       | DATE       | TIME                         | P (      | 777         | 2                 | 3/                         | 4               | 5               | 6                 | 7                | 8           | 9               | E-K            | LSO, D<br>CE F    | -NaOH<br>-Other     |
|                     | GP-4 (0-5)                   |                        | Siel                   | 1                          | 6/27/14    | 11 11 000                    | 6        | 1           | /                 | V                          | ~               | ソ               | V                 | $\mathbf{v}_{/}$ | V.          | -               | Hol            | ltcl              | P                   |
| 2.                  | SP-13 (0-5)                  | 1                      | Sail                   | 1                          | 6/23/14    | 1230                         | 6        | V           |                   |                            | V               | V               | V                 | V,               | Y           | J               | Hol            | d Ta              | P                   |
| 3.                  | GP5 (10-129)                 |                        | Seil                   | V                          | 6hsh       | 13.00                        | 6        | V           |                   | V                          | レ               | V               |                   | V                | D'          | L               | 101            | dtc               | LP                  |
| 4.                  | SP-5 (18-20)                 |                        | 5.11                   | 14                         | 6/13/14    | 145                          | 6        |             | 1                 | /                          | V               | V               |                   |                  | Y.          | -/              | ble            | 174               | P                   |
| 5.                  | 5W-5                         |                        | GW                     | V                          | 6/23/14    | 305m                         | 6        | 1           |                   | V                          | -               |                 |                   | _                | /           | V               | RUN            | 76 1914           | il Dissolu          |
| 6.                  | TripBlank-61                 | 23/14                  | AR .                   | -                          | 6/23/14    |                              | 2        | V           |                   | -                          |                 | -               | _                 | -,               | -           |                 | Dis            | only              | - Vany              |
| 7. (                | SP-1 (0-59                   | ι.                     | 50:1                   | V                          | 6/24/14    | 925                          | 2        | V           | V                 | V.                         | VI              |                 | V                 | V                | /           | _               | 11.11          | 1 -14             | ρ                   |
| 8.                  | SP-2 (0-51)                  |                        | Soll                   |                            | 6/24/1     | 11250                        | 6        | V           | /                 |                            |                 |                 |                   | 1                | V           | سر              | H./            | il To             | up                  |
| 9.                  | P-12 (0-59                   |                        | Soil                   | 1                          | 6/24/14    | 14000                        | 6        | V           | /                 | /                          | 1               | /               |                   | 1                | 7           |                 | Hal            | ITCL              | P                   |
| 10.                 |                              |                        |                        |                            | 1-1-       |                              |          |             |                   |                            |                 |                 |                   |                  |             | 415 213         | 1.01.          | W V -             | -                   |
|                     | SAMPLE CUSTOD                |                        | UMENTED I              | BELOW                      | EACH TI    | ME SAMP                      | LES C    | HANGE       | POSSI             | ESSIO                      | NINCLU          | DING            | COUR              | ER DE            | LIVER       | Y               |                |                   | ألظائل              |
| 1. KO THE           | lun 6/24/14/7.               | 1.                     | 15                     | ,                          | Conditi    | ions of bottl<br>H extractio | les or c | oolers at r | ecelpt:           | 1407                       | Complia         | ant<br>arcost : | □ N               | lon Com          | pliant      |                 |                | p                 |                     |
| RELINQUISHED BY:    | DATE/TIME!                   | RECEIVED BY:L          |                        |                            | Com        | ments:                       | ni requ  | 1109 601 80 | JUILIUI (è        | αι <del>4</del> υΖ j       | jai ivi pe      | SICHII( S       | solia,            |                  |             | lce             | in Coole       | 17: 4E            |                     |
| 2. RELINQUISHED BY: | DATE/TIME: 1940              | 2.<br>RECEÍVED FOR LAS | 8Y). 1                 | 1                          | +-         |                              |          |             | _                 |                            | _               |                 |                   | -                |             |                 |                |                   |                     |
| 3.                  | D> 6.24.17                   | 3. Shellel             | ine W                  | 4                          | Page       | 1                            | of       | 1           | SHI               | PPED V                     | IA: CLIE<br>CHE | NT: [<br>MTECH  | HAND              | DELIVE<br>DELIVE | RED         | □OVEF<br>OVERNI | RNIGHT<br>GHT. | Shipment<br>EXYES |                     |

# + TALMetals less AI, Ca, Fe, K, Mg and Na

CHAIN OF CUSTODY RECORD

## 284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

| CHEMTECH PROJECT NO. |  |
|----------------------|--|
| QUOTE NO.            |  |
| coc Number 031795    |  |

| CLIENT INFORMATION                                    |                                     |                            |                                |                    |         |          |            |         |                 | ŀ                          | 002100        |                  |             |                 |                                             |
|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------|--------------------|---------|----------|------------|---------|-----------------|----------------------------|---------------|------------------|-------------|-----------------|---------------------------------------------|
| REPORT TO BE SENT TO                                  | Cr                                  | CLIENT PROJECT INFORMATION |                                |                    |         |          |            |         | L               | CLIENT BILLING INFORMATION |               |                  |             |                 |                                             |
| COMPANY: D&B Enginen & Arch                           | PROJECT N                           | AME:                       | SCA                            | -Un                | ion.    | Port     | ed (       | ron     | BILLT           | O: 4                       | Sa            | ne.              | دي (        | alis            | ent.                                        |
| ADDRESS: 330 Crossway Park Dr                         |                                     |                            | 345-F2 LOCATION: BODY ADDRESS: |                    |         |          |            | ا ا     | Lynchim         |                            |               |                  |             |                 |                                             |
| CITY: WOODWY STATENY ZIP: 11 79                       |                                     | 1.0                        | M Hafran                       |                    |         |          |            |         | 1.00            |                            |               |                  |             |                 |                                             |
| ATTENTION: KYMAR Chakrabotty                          | e-mail: M                           | hofe                       | rence                          | - db               | ·unc    | 1.4      | <b>m</b>   |         | CITY:           | ITION!                     |               | R                | A Co        | STAT            |                                             |
| PHONE: 16-3(4-989) FAX:                               | PHONE:                              |                            | ,                              | 1                  | AX:     | ,        |            |         |                 |                            |               |                  | ANA         | PHO             |                                             |
| DATA TURNAROUND INFORMATION                           | COLUMN TWO IS NOT THE OWNER.        | DATA                       | DELIVER                        | ABLE IN            |         | ATION    |            |         |                 | 12/                        | 0             |                  | 7.          | ريعلا           | ////                                        |
| FAX: DAYS DAYS DAYS DAYS DAYS DAYS DAYS DAYS          | Results of<br>Results of<br>Results | only<br>+ QC<br>(plus res  |                                | Others_<br>data) + |         | CL<br>2  | (8.<br>70) | 7 84    | QUI             | 44 E                       | Hild T        | Mary Charles     | 104<br>104  | Malantik (Hold) |                                             |
| CHEMTECH                                              | SAN                                 | APLE                       | SAM                            | PLE                | 133     | -        |            |         | PRES            | ERVA                       | TIVES         | L                |             |                 | COMMENTS                                    |
| SAMPLE PROJECT                                        | OVWILE .                            | _                          | COLLE                          | CTION              | BOTTLES |          |            |         | .55             |                            |               |                  |             |                 | ← Specify Preservatives                     |
| ID GP SAMPLE IDENTIFICATION                           | MATRIX S                            | GRAB                       | DATE                           | TIME               | 904     | 1        | 2          | 3       | 4               | 5                          |               | _                |             | _               | A-HCI B-HNO,<br>C-H <sub>2</sub> SO, D-NaOH |
| 1. 55-11 (6"-23")                                     | 5                                   | VL                         | 123 4                          | 1200               | _       | V        | V          | 100     | 2               | V                          | 6             | 7                | 8           | 9               | E-ICE F-Other                               |
| 2. GP 35-10 (6-19")                                   | S                                   | V 6                        | 12314                          |                    |         |          | 1/         | 1/      | ~               | V                          | V             | V                | V           | V               | Tall Hold                                   |
| 3. GP SS-3 (6"-18")                                   | 5                                   | VC                         | 124/14                         | 1125               | 7       | 1        | V          | V       | V               | V                          | V             | V                | 1           | V               | TCLP HILL                                   |
| 4. GP 55-8 (L'-18")                                   | 3                                   | vd                         | 24/M                           | 1435               | 7       |          | 1          | 1       | -               |                            | V             |                  | 4           | 12              | TUPHIL                                      |
| 5.                                                    |                                     | 7                          | -it                            | 1100               |         | -        | 10-        |         |                 |                            |               | -                | ~           | ت               | 1 301                                       |
| 6.                                                    |                                     | $\dashv \vdash$            |                                |                    |         |          |            |         |                 |                            |               |                  | 001         | VOT             | Analyze                                     |
| 7.                                                    |                                     | +-                         | -                              |                    |         |          | -          |         |                 |                            | G             | 2-8              | F           | X               | TPH DED/                                    |
| 8.                                                    |                                     | +                          |                                | -                  |         |          |            | -       |                 |                            |               |                  |             |                 | GROOF                                       |
| 9.                                                    |                                     | +                          | -                              |                    |         |          |            |         |                 |                            |               |                  |             | _               | RCRA                                        |
| 10.                                                   |                                     | +                          |                                |                    |         |          |            |         | -               |                            |               |                  | -           |                 | Characteristics                             |
| SAMPLE CUSTODY MUST BE DOO                            | LIMENTED BE                         | OWE                        | ACH TIM                        | IE SAMD            |         | JANCE    | BOSS       | ESSIO   | AL INICE I      | LIDING                     | 00110         | 150 DE           |             |                 | ~~~                                         |
| RELINOUISHED BY SAMPLER: DATE/TIME: 17 TOECEIVED BY   | 121                                 | -011 2                     |                                | ons of bottle      |         | _        | _          |         |                 |                            |               |                  |             |                 | ala Tinas                                   |
| 17 FUN 6/24/14 191 X.                                 | 1)                                  |                            | MeOH                           | extraction         |         |          |            |         | Compliper for p | ercent :                   | יים<br>solid. | ion Con          | plant       |                 | in Cooler?: YeJ                             |
| RÉLINQUISHED BY: DATE/TIME: RECEINERRY.  2. 2.        |                                     |                            |                                |                    |         |          |            |         |                 |                            |               |                  |             |                 |                                             |
| 2. PRELINOUISMED BY: OATE/TIME: 1940 RECEIVED FOR LAB | BY AAA                              | 4                          | -                              |                    |         |          |            |         | 1               |                            | Terror ver    |                  |             |                 |                                             |
| 3. A- In 6-24.14 3. Thele                             | el likh                             | 1                          | Page _                         | $\perp$            | _ of_   | ) T. 188 | SH         | IPPED V | IA: CLII<br>CHE | ENT: [<br>EMTECH           | HAND          | DELIVE<br>OKED ( | RED<br>JP 🔲 | □ OVERNI        | RNIGHT Shipment Complete:                   |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 11:30 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-4(0-5) F2875 Lab Sample ID: F2875-01 Matrix: SOIL % Solid: 91.6

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQL | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.129 | U    | 1  | 0.034 | 0.129 | 0.257      | mg/Kg | 06/26/14  | 06/30/14 13:52 | 9012B    |
| Hexavalent Chromium | 0.087 | J    | 1  | 0.087 | 0.218 | 0.435      | mg/Kg | 06/27/14  | 06/27/14 16:52 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Extraction Type:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-4(0-5) F2875 Lab Sample ID: F2875-01 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 8.4 Decanted: Sample Wt/Vol: 30.04 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010259.D 1 06/27/14 06/30/14 PB77475

| CAS Number | Parameter         | Conc. | Qualif | ier MDL  | LOD  | LOQ / CF | RQL Units |
|------------|-------------------|-------|--------|----------|------|----------|-----------|
| TARGETS    |                   |       |        |          |      |          |           |
| 1918-00-9  | DICAMBA           | 18.2  | U      | 14.5     | 18.2 | 73       | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 18.2  | U      | 13.5     | 18.2 | 73       | ug/Kg     |
| 94-75-7    | 2,4-D             | 18.2  | U      | 18.2     | 18.2 | 73       | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 18.2  | U      | 11.9     | 18.2 | 73       | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 18.2  | U      | 11.2     | 18.2 | 73       | ug/Kg     |
| 94-82-6    | 2,4-DB            | 18.2  | U      | 18.2     | 18.2 | 73       | ug/Kg     |
| 88-85-7    | DINOSEB           | 18.2  | U      | 18.2     | 18.2 | 73       | ug/Kg     |
| SURROGATES |                   |       |        |          |      |          |           |
| 19719-28-9 | 2,4-DCAA          | 224   |        | 12 - 189 | )    | 45%      | SPK: 500  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Injection Volume:

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-4(0-5) SDG No.: F2875
Lab Sample ID: F2875-01 Matrix: SOIL

Level (low/med): low % Solid: 91.6

| Cas       | Parameter | Conc. | Qua. | DF  | MDL   | LOD   | LOQ / CR | QL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|-----|-------|-------|----------|--------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.16  | UN   | 1   | 0.52  | 1.16  | 2.32     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-38-2 | Arsenic   | 5.18  |      | 1   | 0.307 | 0.465 | 0.929    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-39-3 | Barium    | 154   |      | 1   | 0.372 | 2.32  | 4.65     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.595 |      | 1   | 0.056 | 0.139 | 0.279    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.139 | U    | 1   | 0.056 | 0.139 | 0.279    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-47-3 | Chromium  | 24.1  |      | 1   | 0.121 | 0.232 | 0.465    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-48-4 | Cobalt    | 11.5  |      | 1   | 0.53  | 0.697 | 1.39     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-50-8 | Copper    | 52.3  | N    | 1   | 0.297 | 0.465 | 0.929    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7439-92-1 | Lead      | 232   |      | 1   | 0.111 | 0.279 | 0.557    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7439-96-5 | Manganese | 306   | D    | 100 | 17.7  | 46.5  | 92.9     | mg/Kg 06/27/14     | 06/30/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.15  |      | 1   | 0.005 | 0.005 | 0.01     | mg/Kg 06/27/14     | 06/30/14  | SW7471A  |
| 7440-02-0 | Nickel    | 20.9  |      | 1   | 0.427 | 0.929 | 1.86     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7782-49-2 | Selenium  | 1.37  | N    | 1   | 0.381 | 0.465 | 0.929    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-22-4 | Silver    | 0.925 |      | 1   | 0.139 | 0.232 | 0.465    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.929 | U    | 1   | 0.251 | 0.929 | 1.86     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-62-2 | Vanadium  | 32.9  |      | 1   | 0.548 | 0.929 | 1.86     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-66-6 | Zinc      | 215   |      | 1   | 0.65  | 0.929 | 1.86     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-4(0-5) F2875 Lab Sample ID: F2875-01 Matrix: **SOIL** % Moisture: Analytical Method: SW8082A 8.4 Decanted: Sample Wt/Vol: 30.09 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume: 1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PP003595.D 1 06/28/14 07/01/14 PB77506

| CAS Number | Parameter            | Conc. | Qualifie | r MDL    | LOD | LOQ / CR | QL Units |
|------------|----------------------|-------|----------|----------|-----|----------|----------|
| TARGETS    |                      |       |          |          |     |          |          |
| 12674-11-2 | Aroclor-1016         | 3.6   | U        | 3.6      | 3.6 | 18.5     | ug/kg    |
| 11104-28-2 | Aroclor-1221         | 3.6   | U        | 3.6      | 3.6 | 18.5     | ug/kg    |
| 11141-16-5 | Aroclor-1232         | 3.6   | U        | 3.6      | 3.6 | 18.5     | ug/kg    |
| 53469-21-9 | Aroclor-1242         | 3.6   | U        | 3.6      | 3.6 | 18.5     | ug/kg    |
| 12672-29-6 | Aroclor-1248         | 3.6   | U        | 3.6      | 3.6 | 18.5     | ug/kg    |
| 11097-69-1 | Aroclor-1254         | 14.3  | J        | 1.6      | 3.6 | 18.5     | ug/kg    |
| 11096-82-5 | Aroclor-1260         | 3.6   | U        | 3.6      | 3.6 | 18.5     | ug/kg    |
| SURROGATES |                      |       |          |          |     |          |          |
| 877-09-8   | Tetrachloro-m-xylene | 17.3  |          | 10 - 166 | 6   | 86%      | SPK: 20  |
| 2051-24-3  | Decachlorobiphenyl   | 21.1  |          | 60 - 125 | 5   | 106%     | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-4(0-5) SDG No.: F2875

Lab Sample ID: F2875-01 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 8.4 Decanted: Sample Wt/Vol: 30.04 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023138.D 1 06/28/14 06/30/14 PB77509

| CAS Number | Parameter            | Conc. | Qualific | er MDL   | LOD  | LOQ / CF | RQL Units |
|------------|----------------------|-------|----------|----------|------|----------|-----------|
| TARGETS    |                      |       |          |          |      |          |           |
| 319-84-6   | alpha-BHC            | 0.36  | U        | 0.142    | 0.36 | 1.9      | ug/kg     |
| 319-85-7   | beta-BHC             | 0.36  | U        | 0.196    | 0.36 | 1.9      | ug/kg     |
| 319-86-8   | delta-BHC            | 0.36  | U        | 0.109    | 0.36 | 1.9      | ug/kg     |
| 58-89-9    | gamma-BHC (Lindane)  | 0.36  | U        | 0.164    | 0.36 | 1.9      | ug/kg     |
| 76-44-8    | Heptachlor           | 0.36  | U        | 0.153    | 0.36 | 1.9      | ug/kg     |
| 309-00-2   | Aldrin               | 0.36  | U        | 0.109    | 0.36 | 1.9      | ug/kg     |
| 1024-57-3  | Heptachlor epoxide   | 0.36  | U        | 0.174    | 0.36 | 1.9      | ug/kg     |
| 959-98-8   | Endosulfan I         | 0.36  | U        | 0.164    | 0.36 | 1.9      | ug/kg     |
| 60-57-1    | Dieldrin             | 0.36  | U        | 0.142    | 0.36 | 1.9      | ug/kg     |
| 72-55-9    | 4,4-DDE              | 0.36  | U        | 0.218    | 0.36 | 1.9      | ug/kg     |
| 72-20-8    | Endrin               | 0.36  | U        | 0.196    | 0.36 | 1.9      | ug/kg     |
| 33213-65-9 | Endosulfan II        | 0.36  | U        | 0.153    | 0.36 | 1.9      | ug/kg     |
| 72-54-8    | 4,4-DDD              | 0.36  | U        | 0.185    | 0.36 | 1.9      | ug/kg     |
| 1031-07-8  | Endosulfan Sulfate   | 0.36  | U        | 0.164    | 0.36 | 1.9      | ug/kg     |
| 50-29-3    | 4,4-DDT              | 0.36  | U        | 0.153    | 0.36 | 1.9      | ug/kg     |
| 72-43-5    | Methoxychlor         | 0.36  | U        | 0.185    | 0.36 | 1.9      | ug/kg     |
| 53494-70-5 | Endrin ketone        | 0.36  | U        | 0.142    | 0.36 | 1.9      | ug/kg     |
| 7421-93-4  | Endrin aldehyde      | 0.36  | U        | 0.164    | 0.36 | 1.9      | ug/kg     |
| 5103-71-9  | alpha-Chlordane      | 0.36  | U        | 0.153    | 0.36 | 1.9      | ug/kg     |
| 5103-74-2  | gamma-Chlordane      | 0.36  | U        | 0.142    | 0.36 | 1.9      | ug/kg     |
| 8001-35-2  | Toxaphene            | 3.6   | U        | 3.6      | 3.6  | 18.5     | ug/kg     |
| SURROGATES |                      |       |          |          |      |          |           |
| 2051-24-3  | Decachlorobiphenyl   | 18.1  |          | 10 - 169 | )    | 90%      | SPK: 20   |
| 877-09-8   | Tetrachloro-m-xylene | 16.2  |          | 31 - 151 |      | 81%      | SPK: 20   |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project:

NYCSCA Unionport Road Bronx

06/24/14

Client Sample ID:

GP-4(0-5)

F2875

Lab Sample ID:

F2875-01

**SOIL** 

Matrix:

Date Received:

Decanted:

Analytical Method:

SW8081

% Moisture:

SDG No.:

8.4

Sample Wt/Vol:

30.04 Units: g Final Vol:

10000 иL

Soil Aliquot Vol:

иL

Test:

Pesticide-TCL

Extraction Type: GPC Factor:

1.0

PH:

Injection Volume:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PD023138.D

1

06/28/14

06/30/14

PB77509

**CAS Number** 

Parameter

Conc.

LOD

Qualifier MDL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

LOQ / CRQL Units

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-4(0-5) SDG No.: F2875

Lab Sample ID: F2875-01 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 8.4

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072204.D 2 06/28/14 07/01/14 PB77511

| BI 072201.D | 2                           | 00/20/11 | 07        | /01/11 |      | 18//511    |       |
|-------------|-----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number  | Parameter                   | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| TARGETS     |                             |          |           |        |      |            |       |
| 100-52-7    | Benzaldehyde                | 72.6     | U         | 37.9   | 72.6 | 720        | ug/Kg |
| 108-95-2    | Phenol                      | 72.6     | U         | 16.8   | 72.6 | 720        | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 72.6     | U         | 34.9   | 72.6 | 720        | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 72.6     | U         | 38.3   | 72.6 | 720        | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 72.6     | U         | 39.4   | 72.6 | 720        | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 72.6     | U         | 30.1   | 72.6 | 720        | ug/Kg |
| 98-86-2     | Acetophenone                | 72.6     | U         | 22.2   | 72.6 | 720        | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 72.6     | U         | 37.7   | 72.6 | 720        | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 72.6     | U         | 36.6   | 72.6 | 720        | ug/Kg |
| 67-72-1     | Hexachloroethane            | 72.6     | U         | 32.5   | 72.6 | 720        | ug/Kg |
| 98-95-3     | Nitrobenzene                | 72.6     | U         | 27.4   | 72.6 | 720        | ug/Kg |
| 78-59-1     | Isophorone                  | 72.6     | U         | 24     | 72.6 | 720        | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 72.6     | U         | 35.1   | 72.6 | 720        | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 72.6     | U         | 41.2   | 72.6 | 720        | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 72.6     | U         | 41.8   | 72.6 | 720        | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 72.6     | U         | 27.7   | 72.6 | 720        | ug/Kg |
| 91-20-3     | Naphthalene                 | 72.6     | U         | 25.1   | 72.6 | 720        | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 72.6     | U         | 51.2   | 72.6 | 720        | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 72.6     | U         | 26.4   | 72.6 | 720        | ug/Kg |
| 105-60-2    | Caprolactam                 | 150      | U         | 33.8   | 150  | 720        | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 72.6     | U         | 32.2   | 72.6 | 720        | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 72.6     | U         | 18.3   | 72.6 | 720        | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 72.6     | U         | 17.6   | 72.6 | 720        | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 72.6     | U         | 22.2   | 72.6 | 720        | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 72.6     | U         | 51     | 72.6 | 720        | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 72.6     | U         | 27.4   | 72.6 | 720        | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 72.6     | U         | 16.6   | 72.6 | 720        | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 72.6     | U         | 32.2   | 72.6 | 720        | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 460      | J         | 19.6   | 72.6 | 720        | ug/Kg |
| 208-96-8    | Acenaphthylene              | 72.6     | U         | 18.3   | 72.6 | 720        | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 72.6     | U         | 29.6   | 72.6 | 720        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-4(0-5) SDG No.: F2875
Lab Sample ID: F2875-01 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 8.4

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072204.D 2 06/28/14 07/01/14 PB77511

| BF072204.D | 2                          | 06/28/14 | 07        | /01/14 |      | PB77511    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 150      | U         | 46.6   | 150  | 720        | ug/Kg |
| 83-32-9    | Acenaphthene               | 72.6     | U         | 20.5   | 72.6 | 720        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 580      | U         | 73.8   | 580  | 720        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 360      | U         | 130    | 360  | 720        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 72.6     | U         | 28.3   | 72.6 | 720        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 72.6     | U         | 21.8   | 72.6 | 720        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 72.6     | U         | 11.3   | 72.6 | 720        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 72.6     | U         | 39.4   | 72.6 | 720        | ug/Kg |
| 86-73-7    | Fluorene                   | 72.6     | U         | 27.4   | 72.6 | 720        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 150      | U         | 94.5   | 150  | 720        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 360      | U         | 41.6   | 360  | 720        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 72.6     | U         | 17.4   | 72.6 | 720        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 72.6     | U         | 14.2   | 72.6 | 720        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 72.6     | U         | 29.6   | 72.6 | 720        | ug/Kg |
| 1912-24-9  | Atrazine                   | 72.6     | U         | 38.3   | 72.6 | 720        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 72.6     | U         | 49.7   | 72.6 | 720        | ug/Kg |
| 85-01-8    | Phenanthrene               | 770      |           | 19.6   | 72.6 | 720        | ug/Kg |
| 120-12-7   | Anthracene                 | 220      | J         | 14.8   | 72.6 | 720        | ug/Kg |
| 86-74-8    | Carbazole                  | 72.6     | U         | 15.9   | 72.6 | 720        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 72.6     | U         | 57.1   | 72.6 | 720        | ug/Kg |
| 206-44-0   | Fluoranthene               | 1100     |           | 14.6   | 72.6 | 720        | ug/Kg |
| 129-00-0   | Pyrene                     | 960      |           | 17.4   | 72.6 | 720        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 72.6     | U         | 34.9   | 72.6 | 720        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 72.6     | U         | 46.6   | 72.6 | 720        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 580      | J         | 34.6   | 72.6 | 720        | ug/Kg |
| 218-01-9   | Chrysene                   | 560      | J         | 32.9   | 72.6 | 720        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 72.6     | U         | 25.7   | 72.6 | 720        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 72.6     | U         | 8.3    | 72.6 | 720        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 550      | J         | 23.7   | 72.6 | 720        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 290      | J         | 34.2   | 72.6 | 720        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 510      | J         | 15.7   | 72.6 | 720        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 280      | J         | 24.2   | 72.6 | 720        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 72.6     | U         | 20.9   | 72.6 | 720        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: F2875 GP-4(0-5) SOIL Lab Sample ID: F2875-01 Matrix: Analytical Method: SW8270 % Moisture: 8.4 Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072204.D 2 06/28/14 07/01/14 PB77511

| B1 0/220 1.B  | _                                | 00,20,1. |        | 0 , ,     | 01/11    |      | 15,,611    |          |
|---------------|----------------------------------|----------|--------|-----------|----------|------|------------|----------|
| CAS Number    | Parameter                        |          | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |
| 191-24-2      | Benzo(g,h,i)perylene             |          | 320    | J         | 29.4     | 72.6 | 720        | ug/Kg    |
| 95-94-3       | 1,2,4,5-Tetrachlorobenzene       |          | 72.6   | U         | 28.5     | 72.6 | 720        | ug/Kg    |
| 58-90-2       | 2,3,4,6-Tetrachlorophenol        |          | 72.6   | U         | 28.5     | 72.6 | 720        | ug/Kg    |
| SURROGATES    |                                  |          |        |           |          |      |            |          |
| 367-12-4      | 2-Fluorophenol                   |          | 110    |           | 28 - 127 | 7    | 72%        | SPK: 150 |
| 13127-88-3    | Phenol-d6                        |          | 110    |           | 34 - 127 | 7    | 72%        | SPK: 150 |
| 4165-60-0     | Nitrobenzene-d5                  |          | 62.7   |           | 31 - 132 | 2    | 63%        | SPK: 100 |
| 321-60-8      | 2-Fluorobiphenyl                 |          | 62.1   |           | 39 - 123 | 3    | 62%        | SPK: 100 |
| 118-79-6      | 2,4,6-Tribromophenol             |          | 97.8   |           | 30 - 133 | 3    | 65%        | SPK: 150 |
| 1718-51-0     | Terphenyl-d14                    |          | 56.6   |           | 37 - 115 | ;    | 57%        | SPK: 100 |
| INTERNAL STA  | NDARDS                           |          |        |           |          |      |            |          |
| 3855-82-1     | 1,4-Dichlorobenzene-d4           |          | 50761  | 7.2       |          |      |            |          |
| 1146-65-2     | Naphthalene-d8                   |          | 212054 | 8.78      |          |      |            |          |
| 15067-26-2    | Acenaphthene-d10                 |          | 113769 | 10.95     |          |      |            |          |
| 1517-22-2     | Phenanthrene-d10                 |          | 201693 | 12.78     |          |      |            |          |
| 1719-03-5     | Chrysene-d12                     |          | 229741 | 16.05     |          |      |            |          |
| 1520-96-3     | Perylene-d12                     |          | 217450 | 17.76     |          |      |            |          |
| TENTATIVE IDI | ENTIFIED COMPOUNDS               |          |        |           |          |      |            |          |
| 000077-76-9   | Propane, 2,2-dimethoxy-          |          | 11800  | J         |          |      | 1.41       | ug/Kg    |
| 000994-05-8   | Butane, 2-methoxy-2-methyl-      |          | 610    | J         |          |      | 1.68       | ug/Kg    |
| 000123-42-2   | 2-Pentanone, 4-hydroxy-4-methyl- |          | 420    | A         |          |      | 4.94       | ug/Kg    |
|               | unknown6.92                      |          | 2800   | J         |          |      | 6.92       | ug/Kg    |
| 000203-64-5   | 4H-Cyclopenta[def]phenanthrene   |          | 440    | J         |          |      | 13.53      | ug/Kg    |
| 001599-67-3   | 1-Docosene                       |          | 300    | J         |          |      | 15.96      | ug/Kg    |
|               | unknown17.56                     |          | 180    | J         |          |      | 17.56      | ug/Kg    |
| 000198-55-0   | Perylene                         |          | 310    | J         |          |      | 17.64      | ug/Kg    |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project:

NYCSCA Unionport Road Bronx

06/24/14

Client Sample ID:

GP-4(0-5)

SDG No.:

Lab Sample ID:

F2875-01

Matrix:

Date Received:

F2875

Analytical Method:

SW8270

SOIL

8.4

Sample Wt/Vol:

30.07 Units: g % Moisture: Final Vol:

1000

uL

Soil Aliquot Vol:

Test:

SVOCMS Group1

Extraction Type:

uL

N

Level:

LOW

Injection Volume:

GPC Factor:

Decanted:

1.0

GPC Cleanup:

Ν

PH:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PB77511

BF072204.D

2

06/28/14

07/01/14

**CAS Number** 

**Parameter** 

Conc.

Qualifier

**MDL** 

LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-4(0-5) SDG No.: F2875 SOIL Lab Sample ID: F2875-01 Matrix: Analytical Method: SW8260 % Moisture: 8.4 Sample Wt/Vol: 6.15 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008790.D 1 06/27/14 VT062714

|                |                                | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|----------------|--------------------------------|-------|-----------|------|------|------------|-------|
| <b>TARGETS</b> |                                |       |           |      |      |            |       |
| 75-71-8        | Dichlorodifluoromethane        | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 74-87-3        | Chloromethane                  | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 75-01-4        | Vinyl Chloride                 | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 74-83-9        | Bromomethane                   | 0.89  | U         | 0.89 | 0.89 | 4.4        | ug/Kg |
| 75-00-3        | Chloroethane                   | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 75-69-4        | Trichlorofluoromethane         | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 76-13-1        | 1,1,2-Trichlorotrifluoroethane | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 75-35-4        | 1,1-Dichloroethene             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 67-64-1        | Acetone                        | 48.6  |           | 2.2  | 2.2  | 22.2       | ug/Kg |
| 75-15-0        | Carbon Disulfide               | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 1634-04-4      | Methyl tert-butyl Ether        | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 79-20-9        | Methyl Acetate                 | 0.89  | U         | 0.89 | 0.89 | 4.4        | ug/Kg |
| 75-09-2        | Methylene Chloride             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 156-60-5       | trans-1,2-Dichloroethene       | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 75-34-3        | 1,1-Dichloroethane             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 110-82-7       | Cyclohexane                    | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 78-93-3        | 2-Butanone                     | 6.7   | U         | 2.8  | 6.7  | 22.2       | ug/Kg |
| 56-23-5        | Carbon Tetrachloride           | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 156-59-2       | cis-1,2-Dichloroethene         | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 74-97-5        | Bromochloromethane             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 67-66-3        | Chloroform                     | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 71-55-6        | 1,1,1-Trichloroethane          | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 108-87-2       | Methylcyclohexane              | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 71-43-2        | Benzene                        | 0.44  | U         | 0.34 | 0.44 | 4.4        | ug/Kg |
| 107-06-2       | 1,2-Dichloroethane             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 79-01-6        | Trichloroethene                | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 78-87-5        | 1,2-Dichloropropane            | 0.44  | U         | 0.23 | 0.44 | 4.4        | ug/Kg |
| 75-27-4        | Bromodichloromethane           | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 108-10-1       | 4-Methyl-2-Pentanone           | 2.2   | U         | 2.2  | 2.2  | 22.2       | ug/Kg |
| 108-88-3       | Toluene                        | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 10061-02-6     | t-1,3-Dichloropropene          | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |



GC Column:

RXI-624

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: F2875 GP-4(0-5)Matrix: SOIL Lab Sample ID: F2875-01 8.4 Analytical Method: SW8260 % Moisture: Sample Wt/Vol: 6.15 Units: Final Vol: 5000 uL g Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008790.D 1 06/27/14 VT062714

ID: 0.25

Qualifier **MDL CAS Number** Parameter Conc. LOD LOQ / CRQL Units 10061-01-5 0.44 U 0.44 0.44 4.4 ug/Kg cis-1,3-Dichloropropene 79-00-5 0.89 4.4 1,1,2-Trichloroethane U 0.8 0.89 ug/Kg 22.2 591-78-6 2-Hexanone 2.2 U 2.2 2.2 ug/Kg 124-48-1 Dibromochloromethane 0.44 U 0.44 0.44 4.4 ug/Kg 106-93-4 1,2-Dibromoethane 0.44 U 0.44 0.44 4.4 ug/Kg 127-18-4 Tetrachloroethene 0.44 U 0.44 0.44 4.4 ug/Kg 0.44 0.44 4.4 108-90-7 Chlorobenzene U 0.44 ug/Kg 0.44 IJ 0.44 4.4 100-41-4 Ethyl Benzene 0.44 ug/Kg m/p-Xylenes 0.89 U 0.64 0.89 8.9 ug/Kg 179601-23-1 95-47-6 o-Xylene 0.44 U 0.44 0.44 4.4 ug/Kg 0.44 U 4.4 100-42-5 Styrene 0.4 0.44 ug/Kg 75-25-2 Bromoform 1.3 U 0.66 1.3 4.4 ug/Kg 0.44 U 0.43 4.4 98-82-8 Isopropylbenzene 0.44 ug/Kg 79-34-5 1,1,2,2-Tetrachloroethane 0.44 U 0.41 0.44 4.4 ug/Kg 0.44 U 103-65-1 n-propylbenzene 0.32 0.44 4.4 ug/Kg 0.44 U 4.4 108-67-8 1,3,5-Trimethylbenzene 0.40.44 ug/Kg tert-Butylbenzene 0.44 U 0.44 4.4 98-06-6 0.44 ug/Kg 0.44 4.4 95-63-6 1.2.4-Trimethylbenzene U 0.44 0.44 ug/Kg 4.4 0.44 U 135-98-8 sec-Butylbenzene 0.44 0.44 ug/Kg 99-87-6 p-Isopropyltoluene 0.44 U 0.26 0.44 4.4 ug/Kg 541-73-1 1.3-Dichlorobenzene 0 44 U 0.33 0.44 44 ug/Kg 106-46-7 1.4-Dichlorobenzene 0.44 U 0.36 0.44 4.4 ug/Kg 104-51-8 n-Butvlbenzene 0.44 U 0.41 0.44 4.4 ug/Kg 95-50-1 1,2-Dichlorobenzene 0.44 U 0.44 0.44 4.4 ug/Kg 96-12-8 1,2-Dibromo-3-Chloropropane 4.4 U 0.77 4.4 4.4 ug/Kg 0.44 U 0.44 0.44 4.4 120-82-1 1,2,4-Trichlorobenzene ug/Kg 91-20-3 Naphthalene 2.2 J 0.4 0.44 4.4 ug/Kg IJ 44 87-61-6 1,2,3-Trichlorobenzene 0.89 0.44 0.89 ug/Kg 123-91-1 1,4-Dioxane 88.8 U 88.8 88.88 88.88 ug/Kg **SURROGATES** 1,2-Dichloroethane-d4 56 - 120 46.9 94% SPK: 50 17060-07-0 Dibromofluoromethane 57 - 135 1868-53-7 51.8 104% SPK: 50



GC Column:

RXI-624

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-4(0-5) F2875 Lab Sample ID: F2875-01 Matrix: SOIL % Moisture: 8.4 Analytical Method: SW8260 Sample Wt/Vol: 6.15 Units: Final Vol: 5000 uL g Test: Soil Aliquot Vol: uL VOCMS Group1

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VT008790.D 1 06/27/14 VT062714

ID: 0.25

| CAS Number   | Parameter              | Conc.   | Qualifier | MDL LO   | OD LOQ / CRQL | Units   |
|--------------|------------------------|---------|-----------|----------|---------------|---------|
| 2037-26-5    | Toluene-d8             | 47.5    |           | 67 - 123 | 95%           | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 42.3    |           | 33 - 141 | 85%           | SPK: 50 |
| INTERNAL ST  | ANDARDS                |         |           |          |               |         |
| 363-72-4     | Pentafluorobenzene     | 815463  | 7.43      |          |               |         |
| 540-36-3     | 1,4-Difluorobenzene    | 1149150 | 8.37      |          |               |         |
| 3114-55-4    | Chlorobenzene-d5       | 919324  | 11.21     |          |               |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 421008  | 13.15     |          |               |         |
| TENTATIVE II | DENTIFIED COMPOUNDS    |         |           |          |               |         |
|              | unknown4.32            | 6.1     | J         |          | 4.32          | ug/Kg   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Level:

LOW

\* = Values outside of QC limits

D = Dilution



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 12:30 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-13(0-5) F2875 Lab Sample ID: F2875-02 Matrix: SOIL % Solid: 85.9

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.142 | U    | 1  | 0.037 | 0.142 | 0.283      | mg/Kg | 06/26/14  | 06/30/14 13:52 | 9012B    |
| Hexavalent Chromium | 0.225 | U    | 1  | 0.09  | 0.225 | 0.449      | mg/Kg | 06/27/14  | 06/27/14 16:54 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-13(0-5) F2875 Lab Sample ID: F2875-02 Matrix: SOIL % Moisture: Analytical Method: SW8151A 14.1 Decanted: 10000 Sample Wt/Vol: 30.07 Units: Final Vol: g

Test: Herbicide Soil Aliquot Vol: иL

Extraction Type: Injection Volume:

1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date 1 06/27/14 06/30/14 PB77475 PE010260.D

| CAS Number | Parameter         | Conc. | Qualif | ualifier MDL |      | LOQ / CF | RQL Units |
|------------|-------------------|-------|--------|--------------|------|----------|-----------|
| TARGETS    |                   |       |        |              |      |          |           |
| 1918-00-9  | DICAMBA           | 19.4  | U      | 15.4         | 19.4 | 77.8     | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 19.4  | U      | 14.3         | 19.4 | 77.8     | ug/Kg     |
| 94-75-7    | 2,4-D             | 19.4  | U      | 19.4         | 19.4 | 77.8     | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 19.4  | U      | 12.7         | 19.4 | 77.8     | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 19.4  | U      | 11.9         | 19.4 | 77.8     | ug/Kg     |
| 94-82-6    | 2,4-DB            | 19.4  | U      | 19.4         | 19.4 | 77.8     | ug/Kg     |
| 88-85-7    | DINOSEB           | 19.4  | U      | 19.4         | 19.4 | 77.8     | ug/Kg     |
| SURROGATES |                   |       |        |              |      |          |           |
| 19719-28-9 | 2,4-DCAA          | 81.8  |        | 12 - 189     | )    | 16%      | SPK: 500  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

иL



Lab Sample ID:

F2875-02

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Matrix:

SOIL

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-13(0-5) SDG No.: F2875

Level (low/med): low % Solid: 85.9

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CI | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.19  | UN   | 1  | 0.532 | 1.19  | 2.38     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-38-2 | Arsenic   | 4.43  |      | 1  | 0.314 | 0.475 | 0.95     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-39-3 | Barium    | 142   |      | 1  | 0.38  | 2.38  | 4.75     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.669 |      | 1  | 0.057 | 0.143 | 0.285    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.143 | U    | 1  | 0.057 | 0.143 | 0.285    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-47-3 | Chromium  | 29.2  |      | 1  | 0.124 | 0.238 | 0.475    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-48-4 | Cobalt    | 12.4  |      | 1  | 0.542 | 0.713 | 1.43     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-50-8 | Copper    | 36.2  | N    | 1  | 0.304 | 0.475 | 0.95     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7439-92-1 | Lead      | 151   |      | 1  | 0.114 | 0.285 | 0.57     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7439-96-5 | Manganese | 374   |      | 1  | 0.181 | 0.475 | 0.95     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.258 |      | 1  | 0.005 | 0.005 | 0.01     | mg/Kg 06/27/14      | 06/30/14  | SW7471A  |
| 7440-02-0 | Nickel    | 25.6  |      | 1  | 0.437 | 0.95  | 1.9      | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7782-49-2 | Selenium  | 1.18  | N    | 1  | 0.39  | 0.475 | 0.95     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-22-4 | Silver    | 1.3   |      | 1  | 0.143 | 0.238 | 0.475    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.95  | U    | 1  | 0.257 | 0.95  | 1.9      | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-62-2 | Vanadium  | 30    |      | 1  | 0.561 | 0.95  | 1.9      | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-66-6 | Zinc      | 203   |      | 1  | 0.665 | 0.95  | 1.9      | mg/Kg 06/27/14      | 06/27/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-13(0-5) F2875 Lab Sample ID: F2875-02 Matrix: SOIL % Moisture: Analytical Method: SW8082A 14.1 Decanted: Sample Wt/Vol: 30.05 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL

Soli Aniquot Voi.

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PP003567.D 1 06/28/14 06/30/14 PB77506

| CAS Number | Parameter            | Conc. | Qualifi | ier MDL  | LOD | LOQ / CF | RQL Units |
|------------|----------------------|-------|---------|----------|-----|----------|-----------|
| TARGETS    |                      |       |         |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 3.9   | U       | 3.9      | 3.9 | 19.8     | ug/kg     |
| 11104-28-2 | Aroclor-1221         | 3.9   | U       | 3.9      | 3.9 | 19.8     | ug/kg     |
| 11141-16-5 | Aroclor-1232         | 3.9   | U       | 3.9      | 3.9 | 19.8     | ug/kg     |
| 53469-21-9 | Aroclor-1242         | 3.9   | U       | 3.9      | 3.9 | 19.8     | ug/kg     |
| 12672-29-6 | Aroclor-1248         | 3.9   | U       | 3.9      | 3.9 | 19.8     | ug/kg     |
| 11097-69-1 | Aroclor-1254         | 21.2  |         | 1.7      | 3.9 | 19.8     | ug/kg     |
| 11096-82-5 | Aroclor-1260         | 3.9   | U       | 3.9      | 3.9 | 19.8     | ug/kg     |
| SURROGATES |                      |       |         |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 16.6  |         | 10 - 166 | 6   | 83%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 17.7  |         | 60 - 125 | 5   | 88%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-13(0-5) SDG No.: F2875

Lab Sample ID: F2875-02 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 14.1 Decanted:

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023139.D 1 06/28/14 06/30/14 PB77509

| CAS Number | Parameter            | Conc. | Qualifie | r MDL    | LOD   | LOQ / CI | RQL Units |
|------------|----------------------|-------|----------|----------|-------|----------|-----------|
| TARGETS    |                      |       |          |          |       |          |           |
| 319-84-6   | alpha-BHC            | 0.384 | U        | 0.151    | 0.384 | 2        | ug/kg     |
| 319-85-7   | beta-BHC             | 0.384 | U        | 0.209    | 0.384 | 2        | ug/kg     |
| 319-86-8   | delta-BHC            | 0.384 | U        | 0.116    | 0.384 | 2        | ug/kg     |
| 58-89-9    | gamma-BHC (Lindane)  | 0.384 | U        | 0.174    | 0.384 | 2        | ug/kg     |
| 76-44-8    | Heptachlor           | 0.384 | U        | 0.163    | 0.384 | 2        | ug/kg     |
| 309-00-2   | Aldrin               | 0.384 | U        | 0.116    | 0.384 | 2        | ug/kg     |
| 1024-57-3  | Heptachlor epoxide   | 0.384 | U        | 0.186    | 0.384 | 2        | ug/kg     |
| 959-98-8   | Endosulfan I         | 0.384 | U        | 0.174    | 0.384 | 2        | ug/kg     |
| 60-57-1    | Dieldrin             | 0.384 | U        | 0.151    | 0.384 | 2        | ug/kg     |
| 72-55-9    | 4,4-DDE              | 0.384 | U        | 0.232    | 0.384 | 2        | ug/kg     |
| 72-20-8    | Endrin               | 0.384 | U        | 0.209    | 0.384 | 2        | ug/kg     |
| 33213-65-9 | Endosulfan II        | 0.384 | U        | 0.163    | 0.384 | 2        | ug/kg     |
| 72-54-8    | 4,4-DDD              | 0.384 | U        | 0.198    | 0.384 | 2        | ug/kg     |
| 1031-07-8  | Endosulfan Sulfate   | 0.384 | U        | 0.174    | 0.384 | 2        | ug/kg     |
| 50-29-3    | 4,4-DDT              | 0.384 | U        | 0.163    | 0.384 | 2        | ug/kg     |
| 72-43-5    | Methoxychlor         | 0.384 | U        | 0.198    | 0.384 | 2        | ug/kg     |
| 53494-70-5 | Endrin ketone        | 0.384 | U        | 0.151    | 0.384 | 2        | ug/kg     |
| 7421-93-4  | Endrin aldehyde      | 0.384 | U        | 0.174    | 0.384 | 2        | ug/kg     |
| 5103-71-9  | alpha-Chlordane      | 0.384 | U        | 0.163    | 0.384 | 2        | ug/kg     |
| 5103-74-2  | gamma-Chlordane      | 0.384 | U        | 0.151    | 0.384 | 2        | ug/kg     |
| 8001-35-2  | Toxaphene            | 3.9   | U        | 3.9      | 3.9   | 19.8     | ug/kg     |
| SURROGATES |                      |       |          |          |       |          |           |
| 2051-24-3  | Decachlorobiphenyl   | 16.6  |          | 10 - 169 | )     | 83%      | SPK: 20   |
| 877-09-8   | Tetrachloro-m-xylene | 16.3  |          | 31 - 151 |       | 81%      | SPK: 20   |



Client: Dvirka & Bartilucci

Date Collected: 06/23/14

Project:

NYCSCA Unionport Road Bronx

06/24/14

Client Sample ID:

GP-13(0-5)

F2875

Lab Sample ID:

F2875-02

Matrix:

SDG No.:

Date Received:

**SOIL** 

Analytical Method:

SW8081

% Moisture:

14.1

Sample Wt/Vol:

30.05 Units: g Final Vol:

10000 иL

Decanted:

Soil Aliquot Vol:

иL

Test:

Pesticide-TCL

Extraction Type:

1.0

PH:

Injection Volume:

GPC Factor: File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PD023139.D

1

06/28/14

06/30/14

PB77509

**CAS Number** 

Conc.

LOD

LOQ / CRQL Units

Parameter

Qualifier MDL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Extraction Type:

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-13(0-5) SDG No.: F2875 SOIL Lab Sample ID: F2875-02 Matrix: Analytical Method: SW8270 % Moisture: 14.1

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

N

Level:

LOW

Decanted: GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072199.D 1 06/28/14 07/01/14 PB77511

| BI 0/21//.D | •                           | 00/20/11 | 07        | /01/11 |      | 1 1 7 7 5 1 1 |       |
|-------------|-----------------------------|----------|-----------|--------|------|---------------|-------|
| CAS Number  | Parameter                   | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL    | Units |
| TARGETS     |                             |          |           |        |      |               |       |
| 100-52-7    | Benzaldehyde                | 38.8     | U         | 20.2   | 38.8 | 380           | ug/Kg |
| 108-95-2    | Phenol                      | 38.8     | U         | 9      | 38.8 | 380           | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 38.8     | U         | 18.6   | 38.8 | 380           | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 38.8     | U         | 20.5   | 38.8 | 380           | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 38.8     | U         | 21     | 38.8 | 380           | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 38.8     | U         | 16     | 38.8 | 380           | ug/Kg |
| 98-86-2     | Acetophenone                | 38.8     | U         | 11.9   | 38.8 | 380           | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 38.8     | U         | 20.1   | 38.8 | 380           | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 38.8     | U         | 19.5   | 38.8 | 380           | ug/Kg |
| 67-72-1     | Hexachloroethane            | 38.8     | U         | 17.3   | 38.8 | 380           | ug/Kg |
| 98-95-3     | Nitrobenzene                | 38.8     | U         | 14.6   | 38.8 | 380           | ug/Kg |
| 78-59-1     | Isophorone                  | 38.8     | U         | 12.8   | 38.8 | 380           | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 38.8     | U         | 18.7   | 38.8 | 380           | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 38.8     | U         | 22     | 38.8 | 380           | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 38.8     | U         | 22.3   | 38.8 | 380           | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 38.8     | U         | 14.8   | 38.8 | 380           | ug/Kg |
| 91-20-3     | Naphthalene                 | 38.8     | U         | 13.4   | 38.8 | 380           | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 38.8     | U         | 27.3   | 38.8 | 380           | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 38.8     | U         | 14.1   | 38.8 | 380           | ug/Kg |
| 105-60-2    | Caprolactam                 | 77.5     | U         | 18     | 77.5 | 380           | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 38.8     | U         | 17.2   | 38.8 | 380           | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 38.8     | U         | 9.8    | 38.8 | 380           | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 38.8     | U         | 9.4    | 38.8 | 380           | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 38.8     | U         | 11.9   | 38.8 | 380           | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 38.8     | U         | 27.2   | 38.8 | 380           | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 38.7     | U         | 14.6   | 38.7 | 380           | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 38.8     | U         | 8.8    | 38.8 | 380           | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 38.8     | U         | 17.2   | 38.8 | 380           | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 720      |           | 10.5   | 38.8 | 380           | ug/Kg |
| 208-96-8    | Acenaphthylene              | 38.8     | U         | 9.8    | 38.8 | 380           | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 38.8     | U         | 15.8   | 38.8 | 380           | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-13(0-5) SDG No.: F2875 Lab Sample ID: F2875-02 Matrix: SOIL Analytical Method: SW8270 % Moisture: 14.1

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: N Level: Decanted: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Prep Batch ID Dilution: Prep Date Date Analyzed

| BF072199.D | 1                          | 06/28/14 | 07/01/14  |      |      | PB77511    |       |
|------------|----------------------------|----------|-----------|------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 77.5     | U         | 24.9 | 77.5 | 380        | ug/Kg |
| 83-32-9    | Acenaphthene               | 38.8     | U         | 10.9 | 38.8 | 380        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 310      | U         | 39.4 | 310  | 380        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 190      | U         | 72   | 190  | 380        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 38.8     | U         | 15.1 | 38.8 | 380        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 38.8     | U         | 11.6 | 38.8 | 380        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 38.8     | U         | 6    | 38.8 | 380        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 38.8     | U         | 21   | 38.8 | 380        | ug/Kg |
| 86-73-7    | Fluorene                   | 38.8     | U         | 14.6 | 38.8 | 380        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 77.5     | U         | 50.5 | 77.5 | 380        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 190      | U         | 22.2 | 190  | 380        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 38.8     | U         | 9.3  | 38.8 | 380        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 38.8     | U         | 7.6  | 38.8 | 380        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 38.8     | U         | 15.8 | 38.8 | 380        | ug/Kg |
| 1912-24-9  | Atrazine                   | 38.8     | U         | 20.5 | 38.8 | 380        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 38.8     | U         | 26.5 | 38.8 | 380        | ug/Kg |
| 85-01-8    | Phenanthrene               | 180      | J         | 10.5 | 38.8 | 380        | ug/Kg |
| 120-12-7   | Anthracene                 | 38.8     | U         | 7.9  | 38.8 | 380        | ug/Kg |
| 86-74-8    | Carbazole                  | 38.8     | U         | 8.5  | 38.8 | 380        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 38.8     | U         | 30.5 | 38.8 | 380        | ug/Kg |
| 206-44-0   | Fluoranthene               | 630      |           | 7.8  | 38.8 | 380        | ug/Kg |
| 129-00-0   | Pyrene                     | 600      |           | 9.3  | 38.8 | 380        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 38.8     | U         | 18.6 | 38.8 | 380        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 38.8     | U         | 24.9 | 38.8 | 380        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 400      |           | 18.5 | 38.8 | 380        | ug/Kg |
| 218-01-9   | Chrysene                   | 360      | J         | 17.6 | 38.8 | 380        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 38.8     | U         | 13.7 | 38.8 | 380        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 38.8     | U         | 4.4  | 38.8 | 380        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 490      |           | 12.7 | 38.8 | 380        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 230      | J         | 18.3 | 38.8 | 380        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 420      |           | 8.4  | 38.8 | 380        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 260      | J         | 12.9 | 38.8 | 380        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 38.8     | U         | 11.2 | 38.8 | 380        | ug/Kg |



Client:Dvirka & BartilucciDate Collected:06/23/14Project:NYCSCA Unionport Road BronxDate Received:06/24/14

Client Sample ID: GP-13(0-5) SDG No.: F2875

Lab Sample ID: F2875-02 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 14.1

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072199.D 1 06/28/14 07/01/14 PB77511

| CAS Number    | Parameter                        | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units          |
|---------------|----------------------------------|--------|-----------|----------|------|------------|----------------|
| 191-24-2      | Benzo(g,h,i)perylene             | 300    | J         | 15.7     | 38.8 | 380        | ug/Kg          |
| 95-94-3       | 1,2,4,5-Tetrachlorobenzene       | 38.8   | J<br>U    | 15.7     | 38.8 | 380        | ug/Kg<br>ug/Kg |
| 58-90-2       | 2,3,4,6-Tetrachlorophenol        | 38.8   | U         | 15.2     | 38.8 | 380        | ug/Kg<br>ug/Kg |
|               | 2,5,4,0-10110101010101           | 30.0   | O         | 13.2     | 36.6 | 360        | ug/Kg          |
| SURROGATES    |                                  | 4.0    |           |          |      | =00/       | an             |
| 367-12-4      | 2-Fluorophenol                   | 120    |           | 28 - 127 |      | 78%        | SPK: 150       |
| 13127-88-3    | Phenol-d6                        | 110    |           | 34 - 127 |      | 75%        | SPK: 150       |
| 4165-60-0     | Nitrobenzene-d5                  | 72.3   |           | 31 - 132 |      | 72%        | SPK: 100       |
| 321-60-8      | 2-Fluorobiphenyl                 | 68.9   |           | 39 - 123 |      | 69%        | SPK: 100       |
| 118-79-6      | 2,4,6-Tribromophenol             | 100    |           | 30 - 133 |      | 67%        | SPK: 150       |
| 1718-51-0     | Terphenyl-d14                    | 73     |           | 37 - 115 |      | 73%        | SPK: 100       |
| INTERNAL STA  | NDARDS                           |        |           |          |      |            |                |
| 3855-82-1     | 1,4-Dichlorobenzene-d4           | 56683  | 7.2       |          |      |            |                |
| 1146-65-2     | Naphthalene-d8                   | 238266 | 8.78      |          |      |            |                |
| 15067-26-2    | Acenaphthene-d10                 | 130563 | 10.95     |          |      |            |                |
| 1517-22-2     | Phenanthrene-d10                 | 229549 | 12.78     |          |      |            |                |
| 1719-03-5     | Chrysene-d12                     | 242119 | 16.05     |          |      |            |                |
| 1520-96-3     | Perylene-d12                     | 229890 | 17.71     |          |      |            |                |
| TENTATIVE IDI | ENTIFIED COMPOUNDS               |        |           |          |      |            |                |
|               | unknown1.42                      | 13600  | J         |          |      | 1.42       | ug/Kg          |
| 000994-05-8   | Butane, 2-methoxy-2-methyl-      | 800    | J         |          |      | 1.69       | ug/Kg          |
| 000123-42-2   | 2-Pentanone, 4-hydroxy-4-methyl- | 580    | A         |          |      | 4.94       | ug/Kg          |
|               | unknown6.92                      | 3500   | J         |          |      | 6.92       | ug/Kg          |
| 000112-95-8   | Eicosane                         | 99.6   | J         |          |      | 12.14      | ug/Kg          |
|               | unknown13.53                     | 340    | J         |          |      | 13.53      | ug/Kg          |
| 052078-56-5   | 11-Tricosene                     | 280    | J         |          |      | 15.96      | ug/Kg          |
| 000084-77-5   | Didecyl phthalate                | 150    | J         |          |      | 17.21      | ug/Kg          |
| 000192-97-2   | Benzo[e]pyrene                   | 230    | J         |          |      | 17.59      | ug/Kg          |
|               | unknown17.87                     | 260    | J         |          |      | 17.87      | ug/Kg          |
|               | unknown18.79                     | 260    | J         |          |      | 18.79      | ug/Kg          |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx

06/24/14

Client Sample ID: GP-13(0-5)

Lab Sample ID: F2875-02

Matrix: SOIL

F2875

Analytical Method: SW8270 % Moisture:

SDG No.:

Date Received:

14.1

30.04 Units: g

Final Vol:

1000 uL

PH:

Sample Wt/Vol: Soil Aliquot Vol:

uL

Test:

SVOCMS Group1

Extraction Type:

Decanted:

N

Level: GPC Cleanup: LOW

Injection Volume:

GPC Factor:

1.0

PB77511

Ν

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

BF072199.D

1

06/28/14

07/01/14

**CAS Number** 

**Parameter** 

Conc.

Qualifier

**MDL** 

LOD

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-13(0-5) SDG No.: F2875 SOIL Lab Sample ID: F2875-02 Matrix: Analytical Method: SW8260 % Moisture: 14.1 Sample Wt/Vol: 5.99 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008779.D 1 06/26/14 VT062614

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.97  | U         | 0.97 | 0.97 | 4.9        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 67-64-1    | Acetone                        | 10.3  | J         | 2.4  | 2.4  | 24.3       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.97  | U         | 0.97 | 0.97 | 4.9        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 7.3   | U         | 3    | 7.3  | 24.3       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 71-43-2    | Benzene                        | 0.49  | U         | 0.37 | 0.49 | 4.9        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.49  | U         | 0.25 | 0.49 | 4.9        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 2.4   | U         | 2.4  | 2.4  | 24.3       | ug/Kg |
| 108-88-3   | Toluene                        | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.49  | U         | 0.49 | 0.49 | 4.9        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-13(0-5) SDG No.: F2875 SOIL Lab Sample ID: F2875-02 Matrix: Analytical Method: SW8260 % Moisture: 14.1 Sample Wt/Vol: 5.99 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008779.D 1 06/26/14 VT062614

| CAS Number             | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|------------------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| 10061-01-5             | cis-1,3-Dichloropropene     | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 79-00-5                | 1,1,2-Trichloroethane       | 0.97  | U         | 0.87     | 0.97 | 4.9        | ug/Kg   |
| 591-78-6               | 2-Hexanone                  | 2.4   | U         | 2.4      | 2.4  | 24.3       | ug/Kg   |
| 124-48-1               | Dibromochloromethane        | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 106-93-4               | 1,2-Dibromoethane           | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 127-18-4               | Tetrachloroethene           | 2.1   | J         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 108-90-7               | Chlorobenzene               | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 100-41-4               | Ethyl Benzene               | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 179601-23-1            | m/p-Xylenes                 | 0.97  | U         | 0.7      | 0.97 | 9.7        | ug/Kg   |
| 95-47-6                | o-Xylene                    | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 100-42-5               | Styrene                     | 0.49  | U         | 0.44     | 0.49 | 4.9        | ug/Kg   |
| 75-25-2                | Bromoform                   | 1.5   | U         | 0.72     | 1.5  | 4.9        | ug/Kg   |
| 98-82-8                | Isopropylbenzene            | 0.49  | U         | 0.47     | 0.49 | 4.9        | ug/Kg   |
| 79-34-5                | 1,1,2,2-Tetrachloroethane   | 0.49  | U         | 0.45     | 0.49 | 4.9        | ug/Kg   |
| 103-65-1               | n-propylbenzene             | 0.49  | U         | 0.35     | 0.49 | 4.9        | ug/Kg   |
| 108-67-8               | 1,3,5-Trimethylbenzene      | 0.49  | U         | 0.44     | 0.49 | 4.9        | ug/Kg   |
| 98-06-6                | tert-Butylbenzene           | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 95-63-6                | 1,2,4-Trimethylbenzene      | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 135-98-8               | sec-Butylbenzene            | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 99-87-6                | p-Isopropyltoluene          | 0.49  | U         | 0.28     | 0.49 | 4.9        | ug/Kg   |
| 541-73-1               | 1,3-Dichlorobenzene         | 0.49  | U         | 0.36     | 0.49 | 4.9        | ug/Kg   |
| 106-46-7               | 1,4-Dichlorobenzene         | 0.49  | U         | 0.4      | 0.49 | 4.9        | ug/Kg   |
| 104-51-8               | n-Butylbenzene              | 0.49  | U         | 0.45     | 0.49 | 4.9        | ug/Kg   |
| 95-50-1                | 1,2-Dichlorobenzene         | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 96-12-8                | 1,2-Dibromo-3-Chloropropane | 4.9   | U         | 0.85     | 4.9  | 4.9        | ug/Kg   |
| 120-82-1               | 1,2,4-Trichlorobenzene      | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 91-20-3                | Naphthalene                 | 0.49  | U         | 0.44     | 0.49 | 4.9        | ug/Kg   |
| 87-61-6                | 1,2,3-Trichlorobenzene      | 0.97  | U         | 0.49     | 0.97 | 4.9        | ug/Kg   |
| 123-91-1<br>SURROGATES | 1,4-Dioxane                 | 97.2  | U         | 97.2     | 97.2 | 97.2       | ug/Kg   |
| 17060-07-0             | 1,2-Dichloroethane-d4       | 53.1  |           | 56 - 120 | )    | 106%       | SPK: 50 |
| 1868-53-7              | Dibromofluoromethane        | 51.2  |           | 57 - 135 |      | 102%       | SPK: 50 |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-13(0-5)

Lab Sample ID: F2875-02

Analytical Method: SW8260

Sample Wt/Vol: 5.99 Units: g

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

1

Level:

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Matrix:

VOCMS Group1

uL

06/23/14

06/24/14

F2875

SOIL

14.1

5000

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VT008779.D

06/26/14

VT062614

| CAS Number  | Parameter              | Conc.   | Qualifier | MDL I    | LOD | LOQ / CRQL | Units   |
|-------------|------------------------|---------|-----------|----------|-----|------------|---------|
| 2037-26-5   | Toluene-d8             | 46.7    |           | 67 - 123 |     | 93%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 38.6    |           | 33 - 141 |     | 77%        | SPK: 50 |
| INTERNAL ST | ANDARDS                |         |           |          |     |            |         |
| 363-72-4    | Pentafluorobenzene     | 705212  | 7.43      |          |     |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 1018390 | 8.37      |          |     |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 789000  | 11.21     |          |     |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 331356  | 13.15     |          |     |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 13:20 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-5(10-12) F2875 Lab Sample ID: F2875-03 Matrix: SOIL % Solid: 82.7

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.147 | U    | 1  | 0.039 | 0.147 | 0.293      | mg/Kg | 06/26/14  | 06/30/14 13:52 | 9012B    |
| Hexavalent Chromium | 0.24  | U    | 1  | 0.096 | 0.24  | 0.48       | mg/Kg | 06/27/14  | 06/27/14 16:54 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



PE010261.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-5(10-12) SDG No.: F2875

Lab Sample ID: F2875-03 Matrix: SOIL

Analytical Method: SW8151A % Moisture: 17.3

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

1

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

06/27/14

| CAS Number | Parameter         | Conc. | Qualifie | r MDL    | LOD  | LOQ / CF | RQL Units |
|------------|-------------------|-------|----------|----------|------|----------|-----------|
| TARGETS    |                   |       |          |          |      |          |           |
| 1918-00-9  | DICAMBA           | 20.1  | U        | 16       | 20.1 | 80.9     | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 20.1  | U        | 14.9     | 20.1 | 80.9     | ug/Kg     |
| 94-75-7    | 2,4-D             | 20.1  | U        | 20.1     | 20.1 | 80.9     | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 20.1  | U        | 13.2     | 20.1 | 80.9     | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 20.1  | U        | 12.4     | 20.1 | 80.9     | ug/Kg     |
| 94-82-6    | 2,4-DB            | 20.1  | U        | 20.1     | 20.1 | 80.9     | ug/Kg     |
| 88-85-7    | DINOSEB           | 20.1  | U        | 20.1     | 20.1 | 80.9     | ug/Kg     |
| SURROGATES |                   |       |          |          |      |          |           |
| 19719-28-9 | 2,4-DCAA          | 245   |          | 12 - 189 | 9    | 49%      | SPK: 500  |

06/30/14

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:

PB77475



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.:

Lab Sample ID: F2875-03 Matrix: SOIL

GP-5(10-12)

% Solid: 82.7 Level (low/med): low

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRO | QL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|-----------|--------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.31  | UN   | 1  | 0.586 | 1.31  | 2.62      | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-38-2 | Arsenic   | 1.88  |      | 1  | 0.345 | 0.523 | 1.05      | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-39-3 | Barium    | 73.7  |      | 1  | 0.419 | 2.62  | 5.23      | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.629 |      | 1  | 0.063 | 0.157 | 0.314     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.157 | U    | 1  | 0.063 | 0.157 | 0.314     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-47-3 | Chromium  | 31.6  |      | 1  | 0.136 | 0.262 | 0.523     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-48-4 | Cobalt    | 13    |      | 1  | 0.597 | 0.785 | 1.57      | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-50-8 | Copper    | 21.8  | N    | 1  | 0.335 | 0.523 | 1.05      | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7439-92-1 | Lead      | 11.4  |      | 1  | 0.126 | 0.314 | 0.628     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7439-96-5 | Manganese | 249   |      | 1  | 0.199 | 0.523 | 1.05      | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.023 |      | 1  | 0.005 | 0.005 | 0.011     | mg/Kg 06/27/14     | 06/30/14  | SW7471A  |
| 7440-02-0 | Nickel    | 21.8  |      | 1  | 0.482 | 1.05  | 2.09      | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7782-49-2 | Selenium  | 1.4   | N    | 1  | 0.429 | 0.523 | 1.05      | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-22-4 | Silver    | 0.755 |      | 1  | 0.157 | 0.262 | 0.523     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-28-0 | Thallium  | 1.05  | U    | 1  | 0.283 | 1.05  | 2.09      | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-62-2 | Vanadium  | 37.5  |      | 1  | 0.618 | 1.05  | 2.09      | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-66-6 | Zinc      | 55.1  |      | 1  | 0.733 | 1.05  | 2.09      | mg/Kg 06/27/14     | 06/27/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

F2875

OR = Over Range

N =Spiked sample recovery not within control limits



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-5(10-12) F2875 Lab Sample ID: F2875-03 Matrix: SOIL % Moisture: Analytical Method: SW8082A 17.3 Decanted: Sample Wt/Vol: 30.03 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume: 1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PP003568.D 1 06/28/14 06/30/14 PB77506

| CAS Number | Parameter            | Conc. | Qualif | ier MDL  | LOD | LOQ / CF | RQL Units |
|------------|----------------------|-------|--------|----------|-----|----------|-----------|
| TARGETS    |                      |       |        |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 4     | U      | 4        | 4   | 20.5     | ug/kg     |
| 11104-28-2 | Aroclor-1221         | 4     | U      | 4        | 4   | 20.5     | ug/kg     |
| 11141-16-5 | Aroclor-1232         | 4     | U      | 4        | 4   | 20.5     | ug/kg     |
| 53469-21-9 | Aroclor-1242         | 4     | U      | 4        | 4   | 20.5     | ug/kg     |
| 12672-29-6 | Aroclor-1248         | 4     | U      | 4        | 4   | 20.5     | ug/kg     |
| 11097-69-1 | Aroclor-1254         | 15.9  | J      | 1.8      | 4   | 20.5     | ug/kg     |
| 11096-82-5 | Aroclor-1260         | 4     | U      | 4        | 4   | 20.5     | ug/kg     |
| SURROGATES |                      |       |        |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 18.5  |        | 10 - 166 | 5   | 92%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 16.8  |        | 60 - 125 | 5   | 84%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-5(10-12) SDG No.: F2875

Lab Sample ID: F2875-03 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 17.3

Sample Wt/Vol: 30.02 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023140.D 1 06/28/14 06/30/14 PB77509

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CRO | QL Units |
|------------|----------------------|-------|-----------|----------|-------|-----------|----------|
| TARGETS    |                      |       |           |          |       |           |          |
| 319-84-6   | alpha-BHC            | 0.399 | U         | 0.157    | 0.399 | 2.1       | ug/kg    |
| 319-85-7   | beta-BHC             | 0.399 | U         | 0.218    | 0.399 | 2.1       | ug/kg    |
| 319-86-8   | delta-BHC            | 0.399 | U         | 0.121    | 0.399 | 2.1       | ug/kg    |
| 58-89-9    | gamma-BHC (Lindane)  | 0.399 | U         | 0.181    | 0.399 | 2.1       | ug/kg    |
| 76-44-8    | Heptachlor           | 0.399 | U         | 0.169    | 0.399 | 2.1       | ug/kg    |
| 309-00-2   | Aldrin               | 0.399 | U         | 0.121    | 0.399 | 2.1       | ug/kg    |
| 1024-57-3  | Heptachlor epoxide   | 0.399 | U         | 0.193    | 0.399 | 2.1       | ug/kg    |
| 959-98-8   | Endosulfan I         | 0.399 | U         | 0.181    | 0.399 | 2.1       | ug/kg    |
| 60-57-1    | Dieldrin             | 0.399 | U         | 0.157    | 0.399 | 2.1       | ug/kg    |
| 72-55-9    | 4,4-DDE              | 0.399 | U         | 0.242    | 0.399 | 2.1       | ug/kg    |
| 72-20-8    | Endrin               | 0.399 | U         | 0.218    | 0.399 | 2.1       | ug/kg    |
| 33213-65-9 | Endosulfan II        | 0.399 | U         | 0.169    | 0.399 | 2.1       | ug/kg    |
| 72-54-8    | 4,4-DDD              | 0.399 | U         | 0.205    | 0.399 | 2.1       | ug/kg    |
| 1031-07-8  | Endosulfan Sulfate   | 0.399 | U         | 0.181    | 0.399 | 2.1       | ug/kg    |
| 50-29-3    | 4,4-DDT              | 0.399 | U         | 0.169    | 0.399 | 2.1       | ug/kg    |
| 72-43-5    | Methoxychlor         | 0.399 | U         | 0.205    | 0.399 | 2.1       | ug/kg    |
| 53494-70-5 | Endrin ketone        | 0.399 | U         | 0.157    | 0.399 | 2.1       | ug/kg    |
| 7421-93-4  | Endrin aldehyde      | 0.399 | U         | 0.181    | 0.399 | 2.1       | ug/kg    |
| 5103-71-9  | alpha-Chlordane      | 0.399 | U         | 0.169    | 0.399 | 2.1       | ug/kg    |
| 5103-74-2  | gamma-Chlordane      | 0.399 | U         | 0.157    | 0.399 | 2.1       | ug/kg    |
| 8001-35-2  | Toxaphene            | 4     | U         | 4        | 4     | 20.5      | ug/kg    |
| SURROGATES |                      |       |           |          |       |           |          |
| 2051-24-3  | Decachlorobiphenyl   | 19    |           | 10 - 169 |       | 95%       | SPK: 20  |
| 877-09-8   | Tetrachloro-m-xylene | 19.5  |           | 31 - 151 |       | 98%       | SPK: 20  |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx

06/24/14

Client Sample ID: GP-5(10-12)

SDG No.: F2875

Lab Sample ID:

F2875-03

Matrix: **SOIL** 

Date Received:

% Moisture:

Analytical Method:

SW8081

17.3 Decanted:

иL

Sample Wt/Vol:

30.02 Units: g Final Vol:

10000

Soil Aliquot Vol:

Test: Pesticide-TCL

Extraction Type: GPC Factor:

1.0

PH:

иL

Injection Volume:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PD023140.D

1

06/28/14

06/30/14

PB77509

Conc.

LOD

Parameter

Qualifier MDL

LOQ / CRQL Units

**CAS Number** 

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-5(10-12) SDG No.: F2875
Lab Sample ID: F2875-03 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 17.3

Sample Wt/Vol: 30.09 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072183.D 1 06/28/14 06/30/14 PB77511

| DI 0/2105.D | •                           | 00/20/11 |           | 750/11 |      | 110//311   |       |
|-------------|-----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number  | Parameter                   | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| TARGETS     |                             |          |           |        |      |            |       |
| 100-52-7    | Benzaldehyde                | 40.2     | U         | 21     | 40.2 | 400        | ug/Kg |
| 108-95-2    | Phenol                      | 40.2     | U         | 9.3    | 40.2 | 400        | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 40.2     | U         | 19.3   | 40.2 | 400        | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 40.2     | U         | 21.2   | 40.2 | 400        | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 40.2     | U         | 21.8   | 40.2 | 400        | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 40.2     | U         | 16.6   | 40.2 | 400        | ug/Kg |
| 98-86-2     | Acetophenone                | 40.2     | U         | 12.3   | 40.2 | 400        | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 40.2     | U         | 20.9   | 40.2 | 400        | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 40.2     | U         | 20.3   | 40.2 | 400        | ug/Kg |
| 67-72-1     | Hexachloroethane            | 40.2     | U         | 18     | 40.2 | 400        | ug/Kg |
| 98-95-3     | Nitrobenzene                | 40.2     | U         | 15.2   | 40.2 | 400        | ug/Kg |
| 78-59-1     | Isophorone                  | 40.2     | U         | 13.3   | 40.2 | 400        | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 40.2     | U         | 19.4   | 40.2 | 400        | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 40.2     | U         | 22.8   | 40.2 | 400        | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 40.2     | U         | 23.1   | 40.2 | 400        | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 40.2     | U         | 15.3   | 40.2 | 400        | ug/Kg |
| 91-20-3     | Naphthalene                 | 560      |           | 13.9   | 40.2 | 400        | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 40.2     | U         | 28.3   | 40.2 | 400        | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 40.2     | U         | 14.6   | 40.2 | 400        | ug/Kg |
| 105-60-2    | Caprolactam                 | 80.4     | U         | 18.7   | 80.4 | 400        | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 40.2     | U         | 17.8   | 40.2 | 400        | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 640      |           | 10.1   | 40.2 | 400        | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 40.2     | U         | 9.8    | 40.2 | 400        | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 40.2     | U         | 12.3   | 40.2 | 400        | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 40.2     | U         | 28.2   | 40.2 | 400        | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 40.2     | U         | 15.2   | 40.2 | 400        | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 40.2     | U         | 9.2    | 40.2 | 400        | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 40.2     | U         | 17.8   | 40.2 | 400        | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 950      |           | 10.9   | 40.2 | 400        | ug/Kg |
| 208-96-8    | Acenaphthylene              | 40.2     | U         | 10.1   | 40.2 | 400        | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 40.2     | U         | 16.4   | 40.2 | 400        | ug/Kg |



Sample Wt/Vol:

30.09

Units:

g

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-5(10-12) SDG No.: F2875 Lab Sample ID: F2875-03 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 17.3

Soil Aliquot Vol: uL Test: SVOCMS Group1

Final Vol:

1000

uL

Extraction Type: N Level: Decanted: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Prep Batch ID Dilution: Prep Date Date Analyzed

| BF072183.D | 1                          | 06/28/14 | 06        | /30/14 |      | PB77511    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 80.4     | U         | 25.8   | 80.4 | 400        | ug/Kg |
| 83-32-9    | Acenaphthene               | 40.2     | U         | 11.3   | 40.2 | 400        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 320      | U         | 40.9   | 320  | 400        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 200      | U         | 74.6   | 200  | 400        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 40.2     | U         | 15.7   | 40.2 | 400        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 40.2     | U         | 12.1   | 40.2 | 400        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 40.2     | U         | 6.3    | 40.2 | 400        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 40.2     | U         | 21.8   | 40.2 | 400        | ug/Kg |
| 86-73-7    | Fluorene                   | 40.2     | U         | 15.2   | 40.2 | 400        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 80.4     | U         | 52.3   | 80.4 | 400        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 200      | U         | 23     | 200  | 400        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 40.2     | U         | 9.6    | 40.2 | 400        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 40.2     | U         | 7.8    | 40.2 | 400        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 40.2     | U         | 16.4   | 40.2 | 400        | ug/Kg |
| 1912-24-9  | Atrazine                   | 40.2     | U         | 21.2   | 40.2 | 400        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 40.2     | U         | 27.5   | 40.2 | 400        | ug/Kg |
| 85-01-8    | Phenanthrene               | 40.2     | U         | 10.9   | 40.2 | 400        | ug/Kg |
| 120-12-7   | Anthracene                 | 40.2     | U         | 8.2    | 40.2 | 400        | ug/Kg |
| 86-74-8    | Carbazole                  | 40.2     | U         | 8.8    | 40.2 | 400        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 40.2     | U         | 31.6   | 40.2 | 400        | ug/Kg |
| 206-44-0   | Fluoranthene               | 40.2     | U         | 8.1    | 40.2 | 400        | ug/Kg |
| 129-00-0   | Pyrene                     | 40.2     | U         | 9.6    | 40.2 | 400        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 40.2     | U         | 19.3   | 40.2 | 400        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 40.2     | U         | 25.8   | 40.2 | 400        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 40.2     | U         | 19.2   | 40.2 | 400        | ug/Kg |
| 218-01-9   | Chrysene                   | 40.2     | U         | 18.2   | 40.2 | 400        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 40.2     | U         | 14.2   | 40.2 | 400        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 40.2     | U         | 4.6    | 40.2 | 400        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 40.2     | U         | 13.1   | 40.2 | 400        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 40.2     | U         | 18.9   | 40.2 | 400        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 40.2     | U         | 8.7    | 40.2 | 400        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 40.2     | U         | 13.4   | 40.2 | 400        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 40.2     | U         | 11.6   | 40.2 | 400        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-5(10-12) SDG No.: F2875

Lab Sample ID: F2875-03 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 17.3

Sample Wt/Vol: 30.09 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072183.D 1 06/28/14 06/30/14 PB77511

| CAS Number   | Parameter                        | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |
|--------------|----------------------------------|--------|-----------|----------|------|------------|----------|
| 191-24-2     | Benzo(g,h,i)perylene             | 40.2   | U         | 16.3     | 40.2 | 400        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       | 40.2   | U         | 15.8     | 40.2 | 400        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        | 40.2   | U         | 15.8     | 40.2 | 400        | ug/Kg    |
| SURROGATES   | 3                                |        |           |          |      |            |          |
| 367-12-4     | 2-Fluorophenol                   | 140    |           | 28 - 12  | 7    | 94%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        | 130    |           | 34 - 12  | 7    | 88%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  | 90.1   |           | 31 - 132 | 2    | 90%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 | 89.6   |           | 39 - 123 | 3    | 90%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             | 150    |           | 30 - 133 | 3    | 101%       | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    | 82.9   |           | 37 - 115 | 5    | 83%        | SPK: 100 |
| INTERNAL ST  | ANDARDS                          |        |           |          |      |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 52634  | 7.2       |          |      |            |          |
| 1146-65-2    | Naphthalene-d8                   | 210130 | 8.78      |          |      |            |          |
| 15067-26-2   | Acenaphthene-d10                 | 109197 | 10.95     |          |      |            |          |
| 1517-22-2    | Phenanthrene-d10                 | 202441 | 12.78     |          |      |            |          |
| 1719-03-5    | Chrysene-d12                     | 243354 | 16.05     |          |      |            |          |
| 1520-96-3    | Perylene-d12                     | 202005 | 17.72     |          |      |            |          |
| TENTATIVE II | DENTIFIED COMPOUNDS              |        |           |          |      |            |          |
| 000077-76-9  | Propane, 2,2-dimethoxy-          | 15500  | J         |          |      | 1.42       | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      | 950    | J         |          |      | 1.69       | ug/Kg    |
| 000111-65-9  | Octane                           | 690    | J         |          |      | 4.18       | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- | 720    | A         |          |      | 4.94       | ug/Kg    |
|              | unknown6.92                      | 4200   | J         |          |      | 6.92       | ug/Kg    |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Soil Aliquot Vol:

100

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-5(10-12) SDG No.: F2875 SOIL Lab Sample ID: F2875-03 Matrix: Analytical Method: SW8260 % Moisture: 17.3 Sample Wt/Vol: 6.08 Units: g Final Vol: 5000 uL

Test:

VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: MED

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013841.D 10 06/26/14 VR062614

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 74-87-3    | Chloromethane                  | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 74-83-9    | Bromomethane                   | 500   | U         | 500  | 500  | 2500       | ug/Kg |
| 75-00-3    | Chloroethane                   | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 67-64-1    | Acetone                        | 1200  | U         | 1200 | 1200 | 12400      | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 500   | U         | 500  | 500  | 2500       | ug/Kg |
| 75-09-2    | Methylene Chloride             | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 110-82-7   | Cyclohexane                    | 53900 | E         | 250  | 250  | 2500       | ug/Kg |
| 78-93-3    | 2-Butanone                     | 3700  | U         | 1500 | 3700 | 12400      | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 74-97-5    | Bromochloromethane             | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 67-66-3    | Chloroform                     | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 94200 | E         | 250  | 250  | 2500       | ug/Kg |
| 71-43-2    | Benzene                        | 7000  |           | 190  | 250  | 2500       | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 79-01-6    | Trichloroethene                | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 250   | U         | 130  | 250  | 2500       | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 250   | U         | 250  | 250  | 2500       | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1200  | U         | 1200 | 1200 | 12400      | ug/Kg |
| 108-88-3   | Toluene                        | 3400  |           | 250  | 250  | 2500       | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 250   | U         | 250  | 250  | 2500       | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-5(10-12) SDG No.: F2875 SOIL Lab Sample ID: F2875-03 Matrix: Analytical Method: SW8260 % Moisture: 17.3 Sample Wt/Vol: 6.08 Units: g Final Vol: 5000 uL Soil Aliquot Vol: 100 uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013841.D 10 06/26/14 VR062614

| CAS Number  | Parameter                   | Conc.  | Qualifier | MDL      | LOD   | LOQ / CRQL | Units   |
|-------------|-----------------------------|--------|-----------|----------|-------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 250    | U         | 250      | 250   | 2500       | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 500    | U         | 450      | 500   | 2500       | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 1200   | U         | 1200     | 1200  | 12400      | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 250    | U         | 250      | 250   | 2500       | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 250    | U         | 250      | 250   | 2500       | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 250    | U         | 250      | 250   | 2500       | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 250    | U         | 250      | 250   | 2500       | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 58300  | E         | 250      | 250   | 2500       | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 204300 | E         | 360      | 500   | 5000       | ug/Kg   |
| 95-47-6     | o-Xylene                    | 77000  | E         | 250      | 250   | 2500       | ug/Kg   |
| 100-42-5    | Styrene                     | 250    | U         | 220      | 250   | 2500       | ug/Kg   |
| 75-25-2     | Bromoform                   | 750    | U         | 370      | 750   | 2500       | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 14300  |           | 240      | 250   | 2500       | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 250    | U         | 230      | 250   | 2500       | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 41100  |           | 180      | 250   | 2500       | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 74700  | E         | 220      | 250   | 2500       | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 250    | U         | 250      | 250   | 2500       | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 116300 | E         | 250      | 250   | 2500       | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 5500   |           | 250      | 250   | 2500       | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 3300   |           | 140      | 250   | 2500       | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 250    | U         | 180      | 250   | 2500       | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 250    | U         | 200      | 250   | 2500       | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 12600  |           | 230      | 250   | 2500       | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 250    | U         | 250      | 250   | 2500       | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 2500   | U         | 430      | 2500  | 2500       | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 250    | U         | 250      | 250   | 2500       | ug/Kg   |
| 91-20-3     | Naphthalene                 | 32300  |           | 220      | 250   | 2500       | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 500    | U         | 250      | 500   | 2500       | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 49700  | U         | 49700    | 49700 | 49700      | ug/Kg   |
| SURROGATES  |                             |        |           |          |       |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 26     | *         | 56 - 120 |       | 52%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 24.3   | *         | 57 - 135 |       | 49%        | SPK: 50 |



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-5(10-12) F2875 Lab Sample ID: F2875-03 Matrix: SOIL SW8260 % Moisture: 17.3 Analytical Method: Sample Wt/Vol: 6.08 Units: Final Vol: 5000 uL g Test: Soil Aliquot Vol: 100 uL VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: **MED** 

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013841.D 10 06/26/14 VR062614

| CAS Number   | Parameter                          | Conc.   | Qualifier | MDL LOD  | LOQ / CRQL | Units   |
|--------------|------------------------------------|---------|-----------|----------|------------|---------|
| 2037-26-5    | Toluene-d8                         | 32.4    | *         | 67 - 123 | 65%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene               | 31.7    |           | 33 - 141 | 63%        | SPK: 50 |
| INTERNAL ST  | ANDARDS                            |         |           |          |            |         |
| 363-72-4     | Pentafluorobenzene                 | 1587490 | 7.49      |          |            |         |
| 540-36-3     | 1,4-Difluorobenzene                | 2468990 | 8.43      |          |            |         |
| 3114-55-4    | Chlorobenzene-d5                   | 2091890 | 11.28     |          |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4             | 864277  | 13.22     |          |            |         |
| TENTATIVE II | DENTIFIED COMPOUNDS                |         |           |          |            |         |
| ABZT         | Alkylbenzenes, Total               | 267800  | J         |          | 12.46      | ug/Kg   |
| 000620-14-4  | Benzene, 1-ethyl-3-methyl-         | 666100  | J         |          | 12.53      | ug/Kg   |
| 000611-14-3  | Benzene, 1-ethyl-2-methyl-         | 272000  | J         |          | 12.76      | ug/Kg   |
| 000611-15-4  | Benzene, 1-ethenyl-2-methyl-       | 306800  | J         |          | 13.42      | ug/Kg   |
| 000933-98-2  | Benzene, 1-ethyl-2,3-dimethyl-     | 117900  | J         |          | 13.67      | ug/Kg   |
| 000527-84-4  | Benzene, 1-methyl-2-(1-methylethyl | 94300   | J         |          | 13.7       | ug/Kg   |
| 001758-88-9  | Benzene, 2-ethyl-1,4-dimethyl-     | 186100  | J         |          | 13.76      | ug/Kg   |
| 000824-90-8  | 1-Phenyl-1-butene                  | 81600   | J         |          | 13.87      | ug/Kg   |
| 000095-93-2  | Benzene, 1,2,4,5-tetramethyl-      | 103200  | J         |          | 14.09      | ug/Kg   |
| 000488-23-3  | Benzene, 1,2,3,4-tetramethyl-      | 135500  | J         |          | 14.12      | ug/Kg   |
| 002039-89-6  | Benzene, 2-ethenyl-1,4-dimethyl-   | 152400  | J         |          | 14.47      | ug/Kg   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Sample Wt/Vol:

6.08

Units:

g

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-5(10-12)DL SDG No.: F2875 SOIL Lab Sample ID: F2875-03DL Matrix:

Analytical Method: SW8260 % Moisture: 17.3

Soil Aliquot Vol: 100 uL Test: VOCMS Group1

Final Vol:

5000

uL

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013860.D 10 06/27/14 VR062714

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 74-87-3    | Chloromethane                  | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 74-83-9    | Bromomethane                   | 500   | UD        | 500  | 500  | 2500       | ug/Kg |
| 75-00-3    | Chloroethane                   | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 67-64-1    | Acetone                        | 1200  | UD        | 1200 | 1200 | 12400      | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 500   | UD        | 500  | 500  | 2500       | ug/Kg |
| 75-09-2    | Methylene Chloride             | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 110-82-7   | Cyclohexane                    | 5200  | D         | 250  | 250  | 2500       | ug/Kg |
| 78-93-3    | 2-Butanone                     | 3700  | UD        | 1500 | 3700 | 12400      | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 74-97-5    | Bromochloromethane             | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 67-66-3    | Chloroform                     | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 7600  | D         | 250  | 250  | 2500       | ug/Kg |
| 71-43-2    | Benzene                        | 640   | JD        | 190  | 250  | 2500       | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 79-01-6    | Trichloroethene                | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 250   | UD        | 130  | 250  | 2500       | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1200  | UD        | 1200 | 1200 | 12400      | ug/Kg |
| 108-88-3   | Toluene                        | 250   | UD        | 250  | 250  | 2500       | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 250   | UD        | 250  | 250  | 2500       | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-5(10-12)DL SDG No.: F2875
Lab Sample ID: F2875-03DL Matrix: SOIL
Analytical Method: SW8260 % Moisture: 17.3

Sample Wt/Vol: 6.08 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: 100 uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013860.D 10 06/27/14 VR062714

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD   | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|-------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 250   | UD        | 250      | 250   | 2500       | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 500   | UD        | 450      | 500   | 2500       | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 1200  | UD        | 1200     | 1200  | 12400      | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 250   | UD        | 250      | 250   | 2500       | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 250   | UD        | 250      | 250   | 2500       | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 250   | UD        | 250      | 250   | 2500       | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 250   | UD        | 250      | 250   | 2500       | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 7700  | D         | 250      | 250   | 2500       | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 30600 | D         | 360      | 500   | 5000       | ug/Kg   |
| 95-47-6     | o-Xylene                    | 5900  | D         | 250      | 250   | 2500       | ug/Kg   |
| 100-42-5    | Styrene                     | 250   | UD        | 220      | 250   | 2500       | ug/Kg   |
| 75-25-2     | Bromoform                   | 750   | UD        | 370      | 750   | 2500       | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 1100  | JD        | 240      | 250   | 2500       | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 250   | UD        | 230      | 250   | 2500       | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 4200  | D         | 180      | 250   | 2500       | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 9200  | D         | 220      | 250   | 2500       | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 250   | UD        | 250      | 250   | 2500       | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 28100 | D         | 250      | 250   | 2500       | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 250   | UD        | 250      | 250   | 2500       | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 250   | UD        | 140      | 250   | 2500       | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 250   | UD        | 180      | 250   | 2500       | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 250   | UD        | 200      | 250   | 2500       | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 920   | JD        | 230      | 250   | 2500       | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 250   | UD        | 250      | 250   | 2500       | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 2500  | UD        | 430      | 2500  | 2500       | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 250   | UD        | 250      | 250   | 2500       | ug/Kg   |
| 91-20-3     | Naphthalene                 | 1900  | JD        | 220      | 250   | 2500       | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 500   | UD        | 250      | 500   | 2500       | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 49700 | UD        | 49700    | 49700 | 49700      | ug/Kg   |
| SURROGATES  |                             |       |           |          |       |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 53    |           | 56 - 120 |       | 106%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 50.4  |           | 57 - 135 |       | 101%       | SPK: 50 |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

6.08

Units:

Client Sample ID: GP-5(10-12)DL

Lab Sample ID: F2875-03DL

SW8260 Analytical Method:

Sample Wt/Vol: g 100 Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25 % Moisture: Final Vol:

Date Collected:

Date Received:

SDG No.:

Matrix:

Test:

VOCMS Group1

uL

06/23/14

06/24/14

F2875

SOIL

17.3

5000

Level: **MED** 

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VR013860.D 10 06/27/14

VR062714

| CAS Number   | Parameter              | Conc.   | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|--------------|------------------------|---------|-----------|----------|-----|------------|---------|
| 2037-26-5    | Toluene-d8             | 54.2    |           | 67 - 123 |     | 108%       | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 50.2    |           | 33 - 141 |     | 100%       | SPK: 50 |
| INTERNAL ST. | ANDARDS                |         |           |          |     |            |         |
| 363-72-4     | Pentafluorobenzene     | 1381360 | 7.49      |          |     |            |         |
| 540-36-3     | 1,4-Difluorobenzene    | 2137130 | 8.43      |          |     |            |         |
| 3114-55-4    | Chlorobenzene-d5       | 1723080 | 11.28     |          |     |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 673492  | 13.22     |          |     |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 13:45 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-5(18-20) F2875 Lab Sample ID: F2875-04 Matrix: SOIL % Solid: 82.1

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.151 | U    | 1  | 0.04  | 0.151 | 0.301      | mg/Kg | 06/26/14  | 06/30/14 13:52 | 9012B    |
| Hexavalent Chromium | 0.674 |      | 1  | 0.096 | 0.241 | 0.481      | mg/Kg | 06/27/14  | 06/27/14 16:54 | 7196A    |

#### Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



PE010264.D

**SURROGATES** 19719-28-9

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-5(18-20) SDG No.: F2875
Lab Sample ID: F2875-04 Matrix: SOIL

Analytical Method: SW8151A % Moisture: 17.9

Sample Wt/Vol: 30.03 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

1

2,4-DCAA

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

06/27/14

**CAS Number** Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units **TARGETS** 1918-00-9 **DICAMBA** 20.3 U 16.1 20.3 81.5 ug/Kg 120-36-5 DICHLORPROP 20.3 U 15 20.3 81.5 ug/Kg 94-75-7 2,4-D 20.3 U 20.3 20.3 81.5 ug/Kg 93-72-1 2,4,5-TP (Silvex) 20.3 U 13.3 20.3 81.5 ug/Kg 93-76-5 2,4,5-T 20.3 U 12.5 20.3 81.5 ug/Kg 94-82-6 20.3 U 20.3 20.3 81.5 2,4-DB ug/Kg DINOSEB 20.3 U 20.3 88-85-7 20.3 81.5 ug/Kg

210

06/30/14

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

12 - 189

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:

PB77475

42%

SPK: 500



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: SDG No.: GP-5(18-20) F2875 Lab Sample ID: F2875-04 Matrix: SOIL % Solid: 82.1 Level (low/med): low

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CR | QL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|--------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.25  | UN   | 1  | 0.561 | 1.25  | 2.51     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-38-2 | Arsenic   | 0.473 | J    | 1  | 0.331 | 0.501 | 1        | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-39-3 | Barium    | 7.86  |      | 1  | 0.401 | 2.51  | 5.01     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-41-7 | Beryllium | 1.59  |      | 1  | 0.06  | 0.15  | 0.301    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.15  | U    | 1  | 0.06  | 0.15  | 0.301    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-47-3 | Chromium  | 70.2  |      | 1  | 0.13  | 0.251 | 0.501    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-48-4 | Cobalt    | 5.05  |      | 1  | 0.571 | 0.752 | 1.5      | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-50-8 | Copper    | 34.4  | N    | 1  | 0.321 | 0.501 | 1        | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7439-92-1 | Lead      | 19.4  |      | 1  | 0.12  | 0.301 | 0.601    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7439-96-5 | Manganese | 359   |      | 1  | 0.19  | 0.501 | 1        | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.006 | U    | 1  | 0.006 | 0.006 | 0.011    | mg/Kg 06/27/14     | 06/30/14  | SW7471A  |
| 7440-02-0 | Nickel    | 8.38  |      | 1  | 0.461 | 1.0   | 2        | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7782-49-2 | Selenium  | 0.828 | JN   | 1  | 0.411 | 0.501 | 1        | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-22-4 | Silver    | 0.886 |      | 1  | 0.15  | 0.251 | 0.501    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-28-0 | Thallium  | 1     | U    | 1  | 0.271 | 1.0   | 2        | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-62-2 | Vanadium  | 43.4  |      | 1  | 0.591 | 1.0   | 2        | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-66-6 | Zinc      | 18.9  |      | 1  | 0.702 | 1.0   | 2        | mg/Kg 06/27/14     | 06/27/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium Color After: Yellow Clarity After: Artifacts:

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

No

OR = Over Range

N =Spiked sample recovery not within control limits



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-5(18-20) F2875 Lab Sample ID: F2875-04 Matrix: SOIL % Moisture: Analytical Method: SW8082A 17.9 Decanted: Sample Wt/Vol: 30.05 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PP003569.D 1 06/28/14 06/30/14 PB77506

| CAS Number | Parameter            | Conc. | Qualif | ier MDL  | LOD | LOQ / CF | RQL Units |
|------------|----------------------|-------|--------|----------|-----|----------|-----------|
| TARGETS    |                      |       |        |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 4     | U      | 4        | 4   | 20.7     | ug/kg     |
| 11104-28-2 | Aroclor-1221         | 4     | U      | 4        | 4   | 20.7     | ug/kg     |
| 11141-16-5 | Aroclor-1232         | 4     | U      | 4        | 4   | 20.7     | ug/kg     |
| 53469-21-9 | Aroclor-1242         | 4     | U      | 4        | 4   | 20.7     | ug/kg     |
| 12672-29-6 | Aroclor-1248         | 4     | U      | 4        | 4   | 20.7     | ug/kg     |
| 11097-69-1 | Aroclor-1254         | 4     | U      | 1.8      | 4   | 20.7     | ug/kg     |
| 11096-82-5 | Aroclor-1260         | 4     | U      | 4        | 4   | 20.7     | ug/kg     |
| SURROGATES |                      |       |        |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 17.6  |        | 10 - 166 | 5   | 88%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 16.1  |        | 60 - 125 | 5   | 81%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

 Client Sample ID:
 GP-5(18-20)
 SDG No.:
 F2875

 Lab Sample ID:
 F2875-04
 Matrix:
 SOIL

Analytical Method: SW8081 % Moisture: 17.9 Decanted:

Sample Wt/Vol: 30.04 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023141.D 1 06/28/14 06/30/14 PB77509

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CRQL | Units   |
|------------|----------------------|-------|-----------|----------|-------|------------|---------|
| TARGETS    |                      |       |           |          |       |            |         |
| 319-84-6   | alpha-BHC            | 0.401 | U         | 0.158    | 0.401 | 2.1        | ug/kg   |
| 319-85-7   | beta-BHC             | 0.401 | U         | 0.219    | 0.401 | 2.1        | ug/kg   |
| 319-86-8   | delta-BHC            | 0.401 | U         | 0.122    | 0.401 | 2.1        | ug/kg   |
| 58-89-9    | gamma-BHC (Lindane)  | 0.401 | U         | 0.182    | 0.401 | 2.1        | ug/kg   |
| 76-44-8    | Heptachlor           | 0.401 | U         | 0.17     | 0.401 | 2.1        | ug/kg   |
| 309-00-2   | Aldrin               | 0.401 | U         | 0.122    | 0.401 | 2.1        | ug/kg   |
| 1024-57-3  | Heptachlor epoxide   | 0.401 | U         | 0.195    | 0.401 | 2.1        | ug/kg   |
| 959-98-8   | Endosulfan I         | 0.401 | U         | 0.182    | 0.401 | 2.1        | ug/kg   |
| 60-57-1    | Dieldrin             | 0.401 | U         | 0.158    | 0.401 | 2.1        | ug/kg   |
| 72-55-9    | 4,4-DDE              | 0.401 | U         | 0.243    | 0.401 | 2.1        | ug/kg   |
| 72-20-8    | Endrin               | 0.401 | U         | 0.219    | 0.401 | 2.1        | ug/kg   |
| 33213-65-9 | Endosulfan II        | 0.401 | U         | 0.17     | 0.401 | 2.1        | ug/kg   |
| 72-54-8    | 4,4-DDD              | 0.401 | U         | 0.207    | 0.401 | 2.1        | ug/kg   |
| 1031-07-8  | Endosulfan Sulfate   | 0.401 | U         | 0.182    | 0.401 | 2.1        | ug/kg   |
| 50-29-3    | 4,4-DDT              | 0.401 | U         | 0.17     | 0.401 | 2.1        | ug/kg   |
| 72-43-5    | Methoxychlor         | 0.401 | U         | 0.207    | 0.401 | 2.1        | ug/kg   |
| 53494-70-5 | Endrin ketone        | 0.401 | U         | 0.158    | 0.401 | 2.1        | ug/kg   |
| 7421-93-4  | Endrin aldehyde      | 0.401 | U         | 0.182    | 0.401 | 2.1        | ug/kg   |
| 5103-71-9  | alpha-Chlordane      | 0.401 | U         | 0.17     | 0.401 | 2.1        | ug/kg   |
| 5103-74-2  | gamma-Chlordane      | 0.401 | U         | 0.158    | 0.401 | 2.1        | ug/kg   |
| 8001-35-2  | Toxaphene            | 4.1   | U         | 4.1      | 4.1   | 20.7       | ug/kg   |
| SURROGATES |                      |       |           |          |       |            |         |
| 2051-24-3  | Decachlorobiphenyl   | 19.2  |           | 10 - 169 | )     | 96%        | SPK: 20 |
| 877-09-8   | Tetrachloro-m-xylene | 20.7  |           | 31 - 151 |       | 104%       | SPK: 20 |



Project:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Date Collected:

Date Received:

SDG No.:

% Moisture:

Injection Volume:

Matrix:

06/23/14

06/24/14

F2875

**SOIL** 

17.9

Decanted:

#### **Report of Analysis**

Client: Dvirka & Bartilucci

NYCSCA Unionport Road Bronx

Client Sample ID: GP-5(18-20)

Lab Sample ID: F2875-04

Analytical Method: SW8081

Sample Wt/Vol: 30.04 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023141.D 1 06/28/14 06/30/14 PB77509

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-5(18-20) SDG No.: F2875

Lab Sample ID: F2875-04 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 17.9

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072182.D 1 06/28/14 06/30/14 PB77511

| B1 072102.B | •                           | 00/20/11 |           | 750/11 |      | 11077311   |       |
|-------------|-----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number  | Parameter                   | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| TARGETS     |                             |          |           |        |      |            |       |
| 100-52-7    | Benzaldehyde                | 40.6     | U         | 21.2   | 40.6 | 400        | ug/Kg |
| 108-95-2    | Phenol                      | 40.6     | U         | 9.4    | 40.6 | 400        | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 40.6     | U         | 19.5   | 40.6 | 400        | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 40.6     | U         | 21.4   | 40.6 | 400        | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 40.6     | U         | 22     | 40.6 | 400        | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 40.6     | U         | 16.8   | 40.6 | 400        | ug/Kg |
| 98-86-2     | Acetophenone                | 40.6     | U         | 12.4   | 40.6 | 400        | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 40.6     | U         | 21.1   | 40.6 | 400        | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 40.6     | U         | 20.5   | 40.6 | 400        | ug/Kg |
| 67-72-1     | Hexachloroethane            | 40.6     | U         | 18.1   | 40.6 | 400        | ug/Kg |
| 98-95-3     | Nitrobenzene                | 40.6     | U         | 15.3   | 40.6 | 400        | ug/Kg |
| 78-59-1     | Isophorone                  | 40.6     | U         | 13.4   | 40.6 | 400        | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 40.6     | U         | 19.6   | 40.6 | 400        | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 40.6     | U         | 23     | 40.6 | 400        | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 40.6     | U         | 23.4   | 40.6 | 400        | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 40.6     | U         | 15.5   | 40.6 | 400        | ug/Kg |
| 91-20-3     | Naphthalene                 | 40.6     | U         | 14     | 40.6 | 400        | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 40.6     | U         | 28.6   | 40.6 | 400        | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 40.6     | U         | 14.7   | 40.6 | 400        | ug/Kg |
| 105-60-2    | Caprolactam                 | 81.2     | U         | 18.9   | 81.2 | 400        | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 40.6     | U         | 18     | 40.6 | 400        | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 40.6     | U         | 10.2   | 40.6 | 400        | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 40.6     | U         | 9.9    | 40.6 | 400        | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 40.6     | U         | 12.4   | 40.6 | 400        | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 40.6     | U         | 28.5   | 40.6 | 400        | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 40.6     | U         | 15.3   | 40.6 | 400        | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 40.6     | U         | 9.3    | 40.6 | 400        | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 40.6     | U         | 18     | 40.6 | 400        | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 820      |           | 11     | 40.6 | 400        | ug/Kg |
| 208-96-8    | Acenaphthylene              | 40.6     | U         | 10.2   | 40.6 | 400        | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 40.6     | U         | 16.6   | 40.6 | 400        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

 Client Sample ID:
 GP-5(18-20)
 SDG No.:
 F2875

 Lab Sample ID:
 F2875-04
 Matrix:
 SOIL

Analytical Method: SW8270 % Moisture: 17.9

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072182.D 1 06/28/14 06/30/14 PB77511

| BF072182.D | 1                          | 06/28/14 | 06        | /30/14 |      | PB77511    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 81.2     | U         | 26.1   | 81.2 | 400        | ug/Kg |
| 83-32-9    | Acenaphthene               | 40.6     | U         | 11.4   | 40.6 | 400        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 320      | U         | 41.3   | 320  | 400        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 200      | U         | 75.4   | 200  | 400        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 40.6     | U         | 15.8   | 40.6 | 400        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 40.6     | U         | 12.2   | 40.6 | 400        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 40.6     | U         | 6.3    | 40.6 | 400        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 40.6     | U         | 22     | 40.6 | 400        | ug/Kg |
| 86-73-7    | Fluorene                   | 40.6     | U         | 15.3   | 40.6 | 400        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 81.2     | U         | 52.8   | 81.2 | 400        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 200      | U         | 23.3   | 200  | 400        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 40.6     | U         | 9.7    | 40.6 | 400        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 40.6     | U         | 7.9    | 40.6 | 400        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 40.6     | U         | 16.6   | 40.6 | 400        | ug/Kg |
| 1912-24-9  | Atrazine                   | 40.6     | U         | 21.4   | 40.6 | 400        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 40.6     | U         | 27.8   | 40.6 | 400        | ug/Kg |
| 85-01-8    | Phenanthrene               | 40.6     | U         | 11     | 40.6 | 400        | ug/Kg |
| 120-12-7   | Anthracene                 | 40.6     | U         | 8.3    | 40.6 | 400        | ug/Kg |
| 86-74-8    | Carbazole                  | 40.6     | U         | 8.9    | 40.6 | 400        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 40.6     | U         | 31.9   | 40.6 | 400        | ug/Kg |
| 206-44-0   | Fluoranthene               | 40.6     | U         | 8.2    | 40.6 | 400        | ug/Kg |
| 129-00-0   | Pyrene                     | 40.6     | U         | 9.7    | 40.6 | 400        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 40.6     | U         | 19.5   | 40.6 | 400        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 40.6     | U         | 26.1   | 40.6 | 400        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 40.6     | U         | 19.4   | 40.6 | 400        | ug/Kg |
| 218-01-9   | Chrysene                   | 40.6     | U         | 18.4   | 40.6 | 400        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 40.6     | U         | 14.4   | 40.6 | 400        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 40.6     | U         | 4.6    | 40.6 | 400        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 40.6     | U         | 13.3   | 40.6 | 400        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 40.6     | U         | 19.1   | 40.6 | 400        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 40.6     | U         | 8.8    | 40.6 | 400        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 40.6     | U         | 13.5   | 40.6 | 400        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 40.6     | U         | 11.7   | 40.6 | 400        | ug/Kg |



Client:Dvirka & BartilucciDate Collected:06/23/14Project:NYCSCA Unionport Road BronxDate Received:06/24/14Client Sample ID:GP-5(18-20)SDG No.:F2875

Lab Sample ID:F2875-04Matrix:SOILAnalytical Method:SW8270% Moisture:17.9

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072182.D 1 06/28/14 06/30/14 PB77511

| CAS Number   | Parameter                        | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |
|--------------|----------------------------------|--------|-----------|----------|------|------------|----------|
| 191-24-2     | Benzo(g,h,i)perylene             | 40.6   | U         | 16.4     | 40.6 | 400        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       | 40.6   | U         | 16       | 40.6 | 400        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        | 40.6   | U         | 16       | 40.6 | 400        | ug/Kg    |
| SURROGATES   |                                  |        |           |          |      |            |          |
| 367-12-4     | 2-Fluorophenol                   | 120    |           | 28 - 127 | 7    | 80%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        | 120    |           | 34 - 127 | 7    | 81%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  | 68.4   |           | 31 - 132 | 2    | 68%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 | 68     |           | 39 - 123 | 3    | 68%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             | 110    |           | 30 - 133 | 3    | 74%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    | 68     |           | 37 - 115 | 5    | 68%        | SPK: 100 |
| INTERNAL STA | ANDARDS                          |        |           |          |      |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 49401  | 7.2       |          |      |            |          |
| 1146-65-2    | Naphthalene-d8                   | 187673 | 8.78      |          |      |            |          |
| 15067-26-2   | Acenaphthene-d10                 | 112060 | 10.95     |          |      |            |          |
| 1517-22-2    | Phenanthrene-d10                 | 206519 | 12.78     |          |      |            |          |
| 1719-03-5    | Chrysene-d12                     | 224187 | 16.05     |          |      |            |          |
| 1520-96-3    | Perylene-d12                     | 201644 | 17.73     |          |      |            |          |
| TENTATIVE ID | ENTIFIED COMPOUNDS               |        |           |          |      |            |          |
|              | unknown1.42                      | 14200  | J         |          |      | 1.42       | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      | 880    | J         |          |      | 1.69       | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- | 530    | A         |          |      | 4.94       | ug/Kg    |
|              | unknown6.90                      | 3500   | J         |          |      | 6.9        | ug/Kg    |
| 000112-37-8  | Undecanoic acid                  | 150    | J         |          |      | 13.53      | ug/Kg    |
| 001454-84-8  | 1-Nonadecanol                    | 340    | J         |          |      | 15.96      | ug/Kg    |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



GC Column:

RXI-624

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-5(18-20) F2875 Matrix: SOIL Lab Sample ID: F2875-04 Analytical Method: SW8260 % Moisture: 17.9 Sample Wt/Vol: 6.19 Units: Final Vol: 5000 uL g Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008798.D 1 06/27/14 VT062714

ID: 0.25

**MDL CAS Number** Parameter Conc. Qualifier LOD LOQ / CRQL Units **TARGETS** 75-71-8 Dichlorodifluoromethane 0.49 U 0.49 0.49 4.9 ug/Kg Chloromethane 0.49 U 0.49 0.49 4.9 74-87-3 ug/Kg Vinyl Chloride 0.49 U 0.49 0.49 4.9 75-01-4 ug/Kg U Bromomethane 0.98 0.98 0.98 4.9 74-83-9 ug/Kg 75-00-3 Chloroethane 0.49 U 0.49 0.49 4.9 ug/Kg 0.49 U 4.9 75-69-4 Trichlorofluoromethane 0.49 0.49 ug/Kg 1,1,2-Trichlorotrifluoroethane 0.49 U 0.49 4.9 76-13-1 0.49 ug/Kg U 4.9 75-35-4 1,1-Dichloroethene 0.49 0.49 0.49 ug/Kg J 2.5 67-64-1 Acetone 24.1 2.5 24.6 ug/Kg 0.49 U 4.9 75-15-0 Carbon Disulfide 0.49 0.49 ug/Kg Methyl tert-butyl Ether 2.4 J 0.49 0.49 4.9 1634-04-4 ug/Kg 79-20-9 Methyl Acetate 0.98 U 0.98 0.98 4.9 ug/Kg 0.49 U 75-09-2 Methylene Chloride 0.49 0.49 4.9 ug/Kg 156-60-5 trans-1,2-Dichloroethene 0.49 U 0.49 0.49 4.9 ug/Kg 4.9 75-34-3 1,1-Dichloroethane 0.49 U 0.49 0.49 ug/Kg 110-82-7 Cvclohexane 3.5 J 0.49 0.49 4.9 ug/Kg 78-93-3 2-Butanone 7.4 U 7.4 24.6 ug/Kg 3.1 56-23-5 Carbon Tetrachloride 0.49 U 0.49 0.49 4.9 ug/Kg 156-59-2 cis-1.2-Dichloroethene 0.49 U 0.49 0.49 4.9 ug/Kg 74-97-5 Bromochloromethane 0.49 U 0.49 0.49 4.9 ug/Kg 0.49 67-66-3 Chloroform U 0.49 0.49 4.9 ug/Kg 1,1,1-Trichloroethane 0.49 4.9 71-55-6 U 0.49 0.49 ug/Kg 108-87-2 Methylcyclohexane 0.49 U 0.49 0.49 4.9 ug/Kg 71-43-2 Benzene 16.4 0.37 0.49 4.9 ug/Kg U 107-06-2 1,2-Dichloroethane 0.49 0.49 0.49 4.9 ug/Kg 79-01-6 Trichloroethene 0.49 U 0.49 0.49 4.9 ug/Kg 78-87-5 1,2-Dichloropropane 0.49 U 0.26 0.49 4.9 ug/Kg 75-27-4 Bromodichloromethane 0.49 U 0.49 0.49 4.9 ug/Kg 108-10-1 4-Methyl-2-Pentanone 2.5 U 2.5 2.5 24.6 ug/Kg 0.49 U 0.49 4.9 108-88-3 Toluene 0.49 ug/Kg 0.49 0.49 10061-02-6 t-1,3-Dichloropropene U 0.49 4.9 ug/Kg



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-5(18-20) SDG No.: F2875 Lab Sample ID: F2875-04 Matrix: SOIL Analytical Method: SW8260 % Moisture: 17.9 Sample Wt/Vol: 6.19 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008798.D 1 06/27/14 VT062714

|             | _                           |       | V V = 11  |          |      |            |         |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.98  | U         | 0.89     | 0.98 | 4.9        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 2.5   | U         | 2.5      | 2.5  | 24.6       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 1.9   | J         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 7.2   | J         | 0.71     | 0.98 | 9.8        | ug/Kg   |
| 95-47-6     | o-Xylene                    | 1.8   | J         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.49  | U         | 0.44     | 0.49 | 4.9        | ug/Kg   |
| 75-25-2     | Bromoform                   | 1.5   | U         | 0.73     | 1.5  | 4.9        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.49  | U         | 0.47     | 0.49 | 4.9        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.49  | U         | 0.45     | 0.49 | 4.9        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.49  | U         | 0.35     | 0.49 | 4.9        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 1.8   | J         | 0.44     | 0.49 | 4.9        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 6.9   |           | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.49  | U         | 0.29     | 0.49 | 4.9        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.49  | U         | 0.36     | 0.49 | 4.9        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.49  | U         | 0.4      | 0.49 | 4.9        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.49  | U         | 0.45     | 0.49 | 4.9        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 4.9   | U         | 0.86     | 4.9  | 4.9        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.49  | U         | 0.49     | 0.49 | 4.9        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 1.4   | J         | 0.44     | 0.49 | 4.9        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.98  | U         | 0.49     | 0.98 | 4.9        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 98.4  | U         | 98.4     | 98.4 | 98.4       | ug/Kg   |
| SURROGATES  |                             |       |           |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 44.2  |           | 56 - 120 |      | 88%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 46.4  |           | 57 - 135 | 5    | 93%        | SPK: 50 |
|             |                             |       |           |          |      |            |         |



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-5(18-20) F2875 Lab Sample ID: F2875-04 Matrix: SOIL % Moisture: 17.9 Analytical Method: SW8260 Sample Wt/Vol: 6.19 Units: Final Vol: 5000 uL g Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008798.D 1 06/27/14 VT062714

| CAS Number   | Parameter                    | Conc.   | Qualifier | MDL L    | OD LOQ / CRQL | Units   |
|--------------|------------------------------|---------|-----------|----------|---------------|---------|
| 2037-26-5    | Toluene-d8                   | 44.8    |           | 67 - 123 | 90%           | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene         | 44.4    |           | 33 - 141 | 89%           | SPK: 50 |
| INTERNAL ST  | ANDARDS                      |         |           |          |               |         |
| 363-72-4     | Pentafluorobenzene           | 795450  | 7.43      |          |               |         |
| 540-36-3     | 1,4-Difluorobenzene          | 1154580 | 8.37      |          |               |         |
| 3114-55-4    | Chlorobenzene-d5             | 982894  | 11.21     |          |               |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4       | 531373  | 13.15     |          |               |         |
| TENTATIVE II | DENTIFIED COMPOUNDS          |         |           |          |               |         |
| ABZT         | Alkylbenzenes, Total         | 8.7     | J         |          | 0             | ug/Kg   |
| 75-65-0      | Tert butyl alcohol           | 480     | J         |          | 4.46          | ug/Kg   |
| 000637-92-3  | Propane, 2-ethoxy-2-methyl-  | 12.7    | J         |          | 6.3           | ug/Kg   |
|              | unknown8.02                  | 5.8     | J         |          | 8.02          | ug/Kg   |
| 000611-15-4  | Benzene, 1-ethenyl-2-methyl- | 5.9     | J         |          | 13.35         | ug/Kg   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GW-5 SDG No.: F2875

Lab Sample ID: F2875-05 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ/ | CRQL Uni | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|------|----------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.968 | J    | 1  | 0.14 | 1.0 | 2    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7440-38-2 | Arsenic   | 3.18  |      | 1  | 0.18 | 0.5 | 1    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7440-39-3 | Barium    | 260   |      | 1  | 0.1  | 5.0 | 10   | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | U    | 1  | 0.09 | 0.5 | 1    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7440-43-9 | Cadmium   | 13.1  |      | 1  | 0.13 | 0.5 | 1    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7440-47-3 | Chromium  | 3.08  |      | 1  | 0.04 | 1.0 | 2    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7440-48-4 | Cobalt    | 4.83  |      | 1  | 0.05 | 0.5 | 1    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7440-50-8 | Copper    | 6.01  |      | 1  | 0.04 | 1.0 | 2    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7439-92-1 | Lead      | 313   | N*   | 1  | 0.04 | 0.5 | 1    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7439-96-5 | Manganese | 3440  |      | 1  | 0.05 | 0.5 | 1    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.113 | J    | 1  | 0.1  | 0.1 | 0.2  | ug/L     | 06/27/14      | 06/30/14  | SW7470A  |
| 7440-02-0 | Nickel    | 8.45  | *    | 1  | 0.06 | 0.5 | 1    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7782-49-2 | Selenium  | 2.5   | U    | 1  | 0.7  | 2.5 | 5    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7440-22-4 | Silver    | 0.046 | J    | 1  | 0.03 | 0.5 | 1    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.23  | J*   | 1  | 0.02 | 0.5 | 1    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7440-62-2 | Vanadium  | 1.31  | J    | 1  | 0.15 | 2.5 | 5    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |
| 7440-66-6 | Zinc      | 64.8  |      | 1  | 0.09 | 1.0 | 2    | ug/L     | 06/27/14      | 06/30/14  | SW6020   |

Color Before: Brown Clarity Before: Cloudy Texture:

Color After: Yellow Clarity After: Clear Artifacts:

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Analytical Method:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected:

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GW-5 SDG No.: F2875

Lab Sample ID: F2875-05 Matrix: Water

Sample Wt/Vol: 1000 Units: mL Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

SW8082A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PP003469.D 1 06/27/14 06/27/14 PB77463

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD | LOQ / CF | RQL Units |
|------------|----------------------|-------|-----------|----------|-----|----------|-----------|
| TARGETS    |                      |       |           |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 0.1   | U         | 0.096    | 0.1 | 0.5      | ug/L      |
| 11104-28-2 | Aroclor-1221         | 0.1   | U         | 0.1      | 0.1 | 0.5      | ug/L      |
| 11141-16-5 | Aroclor-1232         | 0.1   | U         | 0.1      | 0.1 | 0.5      | ug/L      |
| 53469-21-9 | Aroclor-1242         | 0.1   | U         | 0.089    | 0.1 | 0.5      | ug/L      |
| 12672-29-6 | Aroclor-1248         | 0.1   | U         | 0.1      | 0.1 | 0.5      | ug/L      |
| 11097-69-1 | Aroclor-1254         | 0.1   | U         | 0.044    | 0.1 | 0.5      | ug/L      |
| 11096-82-5 | Aroclor-1260         | 0.1   | U         | 0.081    | 0.1 | 0.5      | ug/L      |
| SURROGATES |                      |       |           |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 18    |           | 35 - 137 | •   | 90%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 16.4  |           | 40 - 135 |     | 82%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

06/23/14

100

Decanted:

% Moisture:



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GW-5 SDG No.: F2875
Lab Sample ID: F2875-05 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 0

Sample Wt/Vol: 1000 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072106.D 1 06/27/14 06/28/14 PB77464

| BF0/2106.D | 1                           | 06/2//14 |       | 06/       | 28/14 |     | PB / /464  |       |
|------------|-----------------------------|----------|-------|-----------|-------|-----|------------|-------|
| CAS Number | Parameter                   |          | Conc. | Qualifier | MDL   | LOD | LOQ / CRQL | Units |
| TARGETS    |                             |          |       |           |       |     |            |       |
| 100-52-7   | Benzaldehyde                |          | 1     | U         | 0.52  | 1   | 9.9        | ug/Kg |
| 108-95-2   | Phenol                      |          | 14.5  |           | 0.23  | 1   | 9.9        | ug/Kg |
| 111-44-4   | bis(2-Chloroethyl)ether     |          | 1     | U         | 0.48  | 1   | 9.9        | ug/Kg |
| 95-57-8    | 2-Chlorophenol              |          | 1     | U         | 0.53  | 1   | 9.9        | ug/Kg |
| 95-48-7    | 2-Methylphenol              |          | 1     | U         | 0.54  | 1   | 9.9        | ug/Kg |
| 108-60-1   | 2,2-oxybis(1-Chloropropane) |          | 1     | U         | 0.41  | 1   | 9.9        | ug/Kg |
| 98-86-2    | Acetophenone                |          | 1     | U         | 0.31  | 1   | 9.9        | ug/Kg |
| 65794-96-9 | 3+4-Methylphenols           |          | 1     | U         | 0.52  | 1   | 9.9        | ug/Kg |
| 621-64-7   | n-Nitroso-di-n-propylamine  |          | 1     | U         | 0.5   | 1   | 9.9        | ug/Kg |
| 67-72-1    | Hexachloroethane            |          | 1     | U         | 0.45  | 1   | 9.9        | ug/Kg |
| 98-95-3    | Nitrobenzene                |          | 1     | U         | 0.38  | 1   | 9.9        | ug/Kg |
| 78-59-1    | Isophorone                  |          | 1     | U         | 0.33  | 1   | 9.9        | ug/Kg |
| 88-75-5    | 2-Nitrophenol               |          | 1     | U         | 0.48  | 1   | 9.9        | ug/Kg |
| 105-67-9   | 2,4-Dimethylphenol          |          | 17.2  |           | 0.57  | 1   | 9.9        | ug/Kg |
| 111-91-1   | bis(2-Chloroethoxy)methane  |          | 1     | U         | 0.58  | 1   | 9.9        | ug/Kg |
| 120-83-2   | 2,4-Dichlorophenol          |          | 1     | U         | 0.38  | 1   | 9.9        | ug/Kg |
| 91-20-3    | Naphthalene                 |          | 210   | E         | 0.35  | 1   | 9.9        | ug/Kg |
| 106-47-8   | 4-Chloroaniline             |          | 1     | U         | 0.71  | 1   | 9.9        | ug/Kg |
| 87-68-3    | Hexachlorobutadiene         |          | 1     | U         | 0.36  | 1   | 9.9        | ug/Kg |
| 105-60-2   | Caprolactam                 |          | 2     | U         | 0.47  | 2   | 9.9        | ug/Kg |
| 59-50-7    | 4-Chloro-3-methylphenol     |          | 1     | U         | 0.44  | 1   | 9.9        | ug/Kg |
| 91-57-6    | 2-Methylnaphthalene         |          | 68.9  |           | 0.25  | 1   | 9.9        | ug/Kg |
| 77-47-4    | Hexachlorocyclopentadiene   |          | 1     | U         | 0.24  | 1   | 9.9        | ug/Kg |
| 88-06-2    | 2,4,6-Trichlorophenol       |          | 1     | U         | 0.31  | 1   | 9.9        | ug/Kg |
| 95-95-4    | 2,4,5-Trichlorophenol       |          | 1     | U         | 0.7   | 1   | 9.9        | ug/Kg |
| 92-52-4    | 1,1-Biphenyl                |          | 1     | U         | 0.38  | 1   | 9.9        | ug/Kg |
| 91-58-7    | 2-Chloronaphthalene         |          | 1     | U         | 0.23  | 1   | 9.9        | ug/Kg |
| 88-74-4    | 2-Nitroaniline              |          | 1     | U         | 0.44  | 1   | 9.9        | ug/Kg |
| 131-11-3   | Dimethylphthalate           |          | 1     | U         | 0.27  | 1   | 9.9        | ug/Kg |
| 208-96-8   | Acenaphthylene              |          | 1     | U         | 0.25  | 1   | 9.9        | ug/Kg |
| 606-20-2   | 2,6-Dinitrotoluene          |          | 1     | U         | 0.41  | 1   | 9.9        | ug/Kg |



Sample Wt/Vol:

1000

Units:

g

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID:GW-5SDG No.:F2875Lab Sample ID:F2875-05Matrix:SOIL

Analytical Method: SW8270 % Moisture: 0

Soil Aliquot Vol: uL Test: SVOCMS Group1

Final Vol:

1000

uL

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072106.D 1 06/27/14 06/28/14 PB77464

| BF072106.D | 1                          | 06/27/14 | 06        | /28/14 |     | PB77464    |       |
|------------|----------------------------|----------|-----------|--------|-----|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 2        | U         | 0.64   | 2   | 9.9        | ug/Kg |
| 83-32-9    | Acenaphthene               | 1        | U         | 0.28   | 1   | 9.9        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 8        | U         | 1      | 8   | 9.9        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 5        | U         | 1.9    | 5   | 9.9        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 1        | U         | 0.39   | 1   | 9.9        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 1        | U         | 0.3    | 1   | 9.9        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 1        | U         | 0.16   | 1   | 9.9        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 1        | U         | 0.54   | 1   | 9.9        | ug/Kg |
| 86-73-7    | Fluorene                   | 1        | U         | 0.38   | 1   | 9.9        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 2        | U         | 1.3    | 2   | 9.9        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 5        | U         | 0.57   | 5   | 9.9        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 1        | U         | 0.24   | 1   | 9.9        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 1        | U         | 0.2    | 1   | 9.9        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 1        | U         | 0.41   | 1   | 9.9        | ug/Kg |
| 1912-24-9  | Atrazine                   | 1        | U         | 0.53   | 1   | 9.9        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 1        | U         | 0.68   | 1   | 9.9        | ug/Kg |
| 85-01-8    | Phenanthrene               | 1        | U         | 0.27   | 1   | 9.9        | ug/Kg |
| 120-12-7   | Anthracene                 | 1        | U         | 0.2    | 1   | 9.9        | ug/Kg |
| 86-74-8    | Carbazole                  | 1        | U         | 0.22   | 1   | 9.9        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 1        | U         | 0.79   | 1   | 9.9        | ug/Kg |
| 206-44-0   | Fluoranthene               | 1        | U         | 0.2    | 1   | 9.9        | ug/Kg |
| 129-00-0   | Pyrene                     | 1        | U         | 0.24   | 1   | 9.9        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 1        | U         | 0.48   | 1   | 9.9        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 1        | U         | 0.64   | 1   | 9.9        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 1        | U         | 0.48   | 1   | 9.9        | ug/Kg |
| 218-01-9   | Chrysene                   | 1        | U         | 0.45   | 1   | 9.9        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 1        | U         | 0.35   | 1   | 9.9        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 1        | U         | 0.11   | 1   | 9.9        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 1        | U         | 0.33   | 1   | 9.9        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 1        | U         | 0.47   | 1   | 9.9        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 1        | U         | 0.22   | 1   | 9.9        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 1        | U         | 0.33   | 1   | 9.9        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 1        | U         | 0.29   | 1   | 9.9        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GW-5 SDG No.: F2875
Lab Sample ID: F2875-05 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 0

Sample Wt/Vol: 1000 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072106.D 1 06/27/14 06/28/14 PB77464

| CAS Number   | Parameter                        | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
|--------------|----------------------------------|--------|-----------|----------|-----|------------|----------|
| 191-24-2     | Benzo(g,h,i)perylene             | 1      | U         | 0.41     | 1   | 9.9        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       | 1      | U         | 0.39     | 1   | 9.9        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        | 1      | U         | 0.39     | 1   | 9.9        | ug/Kg    |
| SURROGATES   |                                  |        |           |          |     |            |          |
| 367-12-4     | 2-Fluorophenol                   | 51.1   |           | 28 - 127 |     | 34%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        | 40.1   | *         | 34 - 127 |     | 27%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  | 99     |           | 31 - 132 |     | 99%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 | 70.4   |           | 39 - 123 |     | 70%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             | 110    |           | 30 - 133 |     | 75%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    | 93.6   |           | 37 - 115 |     | 94%        | SPK: 100 |
| INTERNAL STA | ANDARDS                          |        |           |          |     |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 52479  | 7.29      |          |     |            |          |
| 1146-65-2    | Naphthalene-d8                   | 203633 | 8.87      |          |     |            |          |
| 15067-26-2   | Acenaphthene-d10                 | 155938 | 11.04     |          |     |            |          |
| 1517-22-2    | Phenanthrene-d10                 | 198995 | 12.87     |          |     |            |          |
| 1719-03-5    | Chrysene-d12                     | 251341 | 16.15     |          |     |            |          |
| 1520-96-3    | Perylene-d12                     | 224015 | 17.85     |          |     |            |          |
| TENTATIVE ID | DENTIFIED COMPOUNDS              |        |           |          |     |            |          |
| 000075-85-4  | Amylene Hydrate                  | 61.3   | J         |          |     | 1.41       | ug/Kg    |
|              | unknown7.00                      | 62     | J         |          |     | 7          | ug/Kg    |
| 000496-11-7  | Indane                           | 230    | J         |          |     | 7.52       | ug/Kg    |
|              | unknown8.15                      | 140    | J         |          |     | 8.15       | ug/Kg    |
| 002234-20-0  | 2,4-Dimethylstyrene              | 51.1   | J         |          |     | 8.56       | ug/Kg    |
| 007782-26-5  | Benzeneacetic acid, .alphamethyl | 53.4   | J         |          |     | 10.01      | ug/Kg    |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

<sup>\* =</sup> Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GW-5DL SDG No.: F2875
Lab Sample ID: F2875-05DL Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072220.D 5 06/27/14 07/01/14 PB77464

| 5                           | 06/2//14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PB / /464                                 |              |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------|
| Parameter                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOQ / CRQL                                | Units        |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |              |
| Benzaldehyde                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| Phenol                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| bis(2-Chloroethyl)ether     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 2-Chlorophenol              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 2-Methylphenol              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 2,2-oxybis(1-Chloropropane) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| Acetophenone                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 3+4-Methylphenols           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| n-Nitroso-di-n-propylamine  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| Hexachloroethane            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| Nitrobenzene                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| Isophorone                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 2-Nitrophenol               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 2,4-Dimethylphenol          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| bis(2-Chloroethoxy)methane  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 2,4-Dichlorophenol          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| Naphthalene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 4-Chloroaniline             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| Hexachlorobutadiene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| Caprolactam                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 4-Chloro-3-methylphenol     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 2-Methylnaphthalene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| Hexachlorocyclopentadiene   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 2,4,6-Trichlorophenol       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                        | ug/L         |
| 2,4,5-Trichlorophenol       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 1,1-Biphenyl                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 2-Chloronaphthalene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 2-Nitroaniline              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| Dimethylphthalate           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| Acenaphthylene              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
| 2,6-Dinitrotoluene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                        | ug/L         |
|                             | Benzaldehyde Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 2-Methylphenol 2,2-oxybis(1-Chloropropane) Acetophenone 3+4-Methylphenols n-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol Naphthalene 4-Chloroaniline Hexachlorobutadiene Caprolactam 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 1,1-Biphenyl 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene | Benzaldehyde Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 2-Methylphenol 2,2-oxybis(1-Chloropropane) Acetophenone 3+4-Methylphenols n-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol Naphthalene 4-Chloroaniline Hexachlorobutadiene Caprolactam 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 1,1-Biphenyl 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene | Benzaldehyde 5 Phenol 14.2 bis(2-Chloroethyl)ether 5 2-Chlorophenol 5 2-Methylphenol 5 Acetophenone 5 3+4-Methylphenols 5 n-Nitroso-di-n-propylamine 5 Hexachloroethane 5 Nitrobenzene 5 Isophorone 5 2-Nitrophenol 5 2,4-Dimethylphenol 14.1 bis(2-Chloroethoxy)methane 5 2,4-Dichlorophenol 5 Naphthalene 210 4-Chloroaniline 5 Hexachloroethane 5 Caprolactam 5 4-Chloro-3-methylphenol 5 2-Methylnaphthalene 63.5 Hexachlorophenol 5 2-4,5-Trichlorophenol 5 2,4,5-Trichlorophenol 5 1,1-Biphenyl 5 2-Chloronaphthalene 5 2-Nitroaniline 5 1,1-Biphenyl 5 2-Nitroaniline 5 Dimethylphthalate 5 Acenaphthylene 5 | Benzaldehyde 5 UD Phenol 14.2 JD bis(2-Chloroethyl)ether 5 UD 2-Chlorophenol 5 UD 2-Methylphenol 5 UD 2,2-oxybis(1-Chloropropane) 5 UD 3+4-Methylphenol 5 UD n-Nitroso-di-n-propylamine 5 UD Hexachloroethane 5 UD Sophorone 5 UD 2-Nitrophenol 5 UD 2-Nitrophenol 5 UD 2,4-Dimethylphenol 5 UD 2,4-Dimethylphenol 5 UD Naphthalene 5 UD Naphthalene 5 UD A-Chloro-3-methylphenol 5 UD 2-Methylnaphthalene 63.5 D Hexachloroeylopenadiene 5 UD 2-Methylnaphthalene 63.5 D Hexachlorocyclopentadiene 5 UD 2-Methylnaphthalene 5 UD 2-Nitroaniline 5 UD | Parameter         Conc.         Qualifier         MDL           Benzaldehyde         5         UD         3.9           Phenol         14.2         JD         1.1           bis(2-Chloroethyl)ether         5         UD         2.8           2-Chlorophenol         5         UD         2.7           2-Methylphenol         5         UD         1.2           2,2-oxybis(1-Chloropropane)         5         UD         0.7           3-4-Methylphenols         5         UD         0.7           3+4-Methylphenols         5         UD         1.9           n-Nitroso-di-n-propylamine         5         UD         1           Hexachloroethane         5         UD         1.3           Nitrobenzene         5         UD         1.3           Isophorone         5         UD         3.4           Isophorone         5         UD         3.4           Isophorone         5         UD         2.6           2,4-Dimethylphenol         14.1         JD         3.6           bis(2-Chloroethoxy)methane         5         UD         2.8           2,4-Dichlorophenol         5         UD         3.3 <td>  Parameter   Conc.   Qualifier   MDL   LOD    </td> <td>  Benzaldehyde</td> | Parameter   Conc.   Qualifier   MDL   LOD | Benzaldehyde |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: SDG No.: F2875 GW-5DL Lab Sample ID: F2875-05DL Matrix: Water Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mLFinal Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: N Level: Decanted: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Prep Batch ID Dilution: Prep Date Date Analyzed

| BF072220.D | 5                          | 06/27/14 | 07/01/14 |           |      |     | PB77464    |       |  |
|------------|----------------------------|----------|----------|-----------|------|-----|------------|-------|--|
| CAS Number | Parameter                  |          | Conc.    | Qualifier | MDL  | LOD | LOQ / CRQL | Units |  |
| 99-09-2    | 3-Nitroaniline             |          | 5        | UD        | 5    | 5   | 50         | ug/L  |  |
| 83-32-9    | Acenaphthene               |          | 5        | UD        | 1.1  | 5   | 50         | ug/L  |  |
| 51-28-5    | 2,4-Dinitrophenol          |          | 40       | UD        | 10.5 | 40  | 50         | ug/L  |  |
| 100-02-7   | 4-Nitrophenol              |          | 25       | UD        | 10   | 25  | 50         | ug/L  |  |
| 132-64-9   | Dibenzofuran               |          | 5        | UD        | 1.2  | 5   | 50         | ug/L  |  |
| 121-14-2   | 2,4-Dinitrotoluene         |          | 5        | UD        | 5    | 5   | 50         | ug/L  |  |
| 84-66-2    | Diethylphthalate           |          | 5        | UD        | 1.9  | 5   | 50         | ug/L  |  |
| 7005-72-3  | 4-Chlorophenyl-phenylether |          | 5        | UD        | 1.1  | 5   | 50         | ug/L  |  |
| 86-73-7    | Fluorene                   |          | 5        | UD        | 1.6  | 5   | 50         | ug/L  |  |
| 100-01-6   | 4-Nitroaniline             |          | 10       | UD        | 6.8  | 10  | 50         | ug/L  |  |
| 534-52-1   | 4,6-Dinitro-2-methylphenol |          | 10       | UD        | 3.7  | 10  | 50         | ug/L  |  |
| 86-30-6    | n-Nitrosodiphenylamine     |          | 5        | UD        | 3    | 5   | 50         | ug/L  |  |
| 101-55-3   | 4-Bromophenyl-phenylether  |          | 5        | UD        | 1.2  | 5   | 50         | ug/L  |  |
| 118-74-1   | Hexachlorobenzene          |          | 5        | UD        | 0.9  | 5   | 50         | ug/L  |  |
| 1912-24-9  | Atrazine                   |          | 5        | UD        | 2    | 5   | 50         | ug/L  |  |
| 87-86-5    | Pentachlorophenol          |          | 5        | UD        | 5    | 5   | 50         | ug/L  |  |
| 85-01-8    | Phenanthrene               |          | 5        | UD        | 1.3  | 5   | 50         | ug/L  |  |
| 120-12-7   | Anthracene                 |          | 5        | UD        | 0.8  | 5   | 50         | ug/L  |  |
| 86-74-8    | Carbazole                  |          | 5        | UD        | 1.1  | 5   | 50         | ug/L  |  |
| 84-74-2    | Di-n-butylphthalate        |          | 5        | UD        | 5    | 5   | 50         | ug/L  |  |
| 206-44-0   | Fluoranthene               |          | 5        | UD        | 2    | 5   | 50         | ug/L  |  |
| 129-00-0   | Pyrene                     |          | 5        | UD        | 1    | 5   | 50         | ug/L  |  |
| 85-68-7    | Butylbenzylphthalate       |          | 5        | UD        | 0.95 | 5   | 50         | ug/L  |  |
| 91-94-1    | 3,3-Dichlorobenzidine      |          | 5        | UD        | 5    | 5   | 50         | ug/L  |  |
| 56-55-3    | Benzo(a)anthracene         |          | 5        | UD        | 0.8  | 5   | 50         | ug/L  |  |
| 218-01-9   | Chrysene                   |          | 5        | UD        | 0.9  | 5   | 50         | ug/L  |  |
| 117-81-7   | Bis(2-ethylhexyl)phthalate |          | 5        | UD        | 0.8  | 5   | 50         | ug/L  |  |
| 117-84-0   | Di-n-octyl phthalate       |          | 5        | UD        | 2.6  | 5   | 50         | ug/L  |  |
| 205-99-2   | Benzo(b)fluoranthene       |          | 5        | UD        | 1.5  | 5   | 50         | ug/L  |  |
| 207-08-9   | Benzo(k)fluoranthene       |          | 5        | UD        | 0.9  | 5   | 50         | ug/L  |  |
| 50-32-8    | Benzo(a)pyrene             |          | 5        | UD        | 0.7  | 5   | 50         | ug/L  |  |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     |          | 5        | UD        | 0.75 | 5   | 50         | ug/L  |  |
| 53-70-3    | Dibenzo(a,h)anthracene     |          | 5        | UD        | 2.1  | 5   | 50         | ug/L  |  |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GW-5DL SDG No.: F2875

Lab Sample ID: F2875-05DL Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072220.D 5 06/27/14 07/01/14 PB77464

| BF072220.D   | 5                          | 06/27/14 |        | 07/       | 01/14    |     | PB77464    |          |
|--------------|----------------------------|----------|--------|-----------|----------|-----|------------|----------|
| CAS Number   | Parameter                  |          | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
| 191-24-2     | Benzo(g,h,i)perylene       |          | 5      | UD        | 1.5      | 5   | 50         | ug/L     |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene |          | 5      | UD        | 1        | 5   | 50         | ug/L     |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol  |          | 5      | UD        | 1        | 5   | 50         | ug/L     |
| SURROGATES   |                            |          |        |           |          |     |            |          |
| 367-12-4     | 2-Fluorophenol             |          | 60.5   |           | 10 - 130 | )   | 40%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                  |          | 38     |           | 10 - 130 | )   | 25%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5            |          | 78.9   |           | 36 - 131 |     | 79%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl           |          | 85.6   |           | 39 - 131 |     | 86%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol       |          | 120    |           | 25 - 155 | ;   | 79%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14              |          | 81.1   |           | 23 - 130 | )   | 81%        | SPK: 100 |
| INTERNAL STA | ANDARDS                    |          |        |           |          |     |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4     |          | 56082  | 7.17      |          |     |            |          |
| 1146-65-2    | Naphthalene-d8             |          | 240276 | 8.74      |          |     |            |          |
| 15067-26-2   | Acenaphthene-d10           |          | 123602 | 10.9      |          |     |            |          |
| 1517-22-2    | Phenanthrene-d10           |          | 220093 | 12.73     |          |     |            |          |
| 1719-03-5    | Chrysene-d12               |          | 256092 | 16.01     |          |     |            |          |
| 1520-96-3    | Perylene-d12               |          | 246680 | 17.67     |          |     |            |          |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GW-5 SDG No.: F2875 F2875-05 Lab Sample ID: Matrix: Water Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016817.D 1 06/28/14 VN062814

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-87-3    | Chloromethane                  | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-83-9    | Bromomethane                   | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-00-3    | Chloroethane                   | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 67-64-1    | Acetone                        | 1     | U         | 0.5  | 1   | 5          | ug/L  |
| 75-15-0    | Carbon Disulfide               | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 46.9  |           | 0.35 | 0.5 | 1          | ug/L  |
| 79-20-9    | Methyl Acetate                 | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-09-2    | Methylene Chloride             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 110-82-7   | Cyclohexane                    | 200   |           | 0.2  | 0.2 | 1          | ug/L  |
| 78-93-3    | 2-Butanone                     | 12.2  |           | 1.3  | 2.5 | 5          | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-97-5    | Bromochloromethane             | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 67-66-3    | Chloroform                     | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-87-2   | Methylcyclohexane              | 76.3  |           | 0.2  | 0.2 | 1          | ug/L  |
| 71-43-2    | Benzene                        | 2800  | E         | 0.2  | 0.2 | 1          | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 79-01-6    | Trichloroethene                | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-27-4    | Bromodichloromethane           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1     | U         | 1    | 1   | 5          | ug/L  |
| 108-88-3   | Toluene                        | 140   |           | 0.2  | 0.2 | 1          | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |



Soil Aliquot Vol:

# **Report of Analysis**

Client:Dvirka & BartilucciDate Collected:06/23/14Project:NYCSCA Unionport Road BronxDate Received:06/24/14Client Sample ID:GW-5SDG No.:F2875

Client Sample ID: GW-5 SDG No.: F2875

Lab Sample ID: F2875-05 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Test:

VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016817.D 1 06/28/14 VN062814

|             | <u>-</u>                    |       | 0 07 = 07 |         |     |            |         |
|-------------|-----------------------------|-------|-----------|---------|-----|------------|---------|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL     | LOD | LOQ / CRQL | Units   |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 591-78-6    | 2-Hexanone                  | 2.5   | U         | 1.9     | 2.5 | 5          | ug/L    |
| 124-48-1    | Dibromochloromethane        | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 106-93-4    | 1,2-Dibromoethane           | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 127-18-4    | Tetrachloroethene           | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 108-90-7    | Chlorobenzene               | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 100-41-4    | Ethyl Benzene               | 790   | E         | 0.2     | 0.2 | 1          | ug/L    |
| 179601-23-1 | m/p-Xylenes                 | 1000  | E         | 0.4     | 0.4 | 2          | ug/L    |
| 95-47-6     | o-Xylene                    | 170   |           | 0.2     | 0.2 | 1          | ug/L    |
| 100-42-5    | Styrene                     | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 75-25-2     | Bromoform                   | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 98-82-8     | Isopropylbenzene            | 45.7  |           | 0.2     | 0.2 | 1          | ug/L    |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 103-65-1    | n-propylbenzene             | 98.4  |           | 0.2     | 0.2 | 1          | ug/L    |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 84.2  |           | 0.2     | 0.2 | 1          | ug/L    |
| 98-06-6     | tert-Butylbenzene           | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 240   | E         | 0.2     | 0.2 | 1          | ug/L    |
| 135-98-8    | sec-Butylbenzene            | 3.8   |           | 0.2     | 0.2 | 1          | ug/L    |
| 99-87-6     | p-Isopropyltoluene          | 1.6   |           | 0.2     | 0.2 | 1          | ug/L    |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 104-51-8    | n-Butylbenzene              | 5.8   |           | 0.2     | 0.2 | 1          | ug/L    |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 91-20-3     | Naphthalene                 | 240   | E         | 0.2     | 0.2 | 1          | ug/L    |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 123-91-1    | 1,4-Dioxane                 | 100   | U         | 100     | 100 | 100        | ug/L    |
| SURROGATES  |                             |       |           |         |     |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 45.4  |           | 61 - 14 |     | 91%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 48.5  |           | 69 - 13 | 3   | 97%        | SPK: 50 |
|             |                             |       |           |         |     |            |         |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GW-5 SDG No.: F2875

Lab Sample ID: F2875-05 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016817.D 1 06/28/14 VN062814

| CAS Number   | Parameter                          | Conc.  | Qualifier | MDL LO   | DD LOQ / CRQL | Units   |
|--------------|------------------------------------|--------|-----------|----------|---------------|---------|
| 2037-26-5    | Toluene-d8                         | 50.4   |           | 65 - 126 | 101%          | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene               | 57.4   |           | 58 - 135 | 115%          | SPK: 50 |
| INTERNAL ST  | ANDARDS                            |        |           |          |               |         |
| 363-72-4     | Pentafluorobenzene                 | 217161 | 7.86      |          |               |         |
| 540-36-3     | 1,4-Difluorobenzene                | 351085 | 8.78      |          |               |         |
| 3114-55-4    | Chlorobenzene-d5                   | 370308 | 11.61     |          |               |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4             | 168179 | 13.56     |          |               |         |
| TENTATIVE II | DENTIFIED COMPOUNDS                |        |           |          |               |         |
| 000078-78-4  | Butane, 2-methyl-                  | 46.6   | J         |          | 2.86          | ug/L    |
| 002402-06-4  | Cyclopropane, 1,2-dimethyl-, trans | 51.8   | J         |          | 3.23          | ug/L    |
| 60-29-7      | Diethyl Ether                      | 6.5    | J         |          | 3.53          | ug/L    |
| 000513-35-9  | 2-Butene, 2-methyl-                | 75.7   | J         |          | 3.68          | ug/L    |
| 000142-29-0  | Cyclopentene                       | 43.4   | J         |          | 4.61          | ug/L    |
| 75-65-0      | Tert butyl alcohol                 | 2100   | J         |          | 5.02          | ug/L    |
| 108-20-3     | Diisopropyl ether                  | 27.9   | J         |          | 6.19          | ug/L    |
| 000637-92-3  | Propane, 2-ethoxy-2-methyl-        | 40.2   | J         |          | 6.82          | ug/L    |
| 001528-21-8  | Ethylidenecyclobutane              | 70.5   | J         |          | 8.4           | ug/L    |
| ABZT         | Alkylbenzenes, Total               | 480    | J         |          | 12.8          | ug/L    |
| 000620-14-4  | Benzene, 1-ethyl-3-methyl-         | 41     | J         |          | 12.86         | ug/L    |
| 000611-14-3  | Benzene, 1-ethyl-2-methyl-         | 35.5   | J         |          | 13.1          | ug/L    |
| 000496-11-7  | Indane                             | 110    | J         |          | 13.76         | ug/L    |
| 002039-89-6  | Benzene, 2-ethenyl-1,4-dimethyl-   | 30.4   | J         |          | 14.82         | ug/L    |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GW-5DL SDG No.: F2875 F2875-05DL Lab Sample ID: Matrix: Water

Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Final Vol:

Units:

шL

Soil Aliquot Vol: uL Test: VOCMS Group1

5000

uL

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed

VN016818.D 20 06/28/14 VN062814

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 74-87-3    | Chloromethane                  | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 74-83-9    | Bromomethane                   | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 75-00-3    | Chloroethane                   | 10    | UD        | 4    | 10  | 20         | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 67-64-1    | Acetone                        | 20    | UD        | 10   | 20  | 100        | ug/L  |
| 75-15-0    | Carbon Disulfide               | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 47.4  | D         | 7    | 10  | 20         | ug/L  |
| 79-20-9    | Methyl Acetate                 | 10    | UD        | 4    | 10  | 20         | ug/L  |
| 75-09-2    | Methylene Chloride             | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 110-82-7   | Cyclohexane                    | 150   | D         | 4    | 4   | 20         | ug/L  |
| 78-93-3    | 2-Butanone                     | 50    | UD        | 26.4 | 50  | 100        | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 74-97-5    | Bromochloromethane             | 10    | UD        | 4    | 10  | 20         | ug/L  |
| 67-66-3    | Chloroform                     | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 108-87-2   | Methylcyclohexane              | 63.4  | D         | 4    | 4   | 20         | ug/L  |
| 71-43-2    | Benzene                        | 4300  | ED        | 4    | 4   | 20         | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 79-01-6    | Trichloroethene                | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 75-27-4    | Bromodichloromethane           | 4     | UD        | 4    | 4   | 20         | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 20    | UD        | 20   | 20  | 100        | ug/L  |
| 108-88-3   | Toluene                        | 120   | D         | 4    | 4   | 20         | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 4     | UD        | 4    | 4   | 20         | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GW-5DL SDG No.: F2875
Lab Sample ID: F2875-05DL Matrix: Water
Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN016818.D 20 06/28/14 VN062814

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 79-00-5     | 1,1,2-Trichloroethane       | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 591-78-6    | 2-Hexanone                  | 50    | UD        | 38.8     | 50   | 100        | ug/L    |
| 124-48-1    | Dibromochloromethane        | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 106-93-4    | 1,2-Dibromoethane           | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 127-18-4    | Tetrachloroethene           | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 108-90-7    | Chlorobenzene               | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 100-41-4    | Ethyl Benzene               | 720   | D         | 4        | 4    | 20         | ug/L    |
| 179601-23-1 | m/p-Xylenes                 | 960   | D         | 8        | 8    | 40         | ug/L    |
| 95-47-6     | o-Xylene                    | 150   | D         | 4        | 4    | 20         | ug/L    |
| 100-42-5    | Styrene                     | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 75-25-2     | Bromoform                   | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 98-82-8     | Isopropylbenzene            | 40.2  | D         | 4        | 4    | 20         | ug/L    |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 103-65-1    | n-propylbenzene             | 80.2  | D         | 4        | 4    | 20         | ug/L    |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 78.2  | D         | 4        | 4    | 20         | ug/L    |
| 98-06-6     | tert-Butylbenzene           | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 220   | D         | 4        | 4    | 20         | ug/L    |
| 135-98-8    | sec-Butylbenzene            | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 99-87-6     | p-Isopropyltoluene          | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 541-73-1    | 1,3-Dichlorobenzene         | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 106-46-7    | 1,4-Dichlorobenzene         | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 104-51-8    | n-Butylbenzene              | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 95-50-1     | 1,2-Dichlorobenzene         | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 91-20-3     | Naphthalene                 | 230   | D         | 4        | 4    | 20         | ug/L    |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 4     | UD        | 4        | 4    | 20         | ug/L    |
| 123-91-1    | 1,4-Dioxane                 | 2000  | UD        | 2000     | 2000 | 2000       | ug/L    |
| SURROGATES  |                             |       |           |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 48.4  |           | 61 - 14  |      | 97%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 47.3  |           | 69 - 133 | 3    | 95%        | SPK: 50 |



Project:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci

NYCSCA Unionport Road Bronx

Client Sample ID: GW-5DL

Lab Sample ID: F2875-05DL

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

% Moisture:

Date Collected:

Date Received:

SDG No.:

Final Vol:

Matrix:

loisture: 100

Test: VOCMS Group1

Level: LOW

File ID/Qc Batch:

Dilution:

20

Prep Date

Date Analyzed

Prep Batch ID

06/23/14

06/24/14

F2875

Water

5000

uL

VN016818.D

06/28/14

VN062814

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL LOD  | LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|------------|---------|
| 2037-26-5   | Toluene-d8             | 50.6   |           | 65 - 126 | 101%       | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 58.6   |           | 58 - 135 | 117%       | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |            |         |
| 363-72-4    | Pentafluorobenzene     | 199059 | 7.87      |          |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 331686 | 8.79      |          |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 352733 | 11.61     |          |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 154540 | 13.56     |          |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID:GW-5DL2SDG No.:F2875Lab Sample ID:F2875-05DL2Matrix:WaterAnalytical Method:SW8260% Moisture:100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN016828.D 100 06/28/14 VN062814

| CAS Number | Parameter                      | Conc. | Qualifier | MDL | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|-----|-----|------------|-------|
| TARGETS    |                                |       |           |     |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 74-87-3    | Chloromethane                  | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 74-83-9    | Bromomethane                   | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 75-00-3    | Chloroethane                   | 50    | UD        | 20  | 50  | 100        | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 67-64-1    | Acetone                        | 100   | UD        | 50  | 100 | 500        | ug/L  |
| 75-15-0    | Carbon Disulfide               | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 50    | UD        | 35  | 50  | 100        | ug/L  |
| 79-20-9    | Methyl Acetate                 | 50    | UD        | 20  | 50  | 100        | ug/L  |
| 75-09-2    | Methylene Chloride             | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 110-82-7   | Cyclohexane                    | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 78-93-3    | 2-Butanone                     | 250   | UD        | 130 | 250 | 500        | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 74-97-5    | Bromochloromethane             | 50    | UD        | 20  | 50  | 100        | ug/L  |
| 67-66-3    | Chloroform                     | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 108-87-2   | Methylcyclohexane              | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 71-43-2    | Benzene                        | 4000  | D         | 20  | 20  | 100        | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 79-01-6    | Trichloroethene                | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 75-27-4    | Bromodichloromethane           | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 100   | UD        | 100 | 100 | 500        | ug/L  |
| 108-88-3   | Toluene                        | 20    | UD        | 20  | 20  | 100        | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 20    | UD        | 20  | 20  | 100        | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID:GW-5DL2SDG No.:F2875Lab Sample ID:F2875-05DL2Matrix:WaterAnalytical Method:SW8260% Moisture:100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN016828.D 100 06/28/14 VN062814

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD   | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|-------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 79-00-5     | 1,1,2-Trichloroethane       | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 591-78-6    | 2-Hexanone                  | 250   | UD        | 190      | 250   | 500        | ug/L    |
| 124-48-1    | Dibromochloromethane        | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 106-93-4    | 1,2-Dibromoethane           | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 127-18-4    | Tetrachloroethene           | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 108-90-7    | Chlorobenzene               | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 100-41-4    | Ethyl Benzene               | 610   | D         | 20       | 20    | 100        | ug/L    |
| 179601-23-1 | m/p-Xylenes                 | 780   | D         | 40       | 40    | 200        | ug/L    |
| 95-47-6     | o-Xylene                    | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 100-42-5    | Styrene                     | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 75-25-2     | Bromoform                   | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 98-82-8     | Isopropylbenzene            | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 103-65-1    | n-propylbenzene             | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 98-06-6     | tert-Butylbenzene           | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 180   | D         | 20       | 20    | 100        | ug/L    |
| 135-98-8    | sec-Butylbenzene            | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 99-87-6     | p-Isopropyltoluene          | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 541-73-1    | 1,3-Dichlorobenzene         | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 106-46-7    | 1,4-Dichlorobenzene         | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 104-51-8    | n-Butylbenzene              | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 95-50-1     | 1,2-Dichlorobenzene         | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 91-20-3     | Naphthalene                 | 540   | D         | 20       | 20    | 100        | ug/L    |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 20    | UD        | 20       | 20    | 100        | ug/L    |
| 123-91-1    | 1,4-Dioxane                 | 10000 | UD        | 10000    | 10000 | 10000      | ug/L    |
| SURROGATES  |                             |       |           |          |       |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 50.3  |           | 61 - 141 |       | 101%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 47.2  |           | 69 - 133 |       | 94%        | SPK: 50 |



### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GW-5DL2

Lab Sample ID: F2875-05DL2

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25 Level:

Final Vol:

Date Collected:

Date Received:

SDG No.:

% Moisture:

Matrix:

Test: VOCMS Group1 LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

06/23/14

06/24/14

F2875

Water

100

5000

uL

100 VN016828.D

06/28/14

VN062814

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL LO   | D LOQ/CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|------------|---------|
| 2037-26-5    | Toluene-d8             | 49.3   |           | 65 - 126 | 99%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 55.5   |           | 58 - 135 | 111%       | SPK: 50 |
| INTERNAL STA | ANDARDS                |        |           |          |            |         |
| 363-72-4     | Pentafluorobenzene     | 203400 | 7.87      |          |            |         |
| 540-36-3     | 1,4-Difluorobenzene    | 349300 | 8.79      |          |            |         |
| 3114-55-4    | Chlorobenzene-d5       | 360211 | 11.61     |          |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 144377 | 13.56     |          |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



GC Column:

RXI-624

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: TRIPBLANK-6-23-14 SDG No.: F2875 Lab Sample ID: F2875-06 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

ID: 0.25

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Level:

LOW

Soil Aliquot Vol: uL Test: VOCMS Group1

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016819.D 1 06/28/14 VN062814

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-87-3    | Chloromethane                  | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-83-9    | Bromomethane                   | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-00-3    | Chloroethane                   | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 67-64-1    | Acetone                        | 1     | U         | 0.5  | 1   | 5          | ug/L  |
| 75-15-0    | Carbon Disulfide               | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.5   | U         | 0.35 | 0.5 | 1          | ug/L  |
| 79-20-9    | Methyl Acetate                 | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-09-2    | Methylene Chloride             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 110-82-7   | Cyclohexane                    | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-93-3    | 2-Butanone                     | 2.5   | U         | 1.3  | 2.5 | 5          | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-97-5    | Bromochloromethane             | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 67-66-3    | Chloroform                     | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-87-2   | Methylcyclohexane              | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-43-2    | Benzene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 79-01-6    | Trichloroethene                | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-27-4    | Bromodichloromethane           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1     | U         | 1    | 1   | 5          | ug/L  |
| 108-88-3   | Toluene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |



Client:Dvirka & BartilucciDate Collected:06/23/14Project:NYCSCA Unionport Road BronxDate Received:06/24/14Client Sample ID:TRIPBLANK-6-23-14SDG No.:F2875

Lab Sample ID: F2875-06 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016819.D 1 06/28/14 VN062814

| , , , , , , , , , , , , , , , , |                             |       |           |         |     |            |         |
|---------------------------------|-----------------------------|-------|-----------|---------|-----|------------|---------|
| CAS Number                      | Parameter                   | Conc. | Qualifier | MDL     | LOD | LOQ / CRQL | Units   |
| 10061-01-5                      | cis-1,3-Dichloropropene     | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 79-00-5                         | 1,1,2-Trichloroethane       | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 591-78-6                        | 2-Hexanone                  | 2.5   | U         | 1.9     | 2.5 | 5          | ug/L    |
| 124-48-1                        | Dibromochloromethane        | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 106-93-4                        | 1,2-Dibromoethane           | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 127-18-4                        | Tetrachloroethene           | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 108-90-7                        | Chlorobenzene               | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 100-41-4                        | Ethyl Benzene               | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 179601-23-1                     | m/p-Xylenes                 | 0.4   | U         | 0.4     | 0.4 | 2          | ug/L    |
| 95-47-6                         | o-Xylene                    | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 100-42-5                        | Styrene                     | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 75-25-2                         | Bromoform                   | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 98-82-8                         | Isopropylbenzene            | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 79-34-5                         | 1,1,2,2-Tetrachloroethane   | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 103-65-1                        | n-propylbenzene             | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 108-67-8                        | 1,3,5-Trimethylbenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 98-06-6                         | tert-Butylbenzene           | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 95-63-6                         | 1,2,4-Trimethylbenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 135-98-8                        | sec-Butylbenzene            | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 99-87-6                         | p-Isopropyltoluene          | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 541-73-1                        | 1,3-Dichlorobenzene         | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 106-46-7                        | 1,4-Dichlorobenzene         | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 104-51-8                        | n-Butylbenzene              | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 95-50-1                         | 1,2-Dichlorobenzene         | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 96-12-8                         | 1,2-Dibromo-3-Chloropropane | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 120-82-1                        | 1,2,4-Trichlorobenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 91-20-3                         | Naphthalene                 | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 87-61-6                         | 1,2,3-Trichlorobenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 123-91-1<br>SURROGATES          | 1,4-Dioxane                 | 100   | U         | 100     | 100 | 100        | ug/L    |
| 17060-07-0                      | 1,2-Dichloroethane-d4       | 49.3  |           | 61 - 14 | 1   | 99%        | SPK: 50 |
| 1868-53-7                       | Dibromofluoromethane        | 47.8  |           | 69 - 13 | 3   | 96%        | SPK: 50 |



Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: TRIPBLANK-6-23-14

Lab Sample ID: F2875-06

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

Matrix:

Date Collected:

Date Received:

SDG No.:

Final Vol:

% Moisture: 100

Test: VOCMS Group1

Level: LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

06/23/14

06/24/14

F2875

Water

5000

uL

VN016819.D 1

06/28/14

VN062814

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL LO   | D LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|--------------|---------|
| 2037-26-5   | Toluene-d8             | 49.3   |           | 65 - 126 | 99%          | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 54.1   |           | 58 - 135 | 108%         | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |              |         |
| 363-72-4    | Pentafluorobenzene     | 192148 | 7.87      |          |              |         |
| 540-36-3    | 1,4-Difluorobenzene    | 324856 | 8.79      |          |              |         |
| 3114-55-4   | Chlorobenzene-d5       | 334583 | 11.61     |          |              |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 128343 | 13.56     |          |              |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 09:25 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-1(0-5) F2875 Lab Sample ID: F2875-07 Matrix: SOIL % Solid: 89.6

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQL | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.131 | U    | 1  | 0.034 | 0.131 | 0.261      | mg/Kg | 06/26/14  | 06/30/14 13:59 | 9012B    |
| Hexavalent Chromium | 0.217 | U    | 1  | 0.087 | 0.217 | 0.433      | mg/Kg | 06/27/14  | 06/27/14 16:54 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-1(0-5) F2875 Lab Sample ID: F2875-07 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 10.4

Sample Wt/Vol: 30.08 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010265.D 1 06/27/14 06/30/14 PB77475

| CAS Number | Parameter         | Conc. | Qualifi | ier MDL  | LOD  | LOQ / CF | RQL Units |
|------------|-------------------|-------|---------|----------|------|----------|-----------|
| TARGETS    |                   |       |         |          |      |          |           |
| 1918-00-9  | DICAMBA           | 18.6  | U       | 14.8     | 18.6 | 74.6     | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 18.6  | U       | 13.7     | 18.6 | 74.6     | ug/Kg     |
| 94-75-7    | 2,4-D             | 18.6  | U       | 18.6     | 18.6 | 74.6     | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 18.6  | U       | 12.1     | 18.6 | 74.6     | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 18.6  | U       | 11.4     | 18.6 | 74.6     | ug/Kg     |
| 94-82-6    | 2,4-DB            | 18.6  | U       | 18.6     | 18.6 | 74.6     | ug/Kg     |
| 88-85-7    | DINOSEB           | 18.6  | U       | 18.6     | 18.6 | 74.6     | ug/Kg     |
| SURROGATES |                   |       |         |          |      |          |           |
| 19719-28-9 | 2,4-DCAA          | 278   |         | 12 - 189 | )    | 56%      | SPK: 500  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-1(0-5) SDG No.: F2875

Lab Sample ID: F2875-07 Matrix: SOIL

Level (low/med): low % Solid: 89.6

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQ | L Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|-----------|-------------------|-----------|----------|
| 7440-36-0 | Antimony  | 4.52  | N    | 1  | 0.521 | 1.16  | 2.33      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-38-2 | Arsenic   | 8.1   |      | 1  | 0.307 | 0.465 | 0.93      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-39-3 | Barium    | 172   |      | 1  | 0.372 | 2.33  | 4.65      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.506 |      | 1  | 0.056 | 0.14  | 0.279     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.608 |      | 1  | 0.056 | 0.14  | 0.279     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-47-3 | Chromium  | 20.1  |      | 1  | 0.121 | 0.233 | 0.465     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-48-4 | Cobalt    | 9.91  |      | 1  | 0.53  | 0.698 | 1.4       | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-50-8 | Copper    | 146   | N    | 1  | 0.298 | 0.465 | 0.93      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7439-92-1 | Lead      | 508   |      | 1  | 0.112 | 0.279 | 0.558     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7439-96-5 | Manganese | 277   |      | 1  | 0.177 | 0.465 | 0.93      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.184 |      | 1  | 0.005 | 0.005 | 0.01      | mg/Kg 06/27/14    | 06/30/14  | SW7471A  |
| 7440-02-0 | Nickel    | 28.3  |      | 1  | 0.428 | 0.93  | 1.86      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7782-49-2 | Selenium  | 1.51  | N    | 1  | 0.381 | 0.465 | 0.93      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-22-4 | Silver    | 1.54  |      | 1  | 0.14  | 0.233 | 0.465     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.93  | U    | 1  | 0.251 | 0.93  | 1.86      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-62-2 | Vanadium  | 26    |      | 1  | 0.549 | 0.93  | 1.86      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-66-6 | Zinc      | 385   |      | 1  | 0.651 | 0.93  | 1.86      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-1(0-5) F2875 Lab Sample ID: F2875-07 Matrix: SOIL % Moisture: Analytical Method: SW8082A 10.4 Decanted: Sample Wt/Vol: 30.09 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume:

1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date 06/28/14 06/30/14 PP003570.D PB77506

| CAS Number | Parameter            | Conc. | Qualific | er MDL   | LOD | LOQ / CR | QL Units |
|------------|----------------------|-------|----------|----------|-----|----------|----------|
| TARGETS    |                      |       |          |          |     |          |          |
| 12674-11-2 | Aroclor-1016         | 3.7   | U        | 3.7      | 3.7 | 18.9     | ug/kg    |
| 11104-28-2 | Aroclor-1221         | 3.7   | U        | 3.7      | 3.7 | 18.9     | ug/kg    |
| 11141-16-5 | Aroclor-1232         | 3.7   | U        | 3.7      | 3.7 | 18.9     | ug/kg    |
| 53469-21-9 | Aroclor-1242         | 3.7   | U        | 3.7      | 3.7 | 18.9     | ug/kg    |
| 12672-29-6 | Aroclor-1248         | 3.7   | U        | 3.7      | 3.7 | 18.9     | ug/kg    |
| 11097-69-1 | Aroclor-1254         | 59    | P        | 1.7      | 3.7 | 18.9     | ug/kg    |
| 11096-82-5 | Aroclor-1260         | 3.7   | U        | 3.7      | 3.7 | 18.9     | ug/kg    |
| SURROGATES |                      |       |          |          |     |          |          |
| 877-09-8   | Tetrachloro-m-xylene | 17.2  |          | 10 - 166 | 5   | 86%      | SPK: 20  |
| 2051-24-3  | Decachlorobiphenyl   | 25.4  | *        | 60 - 125 | 5   | 127%     | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Pesticide-TCL

Test:



Soil Aliquot Vol:

## **Report of Analysis**

Client:Dvirka & BartilucciDate Collected:06/24/14Project:NYCSCA Unionport Road BronxDate Received:06/24/14

Client Sample ID: GP-1(0-5) SDG No.: F2875

Lab Sample ID: F2875-07 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 10.4 Decanted:

Sample Wt/Vol: 30.06 Units: g Final Vol: 10000 uL

Extraction Type: Injection Volume :

uL

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023142.D 1 06/28/14 06/30/14 PB77509

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|-------|----------|----------|
| TARGETS    |                      |       |           |          |       |          |          |
| 319-84-6   | alpha-BHC            | 0.368 | U         | 0.145    | 0.368 | 1.9      | ug/kg    |
| 319-85-7   | beta-BHC             | 0.368 | U         | 0.2      | 0.368 | 1.9      | ug/kg    |
| 319-86-8   | delta-BHC            | 0.368 | U         | 0.111    | 0.368 | 1.9      | ug/kg    |
| 58-89-9    | gamma-BHC (Lindane)  | 0.368 | U         | 0.167    | 0.368 | 1.9      | ug/kg    |
| 76-44-8    | Heptachlor           | 0.368 | U         | 0.156    | 0.368 | 1.9      | ug/kg    |
| 309-00-2   | Aldrin               | 0.368 | U         | 0.111    | 0.368 | 1.9      | ug/kg    |
| 1024-57-3  | Heptachlor epoxide   | 0.368 | U         | 0.178    | 0.368 | 1.9      | ug/kg    |
| 959-98-8   | Endosulfan I         | 0.368 | U         | 0.167    | 0.368 | 1.9      | ug/kg    |
| 60-57-1    | Dieldrin             | 0.368 | U         | 0.145    | 0.368 | 1.9      | ug/kg    |
| 72-55-9    | 4,4-DDE              | 0.368 | U         | 0.223    | 0.368 | 1.9      | ug/kg    |
| 72-20-8    | Endrin               | 0.368 | U         | 0.2      | 0.368 | 1.9      | ug/kg    |
| 33213-65-9 | Endosulfan II        | 0.368 | U         | 0.156    | 0.368 | 1.9      | ug/kg    |
| 72-54-8    | 4,4-DDD              | 0.368 | U         | 0.189    | 0.368 | 1.9      | ug/kg    |
| 1031-07-8  | Endosulfan Sulfate   | 0.368 | U         | 0.167    | 0.368 | 1.9      | ug/kg    |
| 50-29-3    | 4,4-DDT              | 0.368 | U         | 0.156    | 0.368 | 1.9      | ug/kg    |
| 72-43-5    | Methoxychlor         | 0.368 | U         | 0.189    | 0.368 | 1.9      | ug/kg    |
| 53494-70-5 | Endrin ketone        | 0.368 | U         | 0.145    | 0.368 | 1.9      | ug/kg    |
| 7421-93-4  | Endrin aldehyde      | 0.368 | U         | 0.167    | 0.368 | 1.9      | ug/kg    |
| 5103-71-9  | alpha-Chlordane      | 0.368 | U         | 0.156    | 0.368 | 1.9      | ug/kg    |
| 5103-74-2  | gamma-Chlordane      | 0.368 | U         | 0.145    | 0.368 | 1.9      | ug/kg    |
| 8001-35-2  | Toxaphene            | 3.7   | U         | 3.7      | 3.7   | 18.9     | ug/kg    |
| SURROGATES |                      |       |           |          |       |          |          |
| 2051-24-3  | Decachlorobiphenyl   | 19.4  |           | 10 - 169 |       | 97%      | SPK: 20  |
| 877-09-8   | Tetrachloro-m-xylene | 16.7  |           | 31 - 151 |       | 84%      | SPK: 20  |



Client: Dvirka & Bartilucci

Date Collected: 06/24/14

Project:

NYCSCA Unionport Road Bronx

06/24/14

Client Sample ID:

GP-1(0-5)

SDG No.: F2875

Lab Sample ID:

F2875-07

Matrix:

Date Received:

**SOIL** 

Analytical Method:

SW8081

% Moisture:

10.4

Decanted:

Sample Wt/Vol:

30.06

g

Final Vol:

10000

иL

Soil Aliquot Vol:

иL

Units:

Test:

Pesticide-TCL

Extraction Type:

1.0

PH:

Injection Volume:

GPC Factor: File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PD023142.D

1

06/28/14

06/30/14

PB77509

**CAS Number** 

Conc.

Qualifier MDL

LOD

LOQ / CRQL Units

Parameter

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-1(0-5) SDG No.: F2875

Lab Sample ID: F2875-07 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 10.4

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072207.D 10 06/28/14 07/01/14 PB77511

| CAS Number | Parameter                   | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|-----------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                             |       |           |      |     |            |       |
| 100-52-7   | Benzaldehyde                | 370   | U         | 190  | 370 | 3700       | ug/Kg |
| 108-95-2   | Phenol                      | 370   | U         | 85.8 | 370 | 3700       | ug/Kg |
| 111-44-4   | bis(2-Chloroethyl)ether     | 370   | U         | 180  | 370 | 3700       | ug/Kg |
| 95-57-8    | 2-Chlorophenol              | 370   | U         | 200  | 370 | 3700       | ug/Kg |
| 95-48-7    | 2-Methylphenol              | 370   | U         | 200  | 370 | 3700       | ug/Kg |
| 108-60-1   | 2,2-oxybis(1-Chloropropane) | 370   | U         | 150  | 370 | 3700       | ug/Kg |
| 98-86-2    | Acetophenone                | 370   | U         | 110  | 370 | 3700       | ug/Kg |
| 65794-96-9 | 3+4-Methylphenols           | 370   | U         | 190  | 370 | 3700       | ug/Kg |
| 621-64-7   | n-Nitroso-di-n-propylamine  | 370   | U         | 190  | 370 | 3700       | ug/Kg |
| 67-72-1    | Hexachloroethane            | 370   | U         | 170  | 370 | 3700       | ug/Kg |
| 98-95-3    | Nitrobenzene                | 370   | U         | 140  | 370 | 3700       | ug/Kg |
| 78-59-1    | Isophorone                  | 370   | U         | 120  | 370 | 3700       | ug/Kg |
| 88-75-5    | 2-Nitrophenol               | 370   | U         | 180  | 370 | 3700       | ug/Kg |
| 105-67-9   | 2,4-Dimethylphenol          | 370   | U         | 210  | 370 | 3700       | ug/Kg |
| 111-91-1   | bis(2-Chloroethoxy)methane  | 370   | U         | 210  | 370 | 3700       | ug/Kg |
| 120-83-2   | 2,4-Dichlorophenol          | 370   | U         | 140  | 370 | 3700       | ug/Kg |
| 91-20-3    | Naphthalene                 | 370   | U         | 130  | 370 | 3700       | ug/Kg |
| 106-47-8   | 4-Chloroaniline             | 370   | U         | 260  | 370 | 3700       | ug/Kg |
| 87-68-3    | Hexachlorobutadiene         | 370   | U         | 130  | 370 | 3700       | ug/Kg |
| 105-60-2   | Caprolactam                 | 740   | U         | 170  | 740 | 3700       | ug/Kg |
| 59-50-7    | 4-Chloro-3-methylphenol     | 370   | U         | 160  | 370 | 3700       | ug/Kg |
| 91-57-6    | 2-Methylnaphthalene         | 370   | U         | 93.6 | 370 | 3700       | ug/Kg |
| 77-47-4    | Hexachlorocyclopentadiene   | 370   | U         | 90.3 | 370 | 3700       | ug/Kg |
| 88-06-2    | 2,4,6-Trichlorophenol       | 370   | U         | 110  | 370 | 3700       | ug/Kg |
| 95-95-4    | 2,4,5-Trichlorophenol       | 370   | U         | 260  | 370 | 3700       | ug/Kg |
| 92-52-4    | 1,1-Biphenyl                | 370   | U         | 140  | 370 | 3700       | ug/Kg |
| 91-58-7    | 2-Chloronaphthalene         | 370   | U         | 84.7 | 370 | 3700       | ug/Kg |
| 88-74-4    | 2-Nitroaniline              | 370   | U         | 160  | 370 | 3700       | ug/Kg |
| 131-11-3   | Dimethylphthalate           | 370   | U         | 100  | 370 | 3700       | ug/Kg |
| 208-96-8   | Acenaphthylene              | 370   | U         | 93.6 | 370 | 3700       | ug/Kg |
| 606-20-2   | 2,6-Dinitrotoluene          | 370   | U         | 150  | 370 | 3700       | ug/Kg |
|            |                             |       |           |      |     |            |       |



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-1(0-5) SDG No.: F2875

Lab Sample ID: F2875-07 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 10.4

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072207.D 10 06/28/14 07/01/14 PB77511

| BF072207.D | 10                         | 06/28/14 | 07        | /01/14 |      | PB77511    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 740      | U         | 240    | 740  | 3700       | ug/Kg |
| 83-32-9    | Acenaphthene               | 370      | U         | 100    | 370  | 3700       | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 3000     | U         | 380    | 3000 | 3700       | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 1900     | U         | 690    | 1900 | 3700       | ug/Kg |
| 132-64-9   | Dibenzofuran               | 370      | U         | 140    | 370  | 3700       | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 370      | U         | 110    | 370  | 3700       | ug/Kg |
| 84-66-2    | Diethylphthalate           | 370      | U         | 58     | 370  | 3700       | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 370      | U         | 200    | 370  | 3700       | ug/Kg |
| 86-73-7    | Fluorene                   | 370      | U         | 140    | 370  | 3700       | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 740      | U         | 480    | 740  | 3700       | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 1900     | U         | 210    | 1900 | 3700       | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 370      | U         | 89.2   | 370  | 3700       | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 370      | U         | 72.4   | 370  | 3700       | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 370      | U         | 150    | 370  | 3700       | ug/Kg |
| 1912-24-9  | Atrazine                   | 370      | U         | 200    | 370  | 3700       | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 370      | U         | 250    | 370  | 3700       | ug/Kg |
| 85-01-8    | Phenanthrene               | 810      | J         | 100    | 370  | 3700       | ug/Kg |
| 120-12-7   | Anthracene                 | 370      | U         | 75.8   | 370  | 3700       | ug/Kg |
| 86-74-8    | Carbazole                  | 370      | U         | 81.4   | 370  | 3700       | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 370      | U         | 290    | 370  | 3700       | ug/Kg |
| 206-44-0   | Fluoranthene               | 1400     | J         | 74.7   | 370  | 3700       | ug/Kg |
| 129-00-0   | Pyrene                     | 1200     | J         | 89.2   | 370  | 3700       | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 370      | U         | 180    | 370  | 3700       | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 370      | U         | 240    | 370  | 3700       | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 910      | J         | 180    | 370  | 3700       | ug/Kg |
| 218-01-9   | Chrysene                   | 800      | J         | 170    | 370  | 3700       | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 370      | U         | 130    | 370  | 3700       | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 370      | U         | 42.4   | 370  | 3700       | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 1000     | J         | 120    | 370  | 3700       | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 370      | U         | 170    | 370  | 3700       | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 790      | J         | 80.3   | 370  | 3700       | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 370      | U         | 120    | 370  | 3700       | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 370      | U         | 110    | 370  | 3700       | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-1(0-5) F2875 Lab Sample ID: F2875-07 Matrix: SOIL % Moisture: 10.4 Analytical Method: SW8270 Sample Wt/Vol: 30.04 Units: Final Vol: 1000 uL g Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF072207.D 10 06/28/14 07/01/14 PB77511 **CAS Number Parameter** Conc. Qualifier **MDL** LOD LOQ / CRQL Units

|             |                                    |        |       |          |     | - ( - ( |          |
|-------------|------------------------------------|--------|-------|----------|-----|---------|----------|
| 191-24-2    | Benzo(g,h,i)perylene               | 900    | J     | 150      | 370 | 3700    | ug/Kg    |
| 95-94-3     | 1,2,4,5-Tetrachlorobenzene         | 370    | U     | 150      | 370 | 3700    | ug/Kg    |
| 58-90-2     | 2,3,4,6-Tetrachlorophenol          | 370    | U     | 150      | 370 | 3700    | ug/Kg    |
| SURROGATES  | S                                  |        |       |          |     |         |          |
| 367-12-4    | 2-Fluorophenol                     | 120    |       | 28 - 12  | 7   | 77%     | SPK: 150 |
| 13127-88-3  | Phenol-d6                          | 120    |       | 34 - 12  | 7   | 80%     | SPK: 150 |
| 4165-60-0   | Nitrobenzene-d5                    | 64.1   |       | 31 - 13  | 2   | 64%     | SPK: 100 |
| 321-60-8    | 2-Fluorobiphenyl                   | 73.6   |       | 39 - 12  | 3   | 74%     | SPK: 100 |
| 118-79-6    | 2,4,6-Tribromophenol               | 95.1   |       | 30 - 13  | 3   | 63%     | SPK: 150 |
| 1718-51-0   | Terphenyl-d14                      | 70.7   |       | 37 - 11: | 5   | 71%     | SPK: 100 |
| INTERNAL ST | TANDARDS                           |        |       |          |     |         |          |
| 3855-82-1   | 1,4-Dichlorobenzene-d4             | 53443  | 7.2   |          |     |         |          |
| 1146-65-2   | Naphthalene-d8                     | 223750 | 8.78  |          |     |         |          |
| 15067-26-2  | Acenaphthene-d10                   | 120863 | 10.95 | 5        |     |         |          |
| 1517-22-2   | Phenanthrene-d10                   | 201938 | 12.78 | 3        |     |         |          |
| 1719-03-5   | Chrysene-d12                       | 237938 | 16.05 | 5        |     |         |          |
| 1520-96-3   | Perylene-d12                       | 224835 | 17.73 | 3        |     |         |          |
| TENTATIVE I | DENTIFIED COMPOUNDS                |        |       |          |     |         |          |
| 000077-76-9 | Propane, 2,2-dimethoxy-            | 14700  | J     |          |     | 1.41    | ug/Kg    |
| 000994-05-8 | Butane, 2-methoxy-2-methyl-        | 1100   | J     |          |     | 1.68    | ug/Kg    |
|             | unknown6.92                        | 3200   | J     |          |     | 6.92    | ug/Kg    |
| 018326-16-4 | Podocarpa-8,11,13-trien-3-one, 14- | 1100   | J     |          |     | 15.87   | ug/Kg    |
|             |                                    |        |       |          |     |         |          |

760

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

unknown15.98

J = Estimated Value

J

B = Analyte Found in Associated Method Blank

15.98

ug/Kg

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



GC Column:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-1(0-5) SDG No.: F2875 SOIL Lab Sample ID: F2875-07 Matrix: Analytical Method: SW8260 % Moisture: 10.4 Sample Wt/Vol: 5.23 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008780.D 1 06/26/14 VT062614

ID: 0.25

RXI-624

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 74-83-9    | Bromomethane                   | 1.1   | U         | 1.1  | 1.1  | 5.3        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 67-64-1    | Acetone                        | 27.3  |           | 2.7  | 2.7  | 26.7       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 1.1   | U         | 1.1  | 1.1  | 5.3        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 8     | U         | 3.3  | 8    | 26.7       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 71-43-2    | Benzene                        | 0.53  | U         | 0.41 | 0.53 | 5.3        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.53  | U         | 0.28 | 0.53 | 5.3        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 2.7   | U         | 2.7  | 2.7  | 26.7       | ug/Kg |
| 108-88-3   | Toluene                        | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.53  | U         | 0.53 | 0.53 | 5.3        | ug/Kg |



GC Column:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-1(0-5) SDG No.: F2875 SOIL Lab Sample ID: F2875-07 Matrix: Analytical Method: SW8260 % Moisture: 10.4 Sample Wt/Vol: 5.23 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008780.D 1 06/26/14 VT062614

ID: 0.25

RXI-624

|             | <u>-</u>                    |       |           |          |      |            |         |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.53  | U         | 0.53     | 0.53 | 5.3        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 1.1   | U         | 0.96     | 1.1  | 5.3        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 2.7   | U         | 2.7      | 2.7  | 26.7       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.53  | U         | 0.53     | 0.53 | 5.3        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.53  | U         | 0.53     | 0.53 | 5.3        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 4.9   | J         | 0.53     | 0.53 | 5.3        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.53  | U         | 0.53     | 0.53 | 5.3        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 0.53  | U         | 0.53     | 0.53 | 5.3        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 1.1   | U         | 0.77     | 1.1  | 10.7       | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.53  | U         | 0.53     | 0.53 | 5.3        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.53  | U         | 0.48     | 0.53 | 5.3        | ug/Kg   |
| 75-25-2     | Bromoform                   | 1.6   | U         | 0.79     | 1.6  | 5.3        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.53  | U         | 0.51     | 0.53 | 5.3        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.53  | U         | 0.49     | 0.53 | 5.3        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.53  | U         | 0.38     | 0.53 | 5.3        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.53  | U         | 0.48     | 0.53 | 5.3        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.53  | U         | 0.53     | 0.53 | 5.3        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.53  | U         | 0.53     | 0.53 | 5.3        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.53  | U         | 0.53     | 0.53 | 5.3        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.53  | U         | 0.31     | 0.53 | 5.3        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.53  | U         | 0.39     | 0.53 | 5.3        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.53  | U         | 0.44     | 0.53 | 5.3        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.53  | U         | 0.49     | 0.53 | 5.3        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.53  | U         | 0.53     | 0.53 | 5.3        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 5.3   | U         | 0.93     | 5.3  | 5.3        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.53  | U         | 0.53     | 0.53 | 5.3        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.53  | U         | 0.48     | 0.53 | 5.3        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 1.1   | U         | 0.53     | 1.1  | 5.3        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 110   | U         | 110      | 110  | 110        | ug/Kg   |
| SURROGATES  |                             |       |           |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 52.6  |           | 56 - 120 |      | 105%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 55.2  |           | 57 - 135 | 5    | 110%       | SPK: 50 |
|             |                             |       |           |          |      |            |         |



Soil Aliquot Vol:

Client:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Project: NYCSCA Unionport Road Bronx

Dvirka & Bartilucci

Client Sample ID: GP-1(0-5) Lab Sample ID: F2875-07

Analytical Method: SW8260

Sample Wt/Vol: 5.23 Units: g

GC Column: RXI-624 ID: 0.25

Test: uL

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Level:

Matrix:

06/24/14

06/24/14

F2875

SOIL

10.4

5000

LOW

VOCMS Group1

uL

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

VT008780.D 1 06/26/14 VT062614

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL ]    | LOD | LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|-----|------------|---------|
| 2037-26-5   | Toluene-d8             | 42.3   |           | 67 - 123 |     | 85%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 23     |           | 33 - 141 |     | 46%        | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |     |            |         |
| 363-72-4    | Pentafluorobenzene     | 631740 | 7.43      |          |     |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 906152 | 8.37      |          |     |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 530150 | 11.21     |          |     |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 121306 | 13.15     |          |     |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 12:50 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-2(0-5) F2875 Lab Sample ID: F2875-08 Matrix: SOIL % Solid: 86.7

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQL | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.134 | U    | 1  | 0.035 | 0.134 | 0.267      | mg/Kg | 06/26/14  | 06/30/14 13:59 | 9012B    |
| Hexavalent Chromium | 0.091 | J    | 1  | 0.091 | 0.227 | 0.454      | mg/Kg | 06/27/14  | 06/27/14 16:54 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-2(0-5) F2875 Lab Sample ID: F2875-08 Matrix: SOIL % Moisture: Analytical Method: SW8151A 13.3 Decanted: Sample Wt/Vol: 30.03 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010266.D 1 06/27/14 06/30/14 PB77475

| CAS Number | Parameter         | Conc. | Qualif | ier MDL  | LOD  | LOQ / CF | RQL Units |
|------------|-------------------|-------|--------|----------|------|----------|-----------|
| TARGETS    |                   |       |        |          |      |          |           |
| 1918-00-9  | DICAMBA           | 19.2  | U      | 15.3     | 19.2 | 77.2     | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 19.2  | U      | 14.2     | 19.2 | 77.2     | ug/Kg     |
| 94-75-7    | 2,4-D             | 19.2  | U      | 19.2     | 19.2 | 77.2     | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 19.2  | U      | 12.6     | 19.2 | 77.2     | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 19.2  | U      | 11.8     | 19.2 | 77.2     | ug/Kg     |
| 94-82-6    | 2,4-DB            | 19.2  | U      | 19.2     | 19.2 | 77.2     | ug/Kg     |
| 88-85-7    | DINOSEB           | 19.2  | U      | 19.2     | 19.2 | 77.2     | ug/Kg     |
| SURROGATES |                   |       |        |          |      |          |           |
| 19719-28-9 | 2.4-DCAA          | 181   |        | 12 - 189 | )    | 36%      | SPK: 500  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-2(0-5) SDG No.: F2875
Lab Sample ID: F2875-08 Matrix: SOIL

Level (low/med): low % Solid: 86.7

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|------------|-----------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.17  | UN   | 1  | 0.525 | 1.17  | 2.34       | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7440-38-2 | Arsenic   | 3.97  |      | 1  | 0.309 | 0.469 | 0.938      | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7440-39-3 | Barium    | 100   |      | 1  | 0.375 | 2.34  | 4.69       | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.66  |      | 1  | 0.056 | 0.141 | 0.281      | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.141 | U    | 1  | 0.056 | 0.141 | 0.281      | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7440-47-3 | Chromium  | 22.3  |      | 1  | 0.122 | 0.234 | 0.469      | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7440-48-4 | Cobalt    | 14.2  |      | 1  | 0.535 | 0.703 | 1.41       | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7440-50-8 | Copper    | 39.3  | N    | 1  | 0.3   | 0.469 | 0.938      | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7439-92-1 | Lead      | 116   |      | 1  | 0.113 | 0.281 | 0.563      | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7439-96-5 | Manganese | 381   |      | 1  | 0.178 | 0.469 | 0.938      | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.168 |      | 1  | 0.005 | 0.005 | 0.01       | mg/Kg 06/27/14  | 06/30/14  | SW7471A  |
| 7440-02-0 | Nickel    | 24.5  |      | 1  | 0.431 | 0.938 | 1.88       | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7782-49-2 | Selenium  | 1.3   | N    | 1  | 0.384 | 0.469 | 0.938      | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7440-22-4 | Silver    | 0.821 |      | 1  | 0.141 | 0.234 | 0.469      | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.938 | U    | 1  | 0.253 | 0.938 | 1.88       | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7440-62-2 | Vanadium  | 32.4  |      | 1  | 0.553 | 0.938 | 1.88       | mg/Kg 06/27/14  | 06/27/14  | SW6010   |
| 7440-66-6 | Zinc      | 112   |      | 1  | 0.656 | 0.938 | 1.88       | mg/Kg 06/27/14  | 06/27/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-2(0-5) F2875 Lab Sample ID: F2875-08 Matrix: SOIL % Moisture: Analytical Method: SW8082A 13.3 Decanted: Sample Wt/Vol: 30.04 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume: 1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PP003571.D 1 06/28/14 06/30/14 PB77506

| CAS Number | Parameter            | Conc. | Qualif | ier MDL  | LOD | LOQ / CF | RQL Units |
|------------|----------------------|-------|--------|----------|-----|----------|-----------|
| TARGETS    |                      |       |        |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 3.8   | U      | 3.8      | 3.8 | 19.6     | ug/kg     |
| 11104-28-2 | Aroclor-1221         | 3.8   | U      | 3.8      | 3.8 | 19.6     | ug/kg     |
| 11141-16-5 | Aroclor-1232         | 3.8   | U      | 3.8      | 3.8 | 19.6     | ug/kg     |
| 53469-21-9 | Aroclor-1242         | 3.8   | U      | 3.8      | 3.8 | 19.6     | ug/kg     |
| 12672-29-6 | Aroclor-1248         | 3.8   | U      | 3.8      | 3.8 | 19.6     | ug/kg     |
| 11097-69-1 | Aroclor-1254         | 7     | J      | 1.7      | 3.8 | 19.6     | ug/kg     |
| 11096-82-5 | Aroclor-1260         | 3.8   | U      | 3.8      | 3.8 | 19.6     | ug/kg     |
| SURROGATES |                      |       |        |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 16.7  |        | 10 - 166 | 5   | 83%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 13.6  |        | 60 - 125 | 5   | 68%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-2(0-5) SDG No.: F2875

Lab Sample ID: F2875-08 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 13.3 Decanted: Sample Wt/Vol: 30.02 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023143.D 1 06/28/14 06/30/14 PB77509

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD  | LOQ / CF | RQL Units |
|------------|----------------------|-------|-----------|----------|------|----------|-----------|
| TARGETS    |                      |       |           |          |      |          |           |
| 319-84-6   | alpha-BHC            | 0.38  | U         | 0.15     | 0.38 | 2        | ug/kg     |
| 319-85-7   | beta-BHC             | 0.38  | U         | 0.207    | 0.38 | 2        | ug/kg     |
| 319-86-8   | delta-BHC            | 0.38  | U         | 0.115    | 0.38 | 2        | ug/kg     |
| 58-89-9    | gamma-BHC (Lindane)  | 0.38  | U         | 0.173    | 0.38 | 2        | ug/kg     |
| 76-44-8    | Heptachlor           | 0.38  | U         | 0.161    | 0.38 | 2        | ug/kg     |
| 309-00-2   | Aldrin               | 0.38  | U         | 0.115    | 0.38 | 2        | ug/kg     |
| 1024-57-3  | Heptachlor epoxide   | 0.38  | U         | 0.184    | 0.38 | 2        | ug/kg     |
| 959-98-8   | Endosulfan I         | 0.38  | U         | 0.173    | 0.38 | 2        | ug/kg     |
| 60-57-1    | Dieldrin             | 0.38  | U         | 0.15     | 0.38 | 2        | ug/kg     |
| 72-55-9    | 4,4-DDE              | 0.38  | U         | 0.231    | 0.38 | 2        | ug/kg     |
| 72-20-8    | Endrin               | 0.38  | U         | 0.207    | 0.38 | 2        | ug/kg     |
| 33213-65-9 | Endosulfan II        | 0.38  | U         | 0.161    | 0.38 | 2        | ug/kg     |
| 72-54-8    | 4,4-DDD              | 0.38  | U         | 0.196    | 0.38 | 2        | ug/kg     |
| 1031-07-8  | Endosulfan Sulfate   | 0.38  | U         | 0.173    | 0.38 | 2        | ug/kg     |
| 50-29-3    | 4,4-DDT              | 0.38  | U         | 0.161    | 0.38 | 2        | ug/kg     |
| 72-43-5    | Methoxychlor         | 0.38  | U         | 0.196    | 0.38 | 2        | ug/kg     |
| 53494-70-5 | Endrin ketone        | 0.38  | U         | 0.15     | 0.38 | 2        | ug/kg     |
| 7421-93-4  | Endrin aldehyde      | 0.38  | U         | 0.173    | 0.38 | 2        | ug/kg     |
| 5103-71-9  | alpha-Chlordane      | 0.38  | U         | 0.161    | 0.38 | 2        | ug/kg     |
| 5103-74-2  | gamma-Chlordane      | 0.38  | U         | 0.15     | 0.38 | 2        | ug/kg     |
| 8001-35-2  | Toxaphene            | 3.8   | U         | 3.8      | 3.8  | 19.6     | ug/kg     |
| SURROGATES |                      |       |           |          |      |          |           |
| 2051-24-3  | Decachlorobiphenyl   | 15.3  |           | 10 - 169 | )    | 77%      | SPK: 20   |
| 877-09-8   | Tetrachloro-m-xylene | 17.3  |           | 31 - 151 |      | 86%      | SPK: 20   |



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx 06/24/14

Client Sample ID: GP-2(0-5) SDG No.: F2875

Lab Sample ID:

Date Received:

**SOIL** 

10000

F2875-08 SW8081

Matrix:

13.3 Decanted:

иL

Analytical Method:

30.02 Units: % Moisture: Final Vol:

Sample Wt/Vol: Soil Aliquot Vol: g

Test:

Pesticide-TCL

Extraction Type:

иL

Injection Volume:

GPC Factor:

File ID/Qc Batch:

1.0

1

PH:

Date Analyzed

Prep Batch ID

PD023143.D

Dilution:

Prep Date 06/28/14

06/30/14

PB77509

**CAS Number** 

Parameter

Conc.

LOD

Qualifier MDL

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Extraction Type:

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: F2875 GP-2(0-5)

SOIL Lab Sample ID: F2875-08 Matrix: Analytical Method: SW8270 % Moisture: 13.3

Sample Wt/Vol: 30.09 Units: g Final Vol: 1000 uL

N

Level:

LOW

Soil Aliquot Vol: uL Test: SVOCMS Group1 Decanted:

GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

2 BF072203.D 06/28/14 07/01/14 PB77511

| CAS Number | Parameter                   | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|-----------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                             |       |           |      |      |            |       |
| 100-52-7   | Benzaldehyde                | 76.7  | U         | 40   | 76.7 | 760        | ug/Kg |
| 108-95-2   | Phenol                      | 76.7  | U         | 17.7 | 76.7 | 760        | ug/Kg |
| 111-44-4   | bis(2-Chloroethyl)ether     | 76.7  | U         | 36.8 | 76.7 | 760        | ug/Kg |
| 95-57-8    | 2-Chlorophenol              | 76.7  | U         | 40.5 | 76.7 | 760        | ug/Kg |
| 95-48-7    | 2-Methylphenol              | 76.7  | U         | 41.6 | 76.7 | 760        | ug/Kg |
| 108-60-1   | 2,2-oxybis(1-Chloropropane) | 76.7  | U         | 31.7 | 76.7 | 760        | ug/Kg |
| 98-86-2    | Acetophenone                | 76.7  | U         | 23.5 | 76.7 | 760        | ug/Kg |
| 65794-96-9 | 3+4-Methylphenols           | 76.7  | U         | 39.8 | 76.7 | 760        | ug/Kg |
| 621-64-7   | n-Nitroso-di-n-propylamine  | 76.7  | U         | 38.6 | 76.7 | 760        | ug/Kg |
| 67-72-1    | Hexachloroethane            | 76.7  | U         | 34.3 | 76.7 | 760        | ug/Kg |
| 98-95-3    | Nitrobenzene                | 76.7  | U         | 29   | 76.7 | 760        | ug/Kg |
| 78-59-1    | Isophorone                  | 76.7  | U         | 25.3 | 76.7 | 760        | ug/Kg |
| 88-75-5    | 2-Nitrophenol               | 76.7  | U         | 37   | 76.7 | 760        | ug/Kg |
| 105-67-9   | 2,4-Dimethylphenol          | 76.7  | U         | 43.5 | 76.7 | 760        | ug/Kg |
| 111-91-1   | bis(2-Chloroethoxy)methane  | 76.7  | U         | 44.2 | 76.7 | 760        | ug/Kg |
| 120-83-2   | 2,4-Dichlorophenol          | 76.7  | U         | 29.2 | 76.7 | 760        | ug/Kg |
| 91-20-3    | Naphthalene                 | 76.7  | U         | 26.4 | 76.7 | 760        | ug/Kg |
| 106-47-8   | 4-Chloroaniline             | 76.7  | U         | 54   | 76.7 | 760        | ug/Kg |
| 87-68-3    | Hexachlorobutadiene         | 76.7  | U         | 27.8 | 76.7 | 760        | ug/Kg |
| 105-60-2   | Caprolactam                 | 150   | U         | 35.6 | 150  | 760        | ug/Kg |
| 59-50-7    | 4-Chloro-3-methylphenol     | 76.7  | U         | 34   | 76.7 | 760        | ug/Kg |
| 91-57-6    | 2-Methylnaphthalene         | 76.7  | U         | 19.3 | 76.7 | 760        | ug/Kg |
| 77-47-4    | Hexachlorocyclopentadiene   | 76.7  | U         | 18.6 | 76.7 | 760        | ug/Kg |
| 88-06-2    | 2,4,6-Trichlorophenol       | 76.7  | U         | 23.5 | 76.7 | 760        | ug/Kg |
| 95-95-4    | 2,4,5-Trichlorophenol       | 76.7  | U         | 53.8 | 76.7 | 760        | ug/Kg |
| 92-52-4    | 1,1-Biphenyl                | 76.7  | U         | 29   | 76.7 | 760        | ug/Kg |
| 91-58-7    | 2-Chloronaphthalene         | 76.7  | U         | 17.5 | 76.7 | 760        | ug/Kg |
| 88-74-4    | 2-Nitroaniline              | 76.7  | U         | 34   | 76.7 | 760        | ug/Kg |
| 131-11-3   | Dimethylphthalate           | 740   | J         | 20.7 | 76.7 | 760        | ug/Kg |
| 208-96-8   | Acenaphthylene              | 76.7  | U         | 19.3 | 76.7 | 760        | ug/Kg |
| 606-20-2   | 2,6-Dinitrotoluene          | 76.7  | U         | 31.3 | 76.7 | 760        | ug/Kg |
|            |                             |       |           |      |      |            |       |



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-2(0-5) SDG No.: F2875

Lab Sample ID: F2875-08 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 13.3

Sample Wt/Vol: 30.09 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072203.D 2 06/28/14 07/01/14 PB77511

| BF072203.D | 2                          | 06/28/14 | 07.       | /01/14 |      | PB77511    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 150      | U         | 49.2   | 150  | 760        | ug/Kg |
| 83-32-9    | Acenaphthene               | 76.7     | U         | 21.6   | 76.7 | 760        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 610      | U         | 78     | 610  | 760        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 380      | U         | 140    | 380  | 760        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 76.7     | U         | 29.9   | 76.7 | 760        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 76.7     | U         | 23     | 76.7 | 760        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 76.7     | U         | 12     | 76.7 | 760        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 76.7     | U         | 41.6   | 76.7 | 760        | ug/Kg |
| 86-73-7    | Fluorene                   | 76.7     | U         | 29     | 76.7 | 760        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 150      | U         | 99.8   | 150  | 760        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 380      | U         | 43.9   | 380  | 760        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 76.7     | U         | 18.4   | 76.7 | 760        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 76.7     | U         | 14.9   | 76.7 | 760        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 76.7     | U         | 31.3   | 76.7 | 760        | ug/Kg |
| 1912-24-9  | Atrazine                   | 76.7     | U         | 40.5   | 76.7 | 760        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 76.7     | U         | 52.4   | 76.7 | 760        | ug/Kg |
| 85-01-8    | Phenanthrene               | 530      | J         | 20.7   | 76.7 | 760        | ug/Kg |
| 120-12-7   | Anthracene                 | 76.7     | U         | 15.6   | 76.7 | 760        | ug/Kg |
| 86-74-8    | Carbazole                  | 76.7     | U         | 16.8   | 76.7 | 760        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 76.7     | U         | 60.3   | 76.7 | 760        | ug/Kg |
| 206-44-0   | Fluoranthene               | 1300     |           | 15.4   | 76.7 | 760        | ug/Kg |
| 129-00-0   | Pyrene                     | 1100     |           | 18.4   | 76.7 | 760        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 76.7     | U         | 36.8   | 76.7 | 760        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 76.7     | U         | 49.2   | 76.7 | 760        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 670      | J         | 36.6   | 76.7 | 760        | ug/Kg |
| 218-01-9   | Chrysene                   | 660      | J         | 34.7   | 76.7 | 760        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 76.7     | U         | 27.1   | 76.7 | 760        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 76.7     | U         | 8.7    | 76.7 | 760        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 790      |           | 25.1   | 76.7 | 760        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 260      | J         | 36.1   | 76.7 | 760        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 620      | J         | 16.6   | 76.7 | 760        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 360      | J         | 25.5   | 76.7 | 760        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 76.7     | U         | 22.1   | 76.7 | 760        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: F2875 GP-2(0-5) SOIL Lab Sample ID: F2875-08 Matrix: Analytical Method: SW8270 % Moisture: 13.3 Sample Wt/Vol: 30.09 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group1 Extraction Type: N Level: Decanted: LOW

GPC Factor: 1.0 Ν

GPC Cleanup: PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID 2 BF072203.D 06/28/14 07/01/14 PB77511

| CAS Number   | Parameter                        | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |
|--------------|----------------------------------|--------|-----------|----------|------|------------|----------|
| 191-24-2     | Benzo(g,h,i)perylene             | 440    | J         | 31       | 76.7 | 760        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       | 76.7   | U         | 30.1     | 76.7 | 760        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        | 76.7   | U         | 30.1     | 76.7 | 760        | ug/Kg    |
| SURROGATES   |                                  |        |           |          |      |            |          |
| 367-12-4     | 2-Fluorophenol                   | 140    |           | 28 - 127 | 7    | 94%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        | 140    |           | 34 - 127 | 7    | 95%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  | 80.7   |           | 31 - 132 | 2    | 81%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 | 84.5   |           | 39 - 123 | 3    | 84%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             | 130    |           | 30 - 133 | 3    | 83%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    | 79     |           | 37 - 115 | ;    | 79%        | SPK: 100 |
| INTERNAL STA | ANDARDS                          |        |           |          |      |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 44582  | 7.2       |          |      |            |          |
| 1146-65-2    | Naphthalene-d8                   | 193884 | 8.78      |          |      |            |          |
| 15067-26-2   | Acenaphthene-d10                 | 104190 | 10.95     |          |      |            |          |
| 1517-22-2    | Phenanthrene-d10                 | 186765 | 12.78     |          |      |            |          |
| 1719-03-5    | Chrysene-d12                     | 225471 | 16.05     |          |      |            |          |
| 1520-96-3    | Perylene-d12                     | 209803 | 17.74     |          |      |            |          |
| TENTATIVE ID | DENTIFIED COMPOUNDS              |        |           |          |      |            |          |
| 000077-76-9  | Propane, 2,2-dimethoxy-          | 14600  | J         |          |      | 1.41       | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      | 860    | J         |          |      | 1.68       | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- | 580    | A         |          |      | 4.94       | ug/Kg    |
|              | unknown6.92                      | 3900   | J         |          |      | 6.92       | ug/Kg    |
| 004425-82-5  | 9H-Fluorene, 9-methylene-        | 160    | J         |          |      | 12.87      | ug/Kg    |
| 083469-43-6  | 6H-Cyclobuta[jk]phenanthrene     | 320    | J         |          |      | 13.53      | ug/Kg    |
| 001599-67-3  | 1-Docosene                       | 290    | J         |          |      | 15.96      | ug/Kg    |
| 000192-97-2  | Benzo[e]pyrene                   | 390    | J         |          |      | 17.61      | ug/Kg    |



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx 06/24/14

Client Sample ID: GP-2(0-5) SDG No.:

Lab Sample ID: F2875-08

Matrix:

Date Received:

F2875

SOIL

Analytical Method: SW8270 % Moisture:

13.3

30.09 Units: g

Final Vol:

Test:

Level:

1000

uL

Sample Wt/Vol: Soil Aliquot Vol:

uL

SVOCMS Group1

Extraction Type: Injection Volume: Decanted:

N

GPC Cleanup:

LOW

Ν

PH:

File ID/Qc Batch:

Dilution:

Prep Date

GPC Factor:

Date Analyzed

Prep Batch ID

PB77511

BF072203.D

2

06/28/14

07/01/14

**CAS Number** 

**Parameter** 

Conc.

1.0

Qualifier

**MDL** 

LOD

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: F2875 GP-2(0-5) F2875-08 SOIL Lab Sample ID: Matrix: Analytical Method: SW8260 % Moisture: 13.3 Sample Wt/Vol: 6.21 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042157.D 1 06/26/14 VF062614

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.93  | U         | 0.93 | 0.93 | 4.6        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 67-64-1    | Acetone                        | 2.3   | U         | 2.3  | 2.3  | 23.2       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.93  | U         | 0.93 | 0.93 | 4.6        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 7     | U         | 2.9  | 7    | 23.2       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 71-43-2    | Benzene                        | 0.46  | U         | 0.35 | 0.46 | 4.6        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.46  | U         | 0.24 | 0.46 | 4.6        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 2.3   | U         | 2.3  | 2.3  | 23.2       | ug/Kg |
| 108-88-3   | Toluene                        | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.46  | U         | 0.46 | 0.46 | 4.6        | ug/Kg |



GC Column:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: F2875 GP-2(0-5) F2875-08 SOIL Lab Sample ID: Matrix: Analytical Method: SW8260 % Moisture: 13.3 Sample Wt/Vol: 6.21 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042157.D 1 06/26/14 VF062614

ID: 0.18

RTX-VMS

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.46  | U         | 0.46     | 0.46 | 4.6        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.93  | U         | 0.84     | 0.93 | 4.6        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 2.3   | U         | 2.3      | 2.3  | 23.2       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.46  | U         | 0.46     | 0.46 | 4.6        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.46  | U         | 0.46     | 0.46 | 4.6        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 0.46  | U         | 0.46     | 0.46 | 4.6        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.46  | U         | 0.46     | 0.46 | 4.6        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 0.46  | U         | 0.46     | 0.46 | 4.6        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 0.93  | U         | 0.67     | 0.93 | 9.3        | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.46  | U         | 0.46     | 0.46 | 4.6        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.46  | U         | 0.42     | 0.46 | 4.6        | ug/Kg   |
| 75-25-2     | Bromoform                   | 1.4   | U         | 0.69     | 1.4  | 4.6        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.46  | U         | 0.45     | 0.46 | 4.6        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.46  | U         | 0.43     | 0.46 | 4.6        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.46  | U         | 0.33     | 0.46 | 4.6        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.46  | U         | 0.42     | 0.46 | 4.6        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.46  | U         | 0.46     | 0.46 | 4.6        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.46  | U         | 0.46     | 0.46 | 4.6        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.46  | U         | 0.46     | 0.46 | 4.6        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.46  | U         | 0.27     | 0.46 | 4.6        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.46  | U         | 0.34     | 0.46 | 4.6        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.46  | U         | 0.38     | 0.46 | 4.6        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.46  | U         | 0.43     | 0.46 | 4.6        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.46  | U         | 0.46     | 0.46 | 4.6        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 4.6   | U         | 0.81     | 4.6  | 4.6        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.46  | U         | 0.46     | 0.46 | 4.6        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.46  | U         | 0.42     | 0.46 | 4.6        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.93  | U         | 0.46     | 0.93 | 4.6        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 92.9  | U         | 92.9     | 92.9 | 92.9       | ug/Kg   |
| SURROGATES  |                             |       |           |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 63.8  | *         | 56 - 120 |      | 128%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 64.3  |           | 57 - 135 | 5    | 128%       | SPK: 50 |



## **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-2(0-5)

Lab Sample ID: F2875-08

Analytical Method: SW8260

Sample Wt/Vol: 6.21 Units:

Soil Aliquot Vol: uL

GC Column: RTX-VMS ID: 0.18

Test: VOCMS Group1

Level: LOW

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Matrix:

File ID/Qc Batch:

Dilution:

1

Prep Date

g

Date Analyzed

Prep Batch ID

06/24/14

06/24/14

F2875

SOIL

13.3

5000

uL

VF042157.D

06/26/14

VF062614

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL L    | OD LOQ/CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|-------------|---------|
| 2037-26-5    | Toluene-d8             | 56.5   |           | 67 - 123 | 113%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 47.1   |           | 33 - 141 | 94%         | SPK: 50 |
| INTERNAL ST. | ANDARDS                |        |           |          |             |         |
| 363-72-4     | Pentafluorobenzene     | 168425 | 4.87      |          |             |         |
| 540-36-3     | 1,4-Difluorobenzene    | 265218 | 5.59      |          |             |         |
| 3114-55-4    | Chlorobenzene-d5       | 201443 | 9.75      |          |             |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 78217  | 12.52     |          |             |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Sample Wt/Vol:

5.3

Units:

g

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-2(0-5)RE SDG No.: F2875 SOIL Lab Sample ID: F2875-08RE Matrix: Analytical Method: SW8260 % Moisture: 13.3

Final Vol:

5000

uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008781.D 1 06/26/14 VT062614

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 74-83-9    | Bromomethane                   | 1.1   | U         | 1.1  | 1.1  | 5.4        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 67-64-1    | Acetone                        | 43.4  |           | 2.7  | 2.7  | 27.2       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 1.1   | U         | 1.1  | 1.1  | 5.4        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 8.2   | U         | 3.4  | 8.2  | 27.2       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 71-43-2    | Benzene                        | 0.54  | U         | 0.41 | 0.54 | 5.4        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.54  | U         | 0.28 | 0.54 | 5.4        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 2.7   | U         | 2.7  | 2.7  | 27.2       | ug/Kg |
| 108-88-3   | Toluene                        | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.54  | U         | 0.54 | 0.54 | 5.4        | ug/Kg |



Soil Aliquot Vol:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-2(0-5)RE SDG No.: F2875 SOIL Lab Sample ID: F2875-08RE Matrix: Analytical Method: SW8260 % Moisture: 13.3 Sample Wt/Vol: 5.3 Units: g Final Vol: 5000 uL

Test:

VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008781.D 1 06/26/14 VT062614

| V 1000701.D | 1                           |       | 00/20/    | 17       |      | V 1002014  |         |  |  |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|--|--|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |  |  |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.54  | U         | 0.54     | 0.54 | 5.4        | ug/Kg   |  |  |
| 79-00-5     | 1,1,2-Trichloroethane       | 1.1   | U         | 0.98     | 1.1  | 5.4        | ug/Kg   |  |  |
| 591-78-6    | 2-Hexanone                  | 2.7   | U         | 2.7      | 2.7  | 27.2       | ug/Kg   |  |  |
| 124-48-1    | Dibromochloromethane        | 0.54  | U         | 0.54     | 0.54 | 5.4        | ug/Kg   |  |  |
| 106-93-4    | 1,2-Dibromoethane           | 0.54  | U         | 0.54     | 0.54 | 5.4        | ug/Kg   |  |  |
| 127-18-4    | Tetrachloroethene           | 0.54  | U         | 0.54     | 0.54 | 5.4        | ug/Kg   |  |  |
| 108-90-7    | Chlorobenzene               | 0.54  | U         | 0.54     | 0.54 | 5.4        | ug/Kg   |  |  |
| 100-41-4    | Ethyl Benzene               | 0.54  | U         | 0.54     | 0.54 | 5.4        | ug/Kg   |  |  |
| 179601-23-1 | m/p-Xylenes                 | 1.1   | U         | 0.78     | 1.1  | 10.9       | ug/Kg   |  |  |
| 95-47-6     | o-Xylene                    | 0.54  | U         | 0.54     | 0.54 | 5.4        | ug/Kg   |  |  |
| 100-42-5    | Styrene                     | 0.54  | U         | 0.49     | 0.54 | 5.4        | ug/Kg   |  |  |
| 75-25-2     | Bromoform                   | 1.6   | U         | 0.81     | 1.6  | 5.4        | ug/Kg   |  |  |
| 98-82-8     | Isopropylbenzene            | 0.54  | U         | 0.52     | 0.54 | 5.4        | ug/Kg   |  |  |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.54  | U         | 0.5      | 0.54 | 5.4        | ug/Kg   |  |  |
| 103-65-1    | n-propylbenzene             | 0.54  | U         | 0.39     | 0.54 | 5.4        | ug/Kg   |  |  |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.54  | U         | 0.49     | 0.54 | 5.4        | ug/Kg   |  |  |
| 98-06-6     | tert-Butylbenzene           | 0.54  | U         | 0.54     | 0.54 | 5.4        | ug/Kg   |  |  |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.54  | U         | 0.54     | 0.54 | 5.4        | ug/Kg   |  |  |
| 135-98-8    | sec-Butylbenzene            | 0.54  | U         | 0.54     | 0.54 | 5.4        | ug/Kg   |  |  |
| 99-87-6     | p-Isopropyltoluene          | 0.54  | U         | 0.32     | 0.54 | 5.4        | ug/Kg   |  |  |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.54  | U         | 0.4      | 0.54 | 5.4        | ug/Kg   |  |  |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.54  | U         | 0.45     | 0.54 | 5.4        | ug/Kg   |  |  |
| 104-51-8    | n-Butylbenzene              | 0.54  | U         | 0.5      | 0.54 | 5.4        | ug/Kg   |  |  |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.54  | U         | 0.54     | 0.54 | 5.4        | ug/Kg   |  |  |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 5.4   | U         | 0.95     | 5.4  | 5.4        | ug/Kg   |  |  |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.54  | U         | 0.54     | 0.54 | 5.4        | ug/Kg   |  |  |
| 91-20-3     | Naphthalene                 | 0.54  | U         | 0.49     | 0.54 | 5.4        | ug/Kg   |  |  |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 1.1   | U         | 0.54     | 1.1  | 5.4        | ug/Kg   |  |  |
| 123-91-1    | 1,4-Dioxane                 | 110   | U         | 110      | 110  | 110        | ug/Kg   |  |  |
| SURROGATES  |                             |       |           |          |      |            |         |  |  |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 51.9  |           | 56 - 120 |      | 104%       | SPK: 50 |  |  |
| 1868-53-7   | Dibromofluoromethane        | 38.6  |           | 57 - 135 | 5    | 77%        | SPK: 50 |  |  |
|             |                             |       |           |          |      |            |         |  |  |



Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-2(0-5)RE

Lab Sample ID: F2875-08RE

Analytical Method: SW8260

Sample Wt/Vol: 5.3 Units: g

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

Level: LOW

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Matrix:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VOCMS Group1

06/24/14

06/24/14

F2875

SOIL

13.3

5000

uL

VT008781.D

1

06/26/14

VT062614

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL LO   | DD LOQ/CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|-------------|---------|
| 2037-26-5    | Toluene-d8             | 44.4   |           | 67 - 123 | 89%         | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 33.8   |           | 33 - 141 | 68%         | SPK: 50 |
| INTERNAL STA | ANDARDS                |        |           |          |             |         |
| 363-72-4     | Pentafluorobenzene     | 629179 | 7.43      |          |             |         |
| 540-36-3     | 1,4-Difluorobenzene    | 920143 | 8.37      |          |             |         |
| 3114-55-4    | Chlorobenzene-d5       | 661756 | 11.21     |          |             |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 238524 | 13.15     |          |             |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 13:40

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-12(0-5) SDG No.: F2875
Lab Sample ID: F2875-09 Matrix: SOIL

% Solid: 88

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.138 | U    | 1  | 0.036 | 0.138 | 0.276      | mg/Kg | 06/26/14  | 06/30/14 13:59 | 9012B    |
| Hexavalent Chromium | 0.09  | J    | 1  | 0.09  | 0.226 | 0.451      | mg/Kg | 06/27/14  | 06/27/14 16:55 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-12(0-5) F2875 Lab Sample ID: F2875-09 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 12

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010267.D 1 06/27/14 06/30/14 PB77475

| CAS Number | Parameter         | Conc. | Qualifier | MDL      | LOD  | LOQ / CF | RQL Units |
|------------|-------------------|-------|-----------|----------|------|----------|-----------|
| TARGETS    |                   |       |           |          |      |          |           |
| 1918-00-9  | DICAMBA           | 18.9  | U         | 15.1     | 18.9 | 76       | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 18.9  | U         | 14       | 18.9 | 76       | ug/Kg     |
| 94-75-7    | 2,4-D             | 18.9  | U         | 18.9     | 18.9 | 76       | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 18.9  | U         | 12.4     | 18.9 | 76       | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 18.9  | U         | 11.6     | 18.9 | 76       | ug/Kg     |
| 94-82-6    | 2,4-DB            | 18.9  | U         | 18.9     | 18.9 | 76       | ug/Kg     |
| 88-85-7    | DINOSEB           | 18.9  | U         | 18.9     | 18.9 | 76       | ug/Kg     |
| SURROGATES |                   |       |           |          |      |          |           |
| 19719-28-9 | 2,4-DCAA          | 193   |           | 12 - 189 | )    | 39%      | SPK: 500  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:



# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-12(0-5) SDG No.: F2875
Lab Sample ID: F2875-09 Matrix: SOIL

Level (low/med): low % Solid: 88

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CI | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.19  | UN   | 1  | 0.533 | 1.19  | 2.38     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-38-2 | Arsenic   | 2.82  |      | 1  | 0.314 | 0.475 | 0.951    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-39-3 | Barium    | 91.4  |      | 1  | 0.38  | 2.38  | 4.75     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.632 |      | 1  | 0.057 | 0.143 | 0.285    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.143 | U    | 1  | 0.057 | 0.143 | 0.285    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-47-3 | Chromium  | 24.7  |      | 1  | 0.124 | 0.238 | 0.475    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-48-4 | Cobalt    | 25.2  |      | 1  | 0.542 | 0.713 | 1.43     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-50-8 | Copper    | 25    | N    | 1  | 0.304 | 0.475 | 0.951    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7439-92-1 | Lead      | 20.6  |      | 1  | 0.114 | 0.285 | 0.571    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7439-96-5 | Manganese | 658   |      | 1  | 0.181 | 0.475 | 0.951    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.029 |      | 1  | 0.006 | 0.006 | 0.011    | mg/Kg 06/27/14      | 06/30/14  | SW7471A  |
| 7440-02-0 | Nickel    | 26.4  |      | 1  | 0.437 | 0.951 | 1.9      | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7782-49-2 | Selenium  | 1.52  | N    | 1  | 0.39  | 0.475 | 0.951    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-22-4 | Silver    | 1.14  |      | 1  | 0.143 | 0.238 | 0.475    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.951 | U    | 1  | 0.257 | 0.951 | 1.9      | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-62-2 | Vanadium  | 36.3  |      | 1  | 0.561 | 0.951 | 1.9      | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-66-6 | Zinc      | 74.7  |      | 1  | 0.666 | 0.951 | 1.9      | mg/Kg 06/27/14      | 06/27/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Sample Wt/Vol:

PP003574.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Final Vol:

06/30/14

10000

иL

PB77506

## **Report of Analysis**

Client:Dvirka & BartilucciDate Collected:06/24/14Project:NYCSCA Unionport Road BronxDate Received:06/24/14Client Sample ID:GP-12(0-5)SDG No.:F2875

Lab Sample ID: F2875-09 Matrix: SOIL

Analytical Method: SW8082A % Moisture: 12 Decanted:

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume:

g

Units:

GPC Factor: 1.0 PH:

1

30.01

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

06/28/14

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD | LOQ / CF | RQL Units |
|------------|----------------------|-------|-----------|----------|-----|----------|-----------|
| TARGETS    |                      |       |           |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 3.8   | U         | 3.8      | 3.8 | 19.3     | ug/kg     |
| 11104-28-2 | Aroclor-1221         | 3.8   | U         | 3.8      | 3.8 | 19.3     | ug/kg     |
| 11141-16-5 | Aroclor-1232         | 3.8   | U         | 3.8      | 3.8 | 19.3     | ug/kg     |
| 53469-21-9 | Aroclor-1242         | 3.8   | U         | 3.8      | 3.8 | 19.3     | ug/kg     |
| 12672-29-6 | Aroclor-1248         | 3.8   | U         | 3.8      | 3.8 | 19.3     | ug/kg     |
| 11097-69-1 | Aroclor-1254         | 3.8   | U         | 1.7      | 3.8 | 19.3     | ug/kg     |
| 11096-82-5 | Aroclor-1260         | 3.8   | U         | 3.8      | 3.8 | 19.3     | ug/kg     |
| SURROGATES |                      |       |           |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 19    |           | 10 - 166 | 5   | 95%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 17.5  |           | 60 - 125 | 5   | 87%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-12(0-5) SDG No.: F2875
Lab Sample ID: F2875-09 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 12 Decanted:

Sample Wt/Vol: 30.09 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023146.D 1 06/28/14 06/30/14 PB77509

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|-------|----------|----------|
| TARGETS    |                      |       |           |          |       |          |          |
| 319-84-6   | alpha-BHC            | 0.374 | U         | 0.147    | 0.374 | 1.9      | ug/kg    |
| 319-85-7   | beta-BHC             | 0.374 | U         | 0.204    | 0.374 | 1.9      | ug/kg    |
| 319-86-8   | delta-BHC            | 0.374 | U         | 0.113    | 0.374 | 1.9      | ug/kg    |
| 58-89-9    | gamma-BHC (Lindane)  | 0.374 | U         | 0.17     | 0.374 | 1.9      | ug/kg    |
| 76-44-8    | Heptachlor           | 0.374 | U         | 0.159    | 0.374 | 1.9      | ug/kg    |
| 309-00-2   | Aldrin               | 0.374 | U         | 0.113    | 0.374 | 1.9      | ug/kg    |
| 1024-57-3  | Heptachlor epoxide   | 0.374 | U         | 0.181    | 0.374 | 1.9      | ug/kg    |
| 959-98-8   | Endosulfan I         | 0.374 | U         | 0.17     | 0.374 | 1.9      | ug/kg    |
| 60-57-1    | Dieldrin             | 0.374 | U         | 0.147    | 0.374 | 1.9      | ug/kg    |
| 72-55-9    | 4,4-DDE              | 0.374 | U         | 0.227    | 0.374 | 1.9      | ug/kg    |
| 72-20-8    | Endrin               | 0.374 | U         | 0.204    | 0.374 | 1.9      | ug/kg    |
| 33213-65-9 | Endosulfan II        | 0.374 | U         | 0.159    | 0.374 | 1.9      | ug/kg    |
| 72-54-8    | 4,4-DDD              | 0.374 | U         | 0.193    | 0.374 | 1.9      | ug/kg    |
| 1031-07-8  | Endosulfan Sulfate   | 0.374 | U         | 0.17     | 0.374 | 1.9      | ug/kg    |
| 50-29-3    | 4,4-DDT              | 0.374 | U         | 0.159    | 0.374 | 1.9      | ug/kg    |
| 72-43-5    | Methoxychlor         | 0.374 | U         | 0.193    | 0.374 | 1.9      | ug/kg    |
| 53494-70-5 | Endrin ketone        | 0.374 | U         | 0.147    | 0.374 | 1.9      | ug/kg    |
| 7421-93-4  | Endrin aldehyde      | 0.374 | U         | 0.17     | 0.374 | 1.9      | ug/kg    |
| 5103-71-9  | alpha-Chlordane      | 0.374 | U         | 0.159    | 0.374 | 1.9      | ug/kg    |
| 5103-74-2  | gamma-Chlordane      | 0.374 | U         | 0.147    | 0.374 | 1.9      | ug/kg    |
| 8001-35-2  | Toxaphene            | 3.8   | U         | 3.8      | 3.8   | 19.3     | ug/kg    |
| SURROGATES |                      |       |           |          |       |          |          |
| 2051-24-3  | Decachlorobiphenyl   | 20.6  |           | 10 - 169 |       | 103%     | SPK: 20  |
| 877-09-8   | Tetrachloro-m-xylene | 21.1  |           | 31 - 151 |       | 105%     | SPK: 20  |



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project:

NYCSCA Unionport Road Bronx

06/24/14

Client Sample ID:

GP-12(0-5)

F2875

12

Lab Sample ID:

F2875-09

Matrix: **SOIL** 

Analytical Method:

SW8081

% Moisture:

SDG No.:

Date Received:

Decanted:

Sample Wt/Vol:

30.09

Units: g

PH:

Final Vol:

10000 иL

Soil Aliquot Vol:

иL

Test:

Pesticide-TCL

Extraction Type:

1.0

Injection Volume:

GPC Factor:

File ID/Qc Batch:

Prep Date

Date Analyzed

Prep Batch ID

PD023146.D

Dilution: 1

06/28/14

06/30/14

PB77509

**CAS Number** 

Parameter

Conc.

Qualifier MDL

LOQ / CRQL Units

LOD

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-12(0-5) SDG No.: F2875
Lab Sample ID: F2875-09 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 12

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072184.D 1 06/28/14 06/30/14 PB77511

| B1 072101.B | •                           | 00/20/11 | 00        | 750/11 |      | 18//311    |       |
|-------------|-----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number  | Parameter                   | Conc     | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| TARGETS     |                             |          |           |        |      |            |       |
| 100-52-7    | Benzaldehyde                | 37.8     | U         | 19.7   | 37.8 | 370        | ug/Kg |
| 108-95-2    | Phenol                      | 37.8     | U         | 8.7    | 37.8 | 370        | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 37.8     | U         | 18.1   | 37.8 | 370        | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 37.8     | U         | 20     | 37.8 | 370        | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 37.8     | U         | 20.5   | 37.8 | 370        | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 37.8     | U         | 15.6   | 37.8 | 370        | ug/Kg |
| 98-86-2     | Acetophenone                | 37.8     | U         | 11.6   | 37.8 | 370        | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 37.8     | U         | 19.6   | 37.8 | 370        | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 37.8     | U         | 19     | 37.8 | 370        | ug/Kg |
| 67-72-1     | Hexachloroethane            | 37.8     | U         | 16.9   | 37.8 | 370        | ug/Kg |
| 98-95-3     | Nitrobenzene                | 37.8     | U         | 14.3   | 37.8 | 370        | ug/Kg |
| 78-59-1     | Isophorone                  | 37.8     | U         | 12.5   | 37.8 | 370        | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 37.8     | U         | 18.3   | 37.8 | 370        | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 37.8     | U         | 21.4   | 37.8 | 370        | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 37.8     | U         | 21.8   | 37.8 | 370        | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 37.8     | U         | 14.4   | 37.8 | 370        | ug/Kg |
| 91-20-3     | Naphthalene                 | 37.8     | U         | 13     | 37.8 | 370        | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 37.8     | U         | 26.6   | 37.8 | 370        | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 37.8     | U         | 13.7   | 37.8 | 370        | ug/Kg |
| 105-60-2    | Caprolactam                 | 75.6     | U         | 17.6   | 75.6 | 370        | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 37.8     | U         | 16.8   | 37.8 | 370        | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 37.8     | U         | 9.5    | 37.8 | 370        | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 37.8     | U         | 9.2    | 37.8 | 370        | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 37.8     | U         | 11.6   | 37.8 | 370        | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 37.8     | U         | 26.5   | 37.8 | 370        | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 37.8     | U         | 14.3   | 37.8 | 370        | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 37.8     | U         | 8.6    | 37.8 | 370        | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 37.8     | U         | 16.8   | 37.8 | 370        | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 570      |           | 10.2   | 37.8 | 370        | ug/Kg |
| 208-96-8    | Acenaphthylene              | 37.8     | U         | 9.5    | 37.8 | 370        | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 37.8     | U         | 15.4   | 37.8 | 370        | ug/Kg |
|             |                             |          |           |        |      |            |       |



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-12(0-5) SDG No.: F2875 SOIL Lab Sample ID: F2875-09 Matrix: Analytical Method: SW8270 % Moisture: 12

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: N Level: Decanted: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Prep Batch ID Dilution: Prep Date Date Analyzed

| BF072184.D | 1                          | 06/28/14 | 06        | /30/14 |      | PB77511    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 75.6     | U         | 24.3   | 75.6 | 370        | ug/Kg |
| 83-32-9    | Acenaphthene               | 37.8     | U         | 10.7   | 37.8 | 370        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 300      | U         | 38.4   | 300  | 370        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 190      | U         | 70.2   | 190  | 370        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 37.8     | U         | 14.7   | 37.8 | 370        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 37.8     | U         | 11.3   | 37.8 | 370        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 37.8     | U         | 5.9    | 37.8 | 370        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 37.8     | U         | 20.5   | 37.8 | 370        | ug/Kg |
| 86-73-7    | Fluorene                   | 37.8     | U         | 14.3   | 37.8 | 370        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 75.6     | U         | 49.2   | 75.6 | 370        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 190      | U         | 21.7   | 190  | 370        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 37.8     | U         | 9.1    | 37.8 | 370        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 37.8     | U         | 7.4    | 37.8 | 370        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 37.8     | U         | 15.4   | 37.8 | 370        | ug/Kg |
| 1912-24-9  | Atrazine                   | 37.8     | U         | 20     | 37.8 | 370        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 37.8     | U         | 25.8   | 37.8 | 370        | ug/Kg |
| 85-01-8    | Phenanthrene               | 37.8     | U         | 10.2   | 37.8 | 370        | ug/Kg |
| 120-12-7   | Anthracene                 | 37.8     | U         | 7.7    | 37.8 | 370        | ug/Kg |
| 86-74-8    | Carbazole                  | 37.8     | U         | 8.3    | 37.8 | 370        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 37.8     | U         | 29.7   | 37.8 | 370        | ug/Kg |
| 206-44-0   | Fluoranthene               | 37.8     | U         | 7.6    | 37.8 | 370        | ug/Kg |
| 129-00-0   | Pyrene                     | 37.8     | U         | 9.1    | 37.8 | 370        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 37.8     | U         | 18.1   | 37.8 | 370        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 37.8     | U         | 24.3   | 37.8 | 370        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 37.8     | U         | 18     | 37.8 | 370        | ug/Kg |
| 218-01-9   | Chrysene                   | 37.8     | U         | 17.1   | 37.8 | 370        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 37.8     | U         | 13.4   | 37.8 | 370        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 37.8     | U         | 4.3    | 37.8 | 370        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 37.8     | U         | 12.4   | 37.8 | 370        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 37.8     | U         | 17.8   | 37.8 | 370        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 37.8     | U         | 8.2    | 37.8 | 370        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 37.8     | U         | 12.6   | 37.8 | 370        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 37.8     | U         | 10.9   | 37.8 | 370        | ug/Kg |



Analytical Method:

SW8270

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-12(0-5) SDG No.: F2875
Lab Sample ID: F2875-09 Matrix: SOIL

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072184.D 1 06/28/14 06/30/14 PB77511

| CAS Number   | Parameter                        | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |
|--------------|----------------------------------|--------|-----------|----------|------|------------|----------|
| 191-24-2     | Benzo(g,h,i)perylene             | 37.8   | U         | 15.3     | 37.8 | 370        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       | 37.8   | U         | 14.9     | 37.8 | 370        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        | 37.8   | U         | 14.9     | 37.8 | 370        | ug/Kg    |
| SURROGATES   |                                  |        |           |          |      |            |          |
| 367-12-4     | 2-Fluorophenol                   | 110    |           | 28 - 12  | 7    | 71%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        | 110    |           | 34 - 12  | 7    | 76%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  | 61.9   |           | 31 - 132 | 2    | 62%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 | 67.3   |           | 39 - 123 | 3    | 67%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             | 100    |           | 30 - 133 | 3    | 70%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    | 72.1   |           | 37 - 115 | 5    | 72%        | SPK: 100 |
| INTERNAL ST  | ANDARDS                          |        |           |          |      |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 46370  | 7.2       |          |      |            |          |
| 1146-65-2    | Naphthalene-d8                   | 196464 | 8.78      |          |      |            |          |
| 15067-26-2   | Acenaphthene-d10                 | 93414  | 10.95     |          |      |            |          |
| 1517-22-2    | Phenanthrene-d10                 | 194655 | 12.78     |          |      |            |          |
| 1719-03-5    | Chrysene-d12                     | 199601 | 16.05     |          |      |            |          |
| 1520-96-3    | Perylene-d12                     | 184230 | 17.74     |          |      |            |          |
| TENTATIVE II | DENTIFIED COMPOUNDS              |        |           |          |      |            |          |
| 000077-76-9  | Propane, 2,2-dimethoxy-          | 9600   | J         |          |      | 1.41       | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      | 750    | J         |          |      | 1.68       | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- | 490    | A         |          |      | 4.94       | ug/Kg    |
|              | unknown6.90                      | 2800   | J         |          |      | 6.9        | ug/Kg    |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

% Moisture:

12

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-12(0-5) SDG No.: F2875 F2875-09 SOIL Lab Sample ID: Matrix: Analytical Method: SW8260 % Moisture: 12 Sample Wt/Vol: 4.13 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042158.D 1 06/26/14 VF062614

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 74-83-9    | Bromomethane                   | 1.4   | U         | 1.4  | 1.4  | 6.9        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 67-64-1    | Acetone                        | 3.4   | U         | 3.4  | 3.4  | 34.4       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 1.4   | U         | 1.4  | 1.4  | 6.9        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 10.3  | U         | 4.3  | 10.3 | 34.4       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 71-43-2    | Benzene                        | 0.69  | U         | 0.52 | 0.69 | 6.9        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.69  | U         | 0.36 | 0.69 | 6.9        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 3.4   | U         | 3.4  | 3.4  | 34.4       | ug/Kg |
| 108-88-3   | Toluene                        | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.69  | U         | 0.69 | 0.69 | 6.9        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-12(0-5) SDG No.: F2875 SOIL Lab Sample ID: F2875-09 Matrix: Analytical Method: SW8260 % Moisture: 12 Sample Wt/Vol: 4.13 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042158.D 1 06/26/14 VF062614

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.69  | U         | 0.69     | 0.69 | 6.9        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 1.4   | U         | 1.2      | 1.4  | 6.9        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 3.4   | U         | 3.4      | 3.4  | 34.4       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.69  | U         | 0.69     | 0.69 | 6.9        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.69  | U         | 0.69     | 0.69 | 6.9        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 0.69  | U         | 0.69     | 0.69 | 6.9        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.69  | U         | 0.69     | 0.69 | 6.9        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 0.69  | U         | 0.69     | 0.69 | 6.9        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 1.4   | U         | 0.99     | 1.4  | 13.8       | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.69  | U         | 0.69     | 0.69 | 6.9        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.69  | U         | 0.62     | 0.69 | 6.9        | ug/Kg   |
| 75-25-2     | Bromoform                   | 2.1   | U         | 1        | 2.1  | 6.9        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.69  | U         | 0.66     | 0.69 | 6.9        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.69  | U         | 0.63     | 0.69 | 6.9        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.69  | U         | 0.5      | 0.69 | 6.9        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.69  | U         | 0.62     | 0.69 | 6.9        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.69  | U         | 0.69     | 0.69 | 6.9        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.69  | U         | 0.69     | 0.69 | 6.9        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.69  | U         | 0.69     | 0.69 | 6.9        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.69  | U         | 0.4      | 0.69 | 6.9        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.69  | U         | 0.51     | 0.69 | 6.9        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.69  | U         | 0.56     | 0.69 | 6.9        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.69  | U         | 0.63     | 0.69 | 6.9        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.69  | U         | 0.69     | 0.69 | 6.9        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 6.9   | U         | 1.2      | 6.9  | 6.9        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.69  | U         | 0.69     | 0.69 | 6.9        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.69  | U         | 0.62     | 0.69 | 6.9        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 1.4   | U         | 0.69     | 1.4  | 6.9        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 140   | U         | 140      | 140  | 140        | ug/Kg   |
| SURROGATES  |                             |       |           |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 39.9  |           | 56 - 120 |      | 80%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 44.3  |           | 57 - 135 | 5    | 88%        | SPK: 50 |



06/24/14

06/24/14

Client: Dvirka & Bartilucci Date Collected:

Project: NYCSCA Unionport Road Bronx Date Received:

Client Sample ID: GP-12(0-5) SDG No.: F2875
Lab Sample ID: F2875-09 Matrix: SOIL
Analytical Method: SW8260 % Moisture: 12

Sample Wt/Vol: 4.13 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042158.D 1 06/26/14 VF062614

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL I    | LOD | LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|-----|------------|---------|
| 2037-26-5   | Toluene-d8             | 32.4   | *         | 67 - 123 |     | 65%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 13.6   | *         | 33 - 141 |     | 27%        | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |     |            |         |
| 363-72-4    | Pentafluorobenzene     | 159905 | 4.88      |          |     |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 250004 | 5.59      |          |     |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 136317 | 9.75      |          |     |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 19124  | 12.52     |          |     |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-12(0-5)RE SDG No.: F2875 SOIL Lab Sample ID: F2875-09RE Matrix: Analytical Method: SW8260 % Moisture: 12

Sample Wt/Vol: 5.07 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008799.D 1 06/27/14 VT062714

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 74-83-9    | Bromomethane                   | 1.1   | U         | 1.1  | 1.1  | 5.6        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 67-64-1    | Acetone                        | 7     | J         | 2.8  | 2.8  | 28         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 1.1   | U         | 1.1  | 1.1  | 5.6        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 8.4   | U         | 3.5  | 8.4  | 28         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 71-43-2    | Benzene                        | 0.56  | U         | 0.43 | 0.56 | 5.6        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.56  | U         | 0.29 | 0.56 | 5.6        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 2.8   | U         | 2.8  | 2.8  | 28         | ug/Kg |
| 108-88-3   | Toluene                        | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.56  | U         | 0.56 | 0.56 | 5.6        | ug/Kg |



GC Column:

RXI-624

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-12(0-5)RE F2875 Matrix: SOIL Lab Sample ID: F2875-09RE Analytical Method: SW8260 % Moisture: 12 Sample Wt/Vol: 5.07 Units: Final Vol: 5000 uL g Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008799.D 1 06/27/14 VT062714

ID: 0.25

Qualifier **MDL CAS Number** Parameter Conc. LOD LOQ / CRQL Units 0.56 10061-01-5 0.56 U 0.56 ug/Kg cis-1,3-Dichloropropene 5.6 79-00-5 1,1,2-Trichloroethane 1.1 U 1 1 1 5.6 ug/Kg 591-78-6 2-Hexanone 2.8 U 2.8 2.8 28 ug/Kg 124-48-1 Dibromochloromethane 0.56 U 0.56 0.56 5.6 ug/Kg 106-93-4 1,2-Dibromoethane 0.56 U 0.56 0.56 5.6 ug/Kg 127-18-4 Tetrachloroethene 0.56 U 0.56 0.56 5.6 ug/Kg 0.56 U 0.56 5.6 108-90-7 Chlorobenzene 0.56 ug/Kg U 100-41-4 Ethyl Benzene 0.56 0.56 0.56 5.6 ug/Kg U m/p-Xylenes 1.1 0.81 1.1 11.2 ug/Kg 179601-23-1 95-47-6 o-Xylene 0.56 U 0.56 0.56 5.6 ug/Kg U 100-42-5 Styrene 0.56 0.5 0.56 5.6 ug/Kg 75-25-2 Bromoform 1.7 U 0.83 1.7 5.6 ug/Kg 0.56 U 0.54 98-82-8 Isopropylbenzene 0.56 5.6 ug/Kg 79-34-5 1,1,2,2-Tetrachloroethane 0.56 U 0.52 0.56 5.6 ug/Kg U 103-65-1 n-propylbenzene 0.56 0.4 0.56 5.6 ug/Kg 0.56 U 108-67-8 1,3,5-Trimethylbenzene 0.5 0.56 5.6 ug/Kg tert-Butylbenzene 0.56 U 98-06-6 0.56 0.56 5.6 ug/Kg 95-63-6 1.2.4-Trimethylbenzene 0.56 U 0.56 0.56 5.6 ug/Kg U 135-98-8 sec-Butylbenzene 0.56 0.56 0.56 5.6 ug/Kg 99-87-6 p-Isopropyltoluene 0.56 U 0.32 0.56 5.6 ug/Kg 541-73-1 1.3-Dichlorobenzene 0.56 U 0.41 0.56 5.6 ug/Kg 106-46-7 1.4-Dichlorobenzene 0.56 U 0.46 0.56 5.6 ug/Kg 104-51-8 n-Butvlbenzene 0.56 U 0.52 0.56 5.6 ug/Kg 95-50-1 1,2-Dichlorobenzene 0.56 U 0.56 0.56 5.6 ug/Kg 96-12-8 1,2-Dibromo-3-Chloropropane 5.6 U 0.97 5.6 5.6 ug/Kg 0.56 U 0.56 120-82-1 1,2,4-Trichlorobenzene 0.56 5.6 ug/Kg 91-20-3 Naphthalene 0.56 U 0.5 0.56 5.6 ug/Kg IJ 87-61-6 1,2,3-Trichlorobenzene 1 1 0.56 1.1 5.6 ug/Kg 123-91-1 1,4-Dioxane 110 U 110 110 110 ug/Kg **SURROGATES** 1,2-Dichloroethane-d4 56 - 120 50 100% SPK: 50 17060-07-0 Dibromofluoromethane 57 - 135 110% 1868-53-7 54.8 SPK: 50



## **Report of Analysis**

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Level:

Matrix:

06/24/14

06/24/14

F2875

SOIL

12

5000

LOW

VOCMS Group1

uL

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-12(0-5)RE

Lab Sample ID: F2875-09RE

Analytical Method: SW8260

Sample Wt/Vol: 5.07 Units: g

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VT008799.D 1 06/27/14 VT062714

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL LOI  | LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|------------|---------|
| 2037-26-5   | Toluene-d8             | 42.5   |           | 67 - 123 | 85%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 26     |           | 33 - 141 | 52%        | SPK: 50 |
| INTERNAL ST | CANDARDS               |        |           |          |            |         |
| 363-72-4    | Pentafluorobenzene     | 650664 | 7.43      |          |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 920614 | 8.37      |          |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 585788 | 11.21     |          |            |         |
| 3855-82-1   | 1.4-Dichlorobenzene-d4 | 171157 | 13.15     |          |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 12:00 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-11(6-23) F2875 Lab Sample ID: F2875-10 Matrix: SOIL % Solid: 100

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Corrosivity         | 5.22  |      | 1  | 0     | 0     | 0          | mg/Kg |           | 06/26/14 14:10 | 9045C    |
| Cyanide             | 0.141 | U    | 1  | 0.037 | 0.141 | 0.282      | mg/Kg | 06/26/14  | 06/30/14 13:59 | 9012B    |
| Hexavalent Chromium | 0.094 | J    | 1  | 0.094 | 0.235 | 0.47       | mg/Kg | 06/27/14  | 06/27/14 16:55 | 7196A    |
| Ignitability        | NO    |      | 1  | 0     | 0     | 0          | o C   | 06/30/14  | 06/30/14 14:00 | 1030     |
| Reactive Cyanide    | 0.05  | U    | 1  | 0.05  | 0.05  | 0.05       | mg/Kg | 06/26/14  | 06/30/14 16:06 | 9012B    |
| Reactive Sulfide    | 10    | U    | 1  | 10    | 10    | 10         | mg/Kg | 06/26/14  | 06/27/14 15:15 | 9034     |

#### Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Soil Aliquot Vol:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Date Collected:

06/23/14

06/24/14

## **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx Date Received:

SDG No.: Client Sample ID: GP-11(6-23) F2875 Lab Sample ID: F2875-10 Matrix: SOIL

% Moisture: Analytical Method: 8015B DRO 15.5 Decanted:

1 Sample Wt/Vol: 30.04 Units: Final Vol: mL g Test: Diesel Range Organics

Extraction Type: Injection Volume:

иL

PH: GPC Factor:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

1 06/28/14 06/30/14 FC011939.D PB77512

| CAS Number               | Parameter       | Conc. | Qualifier MDL | LOD | LOQ / CR | QL Units |
|--------------------------|-----------------|-------|---------------|-----|----------|----------|
| TARGETS<br>DRO           | DRO             | 4097  | 985           | 985 | 1970     | ug/kg    |
| SURROGATES<br>16416-32-3 | Tetracosane-d50 | 19.5  | 37 - 130      |     | 97%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



FB004489.D

## **Report of Analysis**

Client:Dvirka & BartilucciDate Collected:06/23/14Project:NYCSCA Unionport Road BronxDate Received:06/24/14Client Sample ID:GP-11(6-23)SDG No.:F2875

Lab Sample ID: F2875-10 Matrix: SOIL

Analytical Method: 8015B GRO % Moisture: 15.5

Sample Wt/Vol: 5.03 Units: g Final Vol: 5 mL

Soil Aliquot Vol: uL Test: Gasoline Range Organics

Extraction Type: Injection Volume :

GPC Factor: PH:

1

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

**CAS Number** Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units **TARGETS GRO GRO** 26 U 14 26 53 ug/kg **SURROGATES** 98-08-8 Alpha, Alpha, Trifluorotoluene 14.5 50 - 150 72% SPK: 20

07/01/14

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:

FB070114



PE010268.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-11(6-23) SDG No.: F2875

Lab Sample ID: F2875-10 Matrix: SOIL

Analytical Method: SW8151A % Moisture: 15.5

Sample Wt/Vol: 30.08 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

1

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

06/27/14

| CAS Number | Parameter         | Conc. | Qualifi | er MDL   | LOD  | LOQ / CF | RQL Units |
|------------|-------------------|-------|---------|----------|------|----------|-----------|
| TARGETS    |                   |       |         |          |      |          |           |
| 1918-00-9  | DICAMBA           | 19.7  | U       | 15.7     | 19.7 | 79.1     | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 19.7  | U       | 14.6     | 19.7 | 79.1     | ug/Kg     |
| 94-75-7    | 2,4-D             | 19.7  | U       | 19.7     | 19.7 | 79.1     | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 19.7  | U       | 12.9     | 19.7 | 79.1     | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 19.7  | U       | 12.1     | 19.7 | 79.1     | ug/Kg     |
| 94-82-6    | 2,4-DB            | 19.7  | U       | 19.7     | 19.7 | 79.1     | ug/Kg     |
| 88-85-7    | DINOSEB           | 19.7  | U       | 19.7     | 19.7 | 79.1     | ug/Kg     |
| SURROGATES |                   |       |         |          |      |          |           |
| 19719-28-9 | 2,4-DCAA          | 198   |         | 12 - 189 | )    | 40%      | SPK: 500  |

07/01/14

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:

PB77475



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-11(6-23) SDG No.: F2875

Lab Sample ID: F2875-10 Matrix: SOIL

Level (low/med): low % Solid: 84.5

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQ | L Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|-----------|-------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.21  | UN   | 1  | 0.541 | 1.21  | 2.42      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-38-2 | Arsenic   | 4.14  |      | 1  | 0.319 | 0.483 | 0.966     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-39-3 | Barium    | 47.1  |      | 1  | 0.386 | 2.42  | 4.83      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.686 |      | 1  | 0.058 | 0.145 | 0.29      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.145 | U    | 1  | 0.058 | 0.145 | 0.29      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-47-3 | Chromium  | 20.4  |      | 1  | 0.126 | 0.242 | 0.483     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-48-4 | Cobalt    | 7.39  |      | 1  | 0.551 | 0.725 | 1.45      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-50-8 | Copper    | 7.86  | N    | 1  | 0.309 | 0.483 | 0.966     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7439-92-1 | Lead      | 9.84  |      | 1  | 0.116 | 0.29  | 0.58      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7439-96-5 | Manganese | 264   |      | 1  | 0.184 | 0.483 | 0.966     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.039 |      | 1  | 0.005 | 0.005 | 0.011     | mg/Kg 06/27/14    | 06/30/14  | SW7471A  |
| 7440-02-0 | Nickel    | 13.3  |      | 1  | 0.444 | 0.966 | 1.93      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7782-49-2 | Selenium  | 1.55  | N    | 1  | 0.396 | 0.483 | 0.966     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-22-4 | Silver    | 1.1   |      | 1  | 0.145 | 0.242 | 0.483     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.966 | U    | 1  | 0.261 | 0.966 | 1.93      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-62-2 | Vanadium  | 48.8  |      | 1  | 0.57  | 0.966 | 1.93      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-66-6 | Zinc      | 32.3  |      | 1  | 0.676 | 0.966 | 1.93      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-11(6-23) F2875 Lab Sample ID: F2875-10 Matrix: SOIL % Moisture: Analytical Method: SW8082A 15.5

Sample Wt/Vol: 30.06 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PP003575.D 1 06/28/14 06/30/14 PB77506

| CAS Number | Parameter            | Conc. | Qualifier | MDL LOD  |     | LOQ / CRQL Units |         |
|------------|----------------------|-------|-----------|----------|-----|------------------|---------|
| TARGETS    |                      |       |           |          |     |                  |         |
| 12674-11-2 | Aroclor-1016         | 3.9   | U         | 3.9      | 3.9 | 20.1             | ug/kg   |
| 11104-28-2 | Aroclor-1221         | 3.9   | U         | 3.9      | 3.9 | 20.1             | ug/kg   |
| 11141-16-5 | Aroclor-1232         | 3.9   | U         | 3.9      | 3.9 | 20.1             | ug/kg   |
| 53469-21-9 | Aroclor-1242         | 3.9   | U         | 3.9      | 3.9 | 20.1             | ug/kg   |
| 12672-29-6 | Aroclor-1248         | 3.9   | U         | 3.9      | 3.9 | 20.1             | ug/kg   |
| 11097-69-1 | Aroclor-1254         | 3.9   | U         | 1.8      | 3.9 | 20.1             | ug/kg   |
| 11096-82-5 | Aroclor-1260         | 3.9   | U         | 3.9      | 3.9 | 20.1             | ug/kg   |
| SURROGATES |                      |       |           |          |     |                  |         |
| 877-09-8   | Tetrachloro-m-xylene | 18.2  |           | 10 - 166 | 5   | 91%              | SPK: 20 |
| 2051-24-3  | Decachlorobiphenyl   | 18.1  |           | 60 - 125 | 5   | 91%              | SPK: 20 |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-11(6-23) SDG No.: F2875

Lab Sample ID: F2875-10 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 15.5 Decanted:

Sample Wt/Vol: 30.02 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023147.D 1 06/28/14 06/30/14 PB77509

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQ | L Units |
|------------|----------------------|-------|-----------|----------|------|-----------|---------|
| TARGETS    |                      |       |           |          |      |           |         |
| 319-84-6   | alpha-BHC            | 0.39  | U         | 0.154    | 0.39 | 2         | ug/kg   |
| 319-85-7   | beta-BHC             | 0.39  | U         | 0.213    | 0.39 | 2         | ug/kg   |
| 319-86-8   | delta-BHC            | 0.39  | U         | 0.118    | 0.39 | 2         | ug/kg   |
| 58-89-9    | gamma-BHC (Lindane)  | 0.39  | U         | 0.177    | 0.39 | 2         | ug/kg   |
| 76-44-8    | Heptachlor           | 0.39  | U         | 0.166    | 0.39 | 2         | ug/kg   |
| 309-00-2   | Aldrin               | 0.39  | U         | 0.118    | 0.39 | 2         | ug/kg   |
| 1024-57-3  | Heptachlor epoxide   | 0.39  | U         | 0.189    | 0.39 | 2         | ug/kg   |
| 959-98-8   | Endosulfan I         | 0.39  | U         | 0.177    | 0.39 | 2         | ug/kg   |
| 60-57-1    | Dieldrin             | 0.39  | U         | 0.154    | 0.39 | 2         | ug/kg   |
| 72-55-9    | 4,4-DDE              | 0.39  | U         | 0.237    | 0.39 | 2         | ug/kg   |
| 72-20-8    | Endrin               | 0.39  | U         | 0.213    | 0.39 | 2         | ug/kg   |
| 33213-65-9 | Endosulfan II        | 0.39  | U         | 0.166    | 0.39 | 2         | ug/kg   |
| 72-54-8    | 4,4-DDD              | 0.39  | U         | 0.201    | 0.39 | 2         | ug/kg   |
| 1031-07-8  | Endosulfan Sulfate   | 0.39  | U         | 0.177    | 0.39 | 2         | ug/kg   |
| 50-29-3    | 4,4-DDT              | 0.39  | U         | 0.166    | 0.39 | 2         | ug/kg   |
| 72-43-5    | Methoxychlor         | 0.39  | U         | 0.201    | 0.39 | 2         | ug/kg   |
| 53494-70-5 | Endrin ketone        | 0.39  | U         | 0.154    | 0.39 | 2         | ug/kg   |
| 7421-93-4  | Endrin aldehyde      | 0.39  | U         | 0.177    | 0.39 | 2         | ug/kg   |
| 5103-71-9  | alpha-Chlordane      | 0.39  | U         | 0.166    | 0.39 | 2         | ug/kg   |
| 5103-74-2  | gamma-Chlordane      | 0.39  | U         | 0.154    | 0.39 | 2         | ug/kg   |
| 8001-35-2  | Toxaphene            | 3.9   | U         | 3.9      | 3.9  | 20.1      | ug/kg   |
| SURROGATES |                      |       |           |          |      |           |         |
| 2051-24-3  | Decachlorobiphenyl   | 19.6  |           | 10 - 169 | )    | 98%       | SPK: 20 |
| 877-09-8   | Tetrachloro-m-xylene | 20.4  |           | 31 - 151 | [    | 102%      | SPK: 20 |



#### **Report of Analysis**

Client: Dvirka & Bartilucci

Ovirka & Bartilucci Date Collected:

Project: NYCSCA Unionport Road Bronx Date Received:

Client Sample ID: GP-11(6-23) SDG No.: F2875

Lab Sample ID: F2875-10 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 15.5

Sample Wt/Vol: 30.02 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023147.D 1 06/28/14 06/30/14 PB77509

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

06/23/14

06/24/14

Decanted:



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-11(6-23) SDG No.: F2875
Lab Sample ID: F2875-10 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 15.5

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072185.D 1 06/28/14 06/30/14 PB77511

| DI 0/2103.D | •                           | 00/20/11 | 00/30/11  |      |      |            |       |
|-------------|-----------------------------|----------|-----------|------|------|------------|-------|
| CAS Number  | Parameter                   | Conc.    | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
| TARGETS     |                             |          |           |      |      |            |       |
| 100-52-7    | Benzaldehyde                | 39.4     | U         | 20.6 | 39.4 | 390        | ug/Kg |
| 108-95-2    | Phenol                      | 39.4     | U         | 9.1  | 39.4 | 390        | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 39.4     | U         | 18.9 | 39.4 | 390        | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 39.4     | U         | 20.8 | 39.4 | 390        | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 39.4     | U         | 21.4 | 39.4 | 390        | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 39.4     | U         | 16.3 | 39.4 | 390        | ug/Kg |
| 98-86-2     | Acetophenone                | 39.4     | U         | 12.1 | 39.4 | 390        | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 39.4     | U         | 20.5 | 39.4 | 390        | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 39.4     | U         | 19.9 | 39.4 | 390        | ug/Kg |
| 67-72-1     | Hexachloroethane            | 39.4     | U         | 17.6 | 39.4 | 390        | ug/Kg |
| 98-95-3     | Nitrobenzene                | 39.4     | U         | 14.9 | 39.4 | 390        | ug/Kg |
| 78-59-1     | Isophorone                  | 39.4     | U         | 13   | 39.4 | 390        | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 39.4     | U         | 19   | 39.4 | 390        | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 39.4     | U         | 22.4 | 39.4 | 390        | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 39.4     | U         | 22.7 | 39.4 | 390        | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 39.4     | U         | 15   | 39.4 | 390        | ug/Kg |
| 91-20-3     | Naphthalene                 | 39.4     | U         | 13.6 | 39.4 | 390        | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 39.4     | U         | 27.8 | 39.4 | 390        | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 39.4     | U         | 14.3 | 39.4 | 390        | ug/Kg |
| 105-60-2    | Caprolactam                 | 78.9     | U         | 18.3 | 78.9 | 390        | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 39.4     | U         | 17.5 | 39.4 | 390        | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 39.4     | U         | 9.9  | 39.4 | 390        | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 39.4     | U         | 9.6  | 39.4 | 390        | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 39.4     | U         | 12.1 | 39.4 | 390        | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 39.4     | U         | 27.7 | 39.4 | 390        | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 39.4     | U         | 14.9 | 39.4 | 390        | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 39.4     | U         | 9    | 39.4 | 390        | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 39.4     | U         | 17.5 | 39.4 | 390        | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 540      |           | 10.6 | 39.4 | 390        | ug/Kg |
| 208-96-8    | Acenaphthylene              | 39.4     | U         | 9.9  | 39.4 | 390        | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 39.4     | U         | 16.1 | 39.4 | 390        | ug/Kg |



Sample Wt/Vol:

30.01

Units:

g

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-11(6-23) SDG No.: F2875 Lab Sample ID: F2875-10 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 15.5

Soil Aliquot Vol: uL Test: SVOCMS Group1

Final Vol:

1000

uL

Extraction Type: N Level: Decanted: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Prep Batch ID Dilution: Prep Date Date Analyzed

| BF072185.D | 1                          | 06/28/14 | 06/30/14  |      |      | PB77511    |       |
|------------|----------------------------|----------|-----------|------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 78.9     | U         | 25.3 | 78.9 | 390        | ug/Kg |
| 83-32-9    | Acenaphthene               | 39.4     | U         | 11.1 | 39.4 | 390        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 320      | U         | 40.1 | 320  | 390        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 200      | U         | 73.2 | 200  | 390        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 39.4     | U         | 15.4 | 39.4 | 390        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 39.4     | U         | 11.8 | 39.4 | 390        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 39.4     | U         | 6.2  | 39.4 | 390        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 39.4     | U         | 21.4 | 39.4 | 390        | ug/Kg |
| 86-73-7    | Fluorene                   | 39.4     | U         | 14.9 | 39.4 | 390        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 78.9     | U         | 51.3 | 78.9 | 390        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 200      | U         | 22.6 | 200  | 390        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 39.4     | U         | 9.5  | 39.4 | 390        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 39.4     | U         | 7.7  | 39.4 | 390        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 39.4     | U         | 16.1 | 39.4 | 390        | ug/Kg |
| 1912-24-9  | Atrazine                   | 39.4     | U         | 20.8 | 39.4 | 390        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 39.4     | U         | 27   | 39.4 | 390        | ug/Kg |
| 85-01-8    | Phenanthrene               | 39.4     | U         | 10.6 | 39.4 | 390        | ug/Kg |
| 120-12-7   | Anthracene                 | 39.4     | U         | 8    | 39.4 | 390        | ug/Kg |
| 86-74-8    | Carbazole                  | 39.4     | U         | 8.6  | 39.4 | 390        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 39.4     | U         | 31   | 39.4 | 390        | ug/Kg |
| 206-44-0   | Fluoranthene               | 39.4     | U         | 7.9  | 39.4 | 390        | ug/Kg |
| 129-00-0   | Pyrene                     | 39.4     | U         | 9.5  | 39.4 | 390        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 39.4     | U         | 18.9 | 39.4 | 390        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 39.4     | U         | 25.3 | 39.4 | 390        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 39.4     | U         | 18.8 | 39.4 | 390        | ug/Kg |
| 218-01-9   | Chrysene                   | 39.4     | U         | 17.9 | 39.4 | 390        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 39.4     | U         | 14   | 39.4 | 390        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 39.4     | U         | 4.5  | 39.4 | 390        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 39.4     | U         | 12.9 | 39.4 | 390        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 39.4     | U         | 18.6 | 39.4 | 390        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 39.4     | U         | 8.5  | 39.4 | 390        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 39.4     | U         | 13.1 | 39.4 | 390        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 39.4     | U         | 11.4 | 39.4 | 390        | ug/Kg |



Sample Wt/Vol:

30.01

Units:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: SDG No.: GP-11(6-23) F2875 Lab Sample ID: F2875-10 Matrix: SOIL

% Moisture: 15.5 Analytical Method: SW8270

g Test: Soil Aliquot Vol: uL SVOCMS Group1

Final Vol:

1000

uL

Extraction Type: Decanted: N Level: LOW

GPC Factor: Injection Volume: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF072185.D 06/28/14 06/30/14 PB77511

| CAS Number   | Parameter                        | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |  |
|--------------|----------------------------------|--------|-----------|----------|------|------------|----------|--|
| 191-24-2     | Benzo(g,h,i)perylene             | 39.4   | U         | 16       | 39.4 | 390        | ug/Kg    |  |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       | 39.4   | U         | 15.5     | 39.4 | 390        | ug/Kg    |  |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        | 39.4   | U         | 15.5     | 39.4 | 390        | ug/Kg    |  |
| SURROGATES   |                                  |        |           |          |      |            |          |  |
| 367-12-4     | 2-Fluorophenol                   | 85.8   |           | 28 - 12  | 7    | 57%        | SPK: 150 |  |
| 13127-88-3   | Phenol-d6                        | 99.7   |           | 34 - 12  | 7    | 66%        | SPK: 150 |  |
| 4165-60-0    | Nitrobenzene-d5                  | 57     |           | 31 - 132 | 2    | 57%        | SPK: 100 |  |
| 321-60-8     | 2-Fluorobiphenyl                 | 63.2   |           | 39 - 12  | 3    | 63%        | SPK: 100 |  |
| 118-79-6     | 2,4,6-Tribromophenol             | 86.5   |           | 30 - 13  | 3    | 58%        | SPK: 150 |  |
| 1718-51-0    | Terphenyl-d14                    | 57.9   |           | 37 - 11: | 5    | 58%        | SPK: 100 |  |
| INTERNAL STA | ANDARDS                          |        |           |          |      |            |          |  |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 49936  | 7.2       |          |      |            |          |  |
| 1146-65-2    | Naphthalene-d8                   | 209846 | 8.78      |          |      |            |          |  |
| 15067-26-2   | Acenaphthene-d10                 | 100784 | 10.95     |          |      |            |          |  |
| 1517-22-2    | Phenanthrene-d10                 | 183860 | 12.78     |          |      |            |          |  |
| 1719-03-5    | Chrysene-d12                     | 231266 | 16.05     |          |      |            |          |  |
| 1520-96-3    | Perylene-d12                     | 216634 | 17.71     |          |      |            |          |  |
| TENTATIVE ID | DENTIFIED COMPOUNDS              |        |           |          |      |            |          |  |
|              | unknown1.42                      | 2400   | J         |          |      | 1.42       | ug/Kg    |  |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      | 850    | J         |          |      | 1.69       | ug/Kg    |  |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- | 450    | A         |          |      | 4.94       | ug/Kg    |  |
|              | unknown6.90                      | 2800   | J         |          |      | 6.9        | ug/Kg    |  |
| 000506-51-4  | 1-Tetracosanol                   | 240    | J         |          |      | 15.96      | ug/Kg    |  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

<sup>\* =</sup> Values outside of QC limits

D = Dilution



GC Column:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-11(6-23) SDG No.: F2875 SOIL Lab Sample ID: F2875-10 Matrix: Analytical Method: SW8260 % Moisture: 15.5 Sample Wt/Vol: 11.22 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF042159.D 1 06/26/14 VF062614

ID: 0.18

RTX-VMS

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.53  | U         | 0.53 | 0.53 | 2.6        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 67-64-1    | Acetone                        | 1.3   | U         | 1.3  | 1.3  | 13.2       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.53  | U         | 0.53 | 0.53 | 2.6        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 4     | U         | 1.6  | 4    | 13.2       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 71-43-2    | Benzene                        | 0.26  | U         | 0.2  | 0.26 | 2.6        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.26  | U         | 0.14 | 0.26 | 2.6        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1.3   | U         | 1.3  | 1.3  | 13.2       | ug/Kg |
| 108-88-3   | Toluene                        | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.26  | U         | 0.26 | 0.26 | 2.6        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-11(6-23) SDG No.: F2875 Lab Sample ID: F2875-10 Matrix: SOIL Analytical Method: SW8260 % Moisture: 15.5 Sample Wt/Vol: 11.22 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042159.D 1 06/26/14 VF062614

| 1.20.200    |                             |       |           |          |      |            |         |  |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|--|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |  |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.26  | U         | 0.26     | 0.26 | 2.6        | ug/Kg   |  |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.53  | U         | 0.47     | 0.53 | 2.6        | ug/Kg   |  |
| 591-78-6    | 2-Hexanone                  | 1.3   | U         | 1.3      | 1.3  | 13.2       | ug/Kg   |  |
| 124-48-1    | Dibromochloromethane        | 0.26  | U         | 0.26     | 0.26 | 2.6        | ug/Kg   |  |
| 106-93-4    | 1,2-Dibromoethane           | 0.26  | U         | 0.26     | 0.26 | 2.6        | ug/Kg   |  |
| 127-18-4    | Tetrachloroethene           | 0.97  | J         | 0.26     | 0.26 | 2.6        | ug/Kg   |  |
| 108-90-7    | Chlorobenzene               | 0.26  | U         | 0.26     | 0.26 | 2.6        | ug/Kg   |  |
| 100-41-4    | Ethyl Benzene               | 0.26  | U         | 0.26     | 0.26 | 2.6        | ug/Kg   |  |
| 179601-23-1 | m/p-Xylenes                 | 0.53  | U         | 0.38     | 0.53 | 5.3        | ug/Kg   |  |
| 95-47-6     | o-Xylene                    | 0.26  | U         | 0.26     | 0.26 | 2.6        | ug/Kg   |  |
| 100-42-5    | Styrene                     | 0.26  | U         | 0.24     | 0.26 | 2.6        | ug/Kg   |  |
| 75-25-2     | Bromoform                   | 0.79  | U         | 0.39     | 0.79 | 2.6        | ug/Kg   |  |
| 98-82-8     | Isopropylbenzene            | 0.26  | U         | 0.25     | 0.26 | 2.6        | ug/Kg   |  |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.26  | U         | 0.24     | 0.26 | 2.6        | ug/Kg   |  |
| 103-65-1    | n-propylbenzene             | 0.26  | U         | 0.19     | 0.26 | 2.6        | ug/Kg   |  |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.26  | U         | 0.24     | 0.26 | 2.6        | ug/Kg   |  |
| 98-06-6     | tert-Butylbenzene           | 0.26  | U         | 0.26     | 0.26 | 2.6        | ug/Kg   |  |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.26  | U         | 0.26     | 0.26 | 2.6        | ug/Kg   |  |
| 135-98-8    | sec-Butylbenzene            | 0.26  | U         | 0.26     | 0.26 | 2.6        | ug/Kg   |  |
| 99-87-6     | p-Isopropyltoluene          | 0.26  | U         | 0.15     | 0.26 | 2.6        | ug/Kg   |  |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.26  | U         | 0.2      | 0.26 | 2.6        | ug/Kg   |  |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.26  | U         | 0.22     | 0.26 | 2.6        | ug/Kg   |  |
| 104-51-8    | n-Butylbenzene              | 0.26  | U         | 0.24     | 0.26 | 2.6        | ug/Kg   |  |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.26  | U         | 0.26     | 0.26 | 2.6        | ug/Kg   |  |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 2.6   | U         | 0.46     | 2.6  | 2.6        | ug/Kg   |  |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.26  | U         | 0.26     | 0.26 | 2.6        | ug/Kg   |  |
| 91-20-3     | Naphthalene                 | 0.26  | U         | 0.24     | 0.26 | 2.6        | ug/Kg   |  |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.53  | U         | 0.26     | 0.53 | 2.6        | ug/Kg   |  |
| 123-91-1    | 1,4-Dioxane                 | 52.7  | U         | 52.7     | 52.7 | 52.7       | ug/Kg   |  |
| SURROGATES  |                             |       |           |          |      |            |         |  |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 47.7  |           | 56 - 120 |      | 95%        | SPK: 50 |  |
| 1868-53-7   | Dibromofluoromethane        | 45.2  |           | 57 - 135 | 5    | 90%        | SPK: 50 |  |
|             |                             |       |           |          |      |            |         |  |



## **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-11(6-23)

Lab Sample ID: F2875-10

Analytical Method: SW8260

Sample Wt/Vol: 11.22 Units: g

Soil Aliquot Vol: uL

GC Column: RTX-VMS ID: 0.18

Date Collected:

06/23/14

Date Received:

06/24/14

SDG No.:

F2875

Matrix:

Final Vol:

SOIL

% Moisture:

15.5 5000

uL

Test:

VOCMS Group1

Level: LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF042159.D 1

06/26/14

VF062614

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL LO   | D LOQ / CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|--------------|---------|
| 2037-26-5    | Toluene-d8             | 39.9   |           | 67 - 123 | 80%          | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 35.6   |           | 33 - 141 | 71%          | SPK: 50 |
| INTERNAL STA | ANDARDS                |        |           |          |              |         |
| 363-72-4     | Pentafluorobenzene     | 162871 | 4.88      |          |              |         |
| 540-36-3     | 1,4-Difluorobenzene    | 267712 | 5.59      |          |              |         |
| 3114-55-4    | Chlorobenzene-d5       | 195141 | 9.75      |          |              |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 83642  | 12.52     |          |              |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 13:20 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-10(6-19) F2875 Lab Sample ID: F2875-11 Matrix: SOIL % Solid: 100

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | L Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|---------|-----------|----------------|----------|
| Corrosivity         | 8.68  |      | 1  | 0     | 0     | 0          | mg/Kg   |           | 06/26/14 14:12 | 9045C    |
| Cyanide             | 0.149 | U    | 1  | 0.039 | 0.149 | 0.297      | mg/Kg   | 06/26/14  | 06/30/14 13:59 | 9012B    |
| Hexavalent Chromium | 0.24  | U    | 1  | 0.096 | 0.24  | 0.479      | mg/Kg   | 06/27/14  | 06/27/14 16:55 | 7196A    |
| Ignitability        | NO    |      | 1  | 0     | 0     | 0          | o C     | 06/30/14  | 06/30/14 14:00 | 1030     |
| Reactive Cyanide    | 0.05  | U    | 1  | 0.05  | 0.05  | 0.05       | mg/Kg   | 06/26/14  | 06/30/14 16:37 | 9012B    |
| Reactive Sulfide    | 10    | U    | 1  | 10    | 10    | 10         | mg/Kg   | 06/26/14  | 06/27/14 15:15 | 9034     |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-10(6-19) SDG No.: F2875

 Client Sample ID:
 GP-10(6-19)
 SDG No.:
 F2875

 Lab Sample ID:
 F2875-11
 Matrix:
 SOIL

Analytical Method: 8015B DRO % Moisture: 19 Decanted: Sample Wt/Vol: 30.08 Units: g Final Vol: 1 mL

Soil Aliquot Vol: uL Test: Diesel Range Organics

Extraction Type: Injection Volume:

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
FC011940.D 1 06/28/14 06/30/14 PB77512

| CAS Number                   | Parameter       | Conc. Qualif | ier MDL  | MDL LOD |      | LOQ / CRQL Units |  |  |
|------------------------------|-----------------|--------------|----------|---------|------|------------------|--|--|
| TARGETS<br>DRO               | DRO             | 15391        | 1030     | 1030    | 2050 | ug/kg            |  |  |
| <b>SURROGATES</b> 16416-32-3 | Tetracosane-d50 | 13.8         | 37 - 130 | )       | 69%  | SPK: 20          |  |  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Analytical Method:

% Moisture:

19

Decanted:

### **Report of Analysis**

Client:Dvirka & BartilucciDate Collected:06/23/14Project:NYCSCA Unionport Road BronxDate Received:06/24/14Client Sample ID:GP-10(6-19)SDG No.:F2875

Lab Sample ID: F2875-11 Matrix: SOIL

Sample Wt/Vol: 5.01 Units: g Final Vol: 5 mL

Soil Aliquot Vol: uL Test: Gasoline Range Organics

Extraction Type: Injection Volume:

GPC Factor: PH:

8015B GRO

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
FB004490.D 1 07/01/14 FB070114

| CAS Number            | Parameter                          | Conc. | Qualif | ier MDL  | LOD | LOQ / CI | RQL Units |
|-----------------------|------------------------------------|-------|--------|----------|-----|----------|-----------|
| TARGETS<br>GRO        | GRO                                | 27    | U      | 15       | 27  | 55       | ug/kg     |
| SURROGATES<br>98-08-8 | Alpha.Alpha.Alpha-Trifluorotoluene | 14.2  |        | 50 - 150 | )   | 71%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Sample Wt/Vol:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Final Vol:

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-10(6-19) F2875 Lab Sample ID: F2875-11 Matrix: **SOIL** % Moisture: 19 Analytical Method: SW8151A

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume :

g

GPC Factor: 1.0 PH:

30.04

Units:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010269.D 1 06/27/14 07/01/14 PB77475

| CAS Number | Parameter         | Conc. | ier MDL | MDL LOD  |      | RQL Units |          |
|------------|-------------------|-------|---------|----------|------|-----------|----------|
| TARGETS    |                   |       |         |          |      |           |          |
| 1918-00-9  | DICAMBA           | 20.6  | U       | 16.4     | 20.6 | 82.6      | ug/Kg    |
| 120-36-5   | DICHLORPROP       | 20.6  | U       | 15.2     | 20.6 | 82.6      | ug/Kg    |
| 94-75-7    | 2,4-D             | 20.6  | U       | 20.6     | 20.6 | 82.6      | ug/Kg    |
| 93-72-1    | 2,4,5-TP (Silvex) | 20.6  | U       | 13.5     | 20.6 | 82.6      | ug/Kg    |
| 93-76-5    | 2,4,5-T           | 20.6  | U       | 12.6     | 20.6 | 82.6      | ug/Kg    |
| 94-82-6    | 2,4-DB            | 20.6  | U       | 20.6     | 20.6 | 82.6      | ug/Kg    |
| 88-85-7    | DINOSEB           | 20.6  | U       | 20.6     | 20.6 | 82.6      | ug/Kg    |
| SURROGATES |                   |       |         |          |      |           |          |
| 19719-28-9 | 2,4-DCAA          | 70.1  |         | 12 - 189 | )    | 14%       | SPK: 500 |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:

иL

10000



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: SDG No.: F2875

Lab Sample ID: F2875-11 Matrix: SOIL

Level (low/med): low % Solid: 81

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQ | L Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|-----------|-------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.27  | UN   | 1  | 0.569 | 1.27  | 2.54      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-38-2 | Arsenic   | 5.79  |      | 1  | 0.335 | 0.508 | 1.02      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-39-3 | Barium    | 104   |      | 1  | 0.406 | 2.54  | 5.08      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.74  |      | 1  | 0.061 | 0.152 | 0.305     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.152 | U    | 1  | 0.061 | 0.152 | 0.305     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-47-3 | Chromium  | 22.5  |      | 1  | 0.132 | 0.254 | 0.508     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-48-4 | Cobalt    | 13.1  |      | 1  | 0.579 | 0.762 | 1.52      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-50-8 | Copper    | 28.8  | N    | 1  | 0.325 | 0.508 | 1.02      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7439-92-1 | Lead      | 405   |      | 1  | 0.122 | 0.305 | 0.61      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7439-96-5 | Manganese | 512   |      | 1  | 0.193 | 0.508 | 1.02      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.269 |      | 1  | 0.006 | 0.006 | 0.012     | mg/Kg 06/27/14    | 06/30/14  | SW7471A  |
| 7440-02-0 | Nickel    | 21    |      | 1  | 0.467 | 1.02  | 2.03      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7782-49-2 | Selenium  | 1.9   | N    | 1  | 0.417 | 0.508 | 1.02      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-22-4 | Silver    | 1.21  |      | 1  | 0.152 | 0.254 | 0.508     | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-28-0 | Thallium  | 1.02  | U    | 1  | 0.274 | 1.02  | 2.03      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-62-2 | Vanadium  | 31.3  |      | 1  | 0.6   | 1.02  | 2.03      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |
| 7440-66-6 | Zinc      | 238   |      | 1  | 0.711 | 1.02  | 2.03      | mg/Kg 06/27/14    | 06/27/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Analytical Method:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

% Moisture:

19

Decanted:

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-10(6-19) F2875 Lab Sample ID: F2875-11 Matrix: SOIL

Sample Wt/Vol: 30.11 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

SW8082A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PP003578.D 1 06/28/14 06/30/14 PB77506

| CAS Number | Parameter            | Conc. Qualifier |   | · MDL    | LOD | LOQ / CRQL Units |         |
|------------|----------------------|-----------------|---|----------|-----|------------------|---------|
| TARGETS    |                      |                 |   |          |     |                  |         |
| 12674-11-2 | Aroclor-1016         | 4.1             | U | 4.1      | 4.1 | 20.9             | ug/kg   |
| 11104-28-2 | Aroclor-1221         | 4.1             | U | 4.1      | 4.1 | 20.9             | ug/kg   |
| 11141-16-5 | Aroclor-1232         | 4.1             | U | 4.1      | 4.1 | 20.9             | ug/kg   |
| 53469-21-9 | Aroclor-1242         | 4.1             | U | 4.1      | 4.1 | 20.9             | ug/kg   |
| 12672-29-6 | Aroclor-1248         | 4.1             | U | 4.1      | 4.1 | 20.9             | ug/kg   |
| 11097-69-1 | Aroclor-1254         | 4.1             | U | 1.8      | 4.1 | 20.9             | ug/kg   |
| 11096-82-5 | Aroclor-1260         | 4.1             | U | 4.1      | 4.1 | 20.9             | ug/kg   |
| SURROGATES |                      |                 |   |          |     |                  |         |
| 877-09-8   | Tetrachloro-m-xylene | 19.3            |   | 10 - 166 | 5   | 97%              | SPK: 20 |
| 2051-24-3  | Decachlorobiphenyl   | 20.8            |   | 60 - 125 | 5   | 104%             | SPK: 20 |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

Decanted:



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

 Client Sample ID:
 GP-10(6-19)
 SDG No.:
 F2875

 Lab Sample ID:
 F2875-11
 Matrix:
 SOIL

Analytical Method: SW8081 % Moisture: 19

Sample Wt/Vol: 30.08 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023150.D 1 06/28/14 06/30/14 PB77509

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CRQL | Units   |
|------------|----------------------|-------|-----------|----------|-------|------------|---------|
| TARGETS    |                      |       |           |          |       |            |         |
| 319-84-6   | alpha-BHC            | 0.406 | U         | 0.16     | 0.406 | 2.1        | ug/kg   |
| 319-85-7   | beta-BHC             | 0.406 | U         | 0.222    | 0.406 | 2.1        | ug/kg   |
| 319-86-8   | delta-BHC            | 0.406 | U         | 0.123    | 0.406 | 2.1        | ug/kg   |
| 58-89-9    | gamma-BHC (Lindane)  | 0.406 | U         | 0.185    | 0.406 | 2.1        | ug/kg   |
| 76-44-8    | Heptachlor           | 0.406 | U         | 0.172    | 0.406 | 2.1        | ug/kg   |
| 309-00-2   | Aldrin               | 0.406 | U         | 0.123    | 0.406 | 2.1        | ug/kg   |
| 1024-57-3  | Heptachlor epoxide   | 0.406 | U         | 0.197    | 0.406 | 2.1        | ug/kg   |
| 959-98-8   | Endosulfan I         | 0.406 | U         | 0.185    | 0.406 | 2.1        | ug/kg   |
| 60-57-1    | Dieldrin             | 0.406 | U         | 0.16     | 0.406 | 2.1        | ug/kg   |
| 72-55-9    | 4,4-DDE              | 0.406 | U         | 0.246    | 0.406 | 2.1        | ug/kg   |
| 72-20-8    | Endrin               | 0.406 | U         | 0.222    | 0.406 | 2.1        | ug/kg   |
| 33213-65-9 | Endosulfan II        | 0.406 | U         | 0.172    | 0.406 | 2.1        | ug/kg   |
| 72-54-8    | 4,4-DDD              | 0.406 | U         | 0.209    | 0.406 | 2.1        | ug/kg   |
| 1031-07-8  | Endosulfan Sulfate   | 0.406 | U         | 0.185    | 0.406 | 2.1        | ug/kg   |
| 50-29-3    | 4,4-DDT              | 0.406 | U         | 0.172    | 0.406 | 2.1        | ug/kg   |
| 72-43-5    | Methoxychlor         | 0.406 | U         | 0.209    | 0.406 | 2.1        | ug/kg   |
| 53494-70-5 | Endrin ketone        | 0.406 | U         | 0.16     | 0.406 | 2.1        | ug/kg   |
| 7421-93-4  | Endrin aldehyde      | 0.406 | U         | 0.185    | 0.406 | 2.1        | ug/kg   |
| 5103-71-9  | alpha-Chlordane      | 0.406 | U         | 0.172    | 0.406 | 2.1        | ug/kg   |
| 5103-74-2  | gamma-Chlordane      | 0.406 | U         | 0.16     | 0.406 | 2.1        | ug/kg   |
| 8001-35-2  | Toxaphene            | 4.1   | U         | 4.1      | 4.1   | 20.9       | ug/kg   |
| SURROGATES |                      |       |           |          |       |            |         |
| 2051-24-3  | Decachlorobiphenyl   | 17.8  |           | 10 - 169 |       | 89%        | SPK: 20 |
| 877-09-8   | Tetrachloro-m-xylene | 17.4  |           | 31 - 151 |       | 87%        | SPK: 20 |



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project:

NYCSCA Unionport Road Bronx

06/24/14

Client Sample ID:

GP-10(6-19)

SDG No.:

Date Received:

Lab Sample ID:

F2875-11

F2875 **SOIL** 

Analytical Method:

Matrix:

SW8081 30.08

% Moisture: 19

Decanted:

Sample Wt/Vol: Soil Aliquot Vol: Units: g Final Vol:

10000 иL

иL

Test:

Pesticide-TCL

Extraction Type: GPC Factor:

1.0

1

PH:

Injection Volume:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PD023150.D

06/28/14

06/30/14

PB77509

Conc.

LOD

LOQ / CRQL Units

**CAS Number** 

Parameter

Qualifier MDL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-10(6-19) SDG No.: F2875
Lab Sample ID: F2875-11 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 19

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072196.D 1 06/28/14 07/01/14 PB77511

| BI 072170.B | •                           | 00/20/11 | 07          | /01/11 |      | 1 1 7 7 5 1 1 |       |
|-------------|-----------------------------|----------|-------------|--------|------|---------------|-------|
| CAS Number  | Parameter                   | Conc     | . Qualifier | MDL    | LOD  | LOQ / CRQL    | Units |
| TARGETS     |                             |          |             |        |      |               |       |
| 100-52-7    | Benzaldehyde                | 41.1     | U           | 21.5   | 41.1 | 410           | ug/Kg |
| 108-95-2    | Phenol                      | 41.1     | U           | 9.5    | 41.1 | 410           | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 41.1     | U           | 19.7   | 41.1 | 410           | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 41.1     | U           | 21.7   | 41.1 | 410           | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 41.1     | U           | 22.3   | 41.1 | 410           | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 41.1     | U           | 17     | 41.1 | 410           | ug/Kg |
| 98-86-2     | Acetophenone                | 41.1     | U           | 12.6   | 41.1 | 410           | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 41.1     | U           | 21.3   | 41.1 | 410           | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 41.1     | U           | 20.7   | 41.1 | 410           | ug/Kg |
| 67-72-1     | Hexachloroethane            | 41.1     | U           | 18.4   | 41.1 | 410           | ug/Kg |
| 98-95-3     | Nitrobenzene                | 41.1     | U           | 15.5   | 41.1 | 410           | ug/Kg |
| 78-59-1     | Isophorone                  | 41.1     | U           | 13.6   | 41.1 | 410           | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 41.1     | U           | 19.9   | 41.1 | 410           | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 41.1     | U           | 23.3   | 41.1 | 410           | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 41.1     | U           | 23.7   | 41.1 | 410           | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 41.1     | U           | 15.7   | 41.1 | 410           | ug/Kg |
| 91-20-3     | Naphthalene                 | 41.1     | U           | 14.2   | 41.1 | 410           | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 41.1     | U           | 29     | 41.1 | 410           | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 41.1     | U           | 14.9   | 41.1 | 410           | ug/Kg |
| 105-60-2    | Caprolactam                 | 82.2     | U           | 19.1   | 82.2 | 410           | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 41.1     | U           | 18.2   | 41.1 | 410           | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 41.1     | U           | 10.4   | 41.1 | 410           | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 41.1     | U           | 10     | 41.1 | 410           | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 41.1     | U           | 12.6   | 41.1 | 410           | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 41.1     | U           | 28.9   | 41.1 | 410           | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 41.1     | U           | 15.5   | 41.1 | 410           | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 41.1     | U           | 9.4    | 41.1 | 410           | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 41.1     | U           | 18.2   | 41.1 | 410           | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 650      |             | 11.1   | 41.1 | 410           | ug/Kg |
| 208-96-8    | Acenaphthylene              | 41.1     | U           | 10.4   | 41.1 | 410           | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 41.1     | U           | 16.8   | 41.1 | 410           | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-10(6-19) SDG No.: F2875
Lab Sample ID: F2875-11 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 19
Sample Wt/Vol: 30.04 Units: g Final Vol: 1000

Soil Aliquot Vol: uL Test: SVOCMS Group1

uL

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072196.D 1 06/28/14 07/01/14 PB77511

| BF072196.D | 1                          | 06/28/14 | 07.       | /01/14 |      | PB77511    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 82.2     | U         | 26.4   | 82.2 | 410        | ug/Kg |
| 83-32-9    | Acenaphthene               | 41.1     | U         | 11.6   | 41.1 | 410        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 330      | U         | 41.8   | 330  | 410        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 210      | U         | 76.3   | 210  | 410        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 41.1     | U         | 16     | 41.1 | 410        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 41.1     | U         | 12.3   | 41.1 | 410        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 41.1     | U         | 6.4    | 41.1 | 410        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 41.1     | U         | 22.3   | 41.1 | 410        | ug/Kg |
| 86-73-7    | Fluorene                   | 41.1     | U         | 15.5   | 41.1 | 410        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 82.2     | U         | 53.5   | 82.2 | 410        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 210      | U         | 23.5   | 210  | 410        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 41.1     | U         | 9.9    | 41.1 | 410        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 41.1     | U         | 8      | 41.1 | 410        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 41.1     | U         | 16.8   | 41.1 | 410        | ug/Kg |
| 1912-24-9  | Atrazine                   | 41.1     | U         | 21.7   | 41.1 | 410        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 41.1     | U         | 28.1   | 41.1 | 410        | ug/Kg |
| 85-01-8    | Phenanthrene               | 740      |           | 11.1   | 41.1 | 410        | ug/Kg |
| 120-12-7   | Anthracene                 | 110      | J         | 8.4    | 41.1 | 410        | ug/Kg |
| 86-74-8    | Carbazole                  | 41.1     | U         | 9      | 41.1 | 410        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 41.1     | U         | 32.3   | 41.1 | 410        | ug/Kg |
| 206-44-0   | Fluoranthene               | 970      |           | 8.3    | 41.1 | 410        | ug/Kg |
| 129-00-0   | Pyrene                     | 980      |           | 9.9    | 41.1 | 410        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 41.1     | U         | 19.7   | 41.1 | 410        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 41.1     | U         | 26.4   | 41.1 | 410        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 580      |           | 19.6   | 41.1 | 410        | ug/Kg |
| 218-01-9   | Chrysene                   | 560      |           | 18.6   | 41.1 | 410        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 41.1     | U         | 14.5   | 41.1 | 410        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 41.1     | U         | 4.7    | 41.1 | 410        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 530      |           | 13.4   | 41.1 | 410        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 270      | J         | 19.4   | 41.1 | 410        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 470      |           | 8.9    | 41.1 | 410        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 300      | J         | 13.7   | 41.1 | 410        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 41.1     | U         | 11.8   | 41.1 | 410        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-10(6-19) SDG No.: F2875 Lab Sample ID: F2875-11 Matrix: SOIL Analytical Method: SW8270 % Moisture: 19 Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group1 Extraction Type: N Level: Decanted: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072196.D 1 06/28/14 07/01/14 PB77511

| DFU/2190.D   | 1                                | 00/28/14 |        | 07/       | 01/14    |      | FD//311    |          |
|--------------|----------------------------------|----------|--------|-----------|----------|------|------------|----------|
| CAS Number   | Parameter                        |          | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |
| 191-24-2     | Benzo(g,h,i)perylene             |          | 370    | J         | 16.6     | 41.1 | 410        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       |          | 41.1   | U         | 16.2     | 41.1 | 410        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        |          | 41.1   | U         | 16.2     | 41.1 | 410        | ug/Kg    |
| SURROGATES   |                                  |          |        |           |          |      |            |          |
| 367-12-4     | 2-Fluorophenol                   |          | 95.7   |           | 28 - 127 |      | 64%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        |          | 100    |           | 34 - 127 |      | 68%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  |          | 60.7   |           | 31 - 132 |      | 61%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 |          | 58.9   |           | 39 - 123 |      | 59%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             |          | 87.9   |           | 30 - 133 |      | 59%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    |          | 49.6   |           | 37 - 115 |      | 50%        | SPK: 100 |
| INTERNAL ST  |                                  |          |        |           |          |      |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           |          | 51221  | 7.2       |          |      |            |          |
| 1146-65-2    | Naphthalene-d8                   |          | 209596 | 8.78      |          |      |            |          |
| 15067-26-2   | Acenaphthene-d10                 |          | 109858 | 10.95     |          |      |            |          |
| 1517-22-2    | Phenanthrene-d10                 |          | 199989 | 12.78     |          |      |            |          |
| 1719-03-5    | Chrysene-d12                     |          | 226663 | 16.05     |          |      |            |          |
| 1520-96-3    | Perylene-d12                     |          | 212610 | 17.69     |          |      |            |          |
| TENTATIVE II | DENTIFIED COMPOUNDS              |          |        |           |          |      |            |          |
|              | unknown1.42                      |          | 9900   | J         |          |      | 1.42       | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      |          | 680    | J         |          |      | 1.69       | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- |          | 450    | A         |          |      | 4.94       | ug/Kg    |
|              | unknown6.90                      |          | 2900   | J         |          |      | 6.9        | ug/Kg    |
|              | unknown13.53                     |          | 250    | J         |          |      | 13.53      | ug/Kg    |
| 000084-65-1  | 9,10-Anthracenedione             |          | 230    | J         |          |      | 13.8       | ug/Kg    |
| 003674-66-6  | Phenanthrene, 2,5-dimethyl-      |          | 140    | J         |          |      | 14.09      | ug/Kg    |
| 005737-13-3  | Cyclopenta(def)phenanthrenone    |          | 130    | J         |          |      | 14.17      | ug/Kg    |
| 000195-19-7  | Benzo[c]phenanthrene             |          | 94.5   | J         |          |      | 15.77      | ug/Kg    |
| 025276-70-4  | 1-Pentadecanethiol               |          | 190    | J         |          |      | 15.96      | ug/Kg    |
| 000192-97-2  | Benzo[e]pyrene                   |          | 320    | J         |          |      | 17.58      | ug/Kg    |
| 000215-58-7  | Benzo[b]triphenylene             |          | 100    | J         |          |      | 18.87      | ug/Kg    |



Client: Dvirka & Bartilucci Date Collected: 06/23/14

Date Received:

Project: NYCSCA Unionport Road Bronx

30.04

06/24/14

SOIL

Client Sample ID: GP-10(6-19) SDG No.: F2875

Lab Sample ID: F2875-11

Analytical Method: SW8270 % Moisture: 19

Sample Wt/Vol: g Soil Aliquot Vol: uL

Units:

1000

Ν

uL

Decanted:

1.0

Test: Level:

Matrix:

Final Vol:

SVOCMS Group1

Extraction Type: Injection Volume:

N

GPC Cleanup:

PH:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

GPC Factor:

Date Analyzed

Prep Batch ID

PB77511

BF072196.D

1

06/28/14

07/01/14

Units

**CAS Number** 

**Parameter** 

Conc.

Qualifier

**MDL** 

LOD

LOQ / CRQL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-10(6-19) SDG No.: F2875 Lab Sample ID: F2875-11 Matrix: SOIL Analytical Method: SW8260 % Moisture: 19 Sample Wt/Vol: 12.63 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: ID: 0.25 Level: RXI-624 LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008782.D 1 06/26/14 VT062614

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.49  | U         | 0.49 | 0.49 | 2.4        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 67-64-1    | Acetone                        | 1.2   | U         | 1.2  | 1.2  | 12.2       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.49  | U         | 0.49 | 0.49 | 2.4        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 3.7   | U         | 1.5  | 3.7  | 12.2       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 71-43-2    | Benzene                        | 0.24  | U         | 0.19 | 0.24 | 2.4        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.24  | U         | 0.13 | 0.24 | 2.4        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1.2   | U         | 1.2  | 1.2  | 12.2       | ug/Kg |
| 108-88-3   | Toluene                        | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/23/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-10(6-19) SDG No.: F2875 Lab Sample ID: F2875-11 Matrix: SOIL Analytical Method: SW8260 % Moisture: 19 Sample Wt/Vol: 12.63 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008782.D 1 06/26/14 VT062614

| CAS Number  | Parameter                   | Conc. | Qualifier    | MDL      | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|--------------|----------|------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.24  | U            | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.49  | $\mathbf{U}$ | 0.44     | 0.49 | 2.4        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 1.2   | $\mathbf{U}$ | 1.2      | 1.2  | 12.2       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.24  | U            | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.24  | $\mathbf{U}$ | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 0.24  | U            | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.24  | U            | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 0.24  | U            | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 0.49  | U            | 0.35     | 0.49 | 4.9        | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.24  | U            | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.24  | U            | 0.22     | 0.24 | 2.4        | ug/Kg   |
| 75-25-2     | Bromoform                   | 0.73  | U            | 0.36     | 0.73 | 2.4        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.24  | U            | 0.23     | 0.24 | 2.4        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.24  | U            | 0.22     | 0.24 | 2.4        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.24  | U            | 0.18     | 0.24 | 2.4        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.24  | U            | 0.22     | 0.24 | 2.4        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.24  | U            | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.24  | U            | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.24  | U            | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.24  | U            | 0.14     | 0.24 | 2.4        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.24  | U            | 0.18     | 0.24 | 2.4        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.24  | U            | 0.2      | 0.24 | 2.4        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.24  | U            | 0.22     | 0.24 | 2.4        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.24  | U            | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 2.4   | U            | 0.43     | 2.4  | 2.4        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.24  | U            | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.24  | U            | 0.22     | 0.24 | 2.4        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.49  | U            | 0.24     | 0.49 | 2.4        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 48.9  | U            | 48.9     | 48.9 | 48.9       | ug/Kg   |
| SURROGATES  |                             |       |              |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 46.6  |              | 56 - 120 |      | 93%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 48.2  |              | 57 - 135 | 5    | 96%        | SPK: 50 |
|             |                             |       |              |          |      |            |         |



#### **Report of Analysis**

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Level:

Matrix:

06/23/14

06/24/14

F2875

SOIL

19

5000

LOW

VOCMS Group1

uL

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-10(6-19)

Lab Sample ID: F2875-11

Analytical Method: SW8260

Sample Wt/Vol: 12.63 Units: g

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VT008782.D 1 06/26/14 VT062614

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL I    | LOD L | OQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|-------|-----------|---------|
| 2037-26-5   | Toluene-d8             | 40.1   |           | 67 - 123 |       | 80%       | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 28.7   |           | 33 - 141 |       | 57%       | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |       |           |         |
| 363-72-4    | Pentafluorobenzene     | 597075 | 7.42      |          |       |           |         |
| 540-36-3    | 1,4-Difluorobenzene    | 821777 | 8.37      |          |       |           |         |
| 3114-55-4   | Chlorobenzene-d5       | 576118 | 11.21     |          |       |           |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 223022 | 13.15     |          |       |           |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 11:25 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-3(6-18) F2875 Lab Sample ID: F2875-12 Matrix: SOIL % Solid: 100

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQ | L Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|-----------|---------|-----------|----------------|----------|
| Corrosivity         | 8.75  |      | 1  | 0     | 0     | 0         | mg/Kg   |           | 06/26/14 14:13 | 9045C    |
| Cyanide             | 1.82  |      | 1  | 0.037 | 0.142 | 0.283     | mg/Kg   | 06/26/14  | 06/30/14 13:59 | 9012B    |
| Hexavalent Chromium | 0.229 | U    | 1  | 0.092 | 0.229 | 0.458     | mg/Kg   | 06/27/14  | 06/27/14 16:56 | 7196A    |
| Ignitability        | NO    |      | 1  | 0     | 0     | 0         | o C     | 06/30/14  | 06/30/14 14:00 | 1030     |
| Reactive Cyanide    | 0.05  | U    | 1  | 0.05  | 0.05  | 0.05      | mg/Kg   | 06/26/14  | 06/30/14 16:10 | 9012B    |
| Reactive Sulfide    | 11    |      | 1  | 10    | 10    | 10        | mg/Kg   | 06/26/14  | 06/27/14 15:15 | 9034     |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-3(6-18) SDG No.: F2875

Client Sample ID: GP-3(6-18) SDG No.: F2875

Lab Sample ID: F2875-12 Matrix: SOIL

Analytical Method: 8015B DRO % Moisture: 13.3 Decanted: Sample Wt/Vol: 30.05 Units: g Final Vol: 1 mL

Soil Aliquot Vol: uL Test: Diesel Range Organics

Extraction Type: Injection Volume :

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID FC011941.D 1 06/28/14 06/30/14 PB77512

| CAS Number                   | Parameter       | Conc. Qua | alifier MDL | LOD | LOQ / CR | QL Units |
|------------------------------|-----------------|-----------|-------------|-----|----------|----------|
| TARGETS<br>DRO               | DRO             | 31052     | 960         | 960 | 1920     | ug/kg    |
| <b>SURROGATES</b> 16416-32-3 | Tetracosane-d50 | 19.8      | 37 - 130    | )   | 99%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-3(6-18) SDG No.: F2875
Lab Sample ID: F2875-12 Matrix: SOIL

Analytical Method: 8015B GRO % Moisture: 13.3 Decanted: Sample Wt/Vol: 5.04 Units: g Final Vol: 5 mL

Soil Aliquot Vol: uL Test: Gasoline Range Organics

Extraction Type: Injection Volume:

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

FB004491.D 1 07/01/14 FB070114

| CAS Number            | Parameter                          | Conc. | Qualifi | er MDL   | LOD | LOQ / CF | RQL Units |
|-----------------------|------------------------------------|-------|---------|----------|-----|----------|-----------|
| TARGETS<br>GRO        | GRO                                | 25    | IJ      | 14       | 25  | 51       | ug/kg     |
|                       |                                    |       | C       |          |     | 0.1      | ~~ A.     |
| SURROGATES<br>98-08-8 | Alpha,Alpha,Alpha-Trifluorotoluene | 12    |         | 50 - 150 | )   | 60%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-3(6-18) F2875 Lab Sample ID: F2875-12 Matrix: SOIL % Moisture: Analytical Method: SW8151A 13.3 Decanted: Sample Wt/Vol: 30.07 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010270.D 1 06/27/14 07/01/14 PB77475

| CAS Number | Parameter         | Conc. | Qualifi | er MDL   | LOD  | LOQ / CF | RQL Units |
|------------|-------------------|-------|---------|----------|------|----------|-----------|
| TARGETS    |                   |       |         |          |      |          |           |
| 1918-00-9  | DICAMBA           | 19.2  | U       | 15.3     | 19.2 | 77.1     | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 19.2  | U       | 14.2     | 19.2 | 77.1     | ug/Kg     |
| 94-75-7    | 2,4-D             | 19.2  | U       | 19.2     | 19.2 | 77.1     | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 19.2  | U       | 12.6     | 19.2 | 77.1     | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 19.2  | U       | 11.8     | 19.2 | 77.1     | ug/Kg     |
| 94-82-6    | 2,4-DB            | 19.2  | U       | 19.2     | 19.2 | 77.1     | ug/Kg     |
| 88-85-7    | DINOSEB           | 19.2  | U       | 19.2     | 19.2 | 77.1     | ug/Kg     |
| SURROGATES |                   |       |         |          |      |          |           |
| 19719-28-9 | 2,4-DCAA          | 239   |         | 12 - 189 | )    | 48%      | SPK: 500  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-3(6-18) SDG No.: F2875
Lab Sample ID: F2875-12 Matrix: SOIL

Level (low/med): low % Solid: 86.7

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CR | QL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|--------------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.68  | JN   | 1  | 0.523 | 1.17  | 2.33     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-38-2 | Arsenic   | 7.81  |      | 1  | 0.308 | 0.467 | 0.934    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-39-3 | Barium    | 286   |      | 1  | 0.374 | 2.33  | 4.67     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.754 |      | 1  | 0.056 | 0.14  | 0.28     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.679 |      | 1  | 0.056 | 0.14  | 0.28     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-47-3 | Chromium  | 28.3  |      | 1  | 0.121 | 0.233 | 0.467    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-48-4 | Cobalt    | 17    |      | 1  | 0.532 | 0.7   | 1.4      | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-50-8 | Copper    | 82.6  | N    | 1  | 0.299 | 0.467 | 0.934    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7439-92-1 | Lead      | 461   |      | 1  | 0.112 | 0.28  | 0.56     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7439-96-5 | Manganese | 398   |      | 1  | 0.177 | 0.467 | 0.934    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.006 | J    | 1  | 0.005 | 0.005 | 0.01     | mg/Kg 06/27/14     | 06/30/14  | SW7471A  |
| 7440-02-0 | Nickel    | 31.2  |      | 1  | 0.43  | 0.934 | 1.87     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7782-49-2 | Selenium  | 1.96  | N    | 1  | 0.383 | 0.467 | 0.934    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-22-4 | Silver    | 2.27  |      | 1  | 0.14  | 0.233 | 0.467    | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.934 | U    | 1  | 0.252 | 0.934 | 1.87     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-62-2 | Vanadium  | 36.5  |      | 1  | 0.551 | 0.934 | 1.87     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |
| 7440-66-6 | Zinc      | 447   |      | 1  | 0.654 | 0.934 | 1.87     | mg/Kg 06/27/14     | 06/27/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



PP003579.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-3(6-18) SDG No.: F2875

Lab Sample ID: F2875-12 Matrix: SOIL

Analytical Method: SW8082A % Moisture: 13.3 Decanted: Sample Wt/Vol: 30.08 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

1

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

06/28/14

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|-----|----------|----------|
| TARGETS    |                      |       |           |          |     |          |          |
| 12674-11-2 | Aroclor-1016         | 3.8   | U         | 3.8      | 3.8 | 19.6     | ug/kg    |
| 11104-28-2 | Aroclor-1221         | 3.8   | U         | 3.8      | 3.8 | 19.6     | ug/kg    |
| 11141-16-5 | Aroclor-1232         | 3.8   | U         | 3.8      | 3.8 | 19.6     | ug/kg    |
| 53469-21-9 | Aroclor-1242         | 3.8   | U         | 3.8      | 3.8 | 19.6     | ug/kg    |
| 12672-29-6 | Aroclor-1248         | 3.8   | U         | 3.8      | 3.8 | 19.6     | ug/kg    |
| 11097-69-1 | Aroclor-1254         | 3.8   | U         | 1.7      | 3.8 | 19.6     | ug/kg    |
| 11096-82-5 | Aroclor-1260         | 3.8   | U         | 3.8      | 3.8 | 19.6     | ug/kg    |
| SURROGATES |                      |       |           |          |     |          |          |
| 877-09-8   | Tetrachloro-m-xylene | 19    |           | 10 - 166 | 5   | 95%      | SPK: 20  |
| 2051-24-3  | Decachlorobiphenyl   | 20.4  |           | 60 - 125 | 5   | 102%     | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

06/30/14

PB77506

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/24/14

06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: Client Sample ID: GP-3(6-18) SDG No.: F2875

Lab Sample ID: F2875-12 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 13.3 Decanted: Sample Wt/Vol: 30.03 Final Vol: 10000 uL

Pesticide-TCL Soil Aliquot Vol: uL Test:

Injection Volume: Extraction Type:

g

Units:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Date Analyzed Dilution: Prep Date Prep Batch ID

PD023151.D 1 06/28/14 06/30/14 PB77509

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD  | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|------|----------|----------|
| TARGETS    |                      |       |           |          |      |          |          |
| 319-84-6   | alpha-BHC            | 0.38  | U         | 0.15     | 0.38 | 2        | ug/kg    |
| 319-85-7   | beta-BHC             | 0.38  | U         | 0.207    | 0.38 | 2        | ug/kg    |
| 319-86-8   | delta-BHC            | 0.38  | U         | 0.115    | 0.38 | 2        | ug/kg    |
| 58-89-9    | gamma-BHC (Lindane)  | 0.38  | U         | 0.173    | 0.38 | 2        | ug/kg    |
| 76-44-8    | Heptachlor           | 0.38  | U         | 0.161    | 0.38 | 2        | ug/kg    |
| 309-00-2   | Aldrin               | 0.38  | U         | 0.115    | 0.38 | 2        | ug/kg    |
| 1024-57-3  | Heptachlor epoxide   | 0.38  | U         | 0.184    | 0.38 | 2        | ug/kg    |
| 959-98-8   | Endosulfan I         | 0.38  | U         | 0.173    | 0.38 | 2        | ug/kg    |
| 60-57-1    | Dieldrin             | 0.38  | U         | 0.15     | 0.38 | 2        | ug/kg    |
| 72-55-9    | 4,4-DDE              | 0.38  | U         | 0.23     | 0.38 | 2        | ug/kg    |
| 72-20-8    | Endrin               | 0.38  | U         | 0.207    | 0.38 | 2        | ug/kg    |
| 33213-65-9 | Endosulfan II        | 0.38  | U         | 0.161    | 0.38 | 2        | ug/kg    |
| 72-54-8    | 4,4-DDD              | 0.38  | U         | 0.196    | 0.38 | 2        | ug/kg    |
| 1031-07-8  | Endosulfan Sulfate   | 0.38  | U         | 0.173    | 0.38 | 2        | ug/kg    |
| 50-29-3    | 4,4-DDT              | 0.38  | U         | 0.161    | 0.38 | 2        | ug/kg    |
| 72-43-5    | Methoxychlor         | 0.38  | U         | 0.196    | 0.38 | 2        | ug/kg    |
| 53494-70-5 | Endrin ketone        | 0.38  | U         | 0.15     | 0.38 | 2        | ug/kg    |
| 7421-93-4  | Endrin aldehyde      | 0.38  | U         | 0.173    | 0.38 | 2        | ug/kg    |
| 5103-71-9  | alpha-Chlordane      | 0.38  | U         | 0.161    | 0.38 | 2        | ug/kg    |
| 5103-74-2  | gamma-Chlordane      | 0.38  | U         | 0.15     | 0.38 | 2        | ug/kg    |
| 8001-35-2  | Toxaphene            | 3.8   | U         | 3.8      | 3.8  | 19.6     | ug/kg    |
| SURROGATES |                      |       |           |          |      |          |          |
| 2051-24-3  | Decachlorobiphenyl   | 18.2  |           | 10 - 169 | )    | 91%      | SPK: 20  |
| 877-09-8   | Tetrachloro-m-xylene | 17.4  |           | 31 - 151 |      | 87%      | SPK: 20  |



#### **Report of Analysis**

Client: Dvirka & Bartilucci

Date Collected: 06/24/14

Project:

NYCSCA Unionport Road Bronx

06/24/14

Client Sample ID:

GP-3(6-18)

SDG No.:

Date Received:

Lab Sample ID:

F2875-12

F2875 **SOIL** 

Analytical Method:

Matrix:

Decanted:

SW8081

% Moisture:

13.3

Sample Wt/Vol:

30.03 Units: g Final Vol:

10000 иL

Soil Aliquot Vol:

иL

Test:

Pesticide-TCL

Extraction Type:

1.0

PH:

Injection Volume:

GPC Factor: File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PD023151.D

1

06/28/14

06/30/14

PB77509

**CAS Number** 

Parameter

Conc.

Qualifier MDL

LOD

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Extraction Type:

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: SDG No.: F2875 GP-3(6-18) SOIL Lab Sample ID: F2875-12 Matrix: Analytical Method: SW8270 % Moisture: 13.3

Sample Wt/Vol: 30.08 Units: g Final Vol: 1000 uL

N

Level:

LOW

Soil Aliquot Vol: uL Test: SVOCMS Group1

Decanted: GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072197.D 1 06/28/14 07/01/14 PB77511

| BI 0/21)/.D | •                           | 00/20/11 | 07        | /01/11 |      | 1 1 7 7 5 1 1 |       |
|-------------|-----------------------------|----------|-----------|--------|------|---------------|-------|
| CAS Number  | Parameter                   | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL    | Units |
| TARGETS     |                             |          |           |        |      |               |       |
| 100-52-7    | Benzaldehyde                | 38.3     | U         | 20     | 38.3 | 380           | ug/Kg |
| 108-95-2    | Phenol                      | 38.3     | U         | 8.9    | 38.3 | 380           | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 38.3     | U         | 18.4   | 38.3 | 380           | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 38.3     | U         | 20.2   | 38.3 | 380           | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 38.3     | U         | 20.8   | 38.3 | 380           | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 38.3     | U         | 15.9   | 38.3 | 380           | ug/Kg |
| 98-86-2     | Acetophenone                | 38.3     | U         | 11.7   | 38.3 | 380           | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 38.3     | U         | 19.9   | 38.3 | 380           | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 38.3     | U         | 19.3   | 38.3 | 380           | ug/Kg |
| 67-72-1     | Hexachloroethane            | 38.3     | U         | 17.1   | 38.3 | 380           | ug/Kg |
| 98-95-3     | Nitrobenzene                | 38.3     | U         | 14.5   | 38.3 | 380           | ug/Kg |
| 78-59-1     | Isophorone                  | 38.3     | U         | 12.7   | 38.3 | 380           | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 38.3     | U         | 18.5   | 38.3 | 380           | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 38.3     | U         | 21.7   | 38.3 | 380           | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 38.3     | U         | 22.1   | 38.3 | 380           | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 38.3     | U         | 14.6   | 38.3 | 380           | ug/Kg |
| 91-20-3     | Naphthalene                 | 38.3     | U         | 13.2   | 38.3 | 380           | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 38.3     | U         | 27     | 38.3 | 380           | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 38.3     | U         | 13.9   | 38.3 | 380           | ug/Kg |
| 105-60-2    | Caprolactam                 | 76.7     | U         | 17.8   | 76.7 | 380           | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 38.3     | U         | 17     | 38.3 | 380           | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 38.3     | U         | 9.7    | 38.3 | 380           | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 38.3     | U         | 9.3    | 38.3 | 380           | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 38.3     | U         | 11.7   | 38.3 | 380           | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 38.3     | U         | 26.9   | 38.3 | 380           | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 38.3     | U         | 14.5   | 38.3 | 380           | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 38.3     | U         | 8.7    | 38.3 | 380           | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 38.3     | U         | 17     | 38.3 | 380           | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 660      |           | 10.4   | 38.3 | 380           | ug/Kg |
| 208-96-8    | Acenaphthylene              | 38.3     | U         | 9.7    | 38.3 | 380           | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 38.3     | U         | 15.6   | 38.3 | 380           | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: SDG No.: F2875 GP-3(6-18) Lab Sample ID: F2875-12 Matrix: SOIL Analytical Method: SW8270 % Moisture: 13.3

Sample Wt/Vol: 30.08 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: N Level: Decanted: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Prep Batch ID Dilution: Prep Date Date Analyzed

| BF072197.D | 1                          | 06/28/14 | 07.       | /01/14 |      | PB77511    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 76.7     | U         | 24.6   | 76.7 | 380        | ug/Kg |
| 83-32-9    | Acenaphthene               | 38.3     | U         | 10.8   | 38.3 | 380        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 310      | U         | 39     | 310  | 380        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 190      | U         | 71.2   | 190  | 380        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 38.3     | U         | 15     | 38.3 | 380        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 38.3     | U         | 11.5   | 38.3 | 380        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 38.3     | U         | 6      | 38.3 | 380        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 38.3     | U         | 20.8   | 38.3 | 380        | ug/Kg |
| 86-73-7    | Fluorene                   | 38.3     | U         | 14.5   | 38.3 | 380        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 76.7     | U         | 49.9   | 76.7 | 380        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 190      | U         | 22     | 190  | 380        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 38.3     | U         | 9.2    | 38.3 | 380        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 38.3     | U         | 7.5    | 38.3 | 380        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 38.3     | U         | 15.6   | 38.3 | 380        | ug/Kg |
| 1912-24-9  | Atrazine                   | 38.3     | U         | 20.2   | 38.3 | 380        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 38.3     | U         | 26.2   | 38.3 | 380        | ug/Kg |
| 85-01-8    | Phenanthrene               | 240      | J         | 10.4   | 38.3 | 380        | ug/Kg |
| 120-12-7   | Anthracene                 | 38.3     | U         | 7.8    | 38.3 | 380        | ug/Kg |
| 86-74-8    | Carbazole                  | 38.3     | U         | 8.4    | 38.3 | 380        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 38.3     | U         | 30.1   | 38.3 | 380        | ug/Kg |
| 206-44-0   | Fluoranthene               | 610      |           | 7.7    | 38.3 | 380        | ug/Kg |
| 129-00-0   | Pyrene                     | 520      |           | 9.2    | 38.3 | 380        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 38.3     | U         | 18.4   | 38.3 | 380        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 38.3     | U         | 24.6   | 38.3 | 380        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 360      | J         | 18.3   | 38.3 | 380        | ug/Kg |
| 218-01-9   | Chrysene                   | 310      | J         | 17.4   | 38.3 | 380        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 280      | J         | 13.6   | 38.3 | 380        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 38.3     | U         | 4.4    | 38.3 | 380        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 370      | J         | 12.5   | 38.3 | 380        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 190      | J         | 18.1   | 38.3 | 380        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 320      | J         | 8.3    | 38.3 | 380        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 190      | J         | 12.8   | 38.3 | 380        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 38.3     | U         | 11     | 38.3 | 380        | ug/Kg |



Extraction Type:

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: F2875 GP-3(6-18) SOIL Lab Sample ID: F2875-12 Matrix: Analytical Method: SW8270 % Moisture: 13.3

Sample Wt/Vol: 30.08 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Decanted: GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF072197.D 1 06/28/14 07/01/14 PB77511

N

Level:

LOW

| BF0/219/.D   | 1 06/2                             | 28/14  | 0//       | 01/14    |      | PB//511    |          |
|--------------|------------------------------------|--------|-----------|----------|------|------------|----------|
| CAS Number   | Parameter                          | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |
| 191-24-2     | Benzo(g,h,i)perylene               | 230    | J         | 15.5     | 38.3 | 380        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene         | 38.3   | U         | 15.1     | 38.3 | 380        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol          | 38.3   | U         | 15.1     | 38.3 | 380        | ug/Kg    |
| SURROGATES   |                                    |        |           |          |      |            |          |
| 367-12-4     | 2-Fluorophenol                     | 110    |           | 28 - 127 | 7    | 74%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                          | 110    |           | 34 - 127 | 7    | 75%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                    | 62     |           | 31 - 132 | 2    | 62%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                   | 66.8   |           | 39 - 123 | 3    | 67%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol               | 110    |           | 30 - 133 | 3    | 71%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                      | 68.4   |           | 37 - 115 | 5    | 68%        | SPK: 100 |
| INTERNAL STA | ANDARDS                            |        |           |          |      |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4             | 48831  | 7.2       |          |      |            |          |
| 1146-65-2    | Naphthalene-d8                     | 212406 | 8.78      |          |      |            |          |
| 15067-26-2   | Acenaphthene-d10                   | 114857 | 10.95     |          |      |            |          |
| 1517-22-2    | Phenanthrene-d10                   | 208148 | 12.78     |          |      |            |          |
| 1719-03-5    | Chrysene-d12                       | 238730 | 16.05     |          |      |            |          |
| 1520-96-3    | Perylene-d12                       | 225095 | 17.69     |          |      |            |          |
| TENTATIVE ID | DENTIFIED COMPOUNDS                |        |           |          |      |            |          |
| 000096-37-7  | Cyclopentane, methyl-              | 370    | J         |          |      | 1.21       | ug/Kg    |
|              | unknown1.42                        | 10100  | J         |          |      | 1.42       | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-        | 620    | J         |          |      | 1.69       | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl-   | 490    | A         |          |      | 4.94       | ug/Kg    |
|              | unknown6.90                        | 3000   | J         |          |      | 6.9        | ug/Kg    |
| 000203-64-5  | 4H-Cyclopenta[def]phenanthrene     | 310    | J         |          |      | 13.53      | ug/Kg    |
| 093327-56-1  | 6-Phenylbenzocyclohepten-7-one     | 80.1   | J         |          |      | 13.79      | ug/Kg    |
| 006971-40-0  | 17-Pentatriacontene                | 240    | J         |          |      | 15.96      | ug/Kg    |
|              | unknown16.93                       | 150    | J         |          |      | 16.93      | ug/Kg    |
| 006448-90-4  | 9,10-Anthracenedione, 1,5-dimethox | 140    | J         |          |      | 17.49      | ug/Kg    |
|              | unknown17.85                       | 120    | J         |          |      | 17.85      | ug/Kg    |



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx

Units:

g

uL

06/24/14

13.3

LOW

Client Sample ID: GP-3(6-18) F2875

Lab Sample ID: F2875-12 Matrix: SOIL

Analytical Method: SW8270 % Moisture:

uL

Sample Wt/Vol: 30.08

Final Vol:

Date Received:

SDG No.:

1000

Soil Aliquot Vol:

Test: Level: SVOCMS Group1

Extraction Type: Injection Volume: Decanted: 1.0

N

GPC Cleanup:

Ν

PH:

File ID/Qc Batch:

Dilution:

Prep Date

GPC Factor:

Date Analyzed

Prep Batch ID

PB77511

BF072197.D

1

06/28/14

07/01/14

Units

**CAS Number** 

**Parameter** 

Conc.

Qualifier

**MDL** 

LOD

LOQ / CRQL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-3(6-18) SDG No.: F2875 F2875-12 SOIL Lab Sample ID: Matrix: Analytical Method: SW8260 % Moisture: 13.3 Sample Wt/Vol: 12.63 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042161.D 1 06/26/14 VF062614

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.46  | U         | 0.46 | 0.46 | 2.3        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 67-64-1    | Acetone                        | 1.1   | U         | 1.1  | 1.1  | 11.4       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.46  | U         | 0.46 | 0.46 | 2.3        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 3.4   | U         | 1.4  | 3.4  | 11.4       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 71-43-2    | Benzene                        | 0.23  | U         | 0.17 | 0.23 | 2.3        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.23  | U         | 0.12 | 0.23 | 2.3        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1.1   | U         | 1.1  | 1.1  | 11.4       | ug/Kg |
| 108-88-3   | Toluene                        | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.23  | U         | 0.23 | 0.23 | 2.3        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: F2875 GP-3(6-18) SOIL Lab Sample ID: F2875-12 Matrix: Analytical Method: SW8260 % Moisture: 13.3 Sample Wt/Vol: 12.63 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042161.D 1 06/26/14 VF062614

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|
|             |                             |       |           |          |      |            |         |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.23  | U         | 0.23     | 0.23 | 2.3        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.46  | U         | 0.41     | 0.46 | 2.3        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 1.1   | U         | 1.1      | 1.1  | 11.4       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.23  | U         | 0.23     | 0.23 | 2.3        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.23  | U         | 0.23     | 0.23 | 2.3        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 4.4   |           | 0.23     | 0.23 | 2.3        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.23  | U         | 0.23     | 0.23 | 2.3        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 0.23  | U         | 0.23     | 0.23 | 2.3        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 0.46  | U         | 0.33     | 0.46 | 4.6        | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.23  | U         | 0.23     | 0.23 | 2.3        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.23  | U         | 0.21     | 0.23 | 2.3        | ug/Kg   |
| 75-25-2     | Bromoform                   | 0.68  | U         | 0.34     | 0.68 | 2.3        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.23  | U         | 0.22     | 0.23 | 2.3        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.23  | U         | 0.21     | 0.23 | 2.3        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.23  | U         | 0.16     | 0.23 | 2.3        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.23  | U         | 0.21     | 0.23 | 2.3        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.23  | U         | 0.23     | 0.23 | 2.3        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.23  | U         | 0.23     | 0.23 | 2.3        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.23  | U         | 0.23     | 0.23 | 2.3        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.23  | U         | 0.13     | 0.23 | 2.3        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.23  | U         | 0.17     | 0.23 | 2.3        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.23  | U         | 0.19     | 0.23 | 2.3        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.23  | U         | 0.21     | 0.23 | 2.3        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.23  | U         | 0.23     | 0.23 | 2.3        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 2.3   | U         | 0.4      | 2.3  | 2.3        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.23  | U         | 0.23     | 0.23 | 2.3        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.23  | U         | 0.21     | 0.23 | 2.3        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.46  | U         | 0.23     | 0.46 | 2.3        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 45.7  | U         | 45.7     | 45.7 | 45.7       | ug/Kg   |
| SURROGATES  |                             |       |           |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 43.9  |           | 56 - 120 |      | 88%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 45    |           | 57 - 135 | 5    | 90%        | SPK: 50 |
|             |                             |       |           |          |      |            |         |



File ID/Qc Batch:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-3(6-18)

Lab Sample ID: F2875-12

Analytical Method: SW8260

Sample Wt/Vol: 12.63 Units: g

Soil Aliquot Vol: uL

GC Column: RTX-VMS ID: 0.18

Dilution:

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Date Analyzed

Level:

Matrix:

06/24/14

06/24/14

F2875

SOIL

13.3

5000

LOW

Prep Batch ID

VOCMS Group1

uL

Prep Date 1 06/26/14 VF062614 VF042161.D

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|-----|------------|---------|
| 2037-26-5   | Toluene-d8             | 40.1   |           | 67 - 123 |     | 80%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 32.4   |           | 33 - 141 |     | 65%        | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |     |            |         |
| 363-72-4    | Pentafluorobenzene     | 130499 | 4.86      |          |     |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 215708 | 5.59      |          |     |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 160249 | 9.75      |          |     |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 54423  | 12.53     |          |     |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



GC Column:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-3(6-18)RE SDG No.: F2875 SOIL Lab Sample ID: F2875-12RE Matrix: Analytical Method: SW8260 % Moisture: 13.3 Sample Wt/Vol: 11.81 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VT008800.D 1 06/27/14 VT062714

ID: 0.25

RXI-624

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.49  | U         | 0.49 | 0.49 | 2.4        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 67-64-1    | Acetone                        | 1.2   | U         | 1.2  | 1.2  | 12.2       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.49  | U         | 0.49 | 0.49 | 2.4        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 3.7   | U         | 1.5  | 3.7  | 12.2       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 71-43-2    | Benzene                        | 0.24  | U         | 0.19 | 0.24 | 2.4        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.24  | U         | 0.13 | 0.24 | 2.4        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1.2   | U         | 1.2  | 1.2  | 12.2       | ug/Kg |
| 108-88-3   | Toluene                        | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-3(6-18)RE SDG No.: F2875 SOIL Lab Sample ID: F2875-12RE Matrix: Analytical Method: SW8260 % Moisture: 13.3 Sample Wt/Vol: 11.81 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008800.D 1 06/27/14 VT062714

|             |                             |       | · ·       |          |      |            |         |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.24  | U         | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.49  | U         | 0.44     | 0.49 | 2.4        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 1.2   | U         | 1.2      | 1.2  | 12.2       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.24  | U         | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.24  | U         | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 10.9  |           | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.24  | U         | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 0.24  | U         | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 0.49  | U         | 0.35     | 0.49 | 4.9        | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.24  | U         | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.24  | U         | 0.22     | 0.24 | 2.4        | ug/Kg   |
| 75-25-2     | Bromoform                   | 0.73  | U         | 0.36     | 0.73 | 2.4        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.24  | U         | 0.23     | 0.24 | 2.4        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.24  | U         | 0.22     | 0.24 | 2.4        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.24  | U         | 0.18     | 0.24 | 2.4        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.24  | U         | 0.22     | 0.24 | 2.4        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.24  | U         | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.24  | U         | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.24  | U         | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.24  | U         | 0.14     | 0.24 | 2.4        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.24  | U         | 0.18     | 0.24 | 2.4        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.24  | U         | 0.2      | 0.24 | 2.4        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.24  | U         | 0.22     | 0.24 | 2.4        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.24  | U         | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 2.4   | U         | 0.42     | 2.4  | 2.4        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.24  | U         | 0.24     | 0.24 | 2.4        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.24  | U         | 0.22     | 0.24 | 2.4        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.49  | U         | 0.24     | 0.49 | 2.4        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 48.8  | U         | 48.8     | 48.8 | 48.8       | ug/Kg   |
| SURROGATES  |                             |       |           |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 59.4  |           | 56 - 120 |      | 119%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 64.9  |           | 57 - 135 | 5    | 130%       | SPK: 50 |
|             |                             |       |           |          |      |            |         |



Project:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Level:

Matrix:

06/24/14

06/24/14

F2875

SOIL

13.3

5000

LOW

VOCMS Group1

uL

Client: Dvirka & Bartilucci

NYCSCA Unionport Road Bronx

Client Sample ID: GP-3(6-18)RE

Lab Sample ID: F2875-12RE

Analytical Method: SW8260

Sample Wt/Vol: 11.81 Units: g

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VT008800.D 1 06/27/14 VT062714

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL L    | OD LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|---------------|---------|
| 2037-26-5   | Toluene-d8             | 47.2   |           | 67 - 123 | 94%           | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 26     |           | 33 - 141 | 52%           | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |               |         |
| 363-72-4    | Pentafluorobenzene     | 515490 | 7.43      |          |               |         |
| 540-36-3    | 1,4-Difluorobenzene    | 680448 | 8.37      |          |               |         |
| 3114-55-4   | Chlorobenzene-d5       | 398215 | 11.21     |          |               |         |
| 3855-82-1   | 1.4-Dichlorobenzene-d4 | 113569 | 13.15     |          |               |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 14:35 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: GP-8(6-18) F2875 Lab Sample ID: F2875-13 Matrix: SOIL % Solid: 81.3

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | L Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|---------|-----------|----------------|----------|
| Cyanide             | 0.639 |      | 1  | 0.039 | 0.15  | 0.299      | mg/Kg   | 06/26/14  | 06/30/14 13:59 | 9012B    |
| Hexavalent Chromium | 0.245 | U    | 1  | 0.098 | 0.245 | 0.49       | mg/Kg   | 06/27/14  | 06/27/14 16:56 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-8(6-18) F2875 Lab Sample ID: F2875-13 Matrix: **SOIL** SW8151A % Moisture: Analytical Method: 18.7

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010271.D 1 06/27/14 07/01/14 PB77475

| CAS Number | Parameter         | Conc. | Qualif | ier MDL  | LOD  | LOQ / CRQL Units |          |
|------------|-------------------|-------|--------|----------|------|------------------|----------|
| TARGETS    |                   |       |        |          |      |                  |          |
| 1918-00-9  | DICAMBA           | 20.5  | U      | 16.3     | 20.5 | 82.3             | ug/Kg    |
| 120-36-5   | DICHLORPROP       | 20.5  | U      | 15.2     | 20.5 | 82.3             | ug/Kg    |
| 94-75-7    | 2,4-D             | 20.5  | U      | 20.5     | 20.5 | 82.3             | ug/Kg    |
| 93-72-1    | 2,4,5-TP (Silvex) | 20.5  | U      | 13.4     | 20.5 | 82.3             | ug/Kg    |
| 93-76-5    | 2,4,5-T           | 20.5  | U      | 12.6     | 20.5 | 82.3             | ug/Kg    |
| 94-82-6    | 2,4-DB            | 20.5  | U      | 20.5     | 20.5 | 82.3             | ug/Kg    |
| 88-85-7    | DINOSEB           | 20.5  | U      | 20.5     | 20.5 | 82.3             | ug/Kg    |
| SURROGATES |                   |       |        |          |      |                  |          |
| 19719-28-9 | 2,4-DCAA          | 161   |        | 12 - 189 | )    | 32%              | SPK: 500 |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-8(6-18) SDG No.: F2875
Lab Sample ID: F2875-13 Matrix: SOIL

Level (low/med): low % Solid: 81.3

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CI | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.883 | JN   | 1  | 0.569 | 1.27  | 2.54     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-38-2 | Arsenic   | 22.6  |      | 1  | 0.335 | 0.508 | 1.02     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-39-3 | Barium    | 1410  |      | 1  | 0.407 | 2.54  | 5.08     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.906 |      | 1  | 0.061 | 0.152 | 0.305    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-43-9 | Cadmium   | 5.77  |      | 1  | 0.061 | 0.152 | 0.305    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-47-3 | Chromium  | 60.1  |      | 1  | 0.132 | 0.254 | 0.508    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-48-4 | Cobalt    | 13.3  |      | 1  | 0.579 | 0.762 | 1.52     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-50-8 | Copper    | 82.5  | N    | 1  | 0.325 | 0.508 | 1.02     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7439-92-1 | Lead      | 1060  |      | 1  | 0.122 | 0.305 | 0.61     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7439-96-5 | Manganese | 644   |      | 1  | 0.193 | 0.508 | 1.02     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.382 |      | 1  | 0.005 | 0.005 | 0.011    | mg/Kg 06/27/14      | 06/30/14  | SW7471A  |
| 7440-02-0 | Nickel    | 34.5  |      | 1  | 0.468 | 1.02  | 2.03     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7782-49-2 | Selenium  | 2.74  | N    | 1  | 0.417 | 0.508 | 1.02     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-22-4 | Silver    | 2.6   |      | 1  | 0.152 | 0.254 | 0.508    | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-28-0 | Thallium  | 1.02  | U    | 1  | 0.274 | 1.02  | 2.03     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-62-2 | Vanadium  | 36    |      | 1  | 0.6   | 1.02  | 2.03     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |
| 7440-66-6 | Zinc      | 1710  |      | 1  | 0.712 | 1.02  | 2.03     | mg/Kg 06/27/14      | 06/27/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 SDG No.: Client Sample ID: GP-8(6-18) F2875 Lab Sample ID: F2875-13 Matrix: SOIL % Moisture: Analytical Method: SW8082A 18.7 Decanted: Sample Wt/Vol: 30.04 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume: 1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PP003580.D 1 06/28/14 06/30/14 PB77506

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|-----|----------|----------|
| TARGETS    |                      |       |           |          |     |          |          |
| 12674-11-2 | Aroclor-1016         | 4.1   | U         | 4.1      | 4.1 | 20.9     | ug/kg    |
| 11104-28-2 | Aroclor-1221         | 4.1   | U         | 4.1      | 4.1 | 20.9     | ug/kg    |
| 11141-16-5 | Aroclor-1232         | 4.1   | U         | 4.1      | 4.1 | 20.9     | ug/kg    |
| 53469-21-9 | Aroclor-1242         | 4.1   | U         | 4.1      | 4.1 | 20.9     | ug/kg    |
| 12672-29-6 | Aroclor-1248         | 4.1   | U         | 4.1      | 4.1 | 20.9     | ug/kg    |
| 11097-69-1 | Aroclor-1254         | 4.1   | U         | 1.8      | 4.1 | 20.9     | ug/kg    |
| 11096-82-5 | Aroclor-1260         | 4.1   | U         | 4.1      | 4.1 | 20.9     | ug/kg    |
| SURROGATES |                      |       |           |          |     |          |          |
| 877-09-8   | Tetrachloro-m-xylene | 18.4  |           | 10 - 166 | 5   | 92%      | SPK: 20  |
| 2051-24-3  | Decachlorobiphenyl   | 16.4  |           | 60 - 125 | 5   | 82%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-8(6-18) SDG No.: F2875

Lab Sample ID: F2875-13 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 18.7 Decanted:

Sample Wt/Vol: 30.11 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023152.D 1 06/28/14 06/30/14 PB77509

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CRO | QL Units |
|------------|----------------------|-------|-----------|----------|-------|-----------|----------|
| TARGETS    |                      |       |           |          |       |           |          |
| 319-84-6   | alpha-BHC            | 0.404 | U         | 0.159    | 0.404 | 2.1       | ug/kg    |
| 319-85-7   | beta-BHC             | 0.404 | U         | 0.221    | 0.404 | 2.1       | ug/kg    |
| 319-86-8   | delta-BHC            | 0.404 | U         | 0.123    | 0.404 | 2.1       | ug/kg    |
| 58-89-9    | gamma-BHC (Lindane)  | 0.404 | U         | 0.184    | 0.404 | 2.1       | ug/kg    |
| 76-44-8    | Heptachlor           | 0.404 | U         | 0.172    | 0.404 | 2.1       | ug/kg    |
| 309-00-2   | Aldrin               | 0.404 | U         | 0.123    | 0.404 | 2.1       | ug/kg    |
| 1024-57-3  | Heptachlor epoxide   | 0.404 | U         | 0.196    | 0.404 | 2.1       | ug/kg    |
| 959-98-8   | Endosulfan I         | 0.404 | U         | 0.184    | 0.404 | 2.1       | ug/kg    |
| 60-57-1    | Dieldrin             | 0.404 | U         | 0.159    | 0.404 | 2.1       | ug/kg    |
| 72-55-9    | 4,4-DDE              | 4.7   |           | 0.245    | 0.404 | 2.1       | ug/kg    |
| 72-20-8    | Endrin               | 0.404 | U         | 0.221    | 0.404 | 2.1       | ug/kg    |
| 33213-65-9 | Endosulfan II        | 0.404 | U         | 0.172    | 0.404 | 2.1       | ug/kg    |
| 72-54-8    | 4,4-DDD              | 0.404 | U         | 0.208    | 0.404 | 2.1       | ug/kg    |
| 1031-07-8  | Endosulfan Sulfate   | 0.404 | U         | 0.184    | 0.404 | 2.1       | ug/kg    |
| 50-29-3    | 4,4-DDT              | 2.2   |           | 0.172    | 0.404 | 2.1       | ug/kg    |
| 72-43-5    | Methoxychlor         | 0.404 | U         | 0.208    | 0.404 | 2.1       | ug/kg    |
| 53494-70-5 | Endrin ketone        | 0.404 | U         | 0.159    | 0.404 | 2.1       | ug/kg    |
| 7421-93-4  | Endrin aldehyde      | 0.404 | U         | 0.184    | 0.404 | 2.1       | ug/kg    |
| 5103-71-9  | alpha-Chlordane      | 0.404 | U         | 0.172    | 0.404 | 2.1       | ug/kg    |
| 5103-74-2  | gamma-Chlordane      | 0.404 | U         | 0.159    | 0.404 | 2.1       | ug/kg    |
| 8001-35-2  | Toxaphene            | 4.1   | U         | 4.1      | 4.1   | 20.8      | ug/kg    |
| SURROGATES |                      |       |           |          |       |           |          |
| 2051-24-3  | Decachlorobiphenyl   | 16.8  |           | 10 - 169 |       | 84%       | SPK: 20  |
| 877-09-8   | Tetrachloro-m-xylene | 17.3  |           | 31 - 151 |       | 87%       | SPK: 20  |



Analytical Method:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci

ucci Date Collected: 06/24/14

% Moisture:

18.7

Decanted:

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-8(6-18) SDG No.: F2875

Lab Sample ID: F2875-13 Matrix: SOIL

Sample Wt/Vol: 30.11 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

SW8081

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023152.D 1 06/28/14 06/30/14 PB77509

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-8(6-18) SDG No.: F2875

Lab Sample ID: F2875-13 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 18.7

Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072198.D 1 06/28/14 07/01/14 PB77511

| B1 072170.B | •                           | 00/20/11 |       | 077       | 01/11 |      | 110//311   |       |
|-------------|-----------------------------|----------|-------|-----------|-------|------|------------|-------|
| CAS Number  | Parameter                   | (        | Conc. | Qualifier | MDL   | LOD  | LOQ / CRQL | Units |
| TARGETS     |                             |          |       |           |       |      |            |       |
| 100-52-7    | Benzaldehyde                | 2        | 41    | U         | 21.4  | 41   | 410        | ug/Kg |
| 108-95-2    | Phenol                      | 2        | 41    | U         | 9.5   | 41   | 410        | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 2        | 41    | U         | 19.7  | 41   | 410        | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 2        | 41    | U         | 21.6  | 41   | 410        | ug/Kg |
| 95-48-7     | 2-Methylphenol              | ۷        | 41    | U         | 22.2  | 41   | 410        | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | ۷        | 41    | U         | 17    | 41   | 410        | ug/Kg |
| 98-86-2     | Acetophenone                | ۷        | 41    | U         | 12.5  | 41   | 410        | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | ۷        | 41    | U         | 21.3  | 41   | 410        | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | ۷        | 41    | U         | 20.6  | 41   | 410        | ug/Kg |
| 67-72-1     | Hexachloroethane            | 4        | 41    | U         | 18.3  | 41   | 410        | ug/Kg |
| 98-95-3     | Nitrobenzene                | ۷        | 41    | U         | 15.5  | 41   | 410        | ug/Kg |
| 78-59-1     | Isophorone                  | 4        | 41    | U         | 13.5  | 41   | 410        | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | ۷        | 41    | U         | 19.8  | 41   | 410        | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | ۷        | 41    | U         | 23.2  | 41   | 410        | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | ۷        | 41    | U         | 23.6  | 41   | 410        | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | ۷        | 41    | U         | 15.6  | 41   | 410        | ug/Kg |
| 91-20-3     | Naphthalene                 | ۷        | 41    | U         | 14.1  | 41   | 410        | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 4        | 41    | U         | 28.9  | 41   | 410        | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | ۷        | 41    | U         | 14.9  | 41   | 410        | ug/Kg |
| 105-60-2    | Caprolactam                 | 8        | 81.9  | U         | 19    | 81.9 | 410        | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | ۷        | 41    | U         | 18.2  | 41   | 410        | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 4        | 41    | U         | 10.3  | 41   | 410        | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | ۷        | 41    | U         | 10    | 41   | 410        | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 4        | 41    | U         | 12.5  | 41   | 410        | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 4        | 41    | U         | 28.8  | 41   | 410        | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | ۷        | 41    | U         | 15.5  | 41   | 410        | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | ۷        | 41    | U         | 9.3   | 41   | 410        | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | ۷        | 41    | U         | 18.2  | 41   | 410        | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 4        | 590   |           | 11.1  | 41   | 410        | ug/Kg |
| 208-96-8    | Acenaphthylene              | 2        | 41    | U         | 10.3  | 41   | 410        | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 2        | 41    | U         | 16.7  | 41   | 410        | ug/Kg |
|             |                             |          |       |           |       |      |            |       |



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-8(6-18) SDG No.: F2875

Lab Sample ID: F2875-13 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 18.7

Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072198.D 1 06/28/14 07/01/14 PB77511

| BF072198.D | 1                          | 06/28/14 | 07        | /01/14 |      | PB77511    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc     | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 81.9     | U         | 26.3   | 81.9 | 410        | ug/Kg |
| 83-32-9    | Acenaphthene               | 41       | U         | 11.6   | 41   | 410        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 330      | U         | 41.7   | 330  | 410        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 200      | U         | 76.1   | 200  | 410        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 41       | U         | 16     | 41   | 410        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 41       | U         | 12.3   | 41   | 410        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 41       | U         | 6.4    | 41   | 410        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 41       | U         | 22.2   | 41   | 410        | ug/Kg |
| 86-73-7    | Fluorene                   | 41       | U         | 15.5   | 41   | 410        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 81.9     | U         | 53.3   | 81.9 | 410        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 200      | U         | 23.5   | 200  | 410        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 41       | U         | 9.8    | 41   | 410        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 41       | U         | 8      | 41   | 410        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 41       | U         | 16.7   | 41   | 410        | ug/Kg |
| 1912-24-9  | Atrazine                   | 41       | U         | 21.6   | 41   | 410        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 41       | U         | 28     | 41   | 410        | ug/Kg |
| 85-01-8    | Phenanthrene               | 800      |           | 11.1   | 41   | 410        | ug/Kg |
| 120-12-7   | Anthracene                 | 160      | J         | 8.4    | 41   | 410        | ug/Kg |
| 86-74-8    | Carbazole                  | 41       | U         | 9      | 41   | 410        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 41       | U         | 32.2   | 41   | 410        | ug/Kg |
| 206-44-0   | Fluoranthene               | 920      |           | 8.2    | 41   | 410        | ug/Kg |
| 129-00-0   | Pyrene                     | 880      |           | 9.8    | 41   | 410        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 41       | U         | 19.7   | 41   | 410        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 41       | U         | 26.3   | 41   | 410        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 510      |           | 19.5   | 41   | 410        | ug/Kg |
| 218-01-9   | Chrysene                   | 470      |           | 18.6   | 41   | 410        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 350      | J         | 14.5   | 41   | 410        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 41       | U         | 4.7    | 41   | 410        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 480      |           | 13.4   | 41   | 410        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 200      | J         | 19.3   | 41   | 410        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 400      | J         | 8.8    | 41   | 410        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 250      | J         | 13.6   | 41   | 410        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 41       | U         | 11.8   | 41   | 410        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: F2875 GP-8(6-18) Lab Sample ID: F2875-13 Matrix: SOIL Analytical Method: SW8270 % Moisture: 18.7 Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072198.D 1 06/28/14 07/01/14 PB77511

| BF0/2198.D   | 1 06/2                             | 28/14  | 0//       | 01/14    |     | PB//511    |          |
|--------------|------------------------------------|--------|-----------|----------|-----|------------|----------|
| CAS Number   | Parameter                          | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
| 191-24-2     | Benzo(g,h,i)perylene               | 280    | J         | 16.6     | 41  | 410        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene         | 41     | U         | 16.1     | 41  | 410        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol          | 41     | U         | 16.1     | 41  | 410        | ug/Kg    |
| SURROGATES   |                                    |        |           |          |     |            |          |
| 367-12-4     | 2-Fluorophenol                     | 97     |           | 28 - 12  | 7   | 65%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                          | 99.2   |           | 34 - 12  | 7   | 66%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                    | 55.4   |           | 31 - 132 | 2   | 55%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                   | 56.9   |           | 39 - 123 | 3   | 57%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol               | 90     |           | 30 - 133 | 3   | 60%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                      | 52.9   |           | 37 - 115 | 5   | 53%        | SPK: 100 |
| INTERNAL ST  | ANDARDS                            |        |           |          |     |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4             | 52277  | 7.2       |          |     |            |          |
| 1146-65-2    | Naphthalene-d8                     | 226273 | 8.78      |          |     |            |          |
| 15067-26-2   | Acenaphthene-d10                   | 115881 | 10.95     |          |     |            |          |
| 1517-22-2    | Phenanthrene-d10                   | 204325 | 12.78     |          |     |            |          |
| 1719-03-5    | Chrysene-d12                       | 225578 | 16.05     |          |     |            |          |
| 1520-96-3    | Perylene-d12                       | 217894 | 17.71     |          |     |            |          |
| TENTATIVE II | DENTIFIED COMPOUNDS                |        |           |          |     |            |          |
| 000077-76-9  | Propane, 2,2-dimethoxy-            | 13100  | J         |          |     | 1.42       | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-        | 680    | J         |          |     | 1.69       | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl-   | 430    | A         |          |     | 4.94       | ug/Kg    |
|              | unknown6.90                        | 2800   | J         |          |     | 6.9        | ug/Kg    |
| 074645-98-0  | Dodecane, 2,7,10-trimethyl-        | 270    | J         |          |     | 12.16      | ug/Kg    |
| 094573-50-9  | Anthracene, 1,2,3,4-tetrahydro-9,1 | 110    | J         |          |     | 12.94      | ug/Kg    |
|              | unknown13.66                       | 120    | J         |          |     | 13.66      | ug/Kg    |
| 137235-51-9  | 1,2,4,8-Tetramethylbicyclo[6.3.0]u | 270    | J         |          |     | 13.79      | ug/Kg    |
| 003674-66-6  | Phenanthrene, 2,5-dimethyl-        | 170    | J         |          |     | 14.09      | ug/Kg    |
|              | unknown16.94                       | 220    | J         |          |     | 16.94      | ug/Kg    |
|              | unknown17.50                       | 110    | J         |          |     | 17.5       | ug/Kg    |
|              |                                    |        |           |          |     |            |          |



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx 06/24/14

Client Sample ID: GP-8(6-18)

Lab Sample ID: F2875-13 Matrix:

Date Received:

F2875

Analytical Method: SW8270 % Moisture:

SDG No.:

SOIL 18.7

30.03 Units: g

Final Vol:

1000

PH:

uL

Sample Wt/Vol: Soil Aliquot Vol:

uL

Test:

SVOCMS Group1

Extraction Type:

N

Level:

GPC Cleanup:

LOW

Ν

Injection Volume:

Prep Date

GPC Factor:

Decanted:

Date Analyzed

Prep Batch ID

PB77511

BF072198.D

File ID/Qc Batch:

1

Dilution:

06/28/14

07/01/14

**CAS Number** 

**Parameter** 

Conc.

1.0

Qualifier

**MDL** 

LOD

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-8(6-18) SDG No.: F2875 SOIL Lab Sample ID: F2875-13 Matrix: Analytical Method: SW8260 % Moisture: 18.7 Sample Wt/Vol: 9.41 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD042574.D 1 07/02/14 VD070214

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.65  | U         | 0.65 | 0.65 | 3.3        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 67-64-1    | Acetone                        | 1.6   | U         | 1.6  | 1.6  | 16.3       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.65  | U         | 0.65 | 0.65 | 3.3        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 1.4   | J         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 4.9   | U         | 2    | 4.9  | 16.3       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 67-66-3    | Chloroform                     | 1.6   | J         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 71-43-2    | Benzene                        | 0.33  | U         | 0.25 | 0.33 | 3.3        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 79-01-6    | Trichloroethene                | 1.9   | J         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.33  | U         | 0.17 | 0.33 | 3.3        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1.6   | U         | 1.6  | 1.6  | 16.3       | ug/Kg |
| 108-88-3   | Toluene                        | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.33  | U         | 0.33 | 0.33 | 3.3        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: SDG No.: F2875 GP-8(6-18) SOIL Lab Sample ID: F2875-13 Matrix: Analytical Method: SW8260 % Moisture: 18.7 Sample Wt/Vol: 9.41 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD042574.D 1 07/02/14 VD070214

| 1 = 1 .= 1= |                             |       | · · · · · · |          |      |            |         |
|-------------|-----------------------------|-------|-------------|----------|------|------------|---------|
| CAS Number  | Parameter                   | Conc. | Qualifier   | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.33  | U           | 0.33     | 0.33 | 3.3        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.65  | U           | 0.59     | 0.65 | 3.3        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 1.6   | U           | 1.6      | 1.6  | 16.3       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.33  | U           | 0.33     | 0.33 | 3.3        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.33  | U           | 0.33     | 0.33 | 3.3        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 530   | E           | 0.33     | 0.33 | 3.3        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.33  | U           | 0.33     | 0.33 | 3.3        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 0.33  | U           | 0.33     | 0.33 | 3.3        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 0.65  | U           | 0.47     | 0.65 | 6.5        | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.33  | U           | 0.33     | 0.33 | 3.3        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.33  | U           | 0.29     | 0.33 | 3.3        | ug/Kg   |
| 75-25-2     | Bromoform                   | 0.98  | U           | 0.48     | 0.98 | 3.3        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.33  | U           | 0.31     | 0.33 | 3.3        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.33  | U           | 0.3      | 0.33 | 3.3        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.33  | U           | 0.24     | 0.33 | 3.3        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.33  | U           | 0.29     | 0.33 | 3.3        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.33  | U           | 0.33     | 0.33 | 3.3        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.33  | U           | 0.33     | 0.33 | 3.3        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.33  | U           | 0.33     | 0.33 | 3.3        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.33  | U           | 0.19     | 0.33 | 3.3        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.33  | U           | 0.24     | 0.33 | 3.3        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.33  | U           | 0.27     | 0.33 | 3.3        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.33  | U           | 0.3      | 0.33 | 3.3        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.33  | U           | 0.33     | 0.33 | 3.3        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 3.3   | U           | 0.57     | 3.3  | 3.3        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.33  | U           | 0.33     | 0.33 | 3.3        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.33  | U           | 0.29     | 0.33 | 3.3        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.65  | U           | 0.33     | 0.65 | 3.3        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 65.4  | U           | 65.4     | 65.4 | 65.4       | ug/Kg   |
| SURROGATES  |                             |       |             |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 56.8  |             | 56 - 120 |      | 114%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 58    |             | 57 - 135 | 5    | 116%       | SPK: 50 |
|             |                             |       |             |          |      |            |         |



Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-8(6-18)

Lab Sample ID: F2875-13

Analytical Method: SW8260

Sample Wt/Vol: 9.41 Units: g

Soil Aliquot Vol: uL

GC Column: RTX-VMS ID: 0.18

Test:

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Matrix:

VOCMS Group1

uL

Level: LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

06/24/14

06/24/14

F2875

SOIL

18.7

5000

VD042574.D

1

07/02/14

VD070214

| CAS Number  | Parameter              | Conc. | Qualifier | MDL LOD  | LOQ / CRQL | Units   |
|-------------|------------------------|-------|-----------|----------|------------|---------|
| 2037-26-5   | Toluene-d8             | 52.5  |           | 67 - 123 | 105%       | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 30.1  |           | 33 - 141 | 60%        | SPK: 50 |
| INTERNAL ST | ANDARDS                |       |           |          |            |         |
| 363-72-4    | Pentafluorobenzene     | 36945 | 6.48      |          |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 48537 | 7.61      |          |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 33219 | 11.72     |          |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 8225  | 14.05     |          |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-8(6-18)DL SDG No.: F2875 SOIL Lab Sample ID: F2875-13DL Matrix: Analytical Method: SW8260 % Moisture: 18.7

Sample Wt/Vol: 10.58 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: 100 uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013910.D 1 07/01/14 VR070114

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 74-87-3    | Chloromethane                  | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 74-83-9    | Bromomethane                   | 29.1  | UD        | 29.1 | 29.1 | 150        | ug/Kg |
| 75-00-3    | Chloroethane                   | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 67-64-1    | Acetone                        | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 29.1  | UD        | 29.1 | 29.1 | 150        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 220   | UD        | 90.4 | 220  | 730        | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 67-66-3    | Chloroform                     | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 71-43-2    | Benzene                        | 14.5  | UD        | 11   | 14.5 | 150        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 79-01-6    | Trichloroethene                | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 14.5  | UD        | 7.6  | 14.5 | 150        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 108-88-3   | Toluene                        | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 14.5  | UD        | 14.5 | 14.5 | 150        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/24/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GP-8(6-18)DL SDG No.: F2875
Lab Sample ID: F2875-13DL Matrix: SOIL
Analytical Method: SW8260 % Moisture: 18.7

Sample Wt/Vol: 10.58 Units: g Final Vol: 5000 uL
Soil Aliquot Vol: 100 uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013910.D 1 07/01/14 VR070114

| , , , , , , , , , , , , , , , , , , | <u>-</u>                    |       | * * * * * * * * * * * * * * * * * * * * |          |      | , ,        |         |
|-------------------------------------|-----------------------------|-------|-----------------------------------------|----------|------|------------|---------|
| CAS Number                          | Parameter                   | Conc. | Qualifier                               | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5                          | cis-1,3-Dichloropropene     | 14.5  | UD                                      | 14.5     | 14.5 | 150        | ug/Kg   |
| 79-00-5                             | 1,1,2-Trichloroethane       | 29.1  | UD                                      | 26.2     | 29.1 | 150        | ug/Kg   |
| 591-78-6                            | 2-Hexanone                  | 72.7  | UD                                      | 72.7     | 72.7 | 730        | ug/Kg   |
| 124-48-1                            | Dibromochloromethane        | 14.5  | UD                                      | 14.5     | 14.5 | 150        | ug/Kg   |
| 106-93-4                            | 1,2-Dibromoethane           | 14.5  | UD                                      | 14.5     | 14.5 | 150        | ug/Kg   |
| 127-18-4                            | Tetrachloroethene           | 3700  | ED                                      | 14.5     | 14.5 | 150        | ug/Kg   |
| 108-90-7                            | Chlorobenzene               | 14.5  | UD                                      | 14.5     | 14.5 | 150        | ug/Kg   |
| 100-41-4                            | Ethyl Benzene               | 14.5  | UD                                      | 14.5     | 14.5 | 150        | ug/Kg   |
| 179601-23-1                         | m/p-Xylenes                 | 29.1  | UD                                      | 20.9     | 29.1 | 290        | ug/Kg   |
| 95-47-6                             | o-Xylene                    | 14.5  | UD                                      | 14.5     | 14.5 | 150        | ug/Kg   |
| 100-42-5                            | Styrene                     | 14.5  | UD                                      | 13.1     | 14.5 | 150        | ug/Kg   |
| 75-25-2                             | Bromoform                   | 43.6  | UD                                      | 21.5     | 43.6 | 150        | ug/Kg   |
| 98-82-8                             | Isopropylbenzene            | 14.5  | UD                                      | 14       | 14.5 | 150        | ug/Kg   |
| 79-34-5                             | 1,1,2,2-Tetrachloroethane   | 14.5  | UD                                      | 13.4     | 14.5 | 150        | ug/Kg   |
| 103-65-1                            | n-propylbenzene             | 14.5  | UD                                      | 10.5     | 14.5 | 150        | ug/Kg   |
| 108-67-8                            | 1,3,5-Trimethylbenzene      | 14.5  | UD                                      | 13.1     | 14.5 | 150        | ug/Kg   |
| 98-06-6                             | tert-Butylbenzene           | 14.5  | UD                                      | 14.5     | 14.5 | 150        | ug/Kg   |
| 95-63-6                             | 1,2,4-Trimethylbenzene      | 14.5  | UD                                      | 14.5     | 14.5 | 150        | ug/Kg   |
| 135-98-8                            | sec-Butylbenzene            | 14.5  | UD                                      | 14.5     | 14.5 | 150        | ug/Kg   |
| 99-87-6                             | p-Isopropyltoluene          | 14.5  | UD                                      | 8.4      | 14.5 | 150        | ug/Kg   |
| 541-73-1                            | 1,3-Dichlorobenzene         | 14.5  | UD                                      | 10.8     | 14.5 | 150        | ug/Kg   |
| 106-46-7                            | 1,4-Dichlorobenzene         | 14.5  | UD                                      | 11.9     | 14.5 | 150        | ug/Kg   |
| 104-51-8                            | n-Butylbenzene              | 14.5  | UD                                      | 13.4     | 14.5 | 150        | ug/Kg   |
| 95-50-1                             | 1,2-Dichlorobenzene         | 14.5  | UD                                      | 14.5     | 14.5 | 150        | ug/Kg   |
| 96-12-8                             | 1,2-Dibromo-3-Chloropropane | 150   | UD                                      | 25.3     | 150  | 150        | ug/Kg   |
| 120-82-1                            | 1,2,4-Trichlorobenzene      | 14.5  | UD                                      | 14.5     | 14.5 | 150        | ug/Kg   |
| 91-20-3                             | Naphthalene                 | 14.5  | UD                                      | 13.1     | 14.5 | 150        | ug/Kg   |
| 87-61-6                             | 1,2,3-Trichlorobenzene      | 29.1  | UD                                      | 14.5     | 29.1 | 150        | ug/Kg   |
| 123-91-1                            | 1,4-Dioxane                 | 2900  | UD                                      | 2900     | 2900 | 2900       | ug/Kg   |
| SURROGATES                          |                             |       |                                         |          |      |            |         |
| 17060-07-0                          | 1,2-Dichloroethane-d4       | 56.4  |                                         | 56 - 120 |      | 113%       | SPK: 50 |
| 1868-53-7                           | Dibromofluoromethane        | 49.2  |                                         | 57 - 13: | 5    | 98%        | SPK: 50 |
|                                     |                             |       |                                         |          |      |            |         |



## **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-8(6-18)DL

Lab Sample ID: F2875-13DL

Analytical Method: SW8260

Sample Wt/Vol: 10.58 Units: g

Soil Aliquot Vol: 100 uL

GC Column: RXI-624 ID: 0.25 Date Collected:

06/24/14

Date Received:

06/24/14

SDG No.:

F2875

Matrix:

Final Vol:

SOIL 18.7

% Moisture:

5000

uL

Test:

VOCMS Group1

Level: **MED** 

File ID/Qc Batch:

VR013910.D

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

07/01/14

VR070114

| CAS Number   | Parameter              | Conc.   | Qualifier | MDL L    | OD LOQ/ | CRQL Units |
|--------------|------------------------|---------|-----------|----------|---------|------------|
| 2037-26-5    | Toluene-d8             | 56      |           | 67 - 123 | 112%    | 6 SPK: 50  |
| 460-00-4     | 4-Bromofluorobenzene   | 56      |           | 33 - 141 | 112%    | 6 SPK: 50  |
| INTERNAL STA | ANDARDS                |         |           |          |         |            |
| 363-72-4     | Pentafluorobenzene     | 1183470 | 7.49      |          |         |            |
| 540-36-3     | 1,4-Difluorobenzene    | 2078990 | 8.43      |          |         |            |
| 3114-55-4    | Chlorobenzene-d5       | 1929580 | 11.28     |          |         |            |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 704542  | 13.22     |          |         |            |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-8(6-18)DL2 SDG No.: F2875 SOIL Lab Sample ID: F2875-13DL2 Matrix: Analytical Method: SW8260 % Moisture: 18.7 Sample Wt/Vol: 10.58 Units: g Final Vol: 5000 uL Soil Aliquot Vol: 100 uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013912.D 5 07/01/14 VR070114

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 74-87-3    | Chloromethane                  | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 74-83-9    | Bromomethane                   | 150   | UD        | 150  | 150  | 730        | ug/Kg |
| 75-00-3    | Chloroethane                   | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 67-64-1    | Acetone                        | 360   | UD        | 360  | 360  | 3600       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 150   | UD        | 150  | 150  | 730        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 1100  | UD        | 450  | 1100 | 3600       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 67-66-3    | Chloroform                     | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 71-43-2    | Benzene                        | 72.7  | UD        | 55.2 | 72.7 | 730        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 79-01-6    | Trichloroethene                | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 72.7  | UD        | 37.8 | 72.7 | 730        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 360   | UD        | 360  | 360  | 3600       | ug/Kg |
| 108-88-3   | Toluene                        | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 72.7  | UD        | 72.7 | 72.7 | 730        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/24/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14 Client Sample ID: GP-8(6-18)DL2 SDG No.: F2875 Lab Sample ID: F2875-13DL2 Matrix: SOIL Analytical Method: SW8260 % Moisture: 18.7 Sample Wt/Vol: 10.58 Units: g Final Vol: 5000 uL Soil Aliquot Vol: 100 uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013912.D 5 07/01/14 VR070114

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD   | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|-------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 72.7  | UD        | 72.7     | 72.7  | 730        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 150   | UD        | 130      | 150   | 730        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 360   | UD        | 360      | 360   | 3600       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 72.7  | UD        | 72.7     | 72.7  | 730        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 72.7  | UD        | 72.7     | 72.7  | 730        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 3300  | D         | 72.7     | 72.7  | 730        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 72.7  | UD        | 72.7     | 72.7  | 730        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 72.7  | UD        | 72.7     | 72.7  | 730        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 150   | UD        | 100      | 150   | 1500       | ug/Kg   |
| 95-47-6     | o-Xylene                    | 72.7  | UD        | 72.7     | 72.7  | 730        | ug/Kg   |
| 100-42-5    | Styrene                     | 72.7  | UD        | 65.4     | 72.7  | 730        | ug/Kg   |
| 75-25-2     | Bromoform                   | 220   | UD        | 110      | 220   | 730        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 72.7  | UD        | 69.8     | 72.7  | 730        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 72.7  | UD        | 66.8     | 72.7  | 730        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 72.7  | UD        | 52.3     | 72.7  | 730        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 72.7  | UD        | 65.4     | 72.7  | 730        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 72.7  | UD        | 72.7     | 72.7  | 730        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 72.7  | UD        | 72.7     | 72.7  | 730        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 72.7  | UD        | 72.7     | 72.7  | 730        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 72.7  | UD        | 42.1     | 72.7  | 730        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 72.7  | UD        | 53.8     | 72.7  | 730        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 72.7  | UD        | 59.6     | 72.7  | 730        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 72.7  | UD        | 66.8     | 72.7  | 730        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 72.7  | UD        | 72.7     | 72.7  | 730        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 730   | UD        | 130      | 730   | 730        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 72.7  | UD        | 72.7     | 72.7  | 730        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 72.7  | UD        | 65.4     | 72.7  | 730        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 150   | UD        | 72.7     | 150   | 730        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 14500 | UD        | 14500    | 14500 | 14500      | ug/Kg   |
| SURROGATES  |                             |       |           |          |       |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 56.2  |           | 56 - 120 |       | 112%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 49.2  |           | 57 - 135 |       | 98%        | SPK: 50 |



## **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-8(6-18)DL2

Lab Sample ID: F2875-13DL2

Analytical Method: SW8260

Sample Wt/Vol: 10.58 Units: g

Soil Aliquot Vol: 100 uL

GC Column: RXI-624 ID: 0.25

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Matrix:

VOCMS Group1

uL

06/24/14

06/24/14

F2875

SOIL

18.7

5000

Level: **MED** 

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

5 VR013912.D

07/01/14

VR070114

| CAS Number   | Parameter              | Conc.   | Qualifier | MDL LOI  | LOQ / CRQL | Units   |
|--------------|------------------------|---------|-----------|----------|------------|---------|
| 2037-26-5    | Toluene-d8             | 55.8    |           | 67 - 123 | 112%       | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 54.6    |           | 33 - 141 | 109%       | SPK: 50 |
| INTERNAL STA | ANDARDS                |         |           |          |            |         |
| 363-72-4     | Pentafluorobenzene     | 1152920 | 7.49      |          |            |         |
| 540-36-3     | 1,4-Difluorobenzene    | 2018910 | 8.43      |          |            |         |
| 3114-55-4    | Chlorobenzene-d5       | 1809170 | 11.28     |          |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 683186  | 13.22     |          |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/23/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/24/14

Client Sample ID: GW-5 SDG No.: F2875

Lab Sample ID: F2875-25 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ | / CRQL Un | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|-----|-----------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.219 | J    | 1  | 0.14 | 1.0 | 2   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7440-38-2 | Arsenic   | 0.758 | J    | 1  | 0.18 | 0.5 | 1   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7440-39-3 | Barium    | 124   |      | 1  | 0.1  | 5.0 | 10  | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | U    | 1  | 0.09 | 0.5 | 1   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7440-43-9 | Cadmium   | 0.5   | U    | 1  | 0.13 | 0.5 | 1   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7440-47-3 | Chromium  | 2.62  |      | 1  | 0.04 | 1.0 | 2   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7440-48-4 | Cobalt    | 4.23  |      | 1  | 0.05 | 0.5 | 1   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7440-50-8 | Copper    | 1.55  | J    | 1  | 0.04 | 1.0 | 2   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7439-92-1 | Lead      | 4.32  | N*   | 1  | 0.04 | 0.5 | 1   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7439-96-5 | Manganese | 3460  |      | 1  | 0.05 | 0.5 | 1   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1 | 0.2 | ug/L      | 06/27/14      | 06/30/14  | SW7470A  |
| 7440-02-0 | Nickel    | 5.12  | *    | 1  | 0.06 | 0.5 | 1   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7782-49-2 | Selenium  | 0.859 | J    | 1  | 0.7  | 2.5 | 5   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7440-22-4 | Silver    | 0.5   | U    | 1  | 0.03 | 0.5 | 1   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.062 | J*   | 1  | 0.02 | 0.5 | 1   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7440-62-2 | Vanadium  | 0.428 | J    | 1  | 0.15 | 2.5 | 5   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |
| 7440-66-6 | Zinc      | 15.3  |      | 1  | 0.09 | 1.0 | 2   | ug/L      | 06/27/14      | 06/30/14  | SW6020   |

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Dissolved Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



# **ANALYTICAL RESULTS SUMMARY**

**VOLATILE ORGANICS** 

PROJECT NAME: NYCSCA UNIONPORT ROAD BRONX TO-15

DVIRKA & BARTILUCCI

330 Crossways Park Drive

**Woodbury, NY - 11797** 

Phone No: 516-364-9890

ORDER ID: F2890

**ATTENTION: MARIA WRIGHT** 









**SDG No.:** F2890

| Sample ID  | Client ID | Matrix     | Parameter                     | Concentration | <b>C</b> | MDL  | LOD  | RDL  | Units |
|------------|-----------|------------|-------------------------------|---------------|----------|------|------|------|-------|
| Client ID: | SV-1      |            |                               |               |          |      |      |      |       |
| F2890-01   | SV-1      | Air        | Dichlorodifluoromethane       | 2.82          | Q        | 0.2  | 0.49 | 2.47 | ug/m3 |
| F2890-01   | SV-1      | Air        | Chloromethane                 | 1.14          |          | 0.21 | 0.21 | 1.03 | ug/m3 |
| F2890-01   | SV-1      | Air        | Trichlorofluoromethane        | 1.29          | J        | 0.22 | 0.56 | 2.81 | ug/m3 |
| F2890-01   | SV-1      | Air        | Heptane                       | 3.03          |          | 0.41 | 0.41 | 2.05 | ug/m3 |
| F2890-01   | SV-1      | Air        | Acetone                       | 74.10         | EB       | 0.24 | 0.24 | 1.19 | ug/m3 |
| F2890-01   | SV-1      | Air        | Carbon Disulfide              | 1.31          | J        | 0.16 | 0.31 | 1.56 | ug/m3 |
| F2890-01   | SV-1      | Air        | Methylene Chloride            | 5.91          | В        | 0.17 | 0.35 | 1.74 | ug/m3 |
| F2890-01   | SV-1      | Air        | Cyclohexane                   | 1.38          | J        | 0.34 | 0.34 | 1.72 | ug/m3 |
| F2890-01   | SV-1      | Air        | 2-Butanone                    | 2.68          |          | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2890-01   | SV-1      | Air        | Carbon Tetrachloride          | 0.38          |          | 0.19 | 0.19 | 0.19 | ug/m3 |
| F2890-01   | SV-1      | Air        | 2,2,4-Trimethylpentane        | 6.07          |          | 0.19 | 0.47 | 2.34 | ug/m3 |
| F2890-01   | SV-1      | Air        | Benzene                       | 1.73          |          | 0.13 | 0.32 | 1.6  | ug/m3 |
| F2890-01   | SV-1      | Air        | Toluene                       | 15.80         |          | 0.19 | 0.38 | 1.88 | ug/m3 |
| F2890-01   | SV-1      | Air        | Tetrachloroethene             | 0.75          |          | 0.2  | 0.2  | 0.2  | ug/m3 |
| F2890-01   | SV-1      | Air        | Ethyl Benzene                 | 1.87          | J        | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2890-01   | SV-1      | Air        | m/p-Xylene                    | 5.65          |          | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2890-01   | SV-1      | Air        | o-Xylene                      | 2.13          | J        | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2890-01   | SV-1      | Air        | 1,3,5-Trimethylbenzene        | 0.64          | J        | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2890-01   | SV-1      | Air        | 1,2,4-Trimethylbenzene        | 2.36          | J        | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2890-01   | SV-1      | Air        | 4-Ethyltoluene                | 0.88          | J        | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2890-01   | SV-1      | Air        | Hexane                        | 6.70          |          | 0.14 | 0.35 | 1.76 | ug/m3 |
|            |           |            | Total Voc:                    | 138.6         | 2        |      |      |      |       |
|            |           |            | <b>Total Concentration:</b>   | 138.6         | 2        |      |      |      |       |
| Client ID: | SV-1DL    | <b>.</b> . |                               | 75.10         | DD       | 2.20 | 2.20 | 11.0 | / 2   |
| F2890-01DL | SV-1DL    | Air        | Acetone                       | 75.10         | DB       | 2.38 | 2.38 | 11.9 | ug/m3 |
| F2890-01DL | SV-1DL    | Air        | Toluene                       | 13.20         | JD       | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2890-01DL | SV-1DL    | Air        | Hexane                        | 5.99          |          | 1.41 | 3.52 | 17.6 | ug/m3 |
|            |           |            | Total Voc:                    | 94.2          |          |      |      |      |       |
| Client ID: | SV-2      |            | <b>Total Concentration:</b>   | 94.2          | 9        |      |      |      |       |
| F2890-02   | SV-2      | Air        | Dichlorodifluoromethane       | 1.88          | JQ       | 0.2  | 0.49 | 2.47 | ug/m3 |
| F2890-02   | SV-2      | Air        | Chloromethane                 | 1.16          |          | 0.21 | 0.21 | 1.03 | ug/m3 |
| F2890-02   | SV-2      | Air        | Tetrahydrofuran               | 1.65          |          | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2890-02   | SV-2      | Air        | Trichlorofluoromethane        | 3.99          |          | 0.22 | 0.56 | 2.81 | ug/m3 |
| F2890-02   | SV-2      | Air        | 1,1,2-Trichlorotrifluoroethan | e 0.77        | J        | 0.31 | 0.77 | 3.83 | ug/m3 |
| F2890-02   | SV-2      | Air        | Heptane                       | 5.74          |          | 0.41 | 0.41 | 2.05 | ug/m3 |
| F2890-02   | SV-2      | Air        | Acetone                       | 52.30         | Е        | 0.24 | 0.24 | 1.19 | ug/m3 |
|            |           |            |                               |               | _        |      |      |      | 3     |





**SDG No.:** F2890

| Sample ID  | Client ID | Matrix | Parameter                   | Concentration | C  | MDL  | LOD  | RDL  | Units |
|------------|-----------|--------|-----------------------------|---------------|----|------|------|------|-------|
| F2890-02   | SV-2      | Air    | Carbon Disulfide            | 191.00        | Е  | 0.16 | 0.31 | 1.56 | ug/m3 |
| F2890-02   | SV-2      | Air    | Methylene Chloride          | 3.20          | В  | 0.17 | 0.35 | 1.74 | ug/m3 |
| F2890-02   | SV-2      | Air    | Cyclohexane                 | 4.13          |    | 0.34 | 0.34 | 1.72 | ug/m3 |
| F2890-02   | SV-2      | Air    | 2-Butanone                  | 4.42          |    | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2890-02   | SV-2      | Air    | Carbon Tetrachloride        | 0.38          |    | 0.19 | 0.19 | 0.19 | ug/m3 |
| F2890-02   | SV-2      | Air    | Chloroform                  | 66.90         |    | 0.1  | 0.49 | 2.44 | ug/m3 |
| F2890-02   | SV-2      | Air    | 1,1,1-Trichloroethane       | 0.76          |    | 0.16 | 0.16 | 0.16 | ug/m3 |
| F2890-02   | SV-2      | Air    | 2,2,4-Trimethylpentane      | 4.48          |    | 0.19 | 0.47 | 2.34 | ug/m3 |
| F2890-02   | SV-2      | Air    | Benzene                     | 7.99          |    | 0.13 | 0.32 | 1.6  | ug/m3 |
| F2890-02   | SV-2      | Air    | Trichloroethene             | 0.48          |    | 0.11 | 0.16 | 0.16 | ug/m3 |
| F2890-02   | SV-2      | Air    | Toluene                     | 11.30         |    | 0.19 | 0.38 | 1.88 | ug/m3 |
| F2890-02   | SV-2      | Air    | Tetrachloroethene           | 45.40         |    | 0.2  | 0.2  | 0.2  | ug/m3 |
| F2890-02   | SV-2      | Air    | Ethyl Benzene               | 3.65          |    | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2890-02   | SV-2      | Air    | m/p-Xylene                  | 11.70         |    | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2890-02   | SV-2      | Air    | o-Xylene                    | 4.34          |    | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2890-02   | SV-2      | Air    | 1,3,5-Trimethylbenzene      | 2.21          | J  | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2890-02   | SV-2      | Air    | 1,2,4-Trimethylbenzene      | 5.41          |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2890-02   | SV-2      | Air    | 4-Ethyltoluene              | 2.36          | J  | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2890-02   | SV-2      | Air    | Hexane                      | 9.52          |    | 0.14 | 0.35 | 1.76 | ug/m3 |
|            |           |        | Total Voc:                  | 447.12        | 2  |      |      |      |       |
|            |           |        | <b>Total Concentration:</b> | 447.12        |    |      |      |      |       |
| Client ID: | SV-2DL    |        | •                           | (2.70         | DD | 2.20 | 2.20 | 11.0 | / 2   |
| F2890-02DL | SV-2DL    | Air    | Acetone                     | 63.70         | DB | 2.38 | 2.38 | 11.9 | ug/m3 |
| F2890-02DL | SV-2DL    | Air    | Carbon Disulfide            | 175.00        | D  | 1.56 | 3.11 | 15.6 | ug/m3 |
| F2890-02DL | SV-2DL    | Air    | Chloroform                  | 71.80         | D  | 0.98 | 4.88 | 24.4 | ug/m3 |
| F2890-02DL | SV-2DL    | Air    | Benzene                     | 7.99          | JD | 1.28 | 3.19 | 16.0 | ug/m3 |
| F2890-02DL | SV-2DL    | Air    | Toluene                     | 9.04          | JD | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2890-02DL | SV-2DL    | Air    | Tetrachloroethene           | 42.00         | D  | 2.03 | 2.03 | 2.03 | ug/m3 |
| F2890-02DL | SV-2DL    | Air    | m/p-Xylene                  | 9.56          | JD | 4.34 | 8.69 | 43.4 | ug/m3 |
|            |           |        | Total Voc:                  | 379.09        |    |      |      |      |       |
| Client ID: | SV-4      |        | <b>Total Concentration:</b> | 379.09        |    |      |      |      |       |
| F2890-03   | SV-4      | Air    | Dichlorodifluoromethane     | 1.78          | JQ | 0.2  | 0.49 | 2.47 | ug/m3 |
| F2890-03   | SV-4      | Air    | Tetrahydrofuran             | 1.36          | J  | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2890-03   | SV-4      | Air    | Trichlorofluoromethane      | 2.14          | J  | 0.22 | 0.56 | 2.81 | ug/m3 |
| F2890-03   | SV-4      | Air    | tert-Butyl alcohol          | 6.67          | Q  | 0.3  | 0.3  | 1.52 | ug/m3 |
| F2890-03   | SV-4      | Air    | Heptane                     | 18.40         |    | 0.41 | 0.41 | 2.05 | ug/m3 |
| F2890-03   | SV-4      | Air    | Acetone                     | 71.30         | Е  | 0.24 | 0.24 | 1.19 | ug/m3 |
|            |           |        |                             |               |    |      |      |      | -     |





**SDG No.:** F2890

| Sample ID                | Client ID        | Matrix     | Parameter                   | Concentration | <b>C</b> | MDL         | LOD          | RDL          | Units          |
|--------------------------|------------------|------------|-----------------------------|---------------|----------|-------------|--------------|--------------|----------------|
| F2890-03                 | SV-4             | Air        | Carbon Disulfide            | 60.70         | Е        | 0.16        | 0.31         | 1.56         | ug/m3          |
| F2890-03                 | SV-4             | Air        | Methylene Chloride          | 1.29          | JB       | 0.17        | 0.35         | 1.74         | ug/m3          |
| F2890-03                 | SV-4             | Air        | Cyclohexane                 | 8.26          |          | 0.34        | 0.34         | 1.72         | ug/m3          |
| F2890-03                 | SV-4             | Air        | 2-Butanone                  | 6.19          |          | 0.29        | 0.29         | 1.47         | ug/m3          |
| F2890-03                 | SV-4             | Air        | Carbon Tetrachloride        | 0.38          |          | 0.19        | 0.19         | 0.19         | ug/m3          |
| F2890-03                 | SV-4             | Air        | Chloroform                  | 3.03          |          | 0.1         | 0.49         | 2.44         | ug/m3          |
| F2890-03                 | SV-4             | Air        | 2,2,4-Trimethylpentane      | 22.00         |          | 0.19        | 0.47         | 2.34         | ug/m3          |
| F2890-03                 | SV-4             | Air        | Benzene                     | 10.90         |          | 0.13        | 0.32         | 1.6          | ug/m3          |
| F2890-03                 | SV-4             | Air        | Trichloroethene             | 0.70          |          | 0.11        | 0.16         | 0.16         | ug/m3          |
| F2890-03                 | SV-4             | Air        | Toluene                     | 128.00        | E        | 0.19        | 0.38         | 1.88         | ug/m3          |
| F2890-03                 | SV-4             | Air        | Tetrachloroethene           | 54.20         |          | 0.2         | 0.2          | 0.2          | ug/m3          |
| F2890-03                 | SV-4             | Air        | Ethyl Benzene               | 38.20         |          | 0.43        | 0.43         | 2.17         | ug/m3          |
| F2890-03                 | SV-4             | Air        | m/p-Xylene                  | 142.00        | E        | 0.43        | 0.87         | 4.34         | ug/m3          |
| F2890-03                 | SV-4             | Air        | o-Xylene                    | 61.20         |          | 0.43        | 0.43         | 2.17         | ug/m3          |
| F2890-03                 | SV-4             | Air        | Styrene                     | 2.30          |          | 0.43        | 0.43         | 2.13         | ug/m3          |
| F2890-03                 | SV-4             | Air        | 1,3,5-Trimethylbenzene      | 24.10         |          | 0.49        | 0.49         | 2.46         | ug/m3          |
| F2890-03                 | SV-4             | Air        | 1,2,4-Trimethylbenzene      | 99.30         | E        | 0.49        | 0.49         | 2.46         | ug/m3          |
| F2890-03                 | SV-4             | Air        | Naphthalene                 | 120.00        | E        | 0.21        | 0.52         | 2.62         | ug/m3          |
| F2890-03                 | SV-4             | Air        | 4-Ethyltoluene              | 31.00         |          | 0.49        | 0.49         | 2.46         | ug/m3          |
| F2890-03                 | SV-4             | Air        | Hexane                      | 25.70         |          | 0.14        | 0.35         | 1.76         | ug/m3          |
|                          |                  |            | Total Voc:                  | 941.1         |          |             |              |              |                |
|                          |                  |            | <b>Total Concentration:</b> | 941.1         |          |             |              |              |                |
| Client ID:<br>F2890-03DL | SV-4DL           | A in       | tart Dutyl alaahal          | 12.40         | JD       | 3.03        | 3.03         | 15.0         |                |
|                          | SV-4DL           | Air        | tert-Butyl alcohol          | 12.40         | JD       |             | 3.03<br>4.1  | 15.2         | ug/m3          |
| F2890-03DL<br>F2890-03DL | SV-4DL           | Air<br>Air | Heptane                     | 75.10         |          | 4.1<br>2.38 |              | 20.5<br>11.9 | ug/m3          |
| F2890-03DL<br>F2890-03DL | SV-4DL<br>SV-4DL | Air        | Acetone Carbon Disulfide    | 46.40         | DB<br>D  | 1.56        | 2.38<br>3.11 | 15.6         | ug/m3<br>ug/m3 |
| F2890-03DL<br>F2890-03DL | SV-4DL<br>SV-4DL |            | Cyclohexane                 | 7.92          | JD       | 3.44        | 3.44         | 17.2         | _              |
| F2890-03DL<br>F2890-03DL | SV-4DL<br>SV-4DL | Air<br>Air | 2-Butanone                  | 6.78          | JD       | 2.95        | 2.95         | 14.8         | ug/m3          |
| F2890-03DL<br>F2890-03DL | SV-4DL<br>SV-4DL | Air        | 2,2,4-Trimethylpentane      | 22.00         | JD       | 1.87        | 4.67         | 23.4         | ug/m3<br>ug/m3 |
| F2890-03DL               | SV-4DL<br>SV-4DL | Air        | Benzene                     | 10.50         | JD       | 1.28        | 3.19         | 16.0         | ug/m3          |
| F2890-03DL<br>F2890-03DL | SV-4DL<br>SV-4DL | Air        | Toluene                     | 118.00        | D        | 1.88        | 3.77         | 18.8         | ug/m3          |
| F2890-03DL<br>F2890-03DL | SV-4DL<br>SV-4DL | Air        | Tetrachloroethene           | 48.80         | D        | 2.03        | 2.03         | 2.03         | ug/m3          |
| F2890-03DL<br>F2890-03DL | SV-4DL<br>SV-4DL | Air        | Ethyl Benzene               | 36.00         | D        | 4.34        | 4.34         | 21.7         | _              |
| F2890-03DL<br>F2890-03DL | SV-4DL<br>SV-4DL | Air        | m/p-Xylene                  | 143.00        | D<br>D   | 4.34        | 8.69         | 43.4         | ug/m3<br>ug/m3 |
| F2890-03DL<br>F2890-03DL | SV-4DL<br>SV-4DL | Air        | o-Xylene                    | 61.70         | D<br>D   | 4.34        | 4.34         | 21.7         | ug/m3          |
| F2890-03DL<br>F2890-03DL | SV-4DL<br>SV-4DL | Air        | 1,3,5-Trimethylbenzene      | 23.60         | JD       | 4.92        | 4.92         | 24.6         | ug/m3          |
|                          |                  |            | _                           |               |          |             | 4.92         |              | _              |
| F2890-03DL               | SV-4DL           | Air        | 1,2,4-Trimethylbenzene      | 89.00         | D        | 4.92        | 4.92         | 24.6         | ug/m3          |





**SDG No.:** F2890

| Sample ID                | Client ID        | Matrix     | Parameter                      | Concentration | C      | MDL         | LOD         | RDL  | Units   |
|--------------------------|------------------|------------|--------------------------------|---------------|--------|-------------|-------------|------|---------|
| F2890-03DL               | SV-4DL           | Air        | Naphthalene                    | 66.60         | D      | 2.1         | 5.24        | 26.2 | ug/m3   |
| F2890-03DL               | SV-4DL           | Air        | 4-Ethyltoluene                 | 25.60         | D      | 4.92        | 4.92        | 24.6 | ug/m3   |
| F2890-03DL               | SV-4DL           | Air        | Hexane                         | 23.60         | D      | 1.41        | 3.52        | 17.6 | ug/m3   |
|                          |                  |            | Total Voc:                     | 833.4         |        |             |             |      |         |
|                          |                  |            | <b>Total Concentration:</b>    | 833.4         |        |             |             |      |         |
| Client ID:               | SV-5             | A :        | Tai alala na flarana na atlana | (74           | т      | 2.25        | 5.62        | 20.1 | /2      |
| F2890-04<br>F2890-04     | SV-5<br>SV-5     | Air<br>Air | Trichlorofluoromethane         | 6.74          | J<br>E | 2.25<br>4.1 | 5.62<br>4.1 | 28.1 | ug/m3   |
|                          |                  |            | Heptane                        | 3,032.00      |        |             |             | 20.5 | ug/m3   |
| F2890-04                 | SV-5             | Air        | Cyclohexane                    | 8,949.00      | Е      | 3.44        | 3.44        | 17.2 | ug/m3   |
| F2890-04                 | SV-5             | Air        | 2,2,4-Trimethylpentane         | 5,137.00      | Е      | 1.87        | 4.67        | 23.4 | ug/m3   |
| F2890-04                 | SV-5             | Air        | Benzene                        | 734.00        | Е      | 1.28        | 3.19        | 16.0 | ug/m3   |
| F2890-04                 | SV-5             | Air        | Toluene                        | 26.40         |        | 1.88        | 3.77        | 18.8 | ug/m3   |
| F2890-04                 | SV-5             | Air        | Tetrachloroethene              | 456.00        |        | 2.03        | 2.03        | 2.03 | ug/m3   |
| F2890-04                 | SV-5             | Air        | Ethyl Benzene                  | 127.00        |        | 4.34        | 4.34        | 21.7 | ug/m3   |
| F2890-04                 | SV-5             | Air        | m/p-Xylene                     | 68.60         | _      | 4.34        | 8.69        | 43.4 | ug/m3   |
| F2890-04                 | SV-5             | Air        | o-Xylene                       | 9.99          | J      | 4.34        | 4.34        | 21.7 | ug/m3   |
| F2890-04                 | SV-5             | Air        | 1,3,5-Trimethylbenzene         | 27.00         |        | 4.92        | 4.92        | 24.6 | ug/m3   |
| F2890-04                 | SV-5             | Air        | 1,2,4-Trimethylbenzene         | 107.00        |        | 4.92        | 4.92        | 24.6 | ug/m3   |
| F2890-04                 | SV-5             | Air        | Naphthalene                    | 15.20         | J      | 2.1         | 5.24        | 26.2 | ug/m3   |
| F2890-04                 | SV-5             | Air        | 4-Ethyltoluene                 | 17.70         | J      | 4.92        | 4.92        | 24.6 | ug/m3   |
| F2890-04                 | SV-5             | Air        | Hexane                         | 11,277.00     | E      | 1.41        | 3.52        | 17.6 | ug/m3   |
|                          |                  |            | Total Voc:                     | 29990.63      |        |             |             |      |         |
| CP (ID                   | CV 5DI           |            | <b>Total Concentration:</b>    | 29990.63      |        |             |             |      |         |
| Client ID:<br>F2890-04DL | SV-5DL<br>SV-5DL | Air        | Heptane                        | 2,663.00      | D      | 491         | 491         | 2458 | ug/m3   |
| F2890-04DL               | SV-5DL           | Air        | Cyclohexane                    | 7,916.00      | D      | 413         | 413         | 2065 | ug/m3   |
| F2890-04DL               | SV-5DL           | Air        | 2,2,4-Trimethylpentane         | 16,814.00     | D      | 224         | 560         | 2802 | ug/m3   |
| F2890-04DL               | SV-5DL           | Air        | Benzene                        | 862.00        | JD     | 153         | 383         | 1916 | ug/m3   |
| F2890-04DL               | SV-5DL           | Air        | Tetrachloroethene              | 569.00        | D      | 244         | 244         | 244  | ug/m3   |
| F2890-04DL               | SV-5DL           | Air        | Hexane                         | 14,449.00     | D      | 169         | 422         | 2114 | ug/m3   |
| 12000 0182               | S V JBE          | 7111       | Total Voc:                     | 43273         |        | 10)         | 122         | 2111 | ug/III3 |
|                          |                  |            | Total Concentration:           | 43273         |        |             |             |      |         |
| Client ID:               | SV-13            |            |                                | .52.5         |        |             |             |      |         |
| F2890-05                 | SV-13            | Air        | Dichlorodifluoromethane        | 1.34          | JQ     | 0.2         | 0.49        | 2.47 | ug/m3   |
| F2890-05                 | SV-13            | Air        | Trichlorofluoromethane         | 3.03          |        | 0.22        | 0.56        | 2.81 | ug/m3   |
| F2890-05                 | SV-13            | Air        | Acetone                        | 38.50         | E      | 0.24        | 0.24        | 1.19 | ug/m3   |
| F2890-05                 | SV-13            | Air        | Methylene Chloride             | 20.50         | В      | 0.17        | 0.35        | 1.74 | ug/m3   |
| F2890-05                 | SV-13            | Air        | 2-Butanone                     | 1.68          |        | 0.29        | 0.29        | 1.47 | ug/m3   |
| F2890-05                 | SV-13            | Air        | Carbon Tetrachloride           | 0.38          |        | 0.19        | 0.19        | 0.19 | ug/m3   |





**SDG No.:** F2890

| Sample ID                | Client ID          | Matrix | Parameter                   | Concentration | C  | MDL         | LOD         | RDL  | Units   |
|--------------------------|--------------------|--------|-----------------------------|---------------|----|-------------|-------------|------|---------|
| F2890-05                 | SV-13              | Air    | Chloroform                  | 5.86          |    | 0.1         | 0.49        | 2.44 | ug/m3   |
| F2890-05                 | SV-13              | Air    | 2,2,4-Trimethylpentane      | 560.00        | E  | 0.19        | 0.47        | 2.34 | ug/m3   |
| F2890-05                 | SV-13              | Air    | Trichloroethene             | 0.43          |    | 0.11        | 0.16        | 0.16 | ug/m3   |
| F2890-05                 | SV-13              | Air    | Toluene                     | 5.65          |    | 0.19        | 0.38        | 1.88 | ug/m3   |
| F2890-05                 | SV-13              | Air    | Tetrachloroethene           | 65.80         |    | 0.2         | 0.2         | 0.2  | ug/m3   |
| F2890-05                 | SV-13              | Air    | o-Xylene                    | 0.61          | J  | 0.43        | 0.43        | 2.17 | ug/m3   |
| F2890-05                 | SV-13              | Air    | 1,2,4-Trimethylbenzene      | 1.87          | J  | 0.49        | 0.49        | 2.46 | ug/m3   |
| F2890-05                 | SV-13              | Air    | Naphthalene                 | 5.77          |    | 0.21        | 0.52        | 2.62 | ug/m3   |
| F2890-05                 | SV-13              | Air    | Hexane                      | 1.76          |    | 0.14        | 0.35        | 1.76 | ug/m3   |
|                          |                    |        | Total Voc:                  | 713.18        |    |             |             |      |         |
|                          |                    |        | <b>Total Concentration:</b> | 713.18        |    |             |             |      |         |
| Client ID:<br>F2890-05DL | SV-13DL<br>SV-13DL | Air    | Acetone                     | 63.20         | DB | 9.5         | 9.5         | 47.5 | ug/m3   |
| F2890-05DL<br>F2890-05DL | SV-13DL<br>SV-13DL | Air    | 2,2,4-Trimethylpentane      | 1,354.00      | DВ | 9.3<br>7.47 | 9.3<br>18.7 | 93.4 | ug/m3   |
| F2890-05DL<br>F2890-05DL | SV-13DL<br>SV-13DL | Air    | Tetrachloroethene           | 76.00         | D  | 8.14        | 8.14        | 8.14 | ug/m3   |
| 12070-03DL               | 3 V-13DL           | All    | Total Voc:                  | 1493.2        |    | 0.14        | 0.17        | 0.14 | ug/III3 |
|                          |                    |        | Total Concentration:        | 1493.2        |    |             |             |      |         |
| Client ID:               | SV-8               |        | 100m                        |               |    |             |             |      |         |
| F2890-06                 | SV-8               | Air    | Heptane                     | 34.80         |    | 4.1         | 4.1         | 20.5 | ug/m3   |
| F2890-06                 | SV-8               | Air    | Acetone                     | 207.00        | В  | 2.38        | 2.38        | 11.9 | ug/m3   |
| F2890-06                 | SV-8               | Air    | Methylene Chloride          | 167.00        | В  | 1.74        | 3.47        | 17.4 | ug/m3   |
| F2890-06                 | SV-8               | Air    | Cyclohexane                 | 38.20         |    | 3.44        | 3.44        | 17.2 | ug/m3   |
| F2890-06                 | SV-8               | Air    | Chloroform                  | 154.00        |    | 0.98        | 4.88        | 24.4 | ug/m3   |
| F2890-06                 | SV-8               | Air    | 2,2,4-Trimethylpentane      | 114.00        |    | 1.87        | 4.67        | 23.4 | ug/m3   |
| F2890-06                 | SV-8               | Air    | Benzene                     | 46.00         |    | 1.28        | 3.19        | 16.0 | ug/m3   |
| F2890-06                 | SV-8               | Air    | Trichloroethene             | 128.00        |    | 0.81        | 1.61        | 1.61 | ug/m3   |
| F2890-06                 | SV-8               | Air    | Toluene                     | 166.00        |    | 1.88        | 3.77        | 18.8 | ug/m3   |
| F2890-06                 | SV-8               | Air    | Tetrachloroethene           | 31,871.00     | E  | 2.03        | 2.03        | 2.03 | ug/m3   |
| F2890-06                 | SV-8               | Air    | Ethyl Benzene               | 133.00        |    | 4.34        | 4.34        | 21.7 | ug/m3   |
| F2890-06                 | SV-8               | Air    | m/p-Xylene                  | 477.00        |    | 4.34        | 8.69        | 43.4 | ug/m3   |
| F2890-06                 | SV-8               | Air    | o-Xylene                    | 117.00        |    | 4.34        | 4.34        | 21.7 | ug/m3   |
| F2890-06                 | SV-8               | Air    | 1,3,5-Trimethylbenzene      | 70.30         |    | 4.92        | 4.92        | 24.6 | ug/m3   |
| F2890-06                 | SV-8               | Air    | 1,2,4-Trimethylbenzene      | 147.00        |    | 4.92        | 4.92        | 24.6 | ug/m3   |
| F2890-06                 | SV-8               | Air    | 4-Ethyltoluene              | 75.20         |    | 4.92        | 4.92        | 24.6 | ug/m3   |
|                          |                    |        | Total Voc:                  | 33945.5       |    |             |             |      |         |
| CII.                     | CV OD T            |        | <b>Total Concentration:</b> | 33945.5       |    |             |             |      |         |
| Client ID:<br>F2890-06DL | SV-8DL<br>SV-8DL   | Air    | Tetrachloroethene           | 31,193.00     | D  | 122         | 122         | 122  | ug/m3   |
| F2890-06DL               | SV-8DL             | Air    | m/p-Xylene                  | 477.00        | JD | 260         | 521         | 2606 | ug/m3   |
|                          |                    |        |                             |               |    |             |             |      |         |





**SDG No.:** F2890

| Sample ID            | Client ID             | Matrix | Parameter                   | Concentration  | C  | MDL  | LOD         | RDL          | Units          |
|----------------------|-----------------------|--------|-----------------------------|----------------|----|------|-------------|--------------|----------------|
|                      |                       |        | Total Voc:                  | 31670          |    |      |             |              |                |
|                      |                       |        | <b>Total Concentration:</b> | 31670          |    |      |             |              |                |
| Client ID:           | <b>SV-10</b><br>SV-10 | A :    | Dichlorodifluoromethane     | 1 14           | IO | 0.2  | 0.40        | 2.47         |                |
| F2890-07<br>F2890-07 |                       |        | Trichlorofluoromethane      | 1.14           | JQ | 0.2  | 0.49        | 2.47         | ug/m3<br>ug/m3 |
| F2890-07             | SV-10<br>SV-10        |        | tert-Butyl alcohol          | 1.46 J<br>2.94 |    | 0.22 | 0.56<br>0.3 | 2.81<br>1.52 | ug/m3          |
| F2890-07             | SV-10<br>SV-10        |        | -                           | 2.94<br>2.83   |    | 0.3  | 0.3         | 2.05         | _              |
| F2890-07<br>F2890-07 | SV-10<br>SV-10        |        | Heptane                     |                |    |      | 0.41        |              | ug/m3          |
|                      |                       | Air    | Acetone                     |                |    | 0.24 |             | 1.19         | ug/m3          |
| F2890-07             | SV-10                 |        | Carbon Disulfide            |                |    | 0.16 | 0.31        | 1.56         | ug/m3          |
| F2890-07             | SV-10                 |        | Methylene Chloride          | 2.26 B 0.1     |    |      | 0.35        | 1.74         | ug/m3          |
| F2890-07             | SV-10                 |        | Cyclohexane                 |                |    | 0.34 | 0.34        | 1.72         | ug/m3          |
| F2890-07             | SV-10                 |        | 2-Butanone                  |                |    | 0.29 | 0.29        | 1.47         | ug/m3          |
| F2890-07             | SV-10                 |        | Carbon Tetrachloride        | 0.44<br>0.59 J |    | 0.19 | 0.19        | 0.19         | ug/m3          |
| F2890-07             | SV-10                 |        | Chloroform                  | 9.34           |    | 0.1  | 0.49        | 2.44         | ug/m3          |
| F2890-07             | SV-10                 |        | 2,2,4-Trimethylpentane      | 4.15           |    | 0.19 | 0.47        | 2.34         | ug/m3          |
| F2890-07             | SV-10                 | Air    | Benzene                     | 4.15<br>0.65 J |    | 0.13 | 0.32        | 1.6          | ug/m3          |
| F2890-07             | SV-10                 |        | 1,2-Dichloroethane          |                | J  | 0.4  | 0.4         | 2.02         | ug/m3          |
| F2890-07             | SV-10                 |        | Trichloroethene             | 0.16           |    | 0.11 | 0.16        | 0.16         | ug/m3          |
| F2890-07             | SV-10                 |        | Toluene                     | 26.00          |    | 0.19 | 0.38        | 1.88         | ug/m3          |
| F2890-07             | SV-10                 |        | Tetrachloroethene           | 7.46           |    | 0.2  | 0.2         | 0.2          | ug/m3          |
| F2890-07             | SV-10                 |        | Ethyl Benzene               | 6.08           |    | 0.43 | 0.43        | 2.17         | ug/m3          |
| F2890-07             | SV-10                 |        | m/p-Xylene                  | 23.00          |    | 0.43 | 0.87        | 4.34         | ug/m3          |
| F2890-07             | SV-10                 |        | o-Xylene                    | 10.90          |    | 0.43 | 0.43        | 2.17         | ug/m3          |
| F2890-07             | SV-10                 |        | Styrene                     | 0.85           | J  | 0.43 | 0.43        | 2.13         | ug/m3          |
| F2890-07             | SV-10                 | Air    | 1,3,5-Trimethylbenzene      | 3.15           |    | 0.49 | 0.49        | 2.46         | ug/m3          |
| F2890-07             | SV-10                 |        | 1,2,4-Trimethylbenzene      | 12.80          |    | 0.49 | 0.49        | 2.46         | ug/m3          |
| F2890-07             | SV-10                 |        | 1,4-Dichlorobenzene         | 0.78           | J  | 0.6  | 0.6         | 3.01         | ug/m3          |
| F2890-07             | SV-10                 |        | Naphthalene                 | 3.46           |    | 0.21 | 0.52        | 2.62         | ug/m3          |
| F2890-07             | SV-10                 |        | 4-Ethyltoluene              | 3.64           |    | 0.49 | 0.49        | 2.46         | ug/m3          |
| F2890-07             | SV-10                 | Air    | Hexane                      | 8.11           |    | 0.14 | 0.35        | 1.76         | ug/m3          |
|                      |                       |        | Total Voc:                  | 176.29         |    |      |             |              |                |
| Client ID:           | SV-11                 |        | <b>Total Concentration:</b> | 176.29         |    |      |             |              |                |
| F2890-08             | SV-11<br>SV-11        | Air    | Dichlorodifluoromethane     | 1.78           | JQ | 0.2  | 0.49        | 2.47         | ug/m3          |
| F2890-08             | SV-11                 | Air    | Chloromethane               | 1.67           |    | 0.21 | 0.21        | 1.03         | ug/m3          |
| F2890-08             | SV-11                 |        | Trichlorofluoromethane      | 1.69           |    | 0.22 | 0.56        | 2.81         | ug/m3          |
| F2890-08             | SV-11                 |        | Heptane                     | 25.80          |    | 0.41 | 0.41        | 2.05         | ug/m3          |
| F2890-08             | SV-11                 |        | Acetone                     | 91.00          | EB | 0.24 | 0.24        | 1.19         | ug/m3          |
|                      |                       |        |                             |                |    |      |             |              | -              |



**SDG No.:** F2890

**Client ID:** 

SV-3

| Sample ID  | Client ID | Matrix | Parameter                   | Concentration | C  | MDL  | LOD  | RDL  | Units |
|------------|-----------|--------|-----------------------------|---------------|----|------|------|------|-------|
| F2890-08   | SV-11     | Air    | Carbon Disulfide            | 16.20         |    | 0.16 | 0.31 | 1.56 | ug/m3 |
| F2890-08   | SV-11     | Air    | Methylene Chloride          | 11.10         | В  | 0.17 | 0.35 | 1.74 | ug/m3 |
| F2890-08   | SV-11     | Air    | Cyclohexane                 | 16.20         |    | 0.34 | 0.34 | 1.72 | ug/m3 |
| F2890-08   | SV-11     | Air    | 2-Butanone                  | 3.54          |    | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2890-08   | SV-11     | Air    | Carbon Tetrachloride        | 0.44          |    | 0.19 | 0.19 | 0.19 | ug/m3 |
| F2890-08   | SV-11     | Air    | Chloroform                  | 1.51          | J  | 0.1  | 0.49 | 2.44 | ug/m3 |
| F2890-08   | SV-11     | Air    | 2,2,4-Trimethylpentane      | 43.40         |    | 0.19 | 0.47 | 2.34 | ug/m3 |
| F2890-08   | SV-11     | Air    | Benzene                     | 20.40         |    | 0.13 | 0.32 | 1.6  | ug/m3 |
| F2890-08   | SV-11     | Air    | Toluene                     | 86.70         | E  | 0.19 | 0.38 | 1.88 | ug/m3 |
| F2890-08   | SV-11     | Air    | Tetrachloroethene           | 4.48          |    | 0.2  | 0.2  | 0.2  | ug/m3 |
| F2890-08   | SV-11     | Air    | Ethyl Benzene               | 16.10         |    | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2890-08   | SV-11     | Air    | m/p-Xylene                  | 52.10         |    | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2890-08   | SV-11     | Air    | o-Xylene                    | 22.20         |    | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2890-08   | SV-11     | Air    | Styrene                     | 2.38          |    | 0.43 | 0.43 | 2.13 | ug/m3 |
| F2890-08   | SV-11     | Air    | 1,3,5-Trimethylbenzene      | 6.39          |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2890-08   | SV-11     | Air    | 1,2,4-Trimethylbenzene      | 23.60         |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2890-08   | SV-11     | Air    | 1,4-Dichlorobenzene         | 4.09          |    | 0.6  | 0.6  | 3.01 | ug/m3 |
| F2890-08   | SV-11     | Air    | Naphthalene                 | 5.24          |    | 0.21 | 0.52 | 2.62 | ug/m3 |
| F2890-08   | SV-11     | Air    | 4-Ethyltoluene              | 7.87          |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2890-08   | SV-11     | Air    | Hexane                      | 49.30         |    | 0.14 | 0.35 | 1.76 | ug/m3 |
|            |           |        | Total Voc:                  | 515.18        | ;  |      |      |      |       |
|            |           |        | <b>Total Concentration:</b> | 515.18        |    |      |      |      |       |
| Client ID: | SV-11     |        |                             | 26.60         | ъ. | 4.1  | 4.1  | 20.5 |       |
| F2890-08DL | SV-11     | Air    | Heptane                     | 26.60         | D  | 4.1  | 4.1  | 20.5 | ug/m3 |
| F2890-08DL | SV-11     | Air    | Acetone                     | 102.00        | DB | 2.38 | 2.38 | 11.9 | ug/m3 |
| F2890-08DL | SV-11     | Air    | Carbon Disulfide            | 13.70         | JD | 1.56 | 3.11 | 15.6 | ug/m3 |
| F2890-08DL | SV-11     | Air    | 2,2,4-Trimethylpentane      | 45.30         | D  | 1.87 | 4.67 | 23.4 | ug/m3 |
| F2890-08DL | SV-11     | Air    |                             | 22.00         | D  | 1.28 | 3.19 |      | ug/m3 |
| F2890-08DL | SV-11     | Air    | Toluene                     | 91.20         | D  | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2890-08DL | SV-11     | Air    | Tetrachloroethene           | 4.75          | D  | 2.03 | 2.03 | 2.03 | ug/m3 |
| F2890-08DL | SV-11     | Air    | m/p-Xylene                  | 52.10         | D  | 4.34 | 8.69 | 43.4 | ug/m3 |
| F2890-08DL | SV-11     | Air    | o-Xylene                    | 21.30         | JD | 4.34 | 4.34 | 21.7 | ug/m3 |
| F2890-08DL | SV-11     | Air    | 1,2,4-Trimethylbenzene      | 23.60         | JD | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2890-08DL | SV-11     | Air    | Naphthalene                 | 7.86          | JD | 2.1  | 5.24 | 26.2 | ug/m3 |
| F2890-08DL | SV-11     | Air    | Hexane                      | 55.00         | D  | 1.41 | 3.52 | 17.6 | ug/m3 |
|            |           |        | Total Voc:                  | 465.41        |    |      |      |      |       |
|            |           |        | <b>Total Concentration:</b> | 465.41        |    |      |      |      |       |





**SDG No.:** F2890

| F2890-09         SV-3         Air         Chloromethane         0.70         J         0.21         0.21         1.03           F2890-09         SV-3         Air         Vinyl Chloride         0.18         0.08         0.08         0.08           F2890-09         SV-3         Air         Trichlorofluoromethane         3.71         0.22         0.56         2.81           F2890-09         SV-3         Air         Heptane         90.20         E         0.41         0.41         2.05           F2890-09         SV-3         Air         Acetone         96.70         E         0.24         0.24         1.19           F2890-09         SV-3         Air         Carbon Disulfide         9.03         0.16         0.31         1.56           F2890-09         SV-3         Air         Cyclohexane         17.90         0.34         0.34         1.72           F2890-09         SV-3         Air         2-Butanone         3.24         0.29         0.29         1.47 | ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| F2890-09         SV-3         Air         Vinyl Chloride         0.18         0.08         0.08         0.08           F2890-09         SV-3         Air         Trichlorofluoromethane         3.71         0.22         0.56         2.81           F2890-09         SV-3         Air         Heptane         90.20         E         0.41         0.41         2.05           F2890-09         SV-3         Air         Acetone         96.70         E         0.24         0.24         1.19           F2890-09         SV-3         Air         Carbon Disulfide         9.03         0.16         0.31         1.56           F2890-09         SV-3         Air         Cyclohexane         17.90         0.34         0.34         1.72           F2890-09         SV-3         Air         2-Butanone         3.24         0.29         0.29         1.47                                                                                                                                 | ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3                   |
| F2890-09         SV-3         Air         Trichlorofluoromethane         3.71         0.22         0.56         2.81           F2890-09         SV-3         Air         Heptane         90.20         E         0.41         0.41         2.05           F2890-09         SV-3         Air         Acetone         96.70         E         0.24         0.24         1.19           F2890-09         SV-3         Air         Carbon Disulfide         9.03         0.16         0.31         1.56           F2890-09         SV-3         Air         Cyclohexane         17.90         0.34         0.34         1.72           F2890-09         SV-3         Air         2-Butanone         3.24         0.29         0.29         1.47                                                                                                                                                                                                                                                        | ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3                            |
| F2890-09         SV-3         Air         Heptane         90.20         E         0.41         0.41         2.05           F2890-09         SV-3         Air         Acetone         96.70         E         0.24         0.24         1.19           F2890-09         SV-3         Air         Carbon Disulfide         9.03         0.16         0.31         1.56           F2890-09         SV-3         Air         Cyclohexane         17.90         0.34         0.34         1.72           F2890-09         SV-3         Air         2-Butanone         3.24         0.29         0.29         1.47                                                                                                                                                                                                                                                                                                                                                                                       | ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3                                     |
| F2890-09         SV-3         Air         Acetone         96.70         E         0.24         0.24         1.19           F2890-09         SV-3         Air         Carbon Disulfide         9.03         0.16         0.31         1.56           F2890-09         SV-3         Air         Cyclohexane         17.90         0.34         0.34         1.72           F2890-09         SV-3         Air         2-Butanone         3.24         0.29         0.29         1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3                                              |
| F2890-09         SV-3         Air         Carbon Disulfide         9.03         0.16         0.31         1.56           F2890-09         SV-3         Air         Cyclohexane         17.90         0.34         0.34         1.72           F2890-09         SV-3         Air         2-Butanone         3.24         0.29         0.29         1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng/m3<br>ng/m3<br>ng/m3<br>ng/m3                                                       |
| F2890-09         SV-3         Air Cyclohexane         17.90         0.34         0.34         1.72           F2890-09         SV-3         Air 2-Butanone         3.24         0.29         0.29         1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng/m3<br>ng/m3                                                                         |
| F2890-09 SV-3 Air 2-Butanone 3.24 0.29 0.29 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng/m3                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıg/m3                                                                                  |
| F2890-09 SV-3 Air Chloroform 4.88 0.1 0.49 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1g/m <sup>2</sup>                                                                      |
| F2890-09 SV-3 Air 1,1,1-Trichloroethane 0.98 0.16 0.16 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15/111 <i>3</i>                                                                        |
| F2890-09 SV-3 Air 2,2,4-Trimethylpentane 233.00 E 0.19 0.47 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ıg/m3                                                                                  |
| F2890-09 SV-3 Air Benzene 40.60 0.13 0.32 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg/m3                                                                                  |
| F2890-09 SV-3 Air Trichloroethene 0.27 0.11 0.16 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ıg/m3                                                                                  |
| F2890-09 SV-3 Air Toluene 307.00 E 0.19 0.38 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ıg/m3                                                                                  |
| F2890-09 SV-3 Air Tetrachloroethene 949.00 E 0.2 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ıg/m3                                                                                  |
| F2890-09 SV-3 Air Ethyl Benzene 140.00 E 0.43 0.43 2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ıg/m3                                                                                  |
| F2890-09 SV-3 Air m/p-Xylene 382.00 E 0.43 0.87 4.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ıg/m3                                                                                  |
| F2890-09 SV-3 Air o-Xylene 129.00 E 0.43 0.43 2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ıg/m3                                                                                  |
| F2890-09 SV-3 Air 1,3,5-Trimethylbenzene 33.90 0.49 0.49 2.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg/m3                                                                                  |
| F2890-09 SV-3 Air 1,2,4-Trimethylbenzene 64.90 0.49 0.49 2.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg/m3                                                                                  |
| F2890-09 SV-3 Air Naphthalene 1.63 J 0.21 0.52 2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ıg/m3                                                                                  |
| F2890-09 SV-3 Air 4-Ethyltoluene 31.00 0.49 0.49 2.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ıg/m3                                                                                  |
| F2890-09 SV-3 Air Hexane 36.30 0.14 0.35 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg/m3                                                                                  |
| Total Voc: 2577.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                        |
| Total Concentration: 2577.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |
| Client ID:         SV-3DL           F2890-09DL         SV-3DL         Air Heptane         86.10         D 4.1         4.1         20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ıg/m3                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıg/m3                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıg/m3                                                                                  |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ıg/m3                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıg/m3                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıg/m3                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıg/m3                                                                                  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ıg/m3                                                                                  |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ıg/m3                                                                                  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ıg/m3                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıg/m3                                                                                  |



# Hit Summary Sheet SW-846

**SDG No.:** F2890

Client: Dvirka & Bartilucci

| Sample ID  | Client ID | Matrix Parameter   | Concentration C MDL | LOD  | RDL Units  |
|------------|-----------|--------------------|---------------------|------|------------|
| F2890-09DL | SV-3DL    | Air 4-Ethyltoluene | 32.00 D 4.92        | 4.92 | 24.6 ug/m3 |
|            |           | Total Voc:         | 2263.5              |      |            |

Total Concentration: 2263.5



## **DATA FOR**

# VOLATILE ORGANICS SEMI-VOLATILE ORGANICS GC SEMI-VOLATILES METALS GENERAL CHEMISTRY

**PROJECT NAME: NYCSCA UNIONPORT ROAD BRONX** 

DVIRKA & BARTILUCCI

330 Crossways Park Drive

Woodbury, NY - 11797

Phone No: 516-364-9890

ORDER ID: F2918

ATTENTION: MARIA WRIGHT







Date: 07/07/2014

Dear MARIA WRIGHT,

10 water and 14 soil samples for the NYCSCA Unionport Road Bronx project were received on 06/27/2014. The analytical fax results for those samples requested for an expedited turn around time may be seen in this report. Please contact me if you have any questions or concerns regarding this report.

Regards,

Corey J. Petitt

Corey@chemtech.net



# 284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

|   | <sup>coc</sup> Number 028224 |
|---|------------------------------|
| Ì | QUOTE NO.                    |
| ļ | CHEMTECH PROJECT NO.         |

|                     | CLIENT INFORMATION                 |                                                                             | CLIENT PRO               | OJECT INFORMA                        | TION          |                                   | -                        | CLIENT                                | BILLING INFO                                 | RMATION 1                                       |
|---------------------|------------------------------------|-----------------------------------------------------------------------------|--------------------------|--------------------------------------|---------------|-----------------------------------|--------------------------|---------------------------------------|----------------------------------------------|-------------------------------------------------|
| COMPANY:            | Durat Ballillad Enings             | PROJECT NAME                                                                | Dur Ka-                  | + BaArluc                            | ci Engin      | <b>œ</b> € BILL                   | то: Ду                   | 1/K4+R                                | Allucei                                      | PO#:                                            |
| ADDRESS:            | 330 Crossways Park Drive           | PROJECT NO.3                                                                | 415-62                   | LOCATION:                            | )hwn DuA      | -Drun ADDI                        | RESS: 3                  | 50 Co                                 | 55 WW/5                                      | Pert Drue                                       |
| CITY:               | Woodby STATEM ZIP: 11997           | PROJECT MANA                                                                | GER: M                   | Ke Nofa                              | ردما          | CITY                              | . Ww                     | 2604                                  | STAT                                         | E: M. ZIP: (1797                                |
| ATTENTION:          | nite Nofices                       | e-mail: M                                                                   | lofarer                  | 10 96                                | eng, co       | ATTE                              | NOITM                    | Ke HBF                                |                                              | NE: 516364-4850 ALS                             |
| PHONE: 16           | 364-9890 FAX: 526364-9045          | PHONE: JIP3                                                                 | 64 <u>7</u> 984          | D FAX: 576                           | 364-96        | 45                                | 18                       |                                       | ANALYSIS                                     |                                                 |
|                     | DATA TURNAROUND INFORMATION        |                                                                             |                          | ABLE INFORMA                         |               | .70                               | 310 715                  | ALL DANGE                             | UND .                                        | SKUM WHALL                                      |
|                     | DAYS DAYS DAYS DAYS DAYS DAYS DAYS | ☐ LEVEL 1: Resu☐ LEVEL 2: Resu☐ LEVEL 3: Resu☐ LEVEL 4: Resu☐ EDD Format: _ | ts + QC<br>ts (plus resu |                                      | QC AL         | Dis SUDLA CO                      | eth Per                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | PAGRO R                                      | CONTRACTOR CONTRACTOR                           |
| CHEMTECH<br>SAMPLE  | PROJECT                            | SAMPLE TYPE                                                                 | SAME                     |                                      | Her and       | PRE<br>Hamatwo                    | E E                      |                                       | الو<br>الو                                   | Specify Preservatives                           |
| ID                  | SAMPLE IDENTIFICATION              | MATRIX S SP                                                                 | DATE                     | TIME 5                               | 1 2           | 3 4                               | 5 6                      |                                       | 8 9                                          | A HCI B-HNO₃<br>C-H₃SO₄ D-NaOH<br>E-ICE F-Other |
| 1.                  | This Blank -6/25/14                | Agras                                                                       | 6/25/14                  | - 2                                  | V -           |                                   |                          | , _                                   | I                                            |                                                 |
| 2.                  | GP-6 (7-4)                         | 58cl - V                                                                    | 6/25/14                  | 955 6                                | VV            | VV                                | VV                       |                                       | √ <b>=</b>                                   | Hold TCLP                                       |
| 3.                  | GP-6 (12'-14)                      | 5011 - L                                                                    | 16/25/H                  | 1020                                 | VV            | VV                                | VV                       | / -                                   | v -                                          | Hold tal                                        |
| 4.                  | GP-9 (0-5')                        | Soil - V                                                                    | 6/25/14                  | 1210pn 6                             | \<br>\<br>\   |                                   | VV                       | _                                     | / _ ]                                        | Holdtelf                                        |
| 5.                  | GW-9                               | Wuter-V                                                                     | 6/25/14                  | 1245 6                               | V V           | _ <b>#</b>                        | V -                      | -                                     | _ V                                          | Filterin Leb formetals                          |
| 6.                  | GW-7                               | water - V                                                                   | 1 1 2 1 1                | 315pm 6                              | V V           |                                   | V -                      |                                       | <del>-</del>                                 | Filter in Lab for motely                        |
| 7.                  | GP-7 (9-11')                       | 2011 - 1                                                                    | 6/25/14                  | 2300 7                               | VV            | VV                                | VV                       | V                                     | V -                                          | Huldterp                                        |
| 8.                  | GP-7 (14-16)                       | Soil - V                                                                    | 6/25/17                  | 245p 7                               | $\vee$ $\vee$ | VV                                | VV                       |                                       | レー                                           | HoldTCLP                                        |
| 9.                  | GP-17 (0-5)                        | 5011 - 2                                                                    | 0/26/14                  | 900 7                                | $\sqrt{}$     | VV                                | VV                       | <b>V</b>                              |                                              | Hold Telp                                       |
| 10.                 | GW-17                              | water - V                                                                   | 6/20/14                  | 1000 17                              | VV            | - =                               | ·V -                     |                                       | <u>-                                    </u> | y heter mustiful                                |
| RELINCUISHED BY     | SAMPLE CUSTODY MUST BE DOC         | UMENTED BELOV                                                               |                          |                                      |               | SSESSION INC                      |                          |                                       |                                              |                                                 |
| // <del>//</del> // | elus 6/26/14 600 1.                | 47-0742                                                                     | MeOH                     | ns of bottles or or extraction requi | res an addit  | ipt: □ Corr<br>ional 4 oz jar fo: | piiant [<br>percent soli | Non Com<br>d.                         | •                                            | oler Temp. Sc                                   |
| RELINQUISHED BY:    | DATE/TIME: RECEIVED BY:            |                                                                             | Comm                     | ients: Filt                          | rnlab         | for Diss                          | olved m                  | etals                                 | ice                                          | in Cooler?: <u>YeS</u>                          |
| RELINOURHED BY:     | DATE/TIME: 10:45 RECEIVED FOR LAB. | BY:                                                                         | Page _                   | of                                   |               | SHIPPED VIA: C                    | LIENT: H                 | AND DELIVE                            | BED OVERN                                    | RNIGHT Shipment Complete:                       |



# 284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

| coc Number 031799    |  |
|----------------------|--|
| QUOTE NO.            |  |
| CHEMTECH PROJECT NO. |  |

|                      | CLIENT INFORMATION                 |                                    | CLIENT PROJECT INFORMATION CLIENT BILLING INFORMATION |                                 |              |             |          |            |              |             |               |        |          |                              |                                     |
|----------------------|------------------------------------|------------------------------------|-------------------------------------------------------|---------------------------------|--------------|-------------|----------|------------|--------------|-------------|---------------|--------|----------|------------------------------|-------------------------------------|
| COMPANY:             | DVIRA Y BUNILLA Engles             |                                    |                                                       | Ka1B                            |              |             |          |            | **           |             |               |        | , ,      |                              |                                     |
|                      | 0.4                                | PROJECT NAME                       |                                                       |                                 |              |             |          |            | Ų            | <u> </u>    |               |        |          | 100#:                        |                                     |
| ADDRESS:             | 330 Crossing Part Orive            | PROJECT NO 3                       |                                                       |                                 |              | بمعدور      | ow B     | ADDF       | RESS:        | <u> 330</u> | CN            | swy    | 5 121    | t Dow                        | <u>e</u>                            |
| CITY: W              | NOBUR STATE VI ZIP: 1797           | PROJECT MANA                       |                                                       |                                 |              | 9           |          | CITY:      | \            | N.s.        | dbur          | 2      | STATE:   | M ZIF                        | :11747                              |
| ATTENTION:           | 516364-9800                        | e-mail/                            | ifgren                                                | 10 d                            | 6-62         | g. Lom      | <i>×</i> | ATTE       | NTION:       | .stl        | <u>)</u> 1    | M.H.M  |          | : 52636                      | 4-5870                              |
| PHONE:               | Ke Ho Fgred FAX: 5/63449845        | PHONE: 5163                        | -                                                     |                                 |              |             | -8040    |            |              |             |               | ANA    | YSIS     |                              |                                     |
|                      | DATA TURNAROUND INFORMATION        |                                    |                                                       | ERABLE INI                      |              |             |          | V.         | 51,0         | 3\'         | XII V         |        |          | 7 11 /                       | XNON                                |
| FAX:                 | DAYS*                              | ☐ LEVEL 1: Resu                    |                                                       | <b>0</b> 0                      | Others_      |             |          | 7          | 10           | 1           | 91,75<br>00 0 | ما لار | Mary L   | CANAL JA                     | Right Ho                            |
| HARD COPY: .<br>EDD: |                                    | LEVEL 2: Resu                      | its + QC                                              |                                 |              |             |          |            |              | Mil         | W. 70         | Stuke  |          |                              | 194                                 |
|                      | ED TAT: D YES D NO                 | □ LEVEL 3: Resu<br>□ LEVEL 4: Resu | its (plus i<br>lts + QC i                             | results raw c<br>'all raw data) | data) + i    | QC          |          | 138U       |              | the         | (S)           | الإمار |          | N JAN                        |                                     |
|                      | URNAROUND TIME IS 10 BUSINESS DAYS | EDD Format; _                      |                                                       |                                 |              |             | 2        | 3 /4       | 173          | 6           | 7             | 8      | <u> </u> | je v                         |                                     |
| CHEMTECH             |                                    | SAMPL                              |                                                       | MPLE                            | ES           | Nel le de   |          | PRE        | SERVA        | TIVES       | , 1           |        |          |                              | MENTS                               |
| SAMPLE<br>ID         | PROJECT SAMPLE IDENTIFICATION      | SAMPLE TYPE                        | 1                                                     | LECTION                         | # OF BOTILES | Helfen<br>E | E 1      | : E/       | E            | É           | Ē             | Ē      |          | ← Specify<br>A – HCI         | Preservatives<br>B-HNO <sub>3</sub> |
| - 10                 |                                    | MATRIX COMP                        | DATE                                                  | TIME                            | # OF         | 1           | 2        | 3 / 4      | 5            | 6           | 7             | 88     | ر و      | C-H <sub>2</sub> SQ<br>E-ICE | D-NaOH<br>F-Other                   |
| 1.                   | GP-16 (0-5)                        | Soil - V                           | 16/26,                                                | 14/045                          | 6            |             | V        | //-        | V            |             | /             | 1      | 1/       | Hold-                        | tall                                |
| 2.                   | GW-16                              | Water - L                          | 6/16                                                  | 14 1130                         | 10           | <b>V</b>    | V        |            | _            | -           | -             | _      | - 5      | THE IN                       | 41 419                              |
| 3.                   |                                    |                                    | <del>                                      </del>     | 11.44                           |              |             | 7        |            | <del> </del> |             |               |        | V        |                              | mill                                |
| 4.                   |                                    |                                    |                                                       | 1                               |              |             |          |            |              |             |               |        |          |                              |                                     |
| 5.                   |                                    |                                    |                                                       |                                 |              |             |          | -          |              |             |               |        | -        |                              |                                     |
| 6.                   |                                    |                                    | 1                                                     | <b>1</b>                        |              |             |          |            |              |             |               |        |          |                              |                                     |
| 7.                   |                                    |                                    |                                                       |                                 |              |             |          |            |              |             |               |        | -        |                              |                                     |
| 8.                   |                                    |                                    |                                                       |                                 |              | -           |          |            |              |             |               |        |          |                              |                                     |
| 9.                   |                                    |                                    |                                                       | 1                               |              |             |          |            |              |             |               |        | -        |                              | <u>.</u>                            |
| 10.                  |                                    |                                    |                                                       | 1                               |              |             |          |            | -            |             |               |        | -        |                              |                                     |
|                      | SAMPLE CUSTODY MUST BE DOC         | UMENTED BELOV                      | EACH 1                                                | IME SAMPI                       | LES CI       | IANGE       | POSSES   | SION INCL  | UDING        | COUR        | ER DE         | LIVERY |          |                              |                                     |
| RELINQUISHED BY S    | DATESTIME:   DOMECEIVED BY         | 1.27                               | 4 Cond                                                | itions of bottle                | es or co     | olers at n  | eceipt:  | □ Comp     | liant        | □ N         | on Con        | pliant | Coole    | er Temp.                     | S c                                 |
| RELINGUISHED BY:     | DATE/TIME: RECEIVED BY:            | Ju 678                             | Con                                                   | OH extraction<br>nments:        | n requir     | res,an ac   |          |            |              |             | 100           | Ι,     | ice in   | Cooler?:_0                   | yes                                 |
| 2. / A               | 2.                                 |                                    |                                                       |                                 | 100          | · 1 V       | 1~       | labt       | w d          | 6220 (      | mes           | 44     |          | ر.                           | ′                                   |
| AELINOUSHED BY       | DATE/TIME: 10:45 RECEIVED FOR LAB  | BY:                                | Page                                                  | . 2                             | - 7          | /           | SHIPP    | ED VIA: CL | IENT: (      | HAND        | DECIME        | RED [  | OVERNI   |                              | ment Complete:                      |
|                      |                                    |                                    | ayı                                                   | ·                               |              |             |          | <b>*</b> 1 |              |             |               |        |          |                              |                                     |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: TRIPPI ANK 6.25-14

Client Sample ID: TRIPBLANK-6-25-14 SDG No.: F2918

Lab Sample ID: F2918-01 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016993.D 1 07/04/14 VN070314

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-87-3    | Chloromethane                  | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-83-9    | Bromomethane                   | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-00-3    | Chloroethane                   | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 67-64-1    | Acetone                        | 1     | U         | 0.5  | 1   | 5          | ug/L  |
| 75-15-0    | Carbon Disulfide               | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.5   | U         | 0.35 | 0.5 | 1          | ug/L  |
| 79-20-9    | Methyl Acetate                 | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-09-2    | Methylene Chloride             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 110-82-7   | Cyclohexane                    | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-93-3    | 2-Butanone                     | 2.5   | U         | 1.3  | 2.5 | 5          | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-97-5    | Bromochloromethane             | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 67-66-3    | Chloroform                     | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-87-2   | Methylcyclohexane              | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-43-2    | Benzene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 79-01-6    | Trichloroethene                | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-27-4    | Bromodichloromethane           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1     | U         | 1    | 1   | 5          | ug/L  |
| 108-88-3   | Toluene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: TRIPBLANK-6-25-14 SDG No.: F2918

Lab Sample ID: F2918-01 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016993.D 1 07/04/14 VN070314

|             |                             |       | ****         |         |     |            |         |  |
|-------------|-----------------------------|-------|--------------|---------|-----|------------|---------|--|
| CAS Number  | Parameter                   | Conc. | Qualifier    | MDL     | LOD | LOQ / CRQL | Units   |  |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |  |
| 591-78-6    | 2-Hexanone                  | 2.5   | $\mathbf{U}$ | 1.9     | 2.5 | 5          | ug/L    |  |
| 124-48-1    | Dibromochloromethane        | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 106-93-4    | 1,2-Dibromoethane           | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |  |
| 127-18-4    | Tetrachloroethene           | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |  |
| 108-90-7    | Chlorobenzene               | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 100-41-4    | Ethyl Benzene               | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |  |
| 179601-23-1 | m/p-Xylenes                 | 0.4   | U            | 0.4     | 0.4 | 2          | ug/L    |  |
| 95-47-6     | o-Xylene                    | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |  |
| 100-42-5    | Styrene                     | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 75-25-2     | Bromoform                   | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 98-82-8     | Isopropylbenzene            | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 103-65-1    | n-propylbenzene             | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 98-06-6     | tert-Butylbenzene           | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 135-98-8    | sec-Butylbenzene            | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |  |
| 99-87-6     | p-Isopropyltoluene          | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 104-51-8    | n-Butylbenzene              | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |  |
| 91-20-3     | Naphthalene                 | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |  |
| 123-91-1    | 1,4-Dioxane                 | 100   | U            | 100     | 100 | 100        | ug/L    |  |
| SURROGATES  |                             |       |              |         |     |            |         |  |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 48.4  |              | 61 - 14 |     | 97%        | SPK: 50 |  |
| 1868-53-7   | Dibromofluoromethane        | 43.4  |              | 69 - 13 | 3   | 87%        | SPK: 50 |  |
|             |                             |       |              |         |     |            |         |  |



Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: TRIPBLANK-6-25-14

Lab Sample ID: F2918-01

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

Level: LOW

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Matrix:

File ID/Qc Batch:

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

VOCMS Group1

06/25/14

06/27/14

F2918

Water

100

5000

uL

VN016993.D

07/04/14

VN070314

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL LO   | DD LOQ/CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|-------------|---------|
| 2037-26-5    | Toluene-d8             | 46.2   |           | 65 - 126 | 92%         | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 58.1   |           | 58 - 135 | 116%        | SPK: 50 |
| INTERNAL STA | ANDARDS                |        |           |          |             |         |
| 363-72-4     | Pentafluorobenzene     | 232703 | 7.87      |          |             |         |
| 540-36-3     | 1,4-Difluorobenzene    | 388148 | 8.79      |          |             |         |
| 3114-55-4    | Chlorobenzene-d5       | 419133 | 11.61     |          |             |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 190985 | 13.56     |          |             |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 09:55 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-6(7-9) F2918 Lab Sample ID: F2918-02 Matrix: SOIL % Solid: 81.7

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | L Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|---------|-----------|----------------|----------|
| Cyanide             | 0.146 | U    | 1  | 0.038 | 0.146 | 0.291      | mg/Kg   | 07/01/14  | 07/02/14 12:40 | 9012B    |
| Hexavalent Chromium | 0.096 | J    | 1  | 0.096 | 0.241 | 0.482      | mg/Kg   | 07/02/14  | 07/02/14 15:13 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-6(7-9) Lab Sample ID: F2918-02 Matrix: SOIL % Moisture: Analytical Method: SW8151A 18.3

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010324.D 1 07/01/14 07/03/14 PB77541

| CAS Number | Parameter         | Conc. | Qualif | ier MDL  | LOD  | LOQ / CF | RQL Units |
|------------|-------------------|-------|--------|----------|------|----------|-----------|
| TARGETS    |                   |       |        |          |      |          |           |
| 1918-00-9  | DICAMBA           | 20.4  | U      | 16.2     | 20.4 | 81.9     | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 20.4  | U      | 15.1     | 20.4 | 81.9     | ug/Kg     |
| 94-75-7    | 2,4-D             | 20.4  | U      | 20.4     | 20.4 | 81.9     | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 20.4  | U      | 13.3     | 20.4 | 81.9     | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 20.4  | U      | 12.5     | 20.4 | 81.9     | ug/Kg     |
| 94-82-6    | 2,4-DB            | 20.4  | U      | 20.4     | 20.4 | 81.9     | ug/Kg     |
| 88-85-7    | DINOSEB           | 20.4  | U      | 20.4     | 20.4 | 81.9     | ug/Kg     |
| SURROGATES |                   |       |        |          |      |          |           |
| 19719-28-9 | 2,4-DCAA          | 254   |        | 12 - 189 | )    | 51%      | SPK: 500  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:

иL



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: Client Sample ID: GP-6(7-9) F2918

Lab Sample ID: F2918-02 Matrix: SOIL % Solid: 81.7 Level (low/med): low

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQ | L Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|-----------|-------------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.627 | JN   | 1  | 0.591 | 1.32  | 2.64      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-38-2 | Arsenic   | 3.08  |      | 1  | 0.348 | 0.528 | 1.06      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-39-3 | Barium    | 68.4  |      | 1  | 0.422 | 2.64  | 5.28      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.773 |      | 1  | 0.063 | 0.158 | 0.317     | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.158 | U    | 1  | 0.063 | 0.158 | 0.317     | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-47-3 | Chromium  | 28.9  |      | 1  | 0.137 | 0.264 | 0.528     | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-48-4 | Cobalt    | 15.4  |      | 1  | 0.601 | 0.791 | 1.58      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-50-8 | Copper    | 25.3  |      | 1  | 0.338 | 0.528 | 1.06      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7439-92-1 | Lead      | 26.2  | N    | 1  | 0.127 | 0.317 | 0.633     | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7439-96-5 | Manganese | 277   |      | 1  | 0.2   | 0.528 | 1.06      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.074 |      | 1  | 0.006 | 0.006 | 0.011     | mg/Kg 07/01/14    | 07/03/14  | SW7471A  |
| 7440-02-0 | Nickel    | 23.5  |      | 1  | 0.485 | 1.06  | 2.11      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7782-49-2 | Selenium  | 1.46  |      | 1  | 0.433 | 0.528 | 1.06      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-22-4 | Silver    | 1.28  |      | 1  | 0.158 | 0.264 | 0.528     | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-28-0 | Thallium  | 1.06  | U    | 1  | 0.285 | 1.06  | 2.11      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-62-2 | Vanadium  | 37.2  |      | 1  | 0.623 | 1.06  | 2.11      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-66-6 | Zinc      | 61.3  |      | 1  | 0.739 | 1.06  | 2.11      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium Color After: Yellow Clarity After: Artifacts:

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

No

OR = Over Range

N =Spiked sample recovery not within control limits



PP003679.D

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-6(7-9) Lab Sample ID: F2918-02 Matrix: SOIL % Moisture: Analytical Method: SW8082A 18.3 Decanted: Sample Wt/Vol: 30.02 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume: 1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date 1 07/01/14 07/02/14 PB77542

| CAS Number | Parameter            | Conc. Qualifier |   | MDL      | LOD | LOQ / CRQL Units |         |
|------------|----------------------|-----------------|---|----------|-----|------------------|---------|
| TARGETS    |                      |                 |   |          |     |                  |         |
| 12674-11-2 | Aroclor-1016         | 4.1             | U | 4.1      | 4.1 | 20.8             | ug/kg   |
| 11104-28-2 | Aroclor-1221         | 4.1             | U | 4.1      | 4.1 | 20.8             | ug/kg   |
| 11141-16-5 | Aroclor-1232         | 4.1             | U | 4.1      | 4.1 | 20.8             | ug/kg   |
| 53469-21-9 | Aroclor-1242         | 4.1             | U | 4.1      | 4.1 | 20.8             | ug/kg   |
| 12672-29-6 | Aroclor-1248         | 4.1             | U | 4.1      | 4.1 | 20.8             | ug/kg   |
| 11097-69-1 | Aroclor-1254         | 4.1             | U | 1.8      | 4.1 | 20.8             | ug/kg   |
| 11096-82-5 | Aroclor-1260         | 4.1             | U | 4.1      | 4.1 | 20.8             | ug/kg   |
| SURROGATES |                      |                 |   |          |     |                  |         |
| 877-09-8   | Tetrachloro-m-xylene | 19.3            |   | 10 - 166 | 5   | 97%              | SPK: 20 |
| 2051-24-3  | Decachlorobiphenyl   | 14.5            |   | 60 - 125 | 5   | 73%              | SPK: 20 |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-6(7-9) SDG No.: F2918

Lab Sample ID: F2918-02 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 18.3 Decanted: Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 u
Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023216.D 1 07/01/14 07/02/14 PB77543

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|-------|----------|----------|
| TARGETS    |                      |       |           |          |       |          |          |
| 319-84-6   | alpha-BHC            | 0.403 | U         | 0.159    | 0.403 | 2.1      | ug/kg    |
| 319-85-7   | beta-BHC             | 0.403 | U         | 0.22     | 0.403 | 2.1      | ug/kg    |
| 319-86-8   | delta-BHC            | 0.403 | U         | 0.122    | 0.403 | 2.1      | ug/kg    |
| 58-89-9    | gamma-BHC (Lindane)  | 0.403 | U         | 0.183    | 0.403 | 2.1      | ug/kg    |
| 76-44-8    | Heptachlor           | 0.403 | U         | 0.171    | 0.403 | 2.1      | ug/kg    |
| 309-00-2   | Aldrin               | 0.403 | U         | 0.122    | 0.403 | 2.1      | ug/kg    |
| 1024-57-3  | Heptachlor epoxide   | 0.403 | U         | 0.196    | 0.403 | 2.1      | ug/kg    |
| 959-98-8   | Endosulfan I         | 0.403 | U         | 0.183    | 0.403 | 2.1      | ug/kg    |
| 60-57-1    | Dieldrin             | 0.403 | U         | 0.159    | 0.403 | 2.1      | ug/kg    |
| 72-55-9    | 4,4-DDE              | 0.403 | U         | 0.244    | 0.403 | 2.1      | ug/kg    |
| 72-20-8    | Endrin               | 0.403 | U         | 0.22     | 0.403 | 2.1      | ug/kg    |
| 33213-65-9 | Endosulfan II        | 0.403 | U         | 0.171    | 0.403 | 2.1      | ug/kg    |
| 72-54-8    | 4,4-DDD              | 0.403 | U         | 0.208    | 0.403 | 2.1      | ug/kg    |
| 1031-07-8  | Endosulfan Sulfate   | 0.403 | U         | 0.183    | 0.403 | 2.1      | ug/kg    |
| 50-29-3    | 4,4-DDT              | 0.403 | U         | 0.171    | 0.403 | 2.1      | ug/kg    |
| 72-43-5    | Methoxychlor         | 0.403 | U         | 0.208    | 0.403 | 2.1      | ug/kg    |
| 53494-70-5 | Endrin ketone        | 0.403 | U         | 0.159    | 0.403 | 2.1      | ug/kg    |
| 7421-93-4  | Endrin aldehyde      | 0.403 | U         | 0.183    | 0.403 | 2.1      | ug/kg    |
| 5103-71-9  | alpha-Chlordane      | 0.403 | U         | 0.171    | 0.403 | 2.1      | ug/kg    |
| 5103-74-2  | gamma-Chlordane      | 0.403 | U         | 0.159    | 0.403 | 2.1      | ug/kg    |
| 8001-35-2  | Toxaphene            | 4.1   | U         | 4.1      | 4.1   | 20.8     | ug/kg    |
| SURROGATES |                      |       |           |          |       |          |          |
| 2051-24-3  | Decachlorobiphenyl   | 17    |           | 10 - 169 | 1     | 85%      | SPK: 20  |
| 877-09-8   | Tetrachloro-m-xylene | 22.4  |           | 31 - 151 |       | 112%     | SPK: 20  |



### **Report of Analysis**

Client: Dvirka & Bartilucci

Date Collected: 06/25/14

Project:

NYCSCA Unionport Road Bronx

06/27/14

Client Sample ID:

GP-6(7-9)

Date Received: SDG No.:

Lab Sample ID:

F2918

F2918-02

Matrix:

**SOIL** 

Decanted:

Analytical Method:

SW8081

% Moisture:

18.3

Sample Wt/Vol:

30.05 Units: g Final Vol:

10000 иL

Soil Aliquot Vol:

иL

Test:

Pesticide-TCL

Extraction Type:

1.0

PH:

Injection Volume:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PB77543

PD023216.D

GPC Factor:

1

07/01/14

07/02/14

**CAS Number** 

Parameter

Conc.

Qualifier MDL

LOD

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Extraction Type:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: F2918 GP-6(7-9) SOIL Lab Sample ID: F2918-02 Matrix: Analytical Method: SW8270 % Moisture: 18.3

Sample Wt/Vol: 30.08 Units: g Final Vol: 1000 uL

N

Level:

LOW

Soil Aliquot Vol: uL Test: SVOCMS Group1

Decanted: GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

BF072266.D 1 07/01/14 07/02/14 PB77544

| B1 072200.D | •                           | 07/01/11 | 07.       | /02/11 |      | 15//5/11   |       |
|-------------|-----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number  | Parameter                   | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| TARGETS     |                             |          |           |        |      |            |       |
| 100-52-7    | Benzaldehyde                | 40.7     | U         | 21.2   | 40.7 | 400        | ug/Kg |
| 108-95-2    | Phenol                      | 40.7     | U         | 9.4    | 40.7 | 400        | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 40.7     | U         | 19.5   | 40.7 | 400        | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 40.7     | U         | 21.5   | 40.7 | 400        | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 40.7     | U         | 22.1   | 40.7 | 400        | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 40.7     | U         | 16.8   | 40.7 | 400        | ug/Kg |
| 98-86-2     | Acetophenone                | 40.7     | U         | 12.5   | 40.7 | 400        | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 40.7     | U         | 21.1   | 40.7 | 400        | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 40.7     | U         | 20.5   | 40.7 | 400        | ug/Kg |
| 67-72-1     | Hexachloroethane            | 40.7     | U         | 18.2   | 40.7 | 400        | ug/Kg |
| 98-95-3     | Nitrobenzene                | 40.7     | U         | 15.4   | 40.7 | 400        | ug/Kg |
| 78-59-1     | Isophorone                  | 40.7     | U         | 13.4   | 40.7 | 400        | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 40.7     | U         | 19.7   | 40.7 | 400        | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 40.7     | U         | 23.1   | 40.7 | 400        | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 40.7     | U         | 23.4   | 40.7 | 400        | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 40.7     | U         | 15.5   | 40.7 | 400        | ug/Kg |
| 91-20-3     | Naphthalene                 | 40.7     | U         | 14     | 40.7 | 400        | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 40.7     | U         | 28.7   | 40.7 | 400        | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 40.7     | U         | 14.8   | 40.7 | 400        | ug/Kg |
| 105-60-2    | Caprolactam                 | 81.4     | U         | 18.9   | 81.4 | 400        | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 40.7     | U         | 18.1   | 40.7 | 400        | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 40.7     | U         | 10.3   | 40.7 | 400        | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 40.7     | U         | 9.9    | 40.7 | 400        | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 40.7     | U         | 12.5   | 40.7 | 400        | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 40.7     | U         | 28.6   | 40.7 | 400        | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 40.7     | U         | 15.4   | 40.7 | 400        | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 40.7     | U         | 9.3    | 40.7 | 400        | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 40.7     | U         | 18.1   | 40.7 | 400        | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 780      |           | 11     | 40.7 | 400        | ug/Kg |
| 208-96-8    | Acenaphthylene              | 40.7     | U         | 10.3   | 40.7 | 400        | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 40.7     | U         | 16.6   | 40.7 | 400        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-6(7-9) SDG No.: F2918

Lab Sample ID: F2918-02 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 18.3

Sample Wt/Vol: 30.08 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072266.D 1 07/01/14 07/02/14 PB77544

| BF072266.D | 1                          | 07/01/14 | 07        | /02/14 |      | PB77544    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 81.4     | U         | 26.1   | 81.4 | 400        | ug/Kg |
| 83-32-9    | Acenaphthene               | 40.7     | U         | 11.5   | 40.7 | 400        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 330      | U         | 41.4   | 330  | 400        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 200      | U         | 75.6   | 200  | 400        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 40.7     | U         | 15.9   | 40.7 | 400        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 40.7     | U         | 12.2   | 40.7 | 400        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 40.7     | U         | 6.3    | 40.7 | 400        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 40.7     | U         | 22.1   | 40.7 | 400        | ug/Kg |
| 86-73-7    | Fluorene                   | 40.7     | U         | 15.4   | 40.7 | 400        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 81.4     | U         | 53     | 81.4 | 400        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 200      | U         | 23.3   | 200  | 400        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 40.7     | U         | 9.8    | 40.7 | 400        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 40.7     | U         | 7.9    | 40.7 | 400        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 40.7     | U         | 16.6   | 40.7 | 400        | ug/Kg |
| 1912-24-9  | Atrazine                   | 40.7     | U         | 21.5   | 40.7 | 400        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 40.7     | U         | 27.8   | 40.7 | 400        | ug/Kg |
| 85-01-8    | Phenanthrene               | 40.7     | U         | 11     | 40.7 | 400        | ug/Kg |
| 120-12-7   | Anthracene                 | 40.7     | U         | 8.3    | 40.7 | 400        | ug/Kg |
| 86-74-8    | Carbazole                  | 40.7     | U         | 8.9    | 40.7 | 400        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 40.7     | U         | 32     | 40.7 | 400        | ug/Kg |
| 206-44-0   | Fluoranthene               | 40.7     | U         | 8.2    | 40.7 | 400        | ug/Kg |
| 129-00-0   | Pyrene                     | 40.7     | U         | 9.8    | 40.7 | 400        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 40.7     | U         | 19.5   | 40.7 | 400        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 40.7     | U         | 26.1   | 40.7 | 400        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 40.7     | U         | 19.4   | 40.7 | 400        | ug/Kg |
| 218-01-9   | Chrysene                   | 40.7     | U         | 18.4   | 40.7 | 400        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 40.7     | U         | 14.4   | 40.7 | 400        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 40.7     | U         | 4.6    | 40.7 | 400        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 40.7     | U         | 13.3   | 40.7 | 400        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 40.7     | U         | 19.2   | 40.7 | 400        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 40.7     | U         | 8.8    | 40.7 | 400        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 40.7     | U         | 13.6   | 40.7 | 400        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 40.7     | U         | 11.7   | 40.7 | 400        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: F2918 GP-6(7-9) SOIL Lab Sample ID: F2918-02 Matrix: Analytical Method: SW8270 % Moisture: 18.3

Sample Wt/Vol: 30.08 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072266.D 1 07/01/14 07/02/14 PB77544

| B1 072200.B  | 1                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        | 077       | 02/11    |      | 15//511    |          |
|--------------|----------------------------------|-----------------------------------------|--------|-----------|----------|------|------------|----------|
| CAS Number   | Parameter                        |                                         | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |
| 191-24-2     | Benzo(g,h,i)perylene             |                                         | 40.7   | U         | 16.5     | 40.7 | 400        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       |                                         | 40.7   | U         | 16       | 40.7 | 400        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        |                                         | 40.7   | U         | 16       | 40.7 | 400        | ug/Kg    |
| SURROGATES   |                                  |                                         |        |           |          |      |            |          |
| 367-12-4     | 2-Fluorophenol                   |                                         | 130    |           | 28 - 127 |      | 84%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        |                                         | 130    |           | 34 - 127 |      | 88%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  |                                         | 82.1   |           | 31 - 132 |      | 82%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 |                                         | 64.8   |           | 39 - 123 |      | 65%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             |                                         | 110    |           | 30 - 133 |      | 71%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    |                                         | 61.9   |           | 37 - 115 |      | 62%        | SPK: 100 |
| INTERNAL STA | NDARDS                           |                                         |        |           |          |      |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           |                                         | 42115  | 7.16      |          |      |            |          |
| 1146-65-2    | Naphthalene-d8                   |                                         | 178096 | 8.73      |          |      |            |          |
| 15067-26-2   | Acenaphthene-d10                 |                                         | 96372  | 10.91     |          |      |            |          |
| 1517-22-2    | Phenanthrene-d10                 |                                         | 174944 | 12.73     |          |      |            |          |
| 1719-03-5    | Chrysene-d12                     |                                         | 206209 | 16        |          |      |            |          |
| 1520-96-3    | Perylene-d12                     |                                         | 186930 | 17.64     |          |      |            |          |
| TENTATIVE ID | ENTIFIED COMPOUNDS               |                                         |        |           |          |      |            |          |
| 000077-76-9  | Propane, 2,2-dimethoxy-          |                                         | 15500  | J         |          |      | 1.38       | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      |                                         | 1000   | J         |          |      | 1.65       | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- |                                         | 720    | A         |          |      | 4.89       | ug/Kg    |
|              | unknown6.87                      |                                         | 3700   | J         |          |      | 6.87       | ug/Kg    |
| 039546-80-0  | Neopentylidenecyclohexane        |                                         | 130    | J         |          |      | 10.8       | ug/Kg    |
| 003892-00-0  | Pentadecane, 2,6,10-trimethyl-   |                                         | 180    | J         |          |      | 11.79      | ug/Kg    |
| 074645-98-0  | Dodecane, 2,7,10-trimethyl-      |                                         | 350    | J         |          |      | 12.12      | ug/Kg    |
| 000057-10-3  | n-Hexadecanoic acid              |                                         | 250    | J         |          |      | 13.48      | ug/Kg    |
| 1000282-97-2 | 4-Heptafluorobutyryloxyhexadecan | e                                       | 200    | J         |          |      | 14.12      | ug/Kg    |
| 074685-29-3  | 9-Eicosene, (E)-                 |                                         | 500    | J         |          |      | 15.91      | ug/Kg    |
| 007683-64-9  | Squalene                         |                                         | 180    | J         |          |      | 17.16      | ug/Kg    |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx

30.08

06/27/14

18.3

1000

LOW

Client Sample ID: GP-6(7-9) F2918

Lab Sample ID: F2918-02 SDG No.: Matrix: SOIL

SW8270

% Moisture:

Date Received:

Analytical Method:

Final Vol:

uL

Sample Wt/Vol: Soil Aliquot Vol: g uL

Units:

Test:

SVOCMS Group1

Extraction Type:

Decanted:

Level:

Injection Volume:

GPC Factor: 1.0

N

GPC Cleanup:

Ν

PH:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PB77544

BF072266.D

1

07/01/14

07/02/14

**CAS Number** 

**Parameter** 

Conc.

Qualifier

**MDL** 

LOD

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



GC Column:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-6(7-9) SDG No.: F2918 SOIL Lab Sample ID: F2918-02 Matrix: Analytical Method: SW8260 % Moisture: 18.3 Sample Wt/Vol: 5.92 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008866.D 1 07/01/14 VT063014

ID: 0.25

RXI-624

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 74-83-9    | Bromomethane                   | 1     | U         | 1    | 1    | 5.2        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 67-64-1    | Acetone                        | 57.6  |           | 2.6  | 2.6  | 25.8       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 1.2   | J         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 1     | U         | 1    | 1    | 5.2        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 2.1   | J         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 7.8   | U         | 3.2  | 7.8  | 25.8       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 71-43-2    | Benzene                        | 0.52  | U         | 0.39 | 0.52 | 5.2        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.52  | U         | 0.27 | 0.52 | 5.2        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 2.6   | U         | 2.6  | 2.6  | 25.8       | ug/Kg |
| 108-88-3   | Toluene                        | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-6(7-9) SDG No.: F2918 SOIL Lab Sample ID: F2918-02 Matrix: Analytical Method: SW8260 % Moisture: 18.3 Sample Wt/Vol: 5.92 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: ID: 0.25 Level: RXI-624 LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VT008866.D 1 07/01/14 VT063014

|                        | <u>-</u>                    |       | ****      |          |      |            |         |
|------------------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| CAS Number             | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5             | cis-1,3-Dichloropropene     | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 79-00-5                | 1,1,2-Trichloroethane       | 1     | U         | 0.93     | 1    | 5.2        | ug/Kg   |
| 591-78-6               | 2-Hexanone                  | 2.6   | U         | 2.6      | 2.6  | 25.8       | ug/Kg   |
| 124-48-1               | Dibromochloromethane        | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 106-93-4               | 1,2-Dibromoethane           | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 127-18-4               | Tetrachloroethene           | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 108-90-7               | Chlorobenzene               | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 100-41-4               | Ethyl Benzene               | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 179601-23-1            | m/p-Xylenes                 | 1     | U         | 0.74     | 1    | 10.3       | ug/Kg   |
| 95-47-6                | o-Xylene                    | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 100-42-5               | Styrene                     | 0.52  | U         | 0.47     | 0.52 | 5.2        | ug/Kg   |
| 75-25-2                | Bromoform                   | 1.6   | U         | 0.76     | 1.6  | 5.2        | ug/Kg   |
| 98-82-8                | Isopropylbenzene            | 0.52  | U         | 0.5      | 0.52 | 5.2        | ug/Kg   |
| 79-34-5                | 1,1,2,2-Tetrachloroethane   | 0.52  | U         | 0.48     | 0.52 | 5.2        | ug/Kg   |
| 103-65-1               | n-propylbenzene             | 0.52  | U         | 0.37     | 0.52 | 5.2        | ug/Kg   |
| 108-67-8               | 1,3,5-Trimethylbenzene      | 0.52  | U         | 0.47     | 0.52 | 5.2        | ug/Kg   |
| 98-06-6                | tert-Butylbenzene           | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 95-63-6                | 1,2,4-Trimethylbenzene      | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 135-98-8               | sec-Butylbenzene            | 4.1   | J         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 99-87-6                | p-Isopropyltoluene          | 0.52  | U         | 0.3      | 0.52 | 5.2        | ug/Kg   |
| 541-73-1               | 1,3-Dichlorobenzene         | 0.52  | U         | 0.38     | 0.52 | 5.2        | ug/Kg   |
| 106-46-7               | 1,4-Dichlorobenzene         | 0.52  | U         | 0.42     | 0.52 | 5.2        | ug/Kg   |
| 104-51-8               | n-Butylbenzene              | 0.52  | U         | 0.48     | 0.52 | 5.2        | ug/Kg   |
| 95-50-1                | 1,2-Dichlorobenzene         | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 96-12-8                | 1,2-Dibromo-3-Chloropropane | 5.2   | U         | 0.9      | 5.2  | 5.2        | ug/Kg   |
| 120-82-1               | 1,2,4-Trichlorobenzene      | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 91-20-3                | Naphthalene                 | 0.52  | U         | 0.47     | 0.52 | 5.2        | ug/Kg   |
| 87-61-6                | 1,2,3-Trichlorobenzene      | 1     | U         | 0.52     | 1    | 5.2        | ug/Kg   |
| 123-91-1<br>SURROGATES | 1,4-Dioxane                 | 100   | U         | 100      | 100  | 100        | ug/Kg   |
| 17060-07-0             | 1,2-Dichloroethane-d4       | 48.7  |           | 56 - 120 | )    | 97%        | SPK: 50 |
| 1868-53-7              | Dibromofluoromethane        | 49.6  |           | 57 - 13: | 5    | 99%        | SPK: 50 |



## **Report of Analysis**

06/25/14

06/27/14

Client: Dvirka & Bartilucci Date Collected:

Project: NYCSCA Unionport Road Bronx Date Received:

Client Sample ID: GP-6(7-9) SDG No.: F2918
Lab Sample ID: F2918-02 Matrix: SOIL
Analytical Method: SW8260 % Moisture: 18.3

Sample Wt/Vol: 5.92 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008866.D 1 07/01/14 VT063014

Conc. **MDL** Units **CAS Number Parameter** Qualifier LOD LOQ / CRQL 2037-26-5 Toluene-d8 38.5 67 - 123 77% SPK: 50 4-Bromofluorobenzene 52.9 33 - 141 106% 460-00-4 SPK: 50 INTERNAL STANDARDS Pentafluorobenzene 649968 7.43 363-72-4 540-36-3 1,4-Difluorobenzene 971311 8.37 3114-55-4 Chlorobenzene-d5 796146 11.21 1.4-Dichlorobenzene-d4 13.15 3855-82-1 462108

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 10:20 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-6(12-14) F2918 Lab Sample ID: F2918-03 Matrix: SOIL % Solid: 72.9

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQ | L Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|-----------|---------|-----------|----------------|----------|
| Cyanide             | 0.162 | U    | 1  | 0.043 | 0.162 | 0.324     | mg/Kg   | 07/01/14  | 07/02/14 12:40 | 9012B    |
| Hexavalent Chromium | 0.488 | J    | 1  | 0.108 | 0.271 | 0.542     | mg/Kg   | 07/02/14  | 07/02/14 15:15 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Analytical Method:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-6(12-14) Lab Sample ID: F2918-03 Matrix: **SOIL** % Moisture:

10000 Sample Wt/Vol: 30.07 Units: Final Vol: иL g

Test: Herbicide Soil Aliquot Vol: иL

Extraction Type: Injection Volume:

1.0 PH: GPC Factor:

SW8151A

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date 1 07/01/14 07/03/14 PB77541 PE010325.D

| CAS Number | Parameter         | Conc. Qua |   | ier MDL  | LOD  | LOQ / CF | RQL Units |
|------------|-------------------|-----------|---|----------|------|----------|-----------|
| TARGETS    |                   |           |   |          |      |          |           |
| 1918-00-9  | DICAMBA           | 22.8      | U | 18.2     | 22.8 | 91.7     | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 22.8      | U | 16.9     | 22.8 | 91.7     | ug/Kg     |
| 94-75-7    | 2,4-D             | 22.8      | U | 22.8     | 22.8 | 91.7     | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 22.8      | U | 14.9     | 22.8 | 91.7     | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 22.8      | U | 14       | 22.8 | 91.7     | ug/Kg     |
| 94-82-6    | 2,4-DB            | 22.8      | U | 22.8     | 22.8 | 91.7     | ug/Kg     |
| 88-85-7    | DINOSEB           | 22.8      | U | 22.8     | 22.8 | 91.7     | ug/Kg     |
| SURROGATES |                   |           |   |          |      |          |           |
| 19719-28-9 | 2,4-DCAA          | 280       |   | 12 - 189 | )    | 56%      | SPK: 500  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

27.1

Decanted:



## **Report of Analysis**

Client:Dvirka & BartilucciDate Collected:06/25/14Project:NYCSCA Unionport Road BronxDate Received:06/27/14

Client Sample ID: GP-6(12-14) SDG No.: F2918

Lab Sample ID: F2918-03 Matrix: SOIL

Level (low/med): low % Solid: 72.9

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CI | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.08  | JN   | 1  | 0.668 | 1.49  | 2.98     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-38-2 | Arsenic   | 1.44  |      | 1  | 0.394 | 0.596 | 1.19     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-39-3 | Barium    | 167   |      | 1  | 0.477 | 2.98  | 5.96     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-41-7 | Beryllium | 5.08  |      | 1  | 0.072 | 0.179 | 0.358    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.384 |      | 1  | 0.072 | 0.179 | 0.358    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-47-3 | Chromium  | 102   |      | 1  | 0.155 | 0.298 | 0.596    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-48-4 | Cobalt    | 47    |      | 1  | 0.68  | 0.895 | 1.79     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-50-8 | Copper    | 14.3  |      | 1  | 0.382 | 0.596 | 1.19     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-92-1 | Lead      | 16.2  | N    | 1  | 0.143 | 0.358 | 0.716    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-96-5 | Manganese | 596   |      | 1  | 0.227 | 0.596 | 1.19     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.014 |      | 1  | 0.007 | 0.007 | 0.013    | mg/Kg 07/01/14      | 07/03/14  | SW7471A  |
| 7440-02-0 | Nickel    | 80.8  |      | 1  | 0.549 | 1.19  | 2.39     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7782-49-2 | Selenium  | 2.16  |      | 1  | 0.489 | 0.596 | 1.19     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-22-4 | Silver    | 1.77  |      | 1  | 0.179 | 0.298 | 0.596    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-28-0 | Thallium  | 1.19  | U    | 1  | 0.322 | 1.19  | 2.39     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-62-2 | Vanadium  | 49    |      | 1  | 0.704 | 1.19  | 2.39     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-66-6 | Zinc      | 191   |      | 1  | 0.835 | 1.19  | 2.39     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-6(12-14) Lab Sample ID: F2918-03 Matrix: SOIL % Moisture: Analytical Method: SW8082A 27.1 Decanted: Sample Wt/Vol: 10000 30.02 Units: Final Vol: иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PP003680.D 1 07/01/14 07/02/14 PB77542

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|-----|----------|----------|
| TARGETS    |                      |       |           |          |     |          |          |
| 12674-11-2 | Aroclor-1016         | 4.6   | U         | 4.6      | 4.6 | 23.3     | ug/kg    |
| 11104-28-2 | Aroclor-1221         | 4.6   | U         | 4.6      | 4.6 | 23.3     | ug/kg    |
| 11141-16-5 | Aroclor-1232         | 4.6   | U         | 4.6      | 4.6 | 23.3     | ug/kg    |
| 53469-21-9 | Aroclor-1242         | 4.6   | U         | 4.6      | 4.6 | 23.3     | ug/kg    |
| 12672-29-6 | Aroclor-1248         | 4.6   | U         | 4.6      | 4.6 | 23.3     | ug/kg    |
| 11097-69-1 | Aroclor-1254         | 4.6   | U         | 2        | 4.6 | 23.3     | ug/kg    |
| 11096-82-5 | Aroclor-1260         | 4.6   | U         | 4.6      | 4.6 | 23.3     | ug/kg    |
| SURROGATES |                      |       |           |          |     |          |          |
| 877-09-8   | Tetrachloro-m-xylene | 20.8  |           | 10 - 166 | 5   | 104%     | SPK: 20  |
| 2051-24-3  | Decachlorobiphenyl   | 16.5  |           | 60 - 125 | 5   | 83%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

 Client Sample ID:
 GP-6(12-14)
 SDG No.:
 F2918

 Lab Sample ID:
 F2918-03
 Matrix:
 SOIL

Analytical Method: SW8081 % Moisture: 27.1 Decanted:

Sample Wt/Vol: 30.03 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023219.D 1 07/01/14 07/02/14 PB77543

| CAS Number | Parameter            | Conc. | Qualifie | er MDL   | LOD   | LOQ / CRO | QL Units |
|------------|----------------------|-------|----------|----------|-------|-----------|----------|
| TARGETS    |                      |       |          |          |       |           |          |
| 319-84-6   | alpha-BHC            | 0.452 | U        | 0.178    | 0.452 | 2.3       | ug/kg    |
| 319-85-7   | beta-BHC             | 0.452 | U        | 0.247    | 0.452 | 2.3       | ug/kg    |
| 319-86-8   | delta-BHC            | 0.452 | U        | 0.137    | 0.452 | 2.3       | ug/kg    |
| 58-89-9    | gamma-BHC (Lindane)  | 0.452 | U        | 0.206    | 0.452 | 2.3       | ug/kg    |
| 76-44-8    | Heptachlor           | 0.452 | U        | 0.192    | 0.452 | 2.3       | ug/kg    |
| 309-00-2   | Aldrin               | 0.452 | U        | 0.137    | 0.452 | 2.3       | ug/kg    |
| 1024-57-3  | Heptachlor epoxide   | 0.452 | U        | 0.219    | 0.452 | 2.3       | ug/kg    |
| 959-98-8   | Endosulfan I         | 0.452 | U        | 0.206    | 0.452 | 2.3       | ug/kg    |
| 60-57-1    | Dieldrin             | 0.452 | U        | 0.178    | 0.452 | 2.3       | ug/kg    |
| 72-55-9    | 4,4-DDE              | 0.452 | U        | 0.274    | 0.452 | 2.3       | ug/kg    |
| 72-20-8    | Endrin               | 0.452 | U        | 0.247    | 0.452 | 2.3       | ug/kg    |
| 33213-65-9 | Endosulfan II        | 0.452 | U        | 0.192    | 0.452 | 2.3       | ug/kg    |
| 72-54-8    | 4,4-DDD              | 0.452 | U        | 0.233    | 0.452 | 2.3       | ug/kg    |
| 1031-07-8  | Endosulfan Sulfate   | 0.452 | U        | 0.206    | 0.452 | 2.3       | ug/kg    |
| 50-29-3    | 4,4-DDT              | 0.452 | U        | 0.192    | 0.452 | 2.3       | ug/kg    |
| 72-43-5    | Methoxychlor         | 0.452 | U        | 0.233    | 0.452 | 2.3       | ug/kg    |
| 53494-70-5 | Endrin ketone        | 0.452 | U        | 0.178    | 0.452 | 2.3       | ug/kg    |
| 7421-93-4  | Endrin aldehyde      | 0.452 | U        | 0.206    | 0.452 | 2.3       | ug/kg    |
| 5103-71-9  | alpha-Chlordane      | 0.452 | U        | 0.192    | 0.452 | 2.3       | ug/kg    |
| 5103-74-2  | gamma-Chlordane      | 0.452 | U        | 0.178    | 0.452 | 2.3       | ug/kg    |
| 8001-35-2  | Toxaphene            | 4.6   | U        | 4.6      | 4.6   | 23.3      | ug/kg    |
| SURROGATES |                      |       |          |          |       |           |          |
| 2051-24-3  | Decachlorobiphenyl   | 17.6  |          | 10 - 169 | )     | 88%       | SPK: 20  |
| 877-09-8   | Tetrachloro-m-xylene | 21.3  |          | 31 - 151 |       | 106%      | SPK: 20  |



### **Report of Analysis**

Client: Dvirka & Bartilucci

virka & Bartilucci Date Collected:

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-6(12-14) SDG No.: F2918

Lab Sample ID: F2918-03 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 27.1 Decanted:

Sample Wt/Vol: 30.03 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023219.D 1 07/01/14 07/02/14 PB77543

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

06/25/14

06/27/14

Date Received:



Extraction Type:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: F2918 GP-6(12-14)

SOIL Lab Sample ID: F2918-03 Matrix: Analytical Method: SW8270 % Moisture: 27.1

Sample Wt/Vol: 30.09 Units: g Final Vol: 1000 uL

N

Level:

LOW

Soil Aliquot Vol: uL Test: SVOCMS Group1

Decanted: GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

BF072268.D 1 07/01/14 07/02/14 PB77544

| B1 072200.D | •                           | 07/01/11 | 07        | /02/11 |      | 15//5/11   |       |
|-------------|-----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number  | Parameter                   | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| TARGETS     |                             |          |           |        |      |            |       |
| 100-52-7    | Benzaldehyde                | 45.6     | U         | 23.8   | 45.6 | 450        | ug/Kg |
| 108-95-2    | Phenol                      | 45.6     | U         | 10.5   | 45.6 | 450        | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 45.6     | U         | 21.9   | 45.6 | 450        | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 45.6     | U         | 24.1   | 45.6 | 450        | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 45.6     | U         | 24.8   | 45.6 | 450        | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 45.6     | U         | 18.9   | 45.6 | 450        | ug/Kg |
| 98-86-2     | Acetophenone                | 45.6     | U         | 13.9   | 45.6 | 450        | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 45.6     | U         | 23.7   | 45.6 | 450        | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 45.6     | U         | 23     | 45.6 | 450        | ug/Kg |
| 67-72-1     | Hexachloroethane            | 45.6     | U         | 20.4   | 45.6 | 450        | ug/Kg |
| 98-95-3     | Nitrobenzene                | 45.6     | U         | 17.2   | 45.6 | 450        | ug/Kg |
| 78-59-1     | Isophorone                  | 45.6     | U         | 15     | 45.6 | 450        | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 45.6     | U         | 22     | 45.6 | 450        | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 45.6     | U         | 25.8   | 45.6 | 450        | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 45.6     | U         | 26.3   | 45.6 | 450        | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 45.6     | U         | 17.4   | 45.6 | 450        | ug/Kg |
| 91-20-3     | Naphthalene                 | 45.6     | U         | 15.7   | 45.6 | 450        | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 45.6     | U         | 32.1   | 45.6 | 450        | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 45.6     | U         | 16.5   | 45.6 | 450        | ug/Kg |
| 105-60-2    | Caprolactam                 | 91.2     | U         | 21.2   | 91.2 | 450        | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 45.6     | U         | 20.2   | 45.6 | 450        | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 45.6     | U         | 11.5   | 45.6 | 450        | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 45.6     | U         | 11.1   | 45.6 | 450        | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 45.6     | U         | 13.9   | 45.6 | 450        | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 45.6     | U         | 32     | 45.6 | 450        | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 45.6     | U         | 17.2   | 45.6 | 450        | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 45.6     | U         | 10.4   | 45.6 | 450        | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 45.6     | U         | 20.2   | 45.6 | 450        | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 500      |           | 12.3   | 45.6 | 450        | ug/Kg |
| 208-96-8    | Acenaphthylene              | 45.6     | U         | 11.5   | 45.6 | 450        | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 45.6     | U         | 18.6   | 45.6 | 450        | ug/Kg |



Sample Wt/Vol:

30.09

Units:

g

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

 Client Sample ID:
 GP-6(12-14)
 SDG No.:
 F2918

 Lab Sample ID:
 F2918-03
 Matrix:
 SOIL

Analytical Method: SW8270 % Moisture: 27.1

Soil Aliquot Vol: uL Test: SVOCMS Group1

Final Vol:

1000

uL

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072268.D 1 07/01/14 07/02/14 PB77544

| BF072268.D | 1                          | 07/01/14 | 07.       | /02/14 |      | PB77544    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 91.2     | U         | 29.3   | 91.2 | 450        | ug/Kg |
| 83-32-9    | Acenaphthene               | 45.6     | U         | 12.9   | 45.6 | 450        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 360      | U         | 46.4   | 360  | 450        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 230      | U         | 84.7   | 230  | 450        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 45.6     | U         | 17.8   | 45.6 | 450        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 45.6     | U         | 13.7   | 45.6 | 450        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 45.6     | U         | 7.1    | 45.6 | 450        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 45.6     | U         | 24.8   | 45.6 | 450        | ug/Kg |
| 86-73-7    | Fluorene                   | 45.6     | U         | 17.2   | 45.6 | 450        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 91.2     | U         | 59.4   | 91.2 | 450        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 230      | U         | 26.1   | 230  | 450        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 45.6     | U         | 10.9   | 45.6 | 450        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 45.6     | U         | 8.9    | 45.6 | 450        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 45.6     | U         | 18.6   | 45.6 | 450        | ug/Kg |
| 1912-24-9  | Atrazine                   | 45.6     | U         | 24.1   | 45.6 | 450        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 45.6     | U         | 31.2   | 45.6 | 450        | ug/Kg |
| 85-01-8    | Phenanthrene               | 45.6     | U         | 12.3   | 45.6 | 450        | ug/Kg |
| 120-12-7   | Anthracene                 | 45.6     | U         | 9.3    | 45.6 | 450        | ug/Kg |
| 86-74-8    | Carbazole                  | 45.6     | U         | 10     | 45.6 | 450        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 45.6     | U         | 35.8   | 45.6 | 450        | ug/Kg |
| 206-44-0   | Fluoranthene               | 45.6     | U         | 9.2    | 45.6 | 450        | ug/Kg |
| 129-00-0   | Pyrene                     | 45.6     | U         | 10.9   | 45.6 | 450        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 45.6     | U         | 21.9   | 45.6 | 450        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 45.6     | U         | 29.3   | 45.6 | 450        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 45.6     | U         | 21.7   | 45.6 | 450        | ug/Kg |
| 218-01-9   | Chrysene                   | 45.6     | U         | 20.7   | 45.6 | 450        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 45.6     | U         | 16.1   | 45.6 | 450        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 45.6     | U         | 5.2    | 45.6 | 450        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 45.6     | U         | 14.9   | 45.6 | 450        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 45.6     | U         | 21.5   | 45.6 | 450        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 45.6     | U         | 9.8    | 45.6 | 450        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 45.6     | U         | 15.2   | 45.6 | 450        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 45.6     | U         | 13.1   | 45.6 | 450        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-6(12-14) SDG No.: F2918

Lab Sample ID: F2918-03 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 27.1

Sample Wt/Vol: 30.09 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072268.D 1 07/01/14 07/02/14 PB77544

| CAS Number   | Parameter                        | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |
|--------------|----------------------------------|--------|-----------|----------|------|------------|----------|
| 191-24-2     | Benzo(g,h,i)perylene             | 45.6   | U         | 18.5     | 45.6 | 450        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       | 45.6   | U         | 17.9     | 45.6 | 450        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        | 45.6   | U         | 17.9     | 45.6 | 450        | ug/Kg    |
| SURROGATES   |                                  |        |           |          |      |            |          |
| 367-12-4     | 2-Fluorophenol                   | 66.6   |           | 28 - 12  | 7    | 44%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        | 69.1   |           | 34 - 12  | 7    | 46%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  | 40     |           | 31 - 132 | 2    | 40%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 | 33     | *         | 39 - 123 | 3    | 33%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             | 57     |           | 30 - 133 | 3    | 38%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    | 28.3   | *         | 37 - 115 | 5    | 28%        | SPK: 100 |
| INTERNAL ST  | ANDARDS                          |        |           |          |      |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 42267  | 7.17      |          |      |            |          |
| 1146-65-2    | Naphthalene-d8                   | 178873 | 8.73      |          |      |            |          |
| 15067-26-2   | Acenaphthene-d10                 | 96941  | 10.91     |          |      |            |          |
| 1517-22-2    | Phenanthrene-d10                 | 174064 | 12.73     |          |      |            |          |
| 1719-03-5    | Chrysene-d12                     | 206418 | 16        |          |      |            |          |
| 1520-96-3    | Perylene-d12                     | 201436 | 17.64     |          |      |            |          |
| TENTATIVE II | DENTIFIED COMPOUNDS              |        |           |          |      |            |          |
| 000077-76-9  | Propane, 2,2-dimethoxy-          | 11700  | J         |          |      | 1.37       | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      | 590    | J         |          |      | 1.65       | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- | 330    | A         |          |      | 4.89       | ug/Kg    |
|              | unknown6.87                      | 2200   | J         |          |      | 6.87       | ug/Kg    |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-6(12-14) SDG No.: F2918 SOIL Lab Sample ID: F2918-03 Matrix: Analytical Method: SW8260 % Moisture: 27.1 Sample Wt/Vol: 5.79 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008867.D 1 07/01/14 VT063014

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 74-83-9    | Bromomethane                   | 1.2   | U         | 1.2  | 1.2  | 5.9        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 67-64-1    | Acetone                        | 3     | U         | 3    | 3    | 29.6       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 1.2   | U         | 1.2  | 1.2  | 5.9        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 8.9   | U         | 3.7  | 8.9  | 29.6       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 71-43-2    | Benzene                        | 0.59  | U         | 0.45 | 0.59 | 5.9        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.59  | U         | 0.31 | 0.59 | 5.9        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 3     | U         | 3    | 3    | 29.6       | ug/Kg |
| 108-88-3   | Toluene                        | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.59  | U         | 0.59 | 0.59 | 5.9        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: F2918 GP-6(12-14) SOIL Lab Sample ID: F2918-03 Matrix: Analytical Method: SW8260 % Moisture: 27.1 Sample Wt/Vol: 5.79 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008867.D 1 07/01/14 VT063014

| V 1000007.D | 1                           |       | 07/01/    | 17       |      | V 1003014  |         |  |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|--|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |  |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.59  | U         | 0.59     | 0.59 | 5.9        | ug/Kg   |  |
| 79-00-5     | 1,1,2-Trichloroethane       | 1.2   | U         | 1.1      | 1.2  | 5.9        | ug/Kg   |  |
| 591-78-6    | 2-Hexanone                  | 3     | U         | 3        | 3    | 29.6       | ug/Kg   |  |
| 124-48-1    | Dibromochloromethane        | 0.59  | U         | 0.59     | 0.59 | 5.9        | ug/Kg   |  |
| 106-93-4    | 1,2-Dibromoethane           | 0.59  | U         | 0.59     | 0.59 | 5.9        | ug/Kg   |  |
| 127-18-4    | Tetrachloroethene           | 0.59  | U         | 0.59     | 0.59 | 5.9        | ug/Kg   |  |
| 108-90-7    | Chlorobenzene               | 0.59  | U         | 0.59     | 0.59 | 5.9        | ug/Kg   |  |
| 100-41-4    | Ethyl Benzene               | 0.59  | U         | 0.59     | 0.59 | 5.9        | ug/Kg   |  |
| 179601-23-1 | m/p-Xylenes                 | 1.2   | U         | 0.85     | 1.2  | 11.8       | ug/Kg   |  |
| 95-47-6     | o-Xylene                    | 0.59  | U         | 0.59     | 0.59 | 5.9        | ug/Kg   |  |
| 100-42-5    | Styrene                     | 0.59  | U         | 0.53     | 0.59 | 5.9        | ug/Kg   |  |
| 75-25-2     | Bromoform                   | 1.8   | U         | 0.88     | 1.8  | 5.9        | ug/Kg   |  |
| 98-82-8     | Isopropylbenzene            | 0.59  | U         | 0.57     | 0.59 | 5.9        | ug/Kg   |  |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.59  | U         | 0.54     | 0.59 | 5.9        | ug/Kg   |  |
| 103-65-1    | n-propylbenzene             | 0.59  | U         | 0.43     | 0.59 | 5.9        | ug/Kg   |  |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.59  | U         | 0.53     | 0.59 | 5.9        | ug/Kg   |  |
| 98-06-6     | tert-Butylbenzene           | 0.59  | U         | 0.59     | 0.59 | 5.9        | ug/Kg   |  |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.59  | U         | 0.59     | 0.59 | 5.9        | ug/Kg   |  |
| 135-98-8    | sec-Butylbenzene            | 0.59  | U         | 0.59     | 0.59 | 5.9        | ug/Kg   |  |
| 99-87-6     | p-Isopropyltoluene          | 0.59  | U         | 0.34     | 0.59 | 5.9        | ug/Kg   |  |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.59  | U         | 0.44     | 0.59 | 5.9        | ug/Kg   |  |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.59  | U         | 0.49     | 0.59 | 5.9        | ug/Kg   |  |
| 104-51-8    | n-Butylbenzene              | 0.59  | U         | 0.54     | 0.59 | 5.9        | ug/Kg   |  |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.59  | U         | 0.59     | 0.59 | 5.9        | ug/Kg   |  |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 5.9   | U         | 1        | 5.9  | 5.9        | ug/Kg   |  |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.59  | U         | 0.59     | 0.59 | 5.9        | ug/Kg   |  |
| 91-20-3     | Naphthalene                 | 0.59  | U         | 0.53     | 0.59 | 5.9        | ug/Kg   |  |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 1.2   | U         | 0.59     | 1.2  | 5.9        | ug/Kg   |  |
| 123-91-1    | 1,4-Dioxane                 | 120   | U         | 120      | 120  | 120        | ug/Kg   |  |
| SURROGATES  |                             |       |           |          |      |            |         |  |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 40    |           | 56 - 120 |      | 80%        | SPK: 50 |  |
| 1868-53-7   | Dibromofluoromethane        | 52.1  |           | 57 - 135 | 5    | 104%       | SPK: 50 |  |
|             |                             |       |           |          |      |            |         |  |



Client:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Report of Analysis**

Project: NYCSCA Unionport Road Bronx

Dvirka & Bartilucci

Client Sample ID: GP-6(12-14)
Lab Sample ID: F2918-03

Analytical Method: SW8260

Sample Wt/Vol: 5.79 Units: g

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

Date Collected:

06/25/14

Date Received: 06/27/14

SDG No.: F2918

Matrix: % Moisture:

Final Vol:

SOIL 27.1

5000

uL

Test:

VOCMS Group1

Level: LOW

File ID/Qc Batch:

VT008867.D

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

07/01/14

VT063014

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL LO   | DD LOQ/CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|-------------|---------|
| 2037-26-5    | Toluene-d8             | 24.4   | *         | 67 - 123 | 49%         | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 47.1   |           | 33 - 141 | 94%         | SPK: 50 |
| INTERNAL STA | ANDARDS                |        |           |          |             |         |
| 363-72-4     | Pentafluorobenzene     | 735438 | 7.43      |          |             |         |
| 540-36-3     | 1,4-Difluorobenzene    | 900488 | 8.37      |          |             |         |
| 3114-55-4    | Chlorobenzene-d5       | 560255 | 11.21     |          |             |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 478627 | 13.15     |          |             |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-6(12-14)RE SDG No.: F2918 SOIL Lab Sample ID: F2918-03RE Matrix: Analytical Method: SW8260 % Moisture: 27.1 Sample Wt/Vol: 5.94 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008915.D 1 07/02/14 VT070114

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 74-83-9    | Bromomethane                   | 1.2   | U         | 1.2  | 1.2  | 5.8        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 67-64-1    | Acetone                        | 2.9   | U         | 2.9  | 2.9  | 28.9       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 1.2   | U         | 1.2  | 1.2  | 5.8        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 8.7   | U         | 3.6  | 8.7  | 28.9       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 71-43-2    | Benzene                        | 0.58  | U         | 0.44 | 0.58 | 5.8        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.58  | U         | 0.3  | 0.58 | 5.8        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 2.9   | U         | 2.9  | 2.9  | 28.9       | ug/Kg |
| 108-88-3   | Toluene                        | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.58  | U         | 0.58 | 0.58 | 5.8        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-6(12-14)RE SDG No.: F2918 SOIL Lab Sample ID: F2918-03RE Matrix: Analytical Method: SW8260 % Moisture: 27.1 Sample Wt/Vol: 5.94 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008915.D 1 07/02/14 VT070114

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.58  | U         | 0.58     | 0.58 | 5.8        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 1.2   | U         | 1        | 1.2  | 5.8        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 2.9   | U         | 2.9      | 2.9  | 28.9       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.58  | U         | 0.58     | 0.58 | 5.8        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.58  | U         | 0.58     | 0.58 | 5.8        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 0.58  | U         | 0.58     | 0.58 | 5.8        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.58  | U         | 0.58     | 0.58 | 5.8        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 0.58  | U         | 0.58     | 0.58 | 5.8        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 1.2   | U         | 0.83     | 1.2  | 11.5       | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.58  | U         | 0.58     | 0.58 | 5.8        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.58  | U         | 0.52     | 0.58 | 5.8        | ug/Kg   |
| 75-25-2     | Bromoform                   | 1.7   | U         | 0.85     | 1.7  | 5.8        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.58  | U         | 0.55     | 0.58 | 5.8        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.58  | U         | 0.53     | 0.58 | 5.8        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.58  | U         | 0.42     | 0.58 | 5.8        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.58  | U         | 0.52     | 0.58 | 5.8        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.58  | U         | 0.58     | 0.58 | 5.8        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.58  | U         | 0.58     | 0.58 | 5.8        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.58  | U         | 0.58     | 0.58 | 5.8        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.58  | U         | 0.33     | 0.58 | 5.8        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.58  | U         | 0.43     | 0.58 | 5.8        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.58  | U         | 0.47     | 0.58 | 5.8        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.58  | U         | 0.53     | 0.58 | 5.8        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.58  | U         | 0.58     | 0.58 | 5.8        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 5.8   | U         | 1        | 5.8  | 5.8        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.58  | U         | 0.58     | 0.58 | 5.8        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.58  | U         | 0.52     | 0.58 | 5.8        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 1.2   | U         | 0.58     | 1.2  | 5.8        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 120   | U         | 120      | 120  | 120        | ug/Kg   |
| SURROGATES  | 100:11                      | 42.0  |           | F.C. 15: |      | 0.607      | CDIZ 50 |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 42.9  |           | 56 - 120 |      | 86%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 52.1  |           | 57 - 135 | 5    | 104%       | SPK: 50 |



Lab Sample ID:

VT008915.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

F2918-03RE

Client Sample ID: GP-6(12-14)RE

Analytical Method: SW8260

Sample Wt/Vol: 5.94 Units:

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

1

Matrix: SOIL % Moisture: 27.1

Date Collected:

Date Received:

SDG No.:

Final Vol: 5000

Test: VOCMS Group1

06/25/14

06/27/14

Prep Batch ID

uL

F2918

Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed

g

07/02/14 VT070114

Conc. **MDL** Units **CAS Number Parameter** Qualifier LOD LOQ / CRQL 2037-26-5 Toluene-d8 23.2 67 - 123 46% SPK: 50 4-Bromofluorobenzene 44 33 - 141 88% 460-00-4 SPK: 50 INTERNAL STANDARDS Pentafluorobenzene 735764 7.43 363-72-4 540-36-3 1,4-Difluorobenzene 961378 8.37 3114-55-4 Chlorobenzene-d5 569829 11.21 1.4-Dichlorobenzene-d4 404664 13.15 3855-82-1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 12:10 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-9(0-5) F2918 Lab Sample ID: F2918-04 Matrix: SOIL % Solid: 91.1

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.126 | U    | 1  | 0.033 | 0.126 | 0.252      | mg/Kg | 07/01/14  | 07/02/14 12:40 | 9012B    |
| Hexavalent Chromium | 0.218 | U    | 1  | 0.087 | 0.218 | 0.436      | mg/Kg | 07/02/14  | 07/02/14 15:16 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-9(0-5) Lab Sample ID: F2918-04 Matrix: **SOIL** 8.9 % Moisture: Analytical Method: SW8151A Decanted: Sample Wt/Vol: Final Vol: 30.02 Units: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010328.D 1 07/01/14 07/03/14 PB77541

| CAS Number | Parameter         | Conc. | Qualif | ier MDL  | LOD  | LOQ / CF | RQL Units |
|------------|-------------------|-------|--------|----------|------|----------|-----------|
| TARGETS    |                   |       |        |          |      |          |           |
| 1918-00-9  | DICAMBA           | 18.3  | U      | 14.6     | 18.3 | 73.5     | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 18.3  | U      | 13.5     | 18.3 | 73.5     | ug/Kg     |
| 94-75-7    | 2,4-D             | 18.3  | U      | 18.3     | 18.3 | 73.5     | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 18.3  | U      | 12       | 18.3 | 73.5     | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 18.3  | U      | 11.2     | 18.3 | 73.5     | ug/Kg     |
| 94-82-6    | 2,4-DB            | 18.3  | U      | 18.3     | 18.3 | 73.5     | ug/Kg     |
| 88-85-7    | DINOSEB           | 18.3  | U      | 18.3     | 18.3 | 73.5     | ug/Kg     |
| SURROGATES |                   |       |        |          |      |          |           |
| 19719-28-9 | 2,4-DCAA          | 308   |        | 12 - 189 | )    | 62%      | SPK: 500  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client Sample ID:

GP-9(0-5)

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Report of Analysis**

SDG No.:

F2918

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Lab Sample ID: F2918-04 Matrix: SOIL

Level (low/med): low % Solid: 91.1

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CF | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.16  | UN   | 1  | 0.519 | 1.16  | 2.32     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-38-2 | Arsenic   | 3.94  |      | 1  | 0.306 | 0.463 | 0.926    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-39-3 | Barium    | 359   |      | 1  | 0.371 | 2.32  | 4.63     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.595 |      | 1  | 0.056 | 0.139 | 0.278    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.224 | J    | 1  | 0.056 | 0.139 | 0.278    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-47-3 | Chromium  | 28.6  |      | 1  | 0.12  | 0.232 | 0.463    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-48-4 | Cobalt    | 11    |      | 1  | 0.528 | 0.695 | 1.39     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-50-8 | Copper    | 29.9  |      | 1  | 0.296 | 0.463 | 0.926    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-92-1 | Lead      | 827   | N    | 1  | 0.111 | 0.278 | 0.556    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-96-5 | Manganese | 288   |      | 1  | 0.176 | 0.463 | 0.926    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.239 |      | 1  | 0.005 | 0.005 | 0.011    | mg/Kg 07/01/14      | 07/03/14  | SW7471A  |
| 7440-02-0 | Nickel    | 25    |      | 1  | 0.426 | 0.926 | 1.85     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7782-49-2 | Selenium  | 0.729 | J    | 1  | 0.38  | 0.463 | 0.926    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-22-4 | Silver    | 0.807 |      | 1  | 0.139 | 0.232 | 0.463    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.926 | U    | 1  | 0.25  | 0.926 | 1.85     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-62-2 | Vanadium  | 29.3  |      | 1  | 0.547 | 0.926 | 1.85     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-66-6 | Zinc      | 265   |      | 1  | 0.648 | 0.926 | 1.85     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-9(0-5) Lab Sample ID: F2918-04 Matrix: SOIL 8.9 % Moisture: Analytical Method: SW8082A Decanted: Sample Wt/Vol: 30.08 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PP003685.D 1 07/01/14 07/02/14 PB77542

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD | LOQ / CF | RQL Units |
|------------|----------------------|-------|-----------|----------|-----|----------|-----------|
| TARGETS    |                      |       |           |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 3.6   | U         | 3.6      | 3.6 | 18.6     | ug/kg     |
| 11104-28-2 | Aroclor-1221         | 3.6   | U         | 3.6      | 3.6 | 18.6     | ug/kg     |
| 11141-16-5 | Aroclor-1232         | 3.6   | U         | 3.6      | 3.6 | 18.6     | ug/kg     |
| 53469-21-9 | Aroclor-1242         | 3.6   | U         | 3.6      | 3.6 | 18.6     | ug/kg     |
| 12672-29-6 | Aroclor-1248         | 3.6   | U         | 3.6      | 3.6 | 18.6     | ug/kg     |
| 11097-69-1 | Aroclor-1254         | 3.6   | U         | 1.6      | 3.6 | 18.6     | ug/kg     |
| 11096-82-5 | Aroclor-1260         | 3.6   | U         | 3.6      | 3.6 | 18.6     | ug/kg     |
| SURROGATES |                      |       |           |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 18    |           | 10 - 166 | 6   | 90%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 14.1  |           | 60 - 125 | 5   | 71%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Pesticide-TCL

Test:



Soil Aliquot Vol:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-9(0-5) SDG No.: F2918

Lab Sample ID: F2918-04 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 8.9 Decanted:

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Extraction Type: Injection Volume :

uL

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023220.D 1 07/01/14 07/02/14 PB77543

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|-------|----------|----------|
| TARGETS    |                      |       |           |          |       |          |          |
| 319-84-6   | alpha-BHC            | 0.362 | U         | 0.142    | 0.362 | 1.9      | ug/kg    |
| 319-85-7   | beta-BHC             | 0.362 | U         | 0.197    | 0.362 | 1.9      | ug/kg    |
| 319-86-8   | delta-BHC            | 0.362 | U         | 0.11     | 0.362 | 1.9      | ug/kg    |
| 58-89-9    | gamma-BHC (Lindane)  | 0.362 | U         | 0.164    | 0.362 | 1.9      | ug/kg    |
| 76-44-8    | Heptachlor           | 0.362 | U         | 0.153    | 0.362 | 1.9      | ug/kg    |
| 309-00-2   | Aldrin               | 0.362 | U         | 0.11     | 0.362 | 1.9      | ug/kg    |
| 1024-57-3  | Heptachlor epoxide   | 0.362 | U         | 0.175    | 0.362 | 1.9      | ug/kg    |
| 959-98-8   | Endosulfan I         | 0.362 | U         | 0.164    | 0.362 | 1.9      | ug/kg    |
| 60-57-1    | Dieldrin             | 0.362 | U         | 0.142    | 0.362 | 1.9      | ug/kg    |
| 72-55-9    | 4,4-DDE              | 0.362 | U         | 0.219    | 0.362 | 1.9      | ug/kg    |
| 72-20-8    | Endrin               | 0.362 | U         | 0.197    | 0.362 | 1.9      | ug/kg    |
| 33213-65-9 | Endosulfan II        | 0.362 | U         | 0.153    | 0.362 | 1.9      | ug/kg    |
| 72-54-8    | 4,4-DDD              | 0.362 | U         | 0.186    | 0.362 | 1.9      | ug/kg    |
| 1031-07-8  | Endosulfan Sulfate   | 0.362 | U         | 0.164    | 0.362 | 1.9      | ug/kg    |
| 50-29-3    | 4,4-DDT              | 0.362 | U         | 0.153    | 0.362 | 1.9      | ug/kg    |
| 72-43-5    | Methoxychlor         | 0.362 | U         | 0.186    | 0.362 | 1.9      | ug/kg    |
| 53494-70-5 | Endrin ketone        | 0.362 | U         | 0.142    | 0.362 | 1.9      | ug/kg    |
| 7421-93-4  | Endrin aldehyde      | 0.362 | U         | 0.164    | 0.362 | 1.9      | ug/kg    |
| 5103-71-9  | alpha-Chlordane      | 0.362 | U         | 0.153    | 0.362 | 1.9      | ug/kg    |
| 5103-74-2  | gamma-Chlordane      | 0.362 | U         | 0.142    | 0.362 | 1.9      | ug/kg    |
| 8001-35-2  | Toxaphene            | 3.6   | U         | 3.6      | 3.6   | 18.6     | ug/kg    |
| SURROGATES |                      |       |           |          |       |          |          |
| 2051-24-3  | Decachlorobiphenyl   | 16.5  |           | 10 - 169 |       | 82%      | SPK: 20  |
| 877-09-8   | Tetrachloro-m-xylene | 20.7  |           | 31 - 151 |       | 104%     | SPK: 20  |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project:

NYCSCA Unionport Road Bronx

06/27/14

Client Sample ID:

GP-9(0-5)

SDG No.:

F2918

Lab Sample ID:

F2918-04

Matrix:

Date Received:

**SOIL** 

Analytical Method:

SW8081

% Moisture:

8.9

Sample Wt/Vol:

30.05

Final Vol:

Decanted:

Soil Aliquot Vol:

Units: g

10000 иL

иL

Test:

Pesticide-TCL

Extraction Type: GPC Factor:

1.0

PH:

Injection Volume:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PB77543

PD023220.D

1

07/01/14

07/02/14

**CAS Number** 

Parameter

Conc.

Qualifier MDL

LOD

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-9(0-5) SDG No.: F2918

Lab Sample ID: F2918-04 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 8.9

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072267.D 1 07/01/14 07/02/14 PB77544

| BF0/226/.D | I                           | 0//01/14 | 0             | //02/14 |      | PB / /544  |       |
|------------|-----------------------------|----------|---------------|---------|------|------------|-------|
| CAS Number | Parameter                   | Cor      | ıc. Qualifier | MDL     | LOD  | LOQ / CRQL | Units |
| TARGETS    |                             |          |               |         |      |            |       |
| 100-52-7   | Benzaldehyde                | 36.0     |               | 19.1    | 36.6 | 360        | ug/Kg |
| 108-95-2   | Phenol                      | 36.0     | 6 U           | 8.4     | 36.6 | 360        | ug/Kg |
| 111-44-4   | bis(2-Chloroethyl)ether     | 36.0     | 5 U           | 17.6    | 36.6 | 360        | ug/Kg |
| 95-57-8    | 2-Chlorophenol              | 36.0     | 6 U           | 19.3    | 36.6 | 360        | ug/Kg |
| 95-48-7    | 2-Methylphenol              | 36.0     | 5 U           | 19.9    | 36.6 | 360        | ug/Kg |
| 108-60-1   | 2,2-oxybis(1-Chloropropane) | 36.0     | 6 U           | 15.1    | 36.6 | 360        | ug/Kg |
| 98-86-2    | Acetophenone                | 36.0     | 6 U           | 11.2    | 36.6 | 360        | ug/Kg |
| 65794-96-9 | 3+4-Methylphenols           | 36.0     | 6 U           | 19      | 36.6 | 360        | ug/Kg |
| 621-64-7   | n-Nitroso-di-n-propylamine  | 36.0     | 6 U           | 18.4    | 36.6 | 360        | ug/Kg |
| 67-72-1    | Hexachloroethane            | 36.0     | 6 U           | 16.4    | 36.6 | 360        | ug/Kg |
| 98-95-3    | Nitrobenzene                | 36.0     | 6 U           | 13.8    | 36.6 | 360        | ug/Kg |
| 78-59-1    | Isophorone                  | 36.0     | 6 U           | 12.1    | 36.6 | 360        | ug/Kg |
| 88-75-5    | 2-Nitrophenol               | 36.0     | 6 U           | 17.7    | 36.6 | 360        | ug/Kg |
| 105-67-9   | 2,4-Dimethylphenol          | 36.0     | 6 U           | 20.7    | 36.6 | 360        | ug/Kg |
| 111-91-1   | bis(2-Chloroethoxy)methane  | 36.0     | 6 U           | 21.1    | 36.6 | 360        | ug/Kg |
| 120-83-2   | 2,4-Dichlorophenol          | 36.0     | 6 U           | 13.9    | 36.6 | 360        | ug/Kg |
| 91-20-3    | Naphthalene                 | 36.0     | 6 U           | 12.6    | 36.6 | 360        | ug/Kg |
| 106-47-8   | 4-Chloroaniline             | 36.0     | 6 U           | 25.8    | 36.6 | 360        | ug/Kg |
| 87-68-3    | Hexachlorobutadiene         | 36.0     | 6 U           | 13.3    | 36.6 | 360        | ug/Kg |
| 105-60-2   | Caprolactam                 | 73.2     | 2 U           | 17      | 73.2 | 360        | ug/Kg |
| 59-50-7    | 4-Chloro-3-methylphenol     | 36.0     | 6 U           | 16.2    | 36.6 | 360        | ug/Kg |
| 91-57-6    | 2-Methylnaphthalene         | 36.0     | 6 U           | 9.2     | 36.6 | 360        | ug/Kg |
| 77-47-4    | Hexachlorocyclopentadiene   | 36.0     | 6 U           | 8.9     | 36.6 | 360        | ug/Kg |
| 88-06-2    | 2,4,6-Trichlorophenol       | 36.0     | 6 U           | 11.2    | 36.6 | 360        | ug/Kg |
| 95-95-4    | 2,4,5-Trichlorophenol       | 36.0     | 6 U           | 25.7    | 36.6 | 360        | ug/Kg |
| 92-52-4    | 1,1-Biphenyl                | 36.0     | 6 U           | 13.8    | 36.6 | 360        | ug/Kg |
| 91-58-7    | 2-Chloronaphthalene         | 36.0     | 6 U           | 8.3     | 36.6 | 360        | ug/Kg |
| 88-74-4    | 2-Nitroaniline              | 36.0     | 6 U           | 16.2    | 36.6 | 360        | ug/Kg |
| 131-11-3   | Dimethylphthalate           | 610      |               | 9.9     | 36.6 | 360        | ug/Kg |
| 208-96-8   | Acenaphthylene              | 36.0     | 5 U           | 9.2     | 36.6 | 360        | ug/Kg |
| 606-20-2   | 2,6-Dinitrotoluene          | 36.0     | 6 U           | 14.9    | 36.6 | 360        | ug/Kg |
|            |                             |          |               |         |      |            |       |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-9(0-5) SDG No.: F2918
Lab Sample ID: F2918-04 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 8.9

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072267.D 1 07/01/14 07/02/14 PB77544

| BF072267.D | 1                          | 07/01/14 | 07.       | /02/14 |      | PB77544    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 73.2     | U         | 23.5   | 73.2 | 360        | ug/Kg |
| 83-32-9    | Acenaphthene               | 36.6     | U         | 10.3   | 36.6 | 360        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 290      | U         | 37.2   | 290  | 360        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 180      | U         | 67.9   | 180  | 360        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 36.6     | U         | 14.3   | 36.6 | 360        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 36.6     | U         | 11     | 36.6 | 360        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 36.6     | U         | 5.7    | 36.6 | 360        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 36.6     | U         | 19.9   | 36.6 | 360        | ug/Kg |
| 86-73-7    | Fluorene                   | 36.6     | U         | 13.8   | 36.6 | 360        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 73.2     | U         | 47.6   | 73.2 | 360        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 180      | U         | 21     | 180  | 360        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 36.6     | U         | 8.8    | 36.6 | 360        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 36.6     | U         | 7.1    | 36.6 | 360        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 36.6     | U         | 14.9   | 36.6 | 360        | ug/Kg |
| 1912-24-9  | Atrazine                   | 36.6     | U         | 19.3   | 36.6 | 360        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 36.6     | U         | 25     | 36.6 | 360        | ug/Kg |
| 85-01-8    | Phenanthrene               | 110      | J         | 9.9    | 36.6 | 360        | ug/Kg |
| 120-12-7   | Anthracene                 | 36.6     | U         | 7.5    | 36.6 | 360        | ug/Kg |
| 86-74-8    | Carbazole                  | 36.6     | U         | 8      | 36.6 | 360        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 36.6     | U         | 28.8   | 36.6 | 360        | ug/Kg |
| 206-44-0   | Fluoranthene               | 140      | J         | 7.4    | 36.6 | 360        | ug/Kg |
| 129-00-0   | Pyrene                     | 92.2     | J         | 8.8    | 36.6 | 360        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 36.6     | U         | 17.6   | 36.6 | 360        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 36.6     | U         | 23.5   | 36.6 | 360        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 36.6     | U         | 17.4   | 36.6 | 360        | ug/Kg |
| 218-01-9   | Chrysene                   | 36.6     | U         | 16.6   | 36.6 | 360        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 36.6     | U         | 12.9   | 36.6 | 360        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 36.6     | U         | 4.2    | 36.6 | 360        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 36.6     | U         | 12     | 36.6 | 360        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 36.6     | U         | 17.2   | 36.6 | 360        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 36.6     | U         | 7.9    | 36.6 | 360        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 36.6     | U         | 12.2   | 36.6 | 360        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 36.6     | U         | 10.5   | 36.6 | 360        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-9(0-5) SDG No.: F2918 SOIL Lab Sample ID: F2918-04 Matrix: Analytical Method: SW8270 % Moisture: 8.9 Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group1 Extraction Type: N Level: Decanted: LOW

GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date BF072267.D 1 07/01/14 07/02/14 PB77544

| CAS Number   | Parameter                        | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |
|--------------|----------------------------------|--------|-----------|----------|------|------------|----------|
| 191-24-2     | Benzo(g,h,i)perylene             | 36.6   | U         | 14.8     | 36.6 | 360        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       | 36.6   | U         | 14.4     | 36.6 | 360        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        | 36.6   | U         | 14.4     | 36.6 | 360        | ug/Kg    |
| SURROGATES   |                                  |        |           |          |      |            |          |
| 367-12-4     | 2-Fluorophenol                   | 110    |           | 28 - 127 | 7    | 75%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        | 120    |           | 34 - 127 | 7    | 79%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  | 70.2   |           | 31 - 132 | 2    | 70%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 | 60.1   |           | 39 - 123 | 3    | 60%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             | 99.7   |           | 30 - 133 | 3    | 66%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    | 50.1   |           | 37 - 115 | 5    | 50%        | SPK: 100 |
| INTERNAL STA | NDARDS                           |        |           |          |      |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 37616  | 7.16      |          |      |            |          |
| 1146-65-2    | Naphthalene-d8                   | 157688 | 8.73      |          |      |            |          |
| 15067-26-2   | Acenaphthene-d10                 | 84933  | 10.9      |          |      |            |          |
| 1517-22-2    | Phenanthrene-d10                 | 157663 | 12.73     |          |      |            |          |
| 1719-03-5    | Chrysene-d12                     | 202510 | 16        |          |      |            |          |
| 1520-96-3    | Perylene-d12                     | 190650 | 17.65     |          |      |            |          |
| TENTATIVE ID | ENTIFIED COMPOUNDS               |        |           |          |      |            |          |
| 000077-76-9  | Propane, 2,2-dimethoxy-          | 14600  | J         |          |      | 1.37       | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      | 840    | J         |          |      | 1.65       | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- | 400    | A         |          |      | 4.89       | ug/Kg    |
|              | unknown6.87                      | 2900   | J         |          |      | 6.87       | ug/Kg    |
| 000112-37-8  | Undecanoic acid                  | 170    | J         |          |      | 13.48      | ug/Kg    |
| 000111-06-8  | Hexadecanoic acid, butyl ester   | 91.1   | J         |          |      | 14.59      | ug/Kg    |
| 074685-33-9  | 3-Eicosene, (E)-                 | 240    | J         |          |      | 15.91      | ug/Kg    |
| 000192-97-2  | Benzo[e]pyrene                   | 110    | J         |          |      | 17.24      | ug/Kg    |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx

06/27/14

Client Sample ID: GP-9(0-5) SDG No.: F2918

Lab Sample ID: F2918-04

Matrix: SOIL

Analytical Method: SW8270 % Moisture:

Date Received:

Sample Wt/Vol:

30.01 Units: g Final Vol: 1000

uL

Soil Aliquot Vol:

uL

Test:

SVOCMS Group1

Extraction Type:

Decanted: N Level:

LOW

8.9

Injection Volume:

GPC Factor:

1.0

GPC Cleanup:

Ν

PH:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PB77544

BF072267.D

1

07/01/14

07/02/14

**CAS Number** 

**Parameter** 

Conc.

Qualifier

**MDL** 

LOD

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



GC Column:

RXI-624

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-9(0-5) Matrix: SOIL Lab Sample ID: F2918-04 Analytical Method: SW8260 % Moisture: 8.9 Sample Wt/Vol: 5.82 Units: Final Vol: 5000 uL g Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008868.D 1 07/01/14 VT063014

ID: 0.25

**MDL CAS Number** Parameter Conc. Qualifier LOD LOQ / CRQL Units **TARGETS** 75-71-8 Dichlorodifluoromethane 0.47 U 0.47 0.47 4.7 ug/Kg Chloromethane 0.47 U 4.7 74-87-3 0.47 0.47 ug/Kg Vinyl Chloride 0.47 U 0.47 75-01-4 0.47 4.7 ug/Kg 0.94 U 74-83-9 Bromomethane 0.94 0.94 4.7 ug/Kg 75-00-3 Chloroethane 0.47 U 0.47 0.47 4.7 ug/Kg 0.47 U 75-69-4 Trichlorofluoromethane 0.47 0.47 4.7 ug/Kg 1,1,2-Trichlorotrifluoroethane 0.47 U 0.47 0.47 76-13-1 4.7 ug/Kg U 75-35-4 1,1-Dichloroethene 0.47 0.47 0.47 4.7 ug/Kg J 67-64-1 Acetone 8.7 2.4 2.4 23.6 ug/Kg U 75-15-0 Carbon Disulfide 0.47 0.47 0.47 4.7 ug/Kg Methyl tert-butyl Ether 0.47 U 0.47 4.7 1634-04-4 0.47 ug/Kg 79-20-9 Methyl Acetate 0.94 U 0.94 0.94 4.7 ug/Kg U 75-09-2 Methylene Chloride 0.47 0.47 0.47 4.7 ug/Kg 156-60-5 trans-1,2-Dichloroethene 0.47 U 0.47 0.47 4.7 ug/Kg 75-34-3 1,1-Dichloroethane 0.47 U 0.47 0.47 4.7 ug/Kg 110-82-7 Cvclohexane 0.47 U 0.47 0.47 4.7 ug/Kg 78-93-3 2-Butanone 7.1 U 2.9 7.1 23.6 ug/Kg 56-23-5 Carbon Tetrachloride 0.47 U 0.47 0.47 4.7 ug/Kg 156-59-2 cis-1.2-Dichloroethene 0.47 U 0.47 0.47 4.7 ug/Kg 74-97-5 Bromochloromethane 0.47 U 0.47 4.7 0.47 ug/Kg 67-66-3 Chloroform 0.47 U 0.47 0.47 4.7 ug/Kg 1,1,1-Trichloroethane 0.47 71-55-6 U 0.47 0.47 4.7 ug/Kg 108-87-2 Methylcyclohexane 0.47 U 0.47 0.47 4.7 ug/Kg 71-43-2 Benzene 0.47 U 0.36 0.47 4.7 ug/Kg U 107-06-2 1,2-Dichloroethane 0.47 0.47 0.47 4.7 ug/Kg 79-01-6 Trichloroethene 0.47 U 0.47 0.47 4.7 ug/Kg 78-87-5 1,2-Dichloropropane 0.47 U 0.25 0.47 4.7 ug/Kg 0.47 75-27-4 Bromodichloromethane 0.47 U 0.47 4.7 ug/Kg 108-10-1 4-Methyl-2-Pentanone 2.4 U 2.4 2.4 23.6 ug/Kg 0.47 U 108-88-3 Toluene 0.47 0.47 4.7 ug/Kg 10061-02-6 t-1,3-Dichloropropene 0.47 U 0.47 0.47 4.7 ug/Kg



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-9(0-5) SDG No.: F2918 SOIL Lab Sample ID: F2918-04 Matrix: Analytical Method: SW8260 % Moisture: 8.9 Sample Wt/Vol: 5.82 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008868.D 1 07/01/14 VT063014

|             | -                           |       |           |          |      |            |         |  |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|--|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |  |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.47  | U         | 0.47     | 0.47 | 4.7        | ug/Kg   |  |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.94  | U         | 0.85     | 0.94 | 4.7        | ug/Kg   |  |
| 591-78-6    | 2-Hexanone                  | 2.4   | U         | 2.4      | 2.4  | 23.6       | ug/Kg   |  |
| 124-48-1    | Dibromochloromethane        | 0.47  | U         | 0.47     | 0.47 | 4.7        | ug/Kg   |  |
| 106-93-4    | 1,2-Dibromoethane           | 0.47  | U         | 0.47     | 0.47 | 4.7        | ug/Kg   |  |
| 127-18-4    | Tetrachloroethene           | 1.1   | J         | 0.47     | 0.47 | 4.7        | ug/Kg   |  |
| 108-90-7    | Chlorobenzene               | 0.47  | U         | 0.47     | 0.47 | 4.7        | ug/Kg   |  |
| 100-41-4    | Ethyl Benzene               | 0.47  | U         | 0.47     | 0.47 | 4.7        | ug/Kg   |  |
| 179601-23-1 | m/p-Xylenes                 | 0.94  | U         | 0.68     | 0.94 | 9.4        | ug/Kg   |  |
| 95-47-6     | o-Xylene                    | 0.47  | U         | 0.47     | 0.47 | 4.7        | ug/Kg   |  |
| 100-42-5    | Styrene                     | 0.47  | U         | 0.42     | 0.47 | 4.7        | ug/Kg   |  |
| 75-25-2     | Bromoform                   | 1.4   | U         | 0.7      | 1.4  | 4.7        | ug/Kg   |  |
| 98-82-8     | Isopropylbenzene            | 0.47  | U         | 0.45     | 0.47 | 4.7        | ug/Kg   |  |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.47  | U         | 0.43     | 0.47 | 4.7        | ug/Kg   |  |
| 103-65-1    | n-propylbenzene             | 0.47  | U         | 0.34     | 0.47 | 4.7        | ug/Kg   |  |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.47  | U         | 0.42     | 0.47 | 4.7        | ug/Kg   |  |
| 98-06-6     | tert-Butylbenzene           | 0.47  | U         | 0.47     | 0.47 | 4.7        | ug/Kg   |  |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.47  | U         | 0.47     | 0.47 | 4.7        | ug/Kg   |  |
| 135-98-8    | sec-Butylbenzene            | 0.47  | U         | 0.47     | 0.47 | 4.7        | ug/Kg   |  |
| 99-87-6     | p-Isopropyltoluene          | 0.47  | U         | 0.27     | 0.47 | 4.7        | ug/Kg   |  |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.47  | U         | 0.35     | 0.47 | 4.7        | ug/Kg   |  |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.47  | U         | 0.39     | 0.47 | 4.7        | ug/Kg   |  |
| 104-51-8    | n-Butylbenzene              | 0.47  | U         | 0.43     | 0.47 | 4.7        | ug/Kg   |  |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.47  | U         | 0.47     | 0.47 | 4.7        | ug/Kg   |  |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 4.7   | U         | 0.82     | 4.7  | 4.7        | ug/Kg   |  |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.47  | U         | 0.47     | 0.47 | 4.7        | ug/Kg   |  |
| 91-20-3     | Naphthalene                 | 1     | J         | 0.42     | 0.47 | 4.7        | ug/Kg   |  |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.94  | U         | 0.47     | 0.94 | 4.7        | ug/Kg   |  |
| 123-91-1    | 1,4-Dioxane                 | 94.3  | U         | 94.3     | 94.3 | 94.3       | ug/Kg   |  |
| SURROGATES  |                             |       |           |          |      |            |         |  |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 38.9  |           | 56 - 120 |      | 78%        | SPK: 50 |  |
| 1868-53-7   | Dibromofluoromethane        | 45.6  |           | 57 - 135 | 5    | 91%        | SPK: 50 |  |
|             |                             |       |           |          |      |            |         |  |



Client:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Project: NYCSCA Unionport Road Bronx

Dvirka & Bartilucci

Client Sample ID: GP-9(0-5) Lab Sample ID: F2918-04

SW8260 Analytical Method:

Sample Wt/Vol: 5.82 Units: g

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

1

SDG No.:

Date Collected:

Date Received:

06/27/14 F2918

06/25/14

Matrix:

SOIL

% Moisture:

8.9

LOW

5000

uL

Test:

Final Vol:

VOCMS Group1

Level:

File ID/Qc Batch:

VT008868.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

07/01/14

VT063014

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|-----|------------|---------|
| 2037-26-5   | Toluene-d8             | 35.1   |           | 67 - 123 |     | 70%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 17.7   |           | 33 - 141 |     | 35%        | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |     |            |         |
| 363-72-4    | Pentafluorobenzene     | 604344 | 7.42      |          |     |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 879009 | 8.37      |          |     |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 535790 | 11.21     |          |     |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 116276 | 13.15     |          |     |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-9(0-5)RE SDG No.: F2918 SOIL Lab Sample ID: F2918-04RE Matrix: Analytical Method: SW8260 % Moisture: 8.9 Sample Wt/Vol: 6.27 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008916.D 1 07/02/14 VT070114

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.88  | U         | 0.88 | 0.88 | 4.4        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 67-64-1    | Acetone                        | 4.9   | J         | 2.2  | 2.2  | 21.9       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.88  | U         | 0.88 | 0.88 | 4.4        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 6.6   | U         | 2.7  | 6.6  | 21.9       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 71-43-2    | Benzene                        | 0.44  | U         | 0.33 | 0.44 | 4.4        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.44  | U         | 0.23 | 0.44 | 4.4        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 2.2   | U         | 2.2  | 2.2  | 21.9       | ug/Kg |
| 108-88-3   | Toluene                        | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-9(0-5)RE SDG No.: F2918 SOIL Lab Sample ID: F2918-04RE Matrix: Analytical Method: SW8260 % Moisture: 8.9

Sample Wt/Vol: 6.27 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VT008916.D 1 07/02/14 VT070114

|             | -                           |       | * · · · · · · · |          |      |            |         |
|-------------|-----------------------------|-------|-----------------|----------|------|------------|---------|
| CAS Number  | Parameter                   | Conc. | Qualifier       | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.88  | U               | 0.79     | 0.88 | 4.4        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 2.2   | U               | 2.2      | 2.2  | 21.9       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 0.88  | U               | 0.63     | 0.88 | 8.8        | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.44  | U               | 0.39     | 0.44 | 4.4        | ug/Kg   |
| 75-25-2     | Bromoform                   | 1.3   | U               | 0.65     | 1.3  | 4.4        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.44  | U               | 0.42     | 0.44 | 4.4        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.44  | U               | 0.4      | 0.44 | 4.4        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.44  | U               | 0.32     | 0.44 | 4.4        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.44  | U               | 0.39     | 0.44 | 4.4        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.44  | U               | 0.25     | 0.44 | 4.4        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.44  | U               | 0.32     | 0.44 | 4.4        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.44  | U               | 0.36     | 0.44 | 4.4        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.44  | U               | 0.4      | 0.44 | 4.4        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 4.4   | U               | 0.76     | 4.4  | 4.4        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.44  | U               | 0.39     | 0.44 | 4.4        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.88  | U               | 0.44     | 0.88 | 4.4        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 87.5  | U               | 87.5     | 87.5 | 87.5       | ug/Kg   |
| SURROGATES  |                             |       |                 |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 38.7  |                 | 56 - 120 |      | 77%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 44.7  |                 | 57 - 135 | 5    | 89%        | SPK: 50 |
|             |                             |       |                 |          |      |            |         |



Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-9(0-5)RE

Lab Sample ID: F2918-04RE

Analytical Method: SW8260

Sample Wt/Vol: 6.27 Units: g

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Level:

Matrix:

06/25/14

06/27/14

F2918

SOIL

8.9

5000

LOW

VOCMS Group1

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VT008916.D 1 07/02/14 VT070114

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|-----|------------|---------|
| 2037-26-5   | Toluene-d8             | 36.7   |           | 67 - 123 |     | 73%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 21.1   |           | 33 - 141 |     | 42%        | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |     |            |         |
| 363-72-4    | Pentafluorobenzene     | 540081 | 7.43      |          |     |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 739764 | 8.37      |          |     |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 474876 | 11.21     |          |     |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 132967 | 13.15     |          |     |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-9 SDG No.: F2918

Lab Sample ID: F2918-05 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ | / CRQL Un | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|-----|-----------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.53  | J    | 1  | 0.14 | 1.0 | 2   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 0.42  | J    | 1  | 0.18 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 31.3  |      | 1  | 0.1  | 5.0 | 10  | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.11  | J    | 1  | 0.09 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 0.24  | J    | 1  | 0.13 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 9.9   | *    | 1  | 0.04 | 1.0 | 2   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 7.7   |      | 1  | 0.05 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 5.4   | *    | 1  | 0.04 | 1.0 | 2   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 31.4  |      | 1  | 0.04 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 532   |      | 1  | 0.05 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1 | 0.2 | ug/L      | 07/01/14      | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 27.6  | *    | 1  | 0.06 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 15.5  |      | 1  | 0.7  | 2.5 | 5   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 0.54  | J    | 1  | 0.03 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.19  | J    | 1  | 0.02 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 0.35  | J    | 1  | 0.15 | 2.5 | 5   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 159   | *    | 1  | 0.09 | 1.0 | 2   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |

Color Before: Brown Clarity Before: Cloudy Texture:

Color After: Yellow Clarity After: Clear Artifacts:

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Analytical Method:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Date Collected:

% Moisture:

06/25/14

100

Decanted:

#### **Report of Analysis**

Client: Dvirka & Bartilucci

SW8082A

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-9 SDG No.: F2918

Lab Sample ID: F2918-05 Matrix: Water

Sample Wt/Vol: 990 Units: mL Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PC017829.D 1 07/01/14 07/02/14 PB77540

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|-------|----------|----------|
| TARGETS    |                      |       |           |          |       |          |          |
| 12674-11-2 | Aroclor-1016         | 0.101 | U         | 0.097    | 0.101 | 0.505    | ug/L     |
| 11104-28-2 | Aroclor-1221         | 0.101 | U         | 0.101    | 0.101 | 0.505    | ug/L     |
| 11141-16-5 | Aroclor-1232         | 0.101 | U         | 0.101    | 0.101 | 0.505    | ug/L     |
| 53469-21-9 | Aroclor-1242         | 0.101 | U         | 0.09     | 0.101 | 0.505    | ug/L     |
| 12672-29-6 | Aroclor-1248         | 0.101 | U         | 0.101    | 0.101 | 0.505    | ug/L     |
| 11097-69-1 | Aroclor-1254         | 0.101 | U         | 0.044    | 0.101 | 0.505    | ug/L     |
| 11096-82-5 | Aroclor-1260         | 0.101 | U         | 0.082    | 0.101 | 0.505    | ug/L     |
| SURROGATES |                      |       |           |          |       |          |          |
| 877-09-8   | Tetrachloro-m-xylene | 13.7  |           | 35 - 137 | •     | 68%      | SPK: 20  |
| 2051-24-3  | Decachlorobiphenyl   | 14.2  |           | 40 - 135 |       | 71%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-9 SDG No.: F2918

Lab Sample ID: F2918-05 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 980 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072272.D 1 07/01/14 07/03/14 PB77536

| B1 072272.B | •                           | 07701711 | 0.            | 7703/11 |     | 18//350    |       |
|-------------|-----------------------------|----------|---------------|---------|-----|------------|-------|
| CAS Number  | Parameter                   | Со       | nc. Qualifier | MDL     | LOD | LOQ / CRQL | Units |
| TARGETS     |                             |          |               |         |     |            |       |
| 100-52-7    | Benzaldehyde                | 1        | U             | 0.79    | 1   | 10.2       | ug/L  |
| 108-95-2    | Phenol                      | 1        | U             | 0.21    | 1   | 10.2       | ug/L  |
| 111-44-4    | bis(2-Chloroethyl)ether     | 1        | U             | 0.56    | 1   | 10.2       | ug/L  |
| 95-57-8     | 2-Chlorophenol              | 1        | U             | 0.55    | 1   | 10.2       | ug/L  |
| 95-48-7     | 2-Methylphenol              | 1        | U             | 0.24    | 1   | 10.2       | ug/L  |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 1        | U             | 0.17    | 1   | 10.2       | ug/L  |
| 98-86-2     | Acetophenone                | 1        | U             | 0.14    | 1   | 10.2       | ug/L  |
| 65794-96-9  | 3+4-Methylphenols           | 1        | U             | 0.39    | 1   | 10.2       | ug/L  |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 1        | U             | 0.2     | 1   | 10.2       | ug/L  |
| 67-72-1     | Hexachloroethane            | 1        | U             | 0.26    | 1   | 10.2       | ug/L  |
| 98-95-3     | Nitrobenzene                | 1        | U             | 0.69    | 1   | 10.2       | ug/L  |
| 78-59-1     | Isophorone                  | 1        | U             | 0.31    | 1   | 10.2       | ug/L  |
| 88-75-5     | 2-Nitrophenol               | 1        | U             | 0.53    | 1   | 10.2       | ug/L  |
| 105-67-9    | 2,4-Dimethylphenol          | 1        | U             | 0.72    | 1   | 10.2       | ug/L  |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 1        | U             | 0.56    | 1   | 10.2       | ug/L  |
| 120-83-2    | 2,4-Dichlorophenol          | 1        | U             | 0.67    | 1   | 10.2       | ug/L  |
| 91-20-3     | Naphthalene                 | 1        | U             | 0.12    | 1   | 10.2       | ug/L  |
| 106-47-8    | 4-Chloroaniline             | 1        | U             | 1       | 1   | 10.2       | ug/L  |
| 87-68-3     | Hexachlorobutadiene         | 1        | U             | 0.26    | 1   | 10.2       | ug/L  |
| 105-60-2    | Caprolactam                 | 1        | U             | 1       | 1   | 10.2       | ug/L  |
| 59-50-7     | 4-Chloro-3-methylphenol     | 1        | U             | 0.41    | 1   | 10.2       | ug/L  |
| 91-57-6     | 2-Methylnaphthalene         | 1        | U             | 0.33    | 1   | 10.2       | ug/L  |
| 77-47-4     | Hexachlorocyclopentadiene   | 1        | U             | 0.24    | 1   | 10.2       | ug/L  |
| 88-06-2     | 2,4,6-Trichlorophenol       | 1        | U             | 0.57    | 1   | 10.2       | ug/L  |
| 95-95-4     | 2,4,5-Trichlorophenol       | 1        | U             | 0.41    | 1   | 10.2       | ug/L  |
| 92-52-4     | 1,1-Biphenyl                | 1        | U             | 0.15    | 1   | 10.2       | ug/L  |
| 91-58-7     | 2-Chloronaphthalene         | 1        | U             | 0.16    | 1   | 10.2       | ug/L  |
| 88-74-4     | 2-Nitroaniline              | 1        | U             | 0.5     | 1   | 10.2       | ug/L  |
| 131-11-3    | Dimethylphthalate           | 3.8      | J             | 0.22    | 1   | 10.2       | ug/L  |
| 208-96-8    | Acenaphthylene              | 1        | U             | 0.71    | 1   | 10.2       | ug/L  |
| 606-20-2    | 2,6-Dinitrotoluene          | 1        | U             | 0.33    | 1   | 10.2       | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-9 SDG No.: F2918
Lab Sample ID: F2918-05 Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 980 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072272.D 1 07/01/14 07/03/14 PB77536

| BF072272.D | 1                          | 07/01/14 | 07.       | /03/14 |     | PB77536    |       |
|------------|----------------------------|----------|-----------|--------|-----|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 1        | U         | 1      | 1   | 10.2       | ug/L  |
| 83-32-9    | Acenaphthene               | 1        | U         | 0.21   | 1   | 10.2       | ug/L  |
| 51-28-5    | 2,4-Dinitrophenol          | 8.2      | U         | 2.1    | 8.2 | 10.2       | ug/L  |
| 100-02-7   | 4-Nitrophenol              | 5.1      | U         | 2      | 5.1 | 10.2       | ug/L  |
| 132-64-9   | Dibenzofuran               | 1        | U         | 0.24   | 1   | 10.2       | ug/L  |
| 121-14-2   | 2,4-Dinitrotoluene         | 1        | U         | 1      | 1   | 10.2       | ug/L  |
| 84-66-2    | Diethylphthalate           | 1        | U         | 0.39   | 1   | 10.2       | ug/L  |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 1        | U         | 0.21   | 1   | 10.2       | ug/L  |
| 86-73-7    | Fluorene                   | 1        | U         | 0.32   | 1   | 10.2       | ug/L  |
| 100-01-6   | 4-Nitroaniline             | 2        | U         | 1.4    | 2   | 10.2       | ug/L  |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 2        | U         | 0.76   | 2   | 10.2       | ug/L  |
| 86-30-6    | n-Nitrosodiphenylamine     | 1        | U         | 0.61   | 1   | 10.2       | ug/L  |
| 101-55-3   | 4-Bromophenyl-phenylether  | 1        | U         | 0.23   | 1   | 10.2       | ug/L  |
| 118-74-1   | Hexachlorobenzene          | 1        | U         | 0.18   | 1   | 10.2       | ug/L  |
| 1912-24-9  | Atrazine                   | 1        | U         | 0.41   | 1   | 10.2       | ug/L  |
| 87-86-5    | Pentachlorophenol          | 1        | U         | 1      | 1   | 10.2       | ug/L  |
| 85-01-8    | Phenanthrene               | 1        | U         | 0.27   | 1   | 10.2       | ug/L  |
| 120-12-7   | Anthracene                 | 1        | U         | 0.16   | 1   | 10.2       | ug/L  |
| 86-74-8    | Carbazole                  | 1        | U         | 0.22   | 1   | 10.2       | ug/L  |
| 84-74-2    | Di-n-butylphthalate        | 1        | U         | 1      | 1   | 10.2       | ug/L  |
| 206-44-0   | Fluoranthene               | 1        | U         | 0.41   | 1   | 10.2       | ug/L  |
| 129-00-0   | Pyrene                     | 1        | U         | 0.2    | 1   | 10.2       | ug/L  |
| 85-68-7    | Butylbenzylphthalate       | 1        | U         | 0.19   | 1   | 10.2       | ug/L  |
| 91-94-1    | 3,3-Dichlorobenzidine      | 1        | U         | 1      | 1   | 10.2       | ug/L  |
| 56-55-3    | Benzo(a)anthracene         | 1        | U         | 0.16   | 1   | 10.2       | ug/L  |
| 218-01-9   | Chrysene                   | 1        | U         | 0.18   | 1   | 10.2       | ug/L  |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 1        | U         | 0.16   | 1   | 10.2       | ug/L  |
| 117-84-0   | Di-n-octyl phthalate       | 1        | U         | 0.52   | 1   | 10.2       | ug/L  |
| 205-99-2   | Benzo(b)fluoranthene       | 1        | U         | 0.3    | 1   | 10.2       | ug/L  |
| 207-08-9   | Benzo(k)fluoranthene       | 1        | U         | 0.18   | 1   | 10.2       | ug/L  |
| 50-32-8    | Benzo(a)pyrene             | 1        | U         | 0.14   | 1   | 10.2       | ug/L  |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 1        | U         | 0.15   | 1   | 10.2       | ug/L  |
| 53-70-3    | Dibenzo(a,h)anthracene     | 1        | U         | 0.43   | 1   | 10.2       | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-9 SDG No.: F2918

Lab Sample ID: F2918-05 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 980 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072272.D 1 07/01/14 07/03/14 PB77536

| CAS Number   | Parameter                        | Conc.  | Qualifier | MDL     | LOD | LOQ / CRQL | Units    |
|--------------|----------------------------------|--------|-----------|---------|-----|------------|----------|
| 191-24-2     | Benzo(g,h,i)perylene             | 1      | U         | 0.3     | 1   | 10.2       | ug/L     |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       | 1      | U         | 0.2     | 1   | 10.2       | ug/L     |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        | 1      | U         | 0.2     | 1   | 10.2       | ug/L     |
| SURROGATES   | <b>.</b>                         |        |           |         |     |            |          |
| 367-12-4     | 2-Fluorophenol                   | 60.1   |           | 10 - 13 | 0   | 40%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        | 36.2   |           | 10 - 13 | 0   | 24%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  | 82.8   |           | 36 - 13 | 1   | 83%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 | 77.7   |           | 39 - 13 | 1   | 78%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             | 130    |           | 25 - 15 | 5   | 88%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    | 81.6   |           | 23 - 13 | 0   | 82%        | SPK: 100 |
| INTERNAL ST. | ANDARDS                          |        |           |         |     |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 43171  | 7.16      |         |     |            |          |
| 1146-65-2    | Naphthalene-d8                   | 185547 | 8.73      |         |     |            |          |
| 15067-26-2   | Acenaphthene-d10                 | 97736  | 10.9      |         |     |            |          |
| 1517-22-2    | Phenanthrene-d10                 | 178449 | 12.73     |         |     |            |          |
| 1719-03-5    | Chrysene-d12                     | 204975 | 16        |         |     |            |          |
| 1520-96-3    | Perylene-d12                     | 188317 | 17.64     |         |     |            |          |
| TENTATIVE II | DENTIFIED COMPOUNDS              |        |           |         |     |            |          |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      | 84.2   | J         |         |     | 1.65       | ug/L     |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- | 4.7    | A         |         |     | 4.89       | ug/L     |
|              | unknown6.87                      | 78.1   | J         |         |     | 6.87       | ug/L     |
| 000112-34-5  | Ethanol, 2-(2-butoxyethoxy)-     | 3.9    | J         |         |     | 8.66       | ug/L     |
| 000143-07-7  | Dodecanoic acid                  | 3.4    | J         |         |     | 13.48      | ug/L     |
| 000544-63-8  | Tetradecanoic acid               | 2.6    | J         |         |     | 14.46      | ug/L     |
| 052078-56-5  | 11-Tricosene                     | 3.5    | J         |         |     | 15.91      | ug/L     |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

<sup>\* =</sup> Values outside of QC limits

D = Dilution



Sample Wt/Vol:

5

Units:

mL

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: **GW-9** SDG No.: F2918 F2918-05 Lab Sample ID: Matrix: Water Analytical Method: SW8260 % Moisture: 100

Final Vol:

5000

uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016999.D 1 07/04/14 VN070314

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-87-3    | Chloromethane                  | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-83-9    | Bromomethane                   | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-00-3    | Chloroethane                   | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 67-64-1    | Acetone                        | 1     | U         | 0.5  | 1   | 5          | ug/L  |
| 75-15-0    | Carbon Disulfide               | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 1.6   |           | 0.35 | 0.5 | 1          | ug/L  |
| 79-20-9    | Methyl Acetate                 | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-09-2    | Methylene Chloride             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 110-82-7   | Cyclohexane                    | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-93-3    | 2-Butanone                     | 2.5   | U         | 1.3  | 2.5 | 5          | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-97-5    | Bromochloromethane             | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 67-66-3    | Chloroform                     | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-87-2   | Methylcyclohexane              | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-43-2    | Benzene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 79-01-6    | Trichloroethene                | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-27-4    | Bromodichloromethane           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1     | U         | 1    | 1   | 5          | ug/L  |
| 108-88-3   | Toluene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID:GW-9SDG No.:F2918Lab Sample ID:F2918-05Matrix:WaterAnalytical Method:SW8260% Moisture:100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016999.D 1 07/04/14 VN070314

| CAS Number             | Parameter                   | Conc. | Qualifier    | MDL     | LOD | LOQ / CRQL | Units   |
|------------------------|-----------------------------|-------|--------------|---------|-----|------------|---------|
| 10061-01-5             | cis-1,3-Dichloropropene     | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 79-00-5                | 1,1,2-Trichloroethane       | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 591-78-6               | 2-Hexanone                  | 2.5   | U            | 1.9     | 2.5 | 5          | ug/L    |
| 124-48-1               | Dibromochloromethane        | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 106-93-4               | 1,2-Dibromoethane           | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 127-18-4               | Tetrachloroethene           | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 108-90-7               | Chlorobenzene               | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 100-41-4               | Ethyl Benzene               | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 179601-23-1            | m/p-Xylenes                 | 0.4   | U            | 0.4     | 0.4 | 2          | ug/L    |
| 95-47-6                | o-Xylene                    | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 100-42-5               | Styrene                     | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 75-25-2                | Bromoform                   | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 98-82-8                | Isopropylbenzene            | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 79-34-5                | 1,1,2,2-Tetrachloroethane   | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 103-65-1               | n-propylbenzene             | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 108-67-8               | 1,3,5-Trimethylbenzene      | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 98-06-6                | tert-Butylbenzene           | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 95-63-6                | 1,2,4-Trimethylbenzene      | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 135-98-8               | sec-Butylbenzene            | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 99-87-6                | p-Isopropyltoluene          | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 541-73-1               | 1,3-Dichlorobenzene         | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 106-46-7               | 1,4-Dichlorobenzene         | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 104-51-8               | n-Butylbenzene              | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 95-50-1                | 1,2-Dichlorobenzene         | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 96-12-8                | 1,2-Dibromo-3-Chloropropane | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 120-82-1               | 1,2,4-Trichlorobenzene      | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 91-20-3                | Naphthalene                 | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 87-61-6                | 1,2,3-Trichlorobenzene      | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 123-91-1<br>SURROGATES | 1,4-Dioxane                 | 100   | U            | 100     | 100 | 100        | ug/L    |
| 17060-07-0             | 1,2-Dichloroethane-d4       | 49.7  |              | 61 - 14 | 1   | 99%        | SPK: 50 |
| 1868-53-7              | Dibromofluoromethane        | 44.1  |              | 69 - 13 | 3   | 88%        | SPK: 50 |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GW-9

Lab Sample ID: F2918-05

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25 Test: VOCMS Group1

% Moisture:

Final Vol:

Date Collected:

Date Received:

SDG No.:

Matrix:

06/25/14

06/27/14

F2918

Water

100

5000

uL

Level: LOW

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

VN016999.D 1 07/04/14 VN070314

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL LO   | D LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|--------------|---------|
| 2037-26-5   | Toluene-d8             | 46.9   |           | 65 - 126 | 94%          | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 58.5   |           | 58 - 135 | 117%         | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |              |         |
| 363-72-4    | Pentafluorobenzene     | 234303 | 7.87      |          |              |         |
| 540-36-3    | 1,4-Difluorobenzene    | 386245 | 8.79      |          |              |         |
| 3114-55-4   | Chlorobenzene-d5       | 416812 | 11.61     |          |              |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 191399 | 13.56     |          |              |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-7 SDG No.: F2918

Lab Sample ID: F2918-06 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ / | CRQL Un | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|-------|---------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.51  | J    | 1  | 0.14 | 1.0 | 2     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 2.3   |      | 1  | 0.18 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 735   |      | 1  | 0.1  | 5.0 | 10    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 1.1   |      | 1  | 0.09 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 1     | J    | 1  | 0.13 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 37.7  | *    | 1  | 0.04 | 1.0 | 2     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 44.6  |      | 1  | 0.05 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 43.3  | *    | 1  | 0.04 | 1.0 | 2     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 521   |      | 1  | 0.04 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 3340  |      | 1  | 0.05 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.955 |      | 1  | 0.1  | 0.1 | 0.2   | ug/L    | 07/01/14      | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 54.5  | *    | 1  | 0.06 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 4     | J    | 1  | 0.7  | 2.5 | 5     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 1.1   |      | 1  | 0.03 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.68  | J    | 1  | 0.02 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 28.6  |      | 1  | 0.15 | 2.5 | 5     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 396   | *    | 1  | 0.09 | 1.0 | 2     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |

Color Before: Brown Clarity Before: Cloudy Texture:

Color After: Yellow Clarity After: Clear Artifacts:

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



PC017830.D

2051-24-3

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected:

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-7 SDG No.: F2918

Lab Sample ID: F2918-06 Matrix: Water

Analytical Method: SW8082A % Moisture: 100

Sample Wt/Vol: 980 Units: mL Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

1

Decachlorobiphenyl

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

07/01/14

**CAS Number** Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units **TARGETS** 12674-11-2 Aroclor-1016 0.102 U 0.098 0.102 0.51 ug/L 11104-28-2 Aroclor-1221 0.102 U 0.102 0.102 0.51 ug/L 11141-16-5 Aroclor-1232 0.102 U 0.102 0.102 0.51 ug/L Aroclor-1242 0.102 U 0.091 0.102 53469-21-9 0.51 ug/L 12672-29-6 Aroclor-1248 0.102 U 0.102 0.102 0.51 ug/L Aroclor-1254 0.102 U 0.045 0.102 11097-69-1 0.51 ug/L Aroclor-1260 0.102 U 0.102 11096-82-5 0.083 0.51 ug/L **SURROGATES** 877-09-8 Tetrachloro-m-xylene 13.6 35 - 137 68% SPK: 20

15.8

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

40 - 135

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

07/02/14

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

06/25/14

Decanted:

PB77540

79%

SPK: 20



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-7 SDG No.: F2918
Lab Sample ID: F2918-06 Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

Be086578.d 1 07/01/14 07/02/14 PB77536

| Be000370.u | •                           | 07/01/11 |       | 077       | 02/11 |     | 1 1 1 7 7 3 5 0 |       |
|------------|-----------------------------|----------|-------|-----------|-------|-----|-----------------|-------|
| CAS Number | Parameter                   | C        | Conc. | Qualifier | MDL   | LOD | LOQ / CRQL      | Units |
| TARGETS    |                             |          |       |           |       |     |                 |       |
| 100-52-7   | Benzaldehyde                | 1        |       | U         | 0.77  | 1   | 10              | ug/L  |
| 108-95-2   | Phenol                      | 1        |       | U         | 0.21  | 1   | 10              | ug/L  |
| 111-44-4   | bis(2-Chloroethyl)ether     | 1        |       | U         | 0.55  | 1   | 10              | ug/L  |
| 95-57-8    | 2-Chlorophenol              | 1        |       | U         | 0.54  | 1   | 10              | ug/L  |
| 95-48-7    | 2-Methylphenol              | 1        |       | U         | 0.24  | 1   | 10              | ug/L  |
| 108-60-1   | 2,2-oxybis(1-Chloropropane) | 1        |       | U         | 0.17  | 1   | 10              | ug/L  |
| 98-86-2    | Acetophenone                | 1        |       | U         | 0.14  | 1   | 10              | ug/L  |
| 65794-96-9 | 3+4-Methylphenols           | 1        |       | U         | 0.38  | 1   | 10              | ug/L  |
| 621-64-7   | n-Nitroso-di-n-propylamine  | 1        |       | U         | 0.2   | 1   | 10              | ug/L  |
| 67-72-1    | Hexachloroethane            | 1        |       | U         | 0.25  | 1   | 10              | ug/L  |
| 98-95-3    | Nitrobenzene                | 1        |       | U         | 0.68  | 1   | 10              | ug/L  |
| 78-59-1    | Isophorone                  | 1        |       | U         | 0.3   | 1   | 10              | ug/L  |
| 88-75-5    | 2-Nitrophenol               | 1        |       | U         | 0.52  | 1   | 10              | ug/L  |
| 105-67-9   | 2,4-Dimethylphenol          | 1        |       | U         | 0.71  | 1   | 10              | ug/L  |
| 111-91-1   | bis(2-Chloroethoxy)methane  | 1        |       | U         | 0.55  | 1   | 10              | ug/L  |
| 120-83-2   | 2,4-Dichlorophenol          | 1        |       | U         | 0.66  | 1   | 10              | ug/L  |
| 91-20-3    | Naphthalene                 | 1        |       | U         | 0.12  | 1   | 10              | ug/L  |
| 106-47-8   | 4-Chloroaniline             | 1        |       | U         | 1     | 1   | 10              | ug/L  |
| 87-68-3    | Hexachlorobutadiene         | 1        |       | U         | 0.25  | 1   | 10              | ug/L  |
| 105-60-2   | Caprolactam                 | 1        |       | U         | 1     | 1   | 10              | ug/L  |
| 59-50-7    | 4-Chloro-3-methylphenol     | 1        |       | U         | 0.4   | 1   | 10              | ug/L  |
| 91-57-6    | 2-Methylnaphthalene         | 1        |       | U         | 0.32  | 1   | 10              | ug/L  |
| 77-47-4    | Hexachlorocyclopentadiene   | 1        |       | U         | 0.24  | 1   | 10              | ug/L  |
| 88-06-2    | 2,4,6-Trichlorophenol       | 1        |       | U         | 0.56  | 1   | 10              | ug/L  |
| 95-95-4    | 2,4,5-Trichlorophenol       | 1        |       | U         | 0.4   | 1   | 10              | ug/L  |
| 92-52-4    | 1,1-Biphenyl                | 1        |       | U         | 0.15  | 1   | 10              | ug/L  |
| 91-58-7    | 2-Chloronaphthalene         | 1        |       | U         | 0.16  | 1   | 10              | ug/L  |
| 88-74-4    | 2-Nitroaniline              | 1        |       | U         | 0.49  | 1   | 10              | ug/L  |
| 131-11-3   | Dimethylphthalate           | 4.       | .4    | J         | 0.22  | 1   | 10              | ug/L  |
| 208-96-8   | Acenaphthylene              | 1        |       | U         | 0.7   | 1   | 10              | ug/L  |
| 606-20-2   | 2,6-Dinitrotoluene          | 1        |       | U         | 0.32  | 1   | 10              | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-7 SDG No.: F2918
Lab Sample ID: F2918-06 Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

Be086578.d 1 07/01/14 07/02/14 PB77536

| Be086578.d | 1                          | 07/01/14 | 07.       | /02/14 |     | PB77536    |       |
|------------|----------------------------|----------|-----------|--------|-----|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 1        | U         | 1      | 1   | 10         | ug/L  |
| 83-32-9    | Acenaphthene               | 1        | U         | 0.21   | 1   | 10         | ug/L  |
| 51-28-5    | 2,4-Dinitrophenol          | 8        | U         | 2.1    | 8   | 10         | ug/L  |
| 100-02-7   | 4-Nitrophenol              | 5        | U         | 2      | 5   | 10         | ug/L  |
| 132-64-9   | Dibenzofuran               | 1        | U         | 0.24   | 1   | 10         | ug/L  |
| 121-14-2   | 2,4-Dinitrotoluene         | 1        | U         | 1      | 1   | 10         | ug/L  |
| 84-66-2    | Diethylphthalate           | 1        | U         | 0.38   | 1   | 10         | ug/L  |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 1        | U         | 0.21   | 1   | 10         | ug/L  |
| 86-73-7    | Fluorene                   | 1        | U         | 0.31   | 1   | 10         | ug/L  |
| 100-01-6   | 4-Nitroaniline             | 2        | U         | 1.4    | 2   | 10         | ug/L  |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 2        | U         | 0.74   | 2   | 10         | ug/L  |
| 86-30-6    | n-Nitrosodiphenylamine     | 1        | U         | 0.6    | 1   | 10         | ug/L  |
| 101-55-3   | 4-Bromophenyl-phenylether  | 1        | U         | 0.23   | 1   | 10         | ug/L  |
| 118-74-1   | Hexachlorobenzene          | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 1912-24-9  | Atrazine                   | 1        | U         | 0.4    | 1   | 10         | ug/L  |
| 87-86-5    | Pentachlorophenol          | 1        | U         | 1      | 1   | 10         | ug/L  |
| 85-01-8    | Phenanthrene               | 1        | U         | 0.26   | 1   | 10         | ug/L  |
| 120-12-7   | Anthracene                 | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 86-74-8    | Carbazole                  | 1        | U         | 0.22   | 1   | 10         | ug/L  |
| 84-74-2    | Di-n-butylphthalate        | 1        | U         | 1      | 1   | 10         | ug/L  |
| 206-44-0   | Fluoranthene               | 1        | U         | 0.4    | 1   | 10         | ug/L  |
| 129-00-0   | Pyrene                     | 1        | U         | 0.2    | 1   | 10         | ug/L  |
| 85-68-7    | Butylbenzylphthalate       | 1        | U         | 0.19   | 1   | 10         | ug/L  |
| 91-94-1    | 3,3-Dichlorobenzidine      | 1        | U         | 1      | 1   | 10         | ug/L  |
| 56-55-3    | Benzo(a)anthracene         | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 218-01-9   | Chrysene                   | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 117-84-0   | Di-n-octyl phthalate       | 1        | U         | 0.51   | 1   | 10         | ug/L  |
| 205-99-2   | Benzo(b)fluoranthene       | 1        | U         | 0.29   | 1   | 10         | ug/L  |
| 207-08-9   | Benzo(k)fluoranthene       | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 50-32-8    | Benzo(a)pyrene             | 1        | U         | 0.14   | 1   | 10         | ug/L  |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 1        | U         | 0.15   | 1   | 10         | ug/L  |
| 53-70-3    | Dibenzo(a,h)anthracene     | 1        | U         | 0.42   | 1   | 10         | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-7 SDG No.: F2918
Lab Sample ID: F2918-06 Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1
Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

Be086578.d 1 07/01/14 07/02/14 PB77536

|              |                                  | ,, , , -, - , |           |          |     |            |          |
|--------------|----------------------------------|---------------|-----------|----------|-----|------------|----------|
| CAS Number   | Parameter                        | Conc.         | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
| 191-24-2     | Benzo(g,h,i)perylene             | 1             | U         | 0.29     | 1   | 10         | ug/L     |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       | 1             | U         | 0.2      | 1   | 10         | ug/L     |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        | 1             | U         | 0.2      | 1   | 10         | ug/L     |
| SURROGATES   | 6                                |               |           |          |     |            |          |
| 367-12-4     | 2-Fluorophenol                   | 73            |           | 10 - 13  | 0   | 49%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        | 49.3          |           | 10 - 130 | 0   | 33%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  | 98.9          |           | 36 - 13  | 1   | 99%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 | 92            |           | 39 - 13  | 1   | 92%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             | 140           |           | 25 - 15: | 5   | 95%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    | 94.3          |           | 23 - 130 | 0   | 94%        | SPK: 100 |
| INTERNAL ST  | ANDARDS                          |               |           |          |     |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 220396        | 6.77      |          |     |            |          |
| 1146-65-2    | Naphthalene-d8                   | 950019        | 8.33      |          |     |            |          |
| 15067-26-2   | Acenaphthene-d10                 | 469923        | 10.47     |          |     |            |          |
| 1517-22-2    | Phenanthrene-d10                 | 702860        | 12.28     |          |     |            |          |
| 1719-03-5    | Chrysene-d12                     | 551607        | 15.5      |          |     |            |          |
| 1520-96-3    | Perylene-d12                     | 435884        | 17.11     |          |     |            |          |
| TENTATIVE II | DENTIFIED COMPOUNDS              |               |           |          |     |            |          |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      | 96.6          | J         |          |     | 1.51       | ug/L     |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- | 5.8           | A         |          |     | 4.44       | ug/L     |
|              | unknown6.48                      | 83.1          | J         |          |     | 6.48       | ug/L     |
| 000057-10-3  | n-Hexadecanoic acid              | 2.7           | J         |          |     | 13.05      | ug/L     |
| 007683-64-9  | Squalene                         | 2.7           | J         |          |     | 16.67      | ug/L     |
| 000215-58-7  | Benzo[b]triphenylene             | 2.5           | J         |          |     | 18.22      | ug/L     |
|              |                                  |               |           |          |     |            |          |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

<sup>\* =</sup> Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID:GW-7SDG No.:F2918Lab Sample ID:F2918-06Matrix:WaterAnalytical Method:SW8260% Moisture:100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL
Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VN017000.D 1 07/04/14 VN070314

| CAS Number | Parameter                      | Conc. | Qualifier    | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|--------------|------|-----|------------|-------|
| TARGETS    |                                |       |              |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 74-87-3    | Chloromethane                  | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 74-83-9    | Bromomethane                   | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 75-00-3    | Chloroethane                   | 0.5   | U            | 0.2  | 0.5 | 1          | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 67-64-1    | Acetone                        | 1     | U            | 0.5  | 1   | 5          | ug/L  |
| 75-15-0    | Carbon Disulfide               | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.5   | U            | 0.35 | 0.5 | 1          | ug/L  |
| 79-20-9    | Methyl Acetate                 | 0.5   | U            | 0.2  | 0.5 | 1          | ug/L  |
| 75-09-2    | Methylene Chloride             | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 110-82-7   | Cyclohexane                    | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 78-93-3    | 2-Butanone                     | 2.5   | U            | 1.3  | 2.5 | 5          | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 74-97-5    | Bromochloromethane             | 0.5   | U            | 0.2  | 0.5 | 1          | ug/L  |
| 67-66-3    | Chloroform                     | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 108-87-2   | Methylcyclohexane              | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 71-43-2    | Benzene                        | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 79-01-6    | Trichloroethene                | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 75-27-4    | Bromodichloromethane           | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1     | U            | 1    | 1   | 5          | ug/L  |
| 108-88-3   | Toluene                        | 0.2   | U            | 0.2  | 0.2 | 1          | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.2   | $\mathbf{U}$ | 0.2  | 0.2 | 1          | ug/L  |



Client:Dvirka & BartilucciDate Collected:06/25/14Project:NYCSCA Unionport Road BronxDate Received:06/27/14

Client Sample ID: GW-7 SDG No.: F2918
Lab Sample ID: F2918-06 Matrix: Water
Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN017000.D 1 07/04/14 VN070314

| V11017000.B | •                           |       | 07/04/    |         |     | V14070314  |         |
|-------------|-----------------------------|-------|-----------|---------|-----|------------|---------|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL     | LOD | LOQ / CRQL | Units   |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 591-78-6    | 2-Hexanone                  | 2.5   | U         | 1.9     | 2.5 | 5          | ug/L    |
| 124-48-1    | Dibromochloromethane        | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 106-93-4    | 1,2-Dibromoethane           | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 127-18-4    | Tetrachloroethene           | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 108-90-7    | Chlorobenzene               | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 100-41-4    | Ethyl Benzene               | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 179601-23-1 | m/p-Xylenes                 | 0.4   | U         | 0.4     | 0.4 | 2          | ug/L    |
| 95-47-6     | o-Xylene                    | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 100-42-5    | Styrene                     | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 75-25-2     | Bromoform                   | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 98-82-8     | Isopropylbenzene            | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 103-65-1    | n-propylbenzene             | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 98-06-6     | tert-Butylbenzene           | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 135-98-8    | sec-Butylbenzene            | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 99-87-6     | p-Isopropyltoluene          | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 104-51-8    | n-Butylbenzene              | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 91-20-3     | Naphthalene                 | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 123-91-1    | 1,4-Dioxane                 | 100   | U         | 100     | 100 | 100        | ug/L    |
| SURROGATES  |                             |       |           |         |     |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 50.1  |           | 61 - 14 |     | 100%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 44.7  |           | 69 - 13 | 3   | 89%        | SPK: 50 |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci

Units:

mL

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GW-7

Lab Sample ID: F2918-06

Analytical Method: SW8260

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

5

Test: VOCMS Group1
Level: LOW

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Matrix:

File ID/Qc Batch:

Sample Wt/Vol:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

06/25/14

06/27/14

F2918

Water

100

5000

uL

VN017000.D

1

07/04/14

VN070314

Qualifier **MDL** Units **CAS Number Parameter** Conc. LOD LOQ / CRQL 2037-26-5 Toluene-d8 47.5 65 - 126 95% SPK: 50 4-Bromofluorobenzene 58 - 135 122% 460-00-4 60.8 SPK: 50 INTERNAL STANDARDS Pentafluorobenzene 7.87 363-72-4 225807 540-36-3 1,4-Difluorobenzene 370237 8.79 3114-55-4 Chlorobenzene-d5 408521 11.61 1.4-Dichlorobenzene-d4 191065 13.56 3855-82-1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 14:30 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-7(9-11) F2918 Lab Sample ID: F2918-07 Matrix: SOIL % Solid: 86.7

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.134 | U    | 1  | 0.035 | 0.134 | 0.267      | mg/Kg | 07/01/14  | 07/02/14 12:40 | 9012B    |
| Hexavalent Chromium | 0.36  | J    | 1  | 0.09  | 0.226 | 0.451      | mg/Kg | 07/02/14  | 07/02/14 15:16 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



FC012013.D

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-7(9-11) SDG No.: F2918

Lab Sample ID: F2918-07 Matrix: SOIL

Analytical Method: 8015B DRO % Moisture: 13.3 Decanted:

Sample Wt/Vol: 30.1 Units: g Final Vol: 1 mL

Soil Aliquot Vol: uL Test: Diesel Range Organics

Extraction Type: Injection Volume :

GPC Factor: PH:

1

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

07/01/14

**CAS Number Parameter** Conc. Qualifier MDL LOD LOQ / CRQL Units **TARGETS** DRO DRO 4790 958 960 1920 ug/kg **SURROGATES** 37 - 130 16416-32-3 Tetracosane-d50 14.2 71% SPK: 20

07/03/14

PB77539

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



FB004524.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-7(9-11) SDG No.: F2918
Lab Sample ID: F2918-07 Matrix: SOIL

Analytical Method: 8015B GRO % Moisture: 13.3 Decanted: Sample Wt/Vol: 5.01 Units: g Final Vol: 5 mL

Soil Aliquot Vol: uL Test: Gasoline Range Organics

Extraction Type: Injection Volume:

GPC Factor: PH:

1

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

AS Number Parameter Conc Qualifier MDL LOD LOQ/CROL U

| CAS Number            | Parameter                            | Conc. | Qualifier | MDL      | LOD | LOQ / CR | RQL Units |
|-----------------------|--------------------------------------|-------|-----------|----------|-----|----------|-----------|
| TARGETS<br>GRO        | GRO                                  | 26    | J         | 14       | 26  | 52       | ug/kg     |
| SURROGATES<br>98-08-8 | Alpha, Alpha, Alpha-Trifluorotoluene | 15.4  |           | 50 - 150 | )   | 77%      | SPK: 20   |

07/08/14

FB070714

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-7(9-11) Lab Sample ID: F2918-07 Matrix: SOIL

Analytical Method: SW8151A % Moisture: 13.3 Decanted: Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010329.D 1 07/01/14 07/03/14 PB77541

| CAS Number | Parameter         | Conc. | Qualifi | er MDL   | LOD  | LOQ/CRQL Units |          |
|------------|-------------------|-------|---------|----------|------|----------------|----------|
| TARGETS    |                   |       |         |          |      |                |          |
| 1918-00-9  | DICAMBA           | 19.2  | U       | 15.3     | 19.2 | 77.1           | ug/Kg    |
| 120-36-5   | DICHLORPROP       | 19.2  | U       | 14.2     | 19.2 | 77.1           | ug/Kg    |
| 94-75-7    | 2,4-D             | 19.2  | U       | 19.2     | 19.2 | 77.1           | ug/Kg    |
| 93-72-1    | 2,4,5-TP (Silvex) | 19.2  | U       | 12.6     | 19.2 | 77.1           | ug/Kg    |
| 93-76-5    | 2,4,5-T           | 19.2  | U       | 11.8     | 19.2 | 77.1           | ug/Kg    |
| 94-82-6    | 2,4-DB            | 19.2  | U       | 19.2     | 19.2 | 77.1           | ug/Kg    |
| 88-85-7    | DINOSEB           | 19.2  | U       | 19.2     | 19.2 | 77.1           | ug/Kg    |
| SURROGATES |                   |       |         |          |      |                |          |
| 19719-28-9 | 2,4-DCAA          | 298   |         | 12 - 189 | )    | 60%            | SPK: 500 |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Lab Sample ID:

F2918-07

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Matrix:

SOIL

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: F2918

Level (low/med): low % Solid: 86.7

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / C | CRQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|---------|----------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.22  | UN   | 1  | 0.547 | 1.22  | 2.44    | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7440-38-2 | Arsenic   | 3.46  |      | 1  | 0.323 | 0.489 | 0.977   | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7440-39-3 | Barium    | 113   |      | 1  | 0.391 | 2.44  | 4.89    | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.526 |      | 1  | 0.059 | 0.147 | 0.293   | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.147 | U    | 1  | 0.059 | 0.147 | 0.293   | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7440-47-3 | Chromium  | 20.9  |      | 1  | 0.127 | 0.244 | 0.489   | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7440-48-4 | Cobalt    | 9.88  |      | 1  | 0.557 | 0.733 | 1.47    | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7440-50-8 | Copper    | 26.2  |      | 1  | 0.313 | 0.489 | 0.977   | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7439-92-1 | Lead      | 71.1  | N    | 1  | 0.117 | 0.293 | 0.586   | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7439-96-5 | Manganese | 184   |      | 1  | 0.186 | 0.489 | 0.977   | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.118 |      | 1  | 0.005 | 0.005 | 0.01    | mg/Kg 07/01/14       | 07/03/14  | SW7471A  |
| 7440-02-0 | Nickel    | 19.8  |      | 1  | 0.45  | 0.977 | 1.95    | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7782-49-2 | Selenium  | 0.877 | J    | 1  | 0.401 | 0.489 | 0.977   | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7440-22-4 | Silver    | 0.746 |      | 1  | 0.147 | 0.244 | 0.489   | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.977 | U    | 1  | 0.264 | 0.977 | 1.95    | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7440-62-2 | Vanadium  | 25.7  |      | 1  | 0.577 | 0.977 | 1.95    | mg/Kg 07/02/14       | 07/02/14  | SW6010   |
| 7440-66-6 | Zinc      | 109   |      | 1  | 0.684 | 0.977 | 1.95    | mg/Kg 07/02/14       | 07/02/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Sample Wt/Vol:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Final Vol:

10000

иL

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-7(9-11) Lab Sample ID: F2918-07 Matrix: SOIL % Moisture: Analytical Method: SW8082A 13.3 Decanted:

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume:

g

GPC Factor: 1.0 PH:

30.06

Units:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PP003686.D 1 07/01/14 07/02/14 PB77542

| CAS Number | Parameter            | Conc. | Qualifie | r MDL    | LOD | LOQ / CF | RQL Units |
|------------|----------------------|-------|----------|----------|-----|----------|-----------|
| TARGETS    |                      |       |          |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 3.8   | U        | 3.8      | 3.8 | 19.6     | ug/kg     |
| 11104-28-2 | Aroclor-1221         | 3.8   | U        | 3.8      | 3.8 | 19.6     | ug/kg     |
| 11141-16-5 | Aroclor-1232         | 3.8   | U        | 3.8      | 3.8 | 19.6     | ug/kg     |
| 53469-21-9 | Aroclor-1242         | 3.8   | U        | 3.8      | 3.8 | 19.6     | ug/kg     |
| 12672-29-6 | Aroclor-1248         | 3.8   | U        | 3.8      | 3.8 | 19.6     | ug/kg     |
| 11097-69-1 | Aroclor-1254         | 3.8   | U        | 1.7      | 3.8 | 19.6     | ug/kg     |
| 11096-82-5 | Aroclor-1260         | 3.8   | U        | 3.8      | 3.8 | 19.6     | ug/kg     |
| SURROGATES |                      |       |          |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 17.8  |          | 10 - 166 | 6   | 89%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 15.1  |          | 60 - 125 | 5   | 76%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-7(9-11) SDG No.: F2918

Lab Sample ID: F2918-07 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 13.3 Decanted:

Sample Wt/Vol: 30.01 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023221.D 1 07/01/14 07/02/14 PB77543

| CAS Number | Parameter            | Conc. | Qualifier | · MDL    | LOD  | LOQ / CRQ | L Units |
|------------|----------------------|-------|-----------|----------|------|-----------|---------|
| TARGETS    |                      |       |           |          |      |           |         |
| 319-84-6   | alpha-BHC            | 0.38  | U         | 0.15     | 0.38 | 2         | ug/kg   |
| 319-85-7   | beta-BHC             | 0.38  | U         | 0.208    | 0.38 | 2         | ug/kg   |
| 319-86-8   | delta-BHC            | 0.38  | U         | 0.115    | 0.38 | 2         | ug/kg   |
| 58-89-9    | gamma-BHC (Lindane)  | 0.38  | U         | 0.173    | 0.38 | 2         | ug/kg   |
| 76-44-8    | Heptachlor           | 0.38  | U         | 0.161    | 0.38 | 2         | ug/kg   |
| 309-00-2   | Aldrin               | 0.38  | U         | 0.115    | 0.38 | 2         | ug/kg   |
| 1024-57-3  | Heptachlor epoxide   | 0.38  | U         | 0.184    | 0.38 | 2         | ug/kg   |
| 959-98-8   | Endosulfan I         | 0.38  | U         | 0.173    | 0.38 | 2         | ug/kg   |
| 60-57-1    | Dieldrin             | 0.38  | U         | 0.15     | 0.38 | 2         | ug/kg   |
| 72-55-9    | 4,4-DDE              | 0.38  | U         | 0.231    | 0.38 | 2         | ug/kg   |
| 72-20-8    | Endrin               | 0.38  | U         | 0.208    | 0.38 | 2         | ug/kg   |
| 33213-65-9 | Endosulfan II        | 0.38  | U         | 0.161    | 0.38 | 2         | ug/kg   |
| 72-54-8    | 4,4-DDD              | 0.38  | U         | 0.196    | 0.38 | 2         | ug/kg   |
| 1031-07-8  | Endosulfan Sulfate   | 0.38  | U         | 0.173    | 0.38 | 2         | ug/kg   |
| 50-29-3    | 4,4-DDT              | 0.38  | U         | 0.161    | 0.38 | 2         | ug/kg   |
| 72-43-5    | Methoxychlor         | 0.38  | U         | 0.196    | 0.38 | 2         | ug/kg   |
| 53494-70-5 | Endrin ketone        | 0.38  | U         | 0.15     | 0.38 | 2         | ug/kg   |
| 7421-93-4  | Endrin aldehyde      | 0.38  | U         | 0.173    | 0.38 | 2         | ug/kg   |
| 5103-71-9  | alpha-Chlordane      | 0.38  | U         | 0.161    | 0.38 | 2         | ug/kg   |
| 5103-74-2  | gamma-Chlordane      | 0.38  | U         | 0.15     | 0.38 | 2         | ug/kg   |
| 8001-35-2  | Toxaphene            | 3.8   | U         | 3.8      | 3.8  | 19.6      | ug/kg   |
| SURROGATES |                      |       |           |          |      |           |         |
| 2051-24-3  | Decachlorobiphenyl   | 20.3  |           | 10 - 169 | )    | 101%      | SPK: 20 |
| 877-09-8   | Tetrachloro-m-xylene | 23.8  |           | 31 - 151 |      | 119%      | SPK: 20 |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project:

NYCSCA Unionport Road Bronx

06/27/14

Client Sample ID:

GP-7(9-11)

F2918

Lab Sample ID:

F2918-07

**SOIL** 

Analytical Method:

Matrix:

SDG No.:

Date Received:

SW8081

% Moisture:

13.3

Decanted:

Sample Wt/Vol:

30.01 Units: g Final Vol:

10000 иL

Soil Aliquot Vol:

иL

Test:

Pesticide-TCL

Extraction Type: GPC Factor:

1.0

1

PH:

Injection Volume:

Date Analyzed

Prep Batch ID

PD023221.D

File ID/Qc Batch:

Dilution:

Prep Date 07/01/14

07/02/14

PB77543

Conc.

LOD

**CAS Number** 

Parameter

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

Qualifier MDL

LOQ / CRQL Units

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Extraction Type:

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: F2918 GP-7(9-11) SOIL Lab Sample ID: F2918-07 Matrix: Analytical Method: SW8270 % Moisture: 13.3

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

N

Level:

LOW

Decanted: GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

BF072273.D 1 07/01/14 07/03/14 PB77544

| BI 072275.D | •                           | 07/01/11 | 0            | 7703/11 |      | 18//3/1    |       |
|-------------|-----------------------------|----------|--------------|---------|------|------------|-------|
| CAS Number  | Parameter                   | Con      | c. Qualifier | MDL     | LOD  | LOQ / CRQL | Units |
| TARGETS     |                             |          |              |         |      |            |       |
| 100-52-7    | Benzaldehyde                | 38.4     | U            | 20      | 38.4 | 380        | ug/Kg |
| 108-95-2    | Phenol                      | 38.4     | U            | 8.9     | 38.4 | 380        | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 38.4     | U            | 18.4    | 38.4 | 380        | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 38.4     | U            | 20.3    | 38.4 | 380        | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 38.4     | U            | 20.8    | 38.4 | 380        | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 38.4     | U            | 15.9    | 38.4 | 380        | ug/Kg |
| 98-86-2     | Acetophenone                | 38.4     | U            | 11.7    | 38.4 | 380        | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 38.4     | U            | 19.9    | 38.4 | 380        | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 38.4     | U            | 19.3    | 38.4 | 380        | ug/Kg |
| 67-72-1     | Hexachloroethane            | 38.4     | U            | 17.1    | 38.4 | 380        | ug/Kg |
| 98-95-3     | Nitrobenzene                | 38.4     | U            | 14.5    | 38.4 | 380        | ug/Kg |
| 78-59-1     | Isophorone                  | 38.4     | U            | 12.7    | 38.4 | 380        | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 38.4     | U            | 18.5    | 38.4 | 380        | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 38.4     | U            | 21.7    | 38.4 | 380        | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 38.4     | U            | 22.1    | 38.4 | 380        | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 38.4     | U            | 14.6    | 38.4 | 380        | ug/Kg |
| 91-20-3     | Naphthalene                 | 38.4     | U            | 13.2    | 38.4 | 380        | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 38.4     | U            | 27      | 38.4 | 380        | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 38.4     | U            | 13.9    | 38.4 | 380        | ug/Kg |
| 105-60-2    | Caprolactam                 | 76.7     | ' U          | 17.8    | 76.7 | 380        | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 38.4     | U            | 17      | 38.4 | 380        | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 38.4     | U            | 9.7     | 38.4 | 380        | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 38.4     | U            | 9.3     | 38.4 | 380        | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 38.4     | U            | 11.7    | 38.4 | 380        | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 38.4     | U            | 26.9    | 38.4 | 380        | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 38.4     | U            | 14.5    | 38.4 | 380        | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 38.4     | U            | 8.7     | 38.4 | 380        | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 38.4     | U            | 17      | 38.4 | 380        | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 860      |              | 10.4    | 38.4 | 380        | ug/Kg |
| 208-96-8    | Acenaphthylene              | 38.4     | U            | 9.7     | 38.4 | 380        | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 38.4     | U            | 15.6    | 38.4 | 380        | ug/Kg |



Extraction Type:

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: F2918 GP-7(9-11) SOIL Lab Sample ID: F2918-07 Matrix: Analytical Method: SW8270 % Moisture: 13.3

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL

N

Level:

LOW

Soil Aliquot Vol: uL Test: SVOCMS Group1

Decanted: GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date BF072273.D 1 07/01/14 07/03/14 PB77544

| CAS Number | Parameter                  | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|----------------------------|-------|-----------|------|------|------------|-------|
| 99-09-2    | 3-Nitroaniline             | 76.7  | U         | 24.6 | 76.7 | 380        | ug/Kg |
| 83-32-9    | Acenaphthene               | 38.4  | U         | 10.8 | 38.4 | 380        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 310   | U         | 39   | 310  | 380        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 190   | U         | 71.2 | 190  | 380        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 38.4  | U         | 15   | 38.4 | 380        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 38.4  | U         | 11.5 | 38.4 | 380        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 38.4  | U         | 6    | 38.4 | 380        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 38.4  | U         | 20.8 | 38.4 | 380        | ug/Kg |
| 86-73-7    | Fluorene                   | 38.4  | U         | 14.5 | 38.4 | 380        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 76.7  | U         | 49.9 | 76.7 | 380        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 190   | U         | 22   | 190  | 380        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 38.4  | U         | 9.2  | 38.4 | 380        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 38.4  | U         | 7.5  | 38.4 | 380        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 38.4  | U         | 15.6 | 38.4 | 380        | ug/Kg |
| 1912-24-9  | Atrazine                   | 38.4  | U         | 20.3 | 38.4 | 380        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 38.4  | U         | 26.2 | 38.4 | 380        | ug/Kg |
| 85-01-8    | Phenanthrene               | 38.4  | U         | 10.4 | 38.4 | 380        | ug/Kg |
| 120-12-7   | Anthracene                 | 38.4  | U         | 7.8  | 38.4 | 380        | ug/Kg |
| 86-74-8    | Carbazole                  | 38.4  | U         | 8.4  | 38.4 | 380        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 38.4  | U         | 30.1 | 38.4 | 380        | ug/Kg |
| 206-44-0   | Fluoranthene               | 38.4  | U         | 7.7  | 38.4 | 380        | ug/Kg |
| 129-00-0   | Pyrene                     | 38.4  | U         | 9.2  | 38.4 | 380        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 38.4  | U         | 18.4 | 38.4 | 380        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 38.4  | U         | 24.6 | 38.4 | 380        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 38.4  | U         | 18.3 | 38.4 | 380        | ug/Kg |
| 218-01-9   | Chrysene                   | 38.4  | U         | 17.4 | 38.4 | 380        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 170   | J         | 13.6 | 38.4 | 380        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 38.4  | U         | 4.4  | 38.4 | 380        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 38.4  | U         | 12.5 | 38.4 | 380        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 38.4  | U         | 18.1 | 38.4 | 380        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 38.4  | U         | 8.3  | 38.4 | 380        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 38.4  | U         | 12.8 | 38.4 | 380        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 38.4  | U         | 11   | 38.4 | 380        | ug/Kg |



Client:Dvirka & BartilucciDate Collected:06/25/14Project:NYCSCA Unionport Road BronxDate Received:06/27/14Client Sample ID:GP-7(9-11)SDG No.:F2918

Client Sample ID: GP-7(9-11) SDG No.: F2918

Lab Sample ID: F2918-07 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 13.3

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072273.D 1 07/01/14 07/03/14 PB77544

| DI'0/22/3.D  | 1                                | 07/01/14 |        | 07/03/14  |          |      | 1 D / / 344 |          |
|--------------|----------------------------------|----------|--------|-----------|----------|------|-------------|----------|
| CAS Number   | Parameter                        |          | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL  | Units    |
| 191-24-2     | Benzo(g,h,i)perylene             |          | 38.4   | U         | 15.5     | 38.4 | 380         | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       |          | 38.4   | U         | 15.1     | 38.4 | 380         | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        |          | 38.4   | U         | 15.1     | 38.4 | 380         | ug/Kg    |
| SURROGATES   |                                  |          |        |           |          |      |             |          |
| 367-12-4     | 2-Fluorophenol                   |          | 120    |           | 28 - 127 | 7    | 79%         | SPK: 150 |
| 13127-88-3   | Phenol-d6                        |          | 120    |           | 34 - 127 | 7    | 83%         | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  |          | 76.1   |           | 31 - 132 | 2    | 76%         | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 |          | 62.5   |           | 39 - 123 | 3    | 63%         | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             |          | 110    |           | 30 - 133 | }    | 74%         | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    |          | 58.8   |           | 37 - 115 | ;    | 59%         | SPK: 100 |
| INTERNAL STA | ANDARDS                          |          |        |           |          |      |             |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           |          | 43103  | 7.16      |          |      |             |          |
| 1146-65-2    | Naphthalene-d8                   |          | 178444 | 8.73      |          |      |             |          |
| 15067-26-2   | Acenaphthene-d10                 |          | 96137  | 10.91     |          |      |             |          |
| 1517-22-2    | Phenanthrene-d10                 |          | 169465 | 12.73     |          |      |             |          |
| 1719-03-5    | Chrysene-d12                     |          | 208385 | 15.99     |          |      |             |          |
| 1520-96-3    | Perylene-d12                     |          | 189446 | 17.64     |          |      |             |          |
| TENTATIVE ID | DENTIFIED COMPOUNDS              |          |        |           |          |      |             |          |
| 000077-76-9  | Propane, 2,2-dimethoxy-          |          | 13800  | J         |          |      | 1.38        | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      |          | 1200   | J         |          |      | 1.65        | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- |          | 450    | A         |          |      | 4.89        | ug/Kg    |
|              | unknown6.87                      |          | 3400   | J         |          |      | 6.87        | ug/Kg    |
| 000621-42-1  | Metacetamol                      |          | 140    | J         |          |      | 10.28       | ug/Kg    |
| 000057-10-3  | n-Hexadecanoic acid              |          | 290    | J         |          |      | 13.48       | ug/Kg    |
| 074685-29-3  | 9-Eicosene, (E)-                 |          | 480    | J         |          |      | 14.12       | ug/Kg    |
| 096168-15-9  | 4,8,12,16-Tetramethylheptadecan- | 4-       | 110    | J         |          |      | 15.34       | ug/Kg    |
| 001599-67-3  | 1-Docosene                       |          | 460    | J         |          |      | 15.91       | ug/Kg    |
| 079107-80-5  | Phthalic acid, 2-hexyl ester     |          | 130    | J         |          |      | 17.16       | ug/Kg    |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx

Units:

g

uL

Date Received: 06/27/14

Client Sample ID: GP-7(9-11) F2918

Ν

Lab Sample ID: F2918-07

Matrix: SOIL

Analytical Method: SW8270 % Moisture:

SDG No.:

Final Vol:

1000 uL

Sample Wt/Vol: 30.07

Test:

Soil Aliquot Vol:

Decanted: N Level:

SVOCMS Group1

Extraction Type: Injection Volume:

GPC Factor: 1.0

GPC Cleanup:

PH:

LOW

13.3

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

BF072273.D

1

07/01/14

07/03/14

PB77544

**CAS Number** 

**Parameter** 

Conc.

LOD

Qualifier

**MDL** 

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-7(9-11) SDG No.: F2918 SOIL Lab Sample ID: F2918-07 Matrix: Analytical Method: SW8260 % Moisture: 13.3 Sample Wt/Vol: 6.53 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008937.D 1 07/02/14 VT070214

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.88  | U         | 0.88 | 0.88 | 4.4        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 67-64-1    | Acetone                        | 6.2   | J         | 2.2  | 2.2  | 22.1       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.88  | U         | 0.88 | 0.88 | 4.4        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 6.6   | U         | 2.7  | 6.6  | 22.1       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 71-43-2    | Benzene                        | 0.44  | U         | 0.34 | 0.44 | 4.4        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.44  | U         | 0.23 | 0.44 | 4.4        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 2.2   | U         | 2.2  | 2.2  | 22.1       | ug/Kg |
| 108-88-3   | Toluene                        | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.44  | U         | 0.44 | 0.44 | 4.4        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-7(9-11) SDG No.: F2918 SOIL Lab Sample ID: F2918-07 Matrix: Analytical Method: SW8260 % Moisture: 13.3 Sample Wt/Vol: 6.53 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008937.D 1 07/02/14 VT070214

|                        | -                           |       | * · · · · · · · |          |      |            |         |  |
|------------------------|-----------------------------|-------|-----------------|----------|------|------------|---------|--|
| CAS Number             | Parameter                   | Conc. | Qualifier       | MDL      | LOD  | LOQ / CRQL | Units   |  |
| 10061-01-5             | cis-1,3-Dichloropropene     | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |  |
| 79-00-5                | 1,1,2-Trichloroethane       | 0.88  | U               | 0.79     | 0.88 | 4.4        | ug/Kg   |  |
| 591-78-6               | 2-Hexanone                  | 2.2   | U               | 2.2      | 2.2  | 22.1       | ug/Kg   |  |
| 124-48-1               | Dibromochloromethane        | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |  |
| 106-93-4               | 1,2-Dibromoethane           | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |  |
| 127-18-4               | Tetrachloroethene           | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |  |
| 108-90-7               | Chlorobenzene               | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |  |
| 100-41-4               | Ethyl Benzene               | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |  |
| 179601-23-1            | m/p-Xylenes                 | 0.88  | U               | 0.64     | 0.88 | 8.8        | ug/Kg   |  |
| 95-47-6                | o-Xylene                    | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |  |
| 100-42-5               | Styrene                     | 0.44  | U               | 0.4      | 0.44 | 4.4        | ug/Kg   |  |
| 75-25-2                | Bromoform                   | 1.3   | U               | 0.65     | 1.3  | 4.4        | ug/Kg   |  |
| 98-82-8                | Isopropylbenzene            | 0.44  | U               | 0.42     | 0.44 | 4.4        | ug/Kg   |  |
| 79-34-5                | 1,1,2,2-Tetrachloroethane   | 0.44  | U               | 0.41     | 0.44 | 4.4        | ug/Kg   |  |
| 103-65-1               | n-propylbenzene             | 0.44  | U               | 0.32     | 0.44 | 4.4        | ug/Kg   |  |
| 108-67-8               | 1,3,5-Trimethylbenzene      | 0.44  | U               | 0.4      | 0.44 | 4.4        | ug/Kg   |  |
| 98-06-6                | tert-Butylbenzene           | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |  |
| 95-63-6                | 1,2,4-Trimethylbenzene      | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |  |
| 135-98-8               | sec-Butylbenzene            | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |  |
| 99-87-6                | p-Isopropyltoluene          | 0.44  | U               | 0.26     | 0.44 | 4.4        | ug/Kg   |  |
| 541-73-1               | 1,3-Dichlorobenzene         | 0.44  | U               | 0.33     | 0.44 | 4.4        | ug/Kg   |  |
| 106-46-7               | 1,4-Dichlorobenzene         | 0.44  | U               | 0.36     | 0.44 | 4.4        | ug/Kg   |  |
| 104-51-8               | n-Butylbenzene              | 0.44  | U               | 0.41     | 0.44 | 4.4        | ug/Kg   |  |
| 95-50-1                | 1,2-Dichlorobenzene         | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |  |
| 96-12-8                | 1,2-Dibromo-3-Chloropropane | 4.4   | U               | 0.77     | 4.4  | 4.4        | ug/Kg   |  |
| 120-82-1               | 1,2,4-Trichlorobenzene      | 0.44  | U               | 0.44     | 0.44 | 4.4        | ug/Kg   |  |
| 91-20-3                | Naphthalene                 | 0.44  | U               | 0.4      | 0.44 | 4.4        | ug/Kg   |  |
| 87-61-6                | 1,2,3-Trichlorobenzene      | 0.88  | U               | 0.44     | 0.88 | 4.4        | ug/Kg   |  |
| 123-91-1<br>SURROGATES | 1,4-Dioxane                 | 88.3  | U               | 88.3     | 88.3 | 88.3       | ug/Kg   |  |
| 17060-07-0             | 1,2-Dichloroethane-d4       | 40.8  |                 | 56 - 120 | )    | 82%        | SPK: 50 |  |
| 1868-53-7              | Dibromofluoromethane        | 48.1  |                 | 57 - 135 |      | 96%        | SPK: 50 |  |
|                        |                             |       |                 |          |      |            |         |  |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-7(9-11) Lab Sample ID: F2918-07

Analytical Method: SW8260

Sample Wt/Vol: 6.53 Units: g

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25 Date Collected: 06/25/14

Date Received: 06/27/14

SDG No.: F2918

% Moisture: 13.3

Final Vol: 5000

Test: VOCMS Group1

Level: LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Matrix:

Prep Batch ID

VT008937.D 1 07/02/14

VT070214

SOIL

uL

| CAS Number  | Parameter              | Conc.   | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|-------------|------------------------|---------|-----------|----------|-----|------------|---------|
| 2037-26-5   | Toluene-d8             | 43.7    |           | 67 - 123 |     | 87%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 47.2    |           | 33 - 141 |     | 94%        | SPK: 50 |
| INTERNAL ST | ANDARDS                |         |           |          |     |            |         |
| 363-72-4    | Pentafluorobenzene     | 898384  | 7.43      |          |     |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 1282980 | 8.37      |          |     |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 1103090 | 11.21     |          |     |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 629590  | 13.15     |          |     |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Lab Sample ID:

F2918-08

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 14:45

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: F2918

% Solid: 90

SOIL

Matrix:

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQL | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.133 | U    | 1  | 0.035 | 0.133 | 0.265      | mg/Kg | 07/01/14  | 07/02/14 12:40 | 9012B    |
| Hexavalent Chromium | 0.221 | U    | 1  | 0.088 | 0.221 | 0.441      | mg/Kg | 07/02/14  | 07/02/14 15:18 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-7(14-16) SDG No.: F2918

Lab Sample ID: F2918-08 Matrix: SOIL

Analytical Method: 8015B DRO % Moisture: 10 Decanted: Sample Wt/Vol: 30.05 Units: g Final Vol: 1 mL

Soil Aliquot Vol: uL Test: Diesel Range Organics

Extraction Type: Injection Volume :

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID FC012014.D 1 07/01/14 07/03/14 PB77539

| CAS Number                   | Parameter       | Conc. Q | Qualifier MDL | LOD | LOQ / CR | QL Units |
|------------------------------|-----------------|---------|---------------|-----|----------|----------|
| TARGETS<br>DRO               | DRO             | 2995    | 924           | 925 | 1850     | ug/kg    |
| <b>SURROGATES</b> 16416-32-3 | Tetracosane-d50 | 15      | 37 - 130      |     | 75%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-7(14-16) Lab Sample ID: F2918-08 Matrix: **SOIL** 

Analytical Method: 8015B GRO % Moisture: 10 Decanted: Sample Wt/Vol: 5.03 Units: g Final Vol: 5 mL

Soil Aliquot Vol: uL Test: Gasoline Range Organics

Extraction Type: Injection Volume :

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID FB004525.D 1 07/08/14 FB070714

| CAS Number            | Parameter                          | Conc. | Qualifi | er MDL   | LOD | LOQ / CF | RQL Units |
|-----------------------|------------------------------------|-------|---------|----------|-----|----------|-----------|
| TARGETS<br>GRO        | GRO                                | 27    | J       | 13       | 25  | 50       | ug/kg     |
| SURROGATES<br>98-08-8 | Alpha Alpha Alpha-Trifluorotoluene | 16.8  |         | 50 - 150 | )   | 84%      | SPK· 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



PE010330.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client:Dvirka & BartilucciDate Collected:06/25/14Project:NYCSCA Unionport Road BronxDate Received:06/27/14Client Sample ID:GP-7(14-16)SDG No.:F2918

Lab Sample ID: F2918-08 Matrix: SOIL

Analytical Method: SW8151A % Moisture: 10 Decanted: Sample Wt/Vol: 30.09 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

07/01/14

| CAS Number | Parameter         | Conc. | Qualif | ier MDL  | LOD  | LOQ / CRQL Units |          |
|------------|-------------------|-------|--------|----------|------|------------------|----------|
| TARGETS    |                   |       |        |          |      |                  |          |
| 1918-00-9  | DICAMBA           | 18.5  | U      | 14.7     | 18.5 | 74.2             | ug/Kg    |
| 120-36-5   | DICHLORPROP       | 18.5  | U      | 13.7     | 18.5 | 74.2             | ug/Kg    |
| 94-75-7    | 2,4-D             | 18.5  | U      | 18.5     | 18.5 | 74.2             | ug/Kg    |
| 93-72-1    | 2,4,5-TP (Silvex) | 18.5  | U      | 12.1     | 18.5 | 74.2             | ug/Kg    |
| 93-76-5    | 2,4,5-T           | 18.5  | U      | 11.4     | 18.5 | 74.2             | ug/Kg    |
| 94-82-6    | 2,4-DB            | 18.5  | U      | 18.5     | 18.5 | 74.2             | ug/Kg    |
| 88-85-7    | DINOSEB           | 18.5  | U      | 18.5     | 18.5 | 74.2             | ug/Kg    |
| SURROGATES |                   |       |        |          |      |                  |          |
| 19719-28-9 | 2,4-DCAA          | 212   |        | 12 - 189 | )    | 42%              | SPK: 500 |

07/03/14

PB77541

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-7(14-16) SDG No.: F2918

Lab Sample ID: F2918-08 Matrix: SOIL

Level (low/med): low % Solid: 90

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CR | QL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|--------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.15  | UN   | 1  | 0.516 | 1.15  | 2.31     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-38-2 | Arsenic   | 1.2   |      | 1  | 0.304 | 0.461 | 0.922    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-39-3 | Barium    | 84.4  |      | 1  | 0.369 | 2.31  | 4.61     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.58  |      | 1  | 0.055 | 0.138 | 0.277    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.138 | U    | 1  | 0.055 | 0.138 | 0.277    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-47-3 | Chromium  | 18.3  |      | 1  | 0.12  | 0.231 | 0.461    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-48-4 | Cobalt    | 19.6  |      | 1  | 0.526 | 0.692 | 1.38     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-50-8 | Copper    | 28.5  |      | 1  | 0.295 | 0.461 | 0.922    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7439-92-1 | Lead      | 36.4  | N    | 1  | 0.111 | 0.277 | 0.553    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7439-96-5 | Manganese | 582   |      | 1  | 0.175 | 0.461 | 0.922    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.005 | U    | 1  | 0.005 | 0.005 | 0.01     | mg/Kg 07/01/14     | 07/03/14  | SW7471A  |
| 7440-02-0 | Nickel    | 25.8  |      | 1  | 0.424 | 0.922 | 1.84     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7782-49-2 | Selenium  | 0.898 | J    | 1  | 0.378 | 0.461 | 0.922    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-22-4 | Silver    | 0.765 |      | 1  | 0.138 | 0.231 | 0.461    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.922 | U    | 1  | 0.249 | 0.922 | 1.84     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-62-2 | Vanadium  | 23.9  |      | 1  | 0.544 | 0.922 | 1.84     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-66-6 | Zinc      | 71.6  |      | 1  | 0.645 | 0.922 | 1.84     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



PP003687.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-7(14-16) Lab Sample ID: F2918-08 Matrix: **SOIL** 

Analytical Method: SW8082A % Moisture: 10 Decanted:

Sample Wt/Vol: 30.12 Units: g Final Vol: 10000
Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

1

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

07/01/14

| CAS Number | Parameter            | Conc. | Qualifie | · MDL    | LOD | LOQ / CF | RQL Units |
|------------|----------------------|-------|----------|----------|-----|----------|-----------|
| TARGETS    |                      |       |          |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 3.7   | U        | 3.7      | 3.7 | 18.8     | ug/kg     |
| 11104-28-2 | Aroclor-1221         | 3.7   | U        | 3.7      | 3.7 | 18.8     | ug/kg     |
| 11141-16-5 | Aroclor-1232         | 3.7   | U        | 3.7      | 3.7 | 18.8     | ug/kg     |
| 53469-21-9 | Aroclor-1242         | 3.7   | U        | 3.7      | 3.7 | 18.8     | ug/kg     |
| 12672-29-6 | Aroclor-1248         | 3.7   | U        | 3.7      | 3.7 | 18.8     | ug/kg     |
| 11097-69-1 | Aroclor-1254         | 3.7   | U        | 1.6      | 3.7 | 18.8     | ug/kg     |
| 11096-82-5 | Aroclor-1260         | 3.7   | U        | 3.7      | 3.7 | 18.8     | ug/kg     |
| SURROGATES |                      |       |          |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 17.9  |          | 10 - 166 | 6   | 90%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 14.1  |          | 60 - 125 | 5   | 70%      | SPK: 20   |

07/02/14

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

иL

PB77542



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

 Client Sample ID:
 GP-7(14-16)
 SDG No.:
 F2918

 Lab Sample ID:
 F2918-08
 Matrix:
 SOIL

Analytical Method: SW8081 % Moisture: 10 Decanted:

Sample Wt/Vol: 30.03 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023222.D 1 07/01/14 07/02/14 PB77543

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CRQL | Units   |
|------------|----------------------|-------|-----------|----------|-------|------------|---------|
| TARGETS    |                      |       |           |          |       |            |         |
| 319-84-6   | alpha-BHC            | 0.366 | U         | 0.144    | 0.366 | 1.9        | ug/kg   |
| 319-85-7   | beta-BHC             | 0.366 | U         | 0.2      | 0.366 | 1.9        | ug/kg   |
| 319-86-8   | delta-BHC            | 0.366 | U         | 0.111    | 0.366 | 1.9        | ug/kg   |
| 58-89-9    | gamma-BHC (Lindane)  | 0.366 | U         | 0.167    | 0.366 | 1.9        | ug/kg   |
| 76-44-8    | Heptachlor           | 0.366 | U         | 0.155    | 0.366 | 1.9        | ug/kg   |
| 309-00-2   | Aldrin               | 0.366 | U         | 0.111    | 0.366 | 1.9        | ug/kg   |
| 1024-57-3  | Heptachlor epoxide   | 0.366 | U         | 0.178    | 0.366 | 1.9        | ug/kg   |
| 959-98-8   | Endosulfan I         | 0.366 | U         | 0.167    | 0.366 | 1.9        | ug/kg   |
| 60-57-1    | Dieldrin             | 0.366 | U         | 0.144    | 0.366 | 1.9        | ug/kg   |
| 72-55-9    | 4,4-DDE              | 0.366 | U         | 0.222    | 0.366 | 1.9        | ug/kg   |
| 72-20-8    | Endrin               | 0.366 | U         | 0.2      | 0.366 | 1.9        | ug/kg   |
| 33213-65-9 | Endosulfan II        | 0.366 | U         | 0.155    | 0.366 | 1.9        | ug/kg   |
| 72-54-8    | 4,4-DDD              | 0.366 | U         | 0.189    | 0.366 | 1.9        | ug/kg   |
| 1031-07-8  | Endosulfan Sulfate   | 0.366 | U         | 0.167    | 0.366 | 1.9        | ug/kg   |
| 50-29-3    | 4,4-DDT              | 0.366 | U         | 0.155    | 0.366 | 1.9        | ug/kg   |
| 72-43-5    | Methoxychlor         | 0.366 | U         | 0.189    | 0.366 | 1.9        | ug/kg   |
| 53494-70-5 | Endrin ketone        | 0.366 | U         | 0.144    | 0.366 | 1.9        | ug/kg   |
| 7421-93-4  | Endrin aldehyde      | 0.366 | U         | 0.167    | 0.366 | 1.9        | ug/kg   |
| 5103-71-9  | alpha-Chlordane      | 0.366 | U         | 0.155    | 0.366 | 1.9        | ug/kg   |
| 5103-74-2  | gamma-Chlordane      | 0.366 | U         | 0.144    | 0.366 | 1.9        | ug/kg   |
| 8001-35-2  | Toxaphene            | 3.7   | U         | 3.7      | 3.7   | 18.9       | ug/kg   |
| SURROGATES |                      |       |           |          |       |            |         |
| 2051-24-3  | Decachlorobiphenyl   | 18.4  |           | 10 - 169 |       | 92%        | SPK: 20 |
| 877-09-8   | Tetrachloro-m-xylene | 22.2  |           | 31 - 151 |       | 111%       | SPK: 20 |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project:

NYCSCA Unionport Road Bronx

Date Received: 06/27/14

Client Sample ID:

GP-7(14-16)

Lab Sample ID:

SDG No.:

F2918

10

F2918-08

Matrix:

**SOIL** 

Analytical Method:

SW8081

% Moisture:

Decanted:

Sample Wt/Vol:

30.03 Units: Final Vol:

10000 иL

Soil Aliquot Vol:

g иL

Test:

Pesticide-TCL

Extraction Type: GPC Factor:

1.0

PH:

Injection Volume:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PB77543

PD023222.D

1

07/01/14

07/02/14

**CAS Number** 

Parameter

Conc.

Qualifier MDL

LOD

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Extraction Type:

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: F2918 GP-7(14-16) SOIL Lab Sample ID: F2918-08 Matrix: Analytical Method: SW8270 % Moisture: 10

Sample Wt/Vol: 30.02 Units: g Final Vol: 1000 uL

N

Level:

LOW

Soil Aliquot Vol: uL Test: SVOCMS Group1

Decanted: GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed

BF072265.D 1 07/01/14 07/02/14 PB77544

| B1 072203.B | •                           | 07/01/11 |        | 07.     | 702/11 |     | 15/7511    |       |
|-------------|-----------------------------|----------|--------|---------|--------|-----|------------|-------|
| CAS Number  | Parameter                   | Co       | nc. Qu | alifier | MDL    | LOD | LOQ / CRQL | Units |
| TARGETS     |                             |          |        |         |        |     |            |       |
| 100-52-7    | Benzaldehyde                | 37       |        | U       | 19.3   | 37  | 370        | ug/Kg |
| 108-95-2    | Phenol                      | 37       |        | U       | 8.5    | 37  | 370        | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 37       |        | U       | 17.8   | 37  | 370        | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 37       |        | U       | 19.5   | 37  | 370        | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 37       |        | U       | 20.1   | 37  | 370        | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 37       |        | U       | 15.3   | 37  | 370        | ug/Kg |
| 98-86-2     | Acetophenone                | 37       |        | U       | 11.3   | 37  | 370        | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 37       |        | U       | 19.2   | 37  | 370        | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 37       |        | U       | 18.7   | 37  | 370        | ug/Kg |
| 67-72-1     | Hexachloroethane            | 37       |        | U       | 16.5   | 37  | 370        | ug/Kg |
| 98-95-3     | Nitrobenzene                | 37       |        | U       | 14     | 37  | 370        | ug/Kg |
| 78-59-1     | Isophorone                  | 37       |        | U       | 12.2   | 37  | 370        | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 37       |        | U       | 17.9   | 37  | 370        | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 37       |        | U       | 21     | 37  | 370        | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 37       |        | U       | 21.3   | 37  | 370        | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 37       |        | U       | 14.1   | 37  | 370        | ug/Kg |
| 91-20-3     | Naphthalene                 | 37       |        | U       | 12.8   | 37  | 370        | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 37       |        | U       | 26.1   | 37  | 370        | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 37       |        | U       | 13.4   | 37  | 370        | ug/Kg |
| 105-60-2    | Caprolactam                 | 74       |        | U       | 17.2   | 74  | 370        | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 37       |        | U       | 16.4   | 37  | 370        | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 37       |        | U       | 9.3    | 37  | 370        | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 37       |        | U       | 9      | 37  | 370        | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 37       |        | U       | 11.3   | 37  | 370        | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 37       |        | U       | 26     | 37  | 370        | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 37       |        | U       | 14     | 37  | 370        | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 37       |        | U       | 8.4    | 37  | 370        | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 37       |        | U       | 16.4   | 37  | 370        | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 93       | 0      |         | 10     | 37  | 370        | ug/Kg |
| 208-96-8    | Acenaphthylene              | 37       |        | U       | 9.3    | 37  | 370        | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 37       |        | U       | 15.1   | 37  | 370        | ug/Kg |



Sample Wt/Vol:

30.02

Units:

g

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-7(14-16) SDG No.: F2918

Lab Sample ID: F2918-08 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 10

Soil Aliquot Vol: uL Test: SVOCMS Group1

Final Vol:

1000

uL

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072265.D 1 07/01/14 07/02/14 PB77544

| BF0/2265.D | I                          | 07/01/14 |      | 0//       | 02/14 |     | PB7/544    |       |
|------------|----------------------------|----------|------|-----------|-------|-----|------------|-------|
| CAS Number | Parameter                  | C        | onc. | Qualifier | MDL   | LOD | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 74       | 4    | U         | 23.8  | 74  | 370        | ug/Kg |
| 83-32-9    | Acenaphthene               | 37       | 7    | U         | 10.4  | 37  | 370        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 30       | 00   | U         | 37.6  | 300 | 370        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 19       | 90   | U         | 68.7  | 190 | 370        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 37       | 7    | U         | 14.4  | 37  | 370        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 31       | 7    | U         | 11.1  | 37  | 370        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 31       | 7    | U         | 5.8   | 37  | 370        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 31       | 7    | U         | 20.1  | 37  | 370        | ug/Kg |
| 86-73-7    | Fluorene                   | 31       | 7    | U         | 14    | 37  | 370        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 74       | 4    | U         | 48.2  | 74  | 370        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 19       | 90   | U         | 21.2  | 190 | 370        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 31       | 7    | U         | 8.9   | 37  | 370        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 31       | 7    | U         | 7.2   | 37  | 370        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 31       | 7    | U         | 15.1  | 37  | 370        | ug/Kg |
| 1912-24-9  | Atrazine                   | 31       | 7    | U         | 19.5  | 37  | 370        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 31       | 7    | U         | 25.3  | 37  | 370        | ug/Kg |
| 85-01-8    | Phenanthrene               | 31       | 7    | U         | 10    | 37  | 370        | ug/Kg |
| 120-12-7   | Anthracene                 | 31       | 7    | U         | 7.6   | 37  | 370        | ug/Kg |
| 86-74-8    | Carbazole                  | 31       | 7    | U         | 8.1   | 37  | 370        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 31       | 7    | U         | 29.1  | 37  | 370        | ug/Kg |
| 206-44-0   | Fluoranthene               | 31       | 7    | U         | 7.4   | 37  | 370        | ug/Kg |
| 129-00-0   | Pyrene                     | 31       | 7    | U         | 8.9   | 37  | 370        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 31       | 7    | U         | 17.8  | 37  | 370        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 31       | 7    | U         | 23.8  | 37  | 370        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 31       | 7    | U         | 17.7  | 37  | 370        | ug/Kg |
| 218-01-9   | Chrysene                   | 31       | 7    | U         | 16.8  | 37  | 370        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 31       | 7    | U         | 13.1  | 37  | 370        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 31       | 7    | U         | 4.2   | 37  | 370        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 31       | 7    | U         | 12.1  | 37  | 370        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 31       | 7    | U         | 17.4  | 37  | 370        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 31       | 7    | U         | 8     | 37  | 370        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 37       | 7    | U         | 12.3  | 37  | 370        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 37       | 7    | U         | 10.7  | 37  | 370        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-7(14-16) SDG No.: F2918

Lab Sample ID: F2918-08 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 10

Sample Wt/Vol: 30.02 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072265.D 1 07/01/14 07/02/14 PB77544

| CAS Number   | Parameter                        | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
|--------------|----------------------------------|--------|-----------|----------|-----|------------|----------|
| 191-24-2     | Benzo(g,h,i)perylene             | 37     | U         | 15       | 37  | 370        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       | 37     | U         | 14.5     | 37  | 370        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        | 37     | U         | 14.5     | 37  | 370        | ug/Kg    |
| SURROGATES   |                                  |        |           |          |     |            |          |
| 367-12-4     | 2-Fluorophenol                   | 120    |           | 28 - 127 | 7   | 79%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        | 120    |           | 34 - 127 | 7   | 79%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  | 70.4   |           | 31 - 132 | 2   | 70%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 | 59     |           | 39 - 123 | 3   | 59%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             | 98.9   |           | 30 - 133 | 3   | 66%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    | 47.5   |           | 37 - 115 | 5   | 48%        | SPK: 100 |
| INTERNAL ST  | ANDARDS                          |        |           |          |     |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 37921  | 7.17      |          |     |            |          |
| 1146-65-2    | Naphthalene-d8                   | 162904 | 8.73      |          |     |            |          |
| 15067-26-2   | Acenaphthene-d10                 | 83958  | 10.9      |          |     |            |          |
| 1517-22-2    | Phenanthrene-d10                 | 149403 | 12.73     |          |     |            |          |
| 1719-03-5    | Chrysene-d12                     | 187791 | 16        |          |     |            |          |
| 1520-96-3    | Perylene-d12                     | 180486 | 17.65     |          |     |            |          |
| TENTATIVE II | DENTIFIED COMPOUNDS              |        |           |          |     |            |          |
|              | unknown1.38                      | 16000  | J         |          |     | 1.38       | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      | 950    | J         |          |     | 1.65       | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- | 420    | A         |          |     | 4.89       | ug/Kg    |
|              | unknown6.87                      | 3100   | J         |          |     | 6.87       | ug/Kg    |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Sample Wt/Vol:

6.8

Units:

g

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-7(14-16) SDG No.: F2918 SOIL Lab Sample ID: F2918-08 Matrix: Analytical Method: SW8260 % Moisture: 10

Soil Aliquot Vol: uL Test: VOCMS Group1

Final Vol:

5000

uL

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VT008869.D 1 07/01/14 VT063014

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.82  | U         | 0.82 | 0.82 | 4.1        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 67-64-1    | Acetone                        | 6.6   | J         | 2    | 2    | 20.4       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.82  | U         | 0.82 | 0.82 | 4.1        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 1.2   | J         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 6.1   | U         | 2.5  | 6.1  | 20.4       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 71-43-2    | Benzene                        | 0.41  | U         | 0.31 | 0.41 | 4.1        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.41  | U         | 0.21 | 0.41 | 4.1        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 2     | U         | 2    | 2    | 20.4       | ug/Kg |
| 108-88-3   | Toluene                        | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.41  | U         | 0.41 | 0.41 | 4.1        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-7(14-16) SDG No.: F2918 SOIL Lab Sample ID: F2918-08 Matrix: Analytical Method: SW8260 % Moisture: 10 Sample Wt/Vol: 6.8 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008869.D 1 07/01/14 VT063014

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.41  | U         | 0.41     | 0.41 | 4.1        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.82  | U         | 0.74     | 0.82 | 4.1        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 2     | U         | 2        | 2    | 20.4       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.41  | U         | 0.41     | 0.41 | 4.1        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.41  | U         | 0.41     | 0.41 | 4.1        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 0.41  | U         | 0.41     | 0.41 | 4.1        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.41  | U         | 0.41     | 0.41 | 4.1        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 0.41  | U         | 0.41     | 0.41 | 4.1        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 0.82  | U         | 0.59     | 0.82 | 8.2        | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.41  | U         | 0.41     | 0.41 | 4.1        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.41  | U         | 0.37     | 0.41 | 4.1        | ug/Kg   |
| 75-25-2     | Bromoform                   | 1.2   | U         | 0.6      | 1.2  | 4.1        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.41  | U         | 0.39     | 0.41 | 4.1        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.41  | U         | 0.38     | 0.41 | 4.1        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.41  | U         | 0.29     | 0.41 | 4.1        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.41  | U         | 0.37     | 0.41 | 4.1        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.41  | U         | 0.41     | 0.41 | 4.1        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.41  | U         | 0.41     | 0.41 | 4.1        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.41  | U         | 0.41     | 0.41 | 4.1        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.41  | U         | 0.24     | 0.41 | 4.1        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.41  | U         | 0.3      | 0.41 | 4.1        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.41  | U         | 0.33     | 0.41 | 4.1        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.41  | U         | 0.38     | 0.41 | 4.1        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.41  | U         | 0.41     | 0.41 | 4.1        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 4.1   | U         | 0.71     | 4.1  | 4.1        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.41  | U         | 0.41     | 0.41 | 4.1        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.41  | U         | 0.37     | 0.41 | 4.1        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.82  | U         | 0.41     | 0.82 | 4.1        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 81.7  | U         | 81.7     | 81.7 | 81.7       | ug/Kg   |
| SURROGATES  |                             |       |           |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 45.3  |           | 56 - 120 |      | 91%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 53.9  |           | 57 - 135 | 5    | 108%       | SPK: 50 |
|             |                             |       |           |          |      |            |         |



Lab Sample ID:

Client:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Project: NVCSCA Unionport Dood Brony

F2918-08

Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-7(14-16)

Analytical Method: SW8260

Sample Wt/Vol: 6.8 Units: g

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

Level: LOW

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Matrix:

06/25/14

06/27/14

F2918

SOIL

10

5000

VOCMS Group1

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VT008869.D 1 07/01/14 VT063014

| CAS Number  | Parameter              | Conc.   | Qualifier | MDL I    | LOD | LOQ / CRQL | Units   |
|-------------|------------------------|---------|-----------|----------|-----|------------|---------|
| 2037-26-5   | Toluene-d8             | 40.5    |           | 67 - 123 |     | 81%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 48      |           | 33 - 141 |     | 96%        | SPK: 50 |
| INTERNAL ST | ANDARDS                |         |           |          |     |            |         |
| 363-72-4    | Pentafluorobenzene     | 777034  | 7.43      |          |     |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 1104810 | 8.37      |          |     |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 846642  | 11.21     |          |     |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 501196  | 13.15     |          |     |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Lab Sample ID:

F2918-09

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client:Dvirka & BartilucciDate Collected:06/26/14 09:00Project:NYCSCA Unionport Road BronxDate Received:06/27/14Client Sample ID:GP-17(0-5)SDG No.:F2918

% Solid: 83.3

SOIL

Matrix:

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.189 | J    | 1  | 0.039 | 0.147 | 0.294      | mg/Kg | 07/01/14  | 07/02/14 12:48 | 9012B    |
| Hexavalent Chromium | 0.096 | J    | 1  | 0.096 | 0.239 | 0.478      | mg/Kg | 07/02/14  | 07/02/14 15:18 | 7196A    |

#### Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Client:Dvirka & BartilucciDate Collected:06/26/14Project:NYCSCA Unionport Road BronxDate Received:06/27/14Client Sample ID:GP-17(0-5)SDG No.:F2918

Lab Sample ID: F2918-09 Matrix: SOIL

Analytical Method: 8015B DRO % Moisture: 16.7 Decanted: Sample Wt/Vol: 30.07 Units: g Final Vol: 1 mL

Soil Aliquot Vol: uL Test: Diesel Range Organics

Extraction Type: Injection Volume :

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID FC012024.D 4 07/01/14 07/03/14 PB77539

| CAS Number                   | Parameter       | Conc. Qua | alifier MDL | LOD  | LOQ / CR | QL Units |
|------------------------------|-----------------|-----------|-------------|------|----------|----------|
| TARGETS<br>DRO               | DRO             | 98210     | 3990        | 3995 | 7990     | ug/kg    |
| <b>SURROGATES</b> 16416-32-3 | Tetracosane-d50 | 4.55      | 37 - 130    |      | 91%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



% Moisture:

16.7

Decanted:

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-17(0-5) Lab Sample ID: F2918-09 Matrix: **SOIL** 

Analytical Method: Sample Wt/Vol: 5.05 Units: Final Vol: 5 mL g

Test: Soil Aliquot Vol: иL Gasoline Range Organics

Extraction Type: Injection Volume:

PH: GPC Factor:

8015B GRO

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date 1 07/08/14 FB070714 FB004523.D

| CAS Number            | Parameter                          | Conc. | Qualific | er MDL   | LOD  | LOQ / CF | RQL Units |
|-----------------------|------------------------------------|-------|----------|----------|------|----------|-----------|
| TARGETS<br>GRO        | GRO                                | 26.5  | U        | 14       | 26.5 | 53       | ug/kg     |
| SURROGATES<br>98-08-8 | Alpha,Alpha,Alpha-Trifluorotoluene | 6.59  | *        | 50 - 150 | )    | 33%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Sample Wt/Vol:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Final Vol:

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-17(0-5) Lab Sample ID: F2918-09 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 16.7

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume:

g

GPC Factor: 1.0 PH:

30.04

Units:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010331.D 1 07/01/14 07/03/14 PB77541

| CAS Number | Parameter         | Conc. | Qualifi | er MDL   | LOD | LOQ / CF | RQL Units |
|------------|-------------------|-------|---------|----------|-----|----------|-----------|
| TARGETS    |                   |       |         |          |     |          |           |
| 1918-00-9  | DICAMBA           | 20    | U       | 15.9     | 20  | 80.3     | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 20    | U       | 14.8     | 20  | 80.3     | ug/Kg     |
| 94-75-7    | 2,4-D             | 20    | U       | 20       | 20  | 80.3     | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 20    | U       | 13.1     | 20  | 80.3     | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 20    | U       | 12.3     | 20  | 80.3     | ug/Kg     |
| 94-82-6    | 2,4-DB            | 20    | U       | 20       | 20  | 80.3     | ug/Kg     |
| 88-85-7    | DINOSEB           | 20    | U       | 20       | 20  | 80.3     | ug/Kg     |
| SURROGATES |                   |       |         |          |     |          |           |
| 19719-28-9 | 2,4-DCAA          | 252   |         | 12 - 189 | )   | 51%      | SPK: 500  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:

иL

10000



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Matrix:

SOIL

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: GP-17(0-5) F2918

Lab Sample ID: % Solid: 83.3 Level (low/med): low

F2918-09

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CI | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.24  | UN   | 1  | 0.556 | 1.24  | 2.48     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-38-2 | Arsenic   | 6.82  |      | 1  | 0.327 | 0.496 | 0.992    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-39-3 | Barium    | 748   |      | 1  | 0.397 | 2.48  | 4.96     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.634 |      | 1  | 0.06  | 0.149 | 0.298    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.79  |      | 1  | 0.06  | 0.149 | 0.298    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-47-3 | Chromium  | 24.4  |      | 1  | 0.129 | 0.248 | 0.496    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-48-4 | Cobalt    | 14    |      | 1  | 0.566 | 0.744 | 1.49     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-50-8 | Copper    | 51    |      | 1  | 0.317 | 0.496 | 0.992    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-92-1 | Lead      | 3240  | N    | 1  | 0.119 | 0.298 | 0.595    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-96-5 | Manganese | 607   |      | 1  | 0.189 | 0.496 | 0.992    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.681 | D    | 2  | 0.012 | 0.012 | 0.024    | mg/Kg 07/01/14      | 07/03/14  | SW7471A  |
| 7440-02-0 | Nickel    | 19.1  |      | 1  | 0.456 | 0.992 | 1.98     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7782-49-2 | Selenium  | 1.33  |      | 1  | 0.407 | 0.496 | 0.992    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-22-4 | Silver    | 1.27  |      | 1  | 0.149 | 0.248 | 0.496    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.992 | U    | 1  | 0.268 | 0.992 | 1.98     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-62-2 | Vanadium  | 29.2  |      | 1  | 0.585 | 0.992 | 1.98     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-66-6 | Zinc      | 561   |      | 1  | 0.694 | 0.992 | 1.98     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-17(0-5) Lab Sample ID: F2918-09 Matrix: SOIL % Moisture: Analytical Method: SW8082A 16.7 Decanted: Sample Wt/Vol: 30.03 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume: 1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PP003688.D 1 07/01/14 07/02/14 PB77542

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|-----|----------|----------|
| TARGETS    |                      |       |           |          |     |          |          |
| 12674-11-2 | Aroclor-1016         | 4     | U         | 4        | 4   | 20.4     | ug/kg    |
| 11104-28-2 | Aroclor-1221         | 4     | U         | 4        | 4   | 20.4     | ug/kg    |
| 11141-16-5 | Aroclor-1232         | 4     | U         | 4        | 4   | 20.4     | ug/kg    |
| 53469-21-9 | Aroclor-1242         | 4     | U         | 4        | 4   | 20.4     | ug/kg    |
| 12672-29-6 | Aroclor-1248         | 4     | U         | 4        | 4   | 20.4     | ug/kg    |
| 11097-69-1 | Aroclor-1254         | 4     | U         | 1.8      | 4   | 20.4     | ug/kg    |
| 11096-82-5 | Aroclor-1260         | 4     | U         | 4        | 4   | 20.4     | ug/kg    |
| SURROGATES |                      |       |           |          |     |          |          |
| 877-09-8   | Tetrachloro-m-xylene | 18.7  |           | 10 - 166 | 5   | 93%      | SPK: 20  |
| 2051-24-3  | Decachlorobiphenyl   | 14.5  |           | 60 - 125 | 5   | 72%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-17(0-5) SDG No.: F2918

Lab Sample ID: F2918-09 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 16.7 Decanted:

Sample Wt/Vol: 30.06 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD023223.D 1 07/01/14 07/02/14 PB77543

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CRQL | Units   |
|------------|----------------------|-------|-----------|----------|-------|------------|---------|
| TARGETS    |                      |       |           |          |       |            |         |
| 319-84-6   | alpha-BHC            | 0.395 | U         | 0.156    | 0.395 | 2          | ug/kg   |
| 319-85-7   | beta-BHC             | 0.395 | U         | 0.216    | 0.395 | 2          | ug/kg   |
| 319-86-8   | delta-BHC            | 0.395 | U         | 0.12     | 0.395 | 2          | ug/kg   |
| 58-89-9    | gamma-BHC (Lindane)  | 0.395 | U         | 0.18     | 0.395 | 2          | ug/kg   |
| 76-44-8    | Heptachlor           | 0.395 | U         | 0.168    | 0.395 | 2          | ug/kg   |
| 309-00-2   | Aldrin               | 0.395 | U         | 0.12     | 0.395 | 2          | ug/kg   |
| 1024-57-3  | Heptachlor epoxide   | 0.395 | U         | 0.192    | 0.395 | 2          | ug/kg   |
| 959-98-8   | Endosulfan I         | 0.395 | U         | 0.18     | 0.395 | 2          | ug/kg   |
| 60-57-1    | Dieldrin             | 0.395 | U         | 0.156    | 0.395 | 2          | ug/kg   |
| 72-55-9    | 4,4-DDE              | 0.395 | U         | 0.24     | 0.395 | 2          | ug/kg   |
| 72-20-8    | Endrin               | 0.395 | U         | 0.216    | 0.395 | 2          | ug/kg   |
| 33213-65-9 | Endosulfan II        | 0.395 | U         | 0.168    | 0.395 | 2          | ug/kg   |
| 72-54-8    | 4,4-DDD              | 0.395 | U         | 0.204    | 0.395 | 2          | ug/kg   |
| 1031-07-8  | Endosulfan Sulfate   | 0.395 | U         | 0.18     | 0.395 | 2          | ug/kg   |
| 50-29-3    | 4,4-DDT              | 0.395 | U         | 0.168    | 0.395 | 2          | ug/kg   |
| 72-43-5    | Methoxychlor         | 0.395 | U         | 0.204    | 0.395 | 2          | ug/kg   |
| 53494-70-5 | Endrin ketone        | 0.395 | U         | 0.156    | 0.395 | 2          | ug/kg   |
| 7421-93-4  | Endrin aldehyde      | 0.395 | U         | 0.18     | 0.395 | 2          | ug/kg   |
| 5103-71-9  | alpha-Chlordane      | 0.395 | U         | 0.168    | 0.395 | 2          | ug/kg   |
| 5103-74-2  | gamma-Chlordane      | 0.395 | U         | 0.156    | 0.395 | 2          | ug/kg   |
| 8001-35-2  | Toxaphene            | 4     | U         | 4        | 4     | 20.4       | ug/kg   |
| SURROGATES |                      |       |           |          |       |            |         |
| 2051-24-3  | Decachlorobiphenyl   | 16.4  |           | 10 - 169 |       | 82%        | SPK: 20 |
| 877-09-8   | Tetrachloro-m-xylene | 16.8  |           | 31 - 151 |       | 84%        | SPK: 20 |



Project:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Date Collected:

Date Received:

SDG No.:

Matrix:

06/26/14

06/27/14

F2918

**SOIL** 

Decanted:

#### **Report of Analysis**

Client: Dvirka & Bartilucci

NYCSCA Unionport Road Bronx

Client Sample ID: GP-17(0-5)

Lab Sample ID: F2918-09

Analytical Method: SW8081 % Moisture: 16.7

Sample Wt/Vol: 30.06 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023223.D 1 07/01/14 07/02/14 PB77543

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-17(0-5) SDG No.: F2918
Lab Sample ID: F2918-09 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 16.7

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072259.D 5 07/01/14 07/02/14 PB77544

| CAS Number | Parameter                   | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|-----------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                             |       |           |      |     |            |       |
| 100-52-7   | Benzaldehyde                | 200   | U         | 100  | 200 | 2000       | ug/Kg |
| 108-95-2   | Phenol                      | 200   | U         | 46.2 | 200 | 2000       | ug/Kg |
| 111-44-4   | bis(2-Chloroethyl)ether     | 200   | U         | 95.9 | 200 | 2000       | ug/Kg |
| 95-57-8    | 2-Chlorophenol              | 200   | U         | 110  | 200 | 2000       | ug/Kg |
| 95-48-7    | 2-Methylphenol              | 200   | U         | 110  | 200 | 2000       | ug/Kg |
| 108-60-1   | 2,2-oxybis(1-Chloropropane) | 200   | U         | 82.7 | 200 | 2000       | ug/Kg |
| 98-86-2    | Acetophenone                | 200   | U         | 61.1 | 200 | 2000       | ug/Kg |
| 65794-96-9 | 3+4-Methylphenols           | 200   | U         | 100  | 200 | 2000       | ug/Kg |
| 621-64-7   | n-Nitroso-di-n-propylamine  | 200   | U         | 100  | 200 | 2000       | ug/Kg |
| 67-72-1    | Hexachloroethane            | 200   | U         | 89.3 | 200 | 2000       | ug/Kg |
| 98-95-3    | Nitrobenzene                | 200   | U         | 75.5 | 200 | 2000       | ug/Kg |
| 78-59-1    | Isophorone                  | 200   | U         | 65.9 | 200 | 2000       | ug/Kg |
| 88-75-5    | 2-Nitrophenol               | 200   | U         | 96.5 | 200 | 2000       | ug/Kg |
| 105-67-9   | 2,4-Dimethylphenol          | 200   | U         | 110  | 200 | 2000       | ug/Kg |
| 111-91-1   | bis(2-Chloroethoxy)methane  | 200   | U         | 120  | 200 | 2000       | ug/Kg |
| 120-83-2   | 2,4-Dichlorophenol          | 200   | U         | 76.1 | 200 | 2000       | ug/Kg |
| 91-20-3    | Naphthalene                 | 200   | U         | 68.9 | 200 | 2000       | ug/Kg |
| 106-47-8   | 4-Chloroaniline             | 200   | U         | 140  | 200 | 2000       | ug/Kg |
| 87-68-3    | Hexachlorobutadiene         | 200   | U         | 72.5 | 200 | 2000       | ug/Kg |
| 105-60-2   | Caprolactam                 | 400   | U         | 92.9 | 400 | 2000       | ug/Kg |
| 59-50-7    | 4-Chloro-3-methylphenol     | 200   | U         | 88.7 | 200 | 2000       | ug/Kg |
| 91-57-6    | 2-Methylnaphthalene         | 200   | U         | 50.4 | 200 | 2000       | ug/Kg |
| 77-47-4    | Hexachlorocyclopentadiene   | 200   | U         | 48.6 | 200 | 2000       | ug/Kg |
| 88-06-2    | 2,4,6-Trichlorophenol       | 200   | U         | 61.1 | 200 | 2000       | ug/Kg |
| 95-95-4    | 2,4,5-Trichlorophenol       | 200   | U         | 140  | 200 | 2000       | ug/Kg |
| 92-52-4    | 1,1-Biphenyl                | 200   | U         | 75.5 | 200 | 2000       | ug/Kg |
| 91-58-7    | 2-Chloronaphthalene         | 200   | U         | 45.6 | 200 | 2000       | ug/Kg |
| 88-74-4    | 2-Nitroaniline              | 200   | U         | 88.7 | 200 | 2000       | ug/Kg |
| 131-11-3   | Dimethylphthalate           | 460   | J         | 53.9 | 200 | 2000       | ug/Kg |
| 208-96-8   | Acenaphthylene              | 470   | J         | 50.4 | 200 | 2000       | ug/Kg |
| 606-20-2   | 2,6-Dinitrotoluene          | 200   | U         | 81.5 | 200 | 2000       | ug/Kg |
|            |                             |       |           |      |     |            |       |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

 Client Sample ID:
 GP-17(0-5)
 SDG No.:
 F2918

 Lab Sample ID:
 F2918-09
 Matrix:
 SOIL

Analytical Method: SW8270 % Moisture: 16.7

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072259.D 5 07/01/14 07/02/14 PB77544

| BF072259.D | 5                          | 07/01/14 | 07        | /02/14 |      | PB77544    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 400      | U         | 130    | 400  | 2000       | ug/Kg |
| 83-32-9    | Acenaphthene               | 560      | J         | 56.3   | 200  | 2000       | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 1600     | U         | 200    | 1600 | 2000       | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 1000     | U         | 370    | 1000 | 2000       | ug/Kg |
| 132-64-9   | Dibenzofuran               | 200      | U         | 77.9   | 200  | 2000       | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 200      | U         | 59.9   | 200  | 2000       | ug/Kg |
| 84-66-2    | Diethylphthalate           | 200      | U         | 31.2   | 200  | 2000       | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 200      | U         | 110    | 200  | 2000       | ug/Kg |
| 86-73-7    | Fluorene                   | 490      | J         | 75.5   | 200  | 2000       | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 400      | U         | 260    | 400  | 2000       | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 1000     | U         | 110    | 1000 | 2000       | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 200      | U         | 48     | 200  | 2000       | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 200      | U         | 39     | 200  | 2000       | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 200      | U         | 81.5   | 200  | 2000       | ug/Kg |
| 1912-24-9  | Atrazine                   | 200      | U         | 110    | 200  | 2000       | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 200      | U         | 140    | 200  | 2000       | ug/Kg |
| 85-01-8    | Phenanthrene               | 6700     |           | 53.9   | 200  | 2000       | ug/Kg |
| 120-12-7   | Anthracene                 | 1700     | J         | 40.8   | 200  | 2000       | ug/Kg |
| 86-74-8    | Carbazole                  | 510      | J         | 43.8   | 200  | 2000       | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 200      | U         | 160    | 200  | 2000       | ug/Kg |
| 206-44-0   | Fluoranthene               | 11900    |           | 40.2   | 200  | 2000       | ug/Kg |
| 129-00-0   | Pyrene                     | 9400     |           | 48     | 200  | 2000       | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 200      | U         | 95.9   | 200  | 2000       | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 200      | U         | 130    | 200  | 2000       | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 6500     |           | 95.3   | 200  | 2000       | ug/Kg |
| 218-01-9   | Chrysene                   | 5300     |           | 90.5   | 200  | 2000       | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 200      | U         | 70.7   | 200  | 2000       | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 200      | U         | 22.8   | 200  | 2000       | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 5800     |           | 65.3   | 200  | 2000       | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 2700     |           | 94.1   | 200  | 2000       | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 5000     |           | 43.2   | 200  | 2000       | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 3100     |           | 66.5   | 200  | 2000       | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 760      | J         | 57.5   | 200  | 2000       | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-17(0-5) SDG No.: F2918

Lab Sample ID: F2918-09 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 16.7

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072259.D 5 07/01/14 07/02/14 PB77544

| CAS Number   | Parameter                      | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
|--------------|--------------------------------|--------|-----------|----------|-----|------------|----------|
| 191-24-2     | Benzo(g,h,i)perylene           | 3300   |           | 80.9     | 200 | 2000       | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene     | 200    | U         | 78.5     | 200 | 2000       | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol      | 200    | U         | 78.5     | 200 | 2000       | ug/Kg    |
| SURROGATES   |                                |        |           |          |     |            |          |
| 367-12-4     | 2-Fluorophenol                 | 85.9   |           | 28 - 127 |     | 57%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                      | 89.8   |           | 34 - 127 |     | 60%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                | 46.8   |           | 31 - 132 |     | 47%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl               | 48.6   |           | 39 - 123 |     | 49%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol           | 74.8   |           | 30 - 133 |     | 50%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                  | 44.8   |           | 37 - 115 |     | 45%        | SPK: 100 |
| INTERNAL STA | ANDARDS                        |        |           |          |     |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4         | 43195  | 7.17      |          |     |            |          |
| 1146-65-2    | Naphthalene-d8                 | 192469 | 8.74      |          |     |            |          |
| 15067-26-2   | Acenaphthene-d10               | 97609  | 10.91     |          |     |            |          |
| 1517-22-2    | Phenanthrene-d10               | 176531 | 12.75     |          |     |            |          |
| 1719-03-5    | Chrysene-d12                   | 210752 | 16.01     |          |     |            |          |
| 1520-96-3    | Perylene-d12                   | 206462 | 17.73     |          |     |            |          |
| TENTATIVE ID | ENTIFIED COMPOUNDS             |        |           |          |     |            |          |
| 000077-76-9  | Propane, 2,2-dimethoxy-        | 13200  | J         |          |     | 1.36       | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-    | 990    | J         |          |     | 1.64       | ug/Kg    |
|              | unknown6.87                    | 2600   | J         |          |     | 6.87       | ug/Kg    |
| 000832-69-9  | Phenanthrene, 1-methyl-        | 730    | J         |          |     | 13.37      | ug/Kg    |
| 002531-84-2  | Phenanthrene, 2-methyl-        | 1100   | J         |          |     | 13.41      | ug/Kg    |
| 000203-64-5  | 4H-Cyclopenta[def]phenanthrene | 1800   | J         |          |     | 13.5       | ug/Kg    |
| 005672-97-9  | 5,16[1,2]:8,13[1,2]-Dibenzen   | 1100   | J         |          |     | 13.75      | ug/Kg    |
| 003674-66-6  | Phenanthrene, 2,5-dimethyl-    | 680    | J         |          |     | 14.06      | ug/Kg    |
| 005737-13-3  | Cyclopenta(def)phenanthrenone  | 1300   | J         |          |     | 14.14      | ug/Kg    |
| 033543-31-6  | Fluoranthene, 2-methyl-        | 690    | J         |          |     | 14.94      | ug/Kg    |
| 000192-97-2  | Benzo[e]pyrene                 | 1500   | J         |          |     | 17.41      | ug/Kg    |
| 000207-93-2  | Dinaphtho[1,2-b:1,2-d]furan    | 960    | J         |          |     | 17.52      | ug/Kg    |
| 000191-26-4  | Dibenzo[def,mno]chrysene       | 1500   | J         |          |     | 19.64      | ug/Kg    |
|              |                                |        |           |          |     |            |          |



Extraction Type:

### **Report of Analysis**

Client: Dvirka & Bartilucci

Date Collected: 06/26/14

N

Date Received:

Level:

06/27/14

LOW

Project: NYCSCA Unionport Road Bronx

Client Sample ID: SDG No.: F2918 GP-17(0-5)

Lab Sample ID: F2918-09 Matrix: SOIL

% Moisture: 16.7 Analytical Method: SW8270

Sample Wt/Vol: 30.04 Units: Final Vol: 1000 uL g

Soil Aliquot Vol: uL Test: SVOCMS Group1

Decanted: Ν GPC Factor: 1.0 GPC Cleanup:

PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Date Prep Batch ID Date Analyzed

BF072259.D 5 07/01/14 07/02/14 PB77544

**CAS Number Parameter** Conc. Qualifier **MDL** LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14 06/27/14 Project: NYCSCA Unionport Road Bronx Date Received: Client Sample ID: GP-17(0-5) SDG No.: F2918 SOIL Lab Sample ID: F2918-09 Matrix: Analytical Method: SW8260 % Moisture: 16.7 Sample Wt/Vol: 5.77 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008870.D 1 07/01/14 VT063014

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 74-83-9    | Bromomethane                   | 1     | U         | 1    | 1    | 5.2        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 67-64-1    | Acetone                        | 10.9  | J         | 2.6  | 2.6  | 26         | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 1     | U         | 1    | 1    | 5.2        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 1.3   | J         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 7.8   | U         | 3.2  | 7.8  | 26         | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 71-43-2    | Benzene                        | 0.52  | U         | 0.4  | 0.52 | 5.2        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.52  | U         | 0.27 | 0.52 | 5.2        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 2.6   | U         | 2.6  | 2.6  | 26         | ug/Kg |
| 108-88-3   | Toluene                        | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.52  | U         | 0.52 | 0.52 | 5.2        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-17(0-5) SDG No.: F2918 SOIL Lab Sample ID: F2918-09 Matrix: Analytical Method: SW8260 % Moisture: 16.7 Sample Wt/Vol: 5.77 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008870.D 1 07/01/14 VT063014

|             | <u>-</u>                    |       | *****     |          |      |            |         |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 1     | U         | 0.94     | 1    | 5.2        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 2.6   | U         | 2.6      | 2.6  | 26         | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 4.1   | J         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 1.1   | J         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 1.9   | J         | 0.75     | 1    | 10.4       | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.52  | U         | 0.47     | 0.52 | 5.2        | ug/Kg   |
| 75-25-2     | Bromoform                   | 1.6   | U         | 0.77     | 1.6  | 5.2        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.52  | U         | 0.5      | 0.52 | 5.2        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.52  | U         | 0.48     | 0.52 | 5.2        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.52  | U         | 0.37     | 0.52 | 5.2        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.52  | U         | 0.47     | 0.52 | 5.2        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.52  | U         | 0.3      | 0.52 | 5.2        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.52  | U         | 0.38     | 0.52 | 5.2        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.52  | U         | 0.43     | 0.52 | 5.2        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.52  | U         | 0.48     | 0.52 | 5.2        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 5.2   | U         | 0.91     | 5.2  | 5.2        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.52  | U         | 0.52     | 0.52 | 5.2        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.52  | U         | 0.47     | 0.52 | 5.2        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 1     | U         | 0.52     | 1    | 5.2        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 100   | U         | 100      | 100  | 100        | ug/Kg   |
| SURROGATES  |                             |       |           |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 51.5  |           | 56 - 120 |      | 103%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 110   | *         | 57 - 135 | 5    | 222%       | SPK: 50 |
|             |                             |       |           |          |      |            |         |



Lab Sample ID:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

F2918-09

Client Sample ID: GP-17(0-5)

Analytical Method: SW8260

Sample Wt/Vol: 5.77 Units: g

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

1

Date Collected:

06/26/14

Date Received: 06

06/27/14

SDG No.:

F2918 SOIL

Matrix: % Moisture:

Final Vol:

16.7

o ivioisture.

5000

00

Test:

VOCMS Group1

uL

Level: LOW

File ID/Qc Batch:

VT008870.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

07/01/14

VT063014

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL LOI  | LOQ / CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|------------|---------|
| 2037-26-5    | Toluene-d8             | 11.4   | *         | 67 - 123 | 23%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 56.5   |           | 33 - 141 | 113%       | SPK: 50 |
| INTERNAL ST. | ANDARDS                |        |           |          |            |         |
| 363-72-4     | Pentafluorobenzene     | 724909 | 7.43      |          |            |         |
| 540-36-3     | 1,4-Difluorobenzene    | 573150 | 8.37      |          |            |         |
| 3114-55-4    | Chlorobenzene-d5       | 149344 | 11.21     |          |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 217310 | 13.15     |          |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



low

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: GW-17 F2918

Lab Sample ID: F2918-10 Matrix: WATER % Solid: Level (low/med): 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ / | CRQL Un | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|-------|---------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.31  | J    | 1  | 0.14 | 1.0 | 2     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 1.9   |      | 1  | 0.18 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 106   |      | 1  | 0.1  | 5.0 | 10    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.64  | J    | 1  | 0.09 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 0.46  | J    | 1  | 0.13 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 12.9  | *    | 1  | 0.04 | 1.0 | 2     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 55.7  |      | 1  | 0.05 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 15.1  | *    | 1  | 0.04 | 1.0 | 2     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 55.3  |      | 1  | 0.04 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 3700  |      | 1  | 0.05 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.683 |      | 1  | 0.1  | 0.1 | 0.2   | ug/L    | 07/01/14      | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 31.5  | *    | 1  | 0.06 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 15.8  |      | 1  | 0.7  | 2.5 | 5     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 0.44  | J    | 1  | 0.03 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.11  | J    | 1  | 0.02 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 8.5   |      | 1  | 0.15 | 2.5 | 5     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 123   | *    | 1  | 0.09 | 1.0 | 2     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |

Color Before: Brown Clarity Before: Cloudy Texture: Color After: Yellow Clarity After: Clear Artifacts:

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Date Collected:

06/26/14

### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: TRIPBLANK-6-25-14 SDG No.: F2918

Lab Sample ID: F2918-10 Matrix: Water

Analytical Method: SW8082A % Moisture: 100 Decanted: Sample Wt/Vol: 1000 Units: mL Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PC017828.D 1 07/01/14 07/02/14 PB77540

| CAS Number Parameter Co |                      | Conc. | Qualifier | MDL      | LOD | LOQ / CF | RQL Units |
|-------------------------|----------------------|-------|-----------|----------|-----|----------|-----------|
| TARGETS                 |                      |       |           |          |     |          |           |
| 12674-11-2              | Aroclor-1016         | 0.1   | U         | 0.096    | 0.1 | 0.5      | ug/L      |
| 11104-28-2              | Aroclor-1221         | 0.1   | U         | 0.1      | 0.1 | 0.5      | ug/L      |
| 11141-16-5              | Aroclor-1232         | 0.1   | U         | 0.1      | 0.1 | 0.5      | ug/L      |
| 53469-21-9              | Aroclor-1242         | 0.1   | U         | 0.089    | 0.1 | 0.5      | ug/L      |
| 12672-29-6              | Aroclor-1248         | 0.1   | U         | 0.1      | 0.1 | 0.5      | ug/L      |
| 11097-69-1              | Aroclor-1254         | 0.1   | U         | 0.044    | 0.1 | 0.5      | ug/L      |
| 11096-82-5              | Aroclor-1260         | 0.1   | U         | 0.081    | 0.1 | 0.5      | ug/L      |
| SURROGATES              |                      |       |           |          |     |          |           |
| 877-09-8                | Tetrachloro-m-xylene | 13.6  |           | 35 - 137 | 7   | 68%      | SPK: 20   |
| 2051-24-3               | Decachlorobiphenyl   | 14.8  |           | 40 - 135 | 5   | 74%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-17 SDG No.: F2918

Lab Sample ID: F2918-10 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

Be086577.d 1 07/01/14 07/02/14 PB77536

| CAS Number | Parameter                   | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|-----------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                             |       |           |      |     |            |       |
| 100-52-7   | Benzaldehyde                | 1     | U         | 0.77 | 1   | 10         | ug/L  |
| 108-95-2   | Phenol                      | 1     | U         | 0.21 | 1   | 10         | ug/L  |
| 111-44-4   | bis(2-Chloroethyl)ether     | 1     | U         | 0.55 | 1   | 10         | ug/L  |
| 95-57-8    | 2-Chlorophenol              | 1     | U         | 0.54 | 1   | 10         | ug/L  |
| 95-48-7    | 2-Methylphenol              | 1     | U         | 0.24 | 1   | 10         | ug/L  |
| 108-60-1   | 2,2-oxybis(1-Chloropropane) | 1     | U         | 0.17 | 1   | 10         | ug/L  |
| 98-86-2    | Acetophenone                | 1     | U         | 0.14 | 1   | 10         | ug/L  |
| 65794-96-9 | 3+4-Methylphenols           | 1     | U         | 0.38 | 1   | 10         | ug/L  |
| 621-64-7   | n-Nitroso-di-n-propylamine  | 1     | U         | 0.2  | 1   | 10         | ug/L  |
| 67-72-1    | Hexachloroethane            | 1     | U         | 0.25 | 1   | 10         | ug/L  |
| 98-95-3    | Nitrobenzene                | 1     | U         | 0.68 | 1   | 10         | ug/L  |
| 78-59-1    | Isophorone                  | 1     | U         | 0.3  | 1   | 10         | ug/L  |
| 88-75-5    | 2-Nitrophenol               | 1     | U         | 0.52 | 1   | 10         | ug/L  |
| 105-67-9   | 2,4-Dimethylphenol          | 1     | U         | 0.71 | 1   | 10         | ug/L  |
| 111-91-1   | bis(2-Chloroethoxy)methane  | 1     | U         | 0.55 | 1   | 10         | ug/L  |
| 120-83-2   | 2,4-Dichlorophenol          | 1     | U         | 0.66 | 1   | 10         | ug/L  |
| 91-20-3    | Naphthalene                 | 1     | U         | 0.12 | 1   | 10         | ug/L  |
| 106-47-8   | 4-Chloroaniline             | 1     | U         | 1    | 1   | 10         | ug/L  |
| 87-68-3    | Hexachlorobutadiene         | 1     | U         | 0.25 | 1   | 10         | ug/L  |
| 105-60-2   | Caprolactam                 | 1     | U         | 1    | 1   | 10         | ug/L  |
| 59-50-7    | 4-Chloro-3-methylphenol     | 1     | U         | 0.4  | 1   | 10         | ug/L  |
| 91-57-6    | 2-Methylnaphthalene         | 1     | U         | 0.32 | 1   | 10         | ug/L  |
| 77-47-4    | Hexachlorocyclopentadiene   | 1     | U         | 0.24 | 1   | 10         | ug/L  |
| 88-06-2    | 2,4,6-Trichlorophenol       | 1     | U         | 0.56 | 1   | 10         | ug/L  |
| 95-95-4    | 2,4,5-Trichlorophenol       | 1     | U         | 0.4  | 1   | 10         | ug/L  |
| 92-52-4    | 1,1-Biphenyl                | 1     | U         | 0.15 | 1   | 10         | ug/L  |
| 91-58-7    | 2-Chloronaphthalene         | 1     | U         | 0.16 | 1   | 10         | ug/L  |
| 88-74-4    | 2-Nitroaniline              | 1     | U         | 0.49 | 1   | 10         | ug/L  |
| 131-11-3   | Dimethylphthalate           | 2.9   | J         | 0.22 | 1   | 10         | ug/L  |
| 208-96-8   | Acenaphthylene              | 1     | U         | 0.7  | 1   | 10         | ug/L  |
| 606-20-2   | 2,6-Dinitrotoluene          | 1     | U         | 0.32 | 1   | 10         | ug/L  |
|            |                             |       |           |      |     |            |       |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-17 SDG No.: F2918

Lab Sample ID: F2918-10 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

Be086577.d 1 07/01/14 07/02/14 PB77536

| Be086577.d | 1                          | 07/01/14 | 07.       | /02/14 |     | PB77536    |       |
|------------|----------------------------|----------|-----------|--------|-----|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 1        | U         | 1      | 1   | 10         | ug/L  |
| 83-32-9    | Acenaphthene               | 1        | U         | 0.21   | 1   | 10         | ug/L  |
| 51-28-5    | 2,4-Dinitrophenol          | 8        | U         | 2.1    | 8   | 10         | ug/L  |
| 100-02-7   | 4-Nitrophenol              | 5        | U         | 2      | 5   | 10         | ug/L  |
| 132-64-9   | Dibenzofuran               | 1        | U         | 0.24   | 1   | 10         | ug/L  |
| 121-14-2   | 2,4-Dinitrotoluene         | 1        | U         | 1      | 1   | 10         | ug/L  |
| 84-66-2    | Diethylphthalate           | 1        | U         | 0.38   | 1   | 10         | ug/L  |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 1        | U         | 0.21   | 1   | 10         | ug/L  |
| 86-73-7    | Fluorene                   | 1        | U         | 0.31   | 1   | 10         | ug/L  |
| 100-01-6   | 4-Nitroaniline             | 2        | U         | 1.4    | 2   | 10         | ug/L  |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 2        | U         | 0.74   | 2   | 10         | ug/L  |
| 86-30-6    | n-Nitrosodiphenylamine     | 1        | U         | 0.6    | 1   | 10         | ug/L  |
| 101-55-3   | 4-Bromophenyl-phenylether  | 1        | U         | 0.23   | 1   | 10         | ug/L  |
| 118-74-1   | Hexachlorobenzene          | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 1912-24-9  | Atrazine                   | 1        | U         | 0.4    | 1   | 10         | ug/L  |
| 87-86-5    | Pentachlorophenol          | 1        | U         | 1      | 1   | 10         | ug/L  |
| 85-01-8    | Phenanthrene               | 1        | U         | 0.26   | 1   | 10         | ug/L  |
| 120-12-7   | Anthracene                 | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 86-74-8    | Carbazole                  | 1        | U         | 0.22   | 1   | 10         | ug/L  |
| 84-74-2    | Di-n-butylphthalate        | 1        | U         | 1      | 1   | 10         | ug/L  |
| 206-44-0   | Fluoranthene               | 1        | U         | 0.4    | 1   | 10         | ug/L  |
| 129-00-0   | Pyrene                     | 1        | U         | 0.2    | 1   | 10         | ug/L  |
| 85-68-7    | Butylbenzylphthalate       | 1        | U         | 0.19   | 1   | 10         | ug/L  |
| 91-94-1    | 3,3-Dichlorobenzidine      | 1        | U         | 1      | 1   | 10         | ug/L  |
| 56-55-3    | Benzo(a)anthracene         | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 218-01-9   | Chrysene                   | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 117-84-0   | Di-n-octyl phthalate       | 1        | U         | 0.51   | 1   | 10         | ug/L  |
| 205-99-2   | Benzo(b)fluoranthene       | 1        | U         | 0.29   | 1   | 10         | ug/L  |
| 207-08-9   | Benzo(k)fluoranthene       | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 50-32-8    | Benzo(a)pyrene             | 1        | U         | 0.14   | 1   | 10         | ug/L  |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 1        | U         | 0.15   | 1   | 10         | ug/L  |
| 53-70-3    | Dibenzo(a,h)anthracene     | 1        | U         | 0.42   | 1   | 10         | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-17 SDG No.: F2918

Lab Sample ID: F2918-10 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

Be086577.d 1 07/01/14 07/02/14 PB77536

| CAS Number   | Parameter                          | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
|--------------|------------------------------------|--------|-----------|----------|-----|------------|----------|
| 191-24-2     | Benzo(g,h,i)perylene               | 1      | U         | 0.29     | 1   | 10         | ug/L     |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene         | 1      | U         | 0.2      | 1   | 10         | ug/L     |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol          | 1      | U         | 0.2      | 1   | 10         | ug/L     |
| SURROGATES   |                                    |        |           |          |     |            |          |
| 367-12-4     | 2-Fluorophenol                     | 72.5   |           | 10 - 130 | )   | 48%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                          | 48.9   |           | 10 - 130 | )   | 33%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                    | 98     |           | 36 - 131 |     | 98%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                   | 90.7   |           | 39 - 131 |     | 91%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol               | 140    |           | 25 - 155 | 5   | 91%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                      | 92.3   |           | 23 - 130 | )   | 92%        | SPK: 100 |
| INTERNAL ST  | ANDARDS                            |        |           |          |     |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4             | 218277 | 6.77      |          |     |            |          |
| 1146-65-2    | Naphthalene-d8                     | 974812 | 8.33      |          |     |            |          |
| 15067-26-2   | Acenaphthene-d10                   | 483157 | 10.47     |          |     |            |          |
| 1517-22-2    | Phenanthrene-d10                   | 719201 | 12.28     |          |     |            |          |
| 1719-03-5    | Chrysene-d12                       | 544179 | 15.5      |          |     |            |          |
| 1520-96-3    | Perylene-d12                       | 430219 | 17.11     |          |     |            |          |
| TENTATIVE II | DENTIFIED COMPOUNDS                |        |           |          |     |            |          |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-        | 100    | J         |          |     | 1.52       | ug/L     |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl-   | 5.5    | A         |          |     | 4.44       | ug/L     |
|              | unknown6.48                        | 82.8   | J         |          |     | 6.48       | ug/L     |
| 000143-22-6  | Ethanol, 2-[2-(2-butoxyethoxy)etho | 2.6    | J         |          |     | 10.27      | ug/L     |
| 000057-10-3  | n-Hexadecanoic acid                | 3.7    | J         |          |     | 13.05      | ug/L     |
| 000057-11-4  | Octadecanoic acid                  | 4      | J         |          |     | 14.02      | ug/L     |
| 000191-26-4  | Dibenzo[def,mno]chrysene           | 2.3    | J         |          |     | 18.49      | ug/L     |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

<sup>\* =</sup> Values outside of QC limits

D = Dilution



Sample Wt/Vol:

5

Units:

mL

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: 06/27/14 NYCSCA Unionport Road Bronx Date Received: Client Sample ID: GW-17 SDG No.: F2918 Lab Sample ID: F2918-10 Matrix: Water Analytical Method: SW8260 % Moisture: 100

Final Vol:

5000

uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN017002.D 1 07/04/14 VN070314

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-87-3    | Chloromethane                  | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-83-9    | Bromomethane                   | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-00-3    | Chloroethane                   | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 67-64-1    | Acetone                        | 1     | U         | 0.5  | 1   | 5          | ug/L  |
| 75-15-0    | Carbon Disulfide               | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.5   | U         | 0.35 | 0.5 | 1          | ug/L  |
| 79-20-9    | Methyl Acetate                 | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-09-2    | Methylene Chloride             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 1.3   |           | 0.2  | 0.2 | 1          | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 110-82-7   | Cyclohexane                    | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-93-3    | 2-Butanone                     | 2.5   | U         | 1.3  | 2.5 | 5          | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 5.9   |           | 0.2  | 0.2 | 1          | ug/L  |
| 74-97-5    | Bromochloromethane             | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 67-66-3    | Chloroform                     | 0.87  | J         | 0.2  | 0.2 | 1          | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-87-2   | Methylcyclohexane              | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-43-2    | Benzene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 79-01-6    | Trichloroethene                | 8     |           | 0.2  | 0.2 | 1          | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-27-4    | Bromodichloromethane           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1     | U         | 1    | 1   | 5          | ug/L  |
| 108-88-3   | Toluene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID:GW-17SDG No.:F2918Lab Sample ID:F2918-10Matrix:WaterAnalytical Method:SW8260% Moisture:100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN017002.D 1 07/04/14 VN070314

| CAS Number             | Parameter                   | Conc. | Qualifier    | MDL     | LOD | LOQ / CRQL | Units   |
|------------------------|-----------------------------|-------|--------------|---------|-----|------------|---------|
| 10061-01-5             | cis-1,3-Dichloropropene     | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 79-00-5                | 1,1,2-Trichloroethane       | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 591-78-6               | 2-Hexanone                  | 2.5   | U            | 1.9     | 2.5 | 5          | ug/L    |
| 124-48-1               | Dibromochloromethane        | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 106-93-4               | 1,2-Dibromoethane           | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 127-18-4               | Tetrachloroethene           | 260   | E            | 0.2     | 0.2 | 1          | ug/L    |
| 108-90-7               | Chlorobenzene               | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 100-41-4               | Ethyl Benzene               | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 179601-23-1            | m/p-Xylenes                 | 0.4   | U            | 0.4     | 0.4 | 2          | ug/L    |
| 95-47-6                | o-Xylene                    | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 100-42-5               | Styrene                     | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 75-25-2                | Bromoform                   | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 98-82-8                | Isopropylbenzene            | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 79-34-5                | 1,1,2,2-Tetrachloroethane   | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 103-65-1               | n-propylbenzene             | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 108-67-8               | 1,3,5-Trimethylbenzene      | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 98-06-6                | tert-Butylbenzene           | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 95-63-6                | 1,2,4-Trimethylbenzene      | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 135-98-8               | sec-Butylbenzene            | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 99-87-6                | p-Isopropyltoluene          | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 541-73-1               | 1,3-Dichlorobenzene         | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 106-46-7               | 1,4-Dichlorobenzene         | 0.2   | $\mathbf{U}$ | 0.2     | 0.2 | 1          | ug/L    |
| 104-51-8               | n-Butylbenzene              | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 95-50-1                | 1,2-Dichlorobenzene         | 0.81  | J            | 0.2     | 0.2 | 1          | ug/L    |
| 96-12-8                | 1,2-Dibromo-3-Chloropropane | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 120-82-1               | 1,2,4-Trichlorobenzene      | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 91-20-3                | Naphthalene                 | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 87-61-6                | 1,2,3-Trichlorobenzene      | 0.2   | U            | 0.2     | 0.2 | 1          | ug/L    |
| 123-91-1<br>SURROGATES | 1,4-Dioxane                 | 100   | U            | 100     | 100 | 100        | ug/L    |
| 17060-07-0             | 1,2-Dichloroethane-d4       | 49.4  |              | 61 - 14 | 1   | 99%        | SPK: 50 |
| 1868-53-7              | Dibromofluoromethane        | 44.7  |              | 69 - 13 | 3   | 89%        | SPK: 50 |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

SW8260

Client Sample ID: GW-17

Lab Sample ID: F2918-10

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol:

GC Column: RXI-624 ID: 0.25 Level:

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Matrix:

VOCMS Group1 LOW

uL

06/26/14

06/27/14

F2918

Water

100

5000

File ID/Qc Batch:

Analytical Method:

Dilution:

Prep Date

uL

Date Analyzed

Prep Batch ID

1 VN017002.D

07/04/14

VN070314

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL LO   | OD LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|---------------|---------|
| 2037-26-5   | Toluene-d8             | 47.6   |           | 65 - 126 | 95%           | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 61.2   |           | 58 - 135 | 122%          | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |               |         |
| 363-72-4    | Pentafluorobenzene     | 229419 | 7.87      |          |               |         |
| 540-36-3    | 1,4-Difluorobenzene    | 377177 | 8.79      |          |               |         |
| 3114-55-4   | Chlorobenzene-d5       | 423156 | 11.61     |          |               |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 196630 | 13.56     |          |               |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-17DL SDG No.: F2918
Lab Sample ID: F2918-10DL Matrix: Water
Analytical Method: SW8260 % Moisture: 100

 $Sample \ Wt/Vol: \qquad \qquad 5 \qquad \qquad Units: \quad mL \qquad \qquad Final \ Vol: \qquad \qquad 5000 \qquad \quad uL$ 

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN017025.D 5 07/07/14 VN070714

| CAS Number | Parameter                      | Conc. | Qualifier | MDL | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|-----|------|------------|-------|
| TARGETS    |                                |       |           |     |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 74-87-3    | Chloromethane                  | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 74-83-9    | Bromomethane                   | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 75-00-3    | Chloroethane                   | 2.5   | UD        | 1   | 2.5  | 5          | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 67-64-1    | Acetone                        | 5     | UD        | 2.5 | 5    | 25         | ug/L  |
| 75-15-0    | Carbon Disulfide               | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 2.5   | UD        | 1.8 | 2.5  | 5          | ug/L  |
| 79-20-9    | Methyl Acetate                 | 2.5   | UD        | 1   | 2.5  | 5          | ug/L  |
| 75-09-2    | Methylene Chloride             | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 110-82-7   | Cyclohexane                    | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 78-93-3    | 2-Butanone                     | 12.5  | UD        | 6.6 | 12.5 | 25         | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 5.8   | D         | 1   | 1    | 5          | ug/L  |
| 74-97-5    | Bromochloromethane             | 2.5   | UD        | 1   | 2.5  | 5          | ug/L  |
| 67-66-3    | Chloroform                     | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 108-87-2   | Methylcyclohexane              | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 71-43-2    | Benzene                        | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 79-01-6    | Trichloroethene                | 7.4   | D         | 1   | 1    | 5          | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 75-27-4    | Bromodichloromethane           | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 5     | UD        | 5   | 5    | 25         | ug/L  |
| 108-88-3   | Toluene                        | 1     | UD        | 1   | 1    | 5          | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 1     | UD        | 1   | 1    | 5          | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-17DL SDG No.: F2918

Lab Sample ID: F2918-10DL Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN017025.D 5 07/07/14 VN070714

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL     | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|---------|------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 79-00-5     | 1,1,2-Trichloroethane       | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 591-78-6    | 2-Hexanone                  | 12.5  | UD        | 9.7     | 12.5 | 25         | ug/L    |
| 124-48-1    | Dibromochloromethane        | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 106-93-4    | 1,2-Dibromoethane           | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 127-18-4    | Tetrachloroethene           | 220   | D         | 1       | 1    | 5          | ug/L    |
| 108-90-7    | Chlorobenzene               | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 100-41-4    | Ethyl Benzene               | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 179601-23-1 | m/p-Xylenes                 | 2     | UD        | 2       | 2    | 10         | ug/L    |
| 95-47-6     | o-Xylene                    | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 100-42-5    | Styrene                     | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 75-25-2     | Bromoform                   | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 98-82-8     | Isopropylbenzene            | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 103-65-1    | n-propylbenzene             | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 98-06-6     | tert-Butylbenzene           | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 135-98-8    | sec-Butylbenzene            | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 99-87-6     | p-Isopropyltoluene          | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 541-73-1    | 1,3-Dichlorobenzene         | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 106-46-7    | 1,4-Dichlorobenzene         | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 104-51-8    | n-Butylbenzene              | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 95-50-1     | 1,2-Dichlorobenzene         | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 91-20-3     | Naphthalene                 | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 1     | UD        | 1       | 1    | 5          | ug/L    |
| 123-91-1    | 1,4-Dioxane                 | 500   | UD        | 500     | 500  | 500        | ug/L    |
| SURROGATES  |                             |       |           |         |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 46.7  |           | 61 - 14 |      | 93%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 43.2  |           | 69 - 13 | 3    | 86%        | SPK: 50 |



### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GW-17DL

Lab Sample ID: F2918-10DL

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

Level: LOW

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Matrix:

06/26/14

06/27/14

F2918

Water

100

5000

VOCMS Group1

Prep Batch ID

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed

VN017025.D 5 07/07/14 VN070714

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL LOD  | LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|------------|---------|
| 2037-26-5   | Toluene-d8             | 46.2   |           | 65 - 126 | 92%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 54.9   |           | 58 - 135 | 110%       | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |            |         |
| 363-72-4    | Pentafluorobenzene     | 228960 | 7.87      |          |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 384122 | 8.79      |          |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 402872 | 11.61     |          |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 166174 | 13.56     |          |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 10:45 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-16(0-5) F2918 Lab Sample ID: F2918-11 Matrix: SOIL % Solid: 89.9

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.048 | J    | 1  | 0.035 | 0.134 | 0.267      | mg/Kg | 07/01/14  | 07/02/14 12:48 | 9012B    |
| Hexavalent Chromium | 0.222 | U    | 1  | 0.089 | 0.222 | 0.443      | mg/Kg | 07/02/14  | 07/02/14 15:19 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



% Moisture:

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-16(0-5) Lab Sample ID: F2918-11 Matrix: **SOIL** 

Analytical Method: SW8151A 10.1 Decanted: 10000 Sample Wt/Vol: 30.05 Units: Final Vol: иL g

Test: Herbicide Soil Aliquot Vol: иL

Extraction Type: Injection Volume:

1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date 1 07/01/14 07/03/14 PB77541 PE010332.D

| CAS Number | Parameter         | Conc. | Qualif | ier MDL  | LOD  | LOQ / CF | RQL Units |
|------------|-------------------|-------|--------|----------|------|----------|-----------|
| TARGETS    |                   |       |        |          |      |          |           |
| 1918-00-9  | DICAMBA           | 18.5  | U      | 14.7     | 18.5 | 74.4     | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 18.5  | U      | 13.7     | 18.5 | 74.4     | ug/Kg     |
| 94-75-7    | 2,4-D             | 18.5  | U      | 18.5     | 18.5 | 74.4     | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 18.5  | U      | 12.1     | 18.5 | 74.4     | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 18.5  | U      | 11.4     | 18.5 | 74.4     | ug/Kg     |
| 94-82-6    | 2,4-DB            | 18.5  | U      | 18.5     | 18.5 | 74.4     | ug/Kg     |
| 88-85-7    | DINOSEB           | 18.5  | U      | 18.5     | 18.5 | 74.4     | ug/Kg     |
| SURROGATES |                   |       |        |          |      |          |           |
| 19719-28-9 | 2,4-DCAA          | 231   |        | 12 - 189 | )    | 46%      | SPK: 500  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-16(0-5) SDG No.: F2918
Lab Sample ID: F2918-11 Matrix: SOIL

Level (low/med): low % Solid: 89.9

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CR | QL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|--------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.14  | UN   | 1  | 0.511 | 1.14  | 2.28     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-38-2 | Arsenic   | 2.4   |      | 1  | 0.301 | 0.456 | 0.912    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-39-3 | Barium    | 91.6  |      | 1  | 0.365 | 2.28  | 4.56     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.422 |      | 1  | 0.055 | 0.137 | 0.274    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.137 | U    | 1  | 0.055 | 0.137 | 0.274    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-47-3 | Chromium  | 20.2  |      | 1  | 0.119 | 0.228 | 0.456    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-48-4 | Cobalt    | 13.5  |      | 1  | 0.52  | 0.684 | 1.37     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-50-8 | Copper    | 19.7  |      | 1  | 0.292 | 0.456 | 0.912    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7439-92-1 | Lead      | 39.3  | N    | 1  | 0.109 | 0.274 | 0.547    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7439-96-5 | Manganese | 700   |      | 1  | 0.173 | 0.456 | 0.912    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.039 |      | 1  | 0.005 | 0.005 | 0.01     | mg/Kg 07/01/14     | 07/03/14  | SW7471A  |
| 7440-02-0 | Nickel    | 15.4  |      | 1  | 0.419 | 0.912 | 1.82     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7782-49-2 | Selenium  | 0.847 | J    | 1  | 0.374 | 0.456 | 0.912    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-22-4 | Silver    | 0.809 |      | 1  | 0.137 | 0.228 | 0.456    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.912 | U    | 1  | 0.246 | 0.912 | 1.82     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-62-2 | Vanadium  | 29.8  |      | 1  | 0.538 | 0.912 | 1.82     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-66-6 | Zinc      | 50.6  |      | 1  | 0.638 | 0.912 | 1.82     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: F2918 Client Sample ID: GP-16(0-5) Lab Sample ID: F2918-11 Matrix: **SOIL** % Moisture: Analytical Method: SW8082A 10.1

Sample Wt/Vol: 30.09 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PP003689.D 1 07/01/14 07/02/14 PB77542

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD | LOQ / CR | RQL Units |
|------------|----------------------|-------|-----------|----------|-----|----------|-----------|
| TARGETS    |                      |       |           |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 3.7   | U         | 3.7      | 3.7 | 18.9     | ug/kg     |
| 11104-28-2 | Aroclor-1221         | 3.7   | U         | 3.7      | 3.7 | 18.9     | ug/kg     |
| 11141-16-5 | Aroclor-1232         | 3.7   | U         | 3.7      | 3.7 | 18.9     | ug/kg     |
| 53469-21-9 | Aroclor-1242         | 3.7   | U         | 3.7      | 3.7 | 18.9     | ug/kg     |
| 12672-29-6 | Aroclor-1248         | 3.7   | U         | 3.7      | 3.7 | 18.9     | ug/kg     |
| 11097-69-1 | Aroclor-1254         | 3.7   | U         | 1.7      | 3.7 | 18.9     | ug/kg     |
| 11096-82-5 | Aroclor-1260         | 3.7   | U         | 3.7      | 3.7 | 18.9     | ug/kg     |
| SURROGATES |                      |       |           |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 17.6  |           | 10 - 166 | 5   | 88%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 14    |           | 60 - 125 | 5   | 70%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:

Pesticide-TCL

Test:



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 06/27/14 Project: NYCSCA Unionport Road Bronx Date Received:

Client Sample ID: GP-16(0-5) SDG No.: F2918 Lab Sample ID: F2918-11 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 10.1 Decanted:

Sample Wt/Vol: 30.08 Final Vol: 10000 uL Units: g

Soil Aliquot Vol: uL Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023224.D 1 07/01/14 07/02/14 PB77543

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CRQI | Units   |
|------------|----------------------|-------|-----------|----------|-------|------------|---------|
| TARGETS    |                      |       |           |          |       |            |         |
| 319-84-6   | alpha-BHC            | 0.366 | U         | 0.144    | 0.366 | 1.9        | ug/kg   |
| 319-85-7   | beta-BHC             | 0.366 | U         | 0.2      | 0.366 | 1.9        | ug/kg   |
| 319-86-8   | delta-BHC            | 0.366 | U         | 0.111    | 0.366 | 1.9        | ug/kg   |
| 58-89-9    | gamma-BHC (Lindane)  | 0.366 | U         | 0.166    | 0.366 | 1.9        | ug/kg   |
| 76-44-8    | Heptachlor           | 0.366 | U         | 0.155    | 0.366 | 1.9        | ug/kg   |
| 309-00-2   | Aldrin               | 0.366 | U         | 0.111    | 0.366 | 1.9        | ug/kg   |
| 1024-57-3  | Heptachlor epoxide   | 0.366 | U         | 0.178    | 0.366 | 1.9        | ug/kg   |
| 959-98-8   | Endosulfan I         | 0.366 | U         | 0.166    | 0.366 | 1.9        | ug/kg   |
| 60-57-1    | Dieldrin             | 0.366 | U         | 0.144    | 0.366 | 1.9        | ug/kg   |
| 72-55-9    | 4,4-DDE              | 0.366 | U         | 0.222    | 0.366 | 1.9        | ug/kg   |
| 72-20-8    | Endrin               | 0.366 | U         | 0.2      | 0.366 | 1.9        | ug/kg   |
| 33213-65-9 | Endosulfan II        | 0.366 | U         | 0.155    | 0.366 | 1.9        | ug/kg   |
| 72-54-8    | 4,4-DDD              | 0.366 | U         | 0.189    | 0.366 | 1.9        | ug/kg   |
| 1031-07-8  | Endosulfan Sulfate   | 0.366 | U         | 0.166    | 0.366 | 1.9        | ug/kg   |
| 50-29-3    | 4,4-DDT              | 0.366 | U         | 0.155    | 0.366 | 1.9        | ug/kg   |
| 72-43-5    | Methoxychlor         | 0.366 | U         | 0.189    | 0.366 | 1.9        | ug/kg   |
| 53494-70-5 | Endrin ketone        | 0.366 | U         | 0.144    | 0.366 | 1.9        | ug/kg   |
| 7421-93-4  | Endrin aldehyde      | 0.366 | U         | 0.166    | 0.366 | 1.9        | ug/kg   |
| 5103-71-9  | alpha-Chlordane      | 0.366 | U         | 0.155    | 0.366 | 1.9        | ug/kg   |
| 5103-74-2  | gamma-Chlordane      | 0.366 | U         | 0.144    | 0.366 | 1.9        | ug/kg   |
| 8001-35-2  | Toxaphene            | 3.7   | U         | 3.7      | 3.7   | 18.9       | ug/kg   |
| SURROGATES |                      |       |           |          |       |            |         |
| 2051-24-3  | Decachlorobiphenyl   | 16.8  |           | 10 - 169 |       | 84%        | SPK: 20 |
| 877-09-8   | Tetrachloro-m-xylene | 20.5  |           | 31 - 151 |       | 102%       | SPK: 20 |



Analytical Method:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci

Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received:

SDG No.: F2918 Client Sample ID: GP-16(0-5)

Lab Sample ID: F2918-11 Matrix: **SOIL** % Moisture:

10000 Sample Wt/Vol: 30.08 Units: Final Vol: иL g

Test: Pesticide-TCL Soil Aliquot Vol: иL

Extraction Type: Injection Volume:

1.0 PH: GPC Factor:

SW8081

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

1 07/01/14 07/02/14 PD023224.D PB77543

**CAS Number** Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

06/27/14

10.1

Decanted:



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-16(0-5) SDG No.: F2918

Lab Sample ID: F2918-11 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 10.1

Sample Wt/Vol: 30.08 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072264.D 1 07/01/14 07/02/14 PB77544

| CAS Number | Parameter                   | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|-----------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                             |       |           |      |     |            |       |
| 100-52-7   | Benzaldehyde                | 37    | U         | 19.3 | 37  | 370        | ug/Kg |
| 108-95-2   | Phenol                      | 37    | U         | 8.5  | 37  | 370        | ug/Kg |
| 111-44-4   | bis(2-Chloroethyl)ether     | 37    | U         | 17.8 | 37  | 370        | ug/Kg |
| 95-57-8    | 2-Chlorophenol              | 37    | U         | 19.5 | 37  | 370        | ug/Kg |
| 95-48-7    | 2-Methylphenol              | 37    | U         | 20.1 | 37  | 370        | ug/Kg |
| 108-60-1   | 2,2-oxybis(1-Chloropropane) | 37    | U         | 15.3 | 37  | 370        | ug/Kg |
| 98-86-2    | Acetophenone                | 37    | U         | 11.3 | 37  | 370        | ug/Kg |
| 65794-96-9 | 3+4-Methylphenols           | 37    | U         | 19.2 | 37  | 370        | ug/Kg |
| 621-64-7   | n-Nitroso-di-n-propylamine  | 37    | U         | 18.6 | 37  | 370        | ug/Kg |
| 67-72-1    | Hexachloroethane            | 37    | U         | 16.5 | 37  | 370        | ug/Kg |
| 98-95-3    | Nitrobenzene                | 37    | U         | 14   | 37  | 370        | ug/Kg |
| 78-59-1    | Isophorone                  | 37    | U         | 12.2 | 37  | 370        | ug/Kg |
| 88-75-5    | 2-Nitrophenol               | 37    | U         | 17.9 | 37  | 370        | ug/Kg |
| 105-67-9   | 2,4-Dimethylphenol          | 37    | U         | 21   | 37  | 370        | ug/Kg |
| 111-91-1   | bis(2-Chloroethoxy)methane  | 37    | U         | 21.3 | 37  | 370        | ug/Kg |
| 120-83-2   | 2,4-Dichlorophenol          | 37    | U         | 14.1 | 37  | 370        | ug/Kg |
| 91-20-3    | Naphthalene                 | 37    | U         | 12.8 | 37  | 370        | ug/Kg |
| 106-47-8   | 4-Chloroaniline             | 37    | U         | 26.1 | 37  | 370        | ug/Kg |
| 87-68-3    | Hexachlorobutadiene         | 37    | U         | 13.4 | 37  | 370        | ug/Kg |
| 105-60-2   | Caprolactam                 | 74    | U         | 17.2 | 74  | 370        | ug/Kg |
| 59-50-7    | 4-Chloro-3-methylphenol     | 37    | U         | 16.4 | 37  | 370        | ug/Kg |
| 91-57-6    | 2-Methylnaphthalene         | 37    | U         | 9.3  | 37  | 370        | ug/Kg |
| 77-47-4    | Hexachlorocyclopentadiene   | 37    | U         | 9    | 37  | 370        | ug/Kg |
| 88-06-2    | 2,4,6-Trichlorophenol       | 37    | U         | 11.3 | 37  | 370        | ug/Kg |
| 95-95-4    | 2,4,5-Trichlorophenol       | 37    | U         | 26   | 37  | 370        | ug/Kg |
| 92-52-4    | 1,1-Biphenyl                | 37    | U         | 14   | 37  | 370        | ug/Kg |
| 91-58-7    | 2-Chloronaphthalene         | 37    | U         | 8.4  | 37  | 370        | ug/Kg |
| 88-74-4    | 2-Nitroaniline              | 37    | U         | 16.4 | 37  | 370        | ug/Kg |
| 131-11-3   | Dimethylphthalate           | 540   |           | 10   | 37  | 370        | ug/Kg |
| 208-96-8   | Acenaphthylene              | 37    | U         | 9.3  | 37  | 370        | ug/Kg |
| 606-20-2   | 2,6-Dinitrotoluene          | 37    | U         | 15.1 | 37  | 370        | ug/Kg |
|            |                             |       |           |      |     |            |       |



Sample Wt/Vol:

30.08

Units:

g

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-16(0-5) SDG No.: F2918
Lab Sample ID: F2918-11 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 10.1

Soil Aliquot Vol: uL Test: SVOCMS Group1

Final Vol:

1000

uL

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072264.D 1 07/01/14 07/02/14 PB77544

| BF072264.D | 1                          | 07/01/14 | 07        | /02/14 |     | PB77544    |       |
|------------|----------------------------|----------|-----------|--------|-----|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 74       | U         | 23.7   | 74  | 370        | ug/Kg |
| 83-32-9    | Acenaphthene               | 37       | U         | 10.4   | 37  | 370        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 300      | U         | 37.6   | 300 | 370        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 180      | U         | 68.7   | 180 | 370        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 37       | U         | 14.4   | 37  | 370        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 37       | U         | 11.1   | 37  | 370        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 37       | U         | 5.8    | 37  | 370        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 37       | U         | 20.1   | 37  | 370        | ug/Kg |
| 86-73-7    | Fluorene                   | 37       | U         | 14     | 37  | 370        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 74       | U         | 48.1   | 74  | 370        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 180      | U         | 21.2   | 180 | 370        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 37       | U         | 8.9    | 37  | 370        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 37       | U         | 7.2    | 37  | 370        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 37       | U         | 15.1   | 37  | 370        | ug/Kg |
| 1912-24-9  | Atrazine                   | 37       | U         | 19.5   | 37  | 370        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 37       | U         | 25.3   | 37  | 370        | ug/Kg |
| 85-01-8    | Phenanthrene               | 37       | U         | 10     | 37  | 370        | ug/Kg |
| 120-12-7   | Anthracene                 | 37       | U         | 7.5    | 37  | 370        | ug/Kg |
| 86-74-8    | Carbazole                  | 37       | U         | 8.1    | 37  | 370        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 37       | U         | 29.1   | 37  | 370        | ug/Kg |
| 206-44-0   | Fluoranthene               | 37       | U         | 7.4    | 37  | 370        | ug/Kg |
| 129-00-0   | Pyrene                     | 37       | U         | 8.9    | 37  | 370        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 37       | U         | 17.8   | 37  | 370        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 37       | U         | 23.7   | 37  | 370        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 37       | U         | 17.6   | 37  | 370        | ug/Kg |
| 218-01-9   | Chrysene                   | 37       | U         | 16.8   | 37  | 370        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 37       | U         | 13.1   | 37  | 370        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 37       | U         | 4.2    | 37  | 370        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 37       | U         | 12.1   | 37  | 370        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 37       | U         | 17.4   | 37  | 370        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 37       | U         | 8      | 37  | 370        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 37       | U         | 12.3   | 37  | 370        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 37       | U         | 10.7   | 37  | 370        | ug/Kg |



Client:Dvirka & BartilucciDate Collected:06/26/14Project:NYCSCA Unionport Road BronxDate Received:06/27/14

Client Sample ID:GP-16(0-5)SDG No.:F2918Lab Sample ID:F2918-11Matrix:SOILAnalytical Method:SW8270% Moisture:10.1

Sample Wt/Vol: 30.08 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072264.D 1 07/01/14 07/02/14 PB77544

| BF0/2264.D   | I                                  | 0//01/14 |        | 0//       | 02/14    |     | PB / / 544 |          |
|--------------|------------------------------------|----------|--------|-----------|----------|-----|------------|----------|
| CAS Number   | Parameter                          |          | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
| 191-24-2     | Benzo(g,h,i)perylene               |          | 37     | U         | 15       | 37  | 370        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene         |          | 37     | U         | 14.5     | 37  | 370        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol          |          | 37     | U         | 14.5     | 37  | 370        | ug/Kg    |
| SURROGATES   |                                    |          |        |           |          |     |            |          |
| 367-12-4     | 2-Fluorophenol                     |          | 100    |           | 28 - 127 | 7   | 69%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                          |          | 100    |           | 34 - 127 | 7   | 69%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                    |          | 63.7   |           | 31 - 132 | 2   | 64%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                   |          | 55.3   |           | 39 - 123 | 3   | 55%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol               |          | 90.7   |           | 30 - 133 | 3   | 60%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                      |          | 50     |           | 37 - 115 | 5   | 50%        | SPK: 100 |
| INTERNAL STA | ANDARDS                            |          |        |           |          |     |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4             |          | 44182  | 7.17      |          |     |            |          |
| 1146-65-2    | Naphthalene-d8                     |          | 185229 | 8.74      |          |     |            |          |
| 15067-26-2   | Acenaphthene-d10                   |          | 98420  | 10.9      |          |     |            |          |
| 1517-22-2    | Phenanthrene-d10                   |          | 172499 | 12.73     |          |     |            |          |
| 1719-03-5    | Chrysene-d12                       |          | 212275 | 16        |          |     |            |          |
| 1520-96-3    | Perylene-d12                       |          | 197891 | 17.68     |          |     |            |          |
| TENTATIVE ID | DENTIFIED COMPOUNDS                |          |        |           |          |     |            |          |
| 000096-37-7  | Cyclopentane, methyl-              |          | 1200   | J         |          |     | 1.18       | ug/Kg    |
| 000077-76-9  | Propane, 2,2-dimethoxy-            |          | 14100  | J         |          |     | 1.38       | ug/Kg    |
|              | unknown1.60                        |          | 150    | J         |          |     | 1.6        | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-        |          | 780    | J         |          |     | 1.65       | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl-   | -        | 410    | A         |          |     | 4.89       | ug/Kg    |
|              | unknown6.87                        |          | 2700   | J         |          |     | 6.87       | ug/Kg    |
| 000112-37-8  | Undecanoic acid                    |          | 140    | J         |          |     | 13.48      | ug/Kg    |
| 000111-06-8  | Hexadecanoic acid, butyl ester     |          | 95.8   | J         |          |     | 14.59      | ug/Kg    |
| 074339-53-0  | Trichloroacetic acid, pentadecyl e |          | 250    | J         |          |     | 15.91      | ug/Kg    |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx

Date Received: 06/27/14

Client Sample ID: GP-16(0-5) SDG No.: F2918

Lab Sample ID: F2918-11

Matrix: SOIL

SW8270 Analytical Method:

% Moisture:

10.1

Final Vol:

1000 uL

Sample Wt/Vol: Soil Aliquot Vol: g uL

Units:

Test:

SVOCMS Group1

Extraction Type:

Decanted:

N

LOW Ν

Injection Volume:

GPC Factor:

1.0

GPC Cleanup:

Level:

PH:

File ID/Qc Batch:

Dilution:

30.08

Prep Date

Date Analyzed

Prep Batch ID

PB77544

BF072264.D

1

07/01/14

07/02/14

**CAS Number** 

**Parameter** 

Conc.

Qualifier

**MDL** 

LOD

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14 06/27/14 Project: NYCSCA Unionport Road Bronx Date Received: Client Sample ID: GP-16(0-5) SDG No.: F2918 SOIL Lab Sample ID: F2918-11 Matrix: Analytical Method: SW8260 % Moisture: 10.1 Sample Wt/Vol: 5.94 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008936.D 1 07/02/14 VT070214

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.94  | U         | 0.94 | 0.94 | 4.7        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 67-64-1    | Acetone                        | 6.8   | J         | 2.3  | 2.3  | 23.4       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.94  | U         | 0.94 | 0.94 | 4.7        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 7     | U         | 2.9  | 7    | 23.4       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 71-43-2    | Benzene                        | 0.47  | U         | 0.36 | 0.47 | 4.7        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.47  | U         | 0.24 | 0.47 | 4.7        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 2.3   | U         | 2.3  | 2.3  | 23.4       | ug/Kg |
| 108-88-3   | Toluene                        | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.47  | U         | 0.47 | 0.47 | 4.7        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-16(0-5) SDG No.: F2918 SOIL Lab Sample ID: F2918-11 Matrix: Analytical Method: SW8260 % Moisture: 10.1 Sample Wt/Vol: 5.94 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VT008936.D 1 07/02/14 VT070214

|             | -                           |       | * * * * * * * |          |      |            |         |
|-------------|-----------------------------|-------|---------------|----------|------|------------|---------|
| CAS Number  | Parameter                   | Conc. | Qualifier     | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.47  | U             | 0.47     | 0.47 | 4.7        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.94  | $\mathbf{U}$  | 0.84     | 0.94 | 4.7        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 2.3   | U             | 2.3      | 2.3  | 23.4       | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.47  | U             | 0.47     | 0.47 | 4.7        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.47  | $\mathbf{U}$  | 0.47     | 0.47 | 4.7        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 0.47  | $\mathbf{U}$  | 0.47     | 0.47 | 4.7        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.47  | U             | 0.47     | 0.47 | 4.7        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 0.47  | U             | 0.47     | 0.47 | 4.7        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 0.94  | U             | 0.67     | 0.94 | 9.4        | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.47  | U             | 0.47     | 0.47 | 4.7        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.47  | U             | 0.42     | 0.47 | 4.7        | ug/Kg   |
| 75-25-2     | Bromoform                   | 1.4   | U             | 0.69     | 1.4  | 4.7        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.47  | U             | 0.45     | 0.47 | 4.7        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.47  | U             | 0.43     | 0.47 | 4.7        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.47  | U             | 0.34     | 0.47 | 4.7        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.47  | U             | 0.42     | 0.47 | 4.7        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.47  | U             | 0.47     | 0.47 | 4.7        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.47  | U             | 0.47     | 0.47 | 4.7        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.47  | U             | 0.47     | 0.47 | 4.7        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.47  | U             | 0.27     | 0.47 | 4.7        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.47  | U             | 0.35     | 0.47 | 4.7        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.47  | U             | 0.38     | 0.47 | 4.7        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.47  | U             | 0.43     | 0.47 | 4.7        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.47  | U             | 0.47     | 0.47 | 4.7        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 4.7   | U             | 0.81     | 4.7  | 4.7        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.47  | U             | 0.47     | 0.47 | 4.7        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.47  | U             | 0.42     | 0.47 | 4.7        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.94  | U             | 0.47     | 0.94 | 4.7        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 93.6  | U             | 93.6     | 93.6 | 93.6       | ug/Kg   |
| SURROGATES  |                             |       |               |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 40.4  |               | 56 - 120 |      | 81%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 54.8  |               | 57 - 135 | 5    | 110%       | SPK: 50 |
|             |                             |       |               |          |      |            |         |



Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-16(0-5)
Lab Sample ID: F2918-11

Analytical Method: SW8260

Sample Wt/Vol: 5.94 Units: g

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

% Moisture: 10.1

Date Collected:

Date Received:

SDG No.:

Final Vol:

Matrix:

Test: VOCMS Group1

06/26/14

06/27/14

F2918

SOIL

5000

uL

Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VT008936.D 1 07/02/14 VT070214

| CAS Number  | Parameter              | Conc.   | Qualifier | MDL I    | LOD | LOQ / CRQL | Units   |
|-------------|------------------------|---------|-----------|----------|-----|------------|---------|
| 2037-26-5   | Toluene-d8             | 36.2    |           | 67 - 123 |     | 72%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 46.8    |           | 33 - 141 |     | 94%        | SPK: 50 |
| INTERNAL ST | ANDARDS                |         |           |          |     |            |         |
| 363-72-4    | Pentafluorobenzene     | 1046730 | 7.43      |          |     |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 1316710 | 8.37      |          |     |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 966077  | 11.21     |          |     |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 559365  | 13.15     |          |     |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-16 SDG No.: F2918

Lab Sample ID: F2918-12 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ | / CRQL Un | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|-----|-----------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.29  | J    | 1  | 0.14 | 1.0 | 2   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 4     |      | 1  | 0.18 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 100   |      | 1  | 0.1  | 5.0 | 10  | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | U    | 1  | 0.09 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 0.5   | U    | 1  | 0.13 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 2.6   | *    | 1  | 0.04 | 1.0 | 2   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 3.4   |      | 1  | 0.05 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 3.1   | *    | 1  | 0.04 | 1.0 | 2   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 1.1   |      | 1  | 0.04 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 2590  |      | 1  | 0.05 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1 | 0.2 | ug/L      | 07/01/14      | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 12.1  | *    | 1  | 0.06 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 2.7   | J    | 1  | 0.7  | 2.5 | 5   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 0.4   | J    | 1  | 0.03 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.5   | U    | 1  | 0.02 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 2.5   | U    | 1  | 0.15 | 2.5 | 5   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 12.8  | *    | 1  | 0.09 | 1.0 | 2   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



Analytical Method:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Date Collected:

% Moisture:

06/26/14

100

Decanted:

### **Report of Analysis**

Client: Dvirka & Bartilucci

SW8082A

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-16 SDG No.: F2918

Lab Sample ID: F2918-12 Matrix: Water

Sample Wt/Vol: 1000 Units: mL Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PP003705.D 1 07/01/14 07/03/14 PB77540

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD | LOQ / CF | RQL Units |
|------------|----------------------|-------|-----------|----------|-----|----------|-----------|
| TARGETS    |                      |       |           |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 0.1   | U         | 0.096    | 0.1 | 0.5      | ug/L      |
| 11104-28-2 | Aroclor-1221         | 0.1   | U         | 0.1      | 0.1 | 0.5      | ug/L      |
| 11141-16-5 | Aroclor-1232         | 0.1   | U         | 0.1      | 0.1 | 0.5      | ug/L      |
| 53469-21-9 | Aroclor-1242         | 0.1   | U         | 0.089    | 0.1 | 0.5      | ug/L      |
| 12672-29-6 | Aroclor-1248         | 0.1   | U         | 0.1      | 0.1 | 0.5      | ug/L      |
| 11097-69-1 | Aroclor-1254         | 0.1   | U         | 0.044    | 0.1 | 0.5      | ug/L      |
| 11096-82-5 | Aroclor-1260         | 0.1   | U         | 0.081    | 0.1 | 0.5      | ug/L      |
| SURROGATES |                      |       |           |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 18    |           | 35 - 137 | 7   | 90%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 15    |           | 40 - 135 | 5   | 75%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Extraction Type:

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14

06/27/14 Project: NYCSCA Unionport Road Bronx Date Received:

Client Sample ID: GW-16 SDG No.: F2918 Lab Sample ID: F2918-12 Matrix: Water Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mLFinal Vol: 1000 uL

N

Level:

LOW

Soil Aliquot Vol: uL Test: SVOCMS Group1

Decanted: GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed

BF072235.D 1 07/01/14 07/02/14 PB77536

| B1 072233.B | •                           | 07/01/11 |           | 702/11 |     | 1 1 7 7 3 3 0 |       |
|-------------|-----------------------------|----------|-----------|--------|-----|---------------|-------|
| CAS Number  | Parameter                   | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL    | Units |
| TARGETS     |                             |          |           |        |     |               |       |
| 100-52-7    | Benzaldehyde                | 1        | U         | 0.77   | 1   | 10            | ug/L  |
| 108-95-2    | Phenol                      | 1        | U         | 0.21   | 1   | 10            | ug/L  |
| 111-44-4    | bis(2-Chloroethyl)ether     | 1        | U         | 0.55   | 1   | 10            | ug/L  |
| 95-57-8     | 2-Chlorophenol              | 1        | U         | 0.54   | 1   | 10            | ug/L  |
| 95-48-7     | 2-Methylphenol              | 1        | U         | 0.24   | 1   | 10            | ug/L  |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 1        | U         | 0.17   | 1   | 10            | ug/L  |
| 98-86-2     | Acetophenone                | 1        | U         | 0.14   | 1   | 10            | ug/L  |
| 65794-96-9  | 3+4-Methylphenols           | 1        | U         | 0.38   | 1   | 10            | ug/L  |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 1        | U         | 0.2    | 1   | 10            | ug/L  |
| 67-72-1     | Hexachloroethane            | 1        | U         | 0.25   | 1   | 10            | ug/L  |
| 98-95-3     | Nitrobenzene                | 1        | U         | 0.68   | 1   | 10            | ug/L  |
| 78-59-1     | Isophorone                  | 1        | U         | 0.3    | 1   | 10            | ug/L  |
| 88-75-5     | 2-Nitrophenol               | 1        | U         | 0.52   | 1   | 10            | ug/L  |
| 105-67-9    | 2,4-Dimethylphenol          | 1        | U         | 0.71   | 1   | 10            | ug/L  |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 1        | U         | 0.55   | 1   | 10            | ug/L  |
| 120-83-2    | 2,4-Dichlorophenol          | 1        | U         | 0.66   | 1   | 10            | ug/L  |
| 91-20-3     | Naphthalene                 | 1        | U         | 0.12   | 1   | 10            | ug/L  |
| 106-47-8    | 4-Chloroaniline             | 1        | U         | 1      | 1   | 10            | ug/L  |
| 87-68-3     | Hexachlorobutadiene         | 1        | U         | 0.25   | 1   | 10            | ug/L  |
| 105-60-2    | Caprolactam                 | 1        | U         | 1      | 1   | 10            | ug/L  |
| 59-50-7     | 4-Chloro-3-methylphenol     | 1        | U         | 0.4    | 1   | 10            | ug/L  |
| 91-57-6     | 2-Methylnaphthalene         | 1        | U         | 0.32   | 1   | 10            | ug/L  |
| 77-47-4     | Hexachlorocyclopentadiene   | 1        | U         | 0.24   | 1   | 10            | ug/L  |
| 88-06-2     | 2,4,6-Trichlorophenol       | 1        | U         | 0.56   | 1   | 10            | ug/L  |
| 95-95-4     | 2,4,5-Trichlorophenol       | 1        | U         | 0.4    | 1   | 10            | ug/L  |
| 92-52-4     | 1,1-Biphenyl                | 1        | U         | 0.15   | 1   | 10            | ug/L  |
| 91-58-7     | 2-Chloronaphthalene         | 1        | U         | 0.16   | 1   | 10            | ug/L  |
| 88-74-4     | 2-Nitroaniline              | 1        | U         | 0.49   | 1   | 10            | ug/L  |
| 131-11-3    | Dimethylphthalate           | 3.1      | J         | 0.22   | 1   | 10            | ug/L  |
| 208-96-8    | Acenaphthylene              | 1        | U         | 0.7    | 1   | 10            | ug/L  |
| 606-20-2    | 2,6-Dinitrotoluene          | 1        | U         | 0.32   | 1   | 10            | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-16 SDG No.: F2918
Lab Sample ID: F2918-12 Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072235.D 1 07/01/14 07/02/14 PB77536

| BF072235.D | 1                          | 07/01/14 | 07.       | /02/14 |     | PB77536    |       |
|------------|----------------------------|----------|-----------|--------|-----|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 1        | U         | 1      | 1   | 10         | ug/L  |
| 83-32-9    | Acenaphthene               | 1        | U         | 0.21   | 1   | 10         | ug/L  |
| 51-28-5    | 2,4-Dinitrophenol          | 8        | U         | 2.1    | 8   | 10         | ug/L  |
| 100-02-7   | 4-Nitrophenol              | 5        | U         | 2      | 5   | 10         | ug/L  |
| 132-64-9   | Dibenzofuran               | 1        | U         | 0.24   | 1   | 10         | ug/L  |
| 121-14-2   | 2,4-Dinitrotoluene         | 1        | U         | 1      | 1   | 10         | ug/L  |
| 84-66-2    | Diethylphthalate           | 1        | U         | 0.38   | 1   | 10         | ug/L  |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 1        | U         | 0.21   | 1   | 10         | ug/L  |
| 86-73-7    | Fluorene                   | 1        | U         | 0.31   | 1   | 10         | ug/L  |
| 100-01-6   | 4-Nitroaniline             | 2        | U         | 1.4    | 2   | 10         | ug/L  |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 2        | U         | 0.74   | 2   | 10         | ug/L  |
| 86-30-6    | n-Nitrosodiphenylamine     | 1        | U         | 0.6    | 1   | 10         | ug/L  |
| 101-55-3   | 4-Bromophenyl-phenylether  | 1        | U         | 0.23   | 1   | 10         | ug/L  |
| 118-74-1   | Hexachlorobenzene          | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 1912-24-9  | Atrazine                   | 1        | U         | 0.4    | 1   | 10         | ug/L  |
| 87-86-5    | Pentachlorophenol          | 1        | U         | 1      | 1   | 10         | ug/L  |
| 85-01-8    | Phenanthrene               | 1        | U         | 0.26   | 1   | 10         | ug/L  |
| 120-12-7   | Anthracene                 | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 86-74-8    | Carbazole                  | 1        | U         | 0.22   | 1   | 10         | ug/L  |
| 84-74-2    | Di-n-butylphthalate        | 1        | U         | 1      | 1   | 10         | ug/L  |
| 206-44-0   | Fluoranthene               | 1        | U         | 0.4    | 1   | 10         | ug/L  |
| 129-00-0   | Pyrene                     | 1        | U         | 0.2    | 1   | 10         | ug/L  |
| 85-68-7    | Butylbenzylphthalate       | 1        | U         | 0.19   | 1   | 10         | ug/L  |
| 91-94-1    | 3,3-Dichlorobenzidine      | 1        | U         | 1      | 1   | 10         | ug/L  |
| 56-55-3    | Benzo(a)anthracene         | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 218-01-9   | Chrysene                   | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 117-84-0   | Di-n-octyl phthalate       | 1        | U         | 0.51   | 1   | 10         | ug/L  |
| 205-99-2   | Benzo(b)fluoranthene       | 1        | U         | 0.29   | 1   | 10         | ug/L  |
| 207-08-9   | Benzo(k)fluoranthene       | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 50-32-8    | Benzo(a)pyrene             | 1        | U         | 0.14   | 1   | 10         | ug/L  |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 1        | U         | 0.15   | 1   | 10         | ug/L  |
| 53-70-3    | Dibenzo(a,h)anthracene     | 1        | U         | 0.42   | 1   | 10         | ug/L  |



Soil Aliquot Vol:

### **Report of Analysis**

Client:Dvirka & BartilucciDate Collected:06/26/14Project:NYCSCA Unionport Road BronxDate Received:06/27/14

Client Sample ID: GW-16 SDG No.: F2918
Lab Sample ID: F2918-12 Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Test:

SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

uL

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072235.D 1 07/01/14 07/02/14 PB77536

| BF072235.D    | 1                                | 07/01/14 |        | 07/       | 02/14    |     | PB77536    |          |
|---------------|----------------------------------|----------|--------|-----------|----------|-----|------------|----------|
| CAS Number    | Parameter                        |          | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
| 191-24-2      | Benzo(g,h,i)perylene             |          | 1      | U         | 0.29     | 1   | 10         | ug/L     |
| 95-94-3       | 1,2,4,5-Tetrachlorobenzene       |          | 1      | U         | 0.2      | 1   | 10         | ug/L     |
| 58-90-2       | 2,3,4,6-Tetrachlorophenol        |          | 1      | U         | 0.2      | 1   | 10         | ug/L     |
| SURROGATES    |                                  |          |        |           |          |     |            |          |
| 367-12-4      | 2-Fluorophenol                   |          | 66.7   |           | 10 - 130 | )   | 44%        | SPK: 150 |
| 13127-88-3    | Phenol-d6                        |          | 40     |           | 10 - 130 | )   | 27%        | SPK: 150 |
| 4165-60-0     | Nitrobenzene-d5                  |          | 80     |           | 36 - 131 |     | 80%        | SPK: 100 |
| 321-60-8      | 2-Fluorobiphenyl                 |          | 85.3   |           | 39 - 131 |     | 85%        | SPK: 100 |
| 118-79-6      | 2,4,6-Tribromophenol             |          | 130    |           | 25 - 155 | 5   | 89%        | SPK: 150 |
| 1718-51-0     | Terphenyl-d14                    |          | 91.4   |           | 23 - 130 | )   | 91%        | SPK: 100 |
| INTERNAL STA  | NDARDS                           |          |        |           |          |     |            |          |
| 3855-82-1     | 1,4-Dichlorobenzene-d4           |          | 44882  | 7.17      |          |     |            |          |
| 1146-65-2     | Naphthalene-d8                   |          | 191595 | 8.74      |          |     |            |          |
| 15067-26-2    | Acenaphthene-d10                 |          | 100203 | 10.92     |          |     |            |          |
| 1517-22-2     | Phenanthrene-d10                 |          | 186733 | 12.75     |          |     |            |          |
| 1719-03-5     | Chrysene-d12                     |          | 202586 | 16.01     |          |     |            |          |
| 1520-96-3     | Perylene-d12                     |          | 187498 | 17.66     |          |     |            |          |
| TENTATIVE IDI | ENTIFIED COMPOUNDS               |          |        |           |          |     |            |          |
| 000994-05-8   | Butane, 2-methoxy-2-methyl-      |          | 99     | J         |          |     | 1.64       | ug/L     |
| 000123-42-2   | 2-Pentanone, 4-hydroxy-4-methyl- | -        | 5.6    | A         |          |     | 4.89       | ug/L     |
|               | unknown6.87                      |          | 82.6   | J         |          |     | 6.87       | ug/L     |
| 000112-27-6   | Triethylene glycol               |          | 3.2    | J         |          |     | 10.67      | ug/L     |
| 000057-10-3   | n-Hexadecanoic acid              |          | 19.2   | J         |          |     | 13.5       | ug/L     |
| 002091-29-4   | 9-Hexadecenoic acid              |          | 39.5   | J         |          |     | 14.38      | ug/L     |
| 000112-37-8   | Undecanoic acid                  |          | 10     | J         |          |     | 14.47      | ug/L     |
|               | unknown18.38                     |          | 2.4    | J         |          |     | 18.38      | ug/L     |
|               | unknown19.56                     |          | 4      | J         |          |     | 19.56      | ug/L     |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx 06/27/14

Client Sample ID: GW-16 F2918

Lab Sample ID: F2918-12 SDG No.:

Analytical Method: SW8270 % Moisture:

Matrix:

Test:

Level:

Date Received:

100

Water

1000

LOW

Ν

Sample Wt/Vol:

1000 Units: mL Final Vol:

uL

Soil Aliquot Vol:

uL

SVOCMS Group1

Extraction Type: Injection Volume: Decanted:

N

GPC Cleanup:

PH:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PB77536

BF072235.D

1

07/01/14

GPC Factor:

07/02/14

Units

**CAS Number** 

**Parameter** 

Conc.

1.0

Qualifier

**MDL** 

LOD

LOQ / CRQL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14 06/27/14 Project: NYCSCA Unionport Road Bronx Date Received:

Client Sample ID: GW-16 SDG No.: F2918 F2918-12 Lab Sample ID: Matrix: Water Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: шL 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

Final Vol:

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Prep Batch ID Dilution: Prep Date Date Analyzed VN017001.D 1 07/04/14 VN070314

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-87-3    | Chloromethane                  | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 1.3   |           | 0.2  | 0.2 | 1          | ug/L  |
| 74-83-9    | Bromomethane                   | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-00-3    | Chloroethane                   | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 67-64-1    | Acetone                        | 1     | U         | 0.5  | 1   | 5          | ug/L  |
| 75-15-0    | Carbon Disulfide               | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 5.5   |           | 0.35 | 0.5 | 1          | ug/L  |
| 79-20-9    | Methyl Acetate                 | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-09-2    | Methylene Chloride             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 2.6   |           | 0.2  | 0.2 | 1          | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 110-82-7   | Cyclohexane                    | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-93-3    | 2-Butanone                     | 2.5   | U         | 1.3  | 2.5 | 5          | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 7.6   |           | 0.2  | 0.2 | 1          | ug/L  |
| 74-97-5    | Bromochloromethane             | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 67-66-3    | Chloroform                     | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-87-2   | Methylcyclohexane              | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-43-2    | Benzene                        | 2     |           | 0.2  | 0.2 | 1          | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 79-01-6    | Trichloroethene                | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-27-4    | Bromodichloromethane           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1     | U         | 1    | 1   | 5          | ug/L  |
| 108-88-3   | Toluene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |



Client:Dvirka & BartilucciDate Collected:06/26/14Project:NYCSCA Unionport Road BronxDate Received:06/27/14Client Sample ID:GW-16SDG No.:F2918

Lab Sample ID: GW-16 SDG No.: F2918

Lab Sample ID: F2918-12 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL
Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN017001.D 1 07/04/14 VN070314

| 10061-01-5         cis-1,3-Dichloropropene         0.2         U         0.2         0.2           79-00-5         1,1,2-Trichloroethane         0.2         U         0.2         0.2           591-78-6         2-Hexanone         2.5         U         1.9         2.5           124-48-1         Dibromochloromethane         0.2         U         0.2         0.2           106-93-4         1,2-Dibromoethane         0.2         U         0.2         0.2           127-18-4         Tetrachloroethene         0.55         J         0.2         0.2           108-90-7         Chlorobenzene         0.2         U         0.2         0.2           100-41-4         Ethyl Benzene         0.2         U         0.2         0.2           179601-23-1         m/p-Xylenes         0.4         U         0.4         0.4           95-47-6         o-Xylene         0.2         U         0.2         0.2           100-42-5         Styrene         0.2         U         0.2         0.2           75-25-2         Bromoform         0.2         U         0.2         0.2           98-82-8         Isopropylbenzene         0.2         U         0.2 | LOQ / CRQL | Units<br>ug/L |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| 79-00-5       1,1,2-Trichloroethane       0.2       U       0.2       0.2         591-78-6       2-Hexanone       2.5       U       1.9       2.5         124-48-1       Dibromochloromethane       0.2       U       0.2       0.2         106-93-4       1,2-Dibromoethane       0.2       U       0.2       0.2         127-18-4       Tetrachloroethene       0.55       J       0.2       0.2         108-90-7       Chlorobenzene       0.2       U       0.2       0.2         100-41-4       Ethyl Benzene       0.2       U       0.2       0.2         179601-23-1       m/p-Xylenes       0.4       U       0.4       0.4         95-47-6       o-Xylene       0.2       U       0.2       0.2         100-42-5       Styrene       0.2       U       0.2       0.2         75-25-2       Bromoform       0.2       U       0.2       0.2         98-82-8       Isopropylbenzene       0.2       U       0.2       0.2                                                                                                                                                                                                                                      | 1          | ug/I          |
| 591-78-6       2-Hexanone       2.5       U       1.9       2.5         124-48-1       Dibromochloromethane       0.2       U       0.2       0.2         106-93-4       1,2-Dibromoethane       0.2       U       0.2       0.2         127-18-4       Tetrachloroethene       0.55       J       0.2       0.2         108-90-7       Chlorobenzene       0.2       U       0.2       0.2         100-41-4       Ethyl Benzene       0.2       U       0.2       0.2         179601-23-1       m/p-Xylenes       0.4       U       0.4       0.4         95-47-6       o-Xylene       0.2       U       0.2       0.2         100-42-5       Styrene       0.2       U       0.2       0.2         75-25-2       Bromoform       0.2       U       0.2       0.2         98-82-8       Isopropylbenzene       0.2       U       0.2       0.2                                                                                                                                                                                                                                                                                                                        |            | u <u>x</u> /L |
| 124-48-1       Dibromochloromethane       0.2       U       0.2       0.2         106-93-4       1,2-Dibromoethane       0.2       U       0.2       0.2         127-18-4       Tetrachloroethene       0.55       J       0.2       0.2         108-90-7       Chlorobenzene       0.2       U       0.2       0.2         100-41-4       Ethyl Benzene       0.2       U       0.2       0.2         179601-23-1       m/p-Xylenes       0.4       U       0.4       0.4         95-47-6       o-Xylene       0.2       U       0.2       0.2         100-42-5       Styrene       0.2       U       0.2       0.2         75-25-2       Bromoform       0.2       U       0.2       0.2         98-82-8       Isopropylbenzene       0.2       U       0.2       0.2                                                                                                                                                                                                                                                                                                                                                                                                | 1          | ug/L          |
| 106-93-4       1,2-Dibromoethane       0.2       U       0.2       0.2         127-18-4       Tetrachloroethene       0.55       J       0.2       0.2         108-90-7       Chlorobenzene       0.2       U       0.2       0.2         100-41-4       Ethyl Benzene       0.2       U       0.2       0.2         179601-23-1       m/p-Xylenes       0.4       U       0.4       0.4         95-47-6       o-Xylene       0.2       U       0.2       0.2         100-42-5       Styrene       0.2       U       0.2       0.2         75-25-2       Bromoform       0.2       U       0.2       0.2         98-82-8       Isopropylbenzene       0.2       U       0.2       0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5          | ug/L          |
| 127-18-4       Tetrachloroethene       0.55       J       0.2       0.2         108-90-7       Chlorobenzene       0.2       U       0.2       0.2         100-41-4       Ethyl Benzene       0.2       U       0.2       0.2         179601-23-1       m/p-Xylenes       0.4       U       0.4       0.4         95-47-6       o-Xylene       0.2       U       0.2       0.2         100-42-5       Styrene       0.2       U       0.2       0.2         75-25-2       Bromoform       0.2       U       0.2       0.2         98-82-8       Isopropylbenzene       0.2       U       0.2       0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1          | ug/L          |
| 108-90-7       Chlorobenzene       0.2       U       0.2       0.2         100-41-4       Ethyl Benzene       0.2       U       0.2       0.2         179601-23-1       m/p-Xylenes       0.4       U       0.4       0.4         95-47-6       o-Xylene       0.2       U       0.2       0.2         100-42-5       Styrene       0.2       U       0.2       0.2         75-25-2       Bromoform       0.2       U       0.2       0.2         98-82-8       Isopropylbenzene       0.2       U       0.2       0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1          | ug/L          |
| 100-41-4       Ethyl Benzene       0.2       U       0.2       0.2         179601-23-1       m/p-Xylenes       0.4       U       0.4       0.4         95-47-6       o-Xylene       0.2       U       0.2       0.2         100-42-5       Styrene       0.2       U       0.2       0.2         75-25-2       Bromoform       0.2       U       0.2       0.2         98-82-8       Isopropylbenzene       0.2       U       0.2       0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1          | ug/L          |
| 179601-23-1       m/p-Xylenes       0.4       U       0.4       0.4         95-47-6       o-Xylene       0.2       U       0.2       0.2         100-42-5       Styrene       0.2       U       0.2       0.2         75-25-2       Bromoform       0.2       U       0.2       0.2         98-82-8       Isopropylbenzene       0.2       U       0.2       0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1          | ug/L          |
| 95-47-6       o-Xylene       0.2       U       0.2       0.2         100-42-5       Styrene       0.2       U       0.2       0.2         75-25-2       Bromoform       0.2       U       0.2       0.2         98-82-8       Isopropylbenzene       0.2       U       0.2       0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1          | ug/L          |
| 100-42-5       Styrene       0.2       U       0.2       0.2         75-25-2       Bromoform       0.2       U       0.2       0.2         98-82-8       Isopropylbenzene       0.2       U       0.2       0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2          | ug/L          |
| 75-25-2       Bromoform       0.2       U       0.2       0.2         98-82-8       Isopropylbenzene       0.2       U       0.2       0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1          | ug/L          |
| 98-82-8 Isopropylbenzene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1          | ug/L          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1          | ug/L          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1          | ug/L          |
| 79-34-5 1,1,2,2-Tetrachloroethane 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1          | ug/L          |
| 103-65-1 n-propylbenzene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1          | ug/L          |
| 108-67-8 1,3,5-Trimethylbenzene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1          | ug/L          |
| 98-06-6 tert-Butylbenzene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          | ug/L          |
| 95-63-6 1,2,4-Trimethylbenzene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1          | ug/L          |
| 135-98-8 sec-Butylbenzene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          | ug/L          |
| 99-87-6 p-Isopropyltoluene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1          | ug/L          |
| 541-73-1 1,3-Dichlorobenzene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1          | ug/L          |
| 106-46-7 1,4-Dichlorobenzene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1          | ug/L          |
| 104-51-8 n-Butylbenzene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1          | ug/L          |
| 95-50-1 1,2-Dichlorobenzene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          | ug/L          |
| 96-12-8 1,2-Dibromo-3-Chloropropane 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1          | ug/L          |
| 120-82-1 1,2,4-Trichlorobenzene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1          | ug/L          |
| 91-20-3 Naphthalene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1          | ug/L          |
| 87-61-6 1,2,3-Trichlorobenzene 0.2 U 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1          | ug/L          |
| 123-91-1 1,4-Dioxane 100 U 100 100 SURROGATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100        | ug/L          |
| 17060-07-0 1,2-Dichloroethane-d4 49.5 61 - 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |               |
| 1868-53-7 Dibromofluoromethane 43.8 69 - 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99%        | SPK: 50       |



06/26/14

Client: Dvirka & Bartilucci Date Collected:

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-16 SDG No.: F2918
Lab Sample ID: F2918-12 Matrix: Water
Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN017001.D 1 07/04/14 VN070314

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL LOD  | LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|------------|---------|
| 2037-26-5   | Toluene-d8             | 47     |           | 65 - 126 | 94%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 60.2   |           | 58 - 135 | 120%       | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |            |         |
| 363-72-4    | Pentafluorobenzene     | 235168 | 7.87      |          |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 391517 | 8.79      |          |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 425744 | 11.61     |          |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 199749 | 13.56     |          |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Lab Sample ID:

F2918-13

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 09:55

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-6(7-9) SDG No.: F2918

% Solid: 83

SOIL

Matrix:

| Parameter        | Conc. | Qua. | DF | MDL  | LOD  | LOQ / CRQ | L Units | Prep Date | Date Ana.      | Ana Met. |
|------------------|-------|------|----|------|------|-----------|---------|-----------|----------------|----------|
| Corrosivity      | 7.78  |      | 1  | 0    | 0    | 0         | mg/Kg   |           | 07/01/14 09:05 | 9045C    |
| Ignitability     | NO    |      | 1  | 0    | 0    | 0         | o C     | 07/01/14  | 07/01/14 10:30 | 1030     |
| Reactive Cyanide | 0.05  | U    | 1  | 0.05 | 0.05 | 0.05      | mg/Kg   | 07/01/14  | 07/02/14 17:26 | 9012B    |
| Reactive Sulfide | 10    | U    | 1  | 10   | 10   | 10        | mg/Kg   | 07/01/14  | 07/01/14 15:30 | 9034     |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



Lab Sample ID:

F2918-14

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 10:20

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: F2918

% Solid: 82.1

SOIL

Matrix:

| Parameter        | Conc. | Qua. | DF | MDL  | LOD  | LOQ / CRQ | L Units | Prep Date | Date Ana.      | Ana Met. |
|------------------|-------|------|----|------|------|-----------|---------|-----------|----------------|----------|
| Corrosivity      | 7.87  |      | 1  | 0    | 0    | 0         | mg/Kg   |           | 07/01/14 09:07 | 9045C    |
| Ignitability     | NO    |      | 1  | 0    | 0    | 0         | o C     | 07/01/14  | 07/01/14 10:30 | 1030     |
| Reactive Cyanide | 0.05  | U    | 1  | 0.05 | 0.05 | 0.05      | mg/Kg   | 07/01/14  | 07/02/14 17:26 | 9012B    |
| Reactive Sulfide | 16    |      | 1  | 10   | 10   | 10        | mg/Kg   | 07/01/14  | 07/01/14 15:30 | 9034     |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 12:10 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-9(0-5) F2918 Lab Sample ID: F2918-15 Matrix: SOIL % Solid: 87.4

| Parameter        | Conc. | Qua. | DF | MDL  | LOD  | LOQ / CRQI | L Units | Prep Date | Date Ana.      | Ana Met. |
|------------------|-------|------|----|------|------|------------|---------|-----------|----------------|----------|
| Corrosivity      | 9     |      | 1  | 0    | 0    | 0          | mg/Kg   |           | 07/01/14 09:08 | 9045C    |
| Ignitability     | NO    |      | 1  | 0    | 0    | 0          | o C     | 07/01/14  | 07/01/14 10:30 | 1030     |
| Reactive Cyanide | 0.05  | U    | 1  | 0.05 | 0.05 | 0.05       | mg/Kg   | 07/01/14  | 07/02/14 17:26 | 9012B    |
| Reactive Sulfide | 10    | U    | 1  | 10   | 10   | 10         | mg/Kg   | 07/01/14  | 07/01/14 15:30 | 9034     |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



### **Report of Analysis**

Client:Dvirka & BartilucciDate Collected:06/25/14 14:30Project:NYCSCA Unionport Road BronxDate Received:06/27/14Client Sample ID:GP-7(9-11)SDG No.:F2918

Lab Sample ID: F2918-16 Matrix: SOIL

% Solid: 84

| Parameter        | Conc. | Qua. | DF | MDL  | LOD  | LOQ / CRQL | Units | Prep Date | Date Ana.      | Ana Met. |
|------------------|-------|------|----|------|------|------------|-------|-----------|----------------|----------|
| Corrosivity      | 8.79  |      | 1  | 0    | 0    | 0          | mg/Kg |           | 07/01/14 09:09 | 9045C    |
| Ignitability     | NO    |      | 1  | 0    | 0    | 0          | o C   | 07/01/14  | 07/01/14 10:30 | 1030     |
| Reactive Cyanide | 0.05  | U    | 1  | 0.05 | 0.05 | 0.05       | mg/Kg | 07/01/14  | 07/02/14 17:26 | 9012B    |
| Reactive Sulfide | 27    |      | 1  | 10   | 10   | 10         | mg/Kg | 07/01/14  | 07/01/14 15:30 | 9034     |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



Lab Sample ID:

F2918-17

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 14:45

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: F2918

% Solid: 87.9

Matrix:

SOIL

| Parameter        | Conc. | Qua. | DF | MDL  | LOD  | LOQ / CRQ | L Units | Prep Date | Date Ana.      | Ana Met. |
|------------------|-------|------|----|------|------|-----------|---------|-----------|----------------|----------|
| Corrosivity      | 8.66  |      | 1  | 0    | 0    | 0         | mg/Kg   |           | 07/01/14 09:10 | 9045C    |
| Ignitability     | NO    |      | 1  | 0    | 0    | 0         | o C     | 07/01/14  | 07/01/14 10:30 | 1030     |
| Reactive Cyanide | 0.05  | U    | 1  | 0.05 | 0.05 | 0.05      | mg/Kg   | 07/01/14  | 07/02/14 17:26 | 9012B    |
| Reactive Sulfide | 20    |      | 1  | 10   | 10   | 10        | mg/Kg   | 07/01/14  | 07/01/14 15:30 | 9034     |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 09:00 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-17(0-5) F2918 Lab Sample ID: F2918-18 Matrix: SOIL

% Solid:

72.2

| Parameter        | Conc. | Qua. | DF | MDL  | LOD  | LOQ / CRQI | L Units | Prep Date | Date Ana.      | Ana Met. |
|------------------|-------|------|----|------|------|------------|---------|-----------|----------------|----------|
| Corrosivity      | 8.71  |      | 1  | 0    | 0    | 0          | mg/Kg   |           | 07/01/14 09:11 | 9045C    |
| Ignitability     | NO    |      | 1  | 0    | 0    | 0          | o C     | 07/01/14  | 07/01/14 10:30 | 1030     |
| Reactive Cyanide | 0.05  | U    | 1  | 0.05 | 0.05 | 0.05       | mg/Kg   | 07/01/14  | 07/02/14 17:33 | 9012B    |
| Reactive Sulfide | 19    |      | 1  | 10   | 10   | 10         | mg/Kg   | 07/01/14  | 07/01/14 15:30 | 9034     |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 10:45 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-16(0-5) F2918 Lab Sample ID: F2918-19 Matrix: SOIL

% Solid:

77.2

| Parameter        | Conc. | Qua. | DF | MDL  | LOD  | LOQ / CRQL | Units | Prep Date | Date Ana.      | Ana Met. |
|------------------|-------|------|----|------|------|------------|-------|-----------|----------------|----------|
| Corrosivity      | 9.79  |      | 1  | 0    | 0    | 0          | mg/Kg |           | 07/01/14 09:12 | 9045C    |
| Ignitability     | NO    |      | 1  | 0    | 0    | 0          | o C   | 07/01/14  | 07/01/14 10:30 | 1030     |
| Reactive Cyanide | 0.05  | U    | 1  | 0.05 | 0.05 | 0.05       | mg/Kg | 07/01/14  | 07/02/14 18:06 | 9012B    |
| Reactive Sulfide | 10    | U    | 1  | 10   | 10   | 10         | mg/Kg | 07/01/14  | 07/01/14 15:30 | 9034     |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 10:00

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-17 SDG No.: F2918

Lab Sample ID: F2918-20 Matrix: WATER

% Solid:

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | Units | Prep Date | Date Ana.      | Ana Met.       |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------------|
| CBOD5               | 2     | HU   | 1  | 2     | 2     | 2          | mg/L  |           | 06/27/14 12:10 | SM5210B        |
| Chloride            | 1030  |      | 1  | 0.4   | 2.5   | 5          | mg/L  | 07/03/14  | 07/03/14 14:10 | SM4500-CL C    |
| Flashpoint          | >212  |      | 1  | 0     | 0     | 0          | o F   | 07/03/14  | 07/03/14 09:45 | 1010A          |
| Hexavalent Chromium | 0.005 | HU   | 1  | 0.005 | 0.005 | 0.01       | mg/L  | 06/27/14  | 06/27/14 11:32 | SM3500-Cr-B    |
| Nitrate+Nitrite     | 16    | OR   | 1  | 0.25  | 0.25  | 0.25       | mg/L  | 06/27/14  | 06/27/14 21:23 | 300            |
| Nonpolar Material   | 1.5   | J    | 1  | 0.679 | 2.5   | 5          | mg/L  | 07/02/14  | 07/02/14 13:45 | 1664A          |
| TKN                 | 0.305 | J    | 1  | 0.096 | 0.25  | 0.5        | mg/L  | 07/02/14  | 07/03/14 10:19 | SM4500-N Org B |
|                     |       |      |    |       |       |            |       |           |                | or C           |
| Total Nitrogen      | 14.9  |      | 1  | 0.75  | 0.75  | 0.75       | mg/L  | 07/03/14  | 07/03/14 00:00 | CAL            |
| TS                  | 2900  |      | 1  | 10    | 10    | 10         | mg/L  |           | 06/30/14 16:45 | SM2540B        |
| TSS                 | 430   |      | 1  | 4     | 4     | 4          | mg/L  |           | 06/30/14 15:30 | SM2540D        |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 10:00

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-17DL SDG No.: F2918

Lab Sample ID: F2918-20DL Matrix: WATER

% Solid: 0

| Parameter       | Conc. | Qua. | DF | MDL | LOD | LOQ / CRQL | Units | Prep Date | Date Ana.      | Ana Met. |
|-----------------|-------|------|----|-----|-----|------------|-------|-----------|----------------|----------|
| Nitrate+Nitrite | 14.6  | D    | 2  | 0.5 | 0.5 | 0.5        | mg/L  | 06/28/14  | 06/28/14 10:33 | 300      |

#### Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected:

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-17 SDG No.: F2918

Lab Sample ID: F2918-20 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD  | LOQ/ | CRQL Uni | its Prep Date | Date Ana. | Ana Met.  |
|-----------|-----------|-------|------|----|------|------|------|----------|---------------|-----------|-----------|
| 7440-43-9 | Cadmium   | 1.5   | U    | 1  | 0.4  | 1.5  | 3    | ug/L     | 07/02/14      | 07/03/14  | EPA 200.7 |
| 7440-50-8 | Copper    | 17.2  |      | 1  | 2.6  | 5.0  | 10   | ug/L     | 07/02/14      | 07/03/14  | EPA 200.7 |
| 7439-92-1 | Lead      | 52.7  |      | 1  | 1.8  | 3.0  | 6    | ug/L     | 07/02/14      | 07/03/14  | EPA 200.7 |
| 7439-97-6 | Mercury   | 0.781 |      | 1  | 0.07 | 0.1  | 0.2  | ug/L     | 07/01/14      | 07/02/14  | E245.1    |
| 7440-02-0 | Nickel    | 32.7  |      | 1  | 3.7  | 10.0 | 20   | ug/L     | 07/02/14      | 07/03/14  | EPA 200.7 |
| 7440-66-6 | Zinc      | 72.3  |      | 1  | 5.6  | 10.0 | 20   | ug/L     | 07/02/14      | 07/03/14  | EPA 200.7 |

Color Before: Brown Clarity Before: Cloudy Texture:

Color After: Yellow Clarity After: Clear Artifacts:

Comments: Metals Group2

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

06/25/14

OR = Over Range



Analytical Method:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

% Moisture:

100

Decanted:

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-17 SDG No.: F2918

Lab Sample ID: F2918-20 Matrix: Water

Sample Wt/Vol: 990 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: PCB Group1

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

608

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PP003796.D 1 07/01/14 07/04/14 PB77537

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|-------|----------|----------|
| TARGETS    |                      |       |           |          |       |          |          |
| 12674-11-2 | Aroclor-1016         | 0.025 | U         | 0.02     | 0.025 | 0.051    | ug/L     |
| 11104-28-2 | Aroclor-1221         | 0.025 | U         | 0.02     | 0.025 | 0.051    | ug/L     |
| 11141-16-5 | Aroclor-1232         | 0.025 | U         | 0.008    | 0.025 | 0.051    | ug/L     |
| 53469-21-9 | Aroclor-1242         | 0.025 | U         | 0.01     | 0.025 | 0.051    | ug/L     |
| 12672-29-6 | Aroclor-1248         | 0.025 | U         | 0.015    | 0.025 | 0.051    | ug/L     |
| 11097-69-1 | Aroclor-1254         | 0.025 | U         | 0.012    | 0.025 | 0.051    | ug/L     |
| 11096-82-5 | Aroclor-1260         | 0.025 | U         | 0.024    | 0.025 | 0.051    | ug/L     |
| SURROGATES |                      |       |           |          |       |          |          |
| 877-09-8   | Tetrachloro-m-xylene | 16.4  |           | 18 - 163 |       | 82%      | SPK: 20  |
| 2051-24-3  | Decachlorobiphenyl   | 18.5  |           | 10 - 177 |       | 92%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Extraction Type:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: F2918 GW-17 Lab Sample ID: F2918-20 Matrix: Water % Moisture: 100 Analytical Method: 625

Sample Wt/Vol: 970 Units: mLFinal Vol: 1000 uL

Test: Soil Aliquot Vol: uL SVOCMS Group2

N

Level:

LOW

Decanted: GPC Factor: GPC Cleanup: Injection Volume: 1.0 Ν PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID Be086576.d 07/01/14 07/02/14 PB77538

| CAS Number     | Parameter              | Conc.   | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
|----------------|------------------------|---------|-----------|----------|-----|------------|----------|
|                |                        |         |           |          |     |            |          |
| <b>TARGETS</b> |                        |         |           |          |     |            |          |
| 108-95-2       | Phenol                 | 1.3     | U         | 0.47     | 1.3 | 2.6        | ug/L     |
| 120-82-1       | 1,2,4-Trichlorobenzene | 1.3     | U         | 0.14     | 1.3 | 2.6        | ug/L     |
| 91-20-3        | Naphthalene            | 1.3     | U         | 0.2      | 1.3 | 2.6        | ug/L     |
| SURROGATES     |                        |         |           |          |     |            |          |
| 367-12-4       | 2-Fluorophenol         | 100     |           | 10 - 160 | )   | 101%       | SPK: 100 |
| 13127-88-3     | Phenol-d6              | 69      |           | 10 - 161 |     | 69%        | SPK: 100 |
| 4165-60-0      | Nitrobenzene-d5        | 200     | *         | 25 - 124 | ļ   | 198%       | SPK: 100 |
| 321-60-8       | 2-Fluorobiphenyl       | 20      | *         | 20 - 129 | )   | -20%       | SPK: 100 |
| 118-79-6       | 2,4,6-Tribromophenol   | 190     | *         | 10 - 140 | )   | 193%       | SPK: 100 |
| 1718-51-0      | Terphenyl-d14          | 170     | *         | 14 - 155 | ;   | 171%       | SPK: 100 |
| INTERNAL STA   | ANDARDS                |         |           |          |     |            |          |
| 3855-82-1      | 1,4-Dichlorobenzene-d4 | 232373  | 6.76      |          |     |            |          |
| 1146-65-2      | Naphthalene-d8         | 1028780 | 8.33      |          |     |            |          |
| 15067-26-2     | Acenaphthene-d10       | 504698  | 10.48     |          |     |            |          |
| 1517-22-2      | Phenanthrene-d10       | 740964  | 12.27     |          |     |            |          |
| 1719-03-5      | Chrysene-d12           | 571564  | 15.5      |          |     |            |          |
| 1520-96-3      | Perylene-d12           | 458481  | 17.1      |          |     |            |          |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-17RE SDG No.: F2918

Lab Sample ID: F2918-20RE Matrix: Water

Analytical Method: 625 % Moisture: 100

Sample Wt/Vol: 970 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group2

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072322.D 1 07/01/14 07/04/14 PB77538

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
|--------------|------------------------|--------|-----------|----------|-----|------------|----------|
| TARGETS      |                        |        |           |          |     |            |          |
| 108-95-2     | Phenol                 | 1.3    | U         | 0.47     | 1.3 | 2.6        | ug/L     |
| 120-82-1     | 1,2,4-Trichlorobenzene | 1.3    | U         | 0.14     | 1.3 | 2.6        | ug/L     |
| 91-20-3      | Naphthalene            | 1.3    | U         | 0.2      | 1.3 | 2.6        | ug/L     |
| SURROGATES   |                        |        |           |          |     |            |          |
| 367-12-4     | 2-Fluorophenol         | 100    |           | 10 - 160 | 0   | 101%       | SPK: 100 |
| 13127-88-3   | Phenol-d6              | 64.1   |           | 10 - 16  | 1   | 64%        | SPK: 100 |
| 4165-60-0    | Nitrobenzene-d5        | 200    | *         | 25 - 124 | 4   | 198%       | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl       | 170    | *         | 20 - 129 | 9   | 174%       | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol   | 210    | *         | 10 - 140 | )   | 206%       | SPK: 100 |
| 1718-51-0    | Terphenyl-d14          | 170    | *         | 14 - 15: | 5   | 175%       | SPK: 100 |
| INTERNAL STA | NDARDS                 |        |           |          |     |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 46159  | 7.11      |          |     |            |          |
| 1146-65-2    | Naphthalene-d8         | 206010 | 8.69      |          |     |            |          |
| 15067-26-2   | Acenaphthene-d10       | 104843 | 10.85     |          |     |            |          |
| 1517-22-2    | Phenanthrene-d10       | 186374 | 12.68     |          |     |            |          |
| 1719-03-5    | Chrysene-d12           | 201034 | 15.95     |          |     |            |          |
| 1520-96-3    | Perylene-d12           | 176363 | 17.63     |          |     |            |          |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Soil Aliquot Vol:

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-17 SDG No.: F2918
Lab Sample ID: F2918-20 Matrix: Water
Analytical Method: E624 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Test:

VOCMS Group2

GC Column: RTX-VMS ID: 0.18 Level: LOW

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VG049759.D 1 07/01/14 VG070114

| CAS Number   | Parameter                | Conc.   | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|--------------|--------------------------|---------|-----------|----------|-----|------------|---------|
| TARGETS      |                          |         |           |          |     |            |         |
| 1634-04-4    | Methyl tert-Butyl Ether  | 2.5     | U         | 0.41     | 2.5 | 5          | ug/L    |
| 56-23-5      | Carbon Tetrachloride     | 2.5     | U         | 0.57     | 2.5 | 5          | ug/L    |
| 67-66-3      | Chloroform               | 2.6     | J         | 0.19     | 2.5 | 5          | ug/L    |
| 71-55-6      | 1,1,1-Trichloroethane    | 2.5     | U         | 0.3      | 2.5 | 5          | ug/L    |
| 71-43-2      | Benzene                  | 2.5     | U         | 0.26     | 2.5 | 5          | ug/L    |
| 108-88-3     | Toluene                  | 2.5     | U         | 0.17     | 2.5 | 5          | ug/L    |
| 127-18-4     | Tetrachloroethene        | 400     | E         | 0.86     | 2.5 | 5          | ug/L    |
| 100-41-4     | Ethyl Benzene            | 2.5     | U         | 0.26     | 2.5 | 5          | ug/L    |
| 1330-20-7    | Total Xylenes            | 7.5     | U         | 0.57     | 7.5 | 15         | ug/L    |
| 106-46-7     | 1,4-Dichlorobenzene      | 2.5     | U         | 0.22     | 2.5 | 5          | ug/L    |
| SURROGATES   | S                        |         |           |          |     |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4    | 45.9    |           | 50 - 169 | 7   | 153%       | SPK: 30 |
| 2037-26-5    | Toluene-d8               | 23.8    |           | 66 - 137 | 7   | 79%        | SPK: 30 |
| 460-00-4     | 4-Bromofluorobenzene     | 28.8    |           | 56 - 143 | 3   | 96%        | SPK: 30 |
| INTERNAL ST  |                          |         |           |          |     |            |         |
| 74-97-5      | Bromochloromethane       | 48576   | 3.42      |          |     |            |         |
| 540-36-3     | 1,4-Difluorobenzene      | 737596  | 5.26      |          |     |            |         |
| 3114-55-4    | Chlorobenzene-d5         | 1357550 | 9.97      |          |     |            |         |
| TENTATIVE II | DENTIFIED COMPOUNDS      |         |           |          |     |            |         |
| 75-01-4      | Vinyl Chloride           | 1.8     | J         |          |     | 1.07       | ug/L    |
| 156-60-5     | trans-1,2-Dichloroethene | 3.6     | J         |          |     | 2.18       | ug/L    |
| 156-59-2     | cis-1,2-Dichloroethene   | 17.3    | J         |          |     | 3.22       | ug/L    |
| 79-01-6      | Trichloroethene          | 14      | J         |          |     | 5.15       | ug/L    |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

<sup>\* =</sup> Values outside of QC limits

D = Dilution

Project:

#### **Report of Analysis**

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Level:

Matrix:

06/25/14

06/27/14

F2918

Water

100

5000

LOW

VOCMS Group2

uL

Client: Dvirka & Bartilucci

NYCSCA Unionport Road Bronx

Client Sample ID: GW-17DL

Lab Sample ID: F2918-20DL

Analytical Method: E624

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol: uL

GC Column: RTX-VMS ID: 0.18

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VG049760.D 10 07/01/14 VG070114

| CAS Number   | Parameter               | Conc.   | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|--------------|-------------------------|---------|-----------|----------|-----|------------|---------|
| TARGETS      |                         |         |           |          |     |            |         |
| 1634-04-4    | Methyl tert-Butyl Ether | 25      | UD        | 4.1      | 25  | 50         | ug/L    |
| 56-23-5      | Carbon Tetrachloride    | 25      | UD        | 5.7      | 25  | 50         | ug/L    |
| 67-66-3      | Chloroform              | 25      | UD        | 1.9      | 25  | 50         | ug/L    |
| 71-55-6      | 1,1,1-Trichloroethane   | 25      | UD        | 3        | 25  | 50         | ug/L    |
| 71-43-2      | Benzene                 | 25      | UD        | 2.6      | 25  | 50         | ug/L    |
| 108-88-3     | Toluene                 | 25      | UD        | 1.7      | 25  | 50         | ug/L    |
| 127-18-4     | Tetrachloroethene       | 400     | D         | 8.6      | 25  | 50         | ug/L    |
| 100-41-4     | Ethyl Benzene           | 25      | UD        | 2.6      | 25  | 50         | ug/L    |
| 1330-20-7    | Total Xylenes           | 75      | UD        | 5.7      | 75  | 150        | ug/L    |
| 106-46-7     | 1,4-Dichlorobenzene     | 25      | UD        | 2.2      | 25  | 50         | ug/L    |
| SURROGATES   |                         |         |           |          |     |            |         |
| 17060-07-0   | 1,2-Dichloroethane-d4   | 42.8    |           | 50 - 169 | )   | 143%       | SPK: 30 |
| 2037-26-5    | Toluene-d8              | 24.2    |           | 66 - 137 | 7   | 81%        | SPK: 30 |
| 460-00-4     | 4-Bromofluorobenzene    | 28.9    |           | 56 - 143 | 3   | 96%        | SPK: 30 |
| INTERNAL STA | ANDARDS                 |         |           |          |     |            |         |
| 74-97-5      | Bromochloromethane      | 54661   | 3.43      |          |     |            |         |
| 540-36-3     | 1,4-Difluorobenzene     | 732196  | 5.26      |          |     |            |         |
| 3114-55-4    | Chlorobenzene-d5        | 1306690 | 9.97      |          |     |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

<sup>\* =</sup> Values outside of QC limits

D = Dilution



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-9 SDG No.: F2918

Lab Sample ID: F2918-21 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ | / CRQL Un | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|-----|-----------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.33  | J    | 1  | 0.14 | 1.0 | 2   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 0.43  | J    | 1  | 0.18 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 32.3  |      | 1  | 0.1  | 5.0 | 10  | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | U    | 1  | 0.09 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 0.5   | U    | 1  | 0.13 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 2.8   | *    | 1  | 0.04 | 1.0 | 2   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 5.7   |      | 1  | 0.05 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 1.3   | J*   | 1  | 0.04 | 1.0 | 2   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 0.23  | J    | 1  | 0.04 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 417   |      | 1  | 0.05 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1 | 0.2 | ug/L      | 07/01/14      | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 14    | *    | 1  | 0.06 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 16.4  |      | 1  | 0.7  | 2.5 | 5   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 0.041 | J    | 1  | 0.03 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.13  | J    | 1  | 0.02 | 0.5 | 1   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 2.5   | U    | 1  | 0.15 | 2.5 | 5   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 12    | *    | 1  | 0.09 | 1.0 | 2   | ug/L      | 07/01/14      | 07/03/14  | SW6020   |

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Dissolved Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-7 SDG No.: F2918

Lab Sample ID: F2918-22 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ/ | CRQL Uni | ts Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|------|----------|--------------|-----------|----------|
| 7440-36-0 | Antimony  | 1     | U    | 1  | 0.14 | 1.0 | 2    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 0.5   | U    | 1  | 0.18 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 1.3   | J    | 1  | 0.1  | 5.0 | 10   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | U    | 1  | 0.09 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 0.5   | U    | 1  | 0.13 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 0.19  | J*   | 1  | 0.04 | 1.0 | 2    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 0.25  | J    | 1  | 0.05 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 1     | U*   | 1  | 0.04 | 1.0 | 2    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 0.5   | U    | 1  | 0.04 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 18.7  |      | 1  | 0.05 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1 | 0.2  | ug/L     | 07/01/14     | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 0.49  | J*   | 1  | 0.06 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 1.1   | J    | 1  | 0.7  | 2.5 | 5    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 0.5   | U    | 1  | 0.03 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.5   | U    | 1  | 0.02 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 2.5   | U    | 1  | 0.15 | 2.5 | 5    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 0.54  | J*   | 1  | 0.09 | 1.0 | 2    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Dissolved Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



Lab Sample ID:

F2918-23

#### **Report of Analysis**

Matrix:

WATER

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-17 SDG No.: F2918

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ/ | CRQL Uni | ts Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|------|----------|--------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.18  | J    | 1  | 0.14 | 1.0 | 2    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 1.3   |      | 1  | 0.18 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 69.2  |      | 1  | 0.1  | 5.0 | 10   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | U    | 1  | 0.09 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 0.23  | J    | 1  | 0.13 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 0.53  | J*   | 1  | 0.04 | 1.0 | 2    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 41.6  |      | 1  | 0.05 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 3.6   | *    | 1  | 0.04 | 1.0 | 2    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 0.17  | J    | 1  | 0.04 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 3370  |      | 1  | 0.05 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1 | 0.2  | ug/L     | 07/01/14     | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 17.7  | *    | 1  | 0.06 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 15.4  |      | 1  | 0.7  | 2.5 | 5    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 0.5   | U    | 1  | 0.03 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.04  | J    | 1  | 0.02 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 2.5   | U    | 1  | 0.15 | 2.5 | 5    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 11    | *    | 1  | 0.09 | 1.0 | 2    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Dissolved Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-16 SDG No.: F2918

Lab Sample ID: F2918-24 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ/ | CRQL Uni | ts Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|------|----------|--------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.29  | J    | 1  | 0.14 | 1.0 | 2    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 1.9   |      | 1  | 0.18 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 89    |      | 1  | 0.1  | 5.0 | 10   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | U    | 1  | 0.09 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 0.5   | U    | 1  | 0.13 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 0.91  | J*   | 1  | 0.04 | 1.0 | 2    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 2.6   |      | 1  | 0.05 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 2.1   | *    | 1  | 0.04 | 1.0 | 2    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 0.053 | J    | 1  | 0.04 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 2230  |      | 1  | 0.05 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1 | 0.2  | ug/L     | 07/01/14     | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 9.1   | *    | 1  | 0.06 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 2.3   | J    | 1  | 0.7  | 2.5 | 5    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 0.5   | U    | 1  | 0.03 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.5   | U    | 1  | 0.02 | 0.5 | 1    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 2.5   | U    | 1  | 0.15 | 2.5 | 5    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 1.9   | J*   | 1  | 0.09 | 1.0 | 2    | ug/L     | 07/01/14     | 07/03/14  | SW6020   |

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Dissolved Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



# **DATA FOR**

# VOLATILE ORGANICS SEMI-VOLATILE ORGANICS GC SEMI-VOLATILES METALS GENERAL CHEMISTRY

**PROJECT NAME: NYCSCA UNIONPORT ROAD BRONX** 

DVIRKA & BARTILUCCI
330 Crossways Park Drive

Woodbury, NY - 11797

Phone No: 516-364-9890

ORDER ID: F2923

ATTENTION: MARIA WRIGHT







Date: 07/07/2014

Dear MARIA WRIGHT,

6 water and 8 soil samples for the NYCSCA Unionport Road Bronx project were received on 06/27/2014. The analytical fax results for those samples requested for an expedited turn around time may be seen in this report. Please contact me if you have any questions or concerns regarding this report.

Regards,

Corey J. Petitt

Corey@chemtech.net



# 284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

| CHEMTECH PROJECT NO. |  |
|----------------------|--|
| QUOTE NO.            |  |
| COC Number () 28223  |  |

|                          | CLIENT INFORMATION                                                                                | CLI                                                                                               | IENT PROJECT INFORMAT                                | TON       | CLIENT BILLING INFORMATION                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| COMPANY: ]               | D& B Engineers & Arch                                                                             | PROJECT NAME: U                                                                                   | Inion Part, F                                        | ronx      | BILL TO: SA                                    | ne PO#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| ADDRESS: 2               | 530 Crossway Perk Driv                                                                            | PROJECT NO.341                                                                                    | 15-F2 LOCATION B                                     | Y 4, xno) | ADDRESS:                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| CITY: WU                 | albury STATENY ZIP:11797                                                                          | 1074                                                                                              | R. Mike Hofe                                         | 1.27      | CITY:                                          | STATE: ZIP;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| ATTENTION:               | Mike Hofgran                                                                                      |                                                                                                   | grencedh-ine                                         |           | ATTENTION:                                     | PHONE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| BUONE DI                 | -364-9690 FAX:                                                                                    | PHONE:                                                                                            | FAX:                                                 |           |                                                | ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| PHONE:S/P                | DATA TURNAROUND INFORMATION                                                                       | The second second                                                                                 | ELIVERABLE INFORMA                                   | TION      | John Shar                                      | White of the state of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| EDD:<br>PREAPPROV        | DAYS * | □ LEVEL 1: Results o □ LEVEL 2: Results + □ LEVEL 3: Results ( □ LEVEL 4: Results + □ EDD Format: | + QC<br>(plus results raw data) + 0                  | 1 / 2 / V | 107.51 N. 100.21<br>3 7 14 7 5 6 6             | Shirts I which the DRD Control of the State |  |  |
| * STANDARD I             | ONIVARIOUND TIME TO TO BOOME CO DATO                                                              | SAMPLE                                                                                            | SAMPLE 🗳                                             |           | PRESERVATIVES                                  | COMMENTS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| CHEMTECH<br>SAMPLE<br>ID | PROJECT<br>SAMPLE IDENTIFICATION                                                                  | SAMPLE TYPE                                                                                       | SAMPLE COLLECTION  DATE TIME                         | 1 2       | 3 4 5 6                                        | Specify Preservatives  A - HCI B - HNO₃ C - H₂SO₄ D - NaOH  7 8 9 E - ICE F - Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 1. GP                    | 58-19 (10"- 24")                                                                                  | Soil V6                                                                                           | 101H 7                                               | VVI       | VVVV                                           | VVVV HOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 2. <b>GP</b>             | SS=14 (6"-18")                                                                                    | Soil V4                                                                                           | (25/19 11:45 7                                       | VVV       | / V / V.                                       | V V V INTUPHOLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 3. <b>G P</b>            | 58-15 (6"-20")                                                                                    | Soil V6                                                                                           | 包山山 10:30 7                                          | レン        | VVVV                                           | V VITCLE Hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 4. G.                    | 55-18 (6"-18")                                                                                    | 5011 V6                                                                                           | 126/14 12:307                                        | VVV       | ノレレレ                                           | レレンが下に中地                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 5.                       |                                                                                                   |                                                                                                   |                                                      |           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 6.                       |                                                                                                   |                                                                                                   |                                                      |           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 7.                       |                                                                                                   |                                                                                                   |                                                      |           | 4                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 8.                       |                                                                                                   |                                                                                                   |                                                      |           | 7-                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 9.                       |                                                                                                   |                                                                                                   |                                                      |           | 9                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 10.                      | =                                                                                                 |                                                                                                   |                                                      |           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                          | SAMPLE CUSTODY MUST BE DOO                                                                        | CUMENTED BELOW E.                                                                                 |                                                      |           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| HELINOUISHED BY          | SAMPLER: DATE/TIME: Y A RECEIVED BY:                                                              |                                                                                                   | Conditions of bottles or co<br>MeOH extraction requi |           | ☐ Compliant ☐ N<br>4 oz jar for percent solid. | lon Compliant Cooler Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| RELINQUISHED BY:         | - III-I                                                                                           |                                                                                                   | Comments:                                            | 11        | Al, Ca, Fa, K                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| RELINQUISHED BY:         |                                                                                                   | 3 BY:                                                                                             | Page of                                              |           | PED VIA: CLIENT: HAND<br>CHEMTECH: F           | DELIVERED OVERNIGHT Shipment Complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |



# 284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO.

QUOTE NO.

COC Number 031800

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLIENT I                                                                                 |                        |                              | CLIENT PE | ROJECT INF | ORMA           | TION         | 1.5                                     |                  |           | OCT C    |          | CLIENT        | F BILLI | NG INFO | PRMATION |                                                                   |        |                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------|------------------------------|-----------|------------|----------------|--------------|-----------------------------------------|------------------|-----------|----------|----------|---------------|---------|---------|----------|-------------------------------------------------------------------|--------|------------------------------------------|
| COMPANY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DUB Enc                                                                                  | TO BE SENT TO:         | W .                          | PROJEC    | T NA       | ME:            | 500          | moel                                    | Iniu             | m fr      | A,B      | ron      | BILLT         | 0: -    | Sai     | ne       |                                                                   |        | PO#:                                     |
| ADDRESS: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 130 Cross                                                                                | way Park               | Drive                        | PROJEC    | T NC       | الا: ا         |              | 2LOCAT                                  |                  |           |          |          | ADDRI         |         |         |          |                                                                   |        |                                          |
| CITY: WOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rdbury                                                                                   | STATE: NY              | ZIP: 11947                   |           |            |                |              | Ke H                                    | - 1              |           | -/       |          | CITY:         |         |         |          |                                                                   | STAT   | E: ZIP;                                  |
| ATTENTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mike Ho                                                                                  | ferer .                |                              | e-mail:   | m          | ho             | fgren        | @db-                                    | eng              | .CA       |          |          | ATTEN         | ITION:  |         | PHONE:   |                                                                   |        |                                          |
| Contract of the last of the la | 364-9890                                                                                 | FAX:                   |                              | PHONE:    | _          |                |              | FA                                      |                  |           |          |          |               | 24      | 000     |          | ANA                                                               | LYSIS  | 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATA TURNARO                                                                             | OUND INFORMATIO        | N MARKET                     | le .      |            | DATA           | DELIVER      | RABLE INF                               | ORM              | NOITA     |          |          |               | U S     | ١٧,     | KSKY     | CUL                                                               | K,     | /////                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DAYS DAYS DAYS DAYS PREAPPROVED TAT: YES NO STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS |                        |                              |           |            | esult<br>esult |              | □ O<br>sults raw d<br>I raw data)       | thers_<br>ata) + | QC        | XÚ/2     | 100      | 100           | 35 N    | in 6    | HY THE   | red N                                                             | 9      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                        |                              | _         | SAM        | IPLE           | SAM          | IPLE                                    | ES               |           | BH.      |          | PRES          | ERVA    | TIVES   |          |                                                                   |        | COMMENTS                                 |
| CHEMTECH<br>SAMPLE<br>ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAI                                                                                      | SAMPLE<br>MATRIX       |                              | GRAB H    |            | TIME           | # OF BOTTLES | 1                                       | 2                | 3         | 4        | 5        | 6             | 7       | 8       | 9        | ← Specify Preservatives A-HCI B-HNO₃ C-H₂SO₄ D-NaOH E-ICE F-Other |        |                                          |
| 1. 6W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55-11                                                                                    | GW)                    |                              | GW        |            |                | 6-244        | 1483                                    | 6                | V         | V        | V        | V             |         |         |          |                                                                   |        |                                          |
| 2. GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55-15                                                                                    | (6W)                   |                              | GW        | *:         |                | 6/22/1       | 4 1030                                  | 6                | ~         | V        | V        | ~             |         |         | 1        |                                                                   |        |                                          |
| 3. BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55-18                                                                                    | 3 (CM)                 |                              | GW        |            |                | اإعداا       | 11230                                   | 6                | V         | V        | V        | V             |         |         |          |                                                                   |        |                                          |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                        |                              | 7         |            |                |              |                                         |                  |           |          |          |               |         |         |          |                                                                   |        |                                          |
| 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                        |                        | ;                            |           |            | -              |              |                                         |                  |           |          |          |               |         |         |          |                                                                   |        |                                          |
| 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                        |                              |           |            |                |              |                                         |                  |           |          |          |               |         |         |          |                                                                   |        |                                          |
| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                        |                              |           |            |                | 9            |                                         |                  |           |          |          |               |         |         |          |                                                                   |        |                                          |
| 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                        |                              |           |            |                |              |                                         |                  |           |          |          |               |         |         |          |                                                                   |        |                                          |
| 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                        |                              |           |            |                |              |                                         |                  |           |          |          | -             |         |         |          |                                                                   | is I   |                                          |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          |                        |                              |           |            |                |              |                                         |                  |           |          |          |               |         |         |          | II.                                                               |        |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49509                                                                                    | SAMPLE CUSTOD          |                              | UMENTE    | D BE       | LOW            | EACH TII     | ME SAMP                                 | LES C            | HANGE     | POSS     | ESSIC    | N INCL        | UDING   | COUF    | RIER DE  | LIVER                                                             | Υ      | 当报 图 1.00                                |
| 1. RELINQUISHED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLER:                                                                                 | DATE/TIME:  DATE/TIME: | RECEIVED BY: RECEIVED BY: 2. |           |            |                |              | ons of bottle<br>H extraction<br>ments: | requi            | ires an a | addition | nal 4 oz | Comp          | ercent  |         | Non Cor  | npliant                                                           |        | oler Tempin Cooler?:                     |
| RELINQUISHED BY: 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          | DATE/TIME:             | RECEIVED FOR LAE             | BBY:      |            |                | Page         | 2                                       | _ of             | 2_        | SH       | IIPPED   | VIA: CL<br>CH |         |         |          |                                                                   | □ OVER |                                          |



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 10:00 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-19(10-24) F2923 Lab Sample ID: F2923-01 Matrix: SOIL % Solid: 79.4

| Parameter           | Conc. | Qua. | DF | MDL  | LOD  | LOQ / CRQI | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|------|------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.15  | U    | 1  | 0.04 | 0.15 | 0.3        | mg/Kg | 07/01/14  | 07/02/14 11:34 | 9012B    |
| Hexavalent Chromium | 0.25  | J    | 1  | 0.1  | 0.25 | 0.5        | mg/Kg | 07/02/14  | 07/02/14 15:19 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

 Client Sample ID:
 GP-19(10-24)
 SDG No.:
 F2923

 Lab Sample ID:
 F2923-01
 Matrix:
 SOIL

Analytical Method: 8015B DRO % Moisture: 20.6 Decanted: Sample Wt/Vol: 30.05 Units: g Final Vol: 1 mL

Sample Wt/Vol: 30.05 Units: g Final Vol: 1 mL
Soil Aliquot Vol: uL Test: Diesel Range Organics

Extraction Type: Injection Volume :

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID FC012016.D 1 07/01/14 07/03/14 PB77539

| CAS Number                   | Parameter       | Conc. Q | Qualifier MDL | LOD  | LOQ / CR | QL Units |
|------------------------------|-----------------|---------|---------------|------|----------|----------|
| TARGETS<br>DRO               | DRO             | 2096    | 1050          | 1050 | 2100     | ug/kg    |
| <b>SURROGATES</b> 16416-32-3 | Tetracosane-d50 | 10.9    | 37 - 130      |      | 55%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: Client Sample ID: GP-19(10-24) F2923 Lab Sample ID: F2923-01 Matrix: SOIL

Analytical Method: 8015B GRO % Moisture: 20.6 Decanted: Sample Wt/Vol: 5.03 Units: g Final Vol: 5 mL

Soil Aliquot Vol: uL Test: Gasoline Range Organics

Extraction Type: Injection Volume:

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID FB004520.D 1 07/07/14 FB070714

| CAS Number            | Parameter                          | Conc. | Qualifi | er MDL   | LOD | LOQ / CF | RQL Units |
|-----------------------|------------------------------------|-------|---------|----------|-----|----------|-----------|
| TARGETS<br>GRO        | GRO                                | 28    | U       | 15       | 28  | 56       | ug/kg     |
| SURROGATES<br>98-08-8 | Alpha.Alpha.Alpha-Trifluorotoluene | 13.5  |         | 50 - 150 | )   | 68%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: Client Sample ID: GP-19(10-24) F2923 Lab Sample ID: F2923-01 Matrix: SOIL % Moisture: Analytical Method: SW8151A 20.6

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010333.D 1 07/01/14 07/03/14 PB77541

| CAS Number | Parameter         | Conc. | Qualif | Qualifier MDL |    | LOQ / CF | LOQ / CRQL Units |  |
|------------|-------------------|-------|--------|---------------|----|----------|------------------|--|
| TARGETS    |                   |       |        |               |    |          |                  |  |
| 1918-00-9  | DICAMBA           | 21    | U      | 16.7          | 21 | 84.2     | ug/Kg            |  |
| 120-36-5   | DICHLORPROP       | 21    | U      | 15.5          | 21 | 84.2     | ug/Kg            |  |
| 94-75-7    | 2,4-D             | 21    | U      | 21            | 21 | 84.2     | ug/Kg            |  |
| 93-72-1    | 2,4,5-TP (Silvex) | 21    | U      | 13.7          | 21 | 84.2     | ug/Kg            |  |
| 93-76-5    | 2,4,5-T           | 21    | U      | 12.9          | 21 | 84.2     | ug/Kg            |  |
| 94-82-6    | 2,4-DB            | 21    | U      | 21            | 21 | 84.2     | ug/Kg            |  |
| 88-85-7    | DINOSEB           | 21    | U      | 21            | 21 | 84.2     | ug/Kg            |  |
| SURROGATES |                   |       |        |               |    |          |                  |  |
| 19719-28-9 | 2,4-DCAA          | 399   |        | 12 - 189      | )  | 80%      | SPK: 500         |  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-19(10-24) SDG No.: F2923

Lab Sample ID: F2923-01 Matrix: SOIL

Level (low/med): low % Solid: 79.4

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQ | L Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|-----------|-------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.35  | UN   | 1  | 0.603 | 1.35  | 2.69      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-38-2 | Arsenic   | 2.65  |      | 1  | 0.355 | 0.538 | 1.08      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-39-3 | Barium    | 87    |      | 1  | 0.431 | 2.69  | 5.38      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.487 |      | 1  | 0.065 | 0.161 | 0.323     | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.161 | U    | 1  | 0.065 | 0.161 | 0.323     | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-47-3 | Chromium  | 23    |      | 1  | 0.14  | 0.269 | 0.538     | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-48-4 | Cobalt    | 10.1  |      | 1  | 0.614 | 0.807 | 1.61      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-50-8 | Copper    | 23.6  |      | 1  | 0.344 | 0.538 | 1.08      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7439-92-1 | Lead      | 26.4  | N    | 1  | 0.129 | 0.323 | 0.646     | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7439-96-5 | Manganese | 400   |      | 1  | 0.205 | 0.538 | 1.08      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.007 | J    | 1  | 0.006 | 0.006 | 0.011     | mg/Kg 07/01/14    | 07/03/14  | SW7471A  |
| 7440-02-0 | Nickel    | 18.6  |      | 1  | 0.495 | 1.08  | 2.15      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7782-49-2 | Selenium  | 0.951 | J    | 1  | 0.441 | 0.538 | 1.08      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-22-4 | Silver    | 0.802 |      | 1  | 0.161 | 0.269 | 0.538     | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-28-0 | Thallium  | 1.08  | U    | 1  | 0.291 | 1.08  | 2.15      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-62-2 | Vanadium  | 30.1  |      | 1  | 0.635 | 1.08  | 2.15      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |
| 7440-66-6 | Zinc      | 59.7  |      | 1  | 0.754 | 1.08  | 2.15      | mg/Kg 07/02/14    | 07/02/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



PP003690.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Final Vol:

07/02/14

10000

иL

PB77542

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

SDG No.: Client Sample ID: GP-19(10-24) F2923 Lab Sample ID: F2923-01 Matrix: **SOIL** 

% Moisture: Analytical Method: SW8082A 20.6 Decanted:

Sample Wt/Vol: g Test: PCB Soil Aliquot Vol: иL

Extraction Type: Injection Volume:

Units:

1.0 PH: GPC Factor:

1

30.07

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

07/01/14

| CAS Number | Parameter            | Conc. Qualit |   | · MDL    | LOD | LOQ / CRQL Units |         |
|------------|----------------------|--------------|---|----------|-----|------------------|---------|
| TARGETS    |                      |              |   |          |     |                  |         |
| 12674-11-2 | Aroclor-1016         | 4.2          | U | 4.2      | 4.2 | 21.4             | ug/kg   |
| 11104-28-2 | Aroclor-1221         | 4.2          | U | 4.2      | 4.2 | 21.4             | ug/kg   |
| 11141-16-5 | Aroclor-1232         | 4.2          | U | 4.2      | 4.2 | 21.4             | ug/kg   |
| 53469-21-9 | Aroclor-1242         | 4.2          | U | 4.2      | 4.2 | 21.4             | ug/kg   |
| 12672-29-6 | Aroclor-1248         | 4.2          | U | 4.2      | 4.2 | 21.4             | ug/kg   |
| 11097-69-1 | Aroclor-1254         | 4.2          | U | 1.9      | 4.2 | 21.4             | ug/kg   |
| 11096-82-5 | Aroclor-1260         | 4.2          | U | 4.2      | 4.2 | 21.4             | ug/kg   |
| SURROGATES |                      |              |   |          |     |                  |         |
| 877-09-8   | Tetrachloro-m-xylene | 18           |   | 10 - 166 | 5   | 90%              | SPK: 20 |
| 2051-24-3  | Decachlorobiphenyl   | 14.1         |   | 60 - 125 | 5   | 70%              | SPK: 20 |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client:Dvirka & BartilucciDate Collected:06/25/14Project:NYCSCA Unionport Road BronxDate Received:06/27/14Client Sample ID:GP-19(10-24)SDG No.:F2923

Lab Sample ID: F2923-01 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 20.6 Decanted:

Sample Wt/Vol: 30.01 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023227.D 1 07/01/14 07/02/14 PB77543

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|-------|----------|----------|
| TARGETS    |                      |       |           |          |       |          |          |
| 319-84-6   | alpha-BHC            | 0.415 | U         | 0.164    | 0.415 | 2.1      | ug/kg    |
| 319-85-7   | beta-BHC             | 0.415 | U         | 0.227    | 0.415 | 2.1      | ug/kg    |
| 319-86-8   | delta-BHC            | 0.415 | U         | 0.126    | 0.415 | 2.1      | ug/kg    |
| 58-89-9    | gamma-BHC (Lindane)  | 0.415 | U         | 0.189    | 0.415 | 2.1      | ug/kg    |
| 76-44-8    | Heptachlor           | 0.415 | U         | 0.176    | 0.415 | 2.1      | ug/kg    |
| 309-00-2   | Aldrin               | 0.415 | U         | 0.126    | 0.415 | 2.1      | ug/kg    |
| 1024-57-3  | Heptachlor epoxide   | 0.415 | U         | 0.201    | 0.415 | 2.1      | ug/kg    |
| 959-98-8   | Endosulfan I         | 0.415 | U         | 0.189    | 0.415 | 2.1      | ug/kg    |
| 60-57-1    | Dieldrin             | 0.415 | U         | 0.164    | 0.415 | 2.1      | ug/kg    |
| 72-55-9    | 4,4-DDE              | 0.415 | U         | 0.252    | 0.415 | 2.1      | ug/kg    |
| 72-20-8    | Endrin               | 0.415 | U         | 0.227    | 0.415 | 2.1      | ug/kg    |
| 33213-65-9 | Endosulfan II        | 0.415 | U         | 0.176    | 0.415 | 2.1      | ug/kg    |
| 72-54-8    | 4,4-DDD              | 0.415 | U         | 0.214    | 0.415 | 2.1      | ug/kg    |
| 1031-07-8  | Endosulfan Sulfate   | 0.415 | U         | 0.189    | 0.415 | 2.1      | ug/kg    |
| 50-29-3    | 4,4-DDT              | 0.415 | U         | 0.176    | 0.415 | 2.1      | ug/kg    |
| 72-43-5    | Methoxychlor         | 0.415 | U         | 0.214    | 0.415 | 2.1      | ug/kg    |
| 53494-70-5 | Endrin ketone        | 0.415 | U         | 0.164    | 0.415 | 2.1      | ug/kg    |
| 7421-93-4  | Endrin aldehyde      | 0.415 | U         | 0.189    | 0.415 | 2.1      | ug/kg    |
| 5103-71-9  | alpha-Chlordane      | 0.415 | U         | 0.176    | 0.415 | 2.1      | ug/kg    |
| 5103-74-2  | gamma-Chlordane      | 0.415 | U         | 0.164    | 0.415 | 2.1      | ug/kg    |
| 8001-35-2  | Toxaphene            | 4.2   | U         | 4.2      | 4.2   | 21.4     | ug/kg    |
| SURROGATES |                      |       |           |          |       |          |          |
| 2051-24-3  | Decachlorobiphenyl   | 19    |           | 10 - 169 | )     | 95%      | SPK: 20  |
| 877-09-8   | Tetrachloro-m-xylene | 21.4  |           | 31 - 151 |       | 107%     | SPK: 20  |



Project:

Date Collected:

Date Received:

SDG No.:

% Moisture:

Injection Volume:

Matrix:

06/25/14

06/27/14

F2923

**SOIL** 

20.6

Decanted:

#### **Report of Analysis**

Client: Dvirka & Bartilucci

NYCSCA Unionport Road Bronx

Client Sample ID: GP-19(10-24)

Lab Sample ID: F2923-01

Analytical Method: SW8081

Sample Wt/Vol: 30.01 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023227.D 1 07/01/14 07/02/14 PB77543

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Sample Wt/Vol:

30.07

Units:

g

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

 Client Sample ID:
 GP-19(10-24)
 SDG No.:
 F2923

 Lab Sample ID:
 F2923-01
 Matrix:
 SOIL

Analytical Method: SW8270 % Moisture: 20.6

Soil Aliquot Vol: uL Test: SVOCMS Group1

Final Vol:

1000

uL

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072244.D 1 07/01/14 07/02/14 PB77544

| BI 0/2211.B | •                           | 07/01/11 | 0.           | 7702/11 |      | 18//3/1    |       |
|-------------|-----------------------------|----------|--------------|---------|------|------------|-------|
| CAS Number  | Parameter                   | Con      | c. Qualifier | MDL     | LOD  | LOQ / CRQL | Units |
| TARGETS     |                             |          |              |         |      |            |       |
| 100-52-7    | Benzaldehyde                | 41.9     | U            | 21.9    | 41.9 | 410        | ug/Kg |
| 108-95-2    | Phenol                      | 41.9     | U            | 9.7     | 41.9 | 410        | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 41.9     | U            | 20.1    | 41.9 | 410        | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 41.9     | U            | 22.1    | 41.9 | 410        | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 41.9     | U            | 22.7    | 41.9 | 410        | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 41.9     | U            | 17.3    | 41.9 | 410        | ug/Kg |
| 98-86-2     | Acetophenone                | 41.9     | U            | 12.8    | 41.9 | 410        | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 41.9     | U            | 21.7    | 41.9 | 410        | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 41.9     | U            | 21.1    | 41.9 | 410        | ug/Kg |
| 67-72-1     | Hexachloroethane            | 41.9     | U            | 18.7    | 41.9 | 410        | ug/Kg |
| 98-95-3     | Nitrobenzene                | 41.9     | U            | 15.8    | 41.9 | 410        | ug/Kg |
| 78-59-1     | Isophorone                  | 41.9     | U            | 13.8    | 41.9 | 410        | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 41.9     | U            | 20.2    | 41.9 | 410        | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 41.9     | U            | 23.7    | 41.9 | 410        | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 41.9     | U            | 24.1    | 41.9 | 410        | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 41.9     | U            | 16      | 41.9 | 410        | ug/Kg |
| 91-20-3     | Naphthalene                 | 41.9     | U            | 14.4    | 41.9 | 410        | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 41.9     | U            | 29.5    | 41.9 | 410        | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 41.9     | U            | 15.2    | 41.9 | 410        | ug/Kg |
| 105-60-2    | Caprolactam                 | 83.8     | U            | 19.5    | 83.8 | 410        | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 41.9     | U            | 18.6    | 41.9 | 410        | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 41.9     | U            | 10.6    | 41.9 | 410        | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 41.9     | U            | 10.2    | 41.9 | 410        | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 41.9     | U            | 12.8    | 41.9 | 410        | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 41.9     | U            | 29.4    | 41.9 | 410        | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 41.9     | U            | 15.8    | 41.9 | 410        | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 41.9     | U            | 9.5     | 41.9 | 410        | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 41.9     | U            | 18.6    | 41.9 | 410        | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 690      |              | 11.3    | 41.9 | 410        | ug/Kg |
| 208-96-8    | Acenaphthylene              | 41.9     | U            | 10.6    | 41.9 | 410        | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 41.9     | U            | 17.1    | 41.9 | 410        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-19(10-24) SDG No.: F2923

Lab Sample ID: F2923-01 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 20.6

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000

Soil Aliquot Vol: uL Test: SVOCMS Group1

uL

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072244.D 1 07/01/14 07/02/14 PB77544

| BF072244.D | 1                          | 07/01/14 | 07.       | /02/14 |      | PB77544    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 83.8     | U         | 26.9   | 83.8 | 410        | ug/Kg |
| 83-32-9    | Acenaphthene               | 41.9     | U         | 11.8   | 41.9 | 410        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 340      | U         | 42.6   | 340  | 410        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 210      | U         | 77.8   | 210  | 410        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 41.9     | U         | 16.3   | 41.9 | 410        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 41.9     | U         | 12.6   | 41.9 | 410        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 41.9     | U         | 6.5    | 41.9 | 410        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 41.9     | U         | 22.7   | 41.9 | 410        | ug/Kg |
| 86-73-7    | Fluorene                   | 41.9     | U         | 15.8   | 41.9 | 410        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 83.8     | U         | 54.5   | 83.8 | 410        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 210      | U         | 24     | 210  | 410        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 41.9     | U         | 10.1   | 41.9 | 410        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 41.9     | U         | 8.2    | 41.9 | 410        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 41.9     | U         | 17.1   | 41.9 | 410        | ug/Kg |
| 1912-24-9  | Atrazine                   | 41.9     | U         | 22.1   | 41.9 | 410        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 41.9     | U         | 28.6   | 41.9 | 410        | ug/Kg |
| 85-01-8    | Phenanthrene               | 41.9     | U         | 11.3   | 41.9 | 410        | ug/Kg |
| 120-12-7   | Anthracene                 | 41.9     | U         | 8.5    | 41.9 | 410        | ug/Kg |
| 86-74-8    | Carbazole                  | 41.9     | U         | 9.2    | 41.9 | 410        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 41.9     | U         | 32.9   | 41.9 | 410        | ug/Kg |
| 206-44-0   | Fluoranthene               | 41.9     | U         | 8.4    | 41.9 | 410        | ug/Kg |
| 129-00-0   | Pyrene                     | 41.9     | U         | 10.1   | 41.9 | 410        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 41.9     | U         | 20.1   | 41.9 | 410        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 41.9     | U         | 26.9   | 41.9 | 410        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 41.9     | U         | 20     | 41.9 | 410        | ug/Kg |
| 218-01-9   | Chrysene                   | 41.9     | U         | 19     | 41.9 | 410        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 180      | J         | 14.8   | 41.9 | 410        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 41.9     | U         | 4.8    | 41.9 | 410        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 41.9     | U         | 13.7   | 41.9 | 410        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 41.9     | U         | 19.7   | 41.9 | 410        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 41.9     | U         | 9      | 41.9 | 410        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 41.9     | U         | 13.9   | 41.9 | 410        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 41.9     | U         | 12.1   | 41.9 | 410        | ug/Kg |



Soil Aliquot Vol:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-19(10-24) SDG No.: F2923 SOIL Lab Sample ID: F2923-01 Matrix: Analytical Method: SW8270 % Moisture: 20.6 Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL

Test:

SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

uL

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072244.D 1 07/01/14 07/02/14 PB77544

| BF0/2244.D    | 1                               | 0//01/14 |        | 0//       | 02/14    |      | PB / /544  |          |
|---------------|---------------------------------|----------|--------|-----------|----------|------|------------|----------|
| CAS Number    | Parameter                       |          | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |
| 191-24-2      | Benzo(g,h,i)perylene            |          | 41.9   | U         | 17       | 41.9 | 410        | ug/Kg    |
| 95-94-3       | 1,2,4,5-Tetrachlorobenzene      |          | 41.9   | U         | 16.5     | 41.9 | 410        | ug/Kg    |
| 58-90-2       | 2,3,4,6-Tetrachlorophenol       |          | 41.9   | U         | 16.5     | 41.9 | 410        | ug/Kg    |
| SURROGATES    |                                 |          |        |           |          |      |            |          |
| 367-12-4      | 2-Fluorophenol                  |          | 110    |           | 28 - 127 | 7    | 72%        | SPK: 150 |
| 13127-88-3    | Phenol-d6                       |          | 96.9   |           | 34 - 127 | 7    | 65%        | SPK: 150 |
| 4165-60-0     | Nitrobenzene-d5                 |          | 62.5   |           | 31 - 132 | 2    | 62%        | SPK: 100 |
| 321-60-8      | 2-Fluorobiphenyl                |          | 61.2   |           | 39 - 123 | 3    | 61%        | SPK: 100 |
| 118-79-6      | 2,4,6-Tribromophenol            |          | 100    |           | 30 - 133 | 3    | 68%        | SPK: 150 |
| 1718-51-0     | Terphenyl-d14                   |          | 53.7   |           | 37 - 115 | ;    | 54%        | SPK: 100 |
| INTERNAL STA  | NDARDS                          |          |        |           |          |      |            |          |
| 3855-82-1     | 1,4-Dichlorobenzene-d4          |          | 47401  | 7.17      |          |      |            |          |
| 1146-65-2     | Naphthalene-d8                  |          | 202889 | 8.74      |          |      |            |          |
| 15067-26-2    | Acenaphthene-d10                |          | 105199 | 10.9      |          |      |            |          |
| 1517-22-2     | Phenanthrene-d10                |          | 196173 | 12.73     |          |      |            |          |
| 1719-03-5     | Chrysene-d12                    |          | 218642 | 16.01     |          |      |            |          |
| 1520-96-3     | Perylene-d12                    |          | 202476 | 17.69     |          |      |            |          |
| TENTATIVE IDI | ENTIFIED COMPOUNDS              |          |        |           |          |      |            |          |
| 000096-37-7   | Cyclopentane, methyl-           |          | 1200   | J         |          |      | 1.17       | ug/Kg    |
| 000077-76-9   | Propane, 2,2-dimethoxy-         |          | 15400  | JB        |          |      | 1.37       | ug/Kg    |
| 000994-05-8   | Butane, 2-methoxy-2-methyl-     |          | 1000   | J         |          |      | 1.65       | ug/Kg    |
| 000123-42-2   | 2-Pentanone, 4-hydroxy-4-methyl | -        | 460    | AB        |          |      | 4.89       | ug/Kg    |
|               | unknown6.87                     |          | 3300   | JB        |          |      | 6.87       | ug/Kg    |
| 000063-42-3   | Lactose                         |          | 210    | J         |          |      | 13.49      | ug/Kg    |
| 001599-67-3   | 1-Docosene                      |          | 310    | J         |          |      | 15.92      | ug/Kg    |
|               | unknown16.91                    |          | 190    | J         |          |      | 16.91      | ug/Kg    |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx

06/27/14

SOIL

1000

Client Sample ID: GP-19(10-24)

Lab Sample ID: F2923-01 SDG No.: F2923

% Moisture:

Date Received:

20.6

Analytical Method: SW8270

Final Vol:

Matrix:

uL

Sample Wt/Vol: Soil Aliquot Vol: g uL

Units:

Test:

SVOCMS Group1

Decanted: N Level:

LOW

Extraction Type: Injection Volume:

GPC Factor:

GPC Cleanup:

Ν

PH:

File ID/Qc Batch:

Dilution:

30.07

Prep Date

Date Analyzed

Prep Batch ID

PB77544

BF072244.D

1

07/01/14

07/02/14

LOQ / CRQL

**CAS Number** 

**Parameter** 

Conc.

1.0

Qualifier

**MDL** 

LOD

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-19(10-24) SDG No.: F2923 SOIL Lab Sample ID: F2923-01 Matrix: Analytical Method: SW8260 % Moisture: 20.6 Sample Wt/Vol: 17.02 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042198.D 1 06/30/14 VF063014

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.37  | U         | 0.37 | 0.37 | 1.8        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 67-64-1    | Acetone                        | 0.92  | U         | 0.92 | 0.92 | 9.2        | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.37  | U         | 0.37 | 0.37 | 1.8        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 1.6   | JQ        | 0.18 | 0.18 | 1.8        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 2.8   | U         | 1.2  | 2.8  | 9.2        | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 71-43-2    | Benzene                        | 0.18  | U         | 0.14 | 0.18 | 1.8        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.94  | J         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.18  | U         | 0.1  | 0.18 | 1.8        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 0.92  | U         | 0.92 | 0.92 | 9.2        | ug/Kg |
| 108-88-3   | Toluene                        | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.18  | U         | 0.18 | 0.18 | 1.8        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-19(10-24) SDG No.: F2923 SOIL Lab Sample ID: F2923-01 Matrix: Analytical Method: SW8260 % Moisture: 20.6 Sample Wt/Vol: 17.02 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042198.D 1 06/30/14 VF063014

|             | -                           |       |           |          |      |            |         |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.18  | U         | 0.18     | 0.18 | 1.8        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.37  | U         | 0.33     | 0.37 | 1.8        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 0.92  | U         | 0.92     | 0.92 | 9.2        | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.18  | U         | 0.18     | 0.18 | 1.8        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.18  | U         | 0.18     | 0.18 | 1.8        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 150   | E         | 0.18     | 0.18 | 1.8        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.18  | U         | 0.18     | 0.18 | 1.8        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 0.18  | U         | 0.18     | 0.18 | 1.8        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 0.37  | U         | 0.27     | 0.37 | 3.7        | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.18  | U         | 0.18     | 0.18 | 1.8        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.18  | U         | 0.17     | 0.18 | 1.8        | ug/Kg   |
| 75-25-2     | Bromoform                   | 0.55  | U         | 0.27     | 0.55 | 1.8        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.18  | U         | 0.18     | 0.18 | 1.8        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.18  | U         | 0.17     | 0.18 | 1.8        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.18  | U         | 0.13     | 0.18 | 1.8        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.18  | U         | 0.17     | 0.18 | 1.8        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.18  | U         | 0.18     | 0.18 | 1.8        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.18  | U         | 0.18     | 0.18 | 1.8        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.18  | U         | 0.18     | 0.18 | 1.8        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.18  | UQ        | 0.11     | 0.18 | 1.8        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.18  | U         | 0.14     | 0.18 | 1.8        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.18  | U         | 0.15     | 0.18 | 1.8        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.18  | UQ        | 0.17     | 0.18 | 1.8        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 2     | Q         | 0.18     | 0.18 | 1.8        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 1.8   | U         | 0.32     | 1.8  | 1.8        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.18  | UQ        | 0.18     | 0.18 | 1.8        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.18  | UQ        | 0.17     | 0.18 | 1.8        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.37  | UQ        | 0.18     | 0.37 | 1.8        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 37    | U         | 37       | 37   | 37         | ug/Kg   |
| SURROGATES  |                             |       |           |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 45.3  |           | 56 - 120 |      | 91%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 45.2  |           | 57 - 135 | 5    | 90%        | SPK: 50 |
|             |                             |       |           |          |      |            |         |



#### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-19(10-24)

Lab Sample ID: F2923-01

Analytical Method: SW8260

Sample Wt/Vol: 17.02 Units: g

Soil Aliquot Vol: uL

GC Column: RTX-VMS ID: 0.18

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Level:

Matrix:

06/25/14

06/27/14

F2923

SOIL

20.6

5000

LOW

VOCMS Group1

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF042198.D 1 06/30/14 VF063014

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL L    | OD LOQ / CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|---------------|---------|
| 2037-26-5    | Toluene-d8             | 44     |           | 67 - 123 | 88%           | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 43.9   |           | 33 - 141 | 88%           | SPK: 50 |
| INTERNAL ST. | ANDARDS                |        |           |          |               |         |
| 363-72-4     | Pentafluorobenzene     | 147207 | 4.85      |          |               |         |
| 540-36-3     | 1,4-Difluorobenzene    | 236243 | 5.58      |          |               |         |
| 3114-55-4    | Chlorobenzene-d5       | 202757 | 9.74      |          |               |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 89425  | 12.52     |          |               |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Sample Wt/Vol:

14.57

Units:

g

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-19(10-24)DL SDG No.: F2923 SOIL Lab Sample ID: F2923-01DL Matrix: Analytical Method: SW8260 % Moisture: 20.6

Soil Aliquot Vol: 100 uL Test: VOCMS Group1

Final Vol:

5000

uL

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013935.D 1 07/02/14 VR070214

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 74-87-3    | Chloromethane                  | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 74-83-9    | Bromomethane                   | 21.6  | UD        | 21.6 | 21.6 | 110        | ug/Kg |
| 75-00-3    | Chloroethane                   | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 67-64-1    | Acetone                        | 54    | UD        | 54   | 54   | 540        | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 10.8  | UDQ       | 10.8 | 10.8 | 110        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 21.6  | UD        | 21.6 | 21.6 | 110        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 160   | UD        | 67.2 | 160  | 540        | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 67-66-3    | Chloroform                     | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 10.8  | UDQ       | 10.8 | 10.8 | 110        | ug/Kg |
| 71-43-2    | Benzene                        | 10.8  | UD        | 8.2  | 10.8 | 110        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 79-01-6    | Trichloroethene                | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 10.8  | UD        | 5.6  | 10.8 | 110        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 54    | UD        | 54   | 54   | 540        | ug/Kg |
| 108-88-3   | Toluene                        | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 10.8  | UD        | 10.8 | 10.8 | 110        | ug/Kg |



Analytical Method:

SW8260

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-19(10-24)DL SDG No.: F2923 SOIL Lab Sample ID: F2923-01DL Matrix:

Sample Wt/Vol: 14.57 Units: g Final Vol: 5000 uL

% Moisture:

20.6

Soil Aliquot Vol: 100 uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013935.D 1 07/02/14 VR070214

|             |                             |       | · · · · · · · |          |      | , , ,      |         |  |
|-------------|-----------------------------|-------|---------------|----------|------|------------|---------|--|
| CAS Number  | Parameter                   | Conc. | Qualifier     | MDL      | LOD  | LOQ / CRQL | Units   |  |
| 10061-01-5  | cis-1,3-Dichloropropene     | 10.8  | UD            | 10.8     | 10.8 | 110        | ug/Kg   |  |
| 79-00-5     | 1,1,2-Trichloroethane       | 21.6  | UD            | 19.4     | 21.6 | 110        | ug/Kg   |  |
| 591-78-6    | 2-Hexanone                  | 54    | UD            | 54       | 54   | 540        | ug/Kg   |  |
| 124-48-1    | Dibromochloromethane        | 10.8  | UD            | 10.8     | 10.8 | 110        | ug/Kg   |  |
| 106-93-4    | 1,2-Dibromoethane           | 10.8  | UD            | 10.8     | 10.8 | 110        | ug/Kg   |  |
| 127-18-4    | Tetrachloroethene           | 130   | D             | 10.8     | 10.8 | 110        | ug/Kg   |  |
| 108-90-7    | Chlorobenzene               | 10.8  | UD            | 10.8     | 10.8 | 110        | ug/Kg   |  |
| 100-41-4    | Ethyl Benzene               | 10.8  | UDQ           | 10.8     | 10.8 | 110        | ug/Kg   |  |
| 179601-23-1 | m/p-Xylenes                 | 21.6  | UD            | 15.6     | 21.6 | 220        | ug/Kg   |  |
| 95-47-6     | o-Xylene                    | 10.8  | UD            | 10.8     | 10.8 | 110        | ug/Kg   |  |
| 100-42-5    | Styrene                     | 10.8  | UD            | 9.7      | 10.8 | 110        | ug/Kg   |  |
| 75-25-2     | Bromoform                   | 32.4  | UD            | 16       | 32.4 | 110        | ug/Kg   |  |
| 98-82-8     | Isopropylbenzene            | 10.8  | UDQ           | 10.4     | 10.8 | 110        | ug/Kg   |  |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 10.8  | UD            | 9.9      | 10.8 | 110        | ug/Kg   |  |
| 103-65-1    | n-propylbenzene             | 10.8  | UDQ           | 7.8      | 10.8 | 110        | ug/Kg   |  |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 10.8  | UDQ           | 9.7      | 10.8 | 110        | ug/Kg   |  |
| 98-06-6     | tert-Butylbenzene           | 10.8  | UDQ           | 10.8     | 10.8 | 110        | ug/Kg   |  |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 10.8  | UDQ           | 10.8     | 10.8 | 110        | ug/Kg   |  |
| 135-98-8    | sec-Butylbenzene            | 10.8  | UDQ           | 10.8     | 10.8 | 110        | ug/Kg   |  |
| 99-87-6     | p-Isopropyltoluene          | 10.8  | UDQ           | 6.3      | 10.8 | 110        | ug/Kg   |  |
| 541-73-1    | 1,3-Dichlorobenzene         | 10.8  | UD            | 8        | 10.8 | 110        | ug/Kg   |  |
| 106-46-7    | 1,4-Dichlorobenzene         | 10.8  | UD            | 8.9      | 10.8 | 110        | ug/Kg   |  |
| 104-51-8    | n-Butylbenzene              | 10.8  | UDQ           | 9.9      | 10.8 | 110        | ug/Kg   |  |
| 95-50-1     | 1,2-Dichlorobenzene         | 10.8  | UD            | 10.8     | 10.8 | 110        | ug/Kg   |  |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 110   | UD            | 18.8     | 110  | 110        | ug/Kg   |  |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 10.8  | UD            | 10.8     | 10.8 | 110        | ug/Kg   |  |
| 91-20-3     | Naphthalene                 | 10.8  | UD            | 9.7      | 10.8 | 110        | ug/Kg   |  |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 21.6  | UD            | 10.8     | 21.6 | 110        | ug/Kg   |  |
| 123-91-1    | 1,4-Dioxane                 | 2200  | UD            | 2200     | 2200 | 2200       | ug/Kg   |  |
| SURROGATES  |                             |       |               |          |      |            |         |  |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 56.1  |               | 56 - 120 |      | 112%       | SPK: 50 |  |
| 1868-53-7   | Dibromofluoromethane        | 48.1  |               | 57 - 135 | 5    | 96%        | SPK: 50 |  |
|             |                             |       |               |          |      |            |         |  |



File ID/Qc Batch:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Date Analyzed

Level:

Matrix:

06/25/14

06/27/14

F2923

SOIL

20.6

5000

**MED** 

Prep Batch ID

VOCMS Group1

uL

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-19(10-24)DL

Lab Sample ID: F2923-01DL

Analytical Method: SW8260

Sample Wt/Vol: 14.57 Units: g

Soil Aliquot Vol: 100 uL

GC Column: RXI-624 ID: 0.25

Dilution:

VR013935.D 1 07/02/14 VR070214

Prep Date

Conc. **MDL** Units **CAS Number Parameter** Qualifier LOD LOQ / CRQL 2037-26-5 Toluene-d8 56.2 67 - 123 112% SPK: 50 4-Bromofluorobenzene 57.9 33 - 141 116% 460-00-4 SPK: 50

INTERNAL STANDARDS Pentafluorobenzene 7.49 363-72-4 1125620 540-36-3 1,4-Difluorobenzene 2078280 8.43 3114-55-4 Chlorobenzene-d5 1966350 11.28 1.4-Dichlorobenzene-d4 13.22 3855-82-1 708817

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 10:45 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-14(6-18) F2923 Lab Sample ID: F2923-02 Matrix: SOIL

% Solid:

85.3

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQ | L Units | Prep Date | Date Ana.      | Ana Met. |  |
|---------------------|-------|------|----|-------|-------|-----------|---------|-----------|----------------|----------|--|
| Cyanide             | 0.136 | U    | 1  | 0.036 | 0.136 | 0.271     | mg/Kg   | 07/01/14  | 07/02/14 11:34 | 9012B    |  |
| Hexavalent Chromium | 0.092 | J    | 1  | 0.092 | 0.231 | 0.462     | mg/Kg   | 07/02/14  | 07/02/14 15:20 | 7196A    |  |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-14(6-18) SDG No.: F2923

Client Sample ID: GP-14(6-18) SDG No.: F2923
Lab Sample ID: F2923-02 Matrix: SOIL

Analytical Method: 8015B DRO % Moisture: 14.7 Decanted:

Sample Wt/Vol: 30.09 Units: g Final Vol: 1 mL
Soil Aliquot Vol: uL Test: Diesel Range Organics

Extraction Type: Injection Volume:

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID FC012025.D 5 07/01/14 07/03/14 PB77539

| CAS Number                   | Parameter       | Conc. Qu | alifier MDL | LOD  | LOQ / CR | QL Units |
|------------------------------|-----------------|----------|-------------|------|----------|----------|
| TARGETS<br>DRO               | DRO             | 26883    | 4870        | 4870 | 9740     | ug/kg    |
| <b>SURROGATES</b> 16416-32-3 | Tetracosane-d50 | 2.22     | 37 - 130    |      | 56%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: Client Sample ID: GP-14(6-18) F2923 Lab Sample ID: F2923-02 Matrix: **SOIL** 

Analytical Method: 8015B GRO % Moisture: 14.7 Decanted: Sample Wt/Vol: 5.01 Units: g Final Vol: 5 mL

Soil Aliquot Vol: uL Test: Gasoline Range Organics

Extraction Type: Injection Volume:

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
FB004526.D 1 07/08/14 FB070714

| CAS Number            | Parameter                          | Conc. | Qualifie | er MDL   | LOD  | LOQ / CF | RQL Units |
|-----------------------|------------------------------------|-------|----------|----------|------|----------|-----------|
| TARGETS<br>GRO        | GRO                                | 26.5  | U        | 14       | 26.5 | 53       | ug/kg     |
| SURROGATES<br>98-08-8 | Alpha Alpha Alpha-Trifluorotoluene | 15.7  |          | 50 - 150 | )    | 79%      | SPK· 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: Client Sample ID: GP-14(6-18) F2923 Lab Sample ID: F2923-02 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 14.7 Decanted: Sample Wt/Vol: 30.03 Units: Final Vol: 10000 иL g

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010334.D 1 07/01/14 07/03/14 PB77541

| CAS Number | Parameter         | Conc. | Qualific | er MDL   | LOD  | LOQ / CRQL Units |          |
|------------|-------------------|-------|----------|----------|------|------------------|----------|
| TARGETS    |                   |       |          |          |      |                  |          |
| 1918-00-9  | DICAMBA           | 19.5  | U        | 15.5     | 19.5 | 78.5             | ug/Kg    |
| 120-36-5   | DICHLORPROP       | 19.5  | U        | 14.5     | 19.5 | 78.5             | ug/Kg    |
| 94-75-7    | 2,4-D             | 19.5  | U        | 19.5     | 19.5 | 78.5             | ug/Kg    |
| 93-72-1    | 2,4,5-TP (Silvex) | 19.5  | U        | 12.8     | 19.5 | 78.5             | ug/Kg    |
| 93-76-5    | 2,4,5-T           | 19.5  | U        | 12       | 19.5 | 78.5             | ug/Kg    |
| 94-82-6    | 2,4-DB            | 19.5  | U        | 19.5     | 19.5 | 78.5             | ug/Kg    |
| 88-85-7    | DINOSEB           | 19.5  | U        | 19.5     | 19.5 | 78.5             | ug/Kg    |
| SURROGATES |                   |       |          |          |      |                  |          |
| 19719-28-9 | 2,4-DCAA          | 404   |          | 12 - 189 | 9    | 81%              | SPK: 500 |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



#### **Report of Analysis**

Matrix:

SOIL

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: GP-14(6-18) F2923

Lab Sample ID: % Solid: 85.3 Level (low/med): low

F2923-02

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CF | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1     | JN   | 1  | 0.554 | 1.24  | 2.47     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-38-2 | Arsenic   | 3.61  |      | 1  | 0.326 | 0.495 | 0.989    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-39-3 | Barium    | 68.6  |      | 1  | 0.396 | 2.47  | 4.95     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-41-7 | Beryllium | 1.63  |      | 1  | 0.059 | 0.148 | 0.297    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.179 | J    | 1  | 0.059 | 0.148 | 0.297    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-47-3 | Chromium  | 21.1  |      | 1  | 0.129 | 0.247 | 0.495    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-48-4 | Cobalt    | 75.1  |      | 1  | 0.564 | 0.742 | 1.48     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-50-8 | Copper    | 61.1  |      | 1  | 0.317 | 0.495 | 0.989    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-92-1 | Lead      | 11.4  | N    | 1  | 0.119 | 0.297 | 0.594    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-96-5 | Manganese | 1580  |      | 1  | 0.188 | 0.495 | 0.989    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.01  | J    | 1  | 0.006 | 0.006 | 0.011    | mg/Kg 07/01/14      | 07/03/14  | SW7471A  |
| 7440-02-0 | Nickel    | 73.3  |      | 1  | 0.455 | 0.989 | 1.98     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7782-49-2 | Selenium  | 2.03  |      | 1  | 0.406 | 0.495 | 0.989    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-22-4 | Silver    | 2.12  |      | 1  | 0.148 | 0.247 | 0.495    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.989 | U    | 1  | 0.267 | 0.989 | 1.98     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-62-2 | Vanadium  | 33.5  |      | 1  | 0.584 | 0.989 | 1.98     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-66-6 | Zinc      | 104   |      | 1  | 0.693 | 0.989 | 1.98     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: Client Sample ID: GP-14(6-18) F2923 Lab Sample ID: F2923-02 Matrix: SOIL % Moisture: Analytical Method: SW8082A 14.7 Decanted: Sample Wt/Vol: 30.01 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PP003691.D 1 07/01/14 07/02/14 PB77542

| CAS Number | Parameter            | Conc. | Qualifie | r MDL    | LOD | LOQ / CRQL Units |         |
|------------|----------------------|-------|----------|----------|-----|------------------|---------|
| TARGETS    |                      |       |          |          |     |                  |         |
| 12674-11-2 | Aroclor-1016         | 3.9   | U        | 3.9      | 3.9 | 19.9             | ug/kg   |
| 11104-28-2 | Aroclor-1221         | 3.9   | U        | 3.9      | 3.9 | 19.9             | ug/kg   |
| 11141-16-5 | Aroclor-1232         | 3.9   | U        | 3.9      | 3.9 | 19.9             | ug/kg   |
| 53469-21-9 | Aroclor-1242         | 3.9   | U        | 3.9      | 3.9 | 19.9             | ug/kg   |
| 12672-29-6 | Aroclor-1248         | 3.9   | U        | 3.9      | 3.9 | 19.9             | ug/kg   |
| 11097-69-1 | Aroclor-1254         | 3.9   | U        | 1.7      | 3.9 | 19.9             | ug/kg   |
| 11096-82-5 | Aroclor-1260         | 3.9   | U        | 3.9      | 3.9 | 19.9             | ug/kg   |
| SURROGATES |                      |       |          |          |     |                  |         |
| 877-09-8   | Tetrachloro-m-xylene | 16.5  |          | 10 - 160 | 5   | 82%              | SPK: 20 |
| 2051-24-3  | Decachlorobiphenyl   | 16.7  |          | 60 - 12: | 5   | 84%              | SPK: 20 |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

 Client Sample ID:
 GP-14(6-18)
 SDG No.:
 F2923

 Lab Sample ID:
 F2923-02
 Matrix:
 SOIL

Analytical Method: SW8081 % Moisture: 14.7 Decanted:

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD023228.D 1 07/01/14 07/02/14 PB77543

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CRQL Units |         |  |
|------------|----------------------|-------|-----------|----------|-------|------------------|---------|--|
| TARGETS    |                      |       |           |          |       |                  |         |  |
| 319-84-6   | alpha-BHC            | 0.386 | U         | 0.152    | 0.386 | 2                | ug/kg   |  |
| 319-85-7   | beta-BHC             | 0.386 | U         | 0.211    | 0.386 | 2                | ug/kg   |  |
| 319-86-8   | delta-BHC            | 0.386 | U         | 0.117    | 0.386 | 2                | ug/kg   |  |
| 58-89-9    | gamma-BHC (Lindane)  | 0.386 | U         | 0.176    | 0.386 | 2                | ug/kg   |  |
| 76-44-8    | Heptachlor           | 0.386 | U         | 0.164    | 0.386 | 2                | ug/kg   |  |
| 309-00-2   | Aldrin               | 0.386 | U         | 0.117    | 0.386 | 2                | ug/kg   |  |
| 1024-57-3  | Heptachlor epoxide   | 0.386 | U         | 0.187    | 0.386 | 2                | ug/kg   |  |
| 959-98-8   | Endosulfan I         | 0.386 | U         | 0.176    | 0.386 | 2                | ug/kg   |  |
| 60-57-1    | Dieldrin             | 0.386 | U         | 0.152    | 0.386 | 2                | ug/kg   |  |
| 72-55-9    | 4,4-DDE              | 0.386 | U         | 0.234    | 0.386 | 2                | ug/kg   |  |
| 72-20-8    | Endrin               | 0.386 | U         | 0.211    | 0.386 | 2                | ug/kg   |  |
| 33213-65-9 | Endosulfan II        | 0.386 | U         | 0.164    | 0.386 | 2                | ug/kg   |  |
| 72-54-8    | 4,4-DDD              | 0.386 | U         | 0.199    | 0.386 | 2                | ug/kg   |  |
| 1031-07-8  | Endosulfan Sulfate   | 0.386 | U         | 0.176    | 0.386 | 2                | ug/kg   |  |
| 50-29-3    | 4,4-DDT              | 0.386 | U         | 0.164    | 0.386 | 2                | ug/kg   |  |
| 72-43-5    | Methoxychlor         | 0.386 | U         | 0.199    | 0.386 | 2                | ug/kg   |  |
| 53494-70-5 | Endrin ketone        | 0.386 | U         | 0.152    | 0.386 | 2                | ug/kg   |  |
| 7421-93-4  | Endrin aldehyde      | 0.386 | U         | 0.176    | 0.386 | 2                | ug/kg   |  |
| 5103-71-9  | alpha-Chlordane      | 0.386 | U         | 0.164    | 0.386 | 2                | ug/kg   |  |
| 5103-74-2  | gamma-Chlordane      | 0.386 | U         | 0.152    | 0.386 | 2                | ug/kg   |  |
| 8001-35-2  | Toxaphene            | 3.9   | U         | 3.9      | 3.9   | 19.9             | ug/kg   |  |
| SURROGATES |                      |       |           |          |       |                  |         |  |
| 2051-24-3  | Decachlorobiphenyl   | 16.8  |           | 10 - 169 |       | 84%              | SPK: 20 |  |
| 877-09-8   | Tetrachloro-m-xylene | 17    |           | 31 - 151 |       | 85%              | SPK: 20 |  |



Analytical Method:

### **Report of Analysis**

Client: Dvirka & Bartilucci

Date Collected:

Project: NYCSCA Unionport Road Bronx Date Received:

SDG No.: Client Sample ID: GP-14(6-18) F2923 Lab Sample ID: F2923-02 Matrix: **SOIL** 

% Moisture:

Sample Wt/Vol: 30.05 Units: Final Vol: 10000 иL g

Test: Pesticide-TCL Soil Aliquot Vol: иL

Extraction Type: Injection Volume:

1.0 PH: GPC Factor:

SW8081

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

1 07/01/14 07/02/14 PD023228.D PB77543

**CAS Number** Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

06/25/14

06/27/14

14.7

Decanted:



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-14(6-18) SDG No.: F2923
Lab Sample ID: F2923-02 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 14.7

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072251.D 1 07/01/14 07/02/14 PB77544

| 1                           | 07/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10//311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LOQ / CRQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzaldehyde                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Phenol                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| bis(2-Chloroethyl)ether     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2-Chlorophenol              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2-Methylphenol              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2,2-oxybis(1-Chloropropane) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Acetophenone                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3+4-Methylphenols           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| n-Nitroso-di-n-propylamine  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hexachloroethane            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nitrobenzene                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Isophorone                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2-Nitrophenol               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2,4-Dimethylphenol          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| bis(2-Chloroethoxy)methane  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2,4-Dichlorophenol          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Naphthalene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4-Chloroaniline             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hexachlorobutadiene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Caprolactam                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4-Chloro-3-methylphenol     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2-Methylnaphthalene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hexachlorocyclopentadiene   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2,4,6-Trichlorophenol       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2,4,5-Trichlorophenol       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1,1-Biphenyl                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2-Chloronaphthalene         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2-Nitroaniline              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dimethylphthalate           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Acenaphthylene              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2,6-Dinitrotoluene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | Benzaldehyde Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 2-Methylphenol 2,2-oxybis(1-Chloropropane) Acetophenone 3+4-Methylphenols n-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol Naphthalene 4-Chloroaniline Hexachlorobutadiene Caprolactam 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorophenol 2,4,5-Trichlorophenol 1,1-Biphenyl 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene | Benzaldehyde Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 2-Methylphenol 2,2-oxybis(1-Chloropropane) Acetophenone 3+4-Methylphenols n-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol Naphthalene 4-Chloroaniline Hexachlorobutadiene Caprolactam 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 1,1-Biphenyl 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene | Benzaldehyde 39.1 Phenol 39.1 bis(2-Chloroethyl)ether 39.1 2-Chlorophenol 39.1 2-Methylphenol 39.1 Acetophenone 39.1 Acetophenone 39.1 3+4-Methylphenols 39.1 n-Nitroso-di-n-propylamine 39.1 Hexachloroethane 39.1 Sophorone 39.1 2-Nitrophenol 39.1 2,4-Dimethylphenol 39.1 bis(2-Chloroethoxy)methane 39.1 Naphthalene 39.1 Naphthalene 39.1 A-Chloroaniline 39.1 Hexachlorobutadiene 39.1 Caprolactam 78.1 4-Chloro-3-methylphenol 39.1 2-Methylnaphthalene 39.1 4-Chloro-3-methylphenol 39.1 2-Methylnaphthalene 39.1 4-Chloro-3-methylphenol 39.1 2-Methylnaphthalene 39.1 2-Nitroaniline 39.1 2-Chloronaphthalene 39.1 2-Nitroaniline 39.1 Dimethylphthalate 760 Acenaphthylene 39.1 | Parameter         Conc.         Qualifier           Benzaldehyde Phenol bis(2-Chloroethyl)ether 39.1 U         39.1 U           2-Chlorophenol 39.1 U         39.1 U           2-Methylphenol 39.1 U         39.1 U           2,2-oxybis(1-Chloropropane) 39.1 U         39.1 U           Acetophenone 39.1 U         39.1 U           3+4-Methylphenols 39.1 U         39.1 U           n-Nitroso-di-n-propylamine 39.1 U         39.1 U           Hexachloroethane 39.1 U         39.1 U           Nitrobenzene 39.1 U         39.1 U           Isophorone 39.1 U         39.1 U           2,4-Dimethylphenol 39.1 U         39.1 U           bis(2-Chloroethoxy)methane 39.1 U         39.1 U           2,4-Dichlorophenol 39.1 U         U           Naphthalene 39.1 U         U           4-Chloroaniline 39.1 U         U           Hexachlorobutadiene 39.1 U         U           Caprolactam 78.1 U         U           4-Chloro-3-methylphenol 39.1 U         U           2-Methylnaphthalene 39.1 U         U           2-Methylnaphthalene 39.1 U         U           2-A,5-Trichlorophenol 39.1 U         U           2,4,5-Trichlorophenol 39.1 U         U           2,4,5-Trichlorophenol 39.1 U         U <t< td=""><td>Parameter         Conc.         Qualifier         MDL           Benzaldehyde         39.1         U         20.4           Phenol         39.1         U         9           bis(2-Chloroethyl)ether         39.1         U         18.8           2-Chlorophenol         39.1         U         20.6           2-Methylphenol         39.1         U         21.2           2,2-oxybis(1-Chloropropane)         39.1         U         12.2           2,2-oxybis(1-Chloropropane)         39.1         U         12.2           Acetophenone         39.1         U         12.3           A-t-Methylphenols         39.1         U         12.3           n-Nitroso-di-n-propylamine         39.1         U         19.7           Hexachloroethane         39.1         U         17.5           Nitrobenzene         39.1         U         17.5           Nitrobenzene         39.1         U         12.9           2-Nitrophenol         39.1         U         12.9           2-Nitrophenol         39.1         U         14.8           2,4-Dichlorophenol         39.1         U         14.9           Naphthalene         39.1</td><td>  Benzaldehyde   39.1   U   20.4   39.1     Phenol   39.1   U   9   39.1     bis(2-Chloroethyl)ether   39.1   U   20.6   39.1     2-Chlorophenol   39.1   U   20.6   39.1     2-Methylphenol   39.1   U   21.2   39.1     2,2-oxybis(1-Chloropropane)   39.1   U   16.2   39.1     Acetophenone   39.1   U   20.3   39.1     3+4-Methylphenols   39.1   U   20.3   39.1     n-Nitroso-di-n-propylamine   39.1   U   19.7   39.1     Hexachloroethane   39.1   U   17.5   39.1     Nitrobenzene   39.1   U   12.9   39.1     Isophorone   39.1   U   12.9   39.1     Isophorone   39.1   U   12.9   39.1     2-Nitrophenol   39.1   U   12.9   39.1     2,4-Dimethylphenol   39.1   U   22.1   39.1     bis(2-Chloroethoxy)methane   39.1   U   22.5   39.1     2,4-Dichlorophenol   39.1   U   22.5   39.1     2,4-Dichlorophenol   39.1   U   14.9   39.1     4-Chloroaniline   39.1   U   27.5   39.1     Hexachlorobutadiene   39.1   U   17.3   39.1     Caprolactam   78.1   U   18.2   78.1     4-Chloro-3-methylphenol   39.1   U   17.3   39.1     2-Methylnaphthalene   39.1   U   9.8   39.1     2-Methylnaphthalene   39.1   U   17.3     39.1   U   17.3   39.1     2-Methylnaphthalene   39.1   U   17.3     39.1   U   17.3   39.1     2-Methylnaphthalene   39.1   U   17.3     39.1   U   17.3   39.1     39.1   U   17.3   39.1     2-Methylnaphthalene   39.1   U   17.3     39.1   U   17.3  </td><td>  Benzaldehyde   39.1   U   20.4   39.1   390     Phenol   39.1   U   20.6   39.1   390     bis(2-Chloroethyl)ether   39.1   U   20.6   39.1   390     2-Chlorophenol   39.1   U   20.6   39.1   390     2-Methylphenol   39.1   U   21.2   39.1   390     2-2-oxybis(1-Chloropropane)   39.1   U   16.2   39.1   390     2-2-oxybis(1-Chloropropane)   39.1   U   16.2   39.1   390     3-4-Methylphenols   39.1   U   12   39.1   390     3-4-Methylphenols   39.1   U   17.5   39.1   390     3-4-Methylphenols   39.1   U   19.7   39.1   390     n-Nitroso-di-n-propylamine   39.1   U   19.7   39.1   390     n-Nitroso-di-n-propylamine   39.1   U   17.5   39.1   390     Nitrobenzene   39.1   U   17.5   39.1   390     Sophorone   39.1   U   12.9   39.1   390     Sophorone   39.1   U   12.9   39.1   390     2-Nitrophenol   39.1   U   12.9   39.1   390     2-Nitrophenol   39.1   U   12.9   39.1   390     2-A-Dichlorophenol   39.1   U   22.1   39.1   390     bis(2-Chloroethoxy)methane   39.1   U   22.5   39.1   390     2-A-Dichlorophenol   39.1   U   14.9   39.1   390     A-Chloro-3-methylphenol   39.1   U   14.2   39.1   390     A-Chloro-3-methylphenol   39.1   U   17.3   39.1   390     A-Chloro-3-methylphenol   39.1   U   17.3   39.1   390     A-Chloro-4-methylphenol   39.1   U   17.3   39.1   390     A-Chloro-4-methylphenol   39.1   U   17.3   39.1   390     A-Chloro-5-methylphenol   39.1   U   17.3   39.1   390     A-Chloro-5-methylphenol   39.1   U   17.3   39.1   390     A-Chloro-6-methylphenol   39.1   U   17.3   39.1   390     A-Chloronaphthalene   39.1   U   17.3   39.1   390     A-Chlorohylphenol   39.1   U   17.3   39.1   390     A-Chlorohylphenol   39.1   U   17.3   39.1   390     A-Chlor</td></t<> | Parameter         Conc.         Qualifier         MDL           Benzaldehyde         39.1         U         20.4           Phenol         39.1         U         9           bis(2-Chloroethyl)ether         39.1         U         18.8           2-Chlorophenol         39.1         U         20.6           2-Methylphenol         39.1         U         21.2           2,2-oxybis(1-Chloropropane)         39.1         U         12.2           2,2-oxybis(1-Chloropropane)         39.1         U         12.2           Acetophenone         39.1         U         12.3           A-t-Methylphenols         39.1         U         12.3           n-Nitroso-di-n-propylamine         39.1         U         19.7           Hexachloroethane         39.1         U         17.5           Nitrobenzene         39.1         U         17.5           Nitrobenzene         39.1         U         12.9           2-Nitrophenol         39.1         U         12.9           2-Nitrophenol         39.1         U         14.8           2,4-Dichlorophenol         39.1         U         14.9           Naphthalene         39.1 | Benzaldehyde   39.1   U   20.4   39.1     Phenol   39.1   U   9   39.1     bis(2-Chloroethyl)ether   39.1   U   20.6   39.1     2-Chlorophenol   39.1   U   20.6   39.1     2-Methylphenol   39.1   U   21.2   39.1     2,2-oxybis(1-Chloropropane)   39.1   U   16.2   39.1     Acetophenone   39.1   U   20.3   39.1     3+4-Methylphenols   39.1   U   20.3   39.1     n-Nitroso-di-n-propylamine   39.1   U   19.7   39.1     Hexachloroethane   39.1   U   17.5   39.1     Nitrobenzene   39.1   U   12.9   39.1     Isophorone   39.1   U   12.9   39.1     Isophorone   39.1   U   12.9   39.1     2-Nitrophenol   39.1   U   12.9   39.1     2,4-Dimethylphenol   39.1   U   22.1   39.1     bis(2-Chloroethoxy)methane   39.1   U   22.5   39.1     2,4-Dichlorophenol   39.1   U   22.5   39.1     2,4-Dichlorophenol   39.1   U   14.9   39.1     4-Chloroaniline   39.1   U   27.5   39.1     Hexachlorobutadiene   39.1   U   17.3   39.1     Caprolactam   78.1   U   18.2   78.1     4-Chloro-3-methylphenol   39.1   U   17.3   39.1     2-Methylnaphthalene   39.1   U   9.8   39.1     2-Methylnaphthalene   39.1   U   17.3     39.1   U   17.3   39.1     2-Methylnaphthalene   39.1   U   17.3     39.1   U   17.3   39.1     2-Methylnaphthalene   39.1   U   17.3     39.1   U   17.3   39.1     39.1   U   17.3   39.1     2-Methylnaphthalene   39.1   U   17.3     39.1   U   17.3 | Benzaldehyde   39.1   U   20.4   39.1   390     Phenol   39.1   U   20.6   39.1   390     bis(2-Chloroethyl)ether   39.1   U   20.6   39.1   390     2-Chlorophenol   39.1   U   20.6   39.1   390     2-Methylphenol   39.1   U   21.2   39.1   390     2-2-oxybis(1-Chloropropane)   39.1   U   16.2   39.1   390     2-2-oxybis(1-Chloropropane)   39.1   U   16.2   39.1   390     3-4-Methylphenols   39.1   U   12   39.1   390     3-4-Methylphenols   39.1   U   17.5   39.1   390     3-4-Methylphenols   39.1   U   19.7   39.1   390     n-Nitroso-di-n-propylamine   39.1   U   19.7   39.1   390     n-Nitroso-di-n-propylamine   39.1   U   17.5   39.1   390     Nitrobenzene   39.1   U   17.5   39.1   390     Sophorone   39.1   U   12.9   39.1   390     Sophorone   39.1   U   12.9   39.1   390     2-Nitrophenol   39.1   U   12.9   39.1   390     2-Nitrophenol   39.1   U   12.9   39.1   390     2-A-Dichlorophenol   39.1   U   22.1   39.1   390     bis(2-Chloroethoxy)methane   39.1   U   22.5   39.1   390     2-A-Dichlorophenol   39.1   U   14.9   39.1   390     A-Chloro-3-methylphenol   39.1   U   14.2   39.1   390     A-Chloro-3-methylphenol   39.1   U   17.3   39.1   390     A-Chloro-3-methylphenol   39.1   U   17.3   39.1   390     A-Chloro-4-methylphenol   39.1   U   17.3   39.1   390     A-Chloro-4-methylphenol   39.1   U   17.3   39.1   390     A-Chloro-5-methylphenol   39.1   U   17.3   39.1   390     A-Chloro-5-methylphenol   39.1   U   17.3   39.1   390     A-Chloro-6-methylphenol   39.1   U   17.3   39.1   390     A-Chloronaphthalene   39.1   U   17.3   39.1   390     A-Chlorohylphenol   39.1   U   17.3   39.1   390     A-Chlorohylphenol   39.1   U   17.3   39.1   390     A-Chlor |



Client: Dvirka & Bartilucci Date Collected: 06/25/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-14(6-18) SDG No.: F2923
Lab Sample ID: F2923-02 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 14.7
Sample Wt/Vol: 30.01 Units: g Final Vol: 1000

Soil Aliquot Vol: uL Test: SVOCMS Group1

uL

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072251.D 1 07/01/14 07/02/14 PB77544

| BF072251.D | 1                          | 07/01/14 | 07.       | /02/14 |      | PB77544    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 78.1     | U         | 25.1   | 78.1 | 390        | ug/Kg |
| 83-32-9    | Acenaphthene               | 39.1     | U         | 11     | 39.1 | 390        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 310      | U         | 39.7   | 310  | 390        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 200      | U         | 72.5   | 200  | 390        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 39.1     | U         | 15.2   | 39.1 | 390        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 39.1     | U         | 11.7   | 39.1 | 390        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 39.1     | U         | 6.1    | 39.1 | 390        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 39.1     | U         | 21.2   | 39.1 | 390        | ug/Kg |
| 86-73-7    | Fluorene                   | 84.1     | J         | 14.8   | 39.1 | 390        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 78.1     | U         | 50.9   | 78.1 | 390        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 200      | U         | 22.4   | 200  | 390        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 39.1     | U         | 9.4    | 39.1 | 390        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 39.1     | U         | 7.6    | 39.1 | 390        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 39.1     | U         | 15.9   | 39.1 | 390        | ug/Kg |
| 1912-24-9  | Atrazine                   | 39.1     | U         | 20.6   | 39.1 | 390        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 39.1     | U         | 26.7   | 39.1 | 390        | ug/Kg |
| 85-01-8    | Phenanthrene               | 39.1     | U         | 10.5   | 39.1 | 390        | ug/Kg |
| 120-12-7   | Anthracene                 | 39.1     | U         | 8      | 39.1 | 390        | ug/Kg |
| 86-74-8    | Carbazole                  | 39.1     | U         | 8.6    | 39.1 | 390        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 39.1     | U         | 30.7   | 39.1 | 390        | ug/Kg |
| 206-44-0   | Fluoranthene               | 39.1     | U         | 7.9    | 39.1 | 390        | ug/Kg |
| 129-00-0   | Pyrene                     | 280      | J         | 9.4    | 39.1 | 390        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 39.1     | U         | 18.8   | 39.1 | 390        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 39.1     | U         | 25.1   | 39.1 | 390        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 39.1     | U         | 18.6   | 39.1 | 390        | ug/Kg |
| 218-01-9   | Chrysene                   | 39.1     | U         | 17.7   | 39.1 | 390        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 960      |           | 13.8   | 39.1 | 390        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 39.1     | U         | 4.5    | 39.1 | 390        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 39.1     | U         | 12.8   | 39.1 | 390        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 39.1     | U         | 18.4   | 39.1 | 390        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 39.1     | U         | 8.4    | 39.1 | 390        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 39.1     | U         | 13     | 39.1 | 390        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 39.1     | U         | 11.3   | 39.1 | 390        | ug/Kg |



30.01

Units:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: F2923 GP-14(6-18) Lab Sample ID: F2923-02 Matrix: SOIL Analytical Method: SW8270 % Moisture: 14.7

Sample Wt/Vol: g Soil Aliquot Vol: uL Test: SVOCMS Group1

Final Vol:

1000

uL

Extraction Type: Level: Decanted: N LOW

GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF072251.D 07/01/14 07/02/14 PB77544

| BF072251.D   | 1                                | 07/01/14 |        | 07/       | 02/14    |      | PB77544    |          |
|--------------|----------------------------------|----------|--------|-----------|----------|------|------------|----------|
| CAS Number   | Parameter                        |          | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |
| 191-24-2     | Benzo(g,h,i)perylene             |          | 39.1   | U         | 15.8     | 39.1 | 390        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       |          | 39.1   | U         | 15.4     | 39.1 | 390        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        |          | 39.1   | U         | 15.4     | 39.1 | 390        | ug/Kg    |
| SURROGATES   |                                  |          |        |           |          |      |            |          |
| 367-12-4     | 2-Fluorophenol                   |          | 120    |           | 28 - 127 |      | 81%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        |          | 120    |           | 34 - 127 |      | 80%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  |          | 73.3   |           | 31 - 132 |      | 73%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 |          | 63.6   |           | 39 - 123 |      | 64%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             |          | 110    |           | 30 - 133 |      | 72%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    |          | 56.3   |           | 37 - 115 |      | 56%        | SPK: 100 |
| INTERNAL STA | ANDARDS                          |          |        |           |          |      |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           |          | 43368  | 7.17      |          |      |            |          |
| 1146-65-2    | Naphthalene-d8                   |          | 193411 | 8.74      |          |      |            |          |
| 15067-26-2   | Acenaphthene-d10                 |          | 107362 | 10.9      |          |      |            |          |
| 1517-22-2    | Phenanthrene-d10                 |          | 188648 | 12.75     |          |      |            |          |
| 1719-03-5    | Chrysene-d12                     |          | 224723 | 16.01     |          |      |            |          |
| 1520-96-3    | Perylene-d12                     |          | 211232 | 17.69     |          |      |            |          |
| TENTATIVE ID | DENTIFIED COMPOUNDS              |          |        |           |          |      |            |          |
|              | unknown1.37                      |          | 14700  | J         |          |      | 1.37       | ug/Kg    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      |          | 970    | J         |          |      | 1.64       | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- | _        | 550    | AB        |          |      | 4.88       | ug/Kg    |
|              | unknown6.87                      |          | 3600   | JB        |          |      | 6.87       | ug/Kg    |
| 000829-26-5  | Naphthalene, 2,3,6-trimethyl-    |          | 280    | J         |          |      | 11.32      | ug/Kg    |
| 000529-05-5  | Azulene, 7-ethyl-1,4-dimethyl-   |          | 310    | J         |          |      | 12.28      | ug/Kg    |
| 002523-39-9  | 9H-Fluorene, 3-methyl-           |          | 280    | J         |          |      | 12.3       | ug/Kg    |
| 004612-63-9  | 9H-Fluorene, 2,3-dimethyl-       |          | 320    | J         |          |      | 12.89      | ug/Kg    |
| 001468-95-7  | 9-Anthracenemethanol             |          | 380    | J         |          |      | 13.41      | ug/Kg    |
| 000057-10-3  | n-Hexadecanoic acid              |          | 460    | J         |          |      | 13.49      | ug/Kg    |
| 001576-67-6  | Phenanthrene, 3,6-dimethyl-      |          | 330    | J         |          |      | 13.93      | ug/Kg    |
| 003674-66-6  | Phenanthrene, 2,5-dimethyl-      |          | 550    | J         |          |      | 14.06      | ug/Kg    |
| 010544-50-0  | Cyclic octaatomic sulfur         |          | 690    | J         |          |      | 14.3       | ug/Kg    |
| 003674-73-5  | Phenanthrene, 2,3,5-trimethyl-   |          | 340    | J         |          |      | 14.46      | ug/Kg    |



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-14(6-18) F2923 Lab Sample ID: F2923-02 Matrix: SOIL % Moisture: 14.7 Analytical Method: SW8270 Sample Wt/Vol: 30.01 Units: Final Vol: 1000 uL g Test: Soil Aliquot Vol: uL SVOCMS Group1 Extraction Type: Decanted: N Level: LOW GPC Factor: Injection Volume: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072251.D 1 07/01/14 07/02/14 PB77544

| CAS Number  | Parameter    | Conc. | Qualifier | MDL | LOD | LOQ / CRQL | Units |  |
|-------------|--------------|-------|-----------|-----|-----|------------|-------|--|
| 001599-67-3 | 1-Docosene   | 330   | J         |     |     | 15.92      | ug/Kg |  |
|             | unknown16.92 | 1100  | J         |     |     | 16.92      | ug/Kg |  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-14(6-18) SDG No.: F2923 Lab Sample ID: F2923-02 Matrix: SOIL Analytical Method: SW8260 % Moisture: 14.7 Sample Wt/Vol: 17.75 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042199.D 1 06/30/14 VF063014

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.33  | U         | 0.33 | 0.33 | 1.7        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 67-64-1    | Acetone                        | 22.6  |           | 0.83 | 0.83 | 8.3        | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.84  | J         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.33  | U         | 0.33 | 0.33 | 1.7        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 1.8   | Q         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 2.5   | U         | 1    | 2.5  | 8.3        | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 71-43-2    | Benzene                        | 0.17  | U         | 0.13 | 0.17 | 1.7        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.17  | U         | 0.09 | 0.17 | 1.7        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 0.83  | U         | 0.83 | 0.83 | 8.3        | ug/Kg |
| 108-88-3   | Toluene                        | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.17  | U         | 0.17 | 0.17 | 1.7        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-14(6-18) SDG No.: F2923 Lab Sample ID: F2923-02 Matrix: SOIL Analytical Method: SW8260 % Moisture: 14.7 Sample Wt/Vol: 17.75 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042199.D 1 06/30/14 VF063014

| V1 042177.D | 1                           |       | 00/30/    | 17       |      | V1 003014  |         |  |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|--|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |  |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.17  | U         | 0.17     | 0.17 | 1.7        | ug/Kg   |  |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.33  | U         | 0.3      | 0.33 | 1.7        | ug/Kg   |  |
| 591-78-6    | 2-Hexanone                  | 0.83  | U         | 0.83     | 0.83 | 8.3        | ug/Kg   |  |
| 124-48-1    | Dibromochloromethane        | 0.17  | U         | 0.17     | 0.17 | 1.7        | ug/Kg   |  |
| 106-93-4    | 1,2-Dibromoethane           | 0.17  | U         | 0.17     | 0.17 | 1.7        | ug/Kg   |  |
| 127-18-4    | Tetrachloroethene           | 1.3   | J         | 0.17     | 0.17 | 1.7        | ug/Kg   |  |
| 108-90-7    | Chlorobenzene               | 0.17  | U         | 0.17     | 0.17 | 1.7        | ug/Kg   |  |
| 100-41-4    | Ethyl Benzene               | 0.17  | U         | 0.17     | 0.17 | 1.7        | ug/Kg   |  |
| 179601-23-1 | m/p-Xylenes                 | 0.33  | U         | 0.24     | 0.33 | 3.3        | ug/Kg   |  |
| 95-47-6     | o-Xylene                    | 0.17  | U         | 0.17     | 0.17 | 1.7        | ug/Kg   |  |
| 100-42-5    | Styrene                     | 0.17  | U         | 0.15     | 0.17 | 1.7        | ug/Kg   |  |
| 75-25-2     | Bromoform                   | 0.5   | U         | 0.24     | 0.5  | 1.7        | ug/Kg   |  |
| 98-82-8     | Isopropylbenzene            | 0.17  | U         | 0.16     | 0.17 | 1.7        | ug/Kg   |  |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.17  | U         | 0.15     | 0.17 | 1.7        | ug/Kg   |  |
| 103-65-1    | n-propylbenzene             | 0.17  | U         | 0.12     | 0.17 | 1.7        | ug/Kg   |  |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.17  | U         | 0.15     | 0.17 | 1.7        | ug/Kg   |  |
| 98-06-6     | tert-Butylbenzene           | 0.17  | U         | 0.17     | 0.17 | 1.7        | ug/Kg   |  |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.17  | U         | 0.17     | 0.17 | 1.7        | ug/Kg   |  |
| 135-98-8    | sec-Butylbenzene            | 0.17  | U         | 0.17     | 0.17 | 1.7        | ug/Kg   |  |
| 99-87-6     | p-Isopropyltoluene          | 0.17  | UQ        | 0.1      | 0.17 | 1.7        | ug/Kg   |  |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.17  | U         | 0.12     | 0.17 | 1.7        | ug/Kg   |  |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.17  | U         | 0.14     | 0.17 | 1.7        | ug/Kg   |  |
| 104-51-8    | n-Butylbenzene              | 0.17  | UQ        | 0.15     | 0.17 | 1.7        | ug/Kg   |  |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.17  | UQ        | 0.17     | 0.17 | 1.7        | ug/Kg   |  |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 1.7   | U         | 0.29     | 1.7  | 1.7        | ug/Kg   |  |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.17  | UQ        | 0.17     | 0.17 | 1.7        | ug/Kg   |  |
| 91-20-3     | Naphthalene                 | 0.17  | UQ        | 0.15     | 0.17 | 1.7        | ug/Kg   |  |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.33  | UQ        | 0.17     | 0.33 | 1.7        | ug/Kg   |  |
| 123-91-1    | 1,4-Dioxane                 | 33    | U         | 33       | 33   | 33         | ug/Kg   |  |
| SURROGATES  |                             |       |           |          |      |            |         |  |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 43.3  |           | 56 - 120 |      | 87%        | SPK: 50 |  |
| 1868-53-7   | Dibromofluoromethane        | 43.9  |           | 57 - 135 | 5    | 88%        | SPK: 50 |  |
|             |                             |       |           |          |      |            |         |  |

GC Column:

RTX-VMS

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: Client Sample ID: F2923 GP-14(6-18) Matrix: SOIL Lab Sample ID: F2923-02 Analytical Method: SW8260 % Moisture: 14.7 Sample Wt/Vol: 17.75 Units: Final Vol: 5000 uL g Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042199.D 1 06/30/14 VF063014

ID: 0.18

**MDL CAS Number** Parameter Conc. Qualifier LOD LOQ / CRQL Units 2037-26-5 Toluene-d8 38 67 - 123 76% SPK: 50 4-Bromofluorobenzene 33 - 141 71% 460-00-4 35.4 SPK: 50 INTERNAL STANDARDS 127700 4.83 363-72-4 Pentafluorobenzene 1,4-Difluorobenzene 194233 5.56 540-36-3 3114-55-4 Chlorobenzene-d5 121578 9.73 1.4-Dichlorobenzene-d4 30034 12.52 3855-82-1 TENTATIVE IDENTIFIED COMPOUNDS 017301-30-3 Undecane, 3,8-dimethyl-22.2 J 12.26 ug/Kg 29.9 J 024145-88-8 1,4-Dimethyladamantane, [1.alpha., 13.31 ug/Kg J 017312-55-9 Decane, 3,8-dimethyl-24.4 13.53 ug/Kg 1000130-72-1 1.7-Dodecadiene 60.5 J 13.83 ug/Kg 000707-35-7 1,3,5-Trimethyladamantane 33.7 J 13.98 ug/Kg unknown14.56 35 J 14.56 ug/Kg unknown14.83 31.4 J 14.83 ug/Kg unknown15.14 26.4 J 15.14 ug/Kg 080655-44-3 Decahydro-4,4,8,9,10-pentamethylna 23.5 J 15.35 ug/Kg 054832-83-6 1H-Indene, octahydro-2,2,4,4,7,7-h 34 7 J 15.77 ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-14(6-18)RE SDG No.: F2923 SOIL Lab Sample ID: F2923-02RE Matrix: Analytical Method: SW8260 % Moisture: 14.7 Sample Wt/Vol: 19.79 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042223.D 1 07/01/14 VF070114

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.3   | U         | 0.3  | 0.3  | 1.5        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 67-64-1    | Acetone                        | 13.1  |           | 0.74 | 0.74 | 7.4        | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.3   | U         | 0.3  | 0.3  | 1.5        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 2.2   | U         | 0.92 | 2.2  | 7.4        | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 71-43-2    | Benzene                        | 0.15  | U         | 0.11 | 0.15 | 1.5        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.15  | U         | 0.08 | 0.15 | 1.5        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 0.74  | UQ        | 0.74 | 0.74 | 7.4        | ug/Kg |
| 108-88-3   | Toluene                        | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.15  | U         | 0.15 | 0.15 | 1.5        | ug/Kg |



GC Column:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-14(6-18)RE SDG No.: F2923 SOIL Lab Sample ID: F2923-02RE Matrix: Analytical Method: SW8260 % Moisture: 14.7 Sample Wt/Vol: 19.79 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF042223.D 1 07/01/14 VF070114

ID: 0.18

RTX-VMS

| VFU42223.D  | 1                           |       | 07/01/    | /14      |      | VF0/0114   |         |  |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|--|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |  |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.15  | U         | 0.15     | 0.15 | 1.5        | ug/Kg   |  |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.3   | U         | 0.27     | 0.3  | 1.5        | ug/Kg   |  |
| 591-78-6    | 2-Hexanone                  | 0.74  | UQ        | 0.74     | 0.74 | 7.4        | ug/Kg   |  |
| 124-48-1    | Dibromochloromethane        | 0.15  | U         | 0.15     | 0.15 | 1.5        | ug/Kg   |  |
| 106-93-4    | 1,2-Dibromoethane           | 0.15  | UQ        | 0.15     | 0.15 | 1.5        | ug/Kg   |  |
| 127-18-4    | Tetrachloroethene           | 1.3   | J         | 0.15     | 0.15 | 1.5        | ug/Kg   |  |
| 108-90-7    | Chlorobenzene               | 0.15  | U         | 0.15     | 0.15 | 1.5        | ug/Kg   |  |
| 100-41-4    | Ethyl Benzene               | 0.15  | U         | 0.15     | 0.15 | 1.5        | ug/Kg   |  |
| 179601-23-1 | m/p-Xylenes                 | 0.3   | U         | 0.21     | 0.3  | 3          | ug/Kg   |  |
| 95-47-6     | o-Xylene                    | 0.15  | U         | 0.15     | 0.15 | 1.5        | ug/Kg   |  |
| 100-42-5    | Styrene                     | 0.15  | U         | 0.13     | 0.15 | 1.5        | ug/Kg   |  |
| 75-25-2     | Bromoform                   | 0.44  | U         | 0.22     | 0.44 | 1.5        | ug/Kg   |  |
| 98-82-8     | Isopropylbenzene            | 0.15  | U         | 0.14     | 0.15 | 1.5        | ug/Kg   |  |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.15  | U         | 0.14     | 0.15 | 1.5        | ug/Kg   |  |
| 103-65-1    | n-propylbenzene             | 0.15  | U         | 0.11     | 0.15 | 1.5        | ug/Kg   |  |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.15  | U         | 0.13     | 0.15 | 1.5        | ug/Kg   |  |
| 98-06-6     | tert-Butylbenzene           | 0.15  | U         | 0.15     | 0.15 | 1.5        | ug/Kg   |  |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.15  | U         | 0.15     | 0.15 | 1.5        | ug/Kg   |  |
| 135-98-8    | sec-Butylbenzene            | 0.15  | U         | 0.15     | 0.15 | 1.5        | ug/Kg   |  |
| 99-87-6     | p-Isopropyltoluene          | 0.15  | U         | 0.09     | 0.15 | 1.5        | ug/Kg   |  |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.15  | U         | 0.11     | 0.15 | 1.5        | ug/Kg   |  |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.15  | U         | 0.12     | 0.15 | 1.5        | ug/Kg   |  |
| 104-51-8    | n-Butylbenzene              | 0.15  | U         | 0.14     | 0.15 | 1.5        | ug/Kg   |  |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.15  | U         | 0.15     | 0.15 | 1.5        | ug/Kg   |  |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 1.5   | UQ        | 0.26     | 1.5  | 1.5        | ug/Kg   |  |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.15  | U         | 0.15     | 0.15 | 1.5        | ug/Kg   |  |
| 91-20-3     | Naphthalene                 | 0.15  | U         | 0.13     | 0.15 | 1.5        | ug/Kg   |  |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.3   | U         | 0.15     | 0.3  | 1.5        | ug/Kg   |  |
| 123-91-1    | 1,4-Dioxane                 | 29.6  | U         | 29.6     | 29.6 | 29.6       | ug/Kg   |  |
| SURROGATES  |                             |       |           |          |      |            |         |  |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 54.1  |           | 56 - 120 |      | 108%       | SPK: 50 |  |
| 1868-53-7   | Dibromofluoromethane        | 31.6  |           | 57 - 135 | 5    | 63%        | SPK: 50 |  |



Lab Sample ID:

## **Report of Analysis**

Client: Dvirka & Bartilucci Project: NYCSCA Unionport Road Bronx

F2923-02RE

Client Sample ID: GP-14(6-18)RE

Analytical Method: SW8260

Sample Wt/Vol: 19.79 Units: g

Soil Aliquot Vol: uL

GC Column: RTX-VMS ID: 0.18

1

06/25/14

Date Received:

Date Collected:

06/27/14

SDG No.:

F2923 SOIL

Matrix:

Final Vol:

14.7

% Moisture:

5000

uL

Test:

VOCMS Group1

Level: LOW

File ID/Qc Batch:

VF042223.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

07/01/14

VF070114

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL LO   | DD LOQ/CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|-------------|---------|
| 2037-26-5    | Toluene-d8             | 47.1   |           | 67 - 123 | 94%         | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 78.3   | *         | 33 - 141 | 157%        | SPK: 50 |
| INTERNAL STA | ANDARDS                |        |           |          |             |         |
| 363-72-4     | Pentafluorobenzene     | 133240 | 4.83      |          |             |         |
| 540-36-3     | 1,4-Difluorobenzene    | 213180 | 5.56      |          |             |         |
| 3114-55-4    | Chlorobenzene-d5       | 151162 | 9.73      |          |             |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 56589  | 12.52     |          |             |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 10:30

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-15(6-20) SDG No.: F2923

Lab Sample ID: F2923-03 Matrix: SOIL

% Solid: 87

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQL | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.209 | J    | 1  | 0.036 | 0.137 | 0.274      | mg/Kg | 07/01/14  | 07/02/14 11:54 | 9012B    |
| Hexavalent Chromium | 0.361 | J    | 1  | 0.09  | 0.226 | 0.451      | mg/Kg | 07/02/14  | 07/02/14 15:21 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-15(6-20) SDG No.: F2923

Lab Sample ID: F2923-03 Matrix: SOIL

Analytical Method: 8015B DRO % Moisture: 13 Decanted:

Sample Wt/Vol: 30.04 Units: g Final Vol: 1 mL
Soil Aliquot Vol: uL Test: Diesel Range Organics

Extraction Type: Injection Volume:

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

FC012020.D 1 07/01/14 07/03/14 PB77539

| CAS Number                   | Parameter       | Conc. Qu | ualifier MDL | LOD | LOQ / CR | QL Units |
|------------------------------|-----------------|----------|--------------|-----|----------|----------|
| TARGETS<br>DRO               | DRO             | 4553     | 957          | 957 | 1910     | ug/kg    |
| <b>SURROGATES</b> 16416-32-3 | Tetracosane-d50 | 14.3     | 37 - 130     |     | 72%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: Client Sample ID: GP-15(6-20) F2923 Lab Sample ID: F2923-03 Matrix: **SOIL** 

Analytical Method: 8015B GRO % Moisture: 13 Decanted: Sample Wt/Vol: 5.02 Units: g Final Vol: 5 mL

Soil Aliquot Vol: uL Test: Gasoline Range Organics

Extraction Type: Injection Volume:

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
FB004521.D 1 07/08/14 FB070714

| CAS Number | Parameter                            | Conc. | Qualific | er MDL   | LOD | LOQ / CF | RQL Units |
|------------|--------------------------------------|-------|----------|----------|-----|----------|-----------|
| TARGETS    |                                      |       |          |          |     |          |           |
| GRO        | GRO                                  | 26    | U        | 14       | 26  | 52       | ug/kg     |
| SURROGATES |                                      |       |          |          |     |          |           |
| 98-08-8    | Alpha, Alpha, Alpha-Trifluorotoluene | 13.9  |          | 50 - 150 | )   | 70%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Sample Wt/Vol:

PE010335.D

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Final Vol:

07/04/14

10000

иL

PB77541

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: Client Sample ID: GP-15(6-20) F2923 Lab Sample ID: F2923-03 Matrix: **SOIL** 

Analytical Method: SW8151A % Moisture: 13 Decanted:

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume:

g

Units:

GPC Factor: 1.0 PH:

1

30.06

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

07/01/14

| CAS Number | Parameter         | Conc. | Qualif | ier MDL  | LOD  | LOQ / CF | RQL Units |
|------------|-------------------|-------|--------|----------|------|----------|-----------|
| TARGETS    |                   |       |        |          |      |          |           |
| 1918-00-9  | DICAMBA           | 19.1  | U      | 15.2     | 19.1 | 76.9     | ug/Kg     |
| 120-36-5   | DICHLORPROP       | 19.1  | U      | 14.2     | 19.1 | 76.9     | ug/Kg     |
| 94-75-7    | 2,4-D             | 19.1  | U      | 19.1     | 19.1 | 76.9     | ug/Kg     |
| 93-72-1    | 2,4,5-TP (Silvex) | 19.1  | U      | 12.5     | 19.1 | 76.9     | ug/Kg     |
| 93-76-5    | 2,4,5-T           | 19.1  | U      | 11.8     | 19.1 | 76.9     | ug/Kg     |
| 94-82-6    | 2,4-DB            | 19.1  | U      | 19.1     | 19.1 | 76.9     | ug/Kg     |
| 88-85-7    | DINOSEB           | 19.1  | U      | 19.1     | 19.1 | 76.9     | ug/Kg     |
| SURROGATES |                   |       |        |          |      |          |           |
| 19719-28-9 | 2,4-DCAA          | 183   |        | 12 - 189 | )    | 37%      | SPK: 500  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Lab Sample ID:

F2923-03

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Report of Analysis**

Matrix:

SOIL

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: F2923

Level (low/med): low % Solid: 87

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CR | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.77  | JN   | 1  | 0.562 | 1.25  | 2.51     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-38-2 | Arsenic   | 3.19  |      | 1  | 0.331 | 0.502 | 1        | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-39-3 | Barium    | 79.8  |      | 1  | 0.402 | 2.51  | 5.02     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.582 |      | 1  | 0.06  | 0.151 | 0.301    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.151 | U    | 1  | 0.06  | 0.151 | 0.301    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-47-3 | Chromium  | 22.8  |      | 1  | 0.131 | 0.251 | 0.502    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-48-4 | Cobalt    | 14.2  |      | 1  | 0.572 | 0.753 | 1.51     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-50-8 | Copper    | 26.8  |      | 1  | 0.321 | 0.502 | 1        | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-92-1 | Lead      | 28.1  | N    | 1  | 0.12  | 0.301 | 0.602    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-96-5 | Manganese | 367   |      | 1  | 0.191 | 0.502 | 1        | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.208 |      | 1  | 0.005 | 0.005 | 0.01     | mg/Kg 07/01/14      | 07/03/14  | SW7471A  |
| 7440-02-0 | Nickel    | 22.1  |      | 1  | 0.462 | 1.0   | 2.01     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7782-49-2 | Selenium  | 1.1   |      | 1  | 0.412 | 0.502 | 1        | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-22-4 | Silver    | 0.971 |      | 1  | 0.151 | 0.251 | 0.502    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-28-0 | Thallium  | 1     | U    | 1  | 0.271 | 1.0   | 2.01     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-62-2 | Vanadium  | 30.5  |      | 1  | 0.592 | 1.0   | 2.01     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-66-6 | Zinc      | 63.1  |      | 1  | 0.703 | 1.0   | 2.01     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: Client Sample ID: GP-15(6-20) F2923 Lab Sample ID: F2923-03 Matrix: **SOIL** 

Analytical Method: SW8082A % Moisture: 13 Decanted: Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PP003692.D 1 07/01/14 07/02/14 PB77542

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD | LOQ / CF | RQL Units |
|------------|----------------------|-------|-----------|----------|-----|----------|-----------|
| TARGETS    |                      |       |           |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 3.8   | U         | 3.8      | 3.8 | 19.5     | ug/kg     |
| 11104-28-2 | Aroclor-1221         | 3.8   | U         | 3.8      | 3.8 | 19.5     | ug/kg     |
| 11141-16-5 | Aroclor-1232         | 3.8   | U         | 3.8      | 3.8 | 19.5     | ug/kg     |
| 53469-21-9 | Aroclor-1242         | 3.8   | U         | 3.8      | 3.8 | 19.5     | ug/kg     |
| 12672-29-6 | Aroclor-1248         | 3.8   | U         | 3.8      | 3.8 | 19.5     | ug/kg     |
| 11097-69-1 | Aroclor-1254         | 3.8   | U         | 1.7      | 3.8 | 19.5     | ug/kg     |
| 11096-82-5 | Aroclor-1260         | 3.8   | U         | 3.8      | 3.8 | 19.5     | ug/kg     |
| SURROGATES |                      |       |           |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 19.4  |           | 10 - 166 | 5   | 97%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 15.7  |           | 60 - 125 | 5   | 79%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

Test:



# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 06/27/14 Project: NYCSCA Unionport Road Bronx Date Received:

Client Sample ID: GP-15(6-20) SDG No.: F2923 Lab Sample ID: F2923-03 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 13 Decanted:

Sample Wt/Vol: 30.01 Final Vol: 10000 uL Units: g Pesticide-TCL

Soil Aliquot Vol: uL Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023229.D 1 07/01/14 07/02/14 PB77543

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CRQL | Units   |
|------------|----------------------|-------|-----------|----------|-------|------------|---------|
| TARGETS    |                      |       |           |          |       |            |         |
| 319-84-6   | alpha-BHC            | 0.379 | U         | 0.149    | 0.379 | 2          | ug/kg   |
| 319-85-7   | beta-BHC             | 0.379 | U         | 0.207    | 0.379 | 2          | ug/kg   |
| 319-86-8   | delta-BHC            | 0.379 | U         | 0.115    | 0.379 | 2          | ug/kg   |
| 58-89-9    | gamma-BHC (Lindane)  | 0.379 | U         | 0.172    | 0.379 | 2          | ug/kg   |
| 76-44-8    | Heptachlor           | 0.379 | U         | 0.161    | 0.379 | 2          | ug/kg   |
| 309-00-2   | Aldrin               | 0.379 | U         | 0.115    | 0.379 | 2          | ug/kg   |
| 1024-57-3  | Heptachlor epoxide   | 0.379 | U         | 0.184    | 0.379 | 2          | ug/kg   |
| 959-98-8   | Endosulfan I         | 0.379 | U         | 0.172    | 0.379 | 2          | ug/kg   |
| 60-57-1    | Dieldrin             | 0.379 | U         | 0.149    | 0.379 | 2          | ug/kg   |
| 72-55-9    | 4,4-DDE              | 0.379 | U         | 0.23     | 0.379 | 2          | ug/kg   |
| 72-20-8    | Endrin               | 0.379 | U         | 0.207    | 0.379 | 2          | ug/kg   |
| 33213-65-9 | Endosulfan II        | 0.379 | U         | 0.161    | 0.379 | 2          | ug/kg   |
| 72-54-8    | 4,4-DDD              | 0.379 | U         | 0.195    | 0.379 | 2          | ug/kg   |
| 1031-07-8  | Endosulfan Sulfate   | 0.379 | U         | 0.172    | 0.379 | 2          | ug/kg   |
| 50-29-3    | 4,4-DDT              | 0.379 | U         | 0.161    | 0.379 | 2          | ug/kg   |
| 72-43-5    | Methoxychlor         | 0.379 | U         | 0.195    | 0.379 | 2          | ug/kg   |
| 53494-70-5 | Endrin ketone        | 0.379 | U         | 0.149    | 0.379 | 2          | ug/kg   |
| 7421-93-4  | Endrin aldehyde      | 0.379 | U         | 0.172    | 0.379 | 2          | ug/kg   |
| 5103-71-9  | alpha-Chlordane      | 0.379 | U         | 0.161    | 0.379 | 2          | ug/kg   |
| 5103-74-2  | gamma-Chlordane      | 0.379 | U         | 0.149    | 0.379 | 2          | ug/kg   |
| 8001-35-2  | Toxaphene            | 3.8   | U         | 3.8      | 3.8   | 19.5       | ug/kg   |
| SURROGATES |                      |       |           |          |       |            |         |
| 2051-24-3  | Decachlorobiphenyl   | 19.5  |           | 10 - 169 |       | 97%        | SPK: 20 |
| 877-09-8   | Tetrachloro-m-xylene | 21.4  |           | 31 - 151 |       | 107%       | SPK: 20 |



Client Sample ID:

### **Report of Analysis**

Client: Dvirka & Bartilucci

Date Collected: 06/26/14

Date Received:

06/27/14

Project: NYCSCA Unionport Road Bronx

GP-15(6-20) SDG No.: F2923

Lab Sample ID: F2923-03 Matrix: SOIL

Analytical Method: SW8081 % Moisture: 13 Decanted:

Sample Wt/Vol: 30.01 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023229.D 1 07/01/14 07/02/14 PB77543

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-15(6-20) SDG No.: F2923
Lab Sample ID: F2923-03 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 13

Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072252.D 1 07/01/14 07/02/14 PB77544

| BI 072232.D | •                           | 07/01/11 |               | 77702711 |      | 18//3/1    |       |
|-------------|-----------------------------|----------|---------------|----------|------|------------|-------|
| CAS Number  | Parameter                   | Con      | ıc. Qualifier | MDL      | LOD  | LOQ / CRQL | Units |
| TARGETS     |                             |          |               |          |      |            |       |
| 100-52-7    | Benzaldehyde                | 38.3     | 3 U           | 20       | 38.3 | 380        | ug/Kg |
| 108-95-2    | Phenol                      | 38.3     | 3 U           | 8.8      | 38.3 | 380        | ug/Kg |
| 111-44-4    | bis(2-Chloroethyl)ether     | 38.3     | 3 U           | 18.4     | 38.3 | 380        | ug/Kg |
| 95-57-8     | 2-Chlorophenol              | 38.3     | 3 U           | 20.2     | 38.3 | 380        | ug/Kg |
| 95-48-7     | 2-Methylphenol              | 38.3     | 3 U           | 20.8     | 38.3 | 380        | ug/Kg |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 38.3     | 3 U           | 15.8     | 38.3 | 380        | ug/Kg |
| 98-86-2     | Acetophenone                | 38.3     | 3 U           | 11.7     | 38.3 | 380        | ug/Kg |
| 65794-96-9  | 3+4-Methylphenols           | 38.3     | 3 U           | 19.9     | 38.3 | 380        | ug/Kg |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 38.3     | 3 U           | 19.3     | 38.3 | 380        | ug/Kg |
| 67-72-1     | Hexachloroethane            | 38.3     | 3 U           | 17.1     | 38.3 | 380        | ug/Kg |
| 98-95-3     | Nitrobenzene                | 38.3     | 3 U           | 14.5     | 38.3 | 380        | ug/Kg |
| 78-59-1     | Isophorone                  | 38.3     | 3 U           | 12.6     | 38.3 | 380        | ug/Kg |
| 88-75-5     | 2-Nitrophenol               | 38.3     | 3 U           | 18.5     | 38.3 | 380        | ug/Kg |
| 105-67-9    | 2,4-Dimethylphenol          | 38.3     | 3 U           | 21.7     | 38.3 | 380        | ug/Kg |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 38.3     | 3 U           | 22       | 38.3 | 380        | ug/Kg |
| 120-83-2    | 2,4-Dichlorophenol          | 38.3     | 3 U           | 14.6     | 38.3 | 380        | ug/Kg |
| 91-20-3     | Naphthalene                 | 38.3     | 3 U           | 13.2     | 38.3 | 380        | ug/Kg |
| 106-47-8    | 4-Chloroaniline             | 38.3     | 3 U           | 27       | 38.3 | 380        | ug/Kg |
| 87-68-3     | Hexachlorobutadiene         | 38.3     | 3 U           | 13.9     | 38.3 | 380        | ug/Kg |
| 105-60-2    | Caprolactam                 | 76.0     | 6 U           | 17.8     | 76.6 | 380        | ug/Kg |
| 59-50-7     | 4-Chloro-3-methylphenol     | 38.3     | 3 U           | 17       | 38.3 | 380        | ug/Kg |
| 91-57-6     | 2-Methylnaphthalene         | 38.3     | 3 U           | 9.6      | 38.3 | 380        | ug/Kg |
| 77-47-4     | Hexachlorocyclopentadiene   | 38.3     | 3 U           | 9.3      | 38.3 | 380        | ug/Kg |
| 88-06-2     | 2,4,6-Trichlorophenol       | 38.3     | 3 U           | 11.7     | 38.3 | 380        | ug/Kg |
| 95-95-4     | 2,4,5-Trichlorophenol       | 38.3     | 3 U           | 26.9     | 38.3 | 380        | ug/Kg |
| 92-52-4     | 1,1-Biphenyl                | 38.3     | 3 U           | 14.5     | 38.3 | 380        | ug/Kg |
| 91-58-7     | 2-Chloronaphthalene         | 38.3     | 3 U           | 8.7      | 38.3 | 380        | ug/Kg |
| 88-74-4     | 2-Nitroaniline              | 38.3     | 3 U           | 17       | 38.3 | 380        | ug/Kg |
| 131-11-3    | Dimethylphthalate           | 570      |               | 10.3     | 38.3 | 380        | ug/Kg |
| 208-96-8    | Acenaphthylene              | 38.3     | 3 U           | 9.6      | 38.3 | 380        | ug/Kg |
| 606-20-2    | 2,6-Dinitrotoluene          | 38.3     | 3 U           | 15.6     | 38.3 | 380        | ug/Kg |



30.03

Units:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: F2923 GP-15(6-20) Lab Sample ID: F2923-03 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 13

Sample Wt/Vol: g Soil Aliquot Vol: uL Test: SVOCMS Group1

Final Vol:

1000

uL

Extraction Type: Level: Decanted: N LOW

GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

07/01/14 07/02/14 PR775/// BE072252 D

| BF072252.D | 1                          | 07/01/14 | 07        | /02/14 |      | PB77544    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 76.6     | U         | 24.6   | 76.6 | 380        | ug/Kg |
| 83-32-9    | Acenaphthene               | 38.3     | U         | 10.8   | 38.3 | 380        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 310      | U         | 38.9   | 310  | 380        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 190      | U         | 71.1   | 190  | 380        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 38.3     | U         | 14.9   | 38.3 | 380        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 38.3     | U         | 11.5   | 38.3 | 380        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 38.3     | U         | 6      | 38.3 | 380        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 38.3     | U         | 20.8   | 38.3 | 380        | ug/Kg |
| 86-73-7    | Fluorene                   | 38.3     | U         | 14.5   | 38.3 | 380        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 76.6     | U         | 49.8   | 76.6 | 380        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 190      | U         | 21.9   | 190  | 380        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 38.3     | U         | 9.2    | 38.3 | 380        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 38.3     | U         | 7.5    | 38.3 | 380        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 38.3     | U         | 15.6   | 38.3 | 380        | ug/Kg |
| 1912-24-9  | Atrazine                   | 38.3     | U         | 20.2   | 38.3 | 380        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 38.3     | U         | 26.2   | 38.3 | 380        | ug/Kg |
| 85-01-8    | Phenanthrene               | 38.3     | U         | 10.3   | 38.3 | 380        | ug/Kg |
| 120-12-7   | Anthracene                 | 38.3     | U         | 7.8    | 38.3 | 380        | ug/Kg |
| 86-74-8    | Carbazole                  | 38.3     | U         | 8.4    | 38.3 | 380        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 38.3     | U         | 30.1   | 38.3 | 380        | ug/Kg |
| 206-44-0   | Fluoranthene               | 97.3     | J         | 7.7    | 38.3 | 380        | ug/Kg |
| 129-00-0   | Pyrene                     | 38.3     | U         | 9.2    | 38.3 | 380        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 38.3     | U         | 18.4   | 38.3 | 380        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 38.3     | U         | 24.6   | 38.3 | 380        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 38.3     | U         | 18.3   | 38.3 | 380        | ug/Kg |
| 218-01-9   | Chrysene                   | 38.3     | U         | 17.3   | 38.3 | 380        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 38.3     | U         | 13.5   | 38.3 | 380        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 38.3     | U         | 4.4    | 38.3 | 380        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 38.3     | U         | 12.5   | 38.3 | 380        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 38.3     | U         | 18     | 38.3 | 380        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 38.3     | U         | 8.3    | 38.3 | 380        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 38.3     | U         | 12.7   | 38.3 | 380        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 38.3     | U         | 11     | 38.3 | 380        | ug/Kg |



Extraction Type:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: SDG No.: GP-15(6-20) F2923 Lab Sample ID: F2923-03 Matrix: SOIL % Moisture: 13 Analytical Method: SW8270

Sample Wt/Vol: 30.03 Units: Final Vol: 1000 uL g

N

Level:

LOW

Test: Soil Aliquot Vol: uL SVOCMS Group1

Decanted: GPC Factor: Ν Injection Volume: 1.0 GPC Cleanup: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF072252.D 07/01/14 07/02/14 PB77544

| DI 0/2232.D  | I                                  | 0//01/14 | 07        | /02/14   |      | 1 D / / J44 |          |
|--------------|------------------------------------|----------|-----------|----------|------|-------------|----------|
| CAS Number   | Parameter                          | Conc.    | Qualifier | MDL      | LOD  | LOQ / CRQL  | Units    |
| 191-24-2     | Benzo(g,h,i)perylene               | 38.3     | U         | 15.5     | 38.3 | 380         | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene         | 38.3     | U         | 15       | 38.3 | 380         | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol          | 38.3     | U         | 15       | 38.3 | 380         | ug/Kg    |
| SURROGATES   | 3                                  |          |           |          |      |             |          |
| 367-12-4     | 2-Fluorophenol                     | 94.8     |           | 28 - 12  | 7    | 63%         | SPK: 150 |
| 13127-88-3   | Phenol-d6                          | 97.7     |           | 34 - 12  | 7    | 65%         | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                    | 61.5     |           | 31 - 132 | 2    | 62%         | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                   | 59.6     |           | 39 - 12  | 3    | 60%         | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol               | 81       |           | 30 - 13  | 3    | 54%         | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                      | 53.6     |           | 37 - 11: | 5    | 54%         | SPK: 100 |
| INTERNAL ST  | ANDARDS                            |          |           |          |      |             |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4             | 42006    | 7.17      |          |      |             |          |
| 1146-65-2    | Naphthalene-d8                     | 18480    | 0 8.74    |          |      |             |          |
| 15067-26-2   | Acenaphthene-d10                   | 97055    | 10.9      |          |      |             |          |
| 1517-22-2    | Phenanthrene-d10                   | 18302    | 5 12.73   | }        |      |             |          |
| 1719-03-5    | Chrysene-d12                       | 21676    | 8 16      |          |      |             |          |
| 1520-96-3    | Perylene-d12                       | 20167    | 8 17.69   | )        |      |             |          |
| TENTATIVE II | DENTIFIED COMPOUNDS                |          |           |          |      |             |          |
| 000096-37-7  | Cyclopentane, methyl-              | 1900     | J         |          |      | 1.17        | ug/Kg    |
| 000077-76-9  | Propane, 2,2-dimethoxy-            | 13000    | JB        |          |      | 1.37        | ug/Kg    |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl    | - 490    | AB        |          |      | 4.88        | ug/Kg    |
|              | unknown6.87                        | 2800     | JB        |          |      | 6.87        | ug/Kg    |
| 074339-54-1  | Trichloroacetic acid, hexadecyl es | 350      | J         |          |      | 15.92       | ug/Kg    |
|              |                                    |          |           |          |      |             |          |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-15(6-20) SDG No.: F2923 SOIL Lab Sample ID: F2923-03 Matrix: Analytical Method: SW8260 % Moisture: 13 Sample Wt/Vol: 12.08 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042200.D 1 06/30/14 VF063014

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.48  | U         | 0.48 | 0.48 | 2.4        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 67-64-1    | Acetone                        | 1.2   | U         | 1.2  | 1.2  | 11.9       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.48  | U         | 0.48 | 0.48 | 2.4        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 2.4   | Q         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 3.6   | U         | 1.5  | 3.6  | 11.9       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 71-43-2    | Benzene                        | 0.24  | U         | 0.18 | 0.24 | 2.4        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.24  | U         | 0.12 | 0.24 | 2.4        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1.2   | U         | 1.2  | 1.2  | 11.9       | ug/Kg |
| 108-88-3   | Toluene                        | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.24  | U         | 0.24 | 0.24 | 2.4        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-15(6-20) SDG No.: F2923 SOIL Lab Sample ID: F2923-03 Matrix: Analytical Method: SW8260 % Moisture: 13 Sample Wt/Vol: 12.08 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042200.D 1 06/30/14 VF063014

|                         | _                                          |              |           |                      |      |            |                    |
|-------------------------|--------------------------------------------|--------------|-----------|----------------------|------|------------|--------------------|
| CAS Number              | Parameter                                  | Conc.        | Qualifier | MDL                  | LOD  | LOQ / CRQL | Units              |
| 10061-01-5              | cis-1,3-Dichloropropene                    | 0.24         | U         | 0.24                 | 0.24 | 2.4        | ug/Kg              |
| 79-00-5                 | 1,1,2-Trichloroethane                      | 0.48         | U         | 0.43                 | 0.48 | 2.4        | ug/Kg              |
| 591-78-6                | 2-Hexanone                                 | 1.2          | U         | 1.2                  | 1.2  | 11.9       | ug/Kg              |
| 124-48-1                | Dibromochloromethane                       | 0.24         | U         | 0.24                 | 0.24 | 2.4        | ug/Kg              |
| 106-93-4                | 1,2-Dibromoethane                          | 0.24         | U         | 0.24                 | 0.24 | 2.4        | ug/Kg              |
| 127-18-4                | Tetrachloroethene                          | 18.7         |           | 0.24                 | 0.24 | 2.4        | ug/Kg              |
| 108-90-7                | Chlorobenzene                              | 0.24         | U         | 0.24                 | 0.24 | 2.4        | ug/Kg              |
| 100-41-4                | Ethyl Benzene                              | 0.24         | U         | 0.24                 | 0.24 | 2.4        | ug/Kg              |
| 179601-23-1             | m/p-Xylenes                                | 0.48         | U         | 0.34                 | 0.48 | 4.8        | ug/Kg              |
| 95-47-6                 | o-Xylene                                   | 0.24         | U         | 0.24                 | 0.24 | 2.4        | ug/Kg              |
| 100-42-5                | Styrene                                    | 0.24         | U         | 0.21                 | 0.24 | 2.4        | ug/Kg              |
| 75-25-2                 | Bromoform                                  | 0.71         | U         | 0.35                 | 0.71 | 2.4        | ug/Kg              |
| 98-82-8                 | Isopropylbenzene                           | 0.24         | U         | 0.23                 | 0.24 | 2.4        | ug/Kg              |
| 79-34-5                 | 1,1,2,2-Tetrachloroethane                  | 0.24         | U         | 0.22                 | 0.24 | 2.4        | ug/Kg              |
| 103-65-1                | n-propylbenzene                            | 0.24         | U         | 0.17                 | 0.24 | 2.4        | ug/Kg              |
| 108-67-8                | 1,3,5-Trimethylbenzene                     | 0.24         | U         | 0.21                 | 0.24 | 2.4        | ug/Kg              |
| 98-06-6                 | tert-Butylbenzene                          | 0.24         | U         | 0.24                 | 0.24 | 2.4        | ug/Kg              |
| 95-63-6                 | 1,2,4-Trimethylbenzene                     | 0.24         | U         | 0.24                 | 0.24 | 2.4        | ug/Kg              |
| 135-98-8                | sec-Butylbenzene                           | 0.24         | U         | 0.24                 | 0.24 | 2.4        | ug/Kg              |
| 99-87-6                 | p-Isopropyltoluene                         | 0.24         | UQ        | 0.14                 | 0.24 | 2.4        | ug/Kg              |
| 541-73-1                | 1,3-Dichlorobenzene                        | 0.24         | U         | 0.18                 | 0.24 | 2.4        | ug/Kg              |
| 106-46-7                | 1,4-Dichlorobenzene                        | 0.24         | U         | 0.2                  | 0.24 | 2.4        | ug/Kg              |
| 104-51-8                | n-Butylbenzene                             | 0.24         | UQ        | 0.22                 | 0.24 | 2.4        | ug/Kg              |
| 95-50-1                 | 1,2-Dichlorobenzene                        | 0.24         | UQ        | 0.24                 | 0.24 | 2.4        | ug/Kg              |
| 96-12-8                 | 1,2-Dibromo-3-Chloropropane                | 2.4          | U         | 0.41                 | 2.4  | 2.4        | ug/Kg              |
| 120-82-1                | 1,2,4-Trichlorobenzene                     | 0.24         | UQ        | 0.24                 | 0.24 | 2.4        | ug/Kg              |
| 91-20-3                 | Naphthalene                                | 0.24         | UQ        | 0.21                 | 0.24 | 2.4        | ug/Kg              |
| 87-61-6                 | 1,2,3-Trichlorobenzene                     | 0.48         | UQ        | 0.24                 | 0.48 | 2.4        | ug/Kg              |
| 123-91-1                | 1,4-Dioxane                                | 47.6         | U         | 47.6                 | 47.6 | 47.6       | ug/Kg              |
| SURROGATES              |                                            | 40.4         |           | 56 106               | `    | 000/       | CDIZ. 50           |
| 17060-07-0<br>1868-53-7 | 1,2-Dichloroethane-d4 Dibromofluoromethane | 49.4<br>49.1 |           | 56 - 120<br>57 - 135 |      | 99%<br>98% | SPK: 50<br>SPK: 50 |
|                         |                                            |              |           |                      |      |            |                    |



Lab Sample ID:

### **Report of Analysis**

Client: Dvirka & Bartilucci

F2923-03

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-15(6-20)

Analytical Method: SW8260

Sample Wt/Vol: 12.08 Units: g

Soil Aliquot Vol: uL

GC Column: RTX-VMS ID: 0.18

Date Collected:

06/26/14

Date Received:

06/27/14

SDG No.:

F2923

Matrix:

Final Vol:

Test:

% Moisture:

13 5000

SOIL

uL

VOCMS Group1

Level:

LOW

File ID/Qc Batch:

VF042200.D

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

06/30/14

VF063014

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL LO   | D LOQ/CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|------------|---------|
| 2037-26-5   | Toluene-d8             | 44     |           | 67 - 123 | 88%        | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 35.8   |           | 33 - 141 | 72%        | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |            |         |
| 363-72-4    | Pentafluorobenzene     | 137323 | 4.87      |          |            |         |
| 540-36-3    | 1,4-Difluorobenzene    | 228785 | 5.59      |          |            |         |
| 3114-55-4   | Chlorobenzene-d5       | 171395 | 9.75      |          |            |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 59285  | 12.52     |          |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-15(6-20)RE SDG No.: F2923 SOIL Lab Sample ID: F2923-03RE Matrix: Analytical Method: SW8260 % Moisture: 13 Sample Wt/Vol: 12.79 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042224.D 1 07/01/14 VF070114

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.45  | U         | 0.45 | 0.45 | 2.2        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 67-64-1    | Acetone                        | 1.1   | U         | 1.1  | 1.1  | 11.2       | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.45  | U         | 0.45 | 0.45 | 2.2        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 3.4   | U         | 1.4  | 3.4  | 11.2       | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 71-43-2    | Benzene                        | 0.22  | U         | 0.17 | 0.22 | 2.2        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.22  | U         | 0.12 | 0.22 | 2.2        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1.1   | UQ        | 1.1  | 1.1  | 11.2       | ug/Kg |
| 108-88-3   | Toluene                        | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.22  | U         | 0.22 | 0.22 | 2.2        | ug/Kg |



Soil Aliquot Vol:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-15(6-20)RE SDG No.: F2923 SOIL Lab Sample ID: F2923-03RE Matrix: Analytical Method: SW8260 % Moisture: 13

Sample Wt/Vol: 12.79 Units: g Final Vol: 5000 uL

Test:

VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF042224.D 1 07/01/14 VF070114

|             |                             |       | *****     |          |      | , - , , ,  |         |  |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|--|
| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |  |
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.22  | U         | 0.22     | 0.22 | 2.2        | ug/Kg   |  |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.45  | U         | 0.4      | 0.45 | 2.2        | ug/Kg   |  |
| 591-78-6    | 2-Hexanone                  | 1.1   | UQ        | 1.1      | 1.1  | 11.2       | ug/Kg   |  |
| 124-48-1    | Dibromochloromethane        | 0.22  | U         | 0.22     | 0.22 | 2.2        | ug/Kg   |  |
| 106-93-4    | 1,2-Dibromoethane           | 0.22  | UQ        | 0.22     | 0.22 | 2.2        | ug/Kg   |  |
| 127-18-4    | Tetrachloroethene           | 22    |           | 0.22     | 0.22 | 2.2        | ug/Kg   |  |
| 108-90-7    | Chlorobenzene               | 0.22  | U         | 0.22     | 0.22 | 2.2        | ug/Kg   |  |
| 100-41-4    | Ethyl Benzene               | 0.22  | U         | 0.22     | 0.22 | 2.2        | ug/Kg   |  |
| 179601-23-1 | m/p-Xylenes                 | 0.45  | U         | 0.32     | 0.45 | 4.5        | ug/Kg   |  |
| 95-47-6     | o-Xylene                    | 0.22  | U         | 0.22     | 0.22 | 2.2        | ug/Kg   |  |
| 100-42-5    | Styrene                     | 0.22  | U         | 0.2      | 0.22 | 2.2        | ug/Kg   |  |
| 75-25-2     | Bromoform                   | 0.67  | U         | 0.33     | 0.67 | 2.2        | ug/Kg   |  |
| 98-82-8     | Isopropylbenzene            | 0.22  | U         | 0.22     | 0.22 | 2.2        | ug/Kg   |  |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.22  | U         | 0.21     | 0.22 | 2.2        | ug/Kg   |  |
| 103-65-1    | n-propylbenzene             | 0.22  | U         | 0.16     | 0.22 | 2.2        | ug/Kg   |  |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.22  | U         | 0.2      | 0.22 | 2.2        | ug/Kg   |  |
| 98-06-6     | tert-Butylbenzene           | 0.22  | U         | 0.22     | 0.22 | 2.2        | ug/Kg   |  |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.22  | U         | 0.22     | 0.22 | 2.2        | ug/Kg   |  |
| 135-98-8    | sec-Butylbenzene            | 0.22  | U         | 0.22     | 0.22 | 2.2        | ug/Kg   |  |
| 99-87-6     | p-Isopropyltoluene          | 0.22  | U         | 0.13     | 0.22 | 2.2        | ug/Kg   |  |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.22  | U         | 0.17     | 0.22 | 2.2        | ug/Kg   |  |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.22  | U         | 0.18     | 0.22 | 2.2        | ug/Kg   |  |
| 104-51-8    | n-Butylbenzene              | 0.22  | U         | 0.21     | 0.22 | 2.2        | ug/Kg   |  |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.22  | U         | 0.22     | 0.22 | 2.2        | ug/Kg   |  |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 2.2   | UQ        | 0.39     | 2.2  | 2.2        | ug/Kg   |  |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.22  | U         | 0.22     | 0.22 | 2.2        | ug/Kg   |  |
| 91-20-3     | Naphthalene                 | 0.22  | U         | 0.2      | 0.22 | 2.2        | ug/Kg   |  |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.45  | U         | 0.22     | 0.45 | 2.2        | ug/Kg   |  |
| 123-91-1    | 1,4-Dioxane                 | 44.9  | U         | 44.9     | 44.9 | 44.9       | ug/Kg   |  |
| SURROGATES  |                             |       |           |          |      |            |         |  |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 41.5  |           | 56 - 120 |      | 83%        | SPK: 50 |  |
| 1868-53-7   | Dibromofluoromethane        | 38.3  |           | 57 - 135 | 5    | 77%        | SPK: 50 |  |
|             |                             |       |           |          |      |            |         |  |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-15(6-20)RE

Lab Sample ID: F2923-03RE

Analytical Method: SW8260

Sample Wt/Vol: 12.79 Units: g

Soil Aliquot Vol: uL

GC Column: RTX-VMS ID: 0.18 Matrix: % Moisture:

Date Collected:

Date Received:

SDG No.:

Final Vol: 5000

Test: VOCMS Group1

Level: LOW

File ID/Qc Batch:

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

06/26/14

06/27/14

F2923

SOIL

uL

13

VF042224.D

07/01/14

VF070114

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL LO   | D LOQ/CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|------------|---------|
| 2037-26-5    | Toluene-d8             | 35.8   |           | 67 - 123 | 72%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 25.9   |           | 33 - 141 | 52%        | SPK: 50 |
| INTERNAL ST. | ANDARDS                |        |           |          |            |         |
| 363-72-4     | Pentafluorobenzene     | 124126 | 4.85      |          |            |         |
| 540-36-3     | 1,4-Difluorobenzene    | 192631 | 5.58      |          |            |         |
| 3114-55-4    | Chlorobenzene-d5       | 129530 | 9.74      |          |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 44053  | 12.52     |          |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 12:30 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-18(6-18) F2923 Lab Sample ID: F2923-04 Matrix: SOIL % Solid: 83.7

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQI | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.043 | J    | 1  | 0.038 | 0.145 | 0.29       | mg/Kg | 07/01/14  | 07/02/14 11:34 | 9012B    |
| Hexavalent Chromium | 0.381 | J    | 1  | 0.095 | 0.238 | 0.476      | mg/Kg | 07/02/14  | 07/02/14 15:21 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Client:Dvirka & BartilucciDate Collected:06/26/14Project:NYCSCA Unionport Road BronxDate Received:06/27/14Client Sample ID:GP-18(6-18)SDG No.:F2923

Lab Sample ID: F2923-04 Matrix: SOIL

Analytical Method: 8015B DRO % Moisture: 16.3 Decanted: Sample Wt/Vol: 30.02 Units: g Final Vol: 1 mL

Soil Aliquot Vol: uL Test: Diesel Range Organics

Extraction Type: Injection Volume :

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID FC012021.D 2 07/01/14 07/03/14 PB77539

| CAS Number                   | Parameter       | Conc. Qual | ifier MDL | LOD  | LOQ / CR | QL Units |
|------------------------------|-----------------|------------|-----------|------|----------|----------|
| TARGETS<br>DRO               | DRO             | 66463      | 1990      | 1990 | 3980     | ug/kg    |
| <b>SURROGATES</b> 16416-32-3 | Tetracosane-d50 | 5.17       | 37 - 130  |      | 52%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: Client Sample ID: GP-18(6-18) F2923 Lab Sample ID: F2923-04 Matrix: SOIL

Analytical Method: 8015B GRO % Moisture: 16.3 Decanted: Sample Wt/Vol: 5.03 Units: g Final Vol: 5 mL

Soil Aliquot Vol: uL Test: Gasoline Range Organics

Extraction Type: Injection Volume:

GPC Factor: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID FB004522.D 1 07/08/14 FB070714

| CAS Number            | Parameter                          | Conc. | Qualific | er MDL   | LOD  | LOQ / CF | RQL Units |
|-----------------------|------------------------------------|-------|----------|----------|------|----------|-----------|
| TARGETS<br>GRO        | GRO                                | 26.5  | U        | 14       | 26.5 | 53       | ug/kg     |
| SURROGATES<br>98-08-8 | Alpha.Alpha.Alpha-Trifluorotoluene | 14.4  |          | 50 - 150 | )    | 72%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Sample Wt/Vol:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: Client Sample ID: GP-18(6-18) F2923 Lab Sample ID: F2923-04 Matrix: **SOIL** 

Analytical Method: SW8151A % Moisture: 16.3 Decanted:

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume:

g

GPC Factor: 1.0 PH:

30.07

Units:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010336.D 1 07/01/14 07/04/14 PB77541

| CAS Number | Parameter         | Conc. Qualifi |   | MDL      | LOD  | LOQ / CRQL Units |          |
|------------|-------------------|---------------|---|----------|------|------------------|----------|
| TARGETS    |                   |               |   |          |      |                  |          |
| 1918-00-9  | DICAMBA           | 19.9          | U | 15.8     | 19.9 | 79.9             | ug/Kg    |
| 120-36-5   | DICHLORPROP       | 19.9          | U | 14.7     | 19.9 | 79.9             | ug/Kg    |
| 94-75-7    | 2,4-D             | 19.9          | U | 19.9     | 19.9 | 79.9             | ug/Kg    |
| 93-72-1    | 2,4,5-TP (Silvex) | 19.9          | U | 13       | 19.9 | 79.9             | ug/Kg    |
| 93-76-5    | 2,4,5-T           | 19.9          | U | 12.2     | 19.9 | 79.9             | ug/Kg    |
| 94-82-6    | 2,4-DB            | 19.9          | U | 19.9     | 19.9 | 79.9             | ug/Kg    |
| 88-85-7    | DINOSEB           | 19.9          | U | 19.9     | 19.9 | 79.9             | ug/Kg    |
| SURROGATES |                   |               |   |          |      |                  |          |
| 19719-28-9 | 2,4-DCAA          | 296           |   | 12 - 189 | )    | 59%              | SPK: 500 |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

10000

иL

Final Vol:



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Report of Analysis**

Client:Dvirka & BartilucciDate Collected:06/26/14Project:NYCSCA Unionport Road BronxDate Received:06/27/14

Client Sample ID: GP-18(6-18) SDG No.: F2923

Lab Sample ID: F2923-04 Matrix: SOIL

Level (low/med): low % Solid: 83.7

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CF | RQL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|---------------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.884 | JN   | 1  | 0.582 | 1.3   | 2.6      | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-38-2 | Arsenic   | 4.36  |      | 1  | 0.343 | 0.519 | 1.04     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-39-3 | Barium    | 539   |      | 1  | 0.416 | 2.6   | 5.19     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.71  |      | 1  | 0.062 | 0.156 | 0.312    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.068 | J    | 1  | 0.062 | 0.156 | 0.312    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-47-3 | Chromium  | 25.4  |      | 1  | 0.135 | 0.26  | 0.519    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-48-4 | Cobalt    | 30    |      | 1  | 0.592 | 0.779 | 1.56     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-50-8 | Copper    | 44.8  |      | 1  | 0.332 | 0.519 | 1.04     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-92-1 | Lead      | 2140  | N    | 1  | 0.125 | 0.312 | 0.623    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-96-5 | Manganese | 542   |      | 1  | 0.197 | 0.519 | 1.04     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.03  |      | 1  | 0.005 | 0.005 | 0.01     | mg/Kg 07/01/14      | 07/03/14  | SW7471A  |
| 7440-02-0 | Nickel    | 30.5  |      | 1  | 0.478 | 1.04  | 2.08     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7782-49-2 | Selenium  | 1.32  |      | 1  | 0.426 | 0.519 | 1.04     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-22-4 | Silver    | 1.4   |      | 1  | 0.156 | 0.26  | 0.519    | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-28-0 | Thallium  | 1.04  | U    | 1  | 0.281 | 1.04  | 2.08     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-62-2 | Vanadium  | 38.4  |      | 1  | 0.613 | 1.04  | 2.08     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |
| 7440-66-6 | Zinc      | 186   |      | 1  | 0.727 | 1.04  | 2.08     | mg/Kg 07/02/14      | 07/02/14  | SW6010   |

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 SDG No.: Client Sample ID: GP-18(6-18) F2923 Lab Sample ID: F2923-04 Matrix: SOIL % Moisture: Analytical Method: SW8082A 16.3 Decanted: Sample Wt/Vol: 30 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PP003693.D 1 07/01/14 07/02/14 PB77542

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD | LOQ / CF | RQL Units |
|------------|----------------------|-------|-----------|----------|-----|----------|-----------|
| TARGETS    |                      |       |           |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 4     | U         | 4        | 4   | 20.3     | ug/kg     |
| 11104-28-2 | Aroclor-1221         | 4     | U         | 4        | 4   | 20.3     | ug/kg     |
| 11141-16-5 | Aroclor-1232         | 4     | U         | 4        | 4   | 20.3     | ug/kg     |
| 53469-21-9 | Aroclor-1242         | 4     | U         | 4        | 4   | 20.3     | ug/kg     |
| 12672-29-6 | Aroclor-1248         | 4     | U         | 4        | 4   | 20.3     | ug/kg     |
| 11097-69-1 | Aroclor-1254         | 4     | U         | 1.8      | 4   | 20.3     | ug/kg     |
| 11096-82-5 | Aroclor-1260         | 4     | U         | 4        | 4   | 20.3     | ug/kg     |
| SURROGATES |                      |       |           |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 18    |           | 10 - 166 | 5   | 90%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 15.7  |           | 60 - 125 | 5   | 79%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



PD023230.D

#### **Report of Analysis**

Date Collected: Client: Dvirka & Bartilucci 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

SDG No.: Client Sample ID: GP-18(6-18) F2923 Lab Sample ID: **SOIL** F2923-04 Matrix:

Analytical Method: SW8081 % Moisture: 16.3 Decanted: Sample Wt/Vol: 30.04 Units: Final Vol: 10000 uL

Pesticide-TCL Soil Aliquot Vol: иL Test:

**Extraction Type:** Injection Volume:

g

1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID 07/01/14 1 07/02/14 PB77543

**CAS Number** Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units **TARGETS** 319-84-6 alpha-BHC 0.394 U 0.155 0.394 2 ug/kg 319-85-7 beta-BHC 0.394 U 0.215 0.394 2 ug/kg 319-86-8 delta-BHC 0.394 U 0.119 0.394 2 ug/kg 58-89-9 gamma-BHC (Lindane) 0.394 U 0.179 0.394 2 ug/kg 76-44-8 Heptachlor 0.394 U 0.167 0.394 2 ug/kg 309-00-2 0.394 0.394 2 Aldrin U 0.119 ug/kg Heptachlor epoxide 0.394 U 0.394 2 1024-57-3 0.191 ug/kg 2 959-98-8 Endosulfan I 0.394 U 0.179 0.394 ug/kg 2 60-57-1 Dieldrin 0.394 U 0.155 0.394 ug/kg 4,4-DDE 2 72-55-9 0.394 U 0.239 0.394 ug/kg 72-20-8 Endrin 0.394 U 0.215 0.394 2 ug/kg 33213-65-9 Endosulfan II 0.394 U 0.167 0.394 2 ug/kg 72-54-8 4.4-DDD 0.394 U 0.394 2 0.203 ug/kg 1031-07-8 Endosulfan Sulfate 0.394 U 0.179 0.394 2 ug/kg U 0.394 2 50-29-3 4,4-DDT 0.394 0.167 ug/kg 0.394 2 72-43-5 Methoxychlor U 0.203 0.394 ug/kg 2 53494-70-5 Endrin ketone 0.394 U 0.394 0.155 ug/kg 2 7421-93-4 Endrin aldehyde 0.394 U 0.394 0.179 ug/kg 0.394 U 0.394 2 5103-71-9 alpha-Chlordane 0.167 ug/kg 2 0.394 U 0.155 0.394 5103-74-2 gamma-Chlordane ug/kg 8001-35-2 Toxaphene 4 U 4 4 20.3 ug/kg **SURROGATES** Decachlorobiphenyl 21.6 10 - 169 108% SPK: 20 2051-24-3 877-09-8 Tetrachloro-m-xylene 21.6 31 - 151 108% SPK: 20



#### **Report of Analysis**

Client: Dvirka & Bartilucci

Date Collected: 06/26/14

Project:

NYCSCA Unionport Road Bronx

06/27/14

Client Sample ID:

GP-18(6-18)

F2923

Lab Sample ID:

F2923-04

**SOIL** 

SW8081

Matrix:

Date Received:

Decanted:

Analytical Method:

% Moisture:

SDG No.:

16.3

Sample Wt/Vol:

30.04 Units: g Final Vol:

10000 иL

Soil Aliquot Vol:

иL

Test:

Pesticide-TCL

Extraction Type:

1.0

PH:

Injection Volume:

GPC Factor: File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PB77543

PD023230.D

1

07/01/14

07/02/14

**CAS Number** 

Conc.

Qualifier MDL

LOQ / CRQL Units

Parameter

LOD

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected

concentrations between the two GC columns Q = indicates LCS control criteria did not meet requirements J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



 Client:
 Dvirka & Bartilucci
 Date Collected:
 06/26/14

 Project:
 NYCSCA Unionport Road Bronx
 Date Received:
 06/27/14

Client Sample ID: GP-18(6-18) SDG No.: F2923
Lab Sample ID: F2923-04 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 16.3

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072245.D 1 07/01/14 07/02/14 PB77544

| BI 0722 13.D | •                           | 07/01/11 |              | 77702711 |      | 18//311    |       |
|--------------|-----------------------------|----------|--------------|----------|------|------------|-------|
| CAS Number   | Parameter                   | Con      | c. Qualifier | MDL      | LOD  | LOQ / CRQL | Units |
| TARGETS      |                             |          |              |          |      |            |       |
| 100-52-7     | Benzaldehyde                | 39.7     | 7 U          | 20.7     | 39.7 | 390        | ug/Kg |
| 108-95-2     | Phenol                      | 39.7     | 7 U          | 9.2      | 39.7 | 390        | ug/Kg |
| 111-44-4     | bis(2-Chloroethyl)ether     | 39.7     | 7 U          | 19.1     | 39.7 | 390        | ug/Kg |
| 95-57-8      | 2-Chlorophenol              | 39.7     | 7 U          | 21       | 39.7 | 390        | ug/Kg |
| 95-48-7      | 2-Methylphenol              | 39.7     | 7 U          | 21.6     | 39.7 | 390        | ug/Kg |
| 108-60-1     | 2,2-oxybis(1-Chloropropane) | 39.7     | 7 U          | 16.4     | 39.7 | 390        | ug/Kg |
| 98-86-2      | Acetophenone                | 39.7     | 7 U          | 12.2     | 39.7 | 390        | ug/Kg |
| 65794-96-9   | 3+4-Methylphenols           | 39.7     | 7 U          | 20.6     | 39.7 | 390        | ug/Kg |
| 621-64-7     | n-Nitroso-di-n-propylamine  | 39.7     | 7 U          | 20       | 39.7 | 390        | ug/Kg |
| 67-72-1      | Hexachloroethane            | 39.7     | 7 U          | 17.8     | 39.7 | 390        | ug/Kg |
| 98-95-3      | Nitrobenzene                | 39.7     | 7 U          | 15       | 39.7 | 390        | ug/Kg |
| 78-59-1      | Isophorone                  | 39.7     | 7 U          | 13.1     | 39.7 | 390        | ug/Kg |
| 88-75-5      | 2-Nitrophenol               | 39.7     | 7 U          | 19.2     | 39.7 | 390        | ug/Kg |
| 105-67-9     | 2,4-Dimethylphenol          | 39.7     | 7 U          | 22.5     | 39.7 | 390        | ug/Kg |
| 111-91-1     | bis(2-Chloroethoxy)methane  | 39.7     | 7 U          | 22.9     | 39.7 | 390        | ug/Kg |
| 120-83-2     | 2,4-Dichlorophenol          | 39.7     | 7 U          | 15.1     | 39.7 | 390        | ug/Kg |
| 91-20-3      | Naphthalene                 | 39.7     | 7 U          | 13.7     | 39.7 | 390        | ug/Kg |
| 106-47-8     | 4-Chloroaniline             | 39.7     | 7 U          | 28       | 39.7 | 390        | ug/Kg |
| 87-68-3      | Hexachlorobutadiene         | 39.7     | 7 U          | 14.4     | 39.7 | 390        | ug/Kg |
| 105-60-2     | Caprolactam                 | 79.5     | 5 U          | 18.5     | 79.5 | 390        | ug/Kg |
| 59-50-7      | 4-Chloro-3-methylphenol     | 39.7     | 7 U          | 17.6     | 39.7 | 390        | ug/Kg |
| 91-57-6      | 2-Methylnaphthalene         | 39.7     | 7 U          | 10       | 39.7 | 390        | ug/Kg |
| 77-47-4      | Hexachlorocyclopentadiene   | 39.7     | 7 U          | 9.7      | 39.7 | 390        | ug/Kg |
| 88-06-2      | 2,4,6-Trichlorophenol       | 39.7     | 7 U          | 12.2     | 39.7 | 390        | ug/Kg |
| 95-95-4      | 2,4,5-Trichlorophenol       | 39.7     | 7 U          | 27.9     | 39.7 | 390        | ug/Kg |
| 92-52-4      | 1,1-Biphenyl                | 39.7     | 7 U          | 15       | 39.7 | 390        | ug/Kg |
| 91-58-7      | 2-Chloronaphthalene         | 39.7     | 7 U          | 9.1      | 39.7 | 390        | ug/Kg |
| 88-74-4      | 2-Nitroaniline              | 39.7     | 7 U          | 17.6     | 39.7 | 390        | ug/Kg |
| 131-11-3     | Dimethylphthalate           | 710      |              | 10.7     | 39.7 | 390        | ug/Kg |
| 208-96-8     | Acenaphthylene              | 39.7     | 7 U          | 10       | 39.7 | 390        | ug/Kg |
| 606-20-2     | 2,6-Dinitrotoluene          | 39.7     | 7 U          | 16.2     | 39.7 | 390        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-18(6-18) SDG No.: F2923
Lab Sample ID: F2923-04 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 16.3

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072245.D 1 07/01/14 07/02/14 PB77544

| BF072245.D | 1                          | 07/01/14 | 07.       | /02/14 |      | PB77544    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 79.5     | U         | 25.5   | 79.5 | 390        | ug/Kg |
| 83-32-9    | Acenaphthene               | 39.7     | U         | 11.2   | 39.7 | 390        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 320      | U         | 40.4   | 320  | 390        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 200      | U         | 73.8   | 200  | 390        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 39.7     | U         | 15.5   | 39.7 | 390        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 39.7     | U         | 11.9   | 39.7 | 390        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 39.7     | U         | 6.2    | 39.7 | 390        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 39.7     | U         | 21.6   | 39.7 | 390        | ug/Kg |
| 86-73-7    | Fluorene                   | 39.7     | U         | 15     | 39.7 | 390        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 79.5     | U         | 51.7   | 79.5 | 390        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 200      | U         | 22.8   | 200  | 390        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 39.7     | U         | 9.5    | 39.7 | 390        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 39.7     | U         | 7.7    | 39.7 | 390        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 39.7     | U         | 16.2   | 39.7 | 390        | ug/Kg |
| 1912-24-9  | Atrazine                   | 39.7     | U         | 21     | 39.7 | 390        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 39.7     | U         | 27.2   | 39.7 | 390        | ug/Kg |
| 85-01-8    | Phenanthrene               | 210      | J         | 10.7   | 39.7 | 390        | ug/Kg |
| 120-12-7   | Anthracene                 | 39.7     | U         | 8.1    | 39.7 | 390        | ug/Kg |
| 86-74-8    | Carbazole                  | 39.7     | U         | 8.7    | 39.7 | 390        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 39.7     | U         | 31.2   | 39.7 | 390        | ug/Kg |
| 206-44-0   | Fluoranthene               | 520      |           | 8      | 39.7 | 390        | ug/Kg |
| 129-00-0   | Pyrene                     | 470      |           | 9.5    | 39.7 | 390        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 39.7     | U         | 19.1   | 39.7 | 390        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 39.7     | U         | 25.5   | 39.7 | 390        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 300      | J         | 19     | 39.7 | 390        | ug/Kg |
| 218-01-9   | Chrysene                   | 330      | J         | 18     | 39.7 | 390        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 87.4     | J         | 14.1   | 39.7 | 390        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 39.7     | U         | 4.5    | 39.7 | 390        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 400      |           | 13     | 39.7 | 390        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 150      | J         | 18.7   | 39.7 | 390        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 310      | J         | 8.6    | 39.7 | 390        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 190      | J         | 13.2   | 39.7 | 390        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 39.7     | U         | 11.4   | 39.7 | 390        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: F2923 GP-18(6-18) Lab Sample ID: F2923-04 Matrix: SOIL Analytical Method: SW8270 % Moisture: 16.3 Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group1 Level: Extraction Type: Decanted: N LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF072245.D 1 07/01/14 07/02/14 PB77544 Qualifier **MDL CAS Number Parameter** Conc. LOD LOQ / CRQL Units 191-24-2 230 J 16.1 39.7 390 ug/Kg Benzo(g,h,i)perylene 95-94-3 39.7 U 15.6 390 1,2,4,5-Tetrachlorobenzene 39.7 ug/Kg 58-90-2 2,3,4,6-Tetrachlorophenol 39.7 U 15.6 39.7 390 ug/Kg

|            | 7-7 7                |      |          |     |          |
|------------|----------------------|------|----------|-----|----------|
| SURROGATES |                      |      |          |     |          |
| 367-12-4   | 2-Fluorophenol       | 120  | 28 - 127 | 83% | SPK: 150 |
| 13127-88-3 | Phenol-d6            | 120  | 34 - 127 | 77% | SPK: 150 |
| 4165-60-0  | Nitrobenzene-d5      | 73.3 | 31 - 132 | 73% | SPK: 100 |
| 321-60-8   | 2-Fluorobiphenyl     | 72.2 | 39 - 123 | 72% | SPK: 100 |
| 118-79-6   | 2,4,6-Tribromophenol | 110  | 30 - 133 | 71% | SPK: 150 |
| 1718-51-0  | Terphenyl-d14        | 66.2 | 37 - 115 | 66% | SPK: 100 |

| INTERNAL STA | ANDARDS                |        |       |  |
|--------------|------------------------|--------|-------|--|
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 43223  | 7.17  |  |
| 1146-65-2    | Naphthalene-d8         | 197554 | 8.74  |  |
| 15067-26-2   | Acenaphthene-d10       | 103373 | 10.91 |  |
|              |                        |        |       |  |

| 1517-22-2 | Phenanthrene-d10 | 184152 | 12.75 |
|-----------|------------------|--------|-------|
| 1719-03-5 | Chrysene-d12     | 221244 | 16.01 |
| 1520-96-3 | Perylene-d12     | 201255 | 17.69 |

| 1/1/-05-5     | CIII y SCIIC-U12                 | 221277 | 10.01 |       |        |
|---------------|----------------------------------|--------|-------|-------|--------|
| 1520-96-3     | Perylene-d12                     | 201255 | 17.69 |       |        |
| TENTATIVE IDE | NTIFIED COMPOUNDS                |        |       |       |        |
| 000096-37-7   | Cyclopentane, methyl-            | 1300   | J     | 1.17  | ug/Kg  |
| 000077-76-9   | Propane, 2,2-dimethoxy-          | 13800  | JB    | 1.37  | ug/Kg  |
| 000994-05-8   | Butane, 2-methoxy-2-methyl-      | 970    | J     | 1.65  | ug/Kg  |
| 000123-42-2   | 2-Pentanone, 4-hydroxy-4-methyl- | 540    | AB    | 4.89  | ug/Kg  |
|               | unknown6.87                      | 3500   | JВ    | 6.87  | ug/Kg  |
| 000143-07-7   | Dodecanoic acid                  | 290    | J     | 13.49 | ug/Kg  |
| 018435-45-5   | 1-Nonadecene                     | 280    | Ī     | 15 92 | 11σ/Κσ |

| 000143-07-7 | Dodecanoic acid                   | 290  | J | 13.49 | ug/Kg |
|-------------|-----------------------------------|------|---|-------|-------|
| 018435-45-5 | 1-Nonadecene                      | 280  | J | 15.92 | ug/Kg |
|             | unknown16.91                      | 110  | J | 16.91 | ug/Kg |
| 000111-02-4 | 2,6,10,14,18,22-Tetracosahexaene, | 160  | J | 17.18 | ug/Kg |
| 000198-55-0 | Perylene                          | 220  | J | 17.57 | ug/Kg |
| 074685-33-9 | 3-Eicosene, (E)-                  | 90.2 | J | 18.3  | ug/Kg |
|             |                                   |      |   |       |       |



Sample Wt/Vol:

#### **Report of Analysis**

Client: Dvirka & Bartilucci

Ovirka & Bartilucci Date Collected:

06/26/14

06/27/14

1000

uL

Date Received:

Final Vol:

Project: NYCSCA Unionport Road Bronx

Units:

g

30.07

Client Sample ID: SDG No.: F2923

Lab Sample ID: F2923-04 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 16.3

Analytical Method: SW8270 % Moisture: 16.3

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072245.D 1 07/01/14 07/02/14 PB77544

CAS Number Parameter Conc. Qualifier MDL LOD LOQ/CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-18(6-18) SDG No.: F2923 SOIL Lab Sample ID: F2923-04 Matrix: Analytical Method: SW8260 % Moisture: 16.3 Sample Wt/Vol: 18.68 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF042222.D 1 07/01/14 VF070114

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 74-87-3    | Chloromethane                  | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 74-83-9    | Bromomethane                   | 0.32  | U         | 0.32 | 0.32 | 1.6        | ug/Kg |
| 75-00-3    | Chloroethane                   | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 67-64-1    | Acetone                        | 0.8   | U         | 0.8  | 0.8  | 8          | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 0.32  | U         | 0.32 | 0.32 | 1.6        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 2.4   | U         | 0.99 | 2.4  | 8          | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 67-66-3    | Chloroform                     | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 71-43-2    | Benzene                        | 0.16  | U         | 0.12 | 0.16 | 1.6        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 79-01-6    | Trichloroethene                | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 0.16  | U         | 0.08 | 0.16 | 1.6        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 0.8   | UQ        | 0.8  | 0.8  | 8          | ug/Kg |
| 108-88-3   | Toluene                        | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.16  | U         | 0.16 | 0.16 | 1.6        | ug/Kg |



GC Column:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GP-18(6-18) SDG No.: F2923 SOIL Lab Sample ID: F2923-04 Matrix: Analytical Method: SW8260 % Moisture: 16.3 Sample Wt/Vol: 18.68 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF042222.D 1 07/01/14 VF070114

ID: 0.18

RTX-VMS

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.16  | U         | 0.16     | 0.16 | 1.6        | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.32  | U         | 0.29     | 0.32 | 1.6        | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 0.8   | UQ        | 0.8      | 0.8  | 8          | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 0.16  | U         | 0.16     | 0.16 | 1.6        | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 0.16  | UQ        | 0.16     | 0.16 | 1.6        | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 0.16  | U         | 0.16     | 0.16 | 1.6        | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 0.16  | U         | 0.16     | 0.16 | 1.6        | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 0.16  | U         | 0.16     | 0.16 | 1.6        | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 0.32  | U         | 0.23     | 0.32 | 3.2        | ug/Kg   |
| 95-47-6     | o-Xylene                    | 0.16  | U         | 0.16     | 0.16 | 1.6        | ug/Kg   |
| 100-42-5    | Styrene                     | 0.16  | U         | 0.14     | 0.16 | 1.6        | ug/Kg   |
| 75-25-2     | Bromoform                   | 0.48  | U         | 0.24     | 0.48 | 1.6        | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 0.16  | U         | 0.15     | 0.16 | 1.6        | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.16  | U         | 0.15     | 0.16 | 1.6        | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 0.16  | U         | 0.12     | 0.16 | 1.6        | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.16  | U         | 0.14     | 0.16 | 1.6        | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 0.16  | U         | 0.16     | 0.16 | 1.6        | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.16  | U         | 0.16     | 0.16 | 1.6        | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 0.16  | U         | 0.16     | 0.16 | 1.6        | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 0.16  | U         | 0.09     | 0.16 | 1.6        | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.16  | U         | 0.12     | 0.16 | 1.6        | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.16  | U         | 0.13     | 0.16 | 1.6        | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 0.16  | U         | 0.15     | 0.16 | 1.6        | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.16  | U         | 0.16     | 0.16 | 1.6        | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 1.6   | UQ        | 0.28     | 1.6  | 1.6        | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.16  | U         | 0.16     | 0.16 | 1.6        | ug/Kg   |
| 91-20-3     | Naphthalene                 | 0.16  | U         | 0.14     | 0.16 | 1.6        | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.32  | U         | 0.16     | 0.32 | 1.6        | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 32    | U         | 32       | 32   | 32         | ug/Kg   |
| SURROGATES  |                             |       |           |          |      |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 38.6  |           | 56 - 120 |      | 77%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 37.6  |           | 57 - 135 | 5    | 75%        | SPK: 50 |



#### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-18(6-18)

Lab Sample ID: F2923-04

Analytical Method: SW8260

Sample Wt/Vol: 18.68 Units: g

Soil Aliquot Vol: uL

GC Column: RTX-VMS ID: 0.18

1

% Moisture:

Date Collected:

Date Received:

SDG No.:

Matrix:

Final Vol: 5000

Test: VOCMS Group1

Level: LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

06/26/14

06/27/14

F2923

SOIL

16.3

uL

VF042222.D

07/01/14

VF070114

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL LO   | DD LOQ / CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|---------------|---------|
| 2037-26-5    | Toluene-d8             | 30.9   | *         | 67 - 123 | 62%           | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 21.8   |           | 33 - 141 | 44%           | SPK: 50 |
| INTERNAL ST. | ANDARDS                |        |           |          |               |         |
| 363-72-4     | Pentafluorobenzene     | 171460 | 4.85      |          |               |         |
| 540-36-3     | 1,4-Difluorobenzene    | 265532 | 5.57      |          |               |         |
| 3114-55-4    | Chlorobenzene-d5       | 185164 | 9.74      |          |               |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 55883  | 12.52     |          |               |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Lab Sample ID:

F2923-05

#### **Report of Analysis**

Matrix:

WATER

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-11(GW) SDG No.: F2923

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD  | LOQ/ | CRQL Uni | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|------|------|----------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.48  | J    | 1  | 0.14 | 1.0  | 2    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 2.4   |      | 1  | 0.18 | 0.5  | 1    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 734   |      | 1  | 0.1  | 5.0  | 10   | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 6.3   |      | 1  | 0.09 | 0.5  | 1    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 2.8   |      | 1  | 0.13 | 0.5  | 1    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 71.8  | *    | 1  | 0.04 | 1.0  | 2    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 122   |      | 1  | 0.05 | 0.5  | 1    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 144   | *    | 1  | 0.04 | 1.0  | 2    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 132   |      | 1  | 0.04 | 0.5  | 1    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 17900 | D    | 25 | 1.3  | 12.5 | 25   | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.413 |      | 1  | 0.1  | 0.1  | 0.2  | ug/L     | 07/01/14      | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 140   | *    | 1  | 0.06 | 0.5  | 1    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 4.2   | J    | 1  | 0.7  | 2.5  | 5    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 0.8   | J    | 1  | 0.03 | 0.5  | 1    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.79  | J    | 1  | 0.02 | 0.5  | 1    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 54.6  |      | 1  | 0.15 | 2.5  | 5    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 394   | *    | 1  | 0.09 | 1.0  | 2    | ug/L     | 07/01/14      | 07/03/14  | SW6020   |

Color Before: Brown Clarity Before: Cloudy Texture:

Color After: Yellow Clarity After: Clear Artifacts:

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



Date Collected:

Date Received:

SDG No.:

% Moisture:

Matrix:

06/26/14

06/27/14

F2923

Water

100

#### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GW-11(GW)

Lab Sample ID: F2923-05

Analytical Method: 608 Decanted: Sample Wt/Vol: 1000 Units: mLFinal Vol: 1000 иL

uL Test: PCB Group1 Soil Aliquot Vol:

Extraction Type: Injection Volume:

1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

1 07/01/14 07/04/14 PP003797.D PB77537

| CAS Number | Parameter            | Conc. | Qualifie | MDL      | LOD   | LOQ / CF | RQL Units |
|------------|----------------------|-------|----------|----------|-------|----------|-----------|
| TARGETS    |                      |       |          |          |       |          |           |
| 12674-11-2 | Aroclor-1016         | 0.025 | U        | 0.02     | 0.025 | 0.05     | ug/L      |
| 11104-28-2 | Aroclor-1221         | 0.025 | U        | 0.02     | 0.025 | 0.05     | ug/L      |
| 11141-16-5 | Aroclor-1232         | 0.025 | U        | 0.008    | 0.025 | 0.05     | ug/L      |
| 53469-21-9 | Aroclor-1242         | 0.025 | U        | 0.01     | 0.025 | 0.05     | ug/L      |
| 12672-29-6 | Aroclor-1248         | 0.025 | U        | 0.015    | 0.025 | 0.05     | ug/L      |
| 11097-69-1 | Aroclor-1254         | 0.025 | U        | 0.012    | 0.025 | 0.05     | ug/L      |
| 11096-82-5 | Aroclor-1260         | 0.025 | U        | 0.024    | 0.025 | 0.05     | ug/L      |
| SURROGATES |                      |       |          |          |       |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 16.9  |          | 18 - 163 | 3     | 85%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 13.5  |          | 10 - 177 | 7     | 67%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-11(GW) SDG No.: F2923
Lab Sample ID: F2923-05 Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072236.D 1 07/01/14 07/02/14 PB77536

| B1 072230.B | •                           | 07/01/11 |           | 702/11 |     | 1 1 7 7 3 3 0 |       |
|-------------|-----------------------------|----------|-----------|--------|-----|---------------|-------|
| CAS Number  | Parameter                   | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL    | Units |
| TARGETS     |                             |          |           |        |     |               |       |
| 100-52-7    | Benzaldehyde                | 1        | U         | 0.77   | 1   | 10            | ug/L  |
| 108-95-2    | Phenol                      | 1        | U         | 0.21   | 1   | 10            | ug/L  |
| 111-44-4    | bis(2-Chloroethyl)ether     | 1        | U         | 0.55   | 1   | 10            | ug/L  |
| 95-57-8     | 2-Chlorophenol              | 1        | U         | 0.54   | 1   | 10            | ug/L  |
| 95-48-7     | 2-Methylphenol              | 1        | U         | 0.24   | 1   | 10            | ug/L  |
| 108-60-1    | 2,2-oxybis(1-Chloropropane) | 1        | U         | 0.17   | 1   | 10            | ug/L  |
| 98-86-2     | Acetophenone                | 1        | U         | 0.14   | 1   | 10            | ug/L  |
| 65794-96-9  | 3+4-Methylphenols           | 1        | U         | 0.38   | 1   | 10            | ug/L  |
| 621-64-7    | n-Nitroso-di-n-propylamine  | 1        | U         | 0.2    | 1   | 10            | ug/L  |
| 67-72-1     | Hexachloroethane            | 1        | U         | 0.25   | 1   | 10            | ug/L  |
| 98-95-3     | Nitrobenzene                | 1        | U         | 0.68   | 1   | 10            | ug/L  |
| 78-59-1     | Isophorone                  | 1        | U         | 0.3    | 1   | 10            | ug/L  |
| 88-75-5     | 2-Nitrophenol               | 1        | U         | 0.52   | 1   | 10            | ug/L  |
| 105-67-9    | 2,4-Dimethylphenol          | 1        | U         | 0.71   | 1   | 10            | ug/L  |
| 111-91-1    | bis(2-Chloroethoxy)methane  | 1        | U         | 0.55   | 1   | 10            | ug/L  |
| 120-83-2    | 2,4-Dichlorophenol          | 1        | U         | 0.66   | 1   | 10            | ug/L  |
| 91-20-3     | Naphthalene                 | 1        | U         | 0.12   | 1   | 10            | ug/L  |
| 106-47-8    | 4-Chloroaniline             | 1        | U         | 1      | 1   | 10            | ug/L  |
| 87-68-3     | Hexachlorobutadiene         | 1        | U         | 0.25   | 1   | 10            | ug/L  |
| 105-60-2    | Caprolactam                 | 1        | U         | 1      | 1   | 10            | ug/L  |
| 59-50-7     | 4-Chloro-3-methylphenol     | 1        | U         | 0.4    | 1   | 10            | ug/L  |
| 91-57-6     | 2-Methylnaphthalene         | 1        | U         | 0.32   | 1   | 10            | ug/L  |
| 77-47-4     | Hexachlorocyclopentadiene   | 1        | U         | 0.24   | 1   | 10            | ug/L  |
| 88-06-2     | 2,4,6-Trichlorophenol       | 1        | U         | 0.56   | 1   | 10            | ug/L  |
| 95-95-4     | 2,4,5-Trichlorophenol       | 1        | U         | 0.4    | 1   | 10            | ug/L  |
| 92-52-4     | 1,1-Biphenyl                | 1        | U         | 0.15   | 1   | 10            | ug/L  |
| 91-58-7     | 2-Chloronaphthalene         | 1        | U         | 0.16   | 1   | 10            | ug/L  |
| 88-74-4     | 2-Nitroaniline              | 1        | U         | 0.49   | 1   | 10            | ug/L  |
| 131-11-3    | Dimethylphthalate           | 5        | J         | 0.22   | 1   | 10            | ug/L  |
| 208-96-8    | Acenaphthylene              | 1        | U         | 0.7    | 1   | 10            | ug/L  |
| 606-20-2    | 2,6-Dinitrotoluene          | 1        | U         | 0.32   | 1   | 10            | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-11(GW) SDG No.: F2923
Lab Sample ID: F2923-05 Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072236.D 1 07/01/14 07/02/14 PB77536

| BF072236.D | 1                          | 07/01/14 | 07.       | /02/14 |     | PB77536    |       |
|------------|----------------------------|----------|-----------|--------|-----|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 1        | U         | 1      | 1   | 10         | ug/L  |
| 83-32-9    | Acenaphthene               | 1        | U         | 0.21   | 1   | 10         | ug/L  |
| 51-28-5    | 2,4-Dinitrophenol          | 8        | U         | 2.1    | 8   | 10         | ug/L  |
| 100-02-7   | 4-Nitrophenol              | 5        | U         | 2      | 5   | 10         | ug/L  |
| 132-64-9   | Dibenzofuran               | 1        | U         | 0.24   | 1   | 10         | ug/L  |
| 121-14-2   | 2,4-Dinitrotoluene         | 1        | U         | 1      | 1   | 10         | ug/L  |
| 84-66-2    | Diethylphthalate           | 1        | U         | 0.38   | 1   | 10         | ug/L  |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 1        | U         | 0.21   | 1   | 10         | ug/L  |
| 86-73-7    | Fluorene                   | 1        | U         | 0.31   | 1   | 10         | ug/L  |
| 100-01-6   | 4-Nitroaniline             | 2        | U         | 1.4    | 2   | 10         | ug/L  |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 2        | U         | 0.74   | 2   | 10         | ug/L  |
| 86-30-6    | n-Nitrosodiphenylamine     | 1        | U         | 0.6    | 1   | 10         | ug/L  |
| 101-55-3   | 4-Bromophenyl-phenylether  | 1        | U         | 0.23   | 1   | 10         | ug/L  |
| 118-74-1   | Hexachlorobenzene          | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 1912-24-9  | Atrazine                   | 1        | U         | 0.4    | 1   | 10         | ug/L  |
| 87-86-5    | Pentachlorophenol          | 1        | U         | 1      | 1   | 10         | ug/L  |
| 85-01-8    | Phenanthrene               | 1        | U         | 0.26   | 1   | 10         | ug/L  |
| 120-12-7   | Anthracene                 | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 86-74-8    | Carbazole                  | 1        | U         | 0.22   | 1   | 10         | ug/L  |
| 84-74-2    | Di-n-butylphthalate        | 1        | U         | 1      | 1   | 10         | ug/L  |
| 206-44-0   | Fluoranthene               | 1        | U         | 0.4    | 1   | 10         | ug/L  |
| 129-00-0   | Pyrene                     | 1        | U         | 0.2    | 1   | 10         | ug/L  |
| 85-68-7    | Butylbenzylphthalate       | 1        | U         | 0.19   | 1   | 10         | ug/L  |
| 91-94-1    | 3,3-Dichlorobenzidine      | 1        | U         | 1      | 1   | 10         | ug/L  |
| 56-55-3    | Benzo(a)anthracene         | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 218-01-9   | Chrysene                   | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 117-84-0   | Di-n-octyl phthalate       | 1        | U         | 0.51   | 1   | 10         | ug/L  |
| 205-99-2   | Benzo(b)fluoranthene       | 1        | U         | 0.29   | 1   | 10         | ug/L  |
| 207-08-9   | Benzo(k)fluoranthene       | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 50-32-8    | Benzo(a)pyrene             | 1        | U         | 0.14   | 1   | 10         | ug/L  |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 1        | U         | 0.15   | 1   | 10         | ug/L  |
| 53-70-3    | Dibenzo(a,h)anthracene     | 1        | U         | 0.42   | 1   | 10         | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-11(GW) SDG No.: F2923

Lab Sample ID: F2923-05 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072236.D 1 07/01/14 07/02/14 PB77536

| DI 072230.D  | 1                                  | 07/01/14 |        | 077       | 02/14    |     | 1 1 7 7 3 3 0 |          |
|--------------|------------------------------------|----------|--------|-----------|----------|-----|---------------|----------|
| CAS Number   | Parameter                          |          | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL    | Units    |
| 191-24-2     | Benzo(g,h,i)perylene               |          | 1      | U         | 0.29     | 1   | 10            | ug/L     |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene         |          | 1      | U         | 0.2      | 1   | 10            | ug/L     |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol          |          | 1      | U         | 0.2      | 1   | 10            | ug/L     |
| SURROGATES   |                                    |          |        |           |          |     |               |          |
| 367-12-4     | 2-Fluorophenol                     |          | 68.3   |           | 10 - 130 | )   | 46%           | SPK: 150 |
| 13127-88-3   | Phenol-d6                          |          | 42.2   |           | 10 - 130 | )   | 28%           | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                    |          | 81.9   |           | 36 - 131 |     | 82%           | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                   |          | 88.6   |           | 39 - 131 |     | 89%           | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol               |          | 140    |           | 25 - 155 |     | 96%           | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                      |          | 88.5   |           | 23 - 130 | )   | 89%           | SPK: 100 |
| INTERNAL STA | ANDARDS                            |          |        |           |          |     |               |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4             |          | 44370  | 7.17      |          |     |               |          |
| 1146-65-2    | Naphthalene-d8                     |          | 192088 | 8.74      |          |     |               |          |
| 15067-26-2   | Acenaphthene-d10                   |          | 98128  | 10.9      |          |     |               |          |
| 1517-22-2    | Phenanthrene-d10                   |          | 183512 | 12.75     |          |     |               |          |
| 1719-03-5    | Chrysene-d12                       |          | 206709 | 16.01     |          |     |               |          |
| 1520-96-3    | Perylene-d12                       |          | 189985 | 17.66     |          |     |               |          |
| TENTATIVE ID | DENTIFIED COMPOUNDS                |          |        |           |          |     |               |          |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-        |          | 88.5   | J         |          |     | 1.64          | ug/L     |
|              | unknown6.87                        |          | 82.6   | JB        |          |     | 6.87          | ug/L     |
| 000143-07-7  | Dodecanoic acid                    |          | 10.3   | J         |          |     | 13.49         | ug/L     |
| 002733-88-2  | 15-Tetracosenoic acid, methyl este | ;        | 12.7   | J         |          |     | 14.37         | ug/L     |
| 074339-53-0  | Trichloroacetic acid, pentadecyl e |          | 5.7    | J         |          |     | 15.92         | ug/L     |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

<sup>\* =</sup> Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-11(GW) SDG No.: F2923

Lab Sample ID: F2923-05 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016911.D 1 07/02/14 VN070114

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-87-3    | Chloromethane                  | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-83-9    | Bromomethane                   | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-00-3    | Chloroethane                   | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 67-64-1    | Acetone                        | 7.1   |           | 0.5  | 1   | 5          | ug/L  |
| 75-15-0    | Carbon Disulfide               | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.5   | U         | 0.35 | 0.5 | 1          | ug/L  |
| 79-20-9    | Methyl Acetate                 | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-09-2    | Methylene Chloride             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 110-82-7   | Cyclohexane                    | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-93-3    | 2-Butanone                     | 2.5   | U         | 1.3  | 2.5 | 5          | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-97-5    | Bromochloromethane             | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 67-66-3    | Chloroform                     | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-87-2   | Methylcyclohexane              | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-43-2    | Benzene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 79-01-6    | Trichloroethene                | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-27-4    | Bromodichloromethane           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1     | U         | 1    | 1   | 5          | ug/L  |
| 108-88-3   | Toluene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-11(GW) SDG No.: F2923

Lab Sample ID: F2923-05 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016911.D 1 07/02/14 VN070114

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|-----|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 591-78-6    | 2-Hexanone                  | 2.5   | U         | 1.9      | 2.5 | 5          | ug/L    |
| 124-48-1    | Dibromochloromethane        | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 106-93-4    | 1,2-Dibromoethane           | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 127-18-4    | Tetrachloroethene           | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 108-90-7    | Chlorobenzene               | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 100-41-4    | Ethyl Benzene               | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 179601-23-1 | m/p-Xylenes                 | 0.4   | U         | 0.4      | 0.4 | 2          | ug/L    |
| 95-47-6     | o-Xylene                    | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 100-42-5    | Styrene                     | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 75-25-2     | Bromoform                   | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 98-82-8     | Isopropylbenzene            | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 103-65-1    | n-propylbenzene             | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 98-06-6     | tert-Butylbenzene           | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 135-98-8    | sec-Butylbenzene            | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 99-87-6     | p-Isopropyltoluene          | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 104-51-8    | n-Butylbenzene              | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 91-20-3     | Naphthalene                 | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 123-91-1    | 1,4-Dioxane                 | 100   | U         | 100      | 100 | 100        | ug/L    |
| SURROGATES  |                             |       |           |          |     |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 47.3  |           | 61 - 141 |     | 95%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 43.7  |           | 69 - 133 | 3   | 87%        | SPK: 50 |



#### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GW-11(GW)
Lab Sample ID: F2923-05

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

Date Collected: 06/26/14

Date Received: 06/27/14

SDG No.: F2923

% Moisture: 100

Final Vol: 5000

Test: VOCMS Group1

Level: LOW

File ID/Qc Batch:

VN016911.D

Dilution:

1

Prep Date

Date Analyzed

Matrix:

Prep Batch ID

07/02/14

VN070114

Water

uL

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL LO   | LOQ / CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|------------|---------|
| 2037-26-5    | Toluene-d8             | 47.3   |           | 65 - 126 | 95%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 55.7   |           | 58 - 135 | 111%       | SPK: 50 |
| INTERNAL STA | ANDARDS                |        |           |          |            |         |
| 363-72-4     | Pentafluorobenzene     | 252032 | 7.87      |          |            |         |
| 540-36-3     | 1,4-Difluorobenzene    | 417435 | 8.78      |          |            |         |
| 3114-55-4    | Chlorobenzene-d5       | 444011 | 11.61     |          |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 187027 | 13.56     |          |            |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Level (low/med):

low

#### **Report of Analysis**

% Solid:

0

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-15(GW) SDG No.: F2923

Lab Sample ID: F2923-06 Matrix: WATER

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ/ | CRQL Un | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|------|---------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.24  | J    | 1  | 0.14 | 1.0 | 2    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 0.71  | J    | 1  | 0.18 | 0.5 | 1    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 452   |      | 1  | 0.1  | 5.0 | 10   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 1.6   |      | 1  | 0.09 | 0.5 | 1    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 3     |      | 1  | 0.13 | 0.5 | 1    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 50.6  | *    | 1  | 0.04 | 1.0 | 2    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 146   |      | 1  | 0.05 | 0.5 | 1    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 42.2  | *    | 1  | 0.04 | 1.0 | 2    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 82    |      | 1  | 0.04 | 0.5 | 1    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 7690  |      | 1  | 0.05 | 0.5 | 1    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.186 | J    | 1  | 0.1  | 0.1 | 0.2  | ug/L    | 07/01/14      | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 112   | *    | 1  | 0.06 | 0.5 | 1    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 3.4   | J    | 1  | 0.7  | 2.5 | 5    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 0.61  | J    | 1  | 0.03 | 0.5 | 1    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.29  | J    | 1  | 0.02 | 0.5 | 1    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 16.1  |      | 1  | 0.15 | 2.5 | 5    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 271   | *    | 1  | 0.09 | 1.0 | 2    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |

Color Before: Brown Clarity Before: Cloudy Texture:

Color After: Yellow Clarity After: Clear Artifacts:

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



#### **Report of Analysis**

Client: Dvirka & Bartilucci

ka & Bartilucci Date Collected: 06/26/14

Date Received:

06/27/14

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GW-15(GW) SDG No.: F2923

Lab Sample ID: F2923-06 Matrix: Water

Analytical Method: 608 % Moisture: 100 Decanted: Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: PCB Group1

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PP003798.D 1 07/01/14 07/04/14 PB77537

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD   | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|-------|----------|----------|
| TARGETS    |                      |       |           |          |       |          |          |
| 12674-11-2 | Aroclor-1016         | 0.025 | U         | 0.02     | 0.025 | 0.05     | ug/L     |
| 11104-28-2 | Aroclor-1221         | 0.025 | U         | 0.02     | 0.025 | 0.05     | ug/L     |
| 11141-16-5 | Aroclor-1232         | 0.025 | U         | 0.008    | 0.025 | 0.05     | ug/L     |
| 53469-21-9 | Aroclor-1242         | 0.025 | U         | 0.01     | 0.025 | 0.05     | ug/L     |
| 12672-29-6 | Aroclor-1248         | 0.025 | U         | 0.015    | 0.025 | 0.05     | ug/L     |
| 11097-69-1 | Aroclor-1254         | 0.025 | U         | 0.012    | 0.025 | 0.05     | ug/L     |
| 11096-82-5 | Aroclor-1260         | 0.025 | U         | 0.024    | 0.025 | 0.05     | ug/L     |
| SURROGATES |                      |       |           |          |       |          |          |
| 877-09-8   | Tetrachloro-m-xylene | 18.6  |           | 18 - 163 |       | 93%      | SPK: 20  |
| 2051-24-3  | Decachlorobiphenyl   | 16.3  |           | 10 - 177 |       | 81%      | SPK: 20  |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-15(GW) SDG No.: F2923
Lab Sample ID: F2923-06 Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

Be086579.d 1 07/01/14 07/02/14 PB77536

| Be000377.u | •                           | 07701711 |           | 702/11 |     | 1 1 7 7 3 3 0 |       |
|------------|-----------------------------|----------|-----------|--------|-----|---------------|-------|
| CAS Number | Parameter                   | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL    | Units |
| TARGETS    |                             |          |           |        |     |               |       |
| 100-52-7   | Benzaldehyde                | 1        | U         | 0.77   | 1   | 10            | ug/L  |
| 108-95-2   | Phenol                      | 1        | U         | 0.21   | 1   | 10            | ug/L  |
| 111-44-4   | bis(2-Chloroethyl)ether     | 1        | U         | 0.55   | 1   | 10            | ug/L  |
| 95-57-8    | 2-Chlorophenol              | 1        | U         | 0.54   | 1   | 10            | ug/L  |
| 95-48-7    | 2-Methylphenol              | 1        | U         | 0.24   | 1   | 10            | ug/L  |
| 108-60-1   | 2,2-oxybis(1-Chloropropane) | 1        | U         | 0.17   | 1   | 10            | ug/L  |
| 98-86-2    | Acetophenone                | 1        | U         | 0.14   | 1   | 10            | ug/L  |
| 65794-96-9 | 3+4-Methylphenols           | 1        | U         | 0.38   | 1   | 10            | ug/L  |
| 621-64-7   | n-Nitroso-di-n-propylamine  | 1        | U         | 0.2    | 1   | 10            | ug/L  |
| 67-72-1    | Hexachloroethane            | 1        | U         | 0.25   | 1   | 10            | ug/L  |
| 98-95-3    | Nitrobenzene                | 1        | U         | 0.68   | 1   | 10            | ug/L  |
| 78-59-1    | Isophorone                  | 1        | U         | 0.3    | 1   | 10            | ug/L  |
| 88-75-5    | 2-Nitrophenol               | 1        | U         | 0.52   | 1   | 10            | ug/L  |
| 105-67-9   | 2,4-Dimethylphenol          | 1        | U         | 0.71   | 1   | 10            | ug/L  |
| 111-91-1   | bis(2-Chloroethoxy)methane  | 1        | U         | 0.55   | 1   | 10            | ug/L  |
| 120-83-2   | 2,4-Dichlorophenol          | 1        | U         | 0.66   | 1   | 10            | ug/L  |
| 91-20-3    | Naphthalene                 | 1        | U         | 0.12   | 1   | 10            | ug/L  |
| 106-47-8   | 4-Chloroaniline             | 1        | U         | 1      | 1   | 10            | ug/L  |
| 87-68-3    | Hexachlorobutadiene         | 1        | U         | 0.25   | 1   | 10            | ug/L  |
| 105-60-2   | Caprolactam                 | 1        | U         | 1      | 1   | 10            | ug/L  |
| 59-50-7    | 4-Chloro-3-methylphenol     | 1        | U         | 0.4    | 1   | 10            | ug/L  |
| 91-57-6    | 2-Methylnaphthalene         | 1        | U         | 0.32   | 1   | 10            | ug/L  |
| 77-47-4    | Hexachlorocyclopentadiene   | 1        | U         | 0.24   | 1   | 10            | ug/L  |
| 88-06-2    | 2,4,6-Trichlorophenol       | 1        | U         | 0.56   | 1   | 10            | ug/L  |
| 95-95-4    | 2,4,5-Trichlorophenol       | 1        | U         | 0.4    | 1   | 10            | ug/L  |
| 92-52-4    | 1,1-Biphenyl                | 1        | U         | 0.15   | 1   | 10            | ug/L  |
| 91-58-7    | 2-Chloronaphthalene         | 1        | U         | 0.16   | 1   | 10            | ug/L  |
| 88-74-4    | 2-Nitroaniline              | 1        | U         | 0.49   | 1   | 10            | ug/L  |
| 131-11-3   | Dimethylphthalate           | 7.2      | J         | 0.22   | 1   | 10            | ug/L  |
| 208-96-8   | Acenaphthylene              | 1        | U         | 0.7    | 1   | 10            | ug/L  |
| 606-20-2   | 2,6-Dinitrotoluene          | 1        | U         | 0.32   | 1   | 10            | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-15(GW) SDG No.: F2923
Lab Sample ID: F2923-06 Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

Be086579.d 1 07/01/14 07/02/14 PB77536

| Be086579.d | 1                          | 07/01/14 | 07.       | /02/14 |     | PB77536    |       |
|------------|----------------------------|----------|-----------|--------|-----|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 1        | U         | 1      | 1   | 10         | ug/L  |
| 83-32-9    | Acenaphthene               | 1        | U         | 0.21   | 1   | 10         | ug/L  |
| 51-28-5    | 2,4-Dinitrophenol          | 8        | U         | 2.1    | 8   | 10         | ug/L  |
| 100-02-7   | 4-Nitrophenol              | 5        | U         | 2      | 5   | 10         | ug/L  |
| 132-64-9   | Dibenzofuran               | 1        | U         | 0.24   | 1   | 10         | ug/L  |
| 121-14-2   | 2,4-Dinitrotoluene         | 1        | U         | 1      | 1   | 10         | ug/L  |
| 84-66-2    | Diethylphthalate           | 1        | U         | 0.38   | 1   | 10         | ug/L  |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 1        | U         | 0.21   | 1   | 10         | ug/L  |
| 86-73-7    | Fluorene                   | 1        | U         | 0.31   | 1   | 10         | ug/L  |
| 100-01-6   | 4-Nitroaniline             | 2        | U         | 1.4    | 2   | 10         | ug/L  |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 2        | U         | 0.74   | 2   | 10         | ug/L  |
| 86-30-6    | n-Nitrosodiphenylamine     | 1        | U         | 0.6    | 1   | 10         | ug/L  |
| 101-55-3   | 4-Bromophenyl-phenylether  | 1        | U         | 0.23   | 1   | 10         | ug/L  |
| 118-74-1   | Hexachlorobenzene          | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 1912-24-9  | Atrazine                   | 1        | U         | 0.4    | 1   | 10         | ug/L  |
| 87-86-5    | Pentachlorophenol          | 1        | U         | 1      | 1   | 10         | ug/L  |
| 85-01-8    | Phenanthrene               | 1        | U         | 0.26   | 1   | 10         | ug/L  |
| 120-12-7   | Anthracene                 | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 86-74-8    | Carbazole                  | 1        | U         | 0.22   | 1   | 10         | ug/L  |
| 84-74-2    | Di-n-butylphthalate        | 1        | U         | 1      | 1   | 10         | ug/L  |
| 206-44-0   | Fluoranthene               | 1        | U         | 0.4    | 1   | 10         | ug/L  |
| 129-00-0   | Pyrene                     | 1        | U         | 0.2    | 1   | 10         | ug/L  |
| 85-68-7    | Butylbenzylphthalate       | 1        | U         | 0.19   | 1   | 10         | ug/L  |
| 91-94-1    | 3,3-Dichlorobenzidine      | 1        | U         | 1      | 1   | 10         | ug/L  |
| 56-55-3    | Benzo(a)anthracene         | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 218-01-9   | Chrysene                   | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 117-84-0   | Di-n-octyl phthalate       | 1        | U         | 0.51   | 1   | 10         | ug/L  |
| 205-99-2   | Benzo(b)fluoranthene       | 1        | U         | 0.29   | 1   | 10         | ug/L  |
| 207-08-9   | Benzo(k)fluoranthene       | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 50-32-8    | Benzo(a)pyrene             | 1        | U         | 0.14   | 1   | 10         | ug/L  |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 1        | U         | 0.15   | 1   | 10         | ug/L  |
| 53-70-3    | Dibenzo(a,h)anthracene     | 1        | U         | 0.42   | 1   | 10         | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-15(GW) SDG No.: F2923

Lab Sample ID: F2923-06 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

Be086579.d 1 07/01/14 07/02/14 PB77536

| CAS Number   | Parameter                        | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
|--------------|----------------------------------|--------|-----------|----------|-----|------------|----------|
| 191-24-2     | Benzo(g,h,i)perylene             | 1      | U         | 0.29     | 1   | 10         | ug/L     |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       | 1      | U         | 0.2      | 1   | 10         | ug/L     |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        | 1      | U         | 0.2      | 1   | 10         | ug/L     |
| SURROGATES   |                                  |        |           |          |     |            |          |
| 367-12-4     | 2-Fluorophenol                   | 67.2   |           | 10 - 130 | )   | 45%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        | 43.5   |           | 10 - 130 | )   | 29%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  | 99.9   |           | 36 - 131 | [   | 100%       | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 | 93.6   |           | 39 - 131 | [   | 94%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             | 140    |           | 25 - 155 | 5   | 96%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    | 94.2   |           | 23 - 130 | )   | 94%        | SPK: 100 |
| INTERNAL ST  | ANDARDS                          |        |           |          |     |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 209663 | 6.76      |          |     |            |          |
| 1146-65-2    | Naphthalene-d8                   | 915548 | 8.33      |          |     |            |          |
| 15067-26-2   | Acenaphthene-d10                 | 446156 | 10.47     |          |     |            |          |
| 1517-22-2    | Phenanthrene-d10                 | 672432 | 12.28     |          |     |            |          |
| 1719-03-5    | Chrysene-d12                     | 509245 | 15.5      |          |     |            |          |
| 1520-96-3    | Perylene-d12                     | 409614 | 17.11     |          |     |            |          |
| TENTATIVE II | DENTIFIED COMPOUNDS              |        |           |          |     |            |          |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      | 100    | J         |          |     | 1.51       | ug/L     |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- | 5.4    | AB        |          |     | 4.44       | ug/L     |
|              | unknown6.48                      | 81.8   | J         |          |     | 6.48       | ug/L     |
| 000057-10-3  | n-Hexadecanoic acid              | 2.6    | J         |          |     | 13.05      | ug/L     |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Soil Aliquot Vol:

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-15(GW) SDG No.: F2923

Lab Sample ID: F2923-06 Matrix: Water
Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Test:

VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016913.D 1 07/02/14 VN070114

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-87-3    | Chloromethane                  | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-83-9    | Bromomethane                   | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-00-3    | Chloroethane                   | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 67-64-1    | Acetone                        | 1     | U         | 0.5  | 1   | 5          | ug/L  |
| 75-15-0    | Carbon Disulfide               | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.5   | U         | 0.35 | 0.5 | 1          | ug/L  |
| 79-20-9    | Methyl Acetate                 | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-09-2    | Methylene Chloride             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 110-82-7   | Cyclohexane                    | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-93-3    | 2-Butanone                     | 2.5   | U         | 1.3  | 2.5 | 5          | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-97-5    | Bromochloromethane             | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 67-66-3    | Chloroform                     | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-87-2   | Methylcyclohexane              | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-43-2    | Benzene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 79-01-6    | Trichloroethene                | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-27-4    | Bromodichloromethane           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1     | U         | 1    | 1   | 5          | ug/L  |
| 108-88-3   | Toluene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |



Sample Wt/Vol:

5

Units:

mL

# **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GW-15(GW) SDG No.: F2923 Lab Sample ID: F2923-06 Matrix: Water Analytical Method: SW8260 % Moisture: 100

Final Vol:

5000

uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016913.D 1 07/02/14 VN070114

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|-----|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 591-78-6    | 2-Hexanone                  | 2.5   | U         | 1.9      | 2.5 | 5          | ug/L    |
| 124-48-1    | Dibromochloromethane        | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 106-93-4    | 1,2-Dibromoethane           | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 127-18-4    | Tetrachloroethene           | 1     |           | 0.2      | 0.2 | 1          | ug/L    |
| 108-90-7    | Chlorobenzene               | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 100-41-4    | Ethyl Benzene               | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 179601-23-1 | m/p-Xylenes                 | 0.4   | U         | 0.4      | 0.4 | 2          | ug/L    |
| 95-47-6     | o-Xylene                    | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 100-42-5    | Styrene                     | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 75-25-2     | Bromoform                   | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 98-82-8     | Isopropylbenzene            | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 103-65-1    | n-propylbenzene             | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 98-06-6     | tert-Butylbenzene           | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 135-98-8    | sec-Butylbenzene            | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 99-87-6     | p-Isopropyltoluene          | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 104-51-8    | n-Butylbenzene              | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 91-20-3     | Naphthalene                 | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 123-91-1    | 1,4-Dioxane                 | 100   | U         | 100      | 100 | 100        | ug/L    |
| SURROGATES  |                             |       |           |          |     |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 48.1  |           | 61 - 14  | -   | 96%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 43.8  |           | 69 - 133 | 3   | 88%        | SPK: 50 |



Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GW-15(GW)

Lab Sample ID: F2923-06

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

Level: LOW

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Matrix:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VOCMS Group1

06/26/14

06/27/14

F2923

Water

100

5000

uL

VN016913.D

1

07/02/14

VN070114

| CAS Number  | Parameter              | Conc.  | Qualifier | MDL LO   | DD LOQ / CRQL | Units   |
|-------------|------------------------|--------|-----------|----------|---------------|---------|
| 2037-26-5   | Toluene-d8             | 46.7   |           | 65 - 126 | 93%           | SPK: 50 |
| 460-00-4    | 4-Bromofluorobenzene   | 53.9   |           | 58 - 135 | 108%          | SPK: 50 |
| INTERNAL ST | ANDARDS                |        |           |          |               |         |
| 363-72-4    | Pentafluorobenzene     | 254374 | 7.87      |          |               |         |
| 540-36-3    | 1,4-Difluorobenzene    | 428878 | 8.79      |          |               |         |
| 3114-55-4   | Chlorobenzene-d5       | 445321 | 11.61     |          |               |         |
| 3855-82-1   | 1,4-Dichlorobenzene-d4 | 178218 | 13.56     |          |               |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-18(GW) SDG No.: F2923

Lab Sample ID: F2923-07 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ | CRQL Uni | ts Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|-----|----------|--------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.17  | J    | 1  | 0.14 | 1.0 | 2   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 0.63  | J    | 1  | 0.18 | 0.5 | 1   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 120   |      | 1  | 0.1  | 5.0 | 10  | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | U    | 1  | 0.09 | 0.5 | 1   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 0.38  | J    | 1  | 0.13 | 0.5 | 1   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 4.4   | *    | 1  | 0.04 | 1.0 | 2   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 26.9  |      | 1  | 0.05 | 0.5 | 1   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 9.7   | *    | 1  | 0.04 | 1.0 | 2   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 2     |      | 1  | 0.04 | 0.5 | 1   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 2050  |      | 1  | 0.05 | 0.5 | 1   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1 | 0.2 | ug/L     | 07/01/14     | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 62.6  | *    | 1  | 0.06 | 0.5 | 1   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 3.3   | J    | 1  | 0.7  | 2.5 | 5   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 0.17  | J    | 1  | 0.03 | 0.5 | 1   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.047 | J    | 1  | 0.02 | 0.5 | 1   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 2.6   | J    | 1  | 0.15 | 2.5 | 5   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 26.7  | *    | 1  | 0.09 | 1.0 | 2   | ug/L     | 07/01/14     | 07/03/14  | SW6020   |

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



PP003802.D

2051-24-3

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Date Collected:

Date Received:

07/04/14

06/26/14

06/27/14

PB77537

F2923

#### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

SDG No.: Client Sample ID: GW-18(GW)

Decachlorobiphenyl

Lab Sample ID: F2923-07 Matrix: Water

Analytical Method: 608 % Moisture: 100 Decanted: Sample Wt/Vol: 1000 Units: mLFinal Vol: 1000 uL

Soil Aliquot Vol: uL Test: PCB Group1

**Extraction Type:** Injection Volume:

1.0 PH: GPC Factor:

1

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

07/01/14

**CAS Number** Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units **TARGETS** 12674-11-2 Aroclor-1016 0.025 U 0.02 0.025 0.05 ug/L 11104-28-2 Aroclor-1221 0.025 U 0.02 0.025 0.05 ug/L 11141-16-5 Aroclor-1232 0.025 U 0.008 0.025 0.05 ug/L 0.05 Aroclor-1242 0.025 U 0.01 0.025 53469-21-9 ug/L 12672-29-6 Aroclor-1248 0.025 U 0.015 0.025 0.05 ug/L Aroclor-1254 0.025 U 0.012 0.025 11097-69-1 0.05 ug/L Aroclor-1260 0.025 U 0.024 0.025 11096-82-5 0.05 ug/L **SURROGATES** 877-09-8 Tetrachloro-m-xylene 17.1 18 - 163 85% SPK: 20 19.7 10 - 177 99% SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-18(GW) SDG No.: F2923

Lab Sample ID: F2923-07 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

Be086580.d 1 07/01/14 07/02/14 PB77536

| Be000300.u | •                           | 07701711 |           | 702/11 |     | 1 1 7 7 3 3 0 |       |
|------------|-----------------------------|----------|-----------|--------|-----|---------------|-------|
| CAS Number | Parameter                   | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL    | Units |
| TARGETS    |                             |          |           |        |     |               |       |
| 100-52-7   | Benzaldehyde                | 1        | U         | 0.77   | 1   | 10            | ug/L  |
| 108-95-2   | Phenol                      | 1        | U         | 0.21   | 1   | 10            | ug/L  |
| 111-44-4   | bis(2-Chloroethyl)ether     | 1        | U         | 0.55   | 1   | 10            | ug/L  |
| 95-57-8    | 2-Chlorophenol              | 1        | U         | 0.54   | 1   | 10            | ug/L  |
| 95-48-7    | 2-Methylphenol              | 1        | U         | 0.24   | 1   | 10            | ug/L  |
| 108-60-1   | 2,2-oxybis(1-Chloropropane) | 1        | U         | 0.17   | 1   | 10            | ug/L  |
| 98-86-2    | Acetophenone                | 1        | U         | 0.14   | 1   | 10            | ug/L  |
| 65794-96-9 | 3+4-Methylphenols           | 1        | U         | 0.38   | 1   | 10            | ug/L  |
| 621-64-7   | n-Nitroso-di-n-propylamine  | 1        | U         | 0.2    | 1   | 10            | ug/L  |
| 67-72-1    | Hexachloroethane            | 1        | U         | 0.25   | 1   | 10            | ug/L  |
| 98-95-3    | Nitrobenzene                | 1        | U         | 0.68   | 1   | 10            | ug/L  |
| 78-59-1    | Isophorone                  | 1        | U         | 0.3    | 1   | 10            | ug/L  |
| 88-75-5    | 2-Nitrophenol               | 1        | U         | 0.52   | 1   | 10            | ug/L  |
| 105-67-9   | 2,4-Dimethylphenol          | 1        | U         | 0.71   | 1   | 10            | ug/L  |
| 111-91-1   | bis(2-Chloroethoxy)methane  | 1        | U         | 0.55   | 1   | 10            | ug/L  |
| 120-83-2   | 2,4-Dichlorophenol          | 1        | U         | 0.66   | 1   | 10            | ug/L  |
| 91-20-3    | Naphthalene                 | 1        | U         | 0.12   | 1   | 10            | ug/L  |
| 106-47-8   | 4-Chloroaniline             | 1        | U         | 1      | 1   | 10            | ug/L  |
| 87-68-3    | Hexachlorobutadiene         | 1        | U         | 0.25   | 1   | 10            | ug/L  |
| 105-60-2   | Caprolactam                 | 1        | U         | 1      | 1   | 10            | ug/L  |
| 59-50-7    | 4-Chloro-3-methylphenol     | 1        | U         | 0.4    | 1   | 10            | ug/L  |
| 91-57-6    | 2-Methylnaphthalene         | 1        | U         | 0.32   | 1   | 10            | ug/L  |
| 77-47-4    | Hexachlorocyclopentadiene   | 1        | U         | 0.24   | 1   | 10            | ug/L  |
| 88-06-2    | 2,4,6-Trichlorophenol       | 1        | U         | 0.56   | 1   | 10            | ug/L  |
| 95-95-4    | 2,4,5-Trichlorophenol       | 1        | U         | 0.4    | 1   | 10            | ug/L  |
| 92-52-4    | 1,1-Biphenyl                | 1        | U         | 0.15   | 1   | 10            | ug/L  |
| 91-58-7    | 2-Chloronaphthalene         | 1        | U         | 0.16   | 1   | 10            | ug/L  |
| 88-74-4    | 2-Nitroaniline              | 1        | U         | 0.49   | 1   | 10            | ug/L  |
| 131-11-3   | Dimethylphthalate           | 5.7      | J         | 0.22   | 1   | 10            | ug/L  |
| 208-96-8   | Acenaphthylene              | 1        | U         | 0.7    | 1   | 10            | ug/L  |
| 606-20-2   | 2,6-Dinitrotoluene          | 1        | U         | 0.32   | 1   | 10            | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-18(GW) SDG No.: F2923

Lab Sample ID: F2923-07 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

Be086580.d 1 07/01/14 07/02/14 PB77536

| Be086580.d | 1                          | 07/01/14 | 07.       | /02/14 |     | PB77536    |       |
|------------|----------------------------|----------|-----------|--------|-----|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 1        | U         | 1      | 1   | 10         | ug/L  |
| 83-32-9    | Acenaphthene               | 1        | U         | 0.21   | 1   | 10         | ug/L  |
| 51-28-5    | 2,4-Dinitrophenol          | 8        | U         | 2.1    | 8   | 10         | ug/L  |
| 100-02-7   | 4-Nitrophenol              | 5        | U         | 2      | 5   | 10         | ug/L  |
| 132-64-9   | Dibenzofuran               | 1        | U         | 0.24   | 1   | 10         | ug/L  |
| 121-14-2   | 2,4-Dinitrotoluene         | 1        | U         | 1      | 1   | 10         | ug/L  |
| 84-66-2    | Diethylphthalate           | 1        | U         | 0.38   | 1   | 10         | ug/L  |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 1        | U         | 0.21   | 1   | 10         | ug/L  |
| 86-73-7    | Fluorene                   | 1        | U         | 0.31   | 1   | 10         | ug/L  |
| 100-01-6   | 4-Nitroaniline             | 2        | U         | 1.4    | 2   | 10         | ug/L  |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 2        | U         | 0.74   | 2   | 10         | ug/L  |
| 86-30-6    | n-Nitrosodiphenylamine     | 1        | U         | 0.6    | 1   | 10         | ug/L  |
| 101-55-3   | 4-Bromophenyl-phenylether  | 1        | U         | 0.23   | 1   | 10         | ug/L  |
| 118-74-1   | Hexachlorobenzene          | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 1912-24-9  | Atrazine                   | 1        | U         | 0.4    | 1   | 10         | ug/L  |
| 87-86-5    | Pentachlorophenol          | 1        | U         | 1      | 1   | 10         | ug/L  |
| 85-01-8    | Phenanthrene               | 1        | U         | 0.26   | 1   | 10         | ug/L  |
| 120-12-7   | Anthracene                 | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 86-74-8    | Carbazole                  | 1        | U         | 0.22   | 1   | 10         | ug/L  |
| 84-74-2    | Di-n-butylphthalate        | 1        | U         | 1      | 1   | 10         | ug/L  |
| 206-44-0   | Fluoranthene               | 1        | U         | 0.4    | 1   | 10         | ug/L  |
| 129-00-0   | Pyrene                     | 1        | U         | 0.2    | 1   | 10         | ug/L  |
| 85-68-7    | Butylbenzylphthalate       | 1        | U         | 0.19   | 1   | 10         | ug/L  |
| 91-94-1    | 3,3-Dichlorobenzidine      | 1        | U         | 1      | 1   | 10         | ug/L  |
| 56-55-3    | Benzo(a)anthracene         | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 218-01-9   | Chrysene                   | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 1        | U         | 0.16   | 1   | 10         | ug/L  |
| 117-84-0   | Di-n-octyl phthalate       | 1        | U         | 0.51   | 1   | 10         | ug/L  |
| 205-99-2   | Benzo(b)fluoranthene       | 1        | U         | 0.29   | 1   | 10         | ug/L  |
| 207-08-9   | Benzo(k)fluoranthene       | 1        | U         | 0.18   | 1   | 10         | ug/L  |
| 50-32-8    | Benzo(a)pyrene             | 1        | U         | 0.14   | 1   | 10         | ug/L  |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 1        | U         | 0.15   | 1   | 10         | ug/L  |
| 53-70-3    | Dibenzo(a,h)anthracene     | 1        | U         | 0.42   | 1   | 10         | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-18(GW) SDG No.: F2923

Lab Sample ID: F2923-07 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
Be086580.d 1 07/01/14 07/02/14 PB77536

| CAS Number   | Parameter                        | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
|--------------|----------------------------------|--------|-----------|----------|-----|------------|----------|
| 191-24-2     | Benzo(g,h,i)perylene             | 1      | U         | 0.29     | 1   | 10         | ug/L     |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene       | 1      | U         | 0.2      | 1   | 10         | ug/L     |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol        | 1      | U         | 0.2      | 1   | 10         | ug/L     |
| SURROGATES   |                                  |        |           |          |     |            |          |
| 367-12-4     | 2-Fluorophenol                   | 61.2   |           | 10 - 130 |     | 41%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                        | 40.4   |           | 10 - 130 |     | 27%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                  | 93.3   |           | 36 - 131 |     | 93%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                 | 87.1   |           | 39 - 131 |     | 87%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol             | 140    |           | 25 - 155 |     | 92%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                    | 90.5   |           | 23 - 130 |     | 90%        | SPK: 100 |
| INTERNAL STA | ANDARDS                          |        |           |          |     |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 211002 | 6.77      |          |     |            |          |
| 1146-65-2    | Naphthalene-d8                   | 925134 | 8.34      |          |     |            |          |
| 15067-26-2   | Acenaphthene-d10                 | 458920 | 10.47     |          |     |            |          |
| 1517-22-2    | Phenanthrene-d10                 | 693727 | 12.28     |          |     |            |          |
| 1719-03-5    | Chrysene-d12                     | 513348 | 15.49     |          |     |            |          |
| 1520-96-3    | Perylene-d12                     | 418052 | 17.11     |          |     |            |          |
| TENTATIVE ID | ENTIFIED COMPOUNDS               |        |           |          |     |            |          |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-      | 91.5   | J         |          |     | 1.51       | ug/L     |
| 000123-42-2  | 2-Pentanone, 4-hydroxy-4-methyl- | 4.9    | AB        |          |     | 4.45       | ug/L     |
|              | unknown6.48                      | 76.3   | J         |          |     | 6.48       | ug/L     |
| 000057-10-3  | n-Hexadecanoic acid              | 3.5    | J         |          |     | 13.05      | ug/L     |
| 000057-11-4  | Octadecanoic acid                | 2.9    | J         |          |     | 14.01      | ug/L     |
| 1000108-92-4 | Farnesol isomer a                | 2.5    | J         |          |     | 16.67      | ug/L     |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

<sup>\* =</sup> Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/26/14 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: GW-18(GW) SDG No.: F2923 Lab Sample ID: F2923-07 Matrix: Water Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016912.D 1 07/02/14 VN070114

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-87-3    | Chloromethane                  | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-83-9    | Bromomethane                   | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-00-3    | Chloroethane                   | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 67-64-1    | Acetone                        | 1     | U         | 0.5  | 1   | 5          | ug/L  |
| 75-15-0    | Carbon Disulfide               | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.5   | U         | 0.35 | 0.5 | 1          | ug/L  |
| 79-20-9    | Methyl Acetate                 | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-09-2    | Methylene Chloride             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 110-82-7   | Cyclohexane                    | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-93-3    | 2-Butanone                     | 2.5   | U         | 1.3  | 2.5 | 5          | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-97-5    | Bromochloromethane             | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 67-66-3    | Chloroform                     | 15.8  |           | 0.2  | 0.2 | 1          | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-87-2   | Methylcyclohexane              | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-43-2    | Benzene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 79-01-6    | Trichloroethene                | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-27-4    | Bromodichloromethane           | 0.97  | J         | 0.2  | 0.2 | 1          | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1     | U         | 1    | 1   | 5          | ug/L  |
| 108-88-3   | Toluene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-18(GW) SDG No.: F2923
Lab Sample ID: F2923-07 Matrix: Water
Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016912.D 1 07/02/14 VN070114

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|-----|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 591-78-6    | 2-Hexanone                  | 2.5   | U         | 1.9      | 2.5 | 5          | ug/L    |
| 124-48-1    | Dibromochloromethane        | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 106-93-4    | 1,2-Dibromoethane           | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 127-18-4    | Tetrachloroethene           | 0.76  | J         | 0.2      | 0.2 | 1          | ug/L    |
| 108-90-7    | Chlorobenzene               | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 100-41-4    | Ethyl Benzene               | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 179601-23-1 | m/p-Xylenes                 | 0.4   | U         | 0.4      | 0.4 | 2          | ug/L    |
| 95-47-6     | o-Xylene                    | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 100-42-5    | Styrene                     | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 75-25-2     | Bromoform                   | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 98-82-8     | Isopropylbenzene            | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 103-65-1    | n-propylbenzene             | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 98-06-6     | tert-Butylbenzene           | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 135-98-8    | sec-Butylbenzene            | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 99-87-6     | p-Isopropyltoluene          | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 104-51-8    | n-Butylbenzene              | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 91-20-3     | Naphthalene                 | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 123-91-1    | 1,4-Dioxane                 | 100   | U         | 100      | 100 | 100        | ug/L    |
| SURROGATES  |                             |       |           |          |     |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 48.1  |           | 61 - 14  |     | 96%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 43.8  |           | 69 - 133 | 3   | 88%        | SPK: 50 |
|             |                             |       |           |          |     |            |         |



Lab Sample ID:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

F2923-07

Client Sample ID: GW-18(GW)

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

Date Collected:

06/26/14

Water

uL

Date Received: 06/27/14

SDG No.: F2923

% Moisture: 100

Final Vol: 5000

Test: VOCMS Group1

Level: LOW

File ID/Qc Batch:

VN016912.D

Dilution:

1

Prep Date

Date Analyzed

Matrix:

Prep Batch ID

07/02/14

VN070114

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL LO   | D LOQ / CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|--------------|---------|
| 2037-26-5    | Toluene-d8             | 46.5   |           | 65 - 126 | 93%          | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 53.7   |           | 58 - 135 | 107%         | SPK: 50 |
| INTERNAL STA | ANDARDS                |        |           |          |              |         |
| 363-72-4     | Pentafluorobenzene     | 254220 | 7.87      |          |              |         |
| 540-36-3     | 1,4-Difluorobenzene    | 424590 | 8.79      |          |              |         |
| 3114-55-4    | Chlorobenzene-d5       | 440769 | 11.61     |          |              |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 172664 | 13.56     |          |              |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



#### **Report of Analysis**

Client:Dvirka & BartilucciDate Collected:06/25/14 10:00Project:NYCSCA Unionport Road BronxDate Received:06/27/14Client Sample ID:GP-19(10-24)SDG No.:F2923

Lab Sample ID: F2923-08 Matrix: SOIL

% Solid: 81.8

| Parameter        | Conc. | Qua. | DF | MDL  | LOD  | LOQ / CRQL | Units | Prep Date | Date Ana.      | Ana Met. |
|------------------|-------|------|----|------|------|------------|-------|-----------|----------------|----------|
| Corrosivity      | 8.88  |      | 1  | 0    | 0    | 0          | mg/Kg |           | 07/01/14 09:13 | 9045C    |
| Ignitability     | NO    |      | 1  | 0    | 0    | 0          | o C   | 07/01/14  | 07/01/14 10:30 | 1030     |
| Reactive Cyanide | 0.05  | U    | 1  | 0.05 | 0.05 | 0.05       | mg/Kg | 07/01/14  | 07/02/14 17:34 | 9012B    |
| Reactive Sulfide | 10    | U    | 1  | 10   | 10   | 10         | mg/Kg | 07/01/14  | 07/01/14 15:30 | 9034     |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/25/14 10:45

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GP-14(6-18) SDG No.: F2923

Lab Sample ID: F2923-09 Matrix: SOIL

% Solid: 84

| Parameter        | Conc. | Qua. | DF | MDL  | LOD  | LOQ / CRQL | Units | Prep Date | Date Ana.      | Ana Met. |
|------------------|-------|------|----|------|------|------------|-------|-----------|----------------|----------|
| Corrosivity      | 9.83  |      | 1  | 0    | 0    | 0          | mg/Kg |           | 07/01/14 09:14 | 9045C    |
| Ignitability     | NO    |      | 1  | 0    | 0    | 0          | o C   | 07/01/14  | 07/01/14 10:30 | 1030     |
| Reactive Cyanide | 0.05  | U    | 1  | 0.05 | 0.05 | 0.05       | mg/Kg | 07/01/14  | 07/02/14 17:34 | 9012B    |
| Reactive Sulfide | 48    |      | 1  | 10   | 10   | 10         | mg/Kg | 07/01/14  | 07/01/14 15:30 | 9034     |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 10:30 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-15(6-20) F2923 Lab Sample ID: F2923-10 Matrix: SOIL

% Solid: 85.2

| Parameter        | Conc. | Qua. | DF | MDL  | LOD  | LOQ / CRQL | Units | Prep Date | Date Ana.      | Ana Met. |
|------------------|-------|------|----|------|------|------------|-------|-----------|----------------|----------|
| Corrosivity      | 9.11  |      | 1  | 0    | 0    | 0          | mg/Kg |           | 07/01/14 09:16 | 9045C    |
| Ignitability     | NO    |      | 1  | 0    | 0    | 0          | o C   | 07/01/14  | 07/01/14 10:30 | 1030     |
| Reactive Cyanide | 0.05  | U    | 1  | 0.05 | 0.05 | 0.05       | mg/Kg | 07/01/14  | 07/02/14 17:34 | 9012B    |
| Reactive Sulfide | 13    |      | 1  | 10   | 10   | 10         | mg/Kg | 07/01/14  | 07/01/14 15:30 | 9034     |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14 12:30 Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14 Client Sample ID: SDG No.: GP-18(6-18) F2923 Lab Sample ID: F2923-11 Matrix: SOIL % Solid: 86.5

| Parameter        | Conc. | Qua. | DF | MDL  | LOD  | LOQ / CRQI | Units | Prep Date | Date Ana.      | Ana Met. |
|------------------|-------|------|----|------|------|------------|-------|-----------|----------------|----------|
| Corrosivity      | 8.29  |      | 1  | 0    | 0    | 0          | mg/Kg |           | 07/01/14 09:17 | 9045C    |
| Ignitability     | NO    |      | 1  | 0    | 0    | 0          | o C   | 07/01/14  | 07/01/14 10:30 | 1030     |
| Reactive Cyanide | 0.05  | U    | 1  | 0.05 | 0.05 | 0.05       | mg/Kg | 07/01/14  | 07/02/14 18:06 | 9012B    |
| Reactive Sulfide | 38    |      | 1  | 10   | 10   | 10         | mg/Kg | 07/01/14  | 07/01/14 15:30 | 9034     |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-11(GW) SDG No.: F2923

Lab Sample ID: F2923-12 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ | CRQL Un | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|-----|---------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 1     | U    | 1  | 0.14 | 1.0 | 2   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 1.2   |      | 1  | 0.18 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 182   |      | 1  | 0.1  | 5.0 | 10  | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | U    | 1  | 0.09 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 0.37  | J    | 1  | 0.13 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 0.62  | J*   | 1  | 0.04 | 1.0 | 2   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 27.6  |      | 1  | 0.05 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 6.2   | *    | 1  | 0.04 | 1.0 | 2   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 0.65  | J    | 1  | 0.04 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 6100  |      | 1  | 0.05 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1 | 0.2 | ug/L    | 07/01/14      | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 26.1  | *    | 1  | 0.06 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 2.8   | J    | 1  | 0.7  | 2.5 | 5   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 0.5   | U    | 1  | 0.03 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.074 | J    | 1  | 0.02 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 2.5   | U    | 1  | 0.15 | 2.5 | 5   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 6.7   | *    | 1  | 0.09 | 1.0 | 2   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Dissolved Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Lab Sample ID:

F2923-13

### **Report of Analysis**

Matrix:

WATER

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-15(GW) SDG No.: F2923

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ/0 | CRQL Un | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|-------|---------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.14  | J    | 1  | 0.14 | 1.0 | 2     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 0.48  | J    | 1  | 0.18 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 57.7  |      | 1  | 0.1  | 5.0 | 10    | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | U    | 1  | 0.09 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 1     | J    | 1  | 0.13 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 0.55  | J*   | 1  | 0.04 | 1.0 | 2     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 8.2   |      | 1  | 0.05 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 4     | *    | 1  | 0.04 | 1.0 | 2     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 0.098 | J    | 1  | 0.04 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 1090  |      | 1  | 0.05 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1 | 0.2   | ug/L    | 07/01/14      | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 37.1  | *    | 1  | 0.06 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 3.9   | J    | 1  | 0.7  | 2.5 | 5     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 0.5   | U    | 1  | 0.03 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.021 | J    | 1  | 0.02 | 0.5 | 1     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 2.5   | U    | 1  | 0.15 | 2.5 | 5     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 12.9  | *    | 1  | 0.09 | 1.0 | 2     | ug/L    | 07/01/14      | 07/03/14  | SW6020   |

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Dissolved Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/26/14

Project: NYCSCA Unionport Road Bronx Date Received: 06/27/14

Client Sample ID: GW-18(GW) SDG No.: F2923

Lab Sample ID: F2923-14 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ | CRQL Un | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|-----|---------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.3   | J    | 1  | 0.14 | 1.0 | 2   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-38-2 | Arsenic   | 0.56  | J    | 1  | 0.18 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-39-3 | Barium    | 106   |      | 1  | 0.1  | 5.0 | 10  | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | U    | 1  | 0.09 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-43-9 | Cadmium   | 0.19  | J    | 1  | 0.13 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-47-3 | Chromium  | 1.7   | J*   | 1  | 0.04 | 1.0 | 2   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-48-4 | Cobalt    | 21.3  |      | 1  | 0.05 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-50-8 | Copper    | 6     | *    | 1  | 0.04 | 1.0 | 2   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-92-1 | Lead      | 0.26  | J    | 1  | 0.04 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-96-5 | Manganese | 1630  |      | 1  | 0.05 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1 | 0.2 | ug/L    | 07/01/14      | 07/01/14  | SW7470A  |
| 7440-02-0 | Nickel    | 53    | *    | 1  | 0.06 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7782-49-2 | Selenium  | 2.5   | U    | 1  | 0.7  | 2.5 | 5   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-22-4 | Silver    | 0.058 | J    | 1  | 0.03 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.028 | J    | 1  | 0.02 | 0.5 | 1   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-62-2 | Vanadium  | 2.5   | U    | 1  | 0.15 | 2.5 | 5   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |
| 7440-66-6 | Zinc      | 21.2  | *    | 1  | 0.09 | 1.0 | 2   | ug/L    | 07/01/14      | 07/03/14  | SW6020   |

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Dissolved Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



### **ANALYTICAL RESULTS SUMMARY**

VOLATILE ORGANICS
METALS
GC SEMI-VOLATILES
SEMI-VOLATILE ORGANICS

**PROJECT NAME: NYCSCA UNIONPORT ROAD BRONX** 

DVIRKA & BARTILUCCI

330 Crossways Park Drive

**Woodbury, NY - 11797** 

Phone No: 516-364-9890

**ORDER ID: F2933** 

**ATTENTION: MARIA WRIGHT** 









**SDG No.:** F2933

| Sample ID                  | Client ID    | Matrix        | Parameter                      | Co | oncentrati | ion  | C | MDL  | LOD | RDL | Units |
|----------------------------|--------------|---------------|--------------------------------|----|------------|------|---|------|-----|-----|-------|
| Client ID:                 | MW-E         |               | _ "                            |    |            |      |   |      |     |     | -     |
| F2933-02                   | MW-E         | Water         | sec-Butylbenzene               |    | 1.70       | 4 7  |   | 0.2  | 0.2 | 1   | ug/L  |
| F2022 02                   | NOVE         | <b>33</b> 7 / | Total Voc:                     | *  | 7.60       | 1.7  |   | 0    |     | 0   | /T    |
| F2933-02                   | MW-E         |               | Pentane, 3-methyl-             |    | 7.60       |      | J | 0    |     | 0   | ug/L  |
| F2933-02                   | MW-E         |               | Benzene, 1,2-diethyl-          | *  | 11.70      |      | J | 0    |     | 0   | ug/L  |
| F2933-02                   | MW-E         |               | Pentane, 2,3,3-trimethyl-      | *  | 11.40      |      | J | 0    |     | 0   | ug/L  |
| F2933-02                   | MW-E         |               | Pentane, 2,3-dimethyl-         | *  | 7.70       |      | J | 0    |     | 0   | ug/L  |
| F2933-02                   | MW-E         |               | Pentane, 2,3,4-trimethyl-      | *  | 9.90       |      | J | 0    |     | 0   | ug/L  |
| F2933-02                   | MW-E         |               | Butane, 2,2,3,3-tetramethyl-   | *  | 27.90      |      | J | 0    |     | 0   | ug/L  |
| F2933-02                   | MW-E         |               | Benzene, 2-ethenyl-1,4-dimethy |    | 6.00       |      | J | 0    |     | 0   | ug/L  |
| F2933-02                   | MW-E         |               | Benzene, 1-ethenyl-3-ethyl-    | *  | 19.90      |      | J | 0    |     | 0   | ug/L  |
| F2933-02                   | MW-E         | Water         | 1H-Indene, 2,3-dihydro-1,2-din | *  | 7.30       |      | J | 0    |     | 0   | ug/L  |
|                            |              |               | <b>Total Tics:</b>             |    |            | 09.4 |   |      |     |     |       |
| Client ID.                 | MANUE        |               | <b>Total Concentration:</b>    |    | 1          | 11.1 |   |      |     |     |       |
| <b>Client ID:</b> F2933-03 | MW-F<br>MW-F | Water         | Methyl tert-butyl Ether        |    | 18.80      |      |   | 0.35 | 0.5 | 1   | ug/L  |
| F2933-03                   | MW-F         |               | Cyclohexane                    |    | 160.00     |      |   | 0.2  | 0.2 | 1   | ug/L  |
| F2933-03                   | MW-F         |               | Methylcyclohexane              |    | 48.10      |      |   | 0.2  | 0.2 | 1   | ug/L  |
| F2933-03                   | MW-F         | Water         | Benzene                        |    | 690.00     |      | Е | 0.2  | 0.2 | 1   | ug/L  |
| F2933-03                   | MW-F         | Water         | Toluene                        |    | 37.60      |      |   | 0.2  | 0.2 | 1   | ug/L  |
| F2933-03                   | MW-F         | Water         | Ethyl Benzene                  |    | 200.00     |      | Е | 0.2  | 0.2 | 1   | ug/L  |
| F2933-03                   | MW-F         | Water         | m/p-Xylenes                    |    | 110.00     |      |   | 0.4  | 0.4 | 2   | ug/L  |
| F2933-03                   | MW-F         | Water         | o-Xylene                       |    | 5.40       |      |   | 0.2  | 0.2 | 1   | ug/L  |
| F2933-03                   | MW-F         | Water         | Isopropylbenzene               |    | 14.70      |      |   | 0.2  | 0.2 | 1   | ug/L  |
| F2933-03                   | MW-F         | Water         | n-propylbenzene                |    | 24.70      |      |   | 0.2  | 0.2 | 1   | ug/L  |
| F2933-03                   | MW-F         | Water         | 1,3,5-Trimethylbenzene         |    | 4.80       |      |   | 0.2  | 0.2 | 1   | ug/L  |
| F2933-03                   | MW-F         | Water         | 1,2,4-Trimethylbenzene         |    | 4.90       |      |   | 0.2  | 0.2 | 1   | ug/L  |
| F2933-03                   | MW-F         | Water         | sec-Butylbenzene               |    | 1.60       |      |   | 0.2  | 0.2 | 1   | ug/L  |
| F2933-03                   | MW-F         | Water         | p-Isopropyltoluene             |    | 0.33       |      | J | 0.2  | 0.2 | 1   | ug/L  |
| F2933-03                   | MW-F         | Water         | n-Butylbenzene                 |    | 1.70       |      |   | 0.2  | 0.2 | 1   | ug/L  |
| F2933-03                   | MW-F         | Water         | Naphthalene                    |    | 55.90      |      |   | 0.2  | 0.2 | 1   | ug/L  |
|                            |              |               | Total Voc:                     |    | 137        | 8.53 |   |      |     |     |       |
| F2933-03                   | MW-F         | Water         | unknown8.41                    | *  | 62.20      |      | J | 0    |     | 0   | ug/L  |
| F2933-03                   | MW-F         | Water         | Butane, 2-methyl-              | *  | 56.40      |      | J | 0    |     | 0   | ug/L  |
| F2933-03                   | MW-F         | Water         | Cyclopentane, methyl-          | *  | 53.30      |      | J | 0    |     | 0   | ug/L  |
| F2933-03                   | MW-F         | Water         | Pentane                        | *  | 37.40      |      | J | 0    |     | 0   | ug/L  |
| F2933-03                   | MW-F         | Water         | Indane                         | *  | 150.00     |      | J | 0    |     | 0   | ug/L  |
| F2933-03                   | MW-F         | Water         | Benzene, 1-ethyl-2-methyl-     | *  | 77.80      |      | J | 0    |     | 0   | ug/L  |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### Hit Summary Sheet SW-846

**SDG No.:** F2933

| Sample ID                  | Client ID               | Matrix 1    | Parameter                | Conce       | entration | <b>C</b> 1 | MDL      | LOD          | RDL | Units        |
|----------------------------|-------------------------|-------------|--------------------------|-------------|-----------|------------|----------|--------------|-----|--------------|
| F2933-03                   | MW-F                    | Water Inda  | n, 1-methyl-             | * 36.       | 20        | J          | 0        |              | 0   | ug/L         |
| F2933-03                   | MW-F                    | Water Cycl  | opropane, 1,2-dimethy    | l-, c * 47. | 90        | J          | 0        |              | 0   | ug/L         |
| F2933-03                   | MW-F                    | Water Benz  | zene, 4-ethyl-1,2-dimet  | hyl- * 41.  | 50        | J          | 0        |              | 0   | ug/L         |
| F2933-03                   | MW-F                    | Water Benz  | zene, 1-ethenyl-4-ethyl- | * 63.       | 90        | J          | 0        |              | 0   | ug/L         |
| F2933-03                   | MW-F                    | Water Diis  | opropyl ether            | * 4.2       | 0         | J          | 0.2      |              | 1   | ug/L         |
|                            |                         |             | <b>Total Tics:</b>       |             | 630.8     | }          |          |              |     |              |
|                            |                         | Tota        | al Concentration:        |             | 2009.33   |            |          |              |     |              |
| Client ID:<br>F2933-03DL   | <b>MW-FDL</b><br>MW-FDL | Water Metl  | nyl tert-butyl Ether     | 17.         | 20        | D          | 3.5      | 5            | 10  | ug/L         |
| F2933-03DL                 | MW-FDL                  | Water Cycl  | ohexane                  | 140         | 0.00      | D          | 2        | 2            | 10  | ug/L         |
| F2933-03DL                 | MW-FDL                  | Water Metl  | nylcyclohexane           | 42.         | 80        | D          | 2        | 2            | 10  | ug/L         |
| F2933-03DL                 | MW-FDL                  | Water Benz  | zene                     | 640         | 0.00      | D          | 2        | 2            | 10  | ug/L         |
| F2933-03DL                 | MW-FDL                  | Water Tolu  | ene                      | 34.         | 70        | D          | 2        | 2            | 10  | ug/L         |
| F2933-03DL                 | MW-FDL                  | Water Ethy  | l Benzene                | 190         | 0.00      | D          | 2        | 2            | 10  | ug/L         |
| F2933-03DL                 | MW-FDL                  | Water m/p-  | Xylenes                  | 96.         | 30        | D          | 4        | 4            | 20  | ug/L         |
| F2933-03DL                 | MW-FDL                  | Water Isop  | ropylbenzene             | 13.         | 70        | D          | 2        | 2            | 10  | ug/L         |
| F2933-03DL                 | MW-FDL                  | Water n-pre | opylbenzene              | 23.         | 00        | D          | 2        | 2            | 10  | ug/L         |
| F2933-03DL                 | MW-FDL                  | Water Nap   | hthalene                 | 76.         | 20        | D          | 2        | 2            | 10  | ug/L         |
|                            |                         |             | Total Voc:               |             | 1273.9    | )          |          |              |     |              |
|                            |                         | Tota        | al Concentration:        |             | 1273.9    |            |          |              |     |              |
| <b>Client ID:</b> F2933-04 | MW-G<br>MW-G            | Water Met   | and tart butal Ethan     | 20.         | 90        |            | 0.35     | 0.5          | 1   | ua/I         |
|                            |                         |             | nyl tert-butyl Ether     | 20.<br>46.  |           |            | 0.33     |              | 1   | ug/L         |
| F2933-04<br>F2933-04       | MW-G<br>MW-G            | Water Met   |                          | 46.<br>17.  |           |            | 0.2      | 0.2<br>0.2   | 1   | ug/L         |
| F2933-04<br>F2933-04       | MW-G                    | Water Benz  | nylcyclohexane           |             | 00.00     | Е          | 0.2      | 0.2          | 1   | ug/L<br>ug/L |
| F2933-04<br>F2933-04       | MW-G                    | Water Tolu  |                          | 71.         |           | E          | 0.2      | 0.2          | 1   |              |
| F2933-04<br>F2933-04       | MW-G                    | Water Ethy  |                          |             | 0.00      | Е          | 0.2      | 0.2          | 1   | ug/L<br>ug/L |
| F2933-04<br>F2933-04       | MW-G                    | Water m/p-  |                          |             | 0.00      | E          | 0.2      | 0.4          | 2   | ug/L<br>ug/L |
| F2933-04                   | MW-G                    | Water o-Xy  | -                        | 20.         |           | L          | 0.4      | 0.4          | 1   | ug/L<br>ug/L |
| F2933-04                   | MW-G                    | _           | ropylbenzene             | 10.         |           |            | 0.2      | 0.2          | 1   | ug/L<br>ug/L |
| F2933-04                   | MW-G                    | -           | opylbenzene              | 20.         |           |            | 0.2      | 0.2          | 1   | ug/L<br>ug/L |
| F2933-04                   | MW-G                    | -           | 5-Trimethylbenzene       | 56.         |           |            | 0.2      | 0.2          | 1   | ug/L<br>ug/L |
| F2933-04                   | MW-G                    |             | -Trimethylbenzene        |             | 0.00      |            | 0.2      | 0.2          | 1   | ug/L<br>ug/L |
| F2933-04                   | MW-G                    |             | Butylbenzene             | 1.1         |           |            | 0.2      | 0.2          | 1   | ug/L<br>ug/L |
| F2933-04                   | MW-G                    |             | ppropyltoluene           | 0.9         |           | J          | 0.2      | 0.2          | 1   | ug/L<br>ug/L |
| F2933-04                   | MW-G                    | -           | itylbenzene              | 1.4         |           | 3          | 0.2      | 0.2          | 1   | ug/L<br>ug/L |
| F2933-04                   | MW-G                    | Water Napl  | -                        | 53.         |           |            | 0.2      | 0.2          | 1   | ug/L<br>ug/L |
|                            | 2                       | www.rup     | Total Voc :              |             | 2321.61   |            | <b>-</b> | <del>-</del> | -   |              |





**SDG No.:** F2933

| Sample ID                | Client ID               | Matrix Parameter                   | Concentration | C          | MDL | LOD | RDL | Units        |
|--------------------------|-------------------------|------------------------------------|---------------|------------|-----|-----|-----|--------------|
| F2933-04                 | MW-G                    | Water unknown8.41                  | * 34.30       | J          | 0   |     | 0   | ug/L         |
| F2933-04                 | MW-G                    | Water Butane, 2-methyl-            | * 26.50       | J          | 0   |     | 0   | ug/L         |
| F2933-04                 | MW-G                    | Water Cyclopentane, methyl-        | * 22.60       | J          | 0   |     | 0   | ug/L         |
| F2933-04                 | MW-G                    | Water Pentane                      | * 18.60       | J          | 0   |     | 0   | ug/L         |
| F2933-04                 | MW-G                    | Water 1-Pentene                    | * 31.90       | J          | 0   |     | 0   | ug/L         |
| F2933-04                 | MW-G                    | Water Indane                       | * 55.10       | J          | 0   |     | 0   | ug/L         |
| F2933-04                 | MW-G                    | Water Benzene, 1-ethyl-2-methyl-   | * 20.50       | J          | 0   |     | 0   | ug/L         |
| F2933-04                 | MW-G                    | Water Benzene, 1-ethyl-3-methyl-   | * 23.70       | J          | 0   |     | 0   | ug/L         |
| F2933-04                 | MW-G                    | Water Propane, 2-ethoxy-2-methyl-  | * 20.00       | J          | 0   |     | 0   | ug/L         |
| F2933-04                 | MW-G                    | Water Cyclopropane, 1,2-dimethyl-, | , c * 31.30   | J          | 0   |     | 0   | ug/L         |
| F2933-04                 | MW-G                    | Water Tert butyl alcohol           | * 220.00      | J          | 0.5 |     | 5   | ug/L         |
| F2933-04                 | MW-G                    | Water Diisopropyl ether            | * 9.50        | J          | 0.2 |     | 1   | ug/L         |
|                          |                         | <b>Total Tics:</b>                 | 51            | 4          |     |     |     |              |
|                          |                         | <b>Total Concentration:</b>        | 2835.6        | 51         |     |     |     |              |
| Client ID:<br>F2933-04DL | <b>MW-GDL</b><br>MW-GDL | Water Benzene                      | 1,200.00      | D          | 4   | 4   | 20  | ug/L         |
| F2933-04DL<br>F2933-04DL | MW-GDL                  | Water Toluene                      | 64.00         | D          | 4   | 4   | 20  | ug/L<br>ug/L |
| F2933-04DL<br>F2933-04DL | MW-GDL                  | Water Ethyl Benzene                | 140.00        | D          | 4   | 4   | 20  | ug/L<br>ug/L |
| F2933-04DL<br>F2933-04DL | MW-GDL                  | Water m/p-Xylenes                  | 380.00        | D          | 8   | 8   | 40  | ug/L<br>ug/L |
| F2933-04DL               | MW-GDL                  | Water 1,3,5-Trimethylbenzene       | 50.00         | D          | 4   | 4   | 20  | ug/L<br>ug/L |
| F2933-04DL               | MW-GDL                  | Water 1,2,4-Trimethylbenzene       | 87.20         | D          | 4   | 4   | 20  | ug/L<br>ug/L |
| F2933-04DL               | MW-GDL                  | Water Naphthalene                  | 110.00        | D          | 4   | 4   | 20  | ug/L<br>ug/L |
| 12)33-04DL               | WW-GDL                  | Total Voc:                         | 2031          |            | 7   | 7   | 20  | ug/L         |
|                          |                         | Total Concentration:               | 2031          |            |     |     |     |              |
| Client ID:               | MW-H                    | Total Concentration.               |               | · <b>-</b> |     |     |     |              |
| F2933-05                 | MW-H                    | Water Ethyl Benzene                | 1.40          |            | 0.2 | 0.2 | 1   | ug/L         |
| F2933-05                 | MW-H                    | Water m/p-Xylenes                  | 2.50          |            | 0.4 | 0.4 | 2   | ug/L         |
| F2933-05                 | MW-H                    | Water o-Xylene                     | 1.30          |            | 0.2 | 0.2 | 1   | ug/L         |
| F2933-05                 | MW-H                    | Water 1,2,4-Trimethylbenzene       | 0.81          | J          | 0.2 | 0.2 | 1   | ug/L         |
|                          |                         | Total Voc:                         | 6.0           | )1         |     |     |     |              |
|                          |                         | <b>Total Concentration:</b>        | 6.0           | )1         |     |     |     |              |



**SDG No.:** F2933

| Sample ID<br>Client ID: | Client ID<br>MW-E |       | Parameter                          | Conc | entration | C    | MDL  | LOD | RDL | Units |
|-------------------------|-------------------|-------|------------------------------------|------|-----------|------|------|-----|-----|-------|
| F2933-02                | MW-E              | WATER | Dimethylphthalate                  |      | 2.700     | J    | 0.22 | 1   | 10  | ug/L  |
|                         |                   |       | Total Svoc:                        |      |           | 2.   | 70   |     |     |       |
| F2933-02                | MW-E              | WATER | 1H-Indene, 2,3-dihydro-4-methyl-   | *    | 4.400     | J    | 0    |     | 0   | ug/L  |
| F2933-02                | MW-E              | WATER | Butane, 2-methoxy-2-methyl-        | *    | 80.300    | J    | 0    |     | 0   | ug/L  |
| F2933-02                | MW-E              | WATER | unknown6.87                        | *    | 74.600    | JB   | 0    |     | 0   | ug/L  |
|                         |                   |       | <b>Total Tics:</b>                 |      |           | 159. | 30   |     |     |       |
|                         |                   |       | <b>Total Concentration:</b>        |      |           | 162  | .00  |     |     |       |
| Client ID:              | MW-F              |       |                                    |      |           |      |      |     |     |       |
| F2933-03                | MW-F              | WATER | Phenol                             |      | 4.400     | J    | 0.21 | 1   | 10  | ug/L  |
| F2933-03                | MW-F              | WATER | Naphthalene                        |      | 53.600    |      | 0.12 | 1   | 10  | ug/L  |
| F2933-03                | MW-F              | WATER | 2-Methylnaphthalene                |      | 14.200    |      | 0.32 | 1   | 10  | ug/L  |
| F2933-03                | MW-F              | WATER | Dimethylphthalate                  |      | 5.800     | J    | 0.22 | 1   | 10  | ug/L  |
|                         |                   |       | <b>Total Svoc:</b>                 |      |           | 78.  | 00   |     |     |       |
| F2933-03                | MW-F              | WATER | Amylene Hydrate                    | *    | 21.100    | J    | 0    |     | 0   | ug/L  |
| F2933-03                | MW-F              | WATER | Benzene, 2-ethenyl-1,4-dimethyl-   | *    | 30.300    | J    | 0    |     | 0   | ug/L  |
| F2933-03                | MW-F              | WATER | Benzoic acid, 3,4-dimethyl-        | *    | 26.000    | J    | 0    |     | 0   | ug/L  |
| F2933-03                | MW-F              | WATER | Butane, 2-methoxy-2-methyl-        | *    | 83.700    | J    | 0    |     | 0   | ug/L  |
| F2933-03                | MW-F              | WATER | 1-(2-Methoxy-1-methylethyl)-2-m    | e *  | 20.100    | J    | 0    |     | 0   | ug/L  |
| F2933-03                | MW-F              | WATER | 15-Tetracosenoic acid, methyl este | *    | 25.900    | J    | 0    |     | 0   | ug/L  |
| F2933-03                | MW-F              | WATER | Indane                             | *    | 110.000   | J    | 0    |     | 0   | ug/L  |
| F2933-03                | MW-F              | WATER | unknown6.87                        | *    | 70.700    | JB   | 0    |     | 0   | ug/L  |
| F2933-03                | MW-F              | WATER | unknown7.96                        | *    | 58.500    | J    | 0    |     | 0   | ug/L  |
| F2933-03                | MW-F              | WATER | unknown7.99                        | *    | 43.200    | J    | 0    |     | 0   | ug/L  |
|                         |                   |       | <b>Total Tics:</b>                 |      |           | 489. |      |     |     |       |
|                         |                   |       | <b>Total Concentration:</b>        |      |           | 567  | .50  |     |     |       |
| Client ID:              | MW-G              |       |                                    |      |           |      |      |     |     |       |
| F2933-04                | MW-G              | WATER | Phenol                             |      | 21.900    |      | 0.21 | 1   | 10  | ug/L  |
| F2933-04                | MW-G              | WATER | 3+4-Methylphenols                  |      | 3.200     | J    | 0.38 | 1   | 10  | ug/L  |
| F2933-04                | MW-G              | WATER | 2,4-Dimethylphenol                 |      | 12.500    |      | 0.71 | 1   | 10  | ug/L  |
| F2933-04                | MW-G              | WATER | Naphthalene                        |      | 18.800    |      | 0.12 | 1   | 10  | ug/L  |
| F2933-04                | MW-G              | WATER | 2-Methylnaphthalene                |      | 8.600     | J    | 0.32 | 1   | 10  | ug/L  |
| F2933-04                | MW-G              | WATER | Dimethylphthalate                  |      | 5.300     | J    | 0.22 | 1   | 10  | ug/L  |
|                         |                   |       | <b>Total Svoc:</b>                 |      |           | 70.  | 30   |     |     |       |
| F2933-04                | MW-G              | WATER | Benzene, 1-methyl-2-(1-methyleth   | ıy * | 35.400    | J    | 0    |     | 0   | ug/L  |
| F2933-04                | MW-G              | WATER | Benzene, 2-ethenyl-1,4-dimethyl-   | *    | 22.700    | J    | 0    |     | 0   | ug/L  |
| F2933-04                | MW-G              | WATER | Benzeneacetaldehyde, .alphametl    | h *  | 28.800    | J    | 0    |     | 0   | ug/L  |
| F2933-04                | MW-G              | WATER | Butane, 2-methoxy-2-methyl-        | *    | 91.900    | J    | 0    |     | 0   | ug/L  |
| F2933-04                | MW-G              | WATER | Indane                             | *    | 80.900    | J    | 0    |     | 0   | ug/L  |



**SDG No.:** F2933

| Sample ID  | Client ID |       | Parameter                      | Conce  | entration | C    | MDL  | LOD | RDL | Units |
|------------|-----------|-------|--------------------------------|--------|-----------|------|------|-----|-----|-------|
| F2933-04   | MW-G      | WATER | unknown6.87                    | *      | 78.100    | JB   | 0    |     | 0   | ug/L  |
| F2933-04   | MW-G      | WATER | unknown7.92                    | *      | 68.900    | J    | 0    |     | 0   | ug/L  |
| F2933-04   | MW-G      | WATER | unknown7.97                    | *      | 24.500    | J    | 0    |     | 0   | ug/L  |
|            |           |       | <b>Total Tics:</b>             |        |           | 431. | 20   |     |     |       |
|            |           |       | <b>Total Concentration:</b>    |        |           | 501  | .50  |     |     |       |
| Client ID: | MW-H      |       |                                |        |           |      |      |     |     |       |
| F2933-05   | MW-H      | WATER | Dimethylphthalate              |        | 3.500     | J    | 0.22 | 1   | 10  | ug/L  |
|            |           |       | <b>Total Svoc:</b>             |        |           | 3.   | 50   |     |     |       |
| F2933-05   | MW-H      | WATER | unknown6.87                    | *      | 90.500    | JB   | 0    |     | 0   | ug/L  |
| F2933-05   | MW-H      | WATER | 2- Bromopropionic acid, pentac | decy * | 3.800     | J    | 0    |     | 0   | ug/L  |
| F2933-05   | MW-H      | WATER | Butane, 2-methoxy-2-methyl-    | *      | 100.000   | J    | 0    |     | 0   | ug/L  |
|            |           |       | <b>Total Tics:</b>             |        |           | 194. | 30   |     |     |       |
|            |           |       | <b>Total Concentration:</b>    |        |           | 197  | .80  |     |     |       |



**SDG No.:** F2933 **Order ID:** F2933

Client: Dvirka & Bartilucci Project ID: NYCSCA Unionport Road Bronx

| Chent:               | DVIIKA & BAITIIUCCI |                |           | Project ID    | <b>'</b> : | NICSCA | лиопрон коа | u bronx |              |
|----------------------|---------------------|----------------|-----------|---------------|------------|--------|-------------|---------|--------------|
| Sample ID            | Client ID           | Matrix         | Parameter | Concentration | C          | MDL    | LOD         | RDL     | Units        |
| Client ID : F2933-02 | MW-E<br>MW-E        | WATER          | Antimony  | 0.570         | J          | 0.14   | 1.0         | 2       | ug/I         |
| F2933-02<br>F2933-02 | MW-E                | WATER          | Arsenic   | 0.820         | J          | 0.14   | 0.5         | 1       | ug/L<br>ug/L |
| F2933-02<br>F2933-02 | MW-E                | WATER          | Barium    | 211.000       | J          | 0.18   | 5.0         | 10      | ug/L<br>ug/L |
| F2933-02<br>F2933-02 | MW-E                | WATER          | Cadmium   | 0.670         | J          | 0.13   | 0.5         | 10      | ug/L<br>ug/L |
| F2933-02<br>F2933-02 | MW-E                | WATER          | Chromium  | 2.400         | J          | 0.13   | 1.0         | 2       | ug/L<br>ug/L |
| F2933-02<br>F2933-02 | MW-E                | WATER          | Cobalt    | 8.500         |            | 0.04   | 0.5         | 1       | ug/L<br>ug/L |
| F2933-02<br>F2933-02 | MW-E                | WATER          | Copper    | 13.400        |            | 0.03   | 1.0         | 2       | ug/L<br>ug/L |
| F2933-02<br>F2933-02 | MW-E                | WATER          | Lead      | 8.400         |            | 0.04   | 0.5         | 1       | ug/L<br>ug/L |
| F2933-02             | MW-E                | WATER          | Manganese | 15,400.000    | D          | 1.3    | 12.5        | 25      | ug/L<br>ug/L |
| F2933-02<br>F2933-02 | MW-E                | WATER          | Nickel    | 11.300        | Ъ          | 0.06   | 0.5         | 1       | ug/L<br>ug/L |
| F2933-02             | MW-E                | WATER          | Selenium  | 3.300         | J          | 0.00   | 2.5         | 5       | ug/L<br>ug/L |
| F2933-02             | MW-E                | WATER          | Thallium  | 0.064         | J          | 0.02   | 0.5         | 1       | ug/L<br>ug/L |
| F2933-02             | MW-E                | WATER          | Vanadium  | 2.200         | J          | 0.02   | 2.5         | 5       | ug/L<br>ug/L |
| F2933-02             | MW-E                | WATER          | Zinc      | 17.700        | 3          | 0.19   | 1.0         | 2       | ug/L<br>ug/L |
| 12733-02             | W W-L               | WILK           | Zinc      | 17.700        |            | 0.07   | 1.0         | 2       | ug/L         |
| Client ID:           | MW-F                |                |           |               |            |        |             |         |              |
| F2933-03             | MW-F                | WATER          | Antimony  | 0.760         | J          | 0.14   | 1.0         | 2       | ug/L         |
| F2933-03             | MW-F                | WATER          | Arsenic   | 11.100        |            | 0.18   | 0.5         | 1       | ug/L         |
| F2933-03             | MW-F                | WATER          | Barium    | 221.000       |            | 0.1    | 5.0         | 10      | ug/L         |
| F2933-03             | MW-F                | WATER          | Cadmium   | 0.160         | J          | 0.13   | 0.5         | 1       | ug/L         |
| F2933-03             | MW-F                | WATER          | Chromium  | 2.000         | J          | 0.04   | 1.0         | 2       | ug/L         |
| F2933-03             | MW-F                | WATER          | Cobalt    | 3.000         |            | 0.05   | 0.5         | 1       | ug/L         |
| F2933-03             | MW-F                | WATER          | Copper    | 4.600         |            | 0.04   | 1.0         | 2       | ug/L         |
| F2933-03             | MW-F                | WATER          | Lead      | 7.400         |            | 0.04   | 0.5         | 1       | ug/L         |
| F2933-03             | MW-F                | WATER          | Manganese | 3,580.000     |            | 0.05   | 0.5         | 1       | ug/L         |
| F2933-03             | MW-F                | WATER          | Nickel    | 5.900         |            | 0.06   | 0.5         | 1       | ug/L         |
| F2933-03             | MW-F                | WATER          | Silver    | 0.041         | J          | 0.03   | 0.5         | 1       | ug/L         |
| F2933-03             | MW-F                | WATER          | Thallium  | 0.042         | J          | 0.02   | 0.5         | 1       | ug/L         |
| F2933-03             | MW-F                | WATER          | Vanadium  | 0.750         | J          | 0.15   | 2.5         | 5       | ug/L         |
| F2933-03             | MW-F                | WATER          | Zinc      | 32.300        |            | 0.09   | 1.0         | 2       | ug/L         |
|                      |                     |                |           |               |            |        |             |         |              |
| Client ID:           | MW-G                | WATED          | A         | 2.000         |            | 0.14   | 1.0         | 2       | . /T         |
| F2933-04             | MW-G                | WATER          | Antimony  | 2.000         | J          | 0.14   | 1.0         | 2       | ug/L         |
| F2933-04             | MW-G                | WATER<br>WATER | Arsenic   | 4.500         |            | 0.18   | 0.5         | 1       | ug/L         |
| F2933-04             | MW-G                |                | Barium    | 148.000       | т          | 0.1    | 5.0         | 10      | ug/L         |
| F2933-04             | MW-G                | WATER          | Cadmium   | 0.500         | J          | 0.13   | 0.5         | 1       | ug/L         |
| F2933-04             | MW-G                | WATER          | Chromium  | 3.900         |            | 0.04   | 1.0         | 2       | ug/L         |
| F2933-04             | MW-G                | WATER          | Cobalt    | 15.100        |            | 0.05   | 0.5         | 1       | ug/L         |
| F2933-04             | MW-G                | WATER          | Copper    | 20.600        |            | 0.04   | 1.0         | 2       | ug/L         |
| F2933-04             | MW-G                | WATER          | Lead      | 24.300        |            | 0.04   | 0.5         | 1       | ug/L         |



**SDG No.:** F2933 **Order ID:** F2933

| Client:    | Dvirka & Bartilucci |        |           | Project II    | <b>)</b> : | NYCSCA U | Jnionport Roa | d Bronx |       |
|------------|---------------------|--------|-----------|---------------|------------|----------|---------------|---------|-------|
| Sample ID  | Client ID           | Matrix | Parameter | Concentration | C          | MDL      | LOD           | RDL     | Units |
| F2933-04   | MW-G                | WATER  | Manganese | 2,780.000     |            | 0.05     | 0.5           | 1       | ug/L  |
| F2933-04   | MW-G                | WATER  | Nickel    | 13.300        |            | 0.06     | 0.5           | 1       | ug/L  |
| F2933-04   | MW-G                | WATER  | Selenium  | 0.950         | J          | 0.7      | 2.5           | 5       | ug/L  |
| F2933-04   | MW-G                | WATER  | Silver    | 0.049         | J          | 0.03     | 0.5           | 1       | ug/L  |
| F2933-04   | MW-G                | WATER  | Thallium  | 0.100         | J          | 0.02     | 0.5           | 1       | ug/L  |
| F2933-04   | MW-G                | WATER  | Vanadium  | 3.300         | J          | 0.15     | 2.5           | 5       | ug/L  |
| F2933-04   | MW-G                | WATER  | Zinc      | 214.000       |            | 0.09     | 1.0           | 2       | ug/L  |
| Client ID: | MW-H                |        |           |               |            |          |               |         |       |
| F2933-05   | MW-H                | WATER  | Antimony  | 1.600         | J          | 0.14     | 1.0           | 2       | ug/L  |
| F2933-05   | MW-H                | WATER  | Arsenic   | 1.800         |            | 0.18     | 0.5           | 1       | ug/L  |
| F2933-05   | MW-H                | WATER  | Barium    | 158.000       |            | 0.1      | 5.0           | 10      | ug/L  |
| F2933-05   | MW-H                | WATER  | Cadmium   | 1.100         |            | 0.13     | 0.5           | 1       | ug/L  |
| F2933-05   | MW-H                | WATER  | Chromium  | 3.300         |            | 0.04     | 1.0           | 2       | ug/L  |
| F2933-05   | MW-H                | WATER  | Cobalt    | 1.700         |            | 0.05     | 0.5           | 1       | ug/L  |
| F2933-05   | MW-H                | WATER  | Copper    | 7.700         |            | 0.04     | 1.0           | 2       | ug/L  |
| F2933-05   | MW-H                | WATER  | Lead      | 23.000        |            | 0.04     | 0.5           | 1       | ug/L  |
| F2933-05   | MW-H                | WATER  | Manganese | 552.000       |            | 0.05     | 0.5           | 1       | ug/L  |
| F2933-05   | MW-H                | WATER  | Nickel    | 4.500         |            | 0.06     | 0.5           | 1       | ug/L  |
| F2933-05   | MW-H                | WATER  | Selenium  | 1.200         | J          | 0.7      | 2.5           | 5       | ug/L  |
| F2933-05   | MW-H                | WATER  | Silver    | 0.045         | J          | 0.03     | 0.5           | 1       | ug/L  |
| F2933-05   | MW-H                | WATER  | Thallium  | 0.041         | J          | 0.02     | 0.5           | 1       | ug/L  |
| F2933-05   | MW-H                | WATER  | Vanadium  | 4.400         | J          | 0.15     | 2.5           | 5       | ug/L  |
| F2933-05   | MW-H                | WATER  | Zinc      | 48.100        |            | 0.09     | 1.0           | 2       | ug/L  |
| Client ID: | MW-E                |        |           |               |            |          |               |         |       |
| F2933-06   | MW-E                | WATER  | Antimony  | 0.540         | J          | 0.14     | 1.0           | 2       | ug/L  |
| F2933-06   | MW-E                | WATER  | Arsenic   | 0.750         | J          | 0.18     | 0.5           | 1       | ug/L  |
| F2933-06   | MW-E                | WATER  | Barium    | 194.000       |            | 0.1      | 5.0           | 10      | ug/L  |
| F2933-06   | MW-E                | WATER  | Cadmium   | 0.620         | J          | 0.13     | 0.5           | 1       | ug/L  |
| F2933-06   | MW-E                | WATER  | Chromium  | 0.980         | J          | 0.04     | 1.0           | 2       | ug/L  |
| F2933-06   | MW-E                | WATER  | Cobalt    | 5.300         |            | 0.05     | 0.5           | 1       | ug/L  |
| F2933-06   | MW-E                | WATER  | Copper    | 6.600         |            | 0.04     | 1.0           | 2       | ug/L  |
| F2933-06   | MW-E                | WATER  | Lead      | 0.280         | J          | 0.04     | 0.5           | 1       | ug/L  |
| F2933-06   | MW-E                | WATER  | Manganese | 13,800.000    | D          | 1.3      | 12.5          | 25      | ug/L  |
| F2933-06   | MW-E                | WATER  | Nickel    | 7.500         |            | 0.06     | 0.5           | 1       | ug/L  |
| F2933-06   | MW-E                | WATER  | Selenium  | 3.000         | J          | 0.7      | 2.5           | 5       | ug/L  |
| F2933-06   | MW-E                | WATER  | Thallium  | 0.042         | J          | 0.02     | 0.5           | 1       | ug/L  |
| F2933-06   | MW-E                | WATER  | Vanadium  | 0.160         | J          | 0.15     | 2.5           | 5       | ug/L  |
| F2933-06   | MW-E                | WATER  | Zinc      | 7.200         |            | 0.09     | 1.0           | 2       | ug/L  |
| Client ID: | MW-F                |        |           |               |            |          |               |         |       |
| F2933-07   | MW-F                | WATER  | Antimony  | 0.250         | J          | 0.14     | 1.0           | 2       | ug/L  |



**SDG No.:** F2933 **Order ID:** F2933

Client: Dvirka & Bartilucci Project ID: NYCSCA Unionport Road Bronx

| Client:    | Dvirka & Bartilucci |        |           | Project ID    | ): | NYCSCA U | Jnionport Roa | d Bronx |       |
|------------|---------------------|--------|-----------|---------------|----|----------|---------------|---------|-------|
| Sample ID  | Client ID           | Matrix | Parameter | Concentration | C  | MDL      | LOD           | RDL     | Units |
| F2933-07   | MW-F                | WATER  | Arsenic   | 0.980         | J  | 0.18     | 0.5           | 1       | ug/L  |
| F2933-07   | MW-F                | WATER  | Barium    | 155.000       |    | 0.1      | 5.0           | 10      | ug/L  |
| F2933-07   | MW-F                | WATER  | Chromium  | 0.300         | J  | 0.04     | 1.0           | 2       | ug/L  |
| F2933-07   | MW-F                | WATER  | Cobalt    | 1.900         |    | 0.05     | 0.5           | 1       | ug/L  |
| F2933-07   | MW-F                | WATER  | Copper    | 0.630         | J  | 0.04     | 1.0           | 2       | ug/L  |
| F2933-07   | MW-F                | WATER  | Lead      | 0.094         | J  | 0.04     | 0.5           | 1       | ug/L  |
| F2933-07   | MW-F                | WATER  | Manganese | 3,050.000     |    | 0.05     | 0.5           | 1       | ug/L  |
| F2933-07   | MW-F                | WATER  | Nickel    | 3.600         |    | 0.06     | 0.5           | 1       | ug/L  |
| F2933-07   | MW-F                | WATER  | Thallium  | 0.027         | J  | 0.02     | 0.5           | 1       | ug/L  |
| F2933-07   | MW-F                | WATER  | Zinc      | 8.000         |    | 0.09     | 1.0           | 2       | ug/L  |
| Client ID: | MW-G                |        |           |               |    |          |               |         |       |
| F2933-08   | MW-G                | WATER  | Antimony  | 0.580         | J  | 0.14     | 1.0           | 2       | ug/L  |
| F2933-08   | MW-G                | WATER  | Arsenic   | 0.560         | J  | 0.18     | 0.5           | 1       | ug/L  |
| F2933-08   | MW-G                | WATER  | Barium    | 87.100        |    | 0.1      | 5.0           | 10      | ug/L  |
| F2933-08   | MW-G                | WATER  | Chromium  | 1.100         | J  | 0.04     | 1.0           | 2       | ug/L  |
| F2933-08   | MW-G                | WATER  | Cobalt    | 6.800         |    | 0.05     | 0.5           | 1       | ug/L  |
| F2933-08   | MW-G                | WATER  | Copper    | 0.680         | J  | 0.04     | 1.0           | 2       | ug/L  |
| F2933-08   | MW-G                | WATER  | Lead      | 0.390         | J  | 0.04     | 0.5           | 1       | ug/L  |
| F2933-08   | MW-G                | WATER  | Manganese | 2,460.000     |    | 0.05     | 0.5           | 1       | ug/L  |
| F2933-08   | MW-G                | WATER  | Nickel    | 7.600         |    | 0.06     | 0.5           | 1       | ug/L  |
| F2933-08   | MW-G                | WATER  | Thallium  | 0.028         | J  | 0.02     | 0.5           | 1       | ug/L  |
| F2933-08   | MW-G                | WATER  | Zinc      | 13.100        |    | 0.09     | 1.0           | 2       | ug/L  |
| Client ID: | MW-H                |        |           |               |    |          |               |         |       |
| F2933-09   | MW-H                | WATER  | Antimony  | 1.000         | J  | 0.14     | 1.0           | 2       | ug/L  |
| F2933-09   | MW-H                | WATER  | Arsenic   | 0.480         | J  | 0.18     | 0.5           | 1       | ug/L  |
| F2933-09   | MW-H                | WATER  | Barium    | 113.000       |    | 0.1      | 5.0           | 10      | ug/L  |
| F2933-09   | MW-H                | WATER  | Chromium  | 0.570         | J  | 0.04     | 1.0           | 2       | ug/L  |
| F2933-09   | MW-H                | WATER  | Cobalt    | 0.200         | J  | 0.05     | 0.5           | 1       | ug/L  |
| F2933-09   | MW-H                | WATER  | Copper    | 1.700         | J  | 0.04     | 1.0           | 2       | ug/L  |
| F2933-09   | MW-H                | WATER  | Lead      | 0.180         | J  | 0.04     | 0.5           | 1       | ug/L  |
| F2933-09   | MW-H                | WATER  | Manganese | 12.500        |    | 0.05     | 0.5           | 1       | ug/L  |
| F2933-09   | MW-H                | WATER  | Nickel    | 1.600         |    | 0.06     | 0.5           | 1       | ug/L  |
| F2933-09   | MW-H                | WATER  | Thallium  | 0.027         | J  | 0.02     | 0.5           | 1       | ug/L  |
| F2933-09   | MW-H                | WATER  | Vanadium  | 1.700         | J  | 0.15     | 2.5           | 5       | ug/L  |
| F2933-09   | MW-H                | WATER  | Zinc      | 10.700        |    | 0.09     | 1.0           | 2       | ug/L  |
|            |                     |        |           |               |    |          |               |         |       |



### **ANALYTICAL RESULTS SUMMARY**

**VOLATILE ORGANICS** 

PROJECT NAME: NYCSCA UNIONPORT ROAD BRONX TO-15

DVIRKA & BARTILUCCI
330 Crossways Park Drive

**Woodbury, NY - 11797** 

Phone No: 516-364-9890

ORDER ID: F2940

**ATTENTION: MARIA WRIGHT** 









**SDG No.:** F2940

| Sample ID  | Client ID | Matrix | Parameter                   | Concentration | <b>C</b> 1 | MDL  | LOD  | RDL  | Units |
|------------|-----------|--------|-----------------------------|---------------|------------|------|------|------|-------|
| Client ID: | SV-17     |        |                             |               |            |      |      |      |       |
| F2940-01   | SV-17     | Air    | Dichlorodifluoromethane     | 0.59          | J          | 0.2  | 0.49 | 2.47 | ug/m3 |
| F2940-01   | SV-17     | Air    | Chloromethane               | 0.87          | J          | 0.21 | 0.21 | 1.03 | ug/m3 |
| F2940-01   | SV-17     | Air    | Vinyl Chloride              | 0.18          |            | 0.08 | 0.08 | 0.08 | ug/m3 |
| F2940-01   | SV-17     | Air    | Chloroethane                | 0.69          | J          | 0.26 | 0.26 | 1.32 | ug/m3 |
| F2940-01   | SV-17     | Air    | Tetrahydrofuran             | 3.83          |            | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2940-01   | SV-17     | Air    | Trichlorofluoromethane      | 1.40          | J          | 0.22 | 0.56 | 2.81 | ug/m3 |
| F2940-01   | SV-17     | Air    | Heptane                     | 20.10         |            | 0.41 | 0.41 | 2.05 | ug/m3 |
| F2940-01   | SV-17     | Air    | Acetone                     | 546.00        | EB         | 0.24 | 0.24 | 1.19 | ug/m3 |
| F2940-01   | SV-17     | Air    | Carbon Disulfide            | 26.50         |            | 0.16 | 0.31 | 1.56 | ug/m3 |
| F2940-01   | SV-17     | Air    | Methylene Chloride          | 14.60         | В          | 0.17 | 0.35 | 1.74 | ug/m3 |
| F2940-01   | SV-17     | Air    | Cyclohexane                 | 5.51          |            | 0.34 | 0.34 | 1.72 | ug/m3 |
| F2940-01   | SV-17     | Air    | 2-Butanone                  | 16.20         |            | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2940-01   | SV-17     | Air    | Carbon Tetrachloride        | 0.69          |            | 0.19 | 0.19 | 0.19 | ug/m3 |
| F2940-01   | SV-17     | Air    | Chloroform                  | 4.88          |            | 0.1  | 0.49 | 2.44 | ug/m3 |
| F2940-01   | SV-17     | Air    | 1,1,1-Trichloroethane       | 0.60          |            | 0.16 | 0.16 | 0.16 | ug/m3 |
| F2940-01   | SV-17     | Air    | Benzene                     | 3.51          |            | 0.13 | 0.32 | 1.6  | ug/m3 |
| F2940-01   | SV-17     | Air    | Trichloroethene             | 0.21          |            | 0.11 | 0.16 | 0.16 | ug/m3 |
| F2940-01   | SV-17     | Air    | Toluene                     | 26.80         |            | 0.19 | 0.38 | 1.88 | ug/m3 |
| F2940-01   | SV-17     | Air    | Tetrachloroethene           | 27.80         |            | 0.2  | 0.2  | 0.2  | ug/m3 |
| F2940-01   | SV-17     | Air    | Ethyl Benzene               | 15.20         |            | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-01   | SV-17     | Air    | m/p-Xylene                  | 61.70         |            | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2940-01   | SV-17     | Air    | o-Xylene                    | 40.80         |            | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-01   | SV-17     | Air    | Styrene                     | 1.23          | J          | 0.43 | 0.43 | 2.13 | ug/m3 |
| F2940-01   | SV-17     | Air    | 1,3,5-Trimethylbenzene      | 87.00         | Е          | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-01   | SV-17     | Air    | 1,2,4-Trimethylbenzene      | 211.00        | Е          | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-01   | SV-17     | Air    | Naphthalene                 | 29.90         |            | 0.21 | 0.52 | 2.62 | ug/m3 |
| F2940-01   | SV-17     | Air    | 4-Ethyltoluene              | 88.00         | Е          | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-01   | SV-17     | Air    | Hexane                      | 36.60         |            | 0.14 | 0.35 | 1.76 | ug/m3 |
|            |           |        | Total Voc:                  | 1272.39       | )          |      |      |      |       |
|            |           |        | <b>Total Concentration:</b> | 1272.39       |            |      |      |      |       |
| Client ID: | SV-17DL   |        |                             |               |            |      |      |      |       |
| F2940-01DL | SV-17DL   | Air    | Heptane                     | 17.60         | JD         | 4.1  | 4.1  | 20.5 | ug/m3 |
| F2940-01DL | SV-17DL   | Air    | Acetone                     | 665.00        | EDB        |      | 2.38 | 11.9 | ug/m3 |
| F2940-01DL | SV-17DL   | Air    | Methylene Chloride          | 17.70         | DB         | 1.74 | 3.47 | 17.4 | ug/m3 |
| F2940-01DL | SV-17DL   | Air    | 2-Butanone                  | 14.40         | JD         | 2.95 | 2.95 | 14.8 | ug/m3 |
| F2940-01DL | SV-17DL   | Air    | Toluene                     | 25.60         | D          | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2940-01DL | SV-17DL   | Air    | Tetrachloroethene           | 25.80         | D          | 2.03 | 2.03 | 2.03 | ug/m3 |





**SDG No.:** F2940

| Sample ID                 | Client ID                   | Matrix | Parameter                      | Concentration | <b>C</b> | MDL  | LOD  | RDL   | Units   |
|---------------------------|-----------------------------|--------|--------------------------------|---------------|----------|------|------|-------|---------|
| F2940-01DL                | SV-17DL                     | Air    | Ethyl Benzene                  | 13.00         | JD       | 4.34 | 4.34 | 21.7  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | m/p-Xylene                     | 56.50         | D        | 4.34 | 8.69 | 43.4  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | o-Xylene                       | 36.00         | D        | 4.34 | 4.34 | 21.7  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | 1,3,5-Trimethylbenzene         | 86.00         | D        | 4.92 | 4.92 | 24.6  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | 1,2,4-Trimethylbenzene         | 259.00        | D        | 4.92 | 4.92 | 24.6  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | Naphthalene                    | 19.40         | JD       | 2.1  | 5.24 | 26.2  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | 4-Ethyltoluene                 | 90.50         | D        | 4.92 | 4.92 | 24.6  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | Hexane                         | 33.10         | D        | 1.41 | 3.52 | 17.6  | ug/m3   |
|                           |                             |        | Total Voc:                     | 1359.6        |          |      |      |       |         |
|                           |                             |        | <b>Total Concentration:</b>    | 1359.6        |          |      |      |       |         |
| Client ID:<br>F2940-01DL2 | <b>SV-17DL2</b><br>SV-17DL2 | Air    | Acetone                        | 617.00        | DB       | 9.5  | 9.5  | 47.5  | ug/m3   |
| F2940-01DL2               | SV-17DL2<br>SV-17DL2        | Air    | Toluene                        | 18.10         | JD       | 7.54 | 15.1 | 75.4  | ug/m3   |
| F2940-01DL2               | SV-17DL2<br>SV-17DL2        | Air    | Tetrachloroethene              | 24.40         | D        | 8.14 | 8.14 | 8.14  | ug/m3   |
| F2940-01DL2               | SV-17DL2<br>SV-17DL2        | Air    | m/p-Xylene                     | 36.50         | JD       | 17.4 | 34.8 | 173   | ug/m3   |
| F2940-01DL2               | SV-17DL2                    | Air    | o-Xylene                       | 22.60         | JD       | 17.4 | 17.4 | 86.9  | ug/m3   |
| F2940-01DL2               | SV-17DL2<br>SV-17DL2        | Air    | 1,3,5-Trimethylbenzene         | 53.10         | JD       | 19.7 | 19.7 | 98.3  | ug/m3   |
| F2940-01DL2               | SV-17DL2                    | Air    | 1,2,4-Trimethylbenzene         | 186.00        | D        | 19.7 | 19.7 | 98.3  | ug/m3   |
| F2940-01DL2               | SV-17DL2                    | Air    | Naphthalene                    | 12.60         | JD       | 8.39 | 21.0 | 104   | ug/m3   |
| F2940-01DL2               | SV-17DL2                    | Air    | 4-Ethyltoluene                 | 59.00         | JD       | 19.7 | 19.7 | 98.3  | ug/m3   |
| F2940-01DL2               | SV-17DL2                    | Air    | Hexane                         | 26.80         | JD       | 5.64 | 14.1 | 70.5  | ug/m3   |
| 129.00122                 | 5, 1,52 <b>2</b>            |        | Total Voc:                     | 1056.1        | 02       | 0.0. |      | , 0.0 | ug/IIIs |
|                           |                             |        | Total Concentration:           | 1056.1        |          |      |      |       |         |
| Client ID:                | SV-7                        |        |                                |               |          |      |      |       |         |
| F2940-02                  | SV-7                        | Air    | Dichlorodifluoromethane        | 1.24          | J        | 0.2  | 0.49 | 2.47  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Chloromethane                  | 1.05          |          | 0.21 | 0.21 | 1.03  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Trichlorofluoromethane         | 1.57          | J        | 0.22 | 0.56 | 2.81  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | 1,1,2-Trichlorotrifluoroethane | 0.61          | J        | 0.31 | 0.77 | 3.83  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | tert-Butyl alcohol             | 4.55          |          | 0.3  | 0.3  | 1.52  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Heptane                        | 4.92          |          | 0.41 | 0.41 | 2.05  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Acetone                        | 209.00        | EB       | 0.24 | 0.24 | 1.19  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Carbon Disulfide               | 10.30         |          | 0.16 | 0.31 | 1.56  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Methyl tert-Butyl Ether        | 1.80          |          | 0.18 | 0.36 | 1.8   | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Methylene Chloride             | 9.38          | В        | 0.17 | 0.35 | 1.74  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Cyclohexane                    | 6.54          |          | 0.34 | 0.34 | 1.72  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | 2-Butanone                     | 6.78          |          | 0.29 | 0.29 | 1.47  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Carbon Tetrachloride           | 0.44          |          | 0.19 | 0.19 | 0.19  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Chloroform                     | 1.12          | J        | 0.1  | 0.49 | 2.44  | ug/m3   |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

#### Hit Summary Sheet SW-846

**SDG No.:** F2940

Client: Dvirka & Bartilucci

| Sample ID  | Client ID | Matrix | Parameter                   | Concentration | <b>C</b> | MDL  | LOD  | RDL  | Units |
|------------|-----------|--------|-----------------------------|---------------|----------|------|------|------|-------|
| F2940-02   | SV-7      | Air    | 2,2,4-Trimethylpentane      | 13.10         |          | 0.19 | 0.47 | 2.34 | ug/m3 |
| F2940-02   | SV-7      | Air    | Benzene                     | 4.47          |          | 0.13 | 0.32 | 1.6  | ug/m3 |
| F2940-02   | SV-7      | Air    | Trichloroethene             | 0.21          |          | 0.11 | 0.16 | 0.16 | ug/m3 |
| F2940-02   | SV-7      | Air    | 4-Methyl-2-Pentanone        | 1.64          | J        | 0.2  | 0.41 | 2.05 | ug/m3 |
| F2940-02   | SV-7      | Air    | Toluene                     | 27.10         |          | 0.19 | 0.38 | 1.88 | ug/m3 |
| F2940-02   | SV-7      | Air    | Tetrachloroethene           | 21.00         |          | 0.2  | 0.2  | 0.2  | ug/m3 |
| F2940-02   | SV-7      | Air    | Ethyl Benzene               | 23.00         |          | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-02   | SV-7      | Air    | m/p-Xylene                  | 53.90         |          | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2940-02   | SV-7      | Air    | o-Xylene                    | 19.60         |          | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-02   | SV-7      | Air    | Styrene                     | 1.15          | J        | 0.43 | 0.43 | 2.13 | ug/m3 |
| F2940-02   | SV-7      | Air    | 1,3,5-Trimethylbenzene      | 9.34          |          | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-02   | SV-7      | Air    | 1,2,4-Trimethylbenzene      | 40.80         |          | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-02   | SV-7      | Air    | Naphthalene                 | 32.00         |          | 0.21 | 0.52 | 2.62 | ug/m3 |
| F2940-02   | SV-7      | Air    | 4-Ethyltoluene              | 13.80         |          | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-02   | SV-7      | Air    | Hexane                      | 9.16          |          | 0.14 | 0.35 | 1.76 | ug/m3 |
|            |           |        | Total Voc:                  | 529.57        | •        |      |      |      |       |
|            |           |        | <b>Total Concentration:</b> | 529.57        |          |      |      |      |       |
| Client ID: | SV-7DL    |        | D . 1 1 1 1                 | 4.05          | IDO      | 2.02 | 2.02 | 15.0 |       |
| F2940-02DL | SV-7DL    | Air    | tert-Butyl alcohol          | 4.85          | JDQ      | 3.03 | 3.03 | 15.2 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | Heptane                     | 4.51          | JD       | 4.1  | 4.1  | 20.5 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | Acetone                     | 261.00        | DB       | 2.38 | 2.38 | 11.9 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | Carbon Disulfide            | 9.03          | JD       | 1.56 | 3.11 | 15.6 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | Cyclohexane                 | 6.54          | JD       | 3.44 | 3.44 | 17.2 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | 2-Butanone                  | 5.90          | JD       | 2.95 | 2.95 | 14.8 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | 2,2,4-Trimethylpentane      | 12.10         | JD       | 1.87 | 4.67 | 23.4 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | Benzene                     | 4.47          | JD       | 1.28 | 3.19 | 16.0 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | Toluene                     | 28.30         | D        | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | Tetrachloroethene           | 21.00         | D        | 2.03 | 2.03 | 2.03 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | Ethyl Benzene               | 22.20         | D        | 4.34 | 4.34 | 21.7 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | m/p-Xylene                  | 56.00         | D        | 4.34 | 8.69 | 43.4 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | o-Xylene                    | 20.80         | JD       | 4.34 | 4.34 | 21.7 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | 1,3,5-Trimethylbenzene      | 10.80         | JD       | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | 1,2,4-Trimethylbenzene      | 46.70         | D        | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | Naphthalene                 | 21.00         | JD       | 2.1  | 5.24 | 26.2 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | 4-Ethyltoluene              | 13.80         | JD       | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-02DL | SV-7DL    | Air    | Hexane                      | 8.81          | JD       | 1.41 | 3.52 | 17.6 | ug/m3 |
|            |           |        | Total Voc :                 | 557.81        |          |      |      |      |       |

Total Voc: 557.81
Total Concentration: 557.81





**SDG No.:** F2940

| Sample ID                | Client ID        | Matrix | Parameter                       | Concentration | C I | MDL          | LOD  | RDL  | Units          |
|--------------------------|------------------|--------|---------------------------------|---------------|-----|--------------|------|------|----------------|
| Client ID:               | SV-6             |        |                                 |               |     |              |      |      |                |
| F2940-04                 | SV-6             |        | Dichlorodifluoromethane         | 3.86          |     | 0.2          | 0.49 | 2.47 | ug/m3          |
| F2940-04                 | SV-6             |        | Chloromethane                   | 0.95          | J   | 0.21         | 0.21 | 1.03 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Trichlorofluoromethane          | 5.11          |     | 0.22         | 0.56 | 2.81 | ug/m3          |
| F2940-04                 | SV-6             | Air    | 1,1,2-Trichlorotrifluoroethane  | 0.84          | J   | 0.31         | 0.77 | 3.83 | ug/m3          |
| F2940-04                 | SV-6             |        | Heptane                         | 18.80         |     | 0.41         | 0.41 | 2.05 | ug/m3          |
| F2940-04                 | SV-6             |        | Acetone                         | 332.00        | EB  | 0.24         | 0.24 | 1.19 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Methylene Chloride              | 1.46          | JB  | 0.17         | 0.35 | 1.74 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Cyclohexane                     | 55.80         | E   | 0.34         | 0.34 | 1.72 | ug/m3          |
| F2940-04                 | SV-6             | Air    | 2-Butanone                      | 9.14          |     | 0.29         | 0.29 | 1.47 | ug/m3          |
| F2940-04                 | SV-6             | Air    | 2,2,4-Trimethylpentane          | 185.00        | E   | 0.19         | 0.47 | 2.34 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Benzene                         | 22.40         |     | 0.13         | 0.32 | 1.6  | ug/m3          |
| F2940-04                 | SV-6             | Air    | Toluene                         | 23.40         |     | 0.19         | 0.38 | 1.88 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Tetrachloroethene               | 183.00        | E   | 0.2          | 0.2  | 0.2  | ug/m3          |
| F2940-04                 | SV-6             | Air    | Ethyl Benzene                   | 105.00        | E   | 0.43         | 0.43 | 2.17 | ug/m3          |
| F2940-04                 | SV-6             | Air    | m/p-Xylene                      | 184.00        | E   | 0.43         | 0.87 | 4.34 | ug/m3          |
| F2940-04                 | SV-6             | Air    | o-Xylene                        | 74.30         | E   | 0.43         | 0.43 | 2.17 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Styrene                         | 1.32          | J   | 0.43         | 0.43 | 2.13 | ug/m3          |
| F2940-04                 | SV-6             | Air    | 1,3,5-Trimethylbenzene          | 19.20         |     | 0.49         | 0.49 | 2.46 | ug/m3          |
| F2940-04                 | SV-6             | Air    | 1,2,4-Trimethylbenzene          | 73.20         |     | 0.49         | 0.49 | 2.46 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Naphthalene                     | 9.96          |     | 0.21         | 0.52 | 2.62 | ug/m3          |
| F2940-04                 | SV-6             | Air    | 4-Ethyltoluene                  | 25.60         |     | 0.49         | 0.49 | 2.46 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Hexane                          | 51.10         |     | 0.14         | 0.35 | 1.76 | ug/m3          |
|                          |                  |        | Total Voc:                      | 1385.44       |     |              |      |      |                |
|                          |                  |        | <b>Total Concentration:</b>     | 1385.44       |     |              |      |      |                |
| Client ID:<br>F2940-04DL | SV-6DL<br>SV-6DL | Air    | Acetone                         | 380.00        | EDB | 2 20         | 2.38 | 11.9 | 110/m2         |
| F2940-04DL<br>F2940-04DL | SV-6DL           |        | Cyclohexane                     | 49.20         | D   | 3.44         | 3.44 | 17.2 | ug/m3          |
| F2940-04DL<br>F2940-04DL | SV-6DL           |        | 2-Butanone                      | 7.37          | JD  |              | 2.95 | 14.8 | ug/m3          |
| F2940-04DL<br>F2940-04DL | SV-6DL<br>SV-6DL |        | 2,2,4-Trimethylpentane          | 285.00        | D   | 2.95<br>1.87 | 4.67 | 23.4 | ug/m3<br>ug/m3 |
| F2940-04DL<br>F2940-04DL | SV-6DL<br>SV-6DL |        | Benzene                         | 19.20         | D   | 1.07         | 3.19 | 16.0 | ug/m3          |
|                          |                  |        |                                 |               |     |              |      |      |                |
| F2940-04DL               | SV-6DL           |        | Toluene Tetrachlaraethana       | 27.90         | D   | 1.88         | 3.77 | 18.8 | ug/m3          |
| F2940-04DL               | SV-6DL           |        | Tetrachloroethene Ethyl Bonzone | 228.00        | D   | 2.03         | 2.03 | 2.03 | ug/m3          |
| F2940-04DL               | SV-6DL           |        | Ethyl Benzene                   | 108.00        | D   | 4.34         | 4.34 | 21.7 | ug/m3          |
| F2940-04DL               | SV-6DL           |        | m/p-Xylene                      | 204.00        | D   | 4.34         | 8.69 | 43.4 | ug/m3          |
| F2940-04DL               | SV-6DL           |        | o-Xylene                        | 70.40         | D   | 4.34         | 4.34 | 21.7 | ug/m3          |
| F2940-04DL               | SV-6DL           |        | 1,3,5-Trimethylbenzene          | 16.70         | JD  | 4.92         | 4.92 | 24.6 | ug/m3          |
| F2940-04DL               | SV-6DL           | Air    | 1,2,4-Trimethylbenzene          | 70.80         | D   | 4.92         | 4.92 | 24.6 | ug/m3          |





**SDG No.:** F2940

| Sample ID                 | Client ID             | Matrix | Parameter                      | Concentration | C  | MDL  | LOD  | RDL  | Units |
|---------------------------|-----------------------|--------|--------------------------------|---------------|----|------|------|------|-------|
| F2940-04DL                | SV-6DL                | Air    | Naphthalene                    | 18.90         | JD | 2.1  | 5.24 | 26.2 | ug/m3 |
| F2940-04DL                | SV-6DL                | Air    | 4-Ethyltoluene                 | 22.10         | JD | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-04DL                | SV-6DL                | Air    | Hexane                         | 43.00         | D  | 1.41 | 3.52 | 17.6 | ug/m3 |
|                           |                       |        | Total Voc:                     | 1550.57       |    |      |      |      |       |
|                           |                       |        | <b>Total Concentration:</b>    | 1550.57       |    |      |      |      |       |
| Client ID:<br>F2940-04DL2 | SV-6DL2<br>SV-6DL2    | Air    | Acetone                        | 380.00        | DB | 9.5  | 9.5  | 47.5 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | Cyclohexane                    | 46.80         | JD | 13.8 | 13.8 | 68.8 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | 2,2,4-Trimethylpentane         | 341.00        | D  | 7.47 | 18.7 | 93.4 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | Benzene                        | 20.40         | JD | 5.11 | 12.8 | 63.9 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | Toluene                        | 28.60         | JD | 7.54 | 15.1 | 75.4 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | Tetrachloroethene              | 238.00        | D  | 8.14 | 8.14 | 8.14 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | Ethyl Benzene                  | 93.80         | D  | 17.4 | 17.4 | 86.9 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | m/p-Xylene                     | 178.00        | D  | 17.4 | 34.8 | 173  | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | o-Xylene                       | 57.30         | JD | 17.4 | 17.4 | 86.9 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | 1,2,4-Trimethylbenzene         | 51.10         | JD | 19.7 | 19.7 | 98.3 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | Hexane                         | 39.50         | JD | 5.64 | 14.1 | 70.5 | ug/m3 |
|                           |                       |        | Total Voc:                     | 1474.5        |    |      |      |      |       |
|                           |                       |        | <b>Total Concentration:</b>    | 1474.5        |    |      |      |      |       |
| Client ID:<br>F2940-05    | <b>SV-12</b><br>SV-12 | Air    | Dichlorodifluoromethane        | 3.46          |    | 0.2  | 0.49 | 2.47 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Chloromethane                  | 1.78          |    | 0.21 | 0.47 | 1.03 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Trichlorofluoromethane         | 1.57          | J  | 0.21 | 0.56 | 2.81 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | 1,1,2-Trichlorotrifluoroethane |               | J  | 0.31 | 0.77 | 3.83 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Heptane                        | 1.02          | J  | 0.41 | 0.41 | 2.05 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Acetone                        | 45.40         | EB | 0.24 | 0.24 | 1.19 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Methylene Chloride             | 1.01          | JB | 0.17 | 0.35 | 1.74 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Cyclohexane                    | 0.41          | J  | 0.34 | 0.34 | 1.72 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | 2-Butanone                     | 5.90          |    | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Carbon Tetrachloride           | 0.44          |    | 0.19 | 0.19 | 0.19 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | 2,2,4-Trimethylpentane         | 0.98          | J  | 0.19 | 0.47 | 2.34 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Benzene                        | 0.58          | J  | 0.13 | 0.32 | 1.6  | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Toluene                        | 22.20         |    | 0.19 | 0.38 | 1.88 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Tetrachloroethene              | 0.34          |    | 0.2  | 0.2  | 0.2  | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Ethyl Benzene                  | 0.48          | J  | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | m/p-Xylene                     | 1.56          | J  | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | o-Xylene                       | 0.65          | J  | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | 1,2,4-Trimethylbenzene         | 0.79          | J  | 0.49 | 0.49 | 2.46 | ug/m3 |
|                           |                       |        | <del>-</del>                   |               |    |      |      |      | -     |





**SDG No.:** F2940

| Sample ID                | Client ID          | Matrix | Parameter                   | Concentration | C  | MDL  | LOD  | RDL  | Units   |
|--------------------------|--------------------|--------|-----------------------------|---------------|----|------|------|------|---------|
|                          |                    |        | Total Voc:                  | 89.34         |    |      |      |      |         |
|                          |                    |        | <b>Total Concentration:</b> | 89.34         |    |      |      |      |         |
| Client ID:<br>F2940-05DL | SV-12DL<br>SV-12DL | Air    | Acetone                     | 45.80         | DB | 2.38 | 2.38 | 11.9 | ug/m3   |
| F2940-05DL               | SV-12DL            | Air    | Toluene                     | 19.60         | D  | 1.88 | 3.77 | 18.8 | ug/m3   |
| 12740-03DL               | 3 V-12DL           | All    | Total Voc:                  | 65.4          |    | 1.00 | 5.77 | 10.0 | ug/III3 |
|                          |                    |        | Total Concentration:        | 65.4          |    |      |      |      |         |
| Client ID:               | SV-15              |        | Total Concentiation.        | 55.1          |    |      |      |      |         |
| F2940-06                 | SV-15              | Air    | Dichlorodifluoromethane     | 3.46          | J  | 1.98 | 4.94 | 24.7 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Chloromethane               | 4.96          | J  | 2.07 | 2.07 | 10.3 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Trichlorofluoromethane      | 2.25          | J  | 2.25 | 5.62 | 28.1 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Heptane                     | 9.02          | J  | 4.1  | 4.1  | 20.5 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Acetone                     | 48.70         | В  | 2.38 | 2.38 | 11.9 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Carbon Disulfide            | 22.70         |    | 1.56 | 3.11 | 15.6 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Methylene Chloride          | 5.21          | JB | 1.74 | 3.47 | 17.4 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Cyclohexane                 | 4.47          | J  | 3.44 | 3.44 | 17.2 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Chloroform                  | 11.20         | J  | 0.98 | 4.88 | 24.4 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Benzene                     | 7.03          | J  | 1.28 | 3.19 | 16.0 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Trichloroethene             | 178.00        |    | 0.81 | 1.61 | 1.61 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Toluene                     | 21.90         |    | 1.88 | 3.77 | 18.8 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Tetrachloroethene           | 8,815.00      | E  | 2.03 | 2.03 | 2.03 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Ethyl Benzene               | 6.52          | J  | 4.34 | 4.34 | 21.7 | ug/m3   |
| F2940-06                 | SV-15              | Air    | m/p-Xylene                  | 21.30         | J  | 4.34 | 8.69 | 43.4 | ug/m3   |
| F2940-06                 | SV-15              | Air    | o-Xylene                    | 8.25          | J  | 4.34 | 4.34 | 21.7 | ug/m3   |
| F2940-06                 | SV-15              | Air    | 1,3,5-Trimethylbenzene      | 5.41          | J  | 4.92 | 4.92 | 24.6 | ug/m3   |
| F2940-06                 | SV-15              | Air    | 1,2,4-Trimethylbenzene      | 14.80         | J  | 4.92 | 4.92 | 24.6 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Naphthalene                 | 5.24          | J  | 2.1  | 5.24 | 26.2 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Hexane                      | 12.00         | J  | 1.41 | 3.52 | 17.6 | ug/m3   |
|                          |                    |        | <b>Total Voc:</b>           | 9207.42       |    |      |      |      |         |
|                          |                    |        | <b>Total Concentration:</b> | 9207.42       |    |      |      |      |         |
| Client ID:<br>F2940-06DL | SV-15DL<br>SV-15DL | Air    | Trichloroethene             | 118.00        | D  | 16.1 | 32.2 | 32.2 | ug/m3   |
| F2940-06DL               | SV-15DL<br>SV-15DL | Air    | Tetrachloroethene           | 15,596.00     | D  | 40.7 | 40.7 | 40.7 | ug/m3   |
| F2940-00DL               | 3V-13DL            | All    | Total Voc:                  | 15,390.00     |    | 40.7 | 40.7 | 40.7 | ug/III3 |
|                          |                    |        | Total Concentration:        | 15714         |    |      |      |      |         |
| Client ID:               | SV-16              |        | iotai Concenti ation.       | 107 14        |    |      |      |      |         |
| F2940-07                 | SV-16              | Air    | Dichlorodifluoromethane     | 2.52          |    | 0.2  | 0.49 | 2.47 | ug/m3   |
| F2940-07                 | SV-16              | Air    | Chloromethane               | 1.84          |    | 0.21 | 0.21 | 1.03 | ug/m3   |
| F2940-07                 | SV-16              | Air    | Bromomethane                | 0.47          | J  | 0.12 | 0.39 | 1.94 | ug/m3   |





**SDG No.:** F2940

| Sample ID  | Client ID | Matrix | Parameter                                 | Concentration | C  | MDL  | LOD  | RDL  | Units |
|------------|-----------|--------|-------------------------------------------|---------------|----|------|------|------|-------|
| F2940-07   | SV-16     | Air    | Trichlorofluoromethane                    | 1.57          | J  | 0.22 | 0.56 | 2.81 | ug/m3 |
| F2940-07   | SV-16     | Air    | $1, 1, 2\hbox{-Trichlorotrifluoroethane}$ | 0.77          | J  | 0.31 | 0.77 | 3.83 | ug/m3 |
| F2940-07   | SV-16     | Air    | Heptane                                   | 2.05          |    | 0.41 | 0.41 | 2.05 | ug/m3 |
| F2940-07   | SV-16     | Air    | Acetone                                   | 114.00        | EB | 0.24 | 0.24 | 1.19 | ug/m3 |
| F2940-07   | SV-16     | Air    | Carbon Disulfide                          | 4.36          |    | 0.16 | 0.31 | 1.56 | ug/m3 |
| F2940-07   | SV-16     | Air    | Methylene Chloride                        | 6.95          | В  | 0.17 | 0.35 | 1.74 | ug/m3 |
| F2940-07   | SV-16     | Air    | Cyclohexane                               | 1.14          | J  | 0.34 | 0.34 | 1.72 | ug/m3 |
| F2940-07   | SV-16     | Air    | 2-Butanone                                | 3.83          |    | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2940-07   | SV-16     | Air    | Carbon Tetrachloride                      | 0.50          |    | 0.19 | 0.19 | 0.19 | ug/m3 |
| F2940-07   | SV-16     | Air    | Chloroform                                | 1.37          | J  | 0.1  | 0.49 | 2.44 | ug/m3 |
| F2940-07   | SV-16     | Air    | 2,2,4-Trimethylpentane                    | 4.25          |    | 0.19 | 0.47 | 2.34 | ug/m3 |
| F2940-07   | SV-16     | Air    | Benzene                                   | 1.98          |    | 0.13 | 0.32 | 1.6  | ug/m3 |
| F2940-07   | SV-16     | Air    | Toluene                                   | 12.10         |    | 0.19 | 0.38 | 1.88 | ug/m3 |
| F2940-07   | SV-16     | Air    | Tetrachloroethene                         | 3.32          |    | 0.2  | 0.2  | 0.2  | ug/m3 |
| F2940-07   | SV-16     | Air    | Ethyl Benzene                             | 3.26          |    | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-07   | SV-16     | Air    | m/p-Xylene                                | 11.70         |    | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2940-07   | SV-16     | Air    | o-Xylene                                  | 5.65          |    | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-07   | SV-16     | Air    | 1,3,5-Trimethylbenzene                    | 4.13          |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-07   | SV-16     | Air    | 1,2,4-Trimethylbenzene                    | 15.20         |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-07   | SV-16     | Air    | Naphthalene                               | 1.99          | J  | 0.21 | 0.52 | 2.62 | ug/m3 |
| F2940-07   | SV-16     | Air    | 4-Ethyltoluene                            | 4.87          |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-07   | SV-16     | Air    | Hexane                                    | 4.23          |    | 0.14 | 0.35 | 1.76 | ug/m3 |
|            |           |        | Total Voc:                                | 214.05        | ;  |      |      |      |       |
|            |           |        | <b>Total Concentration:</b>               | 214.05        |    |      |      |      |       |
| Client ID: | SV-16DL   |        |                                           | 110.00        | DD | 2.20 | 2.20 | 11.0 | / 2   |
| F2940-07DL | SV-16DL   | Air    | Acetone                                   | 110.00        | DB | 2.38 | 2.38 | 11.9 | ug/m3 |
| F2940-07DL | SV-16DL   |        | 2-Butanone                                | 4.42          | JD | 2.95 | 2.95 | 14.8 | ug/m3 |
| F2940-07DL | SV-16DL   | Air    | Toluene                                   | 10.20         | JD | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2940-07DL | SV-16DL   | Air    | m/p-Xylene                                | 9.12          | JD | 4.34 | 8.69 | 43.4 | ug/m3 |
| F2940-07DL | SV-16DL   | Air    | o-Xylene                                  | 4.34          | JD | 4.34 | 4.34 | 21.7 | ug/m3 |
| F2940-07DL | SV-16DL   | Air    | 1,2,4-Trimethylbenzene                    | 13.80         | JD | 4.92 | 4.92 | 24.6 | ug/m3 |
|            |           |        | Total Voc:                                | 151.88        |    |      |      |      |       |
| Client ID: | SV-18     |        | Total Concentration:                      | 151.88        | i  |      |      |      |       |
| F2940-08   | SV-18     | Air    | Dichlorodifluoromethane                   | 4.65          |    | 0.2  | 0.49 | 2.47 | ug/m3 |
| F2940-08   | SV-18     | Air    | Chloromethane                             | 1.01          | J  | 0.21 | 0.21 | 1.03 | ug/m3 |
| F2940-08   | SV-18     | Air    | Tetrahydrofuran                           | 3.24          |    | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2940-08   | SV-18     | Air    | Trichlorofluoromethane                    | 2.87          |    | 0.22 | 0.56 | 2.81 | ug/m3 |





**SDG No.:** F2940

| Sample ID                | Client ID          | Matrix | Parameter                      | Concentration | C I | MDL  | LOD  | RDL  | Units |
|--------------------------|--------------------|--------|--------------------------------|---------------|-----|------|------|------|-------|
| F2940-08                 | SV-18              | Air    | 1,1,2-Trichlorotrifluoroethane | 1.23          | J   | 0.31 | 0.77 | 3.83 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Heptane                        | 22.50         |     | 0.41 | 0.41 | 2.05 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Acetone                        | 1,068.00      | EB  | 0.24 | 0.24 | 1.19 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Carbon Disulfide               | 52.90         | E   | 0.16 | 0.31 | 1.56 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Methylene Chloride             | 41.30         | В   | 0.17 | 0.35 | 1.74 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Cyclohexane                    | 7.92          |     | 0.34 | 0.34 | 1.72 | ug/m3 |
| F2940-08                 | SV-18              | Air    | 2-Butanone                     | 27.10         |     | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Carbon Tetrachloride           | 0.57          |     | 0.19 | 0.19 | 0.19 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Chloroform                     | 488.00        | E   | 0.1  | 0.49 | 2.44 | ug/m3 |
| F2940-08                 | SV-18              | Air    | 2,2,4-Trimethylpentane         | 7.47          |     | 0.19 | 0.47 | 2.34 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Benzene                        | 9.58          |     | 0.13 | 0.32 | 1.6  | ug/m3 |
| F2940-08                 | SV-18              | Air    | Trichloroethene                | 0.86          |     | 0.11 | 0.16 | 0.16 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Bromodichloromethane           | 18.10         |     | 0.33 | 0.67 | 3.35 | ug/m3 |
| F2940-08                 | SV-18              | Air    | 4-Methyl-2-Pentanone           | 8.61          |     | 0.2  | 0.41 | 2.05 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Toluene                        | 98.00         | E   | 0.19 | 0.38 | 1.88 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Tetrachloroethene              | 46.80         |     | 0.2  | 0.2  | 0.2  | ug/m3 |
| F2940-08                 | SV-18              | Air    | Ethyl Benzene                  | 46.00         |     | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-08                 | SV-18              | Air    | m/p-Xylene                     | 155.00        | E   | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2940-08                 | SV-18              | Air    | o-Xylene                       | 63.80         |     | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Styrene                        | 2.55          |     | 0.43 | 0.43 | 2.13 | ug/m3 |
| F2940-08                 | SV-18              | Air    | 1,3,5-Trimethylbenzene         | 23.60         |     | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-08                 | SV-18              | Air    | 1,2,4-Trimethylbenzene         | 88.50         | E   | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Naphthalene                    | 16.80         |     | 0.21 | 0.52 | 2.62 | ug/m3 |
| F2940-08                 | SV-18              | Air    | 4-Ethyltoluene                 | 35.90         |     | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Hexane                         | 27.80         |     | 0.14 | 0.35 | 1.76 | ug/m3 |
|                          |                    |        | Total Voc:                     | 2370.66       |     |      |      |      |       |
| CII. 4 ID                | CV 10DI            |        | <b>Total Concentration:</b>    | 2370.66       |     |      |      |      |       |
| Client ID:<br>F2940-08DL | SV-18DL<br>SV-18DL | Air    | Heptane                        | 14.80         | JD  | 4.1  | 4.1  | 20.5 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Acetone                        | 1,377.00      | EDB | 2.38 | 2.38 | 11.9 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Carbon Disulfide               | 29.30         | D   | 1.56 | 3.11 | 15.6 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Methylene Chloride             | 32.70         | DB  | 1.74 | 3.47 | 17.4 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | 2-Butanone                     | 20.60         | D   | 2.95 | 2.95 | 14.8 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Chloroform                     | 488.00        | D   | 0.98 | 4.88 | 24.4 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Benzene                        | 7.35          | JD  | 1.28 | 3.19 | 16.0 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Bromodichloromethane           | 12.10         | JD  | 3.35 | 6.7  | 33.5 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Toluene                        | 99.90         | D   | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Tetrachloroethene              | 35.90         | D   | 2.03 | 2.03 | 2.03 | ug/m3 |
|                          |                    |        |                                |               |     |      |      |      |       |





**SDG No.:** F2940

| Sample ID                  | Client ID                   | Matrix     | Parameter                        | Concentration   | <b>C</b> | MDL          | LOD          | RDL        | Units |
|----------------------------|-----------------------------|------------|----------------------------------|-----------------|----------|--------------|--------------|------------|-------|
| F2940-08DL                 | SV-18DL                     | Air        | Ethyl Benzene                    | 31.30           | D        | 4.34         | 4.34         | 21.7       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | m/p-Xylene                       | 117.00          | D        | 4.34         | 8.69         | 43.4       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | o-Xylene                         | 44.30           | D        | 4.34         | 4.34         | 21.7       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | 1,3,5-Trimethylbenzene           | 17.20           | JD       | 4.92         | 4.92         | 24.6       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | 1,2,4-Trimethylbenzene           | 65.40           | D        | 4.92         | 4.92         | 24.6       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | Naphthalene                      | 30.40           | D        | 2.1          | 5.24         | 26.2       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | 4-Ethyltoluene                   | 24.60           | D        | 4.92         | 4.92         | 24.6       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | Hexane                           | 18.30           | D        | 1.41         | 3.52         | 17.6       | ug/m3 |
|                            |                             |            | Total Voc:                       | 2466.15         |          |              |              |            |       |
|                            |                             |            | <b>Total Concentration:</b>      | 2466.15         |          |              |              |            |       |
| Client ID:<br>F2940-08DL2  | <b>SV-18DL2</b><br>SV-18DL2 | Air        | Acetone                          | 1,330.00        | DB       | 23.8         | 23.8         | 118        | ug/m3 |
|                            | SV-18DL2<br>SV-18DL2        | Air        | Chloroform                       | 537.00          | DВ       | 23.8<br>9.77 | 48.8         |            | _     |
| F2940-08DL2<br>F2940-08DL2 |                             |            | Toluene                          | 71.60           | JD       | 18.8         | 48.8<br>37.7 | 244<br>188 | ug/m3 |
|                            | SV-18DL2<br>SV-18DL2        | Air<br>Air | Tetrachloroethene                | 33.90           | D        | 20.3         | 20.3         |            | ug/m3 |
| F2940-08DL2                |                             |            |                                  |                 |          |              |              | 20.3       | ug/m3 |
| F2940-08DL2                | SV-18DL2                    | Air        | m/p-Xylene                       | 73.80<br>2046.3 | JD       | 43.4         | 86.9         | 434        | ug/m3 |
|                            |                             |            | Total Voc : Total Concentration: | 2046.3          |          |              |              |            |       |
| Client ID:                 | SV-9                        |            | Total Concentration.             | 2040.3          |          |              |              |            |       |
| F2940-09                   | SV-9                        | Air        | Dichlorodifluoromethane          | 4.45            |          | 0.2          | 0.49         | 2.47       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Chloromethane                    | 21.90           |          | 0.21         | 0.21         | 1.03       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Vinyl Chloride                   | 6.90            |          | 0.08         | 0.08         | 0.08       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Chloroethane                     | 5.54            |          | 0.26         | 0.26         | 1.32       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Trichlorofluoromethane           | 1.80            | J        | 0.22         | 0.56         | 2.81       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | 1,1,2-Trichlorotrifluoroethane   | 0.84            | J        | 0.31         | 0.77         | 3.83       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Heptane                          | 11.10           |          | 0.41         | 0.41         | 2.05       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Acetone                          | 308.00          | EB       | 0.24         | 0.24         | 1.19       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Carbon Disulfide                 | 29.00           |          | 0.16         | 0.31         | 1.56       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Methyl tert-Butyl Ether          | 5.77            |          | 0.18         | 0.36         | 1.8        | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Methylene Chloride               | 3.47            | В        | 0.17         | 0.35         | 1.74       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Cyclohexane                      | 3.13            |          | 0.34         | 0.34         | 1.72       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | 2-Butanone                       | 11.80           |          | 0.29         | 0.29         | 1.47       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Carbon Tetrachloride             | 0.38            |          | 0.19         | 0.19         | 0.19       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Chloroform                       | 6.35            |          | 0.1          | 0.49         | 2.44       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | 2,2,4-Trimethylpentane           | 2.85            |          | 0.19         | 0.47         | 2.34       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Benzene                          | 36.10           |          | 0.13         | 0.32         | 1.6        | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Toluene                          | 37.30           |          | 0.19         | 0.38         | 1.88       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Tetrachloroethene                | 47.50           |          | 0.2          | 0.2          | 0.2        | ug/m3 |





**SDG No.:** F2940

| Sample ID              | Client ID | Matrix | Parameter                   | Concentration | C  | MDL  | LOD  | RDL  | Units |
|------------------------|-----------|--------|-----------------------------|---------------|----|------|------|------|-------|
| F2940-09               | SV-9      | Air    | Ethyl Benzene               | 20.00         |    | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-09               | SV-9      | Air    | m/p-Xylene                  | 55.60         |    | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2940-09               | SV-9      | Air    | o-Xylene                    | 23.00         |    | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-09               | SV-9      | Air    | Styrene                     | 8.52          |    | 0.43 | 0.43 | 2.13 | ug/m3 |
| F2940-09               | SV-9      | Air    | 1,3,5-Trimethylbenzene      | 12.30         |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-09               | SV-9      | Air    | 1,2,4-Trimethylbenzene      | 50.10         |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-09               | SV-9      | Air    | Naphthalene                 | 9.44          |    | 0.21 | 0.52 | 2.62 | ug/m3 |
| F2940-09               | SV-9      | Air    | 4-Ethyltoluene              | 17.70         |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-09               | SV-9      | Air    | Hexane                      | 19.70         |    | 0.14 | 0.35 | 1.76 | ug/m3 |
|                        |           |        | Total Voc:                  | 760.54        |    |      |      |      |       |
|                        |           |        | <b>Total Concentration:</b> | 760.54        |    |      |      |      |       |
| Client ID:             | SV-9DL    |        |                             |               | _  |      |      |      | , _   |
| F2940-09DL             | SV-9DL    | Air    | Chloromethane               | 17.80         | D  | 2.07 | 2.07 | 10.3 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Vinyl Chloride              | 5.88          | D  | 0.77 | 0.77 | 0.77 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Chloroethane                | 5.01          | JD | 2.64 | 2.64 | 13.2 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Heptane                     | 9.43          | JD | 4.1  | 4.1  | 20.5 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Acetone                     | 308.00        | DB | 2.38 | 2.38 | 11.9 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Carbon Disulfide            | 19.00         | D  | 1.56 | 3.11 | 15.6 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | 2-Butanone                  | 10.30         | JD | 2.95 | 2.95 | 14.8 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Benzene                     | 32.90         | D  | 1.28 | 3.19 | 16.0 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Toluene                     | 35.80         | D  | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Tetrachloroethene           | 44.10         | D  | 2.03 | 2.03 | 2.03 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Ethyl Benzene               | 15.20         | JD | 4.34 | 4.34 | 21.7 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | m/p-Xylene                  | 46.00         | D  | 4.34 | 8.69 | 43.4 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | o-Xylene                    | 18.20         | JD | 4.34 | 4.34 | 21.7 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Styrene                     | 6.39          | JD | 4.26 | 4.26 | 21.3 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | 1,3,5-Trimethylbenzene      | 10.80         | JD | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | 1,2,4-Trimethylbenzene      | 43.80         | D  | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Naphthalene                 | 15.20         | JD | 2.1  | 5.24 | 26.2 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | 4-Ethyltoluene              | 13.80         | JD | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Hexane                      | 16.20         | JD | 1.41 | 3.52 | 17.6 | ug/m3 |
|                        |           |        | Total Voc:                  | 673.81        |    |      |      |      |       |
|                        |           |        | <b>Total Concentration:</b> | 673.81        |    |      |      |      |       |
| Client ID:<br>F2940-10 | SV-14     | A :    | Dichlorodifluoromethane     | 2.52          |    | 0.2  | 0.40 | 2.47 | ug/m2 |
|                        | SV-14     | Air    | Chloromethane               | 2.52          |    | 0.2  | 0.49 | 2.47 | ug/m3 |
| F2940-10               | SV-14     | Air    |                             | 1.53          |    | 0.21 | 0.21 | 1.03 | ug/m3 |
| F2940-10               | SV-14     | Air    | Vinyl Chloride              | 0.38          |    | 0.08 | 0.08 | 0.08 | ug/m3 |
| F2940-10               | SV-14     | Air    | Trichlorofluoromethane      | 5.00          |    | 0.22 | 0.56 | 2.81 | ug/m3 |





**SDG No.:** F2940

| F2940-10         SV-14         Air         Heptane         12.70         0.41         0.41         2.05         ug           F2940-10         SV-14         Air         Acetone         122.00         EB         0.24         0.24         1.19         ug           F2940-10         SV-14         Air         Carbon Disulfide         0.56         J         0.16         0.31         1.56         ug           F2940-10         SV-14         Air         Methyl tert-Butyl Ether         1.12         J         0.18         0.36         1.8         ug           F2940-10         SV-14         Air         Methylene Chloride         590.00         EB         0.17         0.35         1.74         ug           F2940-10         SV-14         Air         trans-1,2-Dichloroethene         0.99         J         0.2         0.4         1.98         ug | ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| F2940-10         SV-14         Air         Acetone         122.00         EB         0.24         0.24         1.19         ug           F2940-10         SV-14         Air         Carbon Disulfide         0.56         J         0.16         0.31         1.56         ug           F2940-10         SV-14         Air         Methyl tert-Butyl Ether         1.12         J         0.18         0.36         1.8         ug           F2940-10         SV-14         Air         Methylene Chloride         590.00         EB         0.17         0.35         1.74         ug           F2940-10         SV-14         Air         trans-1,2-Dichloroethene         0.99         J         0.2         0.4         1.98         ug                                                                                                                              | ug/m3<br>ug/m3<br>ug/m3                   |
| F2940-10         SV-14         Air         Carbon Disulfide         0.56         J         0.16         0.31         1.56         ug           F2940-10         SV-14         Air         Methyl tert-Butyl Ether         1.12         J         0.18         0.36         1.8         ug           F2940-10         SV-14         Air         Methylene Chloride         590.00         EB         0.17         0.35         1.74         ug           F2940-10         SV-14         Air         trans-1,2-Dichloroethene         0.99         J         0.2         0.4         1.98         ug                                                                                                                                                                                                                                                                       | ug/m3<br>ug/m3                            |
| F2940-10         SV-14         Air         Methyl tert-Butyl Ether         1.12         J         0.18         0.36         1.8         ug           F2940-10         SV-14         Air         Methylene Chloride         590.00         EB         0.17         0.35         1.74         ug           F2940-10         SV-14         Air         trans-1,2-Dichloroethene         0.99         J         0.2         0.4         1.98         ug                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg/m3                                     |
| F2940-10 SV-14 Air Methylene Chloride 590.00 EB 0.17 0.35 1.74 ug F2940-10 SV-14 Air trans-1,2-Dichloroethene 0.99 J 0.2 0.4 1.98 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                         |
| F2940-10 SV-14 Air trans-1,2-Dichloroethene 0.99 J 0.2 0.4 1.98 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/m2                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1g/1113                                   |
| F2940-10 SV-14 Air Cyclohexane 191.00 E 0.34 0.34 1.72 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ıg/m3                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ıg/m3                                     |
| F2940-10 SV-14 Air 2-Butanone 3.24 0.29 0.29 1.47 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ıg/m3                                     |
| F2940-10 SV-14 Air Carbon Tetrachloride 0.63 0.19 0.19 0.19 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ıg/m3                                     |
| F2940-10 SV-14 Air cis-1,2-Dichloroethene 8.72 0.2 0.4 1.98 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ıg/m3                                     |
| F2940-10 SV-14 Air Chloroform 15.10 0.1 0.49 2.44 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ıg/m3                                     |
| F2940-10 SV-14 Air 2,2,4-Trimethylpentane 7.94 0.19 0.47 2.34 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ıg/m3                                     |
| F2940-10 SV-14 Air Benzene 2.91 0.13 0.32 1.6 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ıg/m3                                     |
| F2940-10 SV-14 Air Trichloroethene 2.79 0.11 0.16 0.16 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ıg/m3                                     |
| F2940-10 SV-14 Air Toluene 22.60 0.19 0.38 1.88 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ıg/m3                                     |
| F2940-10 SV-14 Air Tetrachloroethene 124.00 E 0.2 0.2 0.2 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ıg/m3                                     |
| F2940-10 SV-14 Air Ethyl Benzene 16.10 0.43 0.43 2.17 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ıg/m3                                     |
| F2940-10 SV-14 Air m/p-Xylene 59.50 0.43 0.87 4.34 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıg/m3                                     |
| F2940-10 SV-14 Air o-Xylene 30.40 0.43 0.43 2.17 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg/m3                                     |
| F2940-10 SV-14 Air Styrene 1.87 J 0.43 0.43 2.13 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg/m3                                     |
| F2940-10 SV-14 Air 1,3,5-Trimethylbenzene 69.80 0.49 0.49 2.46 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ıg/m3                                     |
| F2940-10 SV-14 Air 1,2,4-Trimethylbenzene 185.00 E 0.49 0.49 2.46 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ıg/m3                                     |
| F2940-10 SV-14 Air 1,4-Dichlorobenzene 10.80 0.6 0.6 3.01 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ıg/m3                                     |
| F2940-10 SV-14 Air Naphthalene 8.91 0.21 0.52 2.62 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıg/m3                                     |
| F2940-10 SV-14 Air 4-Ethyltoluene 82.10 E 0.49 0.49 2.46 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ıg/m3                                     |
| F2940-10 SV-14 Air Hexane 73.30 E 0.14 0.35 1.76 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg/m3                                     |
| <b>Total Voc:</b> 1654.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| Total Concentration: 1654.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| Client ID:         SV-14DL           F2940-10DL         SV-14DL         Air Dichlorodifluoromethane         3.96         JD 1.98         4.94         24.7         ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıg/m3                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1g/m3                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1g/m3                                     |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1g/m3                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1g/m3                                     |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1g/1113<br>1g/m3                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1g/m3                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1g/m3                                     |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

# Hit Summary Sheet SW-846

**SDG No.:** F2940

Client: Dvirka & Bartilucci

| Sample ID                 | Client ID                   | Matrix | Parameter                   | Concentration | C  | MDL  | LOD  | RDL  | Units |
|---------------------------|-----------------------------|--------|-----------------------------|---------------|----|------|------|------|-------|
| F2940-10DL                | SV-14DL                     | Air    | Chloroform                  | 14.20         | JD | 0.98 | 4.88 | 24.4 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | 2,2,4-Trimethylpentane      | 7.01          | JD | 1.87 | 4.67 | 23.4 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Benzene                     | 2.56          | JD | 1.28 | 3.19 | 16.0 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Trichloroethene             | 2.69          | D  | 0.81 | 1.61 | 1.61 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Toluene                     | 20.00         | D  | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Tetrachloroethene           | 143.00        | D  | 2.03 | 2.03 | 2.03 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Ethyl Benzene               | 14.30         | JD | 4.34 | 4.34 | 21.7 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | m/p-Xylene                  | 61.70         | D  | 4.34 | 8.69 | 43.4 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | o-Xylene                    | 30.80         | D  | 4.34 | 4.34 | 21.7 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | 1,3,5-Trimethylbenzene      | 81.10         | D  | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | 1,2,4-Trimethylbenzene      | 264.00        | D  | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | 1,4-Dichlorobenzene         | 9.62          | JD | 6.01 | 6.01 | 30.1 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Naphthalene                 | 6.29          | JD | 2.1  | 5.24 | 26.2 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | 4-Ethyltoluene              | 91.40         | D  | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Hexane                      | 73.70         | D  | 1.41 | 3.52 | 17.6 | ug/m3 |
|                           |                             |        | Total Voc:                  | 2014.51       |    |      |      |      |       |
|                           |                             |        | <b>Total Concentration:</b> | 2014.51       |    |      |      |      |       |
| Client ID:<br>F2940-10DL2 | <b>SV-14DL2</b><br>SV-14DL2 | Air    | Acetone                     | 157.00        | DB | 9.5  | 9.5  | 47.5 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | Methylene Chloride          | 937.00        | DB | 6.95 | 13.9 | 69.5 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | Cyclohexane                 | 305.00        | D  | 13.8 | 13.8 | 68.8 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | Toluene                     | 22.60         | JD | 7.54 | 15.1 | 75.4 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | Tetrachloroethene           | 157.00        | D  | 8.14 | 8.14 | 8.14 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | Ethyl Benzene               | 17.40         | JD | 17.4 | 17.4 | 86.9 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | m/p-Xylene                  | 71.20         | JD | 17.4 | 34.8 | 173  | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | o-Xylene                    | 34.80         | JD | 17.4 | 17.4 | 86.9 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | 1,3,5-Trimethylbenzene      | 88.50         | JD | 19.7 | 19.7 | 98.3 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | 1,2,4-Trimethylbenzene      | 308.00        | D  | 19.7 | 19.7 | 98.3 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | 4-Ethyltoluene              | 102.00        | D  | 19.7 | 19.7 | 98.3 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | Hexane                      | 87.40         | D  | 5.64 | 14.1 | 70.5 | ug/m3 |
|                           |                             |        | m . 117                     | 0007.0        |    |      |      |      | ū     |

**Total Voc:** 

**Total Concentration:** 

2287.9

2287.9

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-17 TARGET ANALYTES Laboratory ID Number: F2940-01 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|---|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 0.12                         | J | 0.59                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 0.42                         | J | 0.87                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.07                         |   | 0.18                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 0.1                          | U | 0.39                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 0.26                         | J | 0.69                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 1.3                          |   | 3.83                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 0.25                         | J | 1.4                                     |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 0.1                          | U | 0.7                                     |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 0.1                          | U | 0.77                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 0.1                          | U | 0.44                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 0.1                          | U | 0.3                                     |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 4.9                          |   | 20.1                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 230                          | Е | 546                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 8.5                          |   | 26.5                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 0.1                          | U | 0.36                                    |                     |                |
| Methylene Chloride     | 75-09-2       | 84.94                   | 4.2                          |   | 14.6                                    |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 1.6                          |   | 5.51                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 5.5                          |   | 16.2                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.11                         |   | 0.69                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 1                            |   | 4.88                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.11                         |   | 0.6                                     |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 0.1                          | U | 0.47                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 1.1                          |   | 3.51                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.04                         |   | 0.21                                    |                     |                |
| 1,2-Dichloropropane    |               | 113                     | 0.1                          | U | 0.46                                    |                     |                |
| Bromodichlorometha     |               | 163.8                   | 0.1                          | U | 0.67                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 0.1                          | U | 0.41                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 7.1                          |   | 26.8                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| 1,1,2-Trichloroethan   |               | 133.4                   | 0.1                          | U | 0.55                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 0.1                          | U | 0.85                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 0.1                          | U | 0.77                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 4.1                          |   | 27.8                                    |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 0.1                          | U | 0.46                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 3.5                          |   | 15.2                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 14.2                         |   | 61.7                                    |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 9.4                          |   | 40.8                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15

Field ID Number: SV-17 TARGET ANALYTES - Laboratory ID Number: F2940-01 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 0.29 | J | 1.23 |  |
|----------------------|----------|--------|------|---|------|--|
| Bromoform            | 75-25-2  | 252.8  | 0.1  | U | 1.03 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.03 | U | 0.21 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 0.1  | U | 0.52 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 17.7 | E | 87   |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 43   | E | 211  |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 0.1  | U | 0.6  |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 0.1  | U | 0.6  |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 0.1  | U | 0.6  |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 0.1  | U | 0.74 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 0.1  | U | 1.07 |  |
| Naphthalene          | 91-20-3  | 128.17 | 5.7  |   | 29.9 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 0.1  | U | 0.22 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 17.9 | E | 88   |  |
| Hexane               | 110-54-3 | 86.17  | 10.4 |   | 36.6 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 0.1  | U | 0.31 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 0.1  | U | 0.36 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 0.1  | U | 0.41 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-17DL TARGET ANALYTES Laboratory ID Number: F2940-01DL AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q  | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|----|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 1                            | UD | 4.94                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 1                            | UD | 2.07                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.3                          | UD | 0.77                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 1                            | UD | 3.88                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 1                            | UD | 2.64                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 1                            | UD | 2.95                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 1                            | UD | 5.62                                    |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 1                            | UD | 6.99                                    |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 1                            | UD | 7.66                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 1                            | UD | 4.37                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 1                            | UD | 3.03                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 4.3                          | JD | 17.6                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 280                          | ED | 665                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 1                            | UD | 3.11                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 1                            | UD | 3.61                                    |                     |                |
| Methylene Chloride     |               | 84.94                   | 5.1                          | D  | 17.7                                    |                     |                |
| trans-1,2-Dichloroetl  | 156-60-5      | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 1                            | UD | 3.44                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 4.9                          | JD | 14.4                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.3                          | UD | 1.89                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 1                            | UD | 4.88                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.3                          | UD | 1.64                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 1                            | UD | 4.67                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 1                            | UD | 3.19                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.3                          | UD | 1.61                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 1                            | UD | 4.62                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 1                            | UD | 6.7                                     |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 1                            | UD | 4.1                                     |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 6.8                          | D  | 25.6                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4                   | 1                            | UD | 5.46                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 1                            | UD | 8.52                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 1                            | UD | 7.69                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 3.8                          | D  | 25.8                                    |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 1                            | UD | 4.61                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 3                            | JD | 13                                      |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 13                           | D  | 56.5                                    |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 8.3                          | D  | 36                                      |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15

Field ID Number: SV-17DL TARGET ANALYTES - Laboratory ID Number: F2940-01DL AIR RESULTS

| Iz.                  | I        |        |      | 1  |      | 1 | 1 |
|----------------------|----------|--------|------|----|------|---|---|
| Styrene              | 100-42-5 | 104.1  | 1    | UD | 4.26 |   |   |
| Bromoform            | 75-25-2  | 252.8  | 1    | UD | 10.3 |   |   |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3  | UD | 2.06 |   |   |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1    | UD | 5.18 |   |   |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 17.5 | D  | 86   |   |   |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 52.7 | D  | 259  |   |   |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1    | UD | 6.01 |   |   |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1    | UD | 6.01 |   |   |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1    | UD | 6.01 |   |   |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1    | UD | 7.42 |   |   |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1    | UD | 10.7 |   |   |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1    | UD | 2.21 |   |   |
| Naphthalene          | 91-20-3  | 128.17 | 3.7  | JD | 19.4 |   |   |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 18.4 | D  | 90.5 |   |   |
| Hexane               | 110-54-3 | 86.17  | 9.4  | D  | 33.1 |   |   |
| Allyl Chloride       | 107-05-1 | 76.53  | 1    | UD | 3.13 |   |   |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1    | UD | 3.6  |   |   |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1    | UD | 4.09 |   |   |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15 Field ID Number: SV-17DL2

Sampling Date: 06/25/14 TARGET ANALYTES -Analysis Date: 07/03/14 Laboratory ID Number: F2940-01DL2 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q  | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|----|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 4                            | UD | 19.8                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 4                            | UD | 8.26                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 1.2                          | UD | 3.07                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 4                            | UD | 15.5                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 4                            | UD | 10.6                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 4                            | UD | 11.8                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 4                            | UD | 22.5                                    |                     |                |
| Dichlorotetrafluoroet  | 76-14-2       | 170.9                   | 4                            | UD | 28                                      |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 4                            | UD | 30.7                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 4                            | UD | 17.5                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 4                            | UD | 12.1                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 4                            | UD | 16.4                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 4                            | UD | 15.9                                    |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 260                          | D  | 617                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 4                            | UD | 12.5                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 4                            | UD | 14.4                                    |                     |                |
| Methylene Chloride     | 75-09-2       | 84.94                   | 4                            | UD | 13.9                                    |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 4                            | UD | 15.9                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 4                            | UD | 16.2                                    |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 4                            | UD | 13.8                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 4                            | UD | 11.8                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 1.2                          | UD | 7.55                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 4                            | UD | 15.9                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 4                            | UD | 19.5                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 1.2                          | UD | 6.55                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 4                            | UD | 18.7                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 4                            | UD | 12.8                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 4                            | UD | 16.2                                    |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 1.2                          | UD | 6.45                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 4                            | UD | 18.5                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 4                            | UD | 26.8                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 4                            | UD | 16.4                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 4.8                          | JD | 18.1                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 4                            | UD | 18.2                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 4                            | UD | 18.2                                    |                     |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4                   | 4                            | UD | 21.8                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 4                            | UD | 34.1                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 4                            | UD | 30.7                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 3.6                          | ם  | 24.4                                    |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 4                            | UD | 18.4                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 4                            | UD | 17.4                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 8.4                          | JD | 36.5                                    |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 5.2                          | JD | 22.6                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Project: NYCSCA Unionport Road Bronx TO-15

Field ID Number: SV-17DL2 TARGET ANALYTES - Laboratory ID Number: F2940-01DL2 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 4    | UD | 17   |  |
|----------------------|----------|--------|------|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 4    | UD | 41.4 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 1.2  | UD | 8.24 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 4    | UD | 20.7 |  |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 10.8 | JD | 53.1 |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 38   | D  | 186  |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 4    | UD | 24   |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 4    | UD | 24   |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 4    | UD | 24   |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 4    | UD | 29.7 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 4    | UD | 42.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 2.4  | JD | 12.6 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 4    | UD | 8.85 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 12   | JD | 59   |  |
| Hexane               | 110-54-3 | 86.17  | 7.6  | JD | 26.8 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 4    | UD | 12.5 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 4    | UD | 14.4 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 4    | UD | 16.4 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-7 TARGET ANALYTES Laboratory ID Number: F2940-02 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|---|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 0.25                         | J | 1.24                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 0.51                         |   | 1.05                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.03                         | U | 0.08                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 0.1                          | U | 0.39                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 0.1                          | U | 0.26                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 0.1                          | U | 0.29                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 0.28                         | J | 1.57                                    |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 0.1                          | U | 0.7                                     |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 0.08                         | J | 0.61                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 0.1                          | U | 0.44                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 1.5                          |   | 4.55                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 1.2                          |   | 4.92                                    |                     |                |
|                        | 75-35-4       | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 88                           | Е | 209                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 3.3                          |   | 10.3                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 0.5                          |   | 1.8                                     |                     |                |
| Methylene Chloride     |               | 84.94                   | 2.7                          |   | 9.38                                    |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 1.9                          |   | 6.54                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 2.3                          |   | 6.78                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.07                         |   | 0.44                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 0.23                         | J | 1.12                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.03                         | U | 0.16                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 2.8                          |   | 13.1                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 1.4                          |   | 4.47                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.04                         |   | 0.21                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 0.1                          | U | 0.46                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 0.1                          | U | 0.67                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 0.4                          | J | 1.64                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 7.2                          |   | 27.1                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| 1,1,2-Trichloroethan   |               | 133.4                   | 0.1                          | U | 0.55                                    |                     |                |
| Dibromochlorometha     |               | 208.3                   | 0.1                          | U | 0.85                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 0.1                          | U | 0.77                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 3.1                          |   | 21                                      |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 0.1                          | U | 0.46                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 5.3                          |   | 23                                      |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 12.4                         |   | 53.9                                    |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 4.5                          |   | 19.6                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15

Field ID Number: SV-7 TARGET ANALYTES - Laboratory ID Number: F2940-02 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 0.27 | J | 1.15 |  |
|----------------------|----------|--------|------|---|------|--|
| Bromoform            | 75-25-2  | 252.8  | 0.1  | U | 1.03 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.03 | U | 0.21 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 0.1  | U | 0.52 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 1.9  |   | 9.34 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 8.3  |   | 40.8 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 0.1  | U | 0.6  |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 0.1  | U | 0.6  |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 0.1  | U | 0.6  |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 0.1  | U | 0.74 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 0.1  | U | 1.07 |  |
| Naphthalene          | 91-20-3  | 128.17 | 6.1  |   | 32   |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 0.1  | U | 0.22 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 2.8  |   | 13.8 |  |
| Hexane               | 110-54-3 | 86.17  | 2.6  |   | 9.16 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 0.1  | U | 0.31 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 0.1  | U | 0.36 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 0.1  | U | 0.41 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-7DL TARGET ANALYTES Laboratory ID Number: F2940-02DL AIR RESULTS

|                        |               |         |         |    | Generat |        |                |
|------------------------|---------------|---------|---------|----|---------|--------|----------------|
|                        |               | Molecul | Insert  |    | es      | QAS    |                |
| Chemical               | CAS<br>Number | ar      | Results | Q  | Results | Decisi | Foot-<br>Notes |
|                        | Number        | Weight  | in ppbv |    | in      | on     | NOICS          |
|                        |               |         |         |    | ug/m3   |        |                |
| Dichlorodifluorometh   |               | 120.9   | 1       | UD | 4.94    |        |                |
| Chloromethane          | 74-87-3       | 50.49   | 1       | UD | 2.07    |        |                |
| Vinyl Chloride         | 75-01-4       | 62.5    | 0.3     | UD | 0.77    |        |                |
| Bromomethane           | 74-83-9       | 94.94   | 1       | UD | 3.88    |        |                |
| Chloroethane           | 75-00-3       | 64.52   | 1       | UD | 2.64    |        |                |
| Tetrahydrofuran        | 109-99-9      |         | 1       | UD | 2.95    |        |                |
| Trichlorofluorometha   |               | 137.4   | 1       | UD | 5.62    |        |                |
| Dichlorotetrafluoroet  |               | 170.9   | 1       | UD | 6.99    |        |                |
| 1,1,2-Trichlorotrifluo |               | 187.4   | 1       | UD | 7.66    |        |                |
| Bromoethene            | 593-60-2      | 106.9   | 1       | UD | 4.37    |        |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12   | 1.6     | JD | 4.85    |        |                |
| Heptane                | 142-82-5      | 100.2   | 1.1     | JD | 4.51    |        |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94   | 1       | UD | 3.96    |        |                |
| Acetone                | 67-64-1       | 58.08   | 110     | D  | 261     |        |                |
| Carbon Disulfide       | 75-15-0       | 76.14   | 2.9     | JD | 9.03    |        |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15   | 1       | UD | 3.61    |        |                |
| Methylene Chloride     | 75-09-2       | 84.94   | 1       | UD | 3.47    |        |                |
| trans-1,2-Dichloroetl  | 156-60-5      | 96.94   | 1       | UD | 3.96    |        |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96   | 1       | UD | 4.05    |        |                |
| Cyclohexane            | 110-82-7      | 84.16   | 1.9     | JD | 6.54    |        |                |
| 2-Butanone             | 78-93-3       | 72.11   | 2       | JD | 5.9     |        |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8   | 0.3     | UD | 1.89    |        |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94   | 1       | UD | 3.96    |        |                |
| Chloroform             | 67-66-3       | 119.4   | 1       | UD | 4.88    |        |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4   | 0.3     | UD | 1.64    |        |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2   | 2.6     | JD | 12.1    |        |                |
| Benzene                | 71-43-2       | 78.11   | 1.4     | JD | 4.47    |        |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96   | 1       | UD | 4.05    |        |                |
| Trichloroethene        | 79-01-6       | 131.4   | 0.3     | UD | 1.61    |        |                |
| 1,2-Dichloropropane    | 78-87-5       | 113     | 1       | UD | 4.62    |        |                |
| Bromodichlorometha     | 75-27-4       | 163.8   | 1       | UD | 6.7     |        |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2   | 1       | UD | 4.1     |        |                |
| Toluene                | 108-88-3      | 92.14   | 7.5     | D  | 28.3    |        |                |
| t-1,3-Dichloropropen   | 10061-02      | 111     | 1       | UD | 4.54    |        |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111     | 1       | UD | 4.54    |        |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4   | 1       | UD | 5.46    |        |                |
| Dibromochlorometha     |               | 208.3   | 1       | UD | 8.52    |        |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9   | 1       | UD | 7.69    |        |                |
| Tetrachloroethene      | 127-18-4      | 165.8   | 3.1     | D  | 21      |        |                |
| Chlorobenzene          | 108-90-7      | 112.6   | 1       | UD | 4.61    |        |                |
| Ethyl Benzene          | 100-41-4      | 106.2   | 5.1     | D  | 22.2    |        |                |
| m/p-Xylene             | 179601-2      |         | 12.9    | D  | 56      |        |                |
| o-Xylene               | 95-47-6       | 106.2   | 4.8     | JD | 20.8    |        |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15

Field ID Number: SV-7DL TARGET ANALYTES - Laboratory ID Number: F2940-02DL AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 1   | UD | 4.26 |  |
|----------------------|----------|--------|-----|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 1   | UD | 10.3 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3 | UD | 2.06 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1   | UD | 5.18 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 2.2 | JD | 10.8 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 9.5 | D  | 46.7 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1   | UD | 6.01 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1   | UD | 6.01 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1   | UD | 6.01 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1   | UD | 7.42 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1   | UD | 10.7 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1   | UD | 2.21 |  |
| Naphthalene          | 91-20-3  | 128.17 | 4   | JD | 21   |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 2.8 | JD | 13.8 |  |
| Hexane               | 110-54-3 | 86.17  | 2.5 | JD | 8.81 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 1   | UD | 3.13 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1   | UD | 3.6  |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1   | UD | 4.09 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-6 TARGET ANALYTES Laboratory ID Number: F2940-04 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|---|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 0.78                         |   | 3.86                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 0.46                         | J | 0.95                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.03                         | U | 0.08                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 0.1                          | U | 0.39                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 0.1                          | U | 0.26                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 0.1                          | U | 0.29                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 0.91                         |   | 5.11                                    |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 0.1                          | U | 0.7                                     |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 0.11                         | J | 0.84                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 0.1                          | U | 0.44                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 0.1                          | U | 0.3                                     |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 4.6                          |   | 18.8                                    |                     |                |
| · ·                    | 75-35-4       | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 140                          | E | 332                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 0.1                          | U | 0.31                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 0.1                          | U | 0.36                                    |                     |                |
| Methylene Chloride     |               | 84.94                   | 0.42                         | J | 1.46                                    |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 16.2                         | E | 55.8                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 3.1                          |   | 9.14                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.03                         | U | 0.19                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 0.1                          | U | 0.49                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.03                         | U | 0.16                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 39.8                         | E | 185                                     |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 7                            |   | 22.4                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.03                         | U | 0.16                                    |                     |                |
| 1,2-Dichloropropane    |               | 113                     | 0.1                          | U | 0.46                                    |                     |                |
| Bromodichlorometha     |               | 163.8                   | 0.1                          | U | 0.67                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 0.1                          | U | 0.41                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 6.2                          |   | 23.4                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| 1,1,2-Trichloroethan   |               | 133.4                   | 0.1                          | U | 0.55                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 0.1                          | U | 0.85                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 0.1                          | U | 0.77                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 27                           | E | 183                                     |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 0.1                          | U | 0.46                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 24.3                         | E | 105                                     |                     |                |
| m/p-Xylene             | 179601-2      |                         | 42.5                         | Е | 184                                     |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 17.1                         | E | 74.3                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-6 TARGET ANALYTES - Laboratory ID Number: F2940-04 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 0.31 | J | 1.32 |  |
|----------------------|----------|--------|------|---|------|--|
| Bromoform            | 75-25-2  | 252.8  | 0.1  | U | 1.03 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.03 | U | 0.21 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 0.1  | U | 0.52 |  |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 3.9  |   | 19.2 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 14.9 |   | 73.2 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 0.1  | U | 0.6  |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 0.1  | U | 0.6  |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 0.1  | U | 0.6  |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 0.1  | U | 0.74 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 0.1  | U | 1.07 |  |
| Naphthalene          | 91-20-3  | 128.17 | 1.9  |   | 9.96 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 0.1  | U | 0.22 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 5.2  |   | 25.6 |  |
| Hexane               | 110-54-3 | 86.17  | 14.5 |   | 51.1 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 0.1  | U | 0.31 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 0.1  | U | 0.36 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 0.1  | U | 0.41 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-6DL TARGET ANALYTES Laboratory ID Number: F2940-04DL AIR RESULTS

| Chemical               | CAS      | Molecul<br>ar | Insert<br>Results | Q  | Generat<br>es<br>Results | QAS<br>Decisi | Foot- |
|------------------------|----------|---------------|-------------------|----|--------------------------|---------------|-------|
| Chemical               | Number   | Weight        | in ppbv           | Q  | in<br>ug/m3              | on            | Notes |
| Dichlorodifluorometh   | 75-71-8  | 120.9         | 1                 | UD | 4.94                     |               |       |
| Chloromethane          | 74-87-3  | 50.49         | 1                 | UD | 2.07                     |               |       |
| Vinyl Chloride         | 75-01-4  | 62.5          | 0.3               | UD | 0.77                     |               |       |
| Bromomethane           | 74-83-9  | 94.94         | 1                 | UD | 3.88                     |               |       |
| Chloroethane           | 75-00-3  | 64.52         | 1                 | UD | 2.64                     |               |       |
| Tetrahydrofuran        | 109-99-9 | 72.11         | 1                 | UD | 2.95                     |               |       |
| Trichlorofluorometha   | 75-69-4  | 137.4         | 1                 | UD | 5.62                     |               |       |
| Dichlorotetrafluoroet  | 76-14-2  | 170.9         | 1                 | UD | 6.99                     |               |       |
| 1,1,2-Trichlorotrifluo | 76-13-1  | 187.4         | 1                 | UD | 7.66                     |               |       |
|                        | 593-60-2 | 106.9         | 1                 | UD | 4.37                     |               |       |
| tert-Butyl alcohol     | 75-65-0  | 74.12         | 1                 | UD | 3.03                     |               |       |
| Heptane                | 142-82-5 | 100.2         | 1                 | UD | 4.1                      |               |       |
| 1,1-Dichloroethene     | 75-35-4  | 96.94         | 1                 | UD | 3.96                     |               |       |
| Acetone                | 67-64-1  | 58.08         | 160               | ED | 380                      |               |       |
| Carbon Disulfide       | 75-15-0  | 76.14         | 1                 | UD | 3.11                     |               |       |
| Methyl tert-Butyl Eth  | 1634-04- | 88.15         | 1                 | UD | 3.61                     |               |       |
| Methylene Chloride     |          | 84.94         | 1                 | UD | 3.47                     |               |       |
| trans-1,2-Dichloroeth  | 156-60-5 | 96.94         | 1                 | UD | 3.96                     |               |       |
| 1,1-Dichloroethane     | 75-34-3  | 98.96         | 1                 | UD | 4.05                     |               |       |
| Cyclohexane            | 110-82-7 | 84.16         | 14.3              | D  | 49.2                     |               |       |
| 2-Butanone             | 78-93-3  | 72.11         | 2.5               | JD | 7.37                     |               |       |
| Carbon Tetrachloride   | 56-23-5  | 153.8         | 0.3               | UD | 1.89                     |               |       |
| cis-1,2-Dichloroethe   | 156-59-2 | 96.94         | 1                 | UD | 3.96                     |               |       |
|                        | 67-66-3  | 119.4         | 1                 | UD | 4.88                     |               |       |
| 1,1,1-Trichloroethan   | 71-55-6  | 133.4         | 0.3               | UD | 1.64                     |               |       |
| 2,2,4-Trimethylpenta   | 540-84-1 | 114.2         | 61.1              | D  | 285                      |               |       |
| Benzene                | 71-43-2  | 78.11         | 6                 | D  | 19.2                     |               |       |
| 1,2-Dichloroethane     | 107-06-2 | 98.96         | 1                 | UD | 4.05                     |               |       |
| Trichloroethene        | 79-01-6  | 131.4         | 0.3               | UD | 1.61                     |               |       |
| 1,2-Dichloropropane    |          | 113           | 1                 | UD | 4.62                     |               |       |
| Bromodichlorometha     |          | 163.8         | 1                 | UD | 6.7                      |               |       |
| 4-Methyl-2-Pentanor    |          | 100.2         | 1                 | UD | 4.1                      |               |       |
| Toluene                | 108-88-3 | 92.14         | 7.4               | D  | 27.9                     |               |       |
| t-1,3-Dichloropropen   | 10061-02 |               | 1                 | UD | 4.54                     |               |       |
| cis-1,3-Dichloroprop   |          |               | 1                 | UD | 4.54                     |               |       |
| 1,1,2-Trichloroethan   | 79-00-5  | 133.4         | 1                 | UD | 5.46                     |               |       |
| Dibromochlorometha     |          | 208.3         | 1                 | UD | 8.52                     |               |       |
|                        | 106-93-4 | 187.9         | 1                 | UD | 7.69                     |               |       |
| Tetrachloroethene      | 127-18-4 | 165.8         | 33.7              | D  | 228                      |               |       |
| Chlorobenzene          | 108-90-7 | 112.6         | 1                 | UD | 4.61                     |               |       |
| Ethyl Benzene          | 100-41-4 |               | 25                | D  | 108                      |               |       |
| m/p-Xylene             | 179601-2 |               | 47.1              | D  | 204                      |               |       |
| o-Xylene               | 95-47-6  | 106.2         | 16.2              | D  | 70.4                     |               |       |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Sampling Date: 06/25/14 Field ID Number: SV-6DL TARGET ANALYTES -Analysis Date: 07/02/14 Laboratory ID Number: F2940-04DL AIR RESULTS

|                      |          |        |      | _  |      |  |
|----------------------|----------|--------|------|----|------|--|
| Styrene              | 100-42-5 | 104.1  | 1    | UD | 4.26 |  |
| Bromoform            | 75-25-2  | 252.8  | 1    | UD | 10.3 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3  | UD | 2.06 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1    | UD | 5.18 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 3.4  | JD | 16.7 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 14.4 | D  | 70.8 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1    | UD | 6.01 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1    | UD | 6.01 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1    | UD | 6.01 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1    | UD | 7.42 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1    | UD | 10.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 3.6  | JD | 18.9 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1    | UD | 2.21 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 4.5  | JD | 22.1 |  |
| Hexane               | 110-54-3 | 86.17  | 12.2 | D  | 43   |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 1    | UD | 3.13 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1    | UD | 3.6  |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1    | UD | 4.09 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-6DL2 TARGET ANALYTES Laboratory ID Number: F2940-04DL2 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q  | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|----|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 4                            | UD | 19.8                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 4                            | UD | 8.26                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 1.2                          | UD | 3.07                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 4                            | UD | 15.5                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 4                            | UD | 10.6                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 4                            | UD | 11.8                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 4                            | UD | 22.5                                    |                     |                |
| Dichlorotetrafluoroet  | 76-14-2       | 170.9                   | 4                            | UD | 28                                      |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 4                            | UD | 30.7                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 4                            | UD | 17.5                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 4                            | UD | 12.1                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 4                            | UD | 16.4                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 4                            | UD | 15.9                                    |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 160                          | D  | 380                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 4                            | UD | 12.5                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 4                            | UD | 14.4                                    |                     |                |
| Methylene Chloride     | 75-09-2       | 84.94                   | 4                            | UD | 13.9                                    |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 4                            | UD | 15.9                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 4                            | UD | 16.2                                    |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 13.6                         | JD | 46.8                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 4                            | UD | 11.8                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 1.2                          | UD | 7.55                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 4                            | UD | 15.9                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 4                            | UD | 19.5                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 1.2                          | UD | 6.55                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 73.2                         | D  | 341                                     |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 6.4                          | JD | 20.4                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 4                            | UD | 16.2                                    |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 1.2                          | UD | 6.45                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 4                            | UD | 18.5                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 4                            | UD | 26.8                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 4                            | UD | 16.4                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 7.6                          | JD | 28.6                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 4                            | UD | 18.2                                    |                     |                |
| cis-1,3-Dichloroprop   |               | 111                     | 4                            | UD | 18.2                                    |                     |                |
| 1,1,2-Trichloroethan   |               | 133.4                   | 4                            | UD | 21.8                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 4                            | UD | 34.1                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 4                            | UD | 30.7                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 35.2                         | D  | 238                                     |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 4                            | UD | 18.4                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 21.6                         | D  | 93.8                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 41.2                         | D  | 178                                     |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 13.2                         | JD | 57.3                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-6DL2 TARGET ANALYTES - Laboratory ID Number: F2940-04DL2 AIR RESULTS

|                      |          |        | _    | _  |      |  |
|----------------------|----------|--------|------|----|------|--|
| Styrene              | 100-42-5 | 104.1  | 4    | UD | 17   |  |
| Bromoform            | 75-25-2  | 252.8  | 4    | UD | 41.4 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 1.2  | UD | 8.24 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 4    | UD | 20.7 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 4    | UD | 19.7 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 10.4 | JD | 51.1 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 4    | UD | 24   |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 4    | UD | 24   |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 4    | UD | 24   |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 4    | UD | 29.7 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 4    | UD | 42.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 4    | UD | 21   |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 4    | UD | 8.85 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 4    | UD | 19.7 |  |
| Hexane               | 110-54-3 | 86.17  | 11.2 | JD | 39.5 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 4    | UD | 12.5 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 4    | UD | 14.4 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 4    | UD | 16.4 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-12 TARGET ANALYTES Laboratory ID Number: F2940-05 AIR RESULTS

|                        |               |         |         |   | Generat |        |                |
|------------------------|---------------|---------|---------|---|---------|--------|----------------|
|                        | 0.0           | Molecul | Insert  |   | es      | QAS    |                |
| Chemical               | CAS<br>Number | ar      | Results | Q | Results | Decisi | Foot-<br>Notes |
|                        | Number        | Weight  | in ppbv |   | in      | on     | NOICS          |
|                        |               |         |         |   | ug/m3   |        |                |
| Dichlorodifluorometh   |               | 120.9   | 0.7     |   | 3.46    |        |                |
| Chloromethane          | 74-87-3       | 50.49   | 0.86    |   | 1.78    |        |                |
| Vinyl Chloride         | 75-01-4       | 62.5    | 0.03    | U | 0.08    |        |                |
| Bromomethane           | 74-83-9       | 94.94   | 0.1     | U | 0.39    |        |                |
| Chloroethane           | 75-00-3       | 64.52   | 0.1     | U | 0.26    |        |                |
| Tetrahydrofuran        | 109-99-9      |         | 0.1     | U | 0.29    |        |                |
| Trichlorofluorometha   |               | 137.4   | 0.28    | J | 1.57    |        |                |
| Dichlorotetrafluoroet  |               | 170.9   | 0.1     | U | 0.7     |        |                |
| 1,1,2-Trichlorotrifluo |               | 187.4   | 0.1     | J | 0.77    |        |                |
| Bromoethene            | 593-60-2      | 106.9   | 0.1     | U | 0.44    |        |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12   | 0.1     | U | 0.3     |        |                |
| Heptane                | 142-82-5      |         | 0.25    | J | 1.02    |        |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94   | 0.1     | U | 0.4     |        |                |
| Acetone                | 67-64-1       | 58.08   | 19.1    | E | 45.4    |        |                |
| Carbon Disulfide       | 75-15-0       | 76.14   | 0.1     | U | 0.31    |        |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15   | 0.1     | U | 0.36    |        |                |
| Methylene Chloride     | 75-09-2       | 84.94   | 0.29    | J | 1.01    |        |                |
| trans-1,2-Dichloroetl  | 156-60-5      | 96.94   | 0.1     | U | 0.4     |        |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96   | 0.1     | U | 0.4     |        |                |
| Cyclohexane            | 110-82-7      | 84.16   | 0.12    | J | 0.41    |        |                |
| 2-Butanone             | 78-93-3       | 72.11   | 2       |   | 5.9     |        |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8   | 0.07    |   | 0.44    |        |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94   | 0.1     | U | 0.4     |        |                |
| Chloroform             | 67-66-3       | 119.4   | 0.1     | U | 0.49    |        |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4   | 0.03    | U | 0.16    |        |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2   | 0.21    | J | 0.98    |        |                |
| Benzene                | 71-43-2       | 78.11   | 0.18    | J | 0.58    |        |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96   | 0.1     | U | 0.4     |        |                |
| Trichloroethene        | 79-01-6       | 131.4   | 0.03    | U | 0.16    |        |                |
| 1,2-Dichloropropane    | 78-87-5       | 113     | 0.1     | U | 0.46    |        |                |
| Bromodichlorometha     | 75-27-4       | 163.8   | 0.1     | U | 0.67    |        |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2   | 0.1     | U | 0.41    |        |                |
| Toluene                | 108-88-3      | 92.14   | 5.9     |   | 22.2    |        |                |
| t-1,3-Dichloropropen   | 10061-02      | 111     | 0.1     | U | 0.45    |        |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111     | 0.1     | U | 0.45    |        |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4   | 0.1     | U | 0.55    |        |                |
| Dibromochlorometha     |               | 208.3   | 0.1     | U | 0.85    |        |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9   | 0.1     | U | 0.77    |        |                |
| Tetrachloroethene      | 127-18-4      |         | 0.05    |   | 0.34    |        |                |
| Chlorobenzene          | 108-90-7      | 112.6   | 0.1     | U | 0.46    |        |                |
| Ethyl Benzene          | 100-41-4      | 106.2   | 0.11    | J | 0.48    |        |                |
| m/p-Xylene             | 179601-2      |         | 0.36    | J | 1.56    |        |                |
| o-Xylene               | 95-47-6       | 106.2   | 0.15    | J | 0.65    |        |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-12 TARGET ANALYTES - Laboratory ID Number: F2940-05 AIR RESULTS

100-42-5 104.1 Styrene 0.1 U 0.43 75-25-2 Bromoform 252.8 0.1 U 1.03 1,1,2,2-Tetrachloroe 79-34-5 167.9 0.03 U 0.21 2-Chlorotoluene 95-49-8 126.6 0.1 0.52 1,3,5-Trimethylbenz 108-67-8 120.2 0.1 U 0.49 1,2,4-Trimethylbenz 95-63-6 0.16 0.79 120.2 1,3-Dichlorobenzene541-73-1 U 147 0.1 0.6 1,4-Dichlorobenzene106-46-7 147 0.1 U 0.6 1,2-Dichlorobenzene95-50-1 U 147 0.1 0.6 U 1,2,4-Trichlorobenze120-82-1 181.5 0.1 0.74 Hexachloro-1,3-Buta87-68-3 U 1.07 260.8 0.1 Naphthalene 91-20-3 128.17 0.1 U 0.52 1,3-Butadiene 106-99-0 54.09 U 0.1 0.22 4-Ethyltoluene 622-96-8 120.2 0.1 U 0.49 U Hexane 110-54-3 86.17 0.1 0.35 Allyl Chloride 107-05-1 76.53 0.1 U 0.31 1,4-Dioxane 123-91-1 0.1 U 0.36 88.12

100.12

0.1

U

0.41

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Methyl Methacrylate 80-62-6

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-12DL TARGET ANALYTES Laboratory ID Number: F2940-05DL AIR RESULTS

|                        |               |         |         |    | Generat |        |                |
|------------------------|---------------|---------|---------|----|---------|--------|----------------|
|                        | 0.0           | Molecul | Insert  |    | es      | QAS    |                |
| Chemical               | CAS<br>Number | ar      | Results | Q  | Results | Decisi | Foot-<br>Notes |
|                        | Number        | Weight  | in ppbv |    | in      | on     | NOICS          |
|                        |               |         |         |    | ug/m3   |        |                |
| Dichlorodifluorometh   |               | 120.9   | 1       | UD | 4.94    |        |                |
| Chloromethane          | 74-87-3       | 50.49   | 1       | UD | 2.07    |        |                |
| Vinyl Chloride         | 75-01-4       | 62.5    | 0.3     | UD | 0.77    |        |                |
| Bromomethane           | 74-83-9       | 94.94   | 1       | UD | 3.88    |        |                |
| Chloroethane           | 75-00-3       | 64.52   | 1       | UD | 2.64    |        |                |
| Tetrahydrofuran        | 109-99-9      |         | 1       | UD | 2.95    |        |                |
| Trichlorofluorometha   |               | 137.4   | 1       | UD | 5.62    |        |                |
| Dichlorotetrafluoroet  |               | 170.9   | 1       | UD | 6.99    |        |                |
| 1,1,2-Trichlorotrifluo |               | 187.4   | 1       | UD | 7.66    |        |                |
| Bromoethene            | 593-60-2      | 106.9   | 1       | UD | 4.37    |        |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12   | 1       | UD | 3.03    |        |                |
| Heptane                | 142-82-5      |         | 1       | UD | 4.1     |        |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94   | 1       | UD | 3.96    |        |                |
| Acetone                | 67-64-1       | 58.08   | 19.3    | D  | 45.8    |        |                |
| Carbon Disulfide       | 75-15-0       | 76.14   | 1       | UD | 3.11    |        |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15   | 1       | UD | 3.61    |        |                |
| Methylene Chloride     | 75-09-2       | 84.94   | 1       | UD | 3.47    |        |                |
| trans-1,2-Dichloroeth  | 156-60-5      | 96.94   | 1       | UD | 3.96    |        |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96   | 1       | UD | 4.05    |        |                |
| Cyclohexane            | 110-82-7      | 84.16   | 1       | UD | 3.44    |        |                |
| 2-Butanone             | 78-93-3       | 72.11   | 1       | UD | 2.95    |        |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8   | 0.3     | UD | 1.89    |        |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94   | 1       | UD | 3.96    |        |                |
| Chloroform             | 67-66-3       | 119.4   | 1       | UD | 4.88    |        |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4   | 0.3     | UD | 1.64    |        |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2   | 1       | UD | 4.67    |        |                |
| Benzene                | 71-43-2       | 78.11   | 1       | UD | 3.19    |        |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96   | 1       | UD | 4.05    |        |                |
| Trichloroethene        | 79-01-6       | 131.4   | 0.3     | UD | 1.61    |        |                |
| 1,2-Dichloropropane    | 78-87-5       | 113     | 1       | UD | 4.62    |        |                |
| Bromodichlorometha     |               | 163.8   | 1       | UD | 6.7     |        |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2   | 1       | UD | 4.1     |        |                |
| Toluene                | 108-88-3      | 92.14   | 5.2     | D  | 19.6    |        |                |
| t-1,3-Dichloropropen   | 10061-02      | 111     | 1       | UD | 4.54    |        |                |
| cis-1,3-Dichloroprop   |               |         | 1       | UD | 4.54    |        |                |
| 1,1,2-Trichloroethan   |               | 133.4   | 1       | UD | 5.46    |        |                |
| Dibromochlorometha     |               | 208.3   | 1       | UD | 8.52    |        |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9   | 1       | UD | 7.69    |        |                |
| Tetrachloroethene      | 127-18-4      |         | 0.3     | UD | 2.03    |        |                |
| Chlorobenzene          | 108-90-7      | 112.6   | 1       | UD | 4.61    |        |                |
| Ethyl Benzene          | 100-41-4      | 106.2   | 1       | UD | 4.34    |        |                |
| m/p-Xylene             | 179601-2      |         | 2       | UD | 8.69    |        |                |
| o-Xylene               | 95-47-6       | 106.2   | 1       | UD | 4.34    |        |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-12DL TARGET ANALYTES - Laboratory ID Number: F2940-05DL AIR RESULTS

|                      |          |        |     | _  |      |      |
|----------------------|----------|--------|-----|----|------|------|
| Styrene              | 100-42-5 | 104.1  | 1   | UD | 4.26 | <br> |
| Bromoform            | 75-25-2  | 252.8  | 1   | UD | 10.3 |      |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3 | UD | 2.06 |      |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1   | UD | 5.18 |      |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 1   | UD | 4.92 |      |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 1   | UD | 4.92 |      |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1   | UD | 6.01 |      |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1   | UD | 6.01 |      |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1   | UD | 6.01 |      |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1   | UD | 7.42 |      |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1   | UD | 10.7 |      |
| Naphthalene          | 91-20-3  | 128.17 | 1   | UD | 5.24 |      |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1   | UD | 2.21 |      |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 1   | UD | 4.92 |      |
| Hexane               | 110-54-3 | 86.17  | 1   | UD | 3.52 |      |
| Allyl Chloride       | 107-05-1 | 76.53  | 1   | UD | 3.13 |      |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1   | UD | 3.6  |      |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1   | UD | 4.09 |      |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-15 TARGET ANALYTES Laboratory ID Number: F2940-06 AIR RESULTS

|                        |          |         |         |   | Generat |        |       |
|------------------------|----------|---------|---------|---|---------|--------|-------|
|                        |          | Molecul | Insert  |   | es      | QAS    |       |
| Chemical               | CAS      | ar      | Results | Q | Results | Decisi | Foot- |
|                        | Number   | Weight  | in ppbv |   | in      | on     | Notes |
|                        |          |         |         |   | ug/m3   |        |       |
| Dichlorodifluorometh   |          | 120.9   | 0.7     | J | 3.46    |        |       |
| Chloromethane          | 74-87-3  | 50.49   | 2.4     | J | 4.96    |        |       |
| Vinyl Chloride         | 75-01-4  | 62.5    | 0.3     | U | 0.77    |        |       |
| Bromomethane           | 74-83-9  | 94.94   | 1       | U | 3.88    |        |       |
| Chloroethane           | 75-00-3  | 64.52   | 1       | U | 2.64    |        |       |
| Tetrahydrofuran        | 109-99-9 |         | 1       | U | 2.95    |        |       |
| Trichlorofluorometha   |          | 137.4   | 0.4     | J | 2.25    |        |       |
| Dichlorotetrafluoroet  | 76-14-2  | 170.9   | 1       | U | 6.99    |        |       |
| 1,1,2-Trichlorotrifluo | 76-13-1  | 187.4   | 1       | U | 7.66    |        |       |
| Bromoethene            | 593-60-2 | 106.9   | 1       | U | 4.37    |        |       |
| tert-Butyl alcohol     | 75-65-0  | 74.12   | 1       | U | 3.03    |        |       |
| Heptane                | 142-82-5 | 100.2   | 2.2     | J | 9.02    |        |       |
| 1,1-Dichloroethene     | 75-35-4  | 96.94   | 1       | U | 3.96    |        |       |
| Acetone                | 67-64-1  | 58.08   | 20.5    |   | 48.7    |        |       |
| Carbon Disulfide       | 75-15-0  | 76.14   | 7.3     |   | 22.7    |        |       |
| Methyl tert-Butyl Eth  | 1634-04- | 88.15   | 1       | U | 3.61    |        |       |
| Methylene Chloride     | 75-09-2  | 84.94   | 1.5     | J | 5.21    |        |       |
| trans-1,2-Dichloroetl  | 156-60-5 | 96.94   | 1       | U | 3.96    |        |       |
| 1,1-Dichloroethane     | 75-34-3  | 98.96   | 1       | U | 4.05    |        |       |
| Cyclohexane            | 110-82-7 | 84.16   | 1.3     | J | 4.47    |        |       |
| 2-Butanone             | 78-93-3  | 72.11   | 1       | U | 2.95    |        |       |
| Carbon Tetrachloride   | 56-23-5  | 153.8   | 0.3     | U | 1.89    |        |       |
| cis-1,2-Dichloroethe   | 156-59-2 | 96.94   | 1       | U | 3.96    |        |       |
| Chloroform             | 67-66-3  | 119.4   | 2.3     | J | 11.2    |        |       |
| 1,1,1-Trichloroethan   | 71-55-6  | 133.4   | 0.3     | U | 1.64    |        |       |
| 2,2,4-Trimethylpenta   | 540-84-1 | 114.2   | 1       | U | 4.67    |        |       |
| Benzene                | 71-43-2  | 78.11   | 2.2     | J | 7.03    |        |       |
| 1,2-Dichloroethane     | 107-06-2 | 98.96   | 1       | U | 4.05    |        |       |
| Trichloroethene        | 79-01-6  | 131.4   | 33.2    |   | 178     |        |       |
| 1,2-Dichloropropane    | 78-87-5  | 113     | 1       | U | 4.62    |        |       |
| Bromodichlorometha     | 75-27-4  | 163.8   | 1       | U | 6.7     |        |       |
| 4-Methyl-2-Pentanor    | 108-10-1 | 100.2   | 1       | U | 4.1     |        |       |
| Toluene                | 108-88-3 | 92.14   | 5.8     |   | 21.9    |        |       |
| t-1,3-Dichloropropen   | 10061-02 | 111     | 1       | U | 4.54    |        |       |
| cis-1,3-Dichloroprop   |          | 111     | 1       | U | 4.54    |        |       |
| 1,1,2-Trichloroethan   | 79-00-5  | 133.4   | 1       | U | 5.46    |        |       |
| Dibromochlorometha     | 124-48-1 | 208.3   | 1       | U | 8.52    |        |       |
| 1,2-Dibromoethane      | 106-93-4 | 187.9   | 1       | U | 7.69    |        |       |
| Tetrachloroethene      | 127-18-4 | 165.8   | 1300    | E | 8815    |        |       |
| Chlorobenzene          | 108-90-7 | 112.6   | 1       | U | 4.61    |        |       |
| Ethyl Benzene          | 100-41-4 | 106.2   | 1.5     | J | 6.52    |        |       |
| m/p-Xylene             | 179601-2 | 106.2   | 4.9     | J | 21.3    |        |       |
| o-Xylene               | 95-47-6  | 106.2   | 1.9     | J | 8.25    |        |       |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/26/14

Field ID Number: SV-15 TARGET ANALYTES - Laboratory ID Number: F2940-06 AIR RESULTS

| 100-42-5 | 104.1                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                           | 4.26                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 75-25-2  | 252.8                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                           | 10.3                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 79-34-5  | 167.9                                                                                                                                                                                 | 0.3                                                                                                                                                                                                                                                                              | U                                                                                                                                                                                                                                                           | 2.06                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 95-49-8  | 126.6                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                           | 5.18                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 108-67-8 | 120.2                                                                                                                                                                                 | 1.1                                                                                                                                                                                                                                                                              | J                                                                                                                                                                                                                                                           | 5.41                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 95-63-6  | 120.2                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                           | 14.8                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 541-73-1 | 147                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                           | 6.01                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 106-46-7 | 147                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                           | 6.01                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 95-50-1  | 147                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                           | 6.01                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 120-82-1 | 181.5                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                           | 7.42                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 87-68-3  | 260.8                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                           | 10.7                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 91-20-3  | 128.17                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                           | 5.24                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 106-99-0 | 54.09                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                           | 2.21                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 622-96-8 | 120.2                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                           | 4.92                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 110-54-3 | 86.17                                                                                                                                                                                 | 3.4                                                                                                                                                                                                                                                                              | J                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 107-05-1 | 76.53                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                           | 3.13                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 123-91-1 | 88.12                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                           | 3.6                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 80-62-6  | 100.12                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                           | 4.09                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | 75-25-2<br>79-34-5<br>95-49-8<br>108-67-8<br>95-63-6<br>541-73-1<br>106-46-7<br>95-50-1<br>120-82-1<br>87-68-3<br>91-20-3<br>106-99-0<br>622-96-8<br>110-54-3<br>107-05-1<br>123-91-1 | 75-25-2 252.8<br>79-34-5 167.9<br>95-49-8 126.6<br>108-67-8 120.2<br>95-63-6 120.2<br>541-73-1 147<br>106-46-7 147<br>95-50-1 147<br>120-82-1 181.5<br>87-68-3 260.8<br>91-20-3 128.17<br>106-99-0 54.09<br>622-96-8 120.2<br>110-54-3 86.17<br>107-05-1 76.53<br>123-91-1 88.12 | 75-25-2 252.8 1 79-34-5 167.9 0.3 95-49-8 126.6 1 108-67-8 120.2 1.1 95-63-6 120.2 3 541-73-1 147 1 106-46-7 147 1 120-82-1 181.5 1 87-68-3 260.8 1 91-20-3 128.17 1 106-99-0 54.09 1 622-96-8 120.2 1 110-54-3 86.17 3.4 107-05-1 76.53 1 123-91-1 88.12 1 | 75-25-2 252.8 1 U 79-34-5 167.9 0.3 U 95-49-8 126.6 1 U 108-67-8 120.2 1.1 J 95-63-6 120.2 3 J 541-73-1 147 1 U 106-46-7 147 1 U 120-82-1 181.5 1 U 87-68-3 260.8 1 U 91-20-3 128.17 1 J 106-99-0 54.09 1 U 622-96-8 120.2 1 U 110-54-3 86.17 3.4 J 107-05-1 76.53 1 U 123-91-1 88.12 1 U | 75-25-2         252.8         1         U         10.3           79-34-5         167.9         0.3         U         2.06           95-49-8         126.6         1         U         5.18           108-67-8         120.2         1.1         J         5.41           95-63-6         120.2         3         J         14.8           541-73-1         147         1         U         6.01           106-46-7         147         1         U         6.01           95-50-1         147         1         U         6.01           120-82-1         181.5         1         U         7.42           87-68-3         260.8         1         U         10.7           91-20-3         128.17         1         J         5.24           106-99-0         54.09         1         U         2.21           622-96-8         120.2         1         U         4.92           110-54-3         86.17         3.4         J         12           107-05-1         76.53         1         U         3.6 | 75-25-2         252.8         1         U         10.3           79-34-5         167.9         0.3         U         2.06           95-49-8         126.6         1         U         5.18           108-67-8         120.2         1.1         J         5.41           95-63-6         120.2         3         J         14.8           541-73-1         147         1         U         6.01           106-46-7         147         1         U         6.01           95-50-1         147         1         U         6.01           120-82-1         181.5         1         U         7.42           87-68-3         260.8         1         U         10.7           91-20-3         128.17         1         J         5.24           106-99-0         54.09         1         U         2.21           622-96-8         120.2         1         U         4.92           110-54-3         86.17         3.4         J         12           107-05-1         76.53         1         U         3.6 |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ Sampling Date: 06/26/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-15DL TARGET ANALYTES Laboratory ID Number: F2940-06DL AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q  | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|----|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 20                           | UD | 98.9                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 20                           | UD | 41.3                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 6                            | UD | 15.3                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 20                           | UD | 77.7                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 20                           | UD | 52.8                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 20                           | UD | 59                                      |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 20                           | UD | 112                                     |                     |                |
| Dichlorotetrafluoroet  | 76-14-2       | 170.9                   | 20                           | UD | 139                                     |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 20                           | UD | 153                                     |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 20                           | UD | 87.4                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 20                           | UD | 60.6                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 20                           | UD | 82                                      |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 20                           | UD | 79.3                                    |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 20                           | UD | 47.5                                    |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 20                           | UD | 62.3                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 20                           | UD | 72.1                                    |                     |                |
| Methylene Chloride     |               | 84.94                   | 20                           | UD | 69.5                                    |                     |                |
| trans-1,2-Dichloroetl  | 156-60-5      | 96.94                   | 20                           | UD | 79.3                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 20                           | UD | 81                                      |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 20                           | UD | 68.8                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 20                           | UD | 59                                      |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 6                            | UD | 37.7                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 20                           | UD | 79.3                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 20                           | UD | 97.7                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 6                            | UD | 32.7                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 20                           | UD | 93.4                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 20                           | UD | 63.9                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 20                           | UD | 81                                      |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 22                           | D  | 118                                     |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 20                           | UD | 92.4                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 20                           | UD | 133                                     |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 20                           | UD | 82                                      |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 20                           | UD | 75.4                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 20                           | UD | 90.8                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 20                           | UD | 90.8                                    |                     |                |
| 1,1,2-Trichloroethan   |               | 133.4                   | 20                           | UD | 109                                     |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 20                           | UD | 170                                     |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 20                           | UD | 153                                     |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 2300                         | D  | 15596                                   |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 20                           | UD | 92.1                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 20                           | UD | 86.9                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 40                           | UD | 173                                     |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 20                           | UD | 86.9                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/26/14

Field ID Number: SV-15DL TARGET ANALYTES - Sampling Date: 06/26/14
Laboratory ID Number: F2940-06DL AIR RESULTS

Sampling Date: 06/26/14
Analysis Date: 07/03/14

| Styrene              | 100-42-5 | 104.1  | 20 | UD | 85.2 |   |  |
|----------------------|----------|--------|----|----|------|---|--|
| Bromoform            | 75-25-2  | 252.8  | 20 | UD | 206  |   |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 6  | UD | 41.2 |   |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 20 | UD | 103  |   |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 20 | UD | 98.3 |   |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 20 | UD | 98.3 |   |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 20 | UD | 120  |   |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 20 | UD | 120  |   |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 20 | UD | 120  |   |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 20 | UD | 148  |   |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 20 | UD | 213  |   |  |
| Naphthalene          | 91-20-3  | 128.17 | 20 | UD | 104  |   |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 20 | UD | 44.2 |   |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 20 | UD | 98.3 |   |  |
| Hexane               | 110-54-3 | 86.17  | 20 | UD | 70.5 |   |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 20 | UD | 62.6 |   |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 20 | UD | 72.1 |   |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 20 | UD | 81.9 | · |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-16 TARGET ANALYTES Laboratory ID Number: F2940-07 AIR RESULTS

|                        |               |         |         |   | Generat |        |                |
|------------------------|---------------|---------|---------|---|---------|--------|----------------|
|                        |               | Molecul | Insert  |   | es      | QAS    |                |
| Chemical               | CAS<br>Number | ar      | Results | Q | Results | Decisi | Foot-<br>Notes |
|                        | Number        | Weight  | in ppbv |   | in      | on     | NOICS          |
|                        |               |         |         |   | ug/m3   |        |                |
| Dichlorodifluorometh   |               | 120.9   | 0.51    |   | 2.52    |        |                |
| Chloromethane          | 74-87-3       | 50.49   | 0.89    |   | 1.84    |        |                |
| Vinyl Chloride         | 75-01-4       | 62.5    | 0.03    | U | 0.08    |        |                |
| Bromomethane           | 74-83-9       | 94.94   | 0.12    | J | 0.47    |        |                |
| Chloroethane           | 75-00-3       | 64.52   | 0.1     | U | 0.26    |        |                |
| Tetrahydrofuran        | 109-99-9      |         | 0.1     | U | 0.29    |        |                |
| Trichlorofluorometha   |               | 137.4   | 0.28    | J | 1.57    |        |                |
| Dichlorotetrafluoroet  |               | 170.9   | 0.1     | U | 0.7     |        |                |
| 1,1,2-Trichlorotrifluo |               | 187.4   | 0.1     | J | 0.77    |        |                |
| Bromoethene            | 593-60-2      | 106.9   | 0.1     | U | 0.44    |        |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12   | 0.1     | U | 0.3     |        |                |
| Heptane                | 142-82-5      |         | 0.5     |   | 2.05    |        |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94   | 0.1     | U | 0.4     |        |                |
| Acetone                | 67-64-1       | 58.08   | 48.2    | E | 114     |        |                |
| Carbon Disulfide       | 75-15-0       | 76.14   | 1.4     |   | 4.36    |        |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15   | 0.1     | U | 0.36    |        |                |
| Methylene Chloride     | 75-09-2       | 84.94   | 2       |   | 6.95    |        |                |
| trans-1,2-Dichloroetl  | 156-60-5      | 96.94   | 0.1     | U | 0.4     |        |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96   | 0.1     | U | 0.4     |        |                |
| Cyclohexane            | 110-82-7      | 84.16   | 0.33    | J | 1.14    |        |                |
| 2-Butanone             | 78-93-3       | 72.11   | 1.3     |   | 3.83    |        |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8   | 0.08    |   | 0.5     |        |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94   | 0.1     | U | 0.4     |        |                |
| Chloroform             | 67-66-3       | 119.4   | 0.28    | J | 1.37    |        |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4   | 0.03    | U | 0.16    |        |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2   | 0.91    |   | 4.25    |        |                |
| Benzene                | 71-43-2       | 78.11   | 0.62    |   | 1.98    |        |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96   | 0.1     | U | 0.4     |        |                |
| Trichloroethene        | 79-01-6       | 131.4   | 0.03    | U | 0.16    |        |                |
| 1,2-Dichloropropane    | 78-87-5       | 113     | 0.1     | U | 0.46    |        |                |
| Bromodichlorometha     |               | 163.8   | 0.1     | U | 0.67    |        |                |
| 4-Methyl-2-Pentanor    |               | 100.2   | 0.1     | U | 0.41    |        |                |
| Toluene                | 108-88-3      | 92.14   | 3.2     |   | 12.1    |        |                |
| t-1,3-Dichloropropen   | 10061-02      | 111     | 0.1     | U | 0.45    |        |                |
| cis-1,3-Dichloroprop   |               |         | 0.1     | U | 0.45    |        |                |
| 1,1,2-Trichloroethan   |               | 133.4   | 0.1     | U | 0.55    |        |                |
| Dibromochlorometha     |               | 208.3   | 0.1     | U | 0.85    |        |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9   | 0.1     | U | 0.77    |        |                |
| Tetrachloroethene      | 127-18-4      |         | 0.49    |   | 3.32    |        |                |
| Chlorobenzene          | 108-90-7      | 112.6   | 0.1     | U | 0.46    |        |                |
| Ethyl Benzene          | 100-41-4      | 106.2   | 0.75    |   | 3.26    |        |                |
| m/p-Xylene             | 179601-2      |         | 2.7     |   | 11.7    |        |                |
| o-Xylene               | 95-47-6       | 106.2   | 1.3     |   | 5.65    |        |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-16 TARGET ANALYTES - Laboratory ID Number: F2940-07 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 0.1  | U | 0.43 |  |
|----------------------|----------|--------|------|---|------|--|
| Bromoform            | 75-25-2  | 252.8  | 0.1  | U | 1.03 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.03 | U | 0.21 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 0.1  | U | 0.52 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 0.84 |   | 4.13 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 3.1  |   | 15.2 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 0.1  | U | 0.6  |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 0.1  | U | 0.6  |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 0.1  | U | 0.6  |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 0.1  | U | 0.74 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 0.1  | U | 1.07 |  |
| Naphthalene          | 91-20-3  | 128.17 | 0.38 | J | 1.99 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 0.1  | U | 0.22 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 0.99 |   | 4.87 |  |
| Hexane               | 110-54-3 | 86.17  | 1.2  |   | 4.23 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 0.1  | U | 0.31 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 0.1  | U | 0.36 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 0.1  | U | 0.41 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-16DL TARGET ANALYTES Laboratory ID Number: F2940-07DL AIR RESULTS

|                        |               |         |         |    | Generat |        |                |
|------------------------|---------------|---------|---------|----|---------|--------|----------------|
|                        | 0.0           | Molecul | Insert  |    | es      | QAS    |                |
| Chemical               | CAS<br>Number | ar      | Results | Q  | Results | Decisi | Foot-<br>Notes |
|                        | Number        | Weight  | in ppbv |    | in      | on     | NOICS          |
|                        |               |         |         |    | ug/m3   |        |                |
| Dichlorodifluorometh   |               | 120.9   | 1       | UD | 4.94    |        |                |
| Chloromethane          | 74-87-3       | 50.49   | 1       | UD | 2.07    |        |                |
| Vinyl Chloride         | 75-01-4       | 62.5    | 0.3     | UD | 0.77    |        |                |
| Bromomethane           | 74-83-9       | 94.94   | 1       | UD | 3.88    |        |                |
| Chloroethane           | 75-00-3       | 64.52   | 1       | UD | 2.64    |        |                |
| Tetrahydrofuran        | 109-99-9      |         | 1       | UD | 2.95    |        |                |
| Trichlorofluorometha   |               | 137.4   | 1       | UD | 5.62    |        |                |
| Dichlorotetrafluoroet  |               | 170.9   | 1       | UD | 6.99    |        |                |
| 1,1,2-Trichlorotrifluo |               | 187.4   | 1       | UD | 7.66    |        |                |
| Bromoethene            | 593-60-2      | 106.9   | 1       | UD | 4.37    |        |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12   | 1       | UD | 3.03    |        |                |
| Heptane                | 142-82-5      |         | 1       | UD | 4.1     |        |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94   | 1       | UD | 3.96    |        |                |
| Acetone                | 67-64-1       | 58.08   | 46.4    | D  | 110     |        |                |
| Carbon Disulfide       | 75-15-0       | 76.14   | 1       | UD | 3.11    |        |                |
| Methyl tert-Butyl Eth  |               | 88.15   | 1       | UD | 3.61    |        |                |
| Methylene Chloride     | 75-09-2       | 84.94   | 1       | UD | 3.47    |        |                |
| trans-1,2-Dichloroetl  | 156-60-5      | 96.94   | 1       | UD | 3.96    |        |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96   | 1       | UD | 4.05    |        |                |
| Cyclohexane            | 110-82-7      | 84.16   | 1       | UD | 3.44    |        |                |
| 2-Butanone             | 78-93-3       | 72.11   | 1.5     | JD | 4.42    |        |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8   | 0.3     | UD | 1.89    |        |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94   | 1       | UD | 3.96    |        |                |
| Chloroform             | 67-66-3       | 119.4   | 1       | UD | 4.88    |        |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4   | 0.3     | UD | 1.64    |        |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2   | 1       | UD | 4.67    |        |                |
| Benzene                | 71-43-2       | 78.11   | 1       | UD | 3.19    |        |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96   | 1       | UD | 4.05    |        |                |
| Trichloroethene        | 79-01-6       | 131.4   | 0.3     | UD | 1.61    |        |                |
| 1,2-Dichloropropane    |               | 113     | 1       | UD | 4.62    |        |                |
| Bromodichlorometha     |               | 163.8   | 1       | UD | 6.7     |        |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2   | 1       | UD | 4.1     |        |                |
| Toluene                | 108-88-3      | 92.14   | 2.7     | JD | 10.2    |        |                |
| t-1,3-Dichloropropen   | 10061-02      |         | 1       | UD | 4.54    |        |                |
| cis-1,3-Dichloroprop   |               |         | 1       | UD | 4.54    |        |                |
| 1,1,2-Trichloroethan   |               | 133.4   | 1       | UD | 5.46    |        |                |
| Dibromochlorometha     | 124-48-1      | 208.3   | 1       | UD | 8.52    |        |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9   | 1       | UD | 7.69    |        |                |
| Tetrachloroethene      | 127-18-4      | 165.8   | 0.3     | UD | 2.03    |        |                |
| Chlorobenzene          | 108-90-7      | 112.6   | 1       | UD | 4.61    |        |                |
| Ethyl Benzene          | 100-41-4      | 106.2   | 1       | UD | 4.34    |        |                |
| m/p-Xylene             | 179601-2      | 106.2   | 2.1     | JD | 9.12    |        |                |
| o-Xylene               | 95-47-6       | 106.2   | 1       | JD | 4.34    |        |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-16DL TARGET ANALYTES - Laboratory ID Number: F2940-07DL AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 1   | UD | 4.26 |  |
|----------------------|----------|--------|-----|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 1   | UD | 10.3 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3 | UD | 2.06 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1   | UD | 5.18 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 1   | UD | 4.92 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 2.8 | JD | 13.8 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1   | UD | 6.01 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1   | UD | 6.01 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1   | UD | 6.01 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1   | UD | 7.42 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1   | UD | 10.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 1   | UD | 5.24 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1   | UD | 2.21 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 1   | UD | 4.92 |  |
| Hexane               | 110-54-3 | 86.17  | 1   | UD | 3.52 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 1   | UD | 3.13 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1   | UD | 3.6  |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1   | UD | 4.09 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-18 TARGET ANALYTES Laboratory ID Number: F2940-08 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|---|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 0.94                         |   | 4.65                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 0.49                         | J | 1.01                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.03                         | U | 80.0                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 0.1                          | U | 0.39                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 0.1                          | U | 0.26                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 1.1                          |   | 3.24                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 0.51                         |   | 2.87                                    |                     |                |
| Dichlorotetrafluoroet  | 76-14-2       | 170.9                   | 0.1                          | U | 0.7                                     |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 0.16                         | J | 1.23                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 0.1                          | U | 0.44                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 0.1                          | U | 0.3                                     |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 5.5                          |   | 22.5                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 450                          | E | 1068                                    |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 17                           | E | 52.9                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 0.1                          | U | 0.36                                    |                     |                |
| Methylene Chloride     | 75-09-2       | 84.94                   | 11.9                         |   | 41.3                                    |                     |                |
| trans-1,2-Dichloroeth  | 156-60-5      | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 2.3                          |   | 7.92                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 9.2                          |   | 27.1                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.09                         |   | 0.57                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 100                          | E | 488                                     |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.03                         | U | 0.16                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 1.6                          |   | 7.47                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 3                            |   | 9.58                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.16                         |   | 0.86                                    |                     |                |
| 1,2-Dichloropropane    |               | 113                     | 0.1                          | U | 0.46                                    |                     |                |
| Bromodichlorometha     |               | 163.8                   | 2.7                          |   | 18.1                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 2.1                          |   | 8.61                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 26                           | Е | 98                                      |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| 1,1,2-Trichloroethan   |               | 133.4                   | 0.1                          | U | 0.55                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 0.1                          | U | 0.85                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 0.1                          | U | 0.77                                    |                     |                |
| Tetrachloroethene      | 127-18-4      |                         | 6.9                          |   | 46.8                                    |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 0.1                          | U | 0.46                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 10.6                         |   | 46                                      |                     |                |
| m/p-Xylene             | 179601-2      |                         | 35.7                         | E | 155                                     |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 14.7                         |   | 63.8                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-18 TARGET ANALYTES - Laboratory ID Number: F2940-08 AIR RESULTS Sampling Date: 06/25/14 Analysis Date: 07/02/14

| Styrene              | 100-42-5 | 104.1  | 0.6  |   | 2.55 |  |
|----------------------|----------|--------|------|---|------|--|
| Bromoform            | 75-25-2  | 252.8  | 0.1  | U | 1.03 |  |
| 1,1,2,2-Tetrachloroe |          | 167.9  | 0.03 | Ū | 0.21 |  |
|                      | 95-49-8  | 126.6  | 0.1  | U | 0.52 |  |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 4.8  |   | 23.6 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 18   | E | 88.5 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 0.1  | U | 0.6  |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 0.1  | U | 0.6  |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 0.1  | U | 0.6  |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 0.1  | U | 0.74 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 0.1  | U | 1.07 |  |
| Naphthalene          | 91-20-3  | 128.17 | 3.2  |   | 16.8 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 0.1  | U | 0.22 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 7.3  |   | 35.9 |  |
| Hexane               | 110-54-3 | 86.17  | 7.9  |   | 27.8 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 0.1  | U | 0.31 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 0.1  | U | 0.36 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 0.1  | U | 0.41 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-18DL TARGET ANALYTES Laboratory ID Number: F2940-08DL AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q  | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|----|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 1                            | UD | 4.94                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 1                            | UD | 2.07                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.3                          | UD | 0.77                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 1                            | UD | 3.88                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 1                            | UD | 2.64                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 1                            | UD | 2.95                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 1                            | UD | 5.62                                    |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 1                            | UD | 6.99                                    |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 1                            | UD | 7.66                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 1                            | UD | 4.37                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 1                            | UD | 3.03                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 3.6                          | JD | 14.8                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 580                          | ED | 1377                                    |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 9.4                          | D  | 29.3                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 1                            | UD | 3.61                                    |                     |                |
| Methylene Chloride     |               | 84.94                   | 9.4                          | D  | 32.7                                    |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 1                            | UD | 3.44                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 7                            | D  | 20.6                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.3                          | UD | 1.89                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 100                          | D  | 488                                     |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.3                          | UD | 1.64                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 1                            | UD | 4.67                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 2.3                          | JD | 7.35                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.3                          | UD | 1.61                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 1                            | UD | 4.62                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 1.8                          | JD | 12.1                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 1                            | UD | 4.1                                     |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 26.5                         | D  | 99.9                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4                   | 1                            | UD | 5.46                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 1                            | UD | 8.52                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 1                            | UD | 7.69                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 5.3                          | D  | 35.9                                    |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 1                            | UD | 4.61                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 7.2                          | D  | 31.3                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 27.1                         | D  | 117                                     |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 10.2                         | D  | 44.3                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-18DL TARGET ANALYTES - Laboratory ID Number: F2940-08DL AIR RESULTS

| I=                   |          |        |      | 1  |      |  |
|----------------------|----------|--------|------|----|------|--|
| Styrene              | 100-42-5 | 104.1  | 1    | UD | 4.26 |  |
| Bromoform            | 75-25-2  | 252.8  | 1    | UD | 10.3 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3  | UD | 2.06 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1    | UD | 5.18 |  |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 3.5  | JD | 17.2 |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 13.3 | D  | 65.4 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1    | UD | 6.01 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1    | UD | 6.01 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1    | UD | 6.01 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1    | UD | 7.42 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1    | UD | 10.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 5.8  | D  | 30.4 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1    | UD | 2.21 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 5    | D  | 24.6 |  |
| Hexane               | 110-54-3 | 86.17  | 5.2  | D  | 18.3 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 1    | UD | 3.13 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1    | UD | 3.6  |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1    | UD | 4.09 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-18DL2 TARGET ANALYTES Laboratory ID Number: F2940-08DL2 AIR RESULTS

|                        |          |         |         |    | Canarat       |        |          |
|------------------------|----------|---------|---------|----|---------------|--------|----------|
|                        |          | Molecul | Insert  |    | Generat<br>es | QAS    |          |
| Chemical               | CAS      | ar      | Results | Q  | Results       | Decisi | Foot-    |
|                        | Number   | Weight  |         |    | in            | on     | Notes    |
|                        |          |         |         |    | ug/m3         |        |          |
| Dichlorodifluorometh   | 75-71-8  | 120.9   | 10      | UD | 49.4          |        |          |
| Chloromethane          | 74-87-3  | 50.49   | 10      | UD | 20.6          |        |          |
| Vinyl Chloride         | 75-01-4  | 62.5    | 3       | UD | 7.67          |        |          |
| Bromomethane           | 74-83-9  | 94.94   | 10      | UD | 38.8          |        |          |
| Chloroethane           | 75-00-3  | 64.52   | 10      | UD | 26.4          |        |          |
| Tetrahydrofuran        | 109-99-9 | 72.11   | 10      | UD | 29.5          |        |          |
| Trichlorofluorometha   | 75-69-4  | 137.4   | 10      | UD | 56.2          |        |          |
| Dichlorotetrafluoroet  |          | 170.9   | 10      | UD | 69.9          |        |          |
| 1,1,2-Trichlorotrifluo | 76-13-1  | 187.4   | 10      | UD | 76.6          |        |          |
| Bromoethene            | 593-60-2 | 106.9   | 10      | UD | 43.7          |        |          |
| tert-Butyl alcohol     | 75-65-0  | 74.12   | 10      | UD | 30.3          |        |          |
| Heptane                | 142-82-5 | 100.2   | 10      | UD | 41            |        |          |
| 1,1-Dichloroethene     | 75-35-4  | 96.94   | 10      | UD | 39.6          |        |          |
| Acetone                | 67-64-1  | 58.08   | 560     | D  | 1330          |        |          |
| Carbon Disulfide       | 75-15-0  | 76.14   | 10      | UD | 31.1          |        |          |
| Methyl tert-Butyl Eth  | 1634-04- | 88.15   | 10      | UD | 36            |        |          |
| Methylene Chloride     | 75-09-2  | 84.94   | 10      | UD | 34.7          |        |          |
| trans-1,2-Dichloroeth  | 156-60-5 | 96.94   | 10      | UD | 39.6          |        |          |
| 1,1-Dichloroethane     | 75-34-3  | 98.96   | 10      | UD | 40.5          |        |          |
| Cyclohexane            | 110-82-7 | 84.16   | 10      | UD | 34.4          |        |          |
| 2-Butanone             | 78-93-3  | 72.11   | 10      | UD | 29.5          |        |          |
| Carbon Tetrachloride   | 56-23-5  | 153.8   | 3       | UD | 18.9          |        |          |
| cis-1,2-Dichloroethe   | 156-59-2 | 96.94   | 10      | UD | 39.6          |        |          |
| Chloroform             | 67-66-3  | 119.4   | 110     | D  | 537           |        |          |
| 1,1,1-Trichloroethan   | 71-55-6  | 133.4   | 3       | UD | 16.4          |        |          |
| 2,2,4-Trimethylpenta   | 540-84-1 | 114.2   | 10      | UD | 46.7          |        |          |
| Benzene                | 71-43-2  | 78.11   | 10      | UD | 32            |        |          |
| 1,2-Dichloroethane     | 107-06-2 | 98.96   | 10      | UD | 40.5          |        |          |
| Trichloroethene        | 79-01-6  | 131.4   | 3       | UD | 16.1          |        |          |
| 1,2-Dichloropropane    | 78-87-5  | 113     | 10      | UD | 46.2          |        |          |
| Bromodichlorometha     | 75-27-4  | 163.8   | 10      | UD | 67            |        |          |
| 4-Methyl-2-Pentanor    | 108-10-1 | 100.2   | 10      | UD | 41            |        |          |
| Toluene                | 108-88-3 | 92.14   | 19      | JD | 71.6          |        |          |
| t-1,3-Dichloropropen   | 10061-02 | 111     | 10      | UD | 45.4          |        |          |
| cis-1,3-Dichloroprop   | 10061-01 | 111     | 10      | UD | 45.4          |        |          |
| 1,1,2-Trichloroethan   | 79-00-5  | 133.4   | 10      | UD | 54.6          |        |          |
| Dibromochlorometha     | 124-48-1 | 208.3   | 10      | UD | 85.2          |        |          |
| 1,2-Dibromoethane      | 106-93-4 | 187.9   | 10      | UD | 76.8          |        |          |
| Tetrachloroethene      | 127-18-4 | 165.8   | 5       | D  | 33.9          |        |          |
| Chlorobenzene          | 108-90-7 | 112.6   | 10      | UD | 46            |        |          |
| Ethyl Benzene          | 100-41-4 | 106.2   | 10      | UD | 43.4          |        |          |
| m/p-Xylene             | 179601-2 | 106.2   | 17      | JD | 73.8          |        |          |
| o-Xylene               | 95-47-6  | 106.2   | 10      | UD | 43.4          |        | <u>-</u> |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-18DL2 TARGET ANALYTES - Laboratory ID Number: F2940-08DL2 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 10 | UD | 42.6 |  |
|----------------------|----------|--------|----|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 10 | UD | 103  |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 3  | UD | 20.6 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 10 | UD | 51.8 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 10 | UD | 49.2 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 10 | UD | 49.2 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 10 | UD | 60.1 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 10 | UD | 60.1 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 10 | UD | 60.1 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 10 | UD | 74.2 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 10 | UD | 106  |  |
| Naphthalene          | 91-20-3  | 128.17 | 10 | UD | 52.4 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 10 | UD | 22.1 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 10 | UD | 49.2 |  |
| Hexane               | 110-54-3 | 86.17  | 10 | UD | 35.2 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 10 | UD | 31.3 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 10 | UD | 36   |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 10 | UD | 41   |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-9 TARGET ANALYTES Laboratory ID Number: F2940-09 AIR RESULTS

|                        |               |         |         |   | Generat |        |                |
|------------------------|---------------|---------|---------|---|---------|--------|----------------|
|                        | 0.0           | Molecul | Insert  |   | es      | QAS    |                |
| Chemical               | CAS<br>Number | ar      | Results | Q | Results | Decisi | Foot-<br>Notes |
|                        | Number        | Weight  | in ppbv |   | in      | on     | NOICS          |
|                        |               |         |         |   | ug/m3   |        |                |
| Dichlorodifluorometh   |               | 120.9   | 0.9     |   | 4.45    |        |                |
| Chloromethane          | 74-87-3       | 50.49   | 10.6    |   | 21.9    |        |                |
| Vinyl Chloride         | 75-01-4       | 62.5    | 2.7     |   | 6.9     |        |                |
| Bromomethane           | 74-83-9       | 94.94   | 0.1     | U | 0.39    |        |                |
| Chloroethane           | 75-00-3       | 64.52   | 2.1     |   | 5.54    |        |                |
| Tetrahydrofuran        | 109-99-9      |         | 0.1     | U | 0.29    |        |                |
| Trichlorofluorometha   |               | 137.4   | 0.32    | J | 1.8     |        |                |
| Dichlorotetrafluoroet  |               | 170.9   | 0.1     | U | 0.7     |        |                |
| 1,1,2-Trichlorotrifluo |               | 187.4   | 0.11    | J | 0.84    |        |                |
| Bromoethene            | 593-60-2      | 106.9   | 0.1     | U | 0.44    |        |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12   | 0.1     | U | 0.3     |        |                |
| Heptane                | 142-82-5      | 100.2   | 2.7     |   | 11.1    |        |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94   | 0.1     | U | 0.4     |        |                |
| Acetone                | 67-64-1       | 58.08   | 130     | E | 308     |        |                |
| Carbon Disulfide       | 75-15-0       | 76.14   | 9.3     |   | 29      |        |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15   | 1.6     |   | 5.77    |        |                |
| Methylene Chloride     | 75-09-2       | 84.94   | 1       |   | 3.47    |        |                |
| trans-1,2-Dichloroeth  | 156-60-5      | 96.94   | 0.1     | U | 0.4     |        |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96   | 0.1     | U | 0.4     |        |                |
| Cyclohexane            | 110-82-7      | 84.16   | 0.91    |   | 3.13    |        |                |
| 2-Butanone             | 78-93-3       | 72.11   | 4       |   | 11.8    |        |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8   | 0.06    |   | 0.38    |        |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94   | 0.1     | U | 0.4     |        |                |
| Chloroform             | 67-66-3       | 119.4   | 1.3     |   | 6.35    |        |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4   | 0.03    | U | 0.16    |        |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2   | 0.61    |   | 2.85    |        |                |
| Benzene                | 71-43-2       | 78.11   | 11.3    |   | 36.1    |        |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96   | 0.1     | U | 0.4     |        |                |
| Trichloroethene        | 79-01-6       | 131.4   | 0.03    | U | 0.16    |        |                |
| 1,2-Dichloropropane    | 78-87-5       | 113     | 0.1     | U | 0.46    |        |                |
| Bromodichlorometha     |               | 163.8   | 0.1     | U | 0.67    |        |                |
| 4-Methyl-2-Pentanor    |               | 100.2   | 0.1     | U | 0.41    |        |                |
| Toluene                | 108-88-3      | 92.14   | 9.9     |   | 37.3    |        |                |
| t-1,3-Dichloropropen   |               |         | 0.1     | U | 0.45    |        |                |
| cis-1,3-Dichloroprop   |               |         | 0.1     | U | 0.45    |        |                |
| 1,1,2-Trichloroethan   |               | 133.4   | 0.1     | U | 0.55    |        |                |
| Dibromochlorometha     |               | 208.3   | 0.1     | Ū | 0.85    |        |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9   | 0.1     | U | 0.77    |        |                |
| Tetrachloroethene      | 127-18-4      |         | 7       |   | 47.5    |        |                |
| Chlorobenzene          | 108-90-7      | 112.6   | 0.1     | U | 0.46    |        |                |
| Ethyl Benzene          | 100-41-4      | 106.2   | 4.6     | ļ | 20      |        |                |
| m/p-Xylene             | 179601-2      |         | 12.8    |   | 55.6    |        |                |
| o-Xylene               | 95-47-6       | 106.2   | 5.3     |   | 23      |        |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-9 TARGET ANALYTES - Laboratory ID Number: F2940-09 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 2    |   | 8.52 |  |
|----------------------|----------|--------|------|---|------|--|
| Bromoform            | 75-25-2  | 252.8  | 0.1  | U | 1.03 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.03 | U | 0.21 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 0.1  | U | 0.52 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 2.5  |   | 12.3 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 10.2 |   | 50.1 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 0.1  | U | 0.6  |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 0.1  | U | 0.6  |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 0.1  | U | 0.6  |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 0.1  | U | 0.74 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 0.1  | U | 1.07 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 0.1  | U | 0.22 |  |
| Naphthalene          | 91-20-3  | 128.17 | 1.8  |   | 9.44 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 3.6  |   | 17.7 |  |
| Hexane               | 110-54-3 | 86.17  | 5.6  |   | 19.7 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 0.1  | U | 0.31 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 0.1  | U | 0.36 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 0.1  | U | 0.41 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-9DL TARGET ANALYTES Laboratory ID Number: F2940-09DL AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q  | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|----|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 1                            | UD | 4.94                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 8.6                          | D  | 17.8                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 2.3                          | D  | 5.88                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 1                            | UD | 3.88                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 1.9                          | JD | 5.01                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 1                            | UD | 2.95                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 1                            | UD | 5.62                                    |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 1                            | UD | 6.99                                    |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 1                            | UD | 7.66                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 1                            | UD | 4.37                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 1                            | UD | 3.03                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 2.3                          | JD | 9.43                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 130                          | D  | 308                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 6.1                          | D  | 19                                      |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 1                            | UD | 3.61                                    |                     |                |
| Methylene Chloride     | 75-09-2       | 84.94                   | 1                            | UD | 3.47                                    |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 1                            | UD | 3.44                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 3.5                          | JD | 10.3                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.3                          | UD | 1.89                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 1                            | UD | 4.88                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.3                          | UD | 1.64                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 1                            | UD | 4.67                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 10.3                         | D  | 32.9                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.3                          | UD | 1.61                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 1                            | UD | 4.62                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 1                            | UD | 6.7                                     |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 1                            | UD | 4.1                                     |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 9.5                          | D  | 35.8                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4                   | 1                            | UD | 5.46                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 1                            | UD | 8.52                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 1                            | UD | 7.69                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 6.5                          | D  | 44.1                                    |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 1                            | UD | 4.61                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 3.5                          | JD | 15.2                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 10.6                         | D  | 46                                      |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 4.2                          | JD | 18.2                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Sampling Date: 06/25/14 Field ID Number: SV-9DL TARGET ANALYTES -Analysis Date: 07/02/14 Laboratory ID Number: F2940-09DL AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 1.5 | JD | 6.39 |  |
|----------------------|----------|--------|-----|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 1   | UD | 10.3 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3 | UD | 2.06 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1   | UD | 5.18 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 2.2 | JD | 10.8 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 8.9 | D  | 43.8 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1   | UD | 6.01 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1   | UD | 6.01 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1   | UD | 6.01 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1   | UD | 7.42 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1   | UD | 10.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 2.9 | JD | 15.2 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1   | UD | 2.21 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 2.8 | JD | 13.8 |  |
| Hexane               | 110-54-3 | 86.17  | 4.6 | JD | 16.2 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 1   | UD | 3.13 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1   | UD | 3.6  |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1   | UD | 4.09 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-14 TARGET ANALYTES Laboratory ID Number: F2940-10 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|---|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 0.51                         |   | 2.52                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 0.74                         |   | 1.53                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.15                         |   | 0.38                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 0.1                          | U | 0.39                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 0.1                          | U | 0.26                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 0.1                          | U | 0.29                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 0.89                         |   | 5                                       |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 0.1                          | U | 0.7                                     |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 0.09                         | J | 0.69                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 0.1                          | U | 0.44                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 0.1                          | U | 0.3                                     |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 3.1                          |   | 12.7                                    |                     |                |
|                        | 75-35-4       | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 51.6                         | E | 122                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 0.18                         | J | 0.56                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 0.31                         | J | 1.12                                    |                     |                |
| Methylene Chloride     |               | 84.94                   | 170                          | E | 590                                     |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 0.25                         | J | 0.99                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 55.5                         | Е | 191                                     |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 1.1                          |   | 3.24                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.1                          |   | 0.63                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 2.2                          |   | 8.72                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 3.1                          |   | 15.1                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.03                         | U | 0.16                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 1.7                          |   | 7.94                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 0.91                         |   | 2.91                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.52                         |   | 2.79                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 0.1                          | U | 0.46                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 0.1                          | U | 0.67                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 0.1                          | U | 0.41                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 6                            |   | 22.6                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4                   | 0.1                          | U | 0.55                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 0.1                          | U | 0.85                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 0.1                          | U | 0.77                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 18.4                         | E | 124                                     |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 0.1                          | U | 0.46                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 3.7                          |   | 16.1                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 13.7                         |   | 59.5                                    |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 7                            |   | 30.4                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-14 TARGET ANALYTES - Laboratory ID Number: F2940-10 AIR RESULTS

100-42-5 104.1 Styrene 0.44 1.87 75-25-2 Bromoform 252.8 0.1 U 1.03 1,1,2,2-Tetrachloroe 79-34-5 167.9 0.03 U 0.21 2-Chlorotoluene 95-49-8 U 126.6 0.1 0.52 1,3,5-Trimethylbenz 108-67-8 120.2 14.2 69.8 1,2,4-Trimethylbenz 95-63-6 37.8 120.2 185 1,3-Dichlorobenzene541-73-1 147 0.1 0.6 1,4-Dichlorobenzene106-46-7 147 1.8 10.8 1,2-Dichlorobenzene95-50-1 U 147 0.1 0.6 1,2,4-Trichlorobenze120-82-1 181.5 0.1 U 0.74 Hexachloro-1,3-Buta87-68-3 U 1.07 260.8 0.1 128.17 Naphthalene 91-20-3 1.7 8.91 1,3-Butadiene 106-99-0 54.09 0.1 0.22 4-Ethyltoluene 622-96-8 120.2 16.7 82.1 Hexane 110-54-3 86.17 20.8 73.3 Allyl Chloride 107-05-1 76.53 0.1 0.31 1,4-Dioxane 123-91-1 0.1 U 0.36 88.12

100.12

0.1

U

0.41

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Methyl Methacrylate 80-62-6

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-14DL TARGET ANALYTES Laboratory ID Number: F2940-10DL AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q  | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|----|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 0.8                          | JD | 3.96                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 1                            | UD | 2.07                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.3                          | UD | 0.77                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 1                            | UD | 3.88                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 1                            | UD | 2.64                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 1                            | UD | 2.95                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 0.8                          | JD | 4.5                                     |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 1                            | UD | 6.99                                    |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 1                            | UD | 7.66                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 1                            | UD | 4.37                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 1                            | UD | 3.03                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 2.5                          | JD | 10.2                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 54.1                         | D  | 128                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 1                            | UD | 3.11                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 1                            | UD | 3.61                                    |                     |                |
| Methylene Chloride     |               | 84.94                   | 220                          | ED | 764                                     |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 79                           | D  | 271                                     |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 1                            | JD | 2.95                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.3                          | UD | 1.89                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 1.9                          | JD | 7.53                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 2.9                          | JD | 14.2                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.3                          | UD | 1.64                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 1.5                          | JD | 7.01                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 0.8                          | JD | 2.56                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.5                          | D  | 2.69                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 1                            | UD | 4.62                                    |                     |                |
| Bromodichlorometha     |               | 163.8                   | 1                            | UD | 6.7                                     |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 1                            | UD | 4.1                                     |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 5.3                          | D  | 20                                      |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4                   | 1                            | UD | 5.46                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 1                            | UD | 8.52                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 1                            | UD | 7.69                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 21.1                         | D  | 143                                     |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 1                            | UD | 4.61                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 3.3                          | JD | 14.3                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 14.2                         | D  | 61.7                                    |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 7.1                          | D  | 30.8                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-14DL TARGET ANALYTES - Laboratory ID Number: F2940-10DL AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 1    | UD | 4.26 |  |
|----------------------|----------|--------|------|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 1    | UD | 10.3 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3  | UD | 2.06 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1    | UD | 5.18 |  |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 16.5 | D  | 81.1 |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 53.7 | D  | 264  |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1    | UD | 6.01 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1.6  | JD | 9.62 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1    | UD | 6.01 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1    | UD | 7.42 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1    | UD | 10.7 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1    | UD | 2.21 |  |
| Naphthalene          | 91-20-3  | 128.17 | 1.2  | JD | 6.29 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 18.6 | D  | 91.4 |  |
| Hexane               | 110-54-3 | 86.17  | 20.9 | D  | 73.7 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 1    | UD | 3.13 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1    | UD | 3.6  |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1    | UD | 4.09 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-14DL2 TARGET ANALYTES Laboratory ID Number: F2940-10DL2 AIR RESULTS

Generat Molecul Insert es **QAS CAS** Foot-Chemical Results Q Results Decisi ar Number **Notes** Weight in ppbv in on ug/m3 Dichlorodifluorometh 75-71-8 120.9 4 UD 19.8 Chloromethane 74-87-3 50.49 4 UD 8.26 Vinyl Chloride 75-01-4 62.5 1.2 UD 3.07 Bromomethane 74-83-9 94.94 4 UD 15.5 Chloroethane 75-00-3 64.52 4 UD 10.6 UD Tetrahydrofuran 109-99-9 72.11 4 11.8 4 UD Trichlorofluorometha 75-69-4 137.4 22.5 Dichlorotetrafluoroet 76-14-2 UD 4 28 170.9 1,1,2-Trichlorotrifluo 76-13-1 187.4 4 UD 30.7 UD Bromoethene 593-60-2 106.9 4 17.5 UD tert-Butyl alcohol 75-65-0 74.12 4 12.1 142-82-5 4 UD 16.4 Heptane 100.2 1,1-Dichloroethene 75-35-4 96.94 4 UD 15.9 Acetone 67-64-1 58.08 66.4 D 157 Carbon Disulfide 75-15-0 76.14 4 UD 12.5 88.15 Methyl tert-Butyl Eth 1634-04-4 UD 14.4 Methylene Chloride 75-09-2 84.94 270 D 937 trans-1,2-Dichloroetl 156-60-5 UD 96.94 4 15.9 1,1-Dichloroethane 75-34-3 98.96 4 UD 16.2 Cyclohexane 110-82-7 88.88 305 84.16 D 78-93-3 2-Butanone 72.11 4 UD 11.8 Carbon Tetrachlorid 56-23-5 1.2 UD 7.55 153.8 cis-1,2-Dichloroethe 156-59-2 96.94 4 UD 15.9 Chloroform 67-66-3 119.4 4 UD 19.5 1,1,1-Trichloroethan 71-55-6 1.2 133.4 UD 6.55 2,2,4-Trimethylpenta540-84-1 114.2 4 UD 18.7 71-43-2 4 UD 12.8 Benzene 78.11 1.2-Dichloroethane 107-06-2 98.96 4 UD 16.2 Trichloroethene 79-01-6 1.2 UD 6.45 131.4 1,2-Dichloropropane 78-87-5 UD 18.5 113 4 4 UD Bromodichlorometha 75-27-4 163.8 26.8 4-Methyl-2-Pentanor 108-10-1 4 UD 100.2 16.4 Toluene 108-88-3 92.14 6 JD 22.6 t-1,3-Dichloropropen 10061-02 111 4 UD 18.2 cis-1,3-Dichloroprop 10061-0 111 4 UD 18.2 1,1,2-Trichloroethan 79-00-5 133.4 4 UD 21.8 Dibromochlorometha124-48-1 208.3 4 UD 34.1 1,2-Dibromoethane 106-93-4 187.9 4 UD 30.7 Tetrachloroethene 127-18-4 165.8 23.2 D 157

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

108-90-7

100-41-4

179601-2

95-47-6

112.6

106.2

106.2

106.2

Chlorobenzene

Ethyl Benzene

m/p-Xylene

o-Xylene

18.4

17.4

71.2

34.8

UD

JD

JD

JD

4

4

16.4

8

Sampling Date: 06/25/14

Field ID Number: SV-14DL2 TARGET ANALYTES - Laboratory ID Number: F2940-10DL2 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 4    | UD | 17   |  |
|----------------------|----------|--------|------|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 4    | UD | 41.4 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 1.2  | UD | 8.24 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 4    | UD | 20.7 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 18   | JD | 88.5 |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 62.8 | D  | 308  |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 4    | UD | 24   |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 4    | UD | 24   |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 4    | UD | 24   |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 4    | UD | 29.7 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 4    | UD | 42.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 4    | UD | 21   |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 4    | UD | 8.85 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 20.8 | D  | 102  |  |
| Hexane               | 110-54-3 | 86.17  | 24.8 | D  | 87.4 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 4    | UD | 12.5 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 4    | UD | 14.4 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 4    | UD | 16.4 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14



## **ANALYTICAL RESULTS SUMMARY**

**VOLATILE ORGANICS** 

PROJECT NAME: NYCSCA UNIONPORT ROAD BRONX TO-15

DVIRKA & BARTILUCCI
330 Crossways Park Drive

**Woodbury, NY - 11797** 

Phone No: 516-364-9890

ORDER ID: F2940

**ATTENTION: MARIA WRIGHT** 









## Hit Summary Sheet SW-846

**SDG No.:** F2940

Client: Dvirka & Bartilucci

| Sample ID  | Client ID | Matrix | Parameter                   | Concentration | <b>C</b> 1 | MDL  | LOD  | RDL  | Units |
|------------|-----------|--------|-----------------------------|---------------|------------|------|------|------|-------|
| Client ID: | SV-17     |        |                             |               |            |      |      |      |       |
| F2940-01   | SV-17     | Air    | Dichlorodifluoromethane     | 0.59          | J          | 0.2  | 0.49 | 2.47 | ug/m3 |
| F2940-01   | SV-17     | Air    | Chloromethane               | 0.87          | J          | 0.21 | 0.21 | 1.03 | ug/m3 |
| F2940-01   | SV-17     | Air    | Vinyl Chloride              | 0.18          |            | 0.08 | 0.08 | 0.08 | ug/m3 |
| F2940-01   | SV-17     | Air    | Chloroethane                | 0.69          | J          | 0.26 | 0.26 | 1.32 | ug/m3 |
| F2940-01   | SV-17     | Air    | Tetrahydrofuran             | 3.83          |            | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2940-01   | SV-17     | Air    | Trichlorofluoromethane      | 1.40          | J          | 0.22 | 0.56 | 2.81 | ug/m3 |
| F2940-01   | SV-17     | Air    | Heptane                     | 20.10         |            | 0.41 | 0.41 | 2.05 | ug/m3 |
| F2940-01   | SV-17     | Air    | Acetone                     | 546.00        | EB         | 0.24 | 0.24 | 1.19 | ug/m3 |
| F2940-01   | SV-17     | Air    | Carbon Disulfide            | 26.50         |            | 0.16 | 0.31 | 1.56 | ug/m3 |
| F2940-01   | SV-17     | Air    | Methylene Chloride          | 14.60         | В          | 0.17 | 0.35 | 1.74 | ug/m3 |
| F2940-01   | SV-17     | Air    | Cyclohexane                 | 5.51          |            | 0.34 | 0.34 | 1.72 | ug/m3 |
| F2940-01   | SV-17     | Air    | 2-Butanone                  | 16.20         |            | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2940-01   | SV-17     | Air    | Carbon Tetrachloride        | 0.69          |            | 0.19 | 0.19 | 0.19 | ug/m3 |
| F2940-01   | SV-17     | Air    | Chloroform                  | 4.88          |            | 0.1  | 0.49 | 2.44 | ug/m3 |
| F2940-01   | SV-17     | Air    | 1,1,1-Trichloroethane       | 0.60          |            | 0.16 | 0.16 | 0.16 | ug/m3 |
| F2940-01   | SV-17     | Air    | Benzene                     | 3.51          |            | 0.13 | 0.32 | 1.6  | ug/m3 |
| F2940-01   | SV-17     | Air    | Trichloroethene             | 0.21          |            | 0.11 | 0.16 | 0.16 | ug/m3 |
| F2940-01   | SV-17     | Air    | Toluene                     | 26.80         |            | 0.19 | 0.38 | 1.88 | ug/m3 |
| F2940-01   | SV-17     | Air    | Tetrachloroethene           | 27.80         |            | 0.2  | 0.2  | 0.2  | ug/m3 |
| F2940-01   | SV-17     | Air    | Ethyl Benzene               | 15.20         |            | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-01   | SV-17     | Air    | m/p-Xylene                  | 61.70         |            | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2940-01   | SV-17     | Air    | o-Xylene                    | 40.80         |            | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-01   | SV-17     | Air    | Styrene                     | 1.23          | J          | 0.43 | 0.43 | 2.13 | ug/m3 |
| F2940-01   | SV-17     | Air    | 1,3,5-Trimethylbenzene      | 87.00         | E          | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-01   | SV-17     | Air    | 1,2,4-Trimethylbenzene      | 211.00        | Е          | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-01   | SV-17     | Air    | Naphthalene                 | 29.90         |            | 0.21 | 0.52 | 2.62 | ug/m3 |
| F2940-01   | SV-17     | Air    | 4-Ethyltoluene              | 88.00         | Е          | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-01   | SV-17     | Air    | Hexane                      | 36.60         |            | 0.14 | 0.35 | 1.76 | ug/m3 |
|            |           |        | Total Voc:                  | 1272.39       | )          |      |      |      | _     |
|            |           |        | <b>Total Concentration:</b> | 1272.39       |            |      |      |      |       |
| Client ID: | SV-17DL   |        |                             |               |            |      |      |      |       |
| F2940-01DL | SV-17DL   | Air    | Heptane                     | 17.60         | JD         | 4.1  | 4.1  | 20.5 | ug/m3 |
| F2940-01DL | SV-17DL   | Air    | Acetone                     | 665.00        | EDB        |      | 2.38 | 11.9 | ug/m3 |
| F2940-01DL | SV-17DL   | Air    | Methylene Chloride          | 17.70         | DB         | 1.74 | 3.47 | 17.4 | ug/m3 |
| F2940-01DL | SV-17DL   | Air    | 2-Butanone                  | 14.40         | JD         | 2.95 | 2.95 | 14.8 | ug/m3 |
| F2940-01DL | SV-17DL   | Air    | Toluene                     | 25.60         | D          | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2940-01DL | SV-17DL   | Air    | Tetrachloroethene           | 25.80         | D          | 2.03 | 2.03 | 2.03 | ug/m3 |





## Hit Summary Sheet SW-846

**SDG No.:** F2940

Client: Dvirka & Bartilucci

| Sample ID                 | Client ID                   | Matrix | Parameter                      | Concentration | <b>C</b> | MDL  | LOD  | RDL   | Units   |
|---------------------------|-----------------------------|--------|--------------------------------|---------------|----------|------|------|-------|---------|
| F2940-01DL                | SV-17DL                     | Air    | Ethyl Benzene                  | 13.00         | JD       | 4.34 | 4.34 | 21.7  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | m/p-Xylene                     | 56.50         | D        | 4.34 | 8.69 | 43.4  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | o-Xylene                       | 36.00         | D        | 4.34 | 4.34 | 21.7  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | 1,3,5-Trimethylbenzene         | 86.00         | D        | 4.92 | 4.92 | 24.6  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | 1,2,4-Trimethylbenzene         | 259.00        | D        | 4.92 | 4.92 | 24.6  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | Naphthalene                    | 19.40         | JD       | 2.1  | 5.24 | 26.2  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | 4-Ethyltoluene                 | 90.50         | D        | 4.92 | 4.92 | 24.6  | ug/m3   |
| F2940-01DL                | SV-17DL                     | Air    | Hexane                         | 33.10         | D        | 1.41 | 3.52 | 17.6  | ug/m3   |
|                           |                             |        | Total Voc:                     | 1359.6        |          |      |      |       |         |
|                           |                             |        | <b>Total Concentration:</b>    | 1359.6        |          |      |      |       |         |
| Client ID:<br>F2940-01DL2 | <b>SV-17DL2</b><br>SV-17DL2 | Air    | Acetone                        | 617.00        | DB       | 9.5  | 9.5  | 47.5  | ug/m3   |
| F2940-01DL2               | SV-17DL2<br>SV-17DL2        | Air    | Toluene                        | 18.10         | JD       | 7.54 | 15.1 | 75.4  | ug/m3   |
| F2940-01DL2               | SV-17DL2<br>SV-17DL2        | Air    | Tetrachloroethene              | 24.40         | D        | 8.14 | 8.14 | 8.14  | ug/m3   |
| F2940-01DL2               | SV-17DL2<br>SV-17DL2        | Air    | m/p-Xylene                     | 36.50         | JD       | 17.4 | 34.8 | 173   | ug/m3   |
| F2940-01DL2               | SV-17DL2                    | Air    | o-Xylene                       | 22.60         | JD       | 17.4 | 17.4 | 86.9  | ug/m3   |
| F2940-01DL2               | SV-17DL2<br>SV-17DL2        | Air    | 1,3,5-Trimethylbenzene         | 53.10         | JD       | 19.7 | 19.7 | 98.3  | ug/m3   |
| F2940-01DL2               | SV-17DL2                    | Air    | 1,2,4-Trimethylbenzene         | 186.00        | D        | 19.7 | 19.7 | 98.3  | ug/m3   |
| F2940-01DL2               | SV-17DL2                    | Air    | Naphthalene                    | 12.60         | JD       | 8.39 | 21.0 | 104   | ug/m3   |
| F2940-01DL2               | SV-17DL2                    | Air    | 4-Ethyltoluene                 | 59.00         | JD       | 19.7 | 19.7 | 98.3  | ug/m3   |
| F2940-01DL2               | SV-17DL2                    | Air    | Hexane                         | 26.80         | JD       | 5.64 | 14.1 | 70.5  | ug/m3   |
| 129.00122                 | 5, 1,52 <b>2</b>            |        | Total Voc:                     | 1056.1        | 02       | 0.0. |      | , 0.0 | ug/IIIs |
|                           |                             |        | Total Concentration:           | 1056.1        |          |      |      |       |         |
| Client ID:                | SV-7                        |        |                                |               |          |      |      |       |         |
| F2940-02                  | SV-7                        | Air    | Dichlorodifluoromethane        | 1.24          | J        | 0.2  | 0.49 | 2.47  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Chloromethane                  | 1.05          |          | 0.21 | 0.21 | 1.03  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Trichlorofluoromethane         | 1.57          | J        | 0.22 | 0.56 | 2.81  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | 1,1,2-Trichlorotrifluoroethane | 0.61          | J        | 0.31 | 0.77 | 3.83  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | tert-Butyl alcohol             | 4.55          |          | 0.3  | 0.3  | 1.52  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Heptane                        | 4.92          |          | 0.41 | 0.41 | 2.05  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Acetone                        | 209.00        | EB       | 0.24 | 0.24 | 1.19  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Carbon Disulfide               | 10.30         |          | 0.16 | 0.31 | 1.56  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Methyl tert-Butyl Ether        | 1.80          |          | 0.18 | 0.36 | 1.8   | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Methylene Chloride             | 9.38          | В        | 0.17 | 0.35 | 1.74  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Cyclohexane                    | 6.54          |          | 0.34 | 0.34 | 1.72  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | 2-Butanone                     | 6.78          |          | 0.29 | 0.29 | 1.47  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Carbon Tetrachloride           | 0.44          |          | 0.19 | 0.19 | 0.19  | ug/m3   |
| F2940-02                  | SV-7                        | Air    | Chloroform                     | 1.12          | J        | 0.1  | 0.49 | 2.44  | ug/m3   |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

## Hit Summary Sheet SW-846

**SDG No.:** F2940

Client: Dvirka & Bartilucci

| Sample ID                | Client ID        | Matrix | Parameter                   | Concentration         | <b>C</b> | MDL  | LOD  | RDL  | Units          |
|--------------------------|------------------|--------|-----------------------------|-----------------------|----------|------|------|------|----------------|
| F2940-02                 | SV-7             | Air    | 2,2,4-Trimethylpentane      | 13.10                 |          | 0.19 | 0.47 | 2.34 | ug/m3          |
| F2940-02                 | SV-7             | Air    | Benzene                     | 4.47                  |          | 0.13 | 0.32 | 1.6  | ug/m3          |
| F2940-02                 | SV-7             | Air    | Trichloroethene             | 0.21                  |          | 0.11 | 0.16 | 0.16 | ug/m3          |
| F2940-02                 | SV-7             | Air    | 4-Methyl-2-Pentanone        | 1.64                  | J        | 0.2  | 0.41 | 2.05 | ug/m3          |
| F2940-02                 | SV-7             | Air    | Toluene                     | 27.10                 |          | 0.19 | 0.38 | 1.88 | ug/m3          |
| F2940-02                 | SV-7             | Air    | Tetrachloroethene           | 21.00                 |          | 0.2  | 0.2  | 0.2  | ug/m3          |
| F2940-02                 | SV-7             | Air    | Ethyl Benzene               | 23.00                 |          | 0.43 | 0.43 | 2.17 | ug/m3          |
| F2940-02                 | SV-7             | Air    | m/p-Xylene                  | 53.90                 |          | 0.43 | 0.87 | 4.34 | ug/m3          |
| F2940-02                 | SV-7             | Air    | o-Xylene                    | 19.60                 |          | 0.43 | 0.43 | 2.17 | ug/m3          |
| F2940-02                 | SV-7             | Air    | Styrene                     | 1.15                  | J        | 0.43 | 0.43 | 2.13 | ug/m3          |
| F2940-02                 | SV-7             | Air    | 1,3,5-Trimethylbenzene      | 9.34                  |          | 0.49 | 0.49 | 2.46 | ug/m3          |
| F2940-02                 | SV-7             | Air    | 1,2,4-Trimethylbenzene      | 40.80                 |          | 0.49 | 0.49 | 2.46 | ug/m3          |
| F2940-02                 | SV-7             | Air    | Naphthalene                 | 32.00                 |          | 0.21 | 0.52 | 2.62 | ug/m3          |
| F2940-02                 | SV-7             | Air    | 4-Ethyltoluene              | 13.80                 |          | 0.49 | 0.49 | 2.46 | ug/m3          |
| F2940-02                 | SV-7             | Air    | Hexane                      | 9.16                  |          | 0.14 | 0.35 | 1.76 | ug/m3          |
|                          |                  |        | Total Voc:                  | 529.57                |          |      |      |      |                |
|                          |                  |        | <b>Total Concentration:</b> | 529.57                |          |      |      |      |                |
| Client ID:<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | tert-Butyl alcohol          | 4.85                  | IDO      | 3.03 | 3.03 | 15.2 | ug/m3          |
| F2940-02DL<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | Heptane                     | 4.51                  | JD       | 4.1  | 4.1  | 20.5 | ug/m3          |
| F2940-02DL<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | Acetone                     | 261.00                | DB       | 2.38 | 2.38 | 11.9 | ug/m3          |
| F2940-02DL<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | Carbon Disulfide            | 9.03                  | JD       | 1.56 | 3.11 | 15.6 | ug/m3          |
| F2940-02DL<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | Cyclohexane                 | 6.54                  | JD       | 3.44 | 3.44 | 17.2 | ug/m3          |
| F2940-02DL<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | 2-Butanone                  | 5.90                  | JD       | 2.95 | 2.95 | 14.8 | ug/m3          |
| F2940-02DL<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | 2,2,4-Trimethylpentane      | 12.10                 | JD       | 1.87 | 4.67 | 23.4 | ug/m3          |
| F2940-02DL<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | Benzene                     | 4.47                  | JD       | 1.28 | 3.19 | 16.0 | ug/m3          |
| F2940-02DL<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | Toluene                     | 28.30                 | D        | 1.88 | 3.77 | 18.8 | ug/m3          |
| F2940-02DL<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | Tetrachloroethene           | 21.00                 | D        | 2.03 | 2.03 | 2.03 | _              |
| F2940-02DL<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | Ethyl Benzene               | 22.20                 | D        | 4.34 | 4.34 | 21.7 | ug/m3<br>ug/m3 |
| F2940-02DL<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | m/p-Xylene                  | 56.00                 | D        | 4.34 | 8.69 | 43.4 | ug/m3          |
| F2940-02DL<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | o-Xylene                    | 20.80                 | JD       | 4.34 | 4.34 | 21.7 | ug/m3          |
| F2940-02DL<br>F2940-02DL | SV-7DL<br>SV-7DL | Air    | 1,3,5-Trimethylbenzene      | 10.80                 | JD       | 4.92 | 4.34 | 24.6 | _              |
|                          |                  |        |                             |                       |          |      |      |      | ug/m3          |
| F2940-02DL               | SV-7DL           | Air    | 1,2,4-Trimethylbenzene      | 46.70                 | D        | 4.92 | 4.92 | 24.6 | ug/m3          |
| F2940-02DL               | SV-7DL           | Air    | Naphthalene                 | 21.00                 | JD       | 2.1  | 5.24 | 26.2 | ug/m3          |
| F2940-02DL               | SV-7DL           | Air    | 4-Ethyltoluene              | 13.80                 | JD       | 4.92 | 4.92 | 24.6 | ug/m3          |
| F2940-02DL               | SV-7DL           | Air    | Hexane Total Voc:           | 8.81<br><b>557</b> 81 | JD       | 1.41 | 3.52 | 17.6 | ug/m3          |

Total Voc: 557.81
Total Concentration: 557.81





**SDG No.:** F2940

| Sample ID                | Client ID        | Matrix | Parameter                       | Concentration | C I | MDL          | LOD  | RDL  | Units          |
|--------------------------|------------------|--------|---------------------------------|---------------|-----|--------------|------|------|----------------|
| Client ID:               | SV-6             |        |                                 |               |     |              |      |      |                |
| F2940-04                 | SV-6             |        | Dichlorodifluoromethane         | 3.86          |     | 0.2          | 0.49 | 2.47 | ug/m3          |
| F2940-04                 | SV-6             |        | Chloromethane                   | 0.95          | J   | 0.21         | 0.21 | 1.03 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Trichlorofluoromethane          | 5.11          |     | 0.22         | 0.56 | 2.81 | ug/m3          |
| F2940-04                 | SV-6             | Air    | 1,1,2-Trichlorotrifluoroethane  | 0.84          | J   | 0.31         | 0.77 | 3.83 | ug/m3          |
| F2940-04                 | SV-6             |        | Heptane                         | 18.80         |     | 0.41         | 0.41 | 2.05 | ug/m3          |
| F2940-04                 | SV-6             |        | Acetone                         | 332.00        | EB  | 0.24         | 0.24 | 1.19 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Methylene Chloride              | 1.46          | JB  | 0.17         | 0.35 | 1.74 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Cyclohexane                     | 55.80         | E   | 0.34         | 0.34 | 1.72 | ug/m3          |
| F2940-04                 | SV-6             | Air    | 2-Butanone                      | 9.14          |     | 0.29         | 0.29 | 1.47 | ug/m3          |
| F2940-04                 | SV-6             | Air    | 2,2,4-Trimethylpentane          | 185.00        | E   | 0.19         | 0.47 | 2.34 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Benzene                         | 22.40         |     | 0.13         | 0.32 | 1.6  | ug/m3          |
| F2940-04                 | SV-6             | Air    | Toluene                         | 23.40         |     | 0.19         | 0.38 | 1.88 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Tetrachloroethene               | 183.00        | E   | 0.2          | 0.2  | 0.2  | ug/m3          |
| F2940-04                 | SV-6             | Air    | Ethyl Benzene                   | 105.00        | E   | 0.43         | 0.43 | 2.17 | ug/m3          |
| F2940-04                 | SV-6             | Air    | m/p-Xylene                      | 184.00        | E   | 0.43         | 0.87 | 4.34 | ug/m3          |
| F2940-04                 | SV-6             | Air    | o-Xylene                        | 74.30         | E   | 0.43         | 0.43 | 2.17 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Styrene                         | 1.32          | J   | 0.43         | 0.43 | 2.13 | ug/m3          |
| F2940-04                 | SV-6             | Air    | 1,3,5-Trimethylbenzene          | 19.20         |     | 0.49         | 0.49 | 2.46 | ug/m3          |
| F2940-04                 | SV-6             | Air    | 1,2,4-Trimethylbenzene          | 73.20         |     | 0.49         | 0.49 | 2.46 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Naphthalene                     | 9.96          |     | 0.21         | 0.52 | 2.62 | ug/m3          |
| F2940-04                 | SV-6             | Air    | 4-Ethyltoluene                  | 25.60         |     | 0.49         | 0.49 | 2.46 | ug/m3          |
| F2940-04                 | SV-6             | Air    | Hexane                          | 51.10         |     | 0.14         | 0.35 | 1.76 | ug/m3          |
|                          |                  |        | Total Voc:                      | 1385.44       |     |              |      |      |                |
|                          |                  |        | <b>Total Concentration:</b>     | 1385.44       |     |              |      |      |                |
| Client ID:<br>F2940-04DL | SV-6DL<br>SV-6DL | Air    | Acetone                         | 380.00        | EDB | 2 20         | 2.38 | 11.9 | 110/m2         |
| F2940-04DL<br>F2940-04DL | SV-6DL           |        | Cyclohexane                     | 49.20         | D   | 3.44         | 3.44 | 17.2 | ug/m3          |
| F2940-04DL<br>F2940-04DL | SV-6DL           |        | 2-Butanone                      | 7.37          | JD  |              | 2.95 | 14.8 | ug/m3          |
| F2940-04DL<br>F2940-04DL | SV-6DL<br>SV-6DL |        | 2,2,4-Trimethylpentane          | 285.00        | D   | 2.95<br>1.87 | 4.67 | 23.4 | ug/m3<br>ug/m3 |
| F2940-04DL<br>F2940-04DL | SV-6DL<br>SV-6DL |        | Benzene                         | 19.20         | D   | 1.07         | 3.19 | 16.0 | ug/m3          |
|                          |                  |        |                                 |               |     |              |      |      |                |
| F2940-04DL               | SV-6DL           |        | Toluene Tetrachlaraethana       | 27.90         | D   | 1.88         | 3.77 | 18.8 | ug/m3          |
| F2940-04DL               | SV-6DL           |        | Tetrachloroethene Ethyl Bonzone | 228.00        | D   | 2.03         | 2.03 | 2.03 | ug/m3          |
| F2940-04DL               | SV-6DL           |        | Ethyl Benzene                   | 108.00        | D   | 4.34         | 4.34 | 21.7 | ug/m3          |
| F2940-04DL               | SV-6DL           |        | m/p-Xylene                      | 204.00        | D   | 4.34         | 8.69 | 43.4 | ug/m3          |
| F2940-04DL               | SV-6DL           |        | o-Xylene                        | 70.40         | D   | 4.34         | 4.34 | 21.7 | ug/m3          |
| F2940-04DL               | SV-6DL           |        | 1,3,5-Trimethylbenzene          | 16.70         | JD  | 4.92         | 4.92 | 24.6 | ug/m3          |
| F2940-04DL               | SV-6DL           | Air    | 1,2,4-Trimethylbenzene          | 70.80         | D   | 4.92         | 4.92 | 24.6 | ug/m3          |





**SDG No.:** F2940

| Sample ID                 | Client ID             | Matrix | Parameter                      | Concentration | C  | MDL  | LOD  | RDL  | Units |
|---------------------------|-----------------------|--------|--------------------------------|---------------|----|------|------|------|-------|
| F2940-04DL                | SV-6DL                | Air    | Naphthalene                    | 18.90         | JD | 2.1  | 5.24 | 26.2 | ug/m3 |
| F2940-04DL                | SV-6DL                | Air    | 4-Ethyltoluene                 | 22.10         | JD | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-04DL                | SV-6DL                | Air    | Hexane                         | 43.00         | D  | 1.41 | 3.52 | 17.6 | ug/m3 |
|                           |                       |        | Total Voc:                     | 1550.57       |    |      |      |      |       |
|                           |                       |        | <b>Total Concentration:</b>    | 1550.57       |    |      |      |      |       |
| Client ID:<br>F2940-04DL2 | SV-6DL2<br>SV-6DL2    | Air    | Acetone                        | 380.00        | DB | 9.5  | 9.5  | 47.5 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | Cyclohexane                    | 46.80         | JD | 13.8 | 13.8 | 68.8 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | 2,2,4-Trimethylpentane         | 341.00        | D  | 7.47 | 18.7 | 93.4 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | Benzene                        | 20.40         | JD | 5.11 | 12.8 | 63.9 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | Toluene                        | 28.60         | JD | 7.54 | 15.1 | 75.4 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | Tetrachloroethene              | 238.00        | D  | 8.14 | 8.14 | 8.14 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | Ethyl Benzene                  | 93.80         | D  | 17.4 | 17.4 | 86.9 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | m/p-Xylene                     | 178.00        | D  | 17.4 | 34.8 | 173  | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | o-Xylene                       | 57.30         | JD | 17.4 | 17.4 | 86.9 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | 1,2,4-Trimethylbenzene         | 51.10         | JD | 19.7 | 19.7 | 98.3 | ug/m3 |
| F2940-04DL2               | SV-6DL2               | Air    | Hexane                         | 39.50         | JD | 5.64 | 14.1 | 70.5 | ug/m3 |
|                           |                       |        | Total Voc:                     | 1474.5        |    |      |      |      |       |
|                           |                       |        | <b>Total Concentration:</b>    | 1474.5        |    |      |      |      |       |
| Client ID:<br>F2940-05    | <b>SV-12</b><br>SV-12 | Air    | Dichlorodifluoromethane        | 3.46          |    | 0.2  | 0.49 | 2.47 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Chloromethane                  | 1.78          |    | 0.21 | 0.47 | 1.03 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Trichlorofluoromethane         | 1.57          | J  | 0.21 | 0.56 | 2.81 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | 1,1,2-Trichlorotrifluoroethane |               | J  | 0.31 | 0.77 | 3.83 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Heptane                        | 1.02          | J  | 0.41 | 0.41 | 2.05 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Acetone                        | 45.40         | EB | 0.24 | 0.24 | 1.19 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Methylene Chloride             | 1.01          | JB | 0.17 | 0.35 | 1.74 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Cyclohexane                    | 0.41          | J  | 0.34 | 0.34 | 1.72 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | 2-Butanone                     | 5.90          |    | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Carbon Tetrachloride           | 0.44          |    | 0.19 | 0.19 | 0.19 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | 2,2,4-Trimethylpentane         | 0.98          | J  | 0.19 | 0.47 | 2.34 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Benzene                        | 0.58          | J  | 0.13 | 0.32 | 1.6  | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Toluene                        | 22.20         |    | 0.19 | 0.38 | 1.88 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Tetrachloroethene              | 0.34          |    | 0.2  | 0.2  | 0.2  | ug/m3 |
| F2940-05                  | SV-12                 | Air    | Ethyl Benzene                  | 0.48          | J  | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | m/p-Xylene                     | 1.56          | J  | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | o-Xylene                       | 0.65          | J  | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-05                  | SV-12                 | Air    | 1,2,4-Trimethylbenzene         | 0.79          | J  | 0.49 | 0.49 | 2.46 | ug/m3 |
|                           |                       |        | <del>-</del>                   |               |    |      |      |      | -     |





**SDG No.:** F2940

| Sample ID                | Client ID          | Matrix | Parameter                   | Concentration | C  | MDL  | LOD  | RDL  | Units   |
|--------------------------|--------------------|--------|-----------------------------|---------------|----|------|------|------|---------|
|                          |                    |        | Total Voc:                  | 89.34         |    |      |      |      |         |
|                          |                    |        | <b>Total Concentration:</b> | 89.34         |    |      |      |      |         |
| Client ID:<br>F2940-05DL | SV-12DL<br>SV-12DL | Air    | Acetone                     | 45.80         | DB | 2.38 | 2.38 | 11.9 | ug/m3   |
| F2940-05DL               | SV-12DL            | Air    | Toluene                     | 19.60         | D  | 1.88 | 3.77 | 18.8 | ug/m3   |
| 12740-03DL               | 3 V-12DL           | All    | Total Voc:                  | 65.4          |    | 1.00 | 5.77 | 10.0 | ug/III3 |
|                          |                    |        | Total Concentration:        | 65.4          |    |      |      |      |         |
| Client ID:               | SV-15              |        | Total Concentiation.        | 55.1          |    |      |      |      |         |
| F2940-06                 | SV-15              | Air    | Dichlorodifluoromethane     | 3.46          | J  | 1.98 | 4.94 | 24.7 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Chloromethane               | 4.96          | J  | 2.07 | 2.07 | 10.3 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Trichlorofluoromethane      | 2.25          | J  | 2.25 | 5.62 | 28.1 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Heptane                     | 9.02          | J  | 4.1  | 4.1  | 20.5 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Acetone                     | 48.70         | В  | 2.38 | 2.38 | 11.9 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Carbon Disulfide            | 22.70         |    | 1.56 | 3.11 | 15.6 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Methylene Chloride          | 5.21          | JB | 1.74 | 3.47 | 17.4 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Cyclohexane                 | 4.47          | J  | 3.44 | 3.44 | 17.2 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Chloroform                  | 11.20         | J  | 0.98 | 4.88 | 24.4 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Benzene                     | 7.03          | J  | 1.28 | 3.19 | 16.0 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Trichloroethene             | 178.00        |    | 0.81 | 1.61 | 1.61 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Toluene                     | 21.90         |    | 1.88 | 3.77 | 18.8 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Tetrachloroethene           | 8,815.00      | E  | 2.03 | 2.03 | 2.03 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Ethyl Benzene               | 6.52          | J  | 4.34 | 4.34 | 21.7 | ug/m3   |
| F2940-06                 | SV-15              | Air    | m/p-Xylene                  | 21.30         | J  | 4.34 | 8.69 | 43.4 | ug/m3   |
| F2940-06                 | SV-15              | Air    | o-Xylene                    | 8.25          | J  | 4.34 | 4.34 | 21.7 | ug/m3   |
| F2940-06                 | SV-15              | Air    | 1,3,5-Trimethylbenzene      | 5.41          | J  | 4.92 | 4.92 | 24.6 | ug/m3   |
| F2940-06                 | SV-15              | Air    | 1,2,4-Trimethylbenzene      | 14.80         | J  | 4.92 | 4.92 | 24.6 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Naphthalene                 | 5.24          | J  | 2.1  | 5.24 | 26.2 | ug/m3   |
| F2940-06                 | SV-15              | Air    | Hexane                      | 12.00         | J  | 1.41 | 3.52 | 17.6 | ug/m3   |
|                          |                    |        | <b>Total Voc:</b>           | 9207.42       |    |      |      |      |         |
|                          |                    |        | <b>Total Concentration:</b> | 9207.42       |    |      |      |      |         |
| Client ID:<br>F2940-06DL | SV-15DL<br>SV-15DL | Air    | Trichloroethene             | 118.00        | D  | 16.1 | 32.2 | 32.2 | ug/m3   |
| F2940-06DL               | SV-15DL<br>SV-15DL | Air    | Tetrachloroethene           | 15,596.00     | D  | 40.7 | 40.7 | 40.7 | ug/m3   |
| F2940-00DL               | 3V-13DL            | All    | Total Voc:                  | 15,390.00     |    | 40.7 | 40.7 | 40.7 | ug/III3 |
|                          |                    |        | Total Concentration:        | 15714         |    |      |      |      |         |
| Client ID:               | SV-16              |        | iotai Concenti ation.       | 107 14        |    |      |      |      |         |
| F2940-07                 | SV-16              | Air    | Dichlorodifluoromethane     | 2.52          |    | 0.2  | 0.49 | 2.47 | ug/m3   |
| F2940-07                 | SV-16              | Air    | Chloromethane               | 1.84          |    | 0.21 | 0.21 | 1.03 | ug/m3   |
| F2940-07                 | SV-16              | Air    | Bromomethane                | 0.47          | J  | 0.12 | 0.39 | 1.94 | ug/m3   |





**SDG No.:** F2940

| Sample ID  | Client ID | Matrix | Parameter                                 | Concentration | C  | MDL  | LOD  | RDL  | Units |
|------------|-----------|--------|-------------------------------------------|---------------|----|------|------|------|-------|
| F2940-07   | SV-16     | Air    | Trichlorofluoromethane                    | 1.57          | J  | 0.22 | 0.56 | 2.81 | ug/m3 |
| F2940-07   | SV-16     | Air    | $1, 1, 2\hbox{-Trichlorotrifluoroethane}$ | 0.77          | J  | 0.31 | 0.77 | 3.83 | ug/m3 |
| F2940-07   | SV-16     | Air    | Heptane                                   | 2.05          |    | 0.41 | 0.41 | 2.05 | ug/m3 |
| F2940-07   | SV-16     | Air    | Acetone                                   | 114.00        | EB | 0.24 | 0.24 | 1.19 | ug/m3 |
| F2940-07   | SV-16     | Air    | Carbon Disulfide                          | 4.36          |    | 0.16 | 0.31 | 1.56 | ug/m3 |
| F2940-07   | SV-16     | Air    | Methylene Chloride                        | 6.95          | В  | 0.17 | 0.35 | 1.74 | ug/m3 |
| F2940-07   | SV-16     | Air    | Cyclohexane                               | 1.14          | J  | 0.34 | 0.34 | 1.72 | ug/m3 |
| F2940-07   | SV-16     | Air    | 2-Butanone                                | 3.83          |    | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2940-07   | SV-16     | Air    | Carbon Tetrachloride                      | 0.50          |    | 0.19 | 0.19 | 0.19 | ug/m3 |
| F2940-07   | SV-16     | Air    | Chloroform                                | 1.37          | J  | 0.1  | 0.49 | 2.44 | ug/m3 |
| F2940-07   | SV-16     | Air    | 2,2,4-Trimethylpentane                    | 4.25          |    | 0.19 | 0.47 | 2.34 | ug/m3 |
| F2940-07   | SV-16     | Air    | Benzene                                   | 1.98          |    | 0.13 | 0.32 | 1.6  | ug/m3 |
| F2940-07   | SV-16     | Air    | Toluene                                   | 12.10         |    | 0.19 | 0.38 | 1.88 | ug/m3 |
| F2940-07   | SV-16     | Air    | Tetrachloroethene                         | 3.32          |    | 0.2  | 0.2  | 0.2  | ug/m3 |
| F2940-07   | SV-16     | Air    | Ethyl Benzene                             | 3.26          |    | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-07   | SV-16     | Air    | m/p-Xylene                                | 11.70         |    | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2940-07   | SV-16     | Air    | o-Xylene                                  | 5.65          |    | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-07   | SV-16     | Air    | 1,3,5-Trimethylbenzene                    | 4.13          |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-07   | SV-16     | Air    | 1,2,4-Trimethylbenzene                    | 15.20         |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-07   | SV-16     | Air    | Naphthalene                               | 1.99          | J  | 0.21 | 0.52 | 2.62 | ug/m3 |
| F2940-07   | SV-16     | Air    | 4-Ethyltoluene                            | 4.87          |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-07   | SV-16     | Air    | Hexane                                    | 4.23          |    | 0.14 | 0.35 | 1.76 | ug/m3 |
|            |           |        | Total Voc:                                | 214.05        | ;  |      |      |      |       |
|            |           |        | <b>Total Concentration:</b>               | 214.05        |    |      |      |      |       |
| Client ID: | SV-16DL   |        |                                           | 110.00        | DD | 2.20 | 2.20 | 11.0 | / 2   |
| F2940-07DL | SV-16DL   | Air    | Acetone                                   | 110.00        | DB | 2.38 | 2.38 | 11.9 | ug/m3 |
| F2940-07DL | SV-16DL   |        | 2-Butanone                                | 4.42          | JD | 2.95 | 2.95 | 14.8 | ug/m3 |
| F2940-07DL | SV-16DL   | Air    | Toluene                                   | 10.20         | JD | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2940-07DL | SV-16DL   | Air    | m/p-Xylene                                | 9.12          | JD | 4.34 | 8.69 | 43.4 | ug/m3 |
| F2940-07DL | SV-16DL   | Air    | o-Xylene                                  | 4.34          | JD | 4.34 | 4.34 | 21.7 | ug/m3 |
| F2940-07DL | SV-16DL   | Air    | 1,2,4-Trimethylbenzene                    | 13.80         | JD | 4.92 | 4.92 | 24.6 | ug/m3 |
|            |           |        | Total Voc:                                | 151.88        |    |      |      |      |       |
| Client ID: | SV-18     |        | <b>Total Concentration:</b>               | 151.88        | i  |      |      |      |       |
| F2940-08   | SV-18     | Air    | Dichlorodifluoromethane                   | 4.65          |    | 0.2  | 0.49 | 2.47 | ug/m3 |
| F2940-08   | SV-18     | Air    | Chloromethane                             | 1.01          | J  | 0.21 | 0.21 | 1.03 | ug/m3 |
| F2940-08   | SV-18     | Air    | Tetrahydrofuran                           | 3.24          |    | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2940-08   | SV-18     | Air    | Trichlorofluoromethane                    | 2.87          |    | 0.22 | 0.56 | 2.81 | ug/m3 |





**SDG No.:** F2940

| Sample ID                | Client ID          | Matrix | Parameter                      | Concentration | C I | MDL  | LOD  | RDL  | Units |
|--------------------------|--------------------|--------|--------------------------------|---------------|-----|------|------|------|-------|
| F2940-08                 | SV-18              | Air    | 1,1,2-Trichlorotrifluoroethane | 1.23          | J   | 0.31 | 0.77 | 3.83 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Heptane                        | 22.50         |     | 0.41 | 0.41 | 2.05 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Acetone                        | 1,068.00      | EB  | 0.24 | 0.24 | 1.19 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Carbon Disulfide               | 52.90         | E   | 0.16 | 0.31 | 1.56 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Methylene Chloride             | 41.30         | В   | 0.17 | 0.35 | 1.74 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Cyclohexane                    | 7.92          |     | 0.34 | 0.34 | 1.72 | ug/m3 |
| F2940-08                 | SV-18              | Air    | 2-Butanone                     | 27.10         |     | 0.29 | 0.29 | 1.47 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Carbon Tetrachloride           | 0.57          |     | 0.19 | 0.19 | 0.19 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Chloroform                     | 488.00        | E   | 0.1  | 0.49 | 2.44 | ug/m3 |
| F2940-08                 | SV-18              | Air    | 2,2,4-Trimethylpentane         | 7.47          |     | 0.19 | 0.47 | 2.34 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Benzene                        | 9.58          |     | 0.13 | 0.32 | 1.6  | ug/m3 |
| F2940-08                 | SV-18              | Air    | Trichloroethene                | 0.86          |     | 0.11 | 0.16 | 0.16 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Bromodichloromethane           | 18.10         |     | 0.33 | 0.67 | 3.35 | ug/m3 |
| F2940-08                 | SV-18              | Air    | 4-Methyl-2-Pentanone           | 8.61          |     | 0.2  | 0.41 | 2.05 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Toluene                        | 98.00         | E   | 0.19 | 0.38 | 1.88 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Tetrachloroethene              | 46.80         |     | 0.2  | 0.2  | 0.2  | ug/m3 |
| F2940-08                 | SV-18              | Air    | Ethyl Benzene                  | 46.00         |     | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-08                 | SV-18              | Air    | m/p-Xylene                     | 155.00        | E   | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2940-08                 | SV-18              | Air    | o-Xylene                       | 63.80         |     | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Styrene                        | 2.55          |     | 0.43 | 0.43 | 2.13 | ug/m3 |
| F2940-08                 | SV-18              | Air    | 1,3,5-Trimethylbenzene         | 23.60         |     | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-08                 | SV-18              | Air    | 1,2,4-Trimethylbenzene         | 88.50         | E   | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Naphthalene                    | 16.80         |     | 0.21 | 0.52 | 2.62 | ug/m3 |
| F2940-08                 | SV-18              | Air    | 4-Ethyltoluene                 | 35.90         |     | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-08                 | SV-18              | Air    | Hexane                         | 27.80         |     | 0.14 | 0.35 | 1.76 | ug/m3 |
|                          |                    |        | Total Voc:                     | 2370.66       |     |      |      |      |       |
| CII. 4 ID                | CV 10DI            |        | <b>Total Concentration:</b>    | 2370.66       |     |      |      |      |       |
| Client ID:<br>F2940-08DL | SV-18DL<br>SV-18DL | Air    | Heptane                        | 14.80         | JD  | 4.1  | 4.1  | 20.5 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Acetone                        | 1,377.00      | EDB | 2.38 | 2.38 | 11.9 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Carbon Disulfide               | 29.30         | D   | 1.56 | 3.11 | 15.6 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Methylene Chloride             | 32.70         | DB  | 1.74 | 3.47 | 17.4 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | 2-Butanone                     | 20.60         | D   | 2.95 | 2.95 | 14.8 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Chloroform                     | 488.00        | D   | 0.98 | 4.88 | 24.4 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Benzene                        | 7.35          | JD  | 1.28 | 3.19 | 16.0 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Bromodichloromethane           | 12.10         | JD  | 3.35 | 6.7  | 33.5 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Toluene                        | 99.90         | D   | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2940-08DL               | SV-18DL            | Air    | Tetrachloroethene              | 35.90         | D   | 2.03 | 2.03 | 2.03 | ug/m3 |
|                          |                    |        |                                |               |     |      |      |      |       |





**SDG No.:** F2940

| Sample ID                  | Client ID                   | Matrix     | Parameter                        | Concentration   | <b>C</b> | MDL          | LOD          | RDL        | Units |
|----------------------------|-----------------------------|------------|----------------------------------|-----------------|----------|--------------|--------------|------------|-------|
| F2940-08DL                 | SV-18DL                     | Air        | Ethyl Benzene                    | 31.30           | D        | 4.34         | 4.34         | 21.7       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | m/p-Xylene                       | 117.00          | D        | 4.34         | 8.69         | 43.4       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | o-Xylene                         | 44.30           | D        | 4.34         | 4.34         | 21.7       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | 1,3,5-Trimethylbenzene           | 17.20           | JD       | 4.92         | 4.92         | 24.6       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | 1,2,4-Trimethylbenzene           | 65.40           | D        | 4.92         | 4.92         | 24.6       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | Naphthalene                      | 30.40           | D        | 2.1          | 5.24         | 26.2       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | 4-Ethyltoluene                   | 24.60           | D        | 4.92         | 4.92         | 24.6       | ug/m3 |
| F2940-08DL                 | SV-18DL                     | Air        | Hexane                           | 18.30           | D        | 1.41         | 3.52         | 17.6       | ug/m3 |
|                            |                             |            | Total Voc:                       | 2466.15         |          |              |              |            |       |
|                            |                             |            | <b>Total Concentration:</b>      | 2466.15         |          |              |              |            |       |
| Client ID:<br>F2940-08DL2  | <b>SV-18DL2</b><br>SV-18DL2 | Air        | Acetone                          | 1,330.00        | DB       | 23.8         | 23.8         | 118        | ug/m3 |
|                            | SV-18DL2<br>SV-18DL2        | Air        | Chloroform                       | 537.00          | DВ       | 23.8<br>9.77 | 48.8         |            | _     |
| F2940-08DL2<br>F2940-08DL2 |                             |            | Toluene                          | 71.60           | JD       | 18.8         | 48.8<br>37.7 | 244<br>188 | ug/m3 |
|                            | SV-18DL2<br>SV-18DL2        | Air<br>Air | Tetrachloroethene                | 33.90           | D        | 20.3         | 20.3         |            | ug/m3 |
| F2940-08DL2                |                             |            |                                  |                 |          |              |              | 20.3       | ug/m3 |
| F2940-08DL2                | SV-18DL2                    | Air        | m/p-Xylene                       | 73.80<br>2046.3 | JD       | 43.4         | 86.9         | 434        | ug/m3 |
|                            |                             |            | Total Voc : Total Concentration: | 2046.3          |          |              |              |            |       |
| Client ID:                 | SV-9                        |            | Total Concentration.             | 2040.3          |          |              |              |            |       |
| F2940-09                   | SV-9                        | Air        | Dichlorodifluoromethane          | 4.45            |          | 0.2          | 0.49         | 2.47       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Chloromethane                    | 21.90           |          | 0.21         | 0.21         | 1.03       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Vinyl Chloride                   | 6.90            |          | 0.08         | 0.08         | 0.08       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Chloroethane                     | 5.54            |          | 0.26         | 0.26         | 1.32       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Trichlorofluoromethane           | 1.80            | J        | 0.22         | 0.56         | 2.81       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | 1,1,2-Trichlorotrifluoroethane   | 0.84            | J        | 0.31         | 0.77         | 3.83       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Heptane                          | 11.10           |          | 0.41         | 0.41         | 2.05       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Acetone                          | 308.00          | EB       | 0.24         | 0.24         | 1.19       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Carbon Disulfide                 | 29.00           |          | 0.16         | 0.31         | 1.56       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Methyl tert-Butyl Ether          | 5.77            |          | 0.18         | 0.36         | 1.8        | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Methylene Chloride               | 3.47            | В        | 0.17         | 0.35         | 1.74       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Cyclohexane                      | 3.13            |          | 0.34         | 0.34         | 1.72       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | 2-Butanone                       | 11.80           |          | 0.29         | 0.29         | 1.47       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Carbon Tetrachloride             | 0.38            |          | 0.19         | 0.19         | 0.19       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Chloroform                       | 6.35            |          | 0.1          | 0.49         | 2.44       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | 2,2,4-Trimethylpentane           | 2.85            |          | 0.19         | 0.47         | 2.34       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Benzene                          | 36.10           |          | 0.13         | 0.32         | 1.6        | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Toluene                          | 37.30           |          | 0.19         | 0.38         | 1.88       | ug/m3 |
| F2940-09                   | SV-9                        | Air        | Tetrachloroethene                | 47.50           |          | 0.2          | 0.2          | 0.2        | ug/m3 |





**SDG No.:** F2940

| Sample ID              | Client ID | Matrix | Parameter                   | Concentration | C  | MDL  | LOD  | RDL  | Units |
|------------------------|-----------|--------|-----------------------------|---------------|----|------|------|------|-------|
| F2940-09               | SV-9      | Air    | Ethyl Benzene               | 20.00         |    | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-09               | SV-9      | Air    | m/p-Xylene                  | 55.60         |    | 0.43 | 0.87 | 4.34 | ug/m3 |
| F2940-09               | SV-9      | Air    | o-Xylene                    | 23.00         |    | 0.43 | 0.43 | 2.17 | ug/m3 |
| F2940-09               | SV-9      | Air    | Styrene                     | 8.52          |    | 0.43 | 0.43 | 2.13 | ug/m3 |
| F2940-09               | SV-9      | Air    | 1,3,5-Trimethylbenzene      | 12.30         |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-09               | SV-9      | Air    | 1,2,4-Trimethylbenzene      | 50.10         |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-09               | SV-9      | Air    | Naphthalene                 | 9.44          |    | 0.21 | 0.52 | 2.62 | ug/m3 |
| F2940-09               | SV-9      | Air    | 4-Ethyltoluene              | 17.70         |    | 0.49 | 0.49 | 2.46 | ug/m3 |
| F2940-09               | SV-9      | Air    | Hexane                      | 19.70         |    | 0.14 | 0.35 | 1.76 | ug/m3 |
|                        |           |        | Total Voc:                  | 760.54        |    |      |      |      |       |
|                        |           |        | <b>Total Concentration:</b> | 760.54        |    |      |      |      |       |
| Client ID:             | SV-9DL    |        |                             |               | _  |      |      |      | , _   |
| F2940-09DL             | SV-9DL    | Air    | Chloromethane               | 17.80         | D  | 2.07 | 2.07 | 10.3 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Vinyl Chloride              | 5.88          | D  | 0.77 | 0.77 | 0.77 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Chloroethane                | 5.01          | JD | 2.64 | 2.64 | 13.2 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Heptane                     | 9.43          | JD | 4.1  | 4.1  | 20.5 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Acetone                     | 308.00        | DB | 2.38 | 2.38 | 11.9 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Carbon Disulfide            | 19.00         | D  | 1.56 | 3.11 | 15.6 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | 2-Butanone                  | 10.30         | JD | 2.95 | 2.95 | 14.8 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Benzene                     | 32.90         | D  | 1.28 | 3.19 | 16.0 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Toluene                     | 35.80         | D  | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Tetrachloroethene           | 44.10         | D  | 2.03 | 2.03 | 2.03 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Ethyl Benzene               | 15.20         | JD | 4.34 | 4.34 | 21.7 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | m/p-Xylene                  | 46.00         | D  | 4.34 | 8.69 | 43.4 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | o-Xylene                    | 18.20         | JD | 4.34 | 4.34 | 21.7 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Styrene                     | 6.39          | JD | 4.26 | 4.26 | 21.3 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | 1,3,5-Trimethylbenzene      | 10.80         | JD | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | 1,2,4-Trimethylbenzene      | 43.80         | D  | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Naphthalene                 | 15.20         | JD | 2.1  | 5.24 | 26.2 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | 4-Ethyltoluene              | 13.80         | JD | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-09DL             | SV-9DL    | Air    | Hexane                      | 16.20         | JD | 1.41 | 3.52 | 17.6 | ug/m3 |
|                        |           |        | Total Voc:                  | 673.81        |    |      |      |      |       |
|                        |           |        | <b>Total Concentration:</b> | 673.81        |    |      |      |      |       |
| Client ID:<br>F2940-10 | SV-14     | A :    | Dichlorodifluoromethane     | 2.52          |    | 0.2  | 0.40 | 2.47 | ug/m2 |
|                        | SV-14     | Air    | Chloromethane               | 2.52          |    | 0.2  | 0.49 | 2.47 | ug/m3 |
| F2940-10               | SV-14     | Air    |                             | 1.53          |    | 0.21 | 0.21 | 1.03 | ug/m3 |
| F2940-10               | SV-14     | Air    | Vinyl Chloride              | 0.38          |    | 0.08 | 0.08 | 0.08 | ug/m3 |
| F2940-10               | SV-14     | Air    | Trichlorofluoromethane      | 5.00          |    | 0.22 | 0.56 | 2.81 | ug/m3 |





**SDG No.:** F2940

| F2940-10         SV-14         Air         Heptane         12.70         0.41         0.41         2.05         ug           F2940-10         SV-14         Air         Acetone         122.00         EB         0.24         0.24         1.19         ug           F2940-10         SV-14         Air         Carbon Disulfide         0.56         J         0.16         0.31         1.56         ug           F2940-10         SV-14         Air         Methyl tert-Butyl Ether         1.12         J         0.18         0.36         1.8         ug           F2940-10         SV-14         Air         Methylene Chloride         590.00         EB         0.17         0.35         1.74         ug           F2940-10         SV-14         Air         trans-1,2-Dichloroethene         0.99         J         0.2         0.4         1.98         ug | ng/m3<br>ng/m3<br>ng/m3<br>ng/m3<br>ng/m3 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| F2940-10         SV-14         Air         Acetone         122.00         EB         0.24         0.24         1.19         ug           F2940-10         SV-14         Air         Carbon Disulfide         0.56         J         0.16         0.31         1.56         ug           F2940-10         SV-14         Air         Methyl tert-Butyl Ether         1.12         J         0.18         0.36         1.8         ug           F2940-10         SV-14         Air         Methylene Chloride         590.00         EB         0.17         0.35         1.74         ug           F2940-10         SV-14         Air         trans-1,2-Dichloroethene         0.99         J         0.2         0.4         1.98         ug                                                                                                                              | ug/m3<br>ug/m3<br>ug/m3                   |
| F2940-10         SV-14         Air         Carbon Disulfide         0.56         J         0.16         0.31         1.56         ug           F2940-10         SV-14         Air         Methyl tert-Butyl Ether         1.12         J         0.18         0.36         1.8         ug           F2940-10         SV-14         Air         Methylene Chloride         590.00         EB         0.17         0.35         1.74         ug           F2940-10         SV-14         Air         trans-1,2-Dichloroethene         0.99         J         0.2         0.4         1.98         ug                                                                                                                                                                                                                                                                       | ug/m3<br>ug/m3                            |
| F2940-10         SV-14         Air         Methyl tert-Butyl Ether         1.12         J         0.18         0.36         1.8         ug           F2940-10         SV-14         Air         Methylene Chloride         590.00         EB         0.17         0.35         1.74         ug           F2940-10         SV-14         Air         trans-1,2-Dichloroethene         0.99         J         0.2         0.4         1.98         ug                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg/m3                                     |
| F2940-10 SV-14 Air Methylene Chloride 590.00 EB 0.17 0.35 1.74 ug F2940-10 SV-14 Air trans-1,2-Dichloroethene 0.99 J 0.2 0.4 1.98 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                         |
| F2940-10 SV-14 Air trans-1,2-Dichloroethene 0.99 J 0.2 0.4 1.98 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/m2                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1g/1113                                   |
| F2940-10 SV-14 Air Cyclohexane 191.00 E 0.34 0.34 1.72 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ıg/m3                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ıg/m3                                     |
| F2940-10 SV-14 Air 2-Butanone 3.24 0.29 0.29 1.47 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ıg/m3                                     |
| F2940-10 SV-14 Air Carbon Tetrachloride 0.63 0.19 0.19 0.19 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ıg/m3                                     |
| F2940-10 SV-14 Air cis-1,2-Dichloroethene 8.72 0.2 0.4 1.98 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ıg/m3                                     |
| F2940-10 SV-14 Air Chloroform 15.10 0.1 0.49 2.44 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ıg/m3                                     |
| F2940-10 SV-14 Air 2,2,4-Trimethylpentane 7.94 0.19 0.47 2.34 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ıg/m3                                     |
| F2940-10 SV-14 Air Benzene 2.91 0.13 0.32 1.6 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ıg/m3                                     |
| F2940-10 SV-14 Air Trichloroethene 2.79 0.11 0.16 0.16 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ıg/m3                                     |
| F2940-10 SV-14 Air Toluene 22.60 0.19 0.38 1.88 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ıg/m3                                     |
| F2940-10 SV-14 Air Tetrachloroethene 124.00 E 0.2 0.2 0.2 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ıg/m3                                     |
| F2940-10 SV-14 Air Ethyl Benzene 16.10 0.43 0.43 2.17 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ıg/m3                                     |
| F2940-10 SV-14 Air m/p-Xylene 59.50 0.43 0.87 4.34 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıg/m3                                     |
| F2940-10 SV-14 Air o-Xylene 30.40 0.43 0.43 2.17 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg/m3                                     |
| F2940-10 SV-14 Air Styrene 1.87 J 0.43 0.43 2.13 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg/m3                                     |
| F2940-10 SV-14 Air 1,3,5-Trimethylbenzene 69.80 0.49 0.49 2.46 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ıg/m3                                     |
| F2940-10 SV-14 Air 1,2,4-Trimethylbenzene 185.00 E 0.49 0.49 2.46 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ıg/m3                                     |
| F2940-10 SV-14 Air 1,4-Dichlorobenzene 10.80 0.6 0.6 3.01 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ıg/m3                                     |
| F2940-10 SV-14 Air Naphthalene 8.91 0.21 0.52 2.62 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıg/m3                                     |
| F2940-10 SV-14 Air 4-Ethyltoluene 82.10 E 0.49 0.49 2.46 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ıg/m3                                     |
| F2940-10 SV-14 Air Hexane 73.30 E 0.14 0.35 1.76 ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg/m3                                     |
| <b>Total Voc:</b> 1654.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| Total Concentration: 1654.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| Client ID:         SV-14DL           F2940-10DL         SV-14DL         Air Dichlorodifluoromethane         3.96         JD 1.98         4.94         24.7         ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıg/m3                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1g/m3                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1g/m3                                     |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1g/m3                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1g/m3                                     |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1g/1113<br>1g/m3                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1g/m3                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1g/m3                                     |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

# Hit Summary Sheet SW-846

**SDG No.:** F2940

Client: Dvirka & Bartilucci

| Sample ID                 | Client ID                   | Matrix | Parameter                   | Concentration | C  | MDL  | LOD  | RDL  | Units |
|---------------------------|-----------------------------|--------|-----------------------------|---------------|----|------|------|------|-------|
| F2940-10DL                | SV-14DL                     | Air    | Chloroform                  | 14.20         | JD | 0.98 | 4.88 | 24.4 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | 2,2,4-Trimethylpentane      | 7.01          | JD | 1.87 | 4.67 | 23.4 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Benzene                     | 2.56          | JD | 1.28 | 3.19 | 16.0 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Trichloroethene             | 2.69          | D  | 0.81 | 1.61 | 1.61 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Toluene                     | 20.00         | D  | 1.88 | 3.77 | 18.8 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Tetrachloroethene           | 143.00        | D  | 2.03 | 2.03 | 2.03 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Ethyl Benzene               | 14.30         | JD | 4.34 | 4.34 | 21.7 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | m/p-Xylene                  | 61.70         | D  | 4.34 | 8.69 | 43.4 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | o-Xylene                    | 30.80         | D  | 4.34 | 4.34 | 21.7 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | 1,3,5-Trimethylbenzene      | 81.10         | D  | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | 1,2,4-Trimethylbenzene      | 264.00        | D  | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | 1,4-Dichlorobenzene         | 9.62          | JD | 6.01 | 6.01 | 30.1 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Naphthalene                 | 6.29          | JD | 2.1  | 5.24 | 26.2 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | 4-Ethyltoluene              | 91.40         | D  | 4.92 | 4.92 | 24.6 | ug/m3 |
| F2940-10DL                | SV-14DL                     | Air    | Hexane                      | 73.70         | D  | 1.41 | 3.52 | 17.6 | ug/m3 |
|                           |                             |        | Total Voc:                  | 2014.51       |    |      |      |      |       |
|                           |                             |        | <b>Total Concentration:</b> | 2014.51       |    |      |      |      |       |
| Client ID:<br>F2940-10DL2 | <b>SV-14DL2</b><br>SV-14DL2 | Air    | Acetone                     | 157.00        | DB | 9.5  | 9.5  | 47.5 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | Methylene Chloride          | 937.00        | DB | 6.95 | 13.9 | 69.5 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | Cyclohexane                 | 305.00        | D  | 13.8 | 13.8 | 68.8 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | Toluene                     | 22.60         | JD | 7.54 | 15.1 | 75.4 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | Tetrachloroethene           | 157.00        | D  | 8.14 | 8.14 | 8.14 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | Ethyl Benzene               | 17.40         | JD | 17.4 | 17.4 | 86.9 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | m/p-Xylene                  | 71.20         | JD | 17.4 | 34.8 | 173  | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | o-Xylene                    | 34.80         | JD | 17.4 | 17.4 | 86.9 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | 1,3,5-Trimethylbenzene      | 88.50         | JD | 19.7 | 19.7 | 98.3 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | 1,2,4-Trimethylbenzene      | 308.00        | D  | 19.7 | 19.7 | 98.3 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | 4-Ethyltoluene              | 102.00        | D  | 19.7 | 19.7 | 98.3 | ug/m3 |
| F2940-10DL2               | SV-14DL2                    | Air    | Hexane                      | 87.40         | D  | 5.64 | 14.1 | 70.5 | ug/m3 |
|                           |                             |        | m . 117                     | 0007.0        |    |      |      |      | ū     |

**Total Voc:** 

**Total Concentration:** 

2287.9

2287.9

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-17 TARGET ANALYTES Laboratory ID Number: F2940-01 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|---|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 0.12                         | J | 0.59                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 0.42                         | J | 0.87                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.07                         |   | 0.18                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 0.1                          | U | 0.39                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 0.26                         | J | 0.69                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 1.3                          |   | 3.83                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 0.25                         | J | 1.4                                     |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 0.1                          | U | 0.7                                     |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 0.1                          | U | 0.77                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 0.1                          | U | 0.44                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 0.1                          | U | 0.3                                     |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 4.9                          |   | 20.1                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 230                          | Е | 546                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 8.5                          |   | 26.5                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 0.1                          | U | 0.36                                    |                     |                |
| Methylene Chloride     | 75-09-2       | 84.94                   | 4.2                          |   | 14.6                                    |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 1.6                          |   | 5.51                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 5.5                          |   | 16.2                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.11                         |   | 0.69                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 1                            |   | 4.88                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.11                         |   | 0.6                                     |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 0.1                          | U | 0.47                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 1.1                          |   | 3.51                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.04                         |   | 0.21                                    |                     |                |
| 1,2-Dichloropropane    |               | 113                     | 0.1                          | U | 0.46                                    |                     |                |
| Bromodichlorometha     |               | 163.8                   | 0.1                          | U | 0.67                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 0.1                          | U | 0.41                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 7.1                          |   | 26.8                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| 1,1,2-Trichloroethan   |               | 133.4                   | 0.1                          | U | 0.55                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 0.1                          | U | 0.85                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 0.1                          | U | 0.77                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 4.1                          |   | 27.8                                    |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 0.1                          | U | 0.46                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 3.5                          |   | 15.2                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 14.2                         |   | 61.7                                    |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 9.4                          |   | 40.8                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-17 TARGET ANALYTES - Laboratory ID Number: F2940-01 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 0.29 | J | 1.23 |  |
|----------------------|----------|--------|------|---|------|--|
| Bromoform            | 75-25-2  | 252.8  | 0.1  | U | 1.03 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.03 | U | 0.21 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 0.1  | U | 0.52 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 17.7 | E | 87   |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 43   | E | 211  |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 0.1  | U | 0.6  |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 0.1  | U | 0.6  |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 0.1  | U | 0.6  |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 0.1  | U | 0.74 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 0.1  | U | 1.07 |  |
| Naphthalene          | 91-20-3  | 128.17 | 5.7  |   | 29.9 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 0.1  | U | 0.22 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 17.9 | E | 88   |  |
| Hexane               | 110-54-3 | 86.17  | 10.4 |   | 36.6 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 0.1  | U | 0.31 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 0.1  | U | 0.36 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 0.1  | U | 0.41 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-17DL TARGET ANALYTES Laboratory ID Number: F2940-01DL AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q  | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|----|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 1                            | UD | 4.94                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 1                            | UD | 2.07                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.3                          | UD | 0.77                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 1                            | UD | 3.88                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 1                            | UD | 2.64                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 1                            | UD | 2.95                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 1                            | UD | 5.62                                    |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 1                            | UD | 6.99                                    |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 1                            | UD | 7.66                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 1                            | UD | 4.37                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 1                            | UD | 3.03                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 4.3                          | JD | 17.6                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 280                          | ED | 665                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 1                            | UD | 3.11                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 1                            | UD | 3.61                                    |                     |                |
| Methylene Chloride     |               | 84.94                   | 5.1                          | D  | 17.7                                    |                     |                |
| trans-1,2-Dichloroetl  | 156-60-5      | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 1                            | UD | 3.44                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 4.9                          | JD | 14.4                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.3                          | UD | 1.89                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 1                            | UD | 4.88                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.3                          | UD | 1.64                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 1                            | UD | 4.67                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 1                            | UD | 3.19                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.3                          | UD | 1.61                                    |                     |                |
| 1,2-Dichloropropane    |               | 113                     | 1                            | UD | 4.62                                    |                     |                |
| Bromodichlorometha     |               | 163.8                   | 1                            | UD | 6.7                                     |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 1                            | UD | 4.1                                     |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 6.8                          | D  | 25.6                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4                   | 1                            | UD | 5.46                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 1                            | UD | 8.52                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 1                            | UD | 7.69                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 3.8                          | D  | 25.8                                    |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 1                            | UD | 4.61                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 3                            | JD | 13                                      |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 13                           | D  | 56.5                                    |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 8.3                          | D  | 36                                      |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-17DL TARGET ANALYTES - Laboratory ID Number: F2940-01DL AIR RESULTS

| Iz.                  | I        |        |      | 1  |      | 1 |
|----------------------|----------|--------|------|----|------|---|
| Styrene              | 100-42-5 | 104.1  | 1    | UD | 4.26 |   |
| Bromoform            | 75-25-2  | 252.8  | 1    | UD | 10.3 |   |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3  | UD | 2.06 |   |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1    | UD | 5.18 |   |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 17.5 | D  | 86   |   |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 52.7 | D  | 259  |   |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1    | UD | 6.01 |   |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1    | UD | 6.01 |   |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1    | UD | 6.01 |   |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1    | UD | 7.42 |   |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1    | UD | 10.7 |   |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1    | UD | 2.21 |   |
| Naphthalene          | 91-20-3  | 128.17 | 3.7  | JD | 19.4 |   |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 18.4 | D  | 90.5 |   |
| Hexane               | 110-54-3 | 86.17  | 9.4  | D  | 33.1 |   |
| Allyl Chloride       | 107-05-1 | 76.53  | 1    | UD | 3.13 |   |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1    | UD | 3.6  |   |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1    | UD | 4.09 |   |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15 Field ID Number: SV-17DL2

Sampling Date: 06/25/14 TARGET ANALYTES -Analysis Date: 07/03/14 Laboratory ID Number: F2940-01DL2 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q  | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|----|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 4                            | UD | 19.8                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 4                            | UD | 8.26                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 1.2                          | UD | 3.07                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 4                            | UD | 15.5                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 4                            | UD | 10.6                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 4                            | UD | 11.8                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 4                            | UD | 22.5                                    |                     |                |
| Dichlorotetrafluoroet  | 76-14-2       | 170.9                   | 4                            | UD | 28                                      |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 4                            | UD | 30.7                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 4                            | UD | 17.5                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 4                            | UD | 12.1                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 4                            | UD | 16.4                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 4                            | UD | 15.9                                    |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 260                          | D  | 617                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 4                            | UD | 12.5                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 4                            | UD | 14.4                                    |                     |                |
| Methylene Chloride     | 75-09-2       | 84.94                   | 4                            | UD | 13.9                                    |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 4                            | UD | 15.9                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 4                            | UD | 16.2                                    |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 4                            | UD | 13.8                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 4                            | UD | 11.8                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 1.2                          | UD | 7.55                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 4                            | UD | 15.9                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 4                            | UD | 19.5                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 1.2                          | UD | 6.55                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 4                            | UD | 18.7                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 4                            | UD | 12.8                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 4                            | UD | 16.2                                    |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 1.2                          | UD | 6.45                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 4                            | UD | 18.5                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 4                            | UD | 26.8                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 4                            | UD | 16.4                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 4.8                          | JD | 18.1                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 4                            | UD | 18.2                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 4                            | UD | 18.2                                    |                     |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4                   | 4                            | UD | 21.8                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 4                            | UD | 34.1                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 4                            | UD | 30.7                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 3.6                          | D  | 24.4                                    |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 4                            | UD | 18.4                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 4                            | UD | 17.4                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 8.4                          | JD | 36.5                                    |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 5.2                          | JD | 22.6                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Field ID Number: SV-17DL2 TARGET ANALYTES - Laboratory ID Number: F2940-01DL2 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 4    | UD | 17   |  |
|----------------------|----------|--------|------|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 4    | UD | 41.4 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 1.2  | UD | 8.24 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 4    | UD | 20.7 |  |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 10.8 | JD | 53.1 |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 38   | D  | 186  |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 4    | UD | 24   |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 4    | UD | 24   |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 4    | UD | 24   |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 4    | UD | 29.7 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 4    | UD | 42.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 2.4  | JD | 12.6 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 4    | UD | 8.85 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 12   | JD | 59   |  |
| Hexane               | 110-54-3 | 86.17  | 7.6  | JD | 26.8 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 4    | UD | 12.5 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 4    | UD | 14.4 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 4    | UD | 16.4 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-7 TARGET ANALYTES Laboratory ID Number: F2940-02 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|---|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 0.25                         | J | 1.24                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 0.51                         |   | 1.05                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.03                         | U | 0.08                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 0.1                          | U | 0.39                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 0.1                          | U | 0.26                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 0.1                          | U | 0.29                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 0.28                         | J | 1.57                                    |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 0.1                          | U | 0.7                                     |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 0.08                         | J | 0.61                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 0.1                          | U | 0.44                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 1.5                          |   | 4.55                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 1.2                          |   | 4.92                                    |                     |                |
|                        | 75-35-4       | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 88                           | E | 209                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 3.3                          |   | 10.3                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 0.5                          |   | 1.8                                     |                     |                |
| Methylene Chloride     |               | 84.94                   | 2.7                          |   | 9.38                                    |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 1.9                          |   | 6.54                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 2.3                          |   | 6.78                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.07                         |   | 0.44                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 0.23                         | J | 1.12                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.03                         | U | 0.16                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 2.8                          |   | 13.1                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 1.4                          |   | 4.47                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.04                         |   | 0.21                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 0.1                          | U | 0.46                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 0.1                          | U | 0.67                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 0.4                          | J | 1.64                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 7.2                          |   | 27.1                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| 1,1,2-Trichloroethan   |               | 133.4                   | 0.1                          | U | 0.55                                    |                     |                |
| Dibromochlorometha     |               | 208.3                   | 0.1                          | U | 0.85                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 0.1                          | U | 0.77                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 3.1                          |   | 21                                      |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 0.1                          | U | 0.46                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 5.3                          |   | 23                                      |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 12.4                         |   | 53.9                                    |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 4.5                          |   | 19.6                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-7 TARGET ANALYTES - Laboratory ID Number: F2940-02 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 0.27 | J | 1.15 |  |
|----------------------|----------|--------|------|---|------|--|
| Bromoform            | 75-25-2  | 252.8  | 0.1  | U | 1.03 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.03 | U | 0.21 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 0.1  | U | 0.52 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 1.9  |   | 9.34 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 8.3  |   | 40.8 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 0.1  | U | 0.6  |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 0.1  | U | 0.6  |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 0.1  | U | 0.6  |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 0.1  | U | 0.74 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 0.1  | U | 1.07 |  |
| Naphthalene          | 91-20-3  | 128.17 | 6.1  |   | 32   |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 0.1  | U | 0.22 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 2.8  |   | 13.8 |  |
| Hexane               | 110-54-3 | 86.17  | 2.6  |   | 9.16 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 0.1  | U | 0.31 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 0.1  | U | 0.36 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 0.1  | U | 0.41 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-7DL TARGET ANALYTES Laboratory ID Number: F2940-02DL AIR RESULTS

|                        |               |         |         |    | Generat |        |                |
|------------------------|---------------|---------|---------|----|---------|--------|----------------|
|                        |               | Molecul | Insert  |    | es      | QAS    |                |
| Chemical               | CAS<br>Number | ar      | Results | Q  | Results | Decisi | Foot-<br>Notes |
|                        | Number        | Weight  | in ppbv |    | in      | on     | NOICS          |
|                        |               |         |         |    | ug/m3   |        |                |
| Dichlorodifluorometh   |               | 120.9   | 1       | UD | 4.94    |        |                |
| Chloromethane          | 74-87-3       | 50.49   | 1       | UD | 2.07    |        |                |
| Vinyl Chloride         | 75-01-4       | 62.5    | 0.3     | UD | 0.77    |        |                |
| Bromomethane           | 74-83-9       | 94.94   | 1       | UD | 3.88    |        |                |
| Chloroethane           | 75-00-3       | 64.52   | 1       | UD | 2.64    |        |                |
| Tetrahydrofuran        | 109-99-9      |         | 1       | UD | 2.95    |        |                |
| Trichlorofluorometha   |               | 137.4   | 1       | UD | 5.62    |        |                |
| Dichlorotetrafluoroet  |               | 170.9   | 1       | UD | 6.99    |        |                |
| 1,1,2-Trichlorotrifluo |               | 187.4   | 1       | UD | 7.66    |        |                |
| Bromoethene            | 593-60-2      | 106.9   | 1       | UD | 4.37    |        |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12   | 1.6     | JD | 4.85    |        |                |
| Heptane                | 142-82-5      | 100.2   | 1.1     | JD | 4.51    |        |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94   | 1       | UD | 3.96    |        |                |
| Acetone                | 67-64-1       | 58.08   | 110     | D  | 261     |        |                |
| Carbon Disulfide       | 75-15-0       | 76.14   | 2.9     | JD | 9.03    |        |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15   | 1       | UD | 3.61    |        |                |
| Methylene Chloride     | 75-09-2       | 84.94   | 1       | UD | 3.47    |        |                |
| trans-1,2-Dichloroetl  | 156-60-5      | 96.94   | 1       | UD | 3.96    |        |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96   | 1       | UD | 4.05    |        |                |
| Cyclohexane            | 110-82-7      | 84.16   | 1.9     | JD | 6.54    |        |                |
| 2-Butanone             | 78-93-3       | 72.11   | 2       | JD | 5.9     |        |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8   | 0.3     | UD | 1.89    |        |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94   | 1       | UD | 3.96    |        |                |
| Chloroform             | 67-66-3       | 119.4   | 1       | UD | 4.88    |        |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4   | 0.3     | UD | 1.64    |        |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2   | 2.6     | JD | 12.1    |        |                |
| Benzene                | 71-43-2       | 78.11   | 1.4     | JD | 4.47    |        |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96   | 1       | UD | 4.05    |        |                |
| Trichloroethene        | 79-01-6       | 131.4   | 0.3     | UD | 1.61    |        |                |
| 1,2-Dichloropropane    | 78-87-5       | 113     | 1       | UD | 4.62    |        |                |
| Bromodichlorometha     | 75-27-4       | 163.8   | 1       | UD | 6.7     |        |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2   | 1       | UD | 4.1     |        |                |
| Toluene                | 108-88-3      | 92.14   | 7.5     | D  | 28.3    |        |                |
| t-1,3-Dichloropropen   | 10061-02      | 111     | 1       | UD | 4.54    |        |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111     | 1       | UD | 4.54    |        |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4   | 1       | UD | 5.46    |        |                |
| Dibromochlorometha     |               | 208.3   | 1       | UD | 8.52    |        |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9   | 1       | UD | 7.69    |        |                |
| Tetrachloroethene      | 127-18-4      | 165.8   | 3.1     | D  | 21      |        |                |
| Chlorobenzene          | 108-90-7      | 112.6   | 1       | UD | 4.61    |        |                |
| Ethyl Benzene          | 100-41-4      | 106.2   | 5.1     | D  | 22.2    |        |                |
| m/p-Xylene             | 179601-2      |         | 12.9    | D  | 56      |        |                |
| o-Xylene               | 95-47-6       | 106.2   | 4.8     | JD | 20.8    |        |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-7DL TARGET ANALYTES - Laboratory ID Number: F2940-02DL AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 1   | UD | 4.26 |  |
|----------------------|----------|--------|-----|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 1   | UD | 10.3 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3 | UD | 2.06 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1   | UD | 5.18 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 2.2 | JD | 10.8 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 9.5 | D  | 46.7 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1   | UD | 6.01 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1   | UD | 6.01 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1   | UD | 6.01 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1   | UD | 7.42 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1   | UD | 10.7 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1   | UD | 2.21 |  |
| Naphthalene          | 91-20-3  | 128.17 | 4   | JD | 21   |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 2.8 | JD | 13.8 |  |
| Hexane               | 110-54-3 | 86.17  | 2.5 | JD | 8.81 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 1   | UD | 3.13 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1   | UD | 3.6  |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1   | UD | 4.09 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-6 TARGET ANALYTES Laboratory ID Number: F2940-04 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|---|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 0.78                         |   | 3.86                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 0.46                         | J | 0.95                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.03                         | U | 0.08                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 0.1                          | U | 0.39                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 0.1                          | U | 0.26                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 0.1                          | U | 0.29                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 0.91                         |   | 5.11                                    |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 0.1                          | U | 0.7                                     |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 0.11                         | J | 0.84                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 0.1                          | U | 0.44                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 0.1                          | U | 0.3                                     |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 4.6                          |   | 18.8                                    |                     |                |
|                        | 75-35-4       | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 140                          | E | 332                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 0.1                          | U | 0.31                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 0.1                          | U | 0.36                                    |                     |                |
| Methylene Chloride     |               | 84.94                   | 0.42                         | J | 1.46                                    |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 16.2                         | E | 55.8                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 3.1                          |   | 9.14                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.03                         | U | 0.19                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 0.1                          | U | 0.49                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.03                         | U | 0.16                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 39.8                         | E | 185                                     |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 7                            |   | 22.4                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.03                         | U | 0.16                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 0.1                          | U | 0.46                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 0.1                          | U | 0.67                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 0.1                          | U | 0.41                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 6.2                          |   | 23.4                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| 1,1,2-Trichloroethan   |               | 133.4                   | 0.1                          | U | 0.55                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 0.1                          | U | 0.85                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 0.1                          | U | 0.77                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 27                           | E | 183                                     |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 0.1                          | U | 0.46                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 24.3                         | Е | 105                                     |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 42.5                         | E | 184                                     |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 17.1                         | E | 74.3                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-6 TARGET ANALYTES - Laboratory ID Number: F2940-04 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 0.31 | J | 1.32 |  |
|----------------------|----------|--------|------|---|------|--|
| Bromoform            | 75-25-2  | 252.8  | 0.1  | U | 1.03 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.03 | U | 0.21 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 0.1  | U | 0.52 |  |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 3.9  |   | 19.2 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 14.9 |   | 73.2 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 0.1  | U | 0.6  |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 0.1  | U | 0.6  |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 0.1  | U | 0.6  |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 0.1  | U | 0.74 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 0.1  | U | 1.07 |  |
| Naphthalene          | 91-20-3  | 128.17 | 1.9  |   | 9.96 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 0.1  | U | 0.22 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 5.2  |   | 25.6 |  |
| Hexane               | 110-54-3 | 86.17  | 14.5 |   | 51.1 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 0.1  | U | 0.31 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 0.1  | U | 0.36 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 0.1  | U | 0.41 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-6DL TARGET ANALYTES Laboratory ID Number: F2940-04DL AIR RESULTS

| Chemical               | CAS      | Molecul<br>ar | Insert<br>Results | Q  | Generat<br>es<br>Results | QAS<br>Decisi | Foot- |
|------------------------|----------|---------------|-------------------|----|--------------------------|---------------|-------|
| Chemical               | Number   | Weight        | in ppbv           | Q  | in<br>ug/m3              | on            | Notes |
| Dichlorodifluorometh   | 75-71-8  | 120.9         | 1                 | UD | 4.94                     |               |       |
| Chloromethane          | 74-87-3  | 50.49         | 1                 | UD | 2.07                     |               |       |
| Vinyl Chloride         | 75-01-4  | 62.5          | 0.3               | UD | 0.77                     |               |       |
| Bromomethane           | 74-83-9  | 94.94         | 1                 | UD | 3.88                     |               |       |
| Chloroethane           | 75-00-3  | 64.52         | 1                 | UD | 2.64                     |               |       |
| Tetrahydrofuran        | 109-99-9 | 72.11         | 1                 | UD | 2.95                     |               |       |
| Trichlorofluorometha   | 75-69-4  | 137.4         | 1                 | UD | 5.62                     |               |       |
| Dichlorotetrafluoroet  | 76-14-2  | 170.9         | 1                 | UD | 6.99                     |               |       |
| 1,1,2-Trichlorotrifluo | 76-13-1  | 187.4         | 1                 | UD | 7.66                     |               |       |
|                        | 593-60-2 | 106.9         | 1                 | UD | 4.37                     |               |       |
| tert-Butyl alcohol     | 75-65-0  | 74.12         | 1                 | UD | 3.03                     |               |       |
| Heptane                | 142-82-5 | 100.2         | 1                 | UD | 4.1                      |               |       |
| 1,1-Dichloroethene     | 75-35-4  | 96.94         | 1                 | UD | 3.96                     |               |       |
| Acetone                | 67-64-1  | 58.08         | 160               | ED | 380                      |               |       |
| Carbon Disulfide       | 75-15-0  | 76.14         | 1                 | UD | 3.11                     |               |       |
| Methyl tert-Butyl Eth  | 1634-04- | 88.15         | 1                 | UD | 3.61                     |               |       |
| Methylene Chloride     |          | 84.94         | 1                 | UD | 3.47                     |               |       |
| trans-1,2-Dichloroeth  | 156-60-5 | 96.94         | 1                 | UD | 3.96                     |               |       |
| 1,1-Dichloroethane     | 75-34-3  | 98.96         | 1                 | UD | 4.05                     |               |       |
| Cyclohexane            | 110-82-7 | 84.16         | 14.3              | D  | 49.2                     |               |       |
| 2-Butanone             | 78-93-3  | 72.11         | 2.5               | JD | 7.37                     |               |       |
| Carbon Tetrachloride   | 56-23-5  | 153.8         | 0.3               | UD | 1.89                     |               |       |
| cis-1,2-Dichloroethe   | 156-59-2 | 96.94         | 1                 | UD | 3.96                     |               |       |
|                        | 67-66-3  | 119.4         | 1                 | UD | 4.88                     |               |       |
| 1,1,1-Trichloroethan   | 71-55-6  | 133.4         | 0.3               | UD | 1.64                     |               |       |
| 2,2,4-Trimethylpenta   | 540-84-1 | 114.2         | 61.1              | D  | 285                      |               |       |
| Benzene                | 71-43-2  | 78.11         | 6                 | D  | 19.2                     |               |       |
| 1,2-Dichloroethane     | 107-06-2 | 98.96         | 1                 | UD | 4.05                     |               |       |
| Trichloroethene        | 79-01-6  | 131.4         | 0.3               | UD | 1.61                     |               |       |
| 1,2-Dichloropropane    |          | 113           | 1                 | UD | 4.62                     |               |       |
| Bromodichlorometha     |          | 163.8         | 1                 | UD | 6.7                      |               |       |
| 4-Methyl-2-Pentanor    |          | 100.2         | 1                 | UD | 4.1                      |               |       |
| Toluene                | 108-88-3 | 92.14         | 7.4               | D  | 27.9                     |               |       |
| t-1,3-Dichloropropen   | 10061-02 |               | 1                 | UD | 4.54                     |               |       |
| cis-1,3-Dichloroprop   |          |               | 1                 | UD | 4.54                     |               |       |
| 1,1,2-Trichloroethan   | 79-00-5  | 133.4         | 1                 | UD | 5.46                     |               |       |
| Dibromochlorometha     |          | 208.3         | 1                 | UD | 8.52                     |               |       |
|                        | 106-93-4 | 187.9         | 1                 | UD | 7.69                     |               |       |
| Tetrachloroethene      | 127-18-4 | 165.8         | 33.7              | D  | 228                      |               |       |
| Chlorobenzene          | 108-90-7 | 112.6         | 1                 | UD | 4.61                     |               |       |
| Ethyl Benzene          | 100-41-4 |               | 25                | D  | 108                      |               |       |
| m/p-Xylene             | 179601-2 |               | 47.1              | D  | 204                      |               |       |
| o-Xylene               | 95-47-6  | 106.2         | 16.2              | D  | 70.4                     |               |       |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Sampling Date: 06/25/14 Field ID Number: SV-6DL TARGET ANALYTES -Analysis Date: 07/02/14 Laboratory ID Number: F2940-04DL AIR RESULTS

|                      |          |        |      | _  |      |  |
|----------------------|----------|--------|------|----|------|--|
| Styrene              | 100-42-5 | 104.1  | 1    | UD | 4.26 |  |
| Bromoform            | 75-25-2  | 252.8  | 1    | UD | 10.3 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3  | UD | 2.06 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1    | UD | 5.18 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 3.4  | JD | 16.7 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 14.4 | D  | 70.8 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1    | UD | 6.01 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1    | UD | 6.01 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1    | UD | 6.01 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1    | UD | 7.42 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1    | UD | 10.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 3.6  | JD | 18.9 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1    | UD | 2.21 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 4.5  | JD | 22.1 |  |
| Hexane               | 110-54-3 | 86.17  | 12.2 | D  | 43   |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 1    | UD | 3.13 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1    | UD | 3.6  |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1    | UD | 4.09 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-6DL2 TARGET ANALYTES Laboratory ID Number: F2940-04DL2 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q  | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|----|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 4                            | UD | 19.8                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 4                            | UD | 8.26                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 1.2                          | UD | 3.07                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 4                            | UD | 15.5                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 4                            | UD | 10.6                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 4                            | UD | 11.8                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 4                            | UD | 22.5                                    |                     |                |
| Dichlorotetrafluoroet  | 76-14-2       | 170.9                   | 4                            | UD | 28                                      |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 4                            | UD | 30.7                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 4                            | UD | 17.5                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 4                            | UD | 12.1                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 4                            | UD | 16.4                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 4                            | UD | 15.9                                    |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 160                          | D  | 380                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 4                            | UD | 12.5                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 4                            | UD | 14.4                                    |                     |                |
| Methylene Chloride     | 75-09-2       | 84.94                   | 4                            | UD | 13.9                                    |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 4                            | UD | 15.9                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 4                            | UD | 16.2                                    |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 13.6                         | JD | 46.8                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 4                            | UD | 11.8                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 1.2                          | UD | 7.55                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 4                            | UD | 15.9                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 4                            | UD | 19.5                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 1.2                          | UD | 6.55                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 73.2                         | D  | 341                                     |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 6.4                          | JD | 20.4                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 4                            | UD | 16.2                                    |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 1.2                          | UD | 6.45                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 4                            | UD | 18.5                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 4                            | UD | 26.8                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 4                            | UD | 16.4                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 7.6                          | JD | 28.6                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 4                            | UD | 18.2                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 4                            | UD | 18.2                                    |                     |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4                   | 4                            | UD | 21.8                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 4                            | UD | 34.1                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 4                            | UD | 30.7                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 35.2                         | D  | 238                                     |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 4                            | UD | 18.4                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 21.6                         | D  | 93.8                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 41.2                         | D  | 178                                     |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 13.2                         | JD | 57.3                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-6DL2 TARGET ANALYTES - Laboratory ID Number: F2940-04DL2 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 4    | UD | 17   |  |
|----------------------|----------|--------|------|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 4    | UD | 41.4 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 1.2  | UD | 8.24 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 4    | UD | 20.7 |  |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 4    | UD | 19.7 |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 10.4 | JD | 51.1 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 4    | UD | 24   |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 4    | UD | 24   |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 4    | UD | 24   |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 4    | UD | 29.7 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 4    | UD | 42.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 4    | UD | 21   |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 4    | UD | 8.85 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 4    | UD | 19.7 |  |
| Hexane               | 110-54-3 | 86.17  | 11.2 | JD | 39.5 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 4    | UD | 12.5 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 4    | UD | 14.4 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 4    | UD | 16.4 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-12 TARGET ANALYTES Laboratory ID Number: F2940-05 AIR RESULTS

|                        |               |         |         |   | Generat |        |                |
|------------------------|---------------|---------|---------|---|---------|--------|----------------|
|                        | 0.0           | Molecul | Insert  |   | es      | QAS    |                |
| Chemical               | CAS<br>Number | ar      | Results | Q | Results | Decisi | Foot-<br>Notes |
|                        | Number        | Weight  | in ppbv |   | in      | on     | NOICS          |
|                        |               |         |         |   | ug/m3   |        |                |
| Dichlorodifluorometh   |               | 120.9   | 0.7     |   | 3.46    |        |                |
| Chloromethane          | 74-87-3       | 50.49   | 0.86    |   | 1.78    |        |                |
| Vinyl Chloride         | 75-01-4       | 62.5    | 0.03    | U | 0.08    |        |                |
| Bromomethane           | 74-83-9       | 94.94   | 0.1     | U | 0.39    |        |                |
| Chloroethane           | 75-00-3       | 64.52   | 0.1     | U | 0.26    |        |                |
| Tetrahydrofuran        | 109-99-9      |         | 0.1     | U | 0.29    |        |                |
| Trichlorofluorometha   |               | 137.4   | 0.28    | J | 1.57    |        |                |
| Dichlorotetrafluoroet  |               | 170.9   | 0.1     | U | 0.7     |        |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4   | 0.1     | J | 0.77    |        |                |
| Bromoethene            | 593-60-2      | 106.9   | 0.1     | U | 0.44    |        |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12   | 0.1     | U | 0.3     |        |                |
| Heptane                | 142-82-5      | 100.2   | 0.25    | J | 1.02    |        |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94   | 0.1     | U | 0.4     |        |                |
| Acetone                | 67-64-1       | 58.08   | 19.1    | E | 45.4    |        |                |
| Carbon Disulfide       | 75-15-0       | 76.14   | 0.1     | U | 0.31    |        |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15   | 0.1     | U | 0.36    |        |                |
| Methylene Chloride     |               | 84.94   | 0.29    | J | 1.01    |        |                |
| trans-1,2-Dichloroeth  | 156-60-5      | 96.94   | 0.1     | U | 0.4     |        |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96   | 0.1     | U | 0.4     |        |                |
| Cyclohexane            | 110-82-7      | 84.16   | 0.12    | J | 0.41    |        |                |
| 2-Butanone             | 78-93-3       | 72.11   | 2       |   | 5.9     |        |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8   | 0.07    |   | 0.44    |        |                |
| cis-1,2-Dichloroethe   |               | 96.94   | 0.1     | U | 0.4     |        |                |
| Chloroform             | 67-66-3       | 119.4   | 0.1     | U | 0.49    |        |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4   | 0.03    | U | 0.16    |        |                |
| 2,2,4-Trimethylpenta   |               | 114.2   | 0.21    | J | 0.98    |        |                |
| Benzene                | 71-43-2       | 78.11   | 0.18    | J | 0.58    |        |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96   | 0.1     | U | 0.4     |        |                |
| Trichloroethene        | 79-01-6       | 131.4   | 0.03    | U | 0.16    |        |                |
| 1,2-Dichloropropane    |               | 113     | 0.1     | U | 0.46    |        |                |
| Bromodichlorometha     |               | 163.8   | 0.1     | U | 0.67    |        |                |
| 4-Methyl-2-Pentanor    |               | 100.2   | 0.1     | Ū | 0.41    |        |                |
| Toluene                | 108-88-3      | 92.14   | 5.9     |   | 22.2    |        |                |
| t-1,3-Dichloropropen   |               |         | 0.1     | U | 0.45    |        |                |
| cis-1,3-Dichloroprop   |               |         | 0.1     | U | 0.45    |        |                |
| 1,1,2-Trichloroethan   |               | 133.4   | 0.1     | U | 0.55    |        |                |
| Dibromochlorometha     |               | 208.3   | 0.1     | U | 0.85    |        |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9   | 0.1     | U | 0.77    |        |                |
| Tetrachloroethene      | 127-18-4      |         | 0.05    |   | 0.34    |        |                |
| Chlorobenzene          | 108-90-7      | 112.6   | 0.1     | U | 0.46    |        |                |
| Ethyl Benzene          | 100-30-7      | 106.2   | 0.11    | J | 0.48    |        |                |
| m/p-Xylene             | 179601-2      |         | 0.36    | J | 1.56    |        |                |
| _ ' '                  |               |         |         |   | 1       |        |                |
| o-Xylene               | 95-47-6       | 106.2   | 0.15    | J | 0.65    |        |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-12 TARGET ANALYTES - Laboratory ID Number: F2940-05 AIR RESULTS

100-42-5 104.1 Styrene 0.1 U 0.43 75-25-2 Bromoform 252.8 0.1 U 1.03 1,1,2,2-Tetrachloroe 79-34-5 167.9 0.03 U 0.21 2-Chlorotoluene 95-49-8 126.6 0.1 0.52 1,3,5-Trimethylbenz 108-67-8 120.2 0.1 U 0.49 1,2,4-Trimethylbenz 95-63-6 0.16 0.79 120.2 1,3-Dichlorobenzene541-73-1 U 147 0.1 0.6 1,4-Dichlorobenzene106-46-7 147 0.1 U 0.6 1,2-Dichlorobenzene95-50-1 U 147 0.1 0.6 U 1,2,4-Trichlorobenze120-82-1 181.5 0.1 0.74 Hexachloro-1,3-Buta87-68-3 U 1.07 260.8 0.1 Naphthalene 91-20-3 128.17 0.1 U 0.52 1,3-Butadiene 106-99-0 54.09 U 0.1 0.22 4-Ethyltoluene 622-96-8 120.2 0.1 U 0.49 U Hexane 110-54-3 86.17 0.1 0.35 Allyl Chloride 107-05-1 76.53 0.1 U 0.31 1,4-Dioxane 123-91-1 0.1 U 0.36 88.12

100.12

0.1

U

0.41

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Methyl Methacrylate 80-62-6

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-12DL TARGET ANALYTES Laboratory ID Number: F2940-05DL AIR RESULTS

|                        |          |         |         |    | Generat |        |       |
|------------------------|----------|---------|---------|----|---------|--------|-------|
|                        |          | Molecul | Insert  |    | es      | QAS    |       |
| Chemical               | CAS      | ar      | Results | Q  | Results | Decisi | Foot- |
|                        | Number   | Weight  | in ppbv |    | in      | on     | Notes |
|                        |          |         |         |    | ug/m3   |        |       |
| Dichlorodifluorometh   |          | 120.9   | 1       | UD | 4.94    |        |       |
| Chloromethane          | 74-87-3  | 50.49   | 1       | UD | 2.07    |        |       |
| Vinyl Chloride         | 75-01-4  | 62.5    | 0.3     | UD | 0.77    |        |       |
| Bromomethane           | 74-83-9  | 94.94   | 1       | UD | 3.88    |        |       |
| Chloroethane           | 75-00-3  | 64.52   | 1       | UD | 2.64    |        |       |
| Tetrahydrofuran        | 109-99-9 | 72.11   | 1       | UD | 2.95    |        |       |
| Trichlorofluorometha   | 75-69-4  | 137.4   | 1       | UD | 5.62    |        |       |
| Dichlorotetrafluoroet  | 76-14-2  | 170.9   | 1       | UD | 6.99    |        |       |
| 1,1,2-Trichlorotrifluo | 76-13-1  | 187.4   | 1       | UD | 7.66    |        |       |
| Bromoethene            | 593-60-2 | 106.9   | 1       | UD | 4.37    |        |       |
| tert-Butyl alcohol     | 75-65-0  | 74.12   | 1       | UD | 3.03    |        |       |
| Heptane                | 142-82-5 | 100.2   | 1       | UD | 4.1     |        |       |
| 1,1-Dichloroethene     | 75-35-4  | 96.94   | 1       | UD | 3.96    |        |       |
| Acetone                | 67-64-1  | 58.08   | 19.3    | D  | 45.8    |        |       |
| Carbon Disulfide       | 75-15-0  | 76.14   | 1       | UD | 3.11    |        |       |
| Methyl tert-Butyl Eth  |          | 88.15   | 1       | UD | 3.61    |        |       |
| Methylene Chloride     |          | 84.94   | 1       | UD | 3.47    |        |       |
| trans-1,2-Dichloroeth  |          | 96.94   | 1       | UD | 3.96    |        |       |
| 1,1-Dichloroethane     | 75-34-3  | 98.96   | 1       | UD | 4.05    |        |       |
| Cyclohexane            | 110-82-7 | 84.16   | 1       | UD | 3.44    |        |       |
| 2-Butanone             | 78-93-3  | 72.11   | 1       | UD | 2.95    |        |       |
| Carbon Tetrachloride   |          | 153.8   | 0.3     | UD | 1.89    |        |       |
| cis-1,2-Dichloroethe   |          | 96.94   | 1       | UD | 3.96    |        |       |
| Chloroform             | 67-66-3  | 119.4   | 1       | UD | 4.88    |        |       |
| 1,1,1-Trichloroethan   |          | 133.4   | 0.3     | UD | 1.64    |        |       |
| 2,2,4-Trimethylpenta   |          | 114.2   | 1       | UD | 4.67    |        |       |
| Benzene                | 71-43-2  | 78.11   | 1       | UD | 3.19    |        |       |
| 1,2-Dichloroethane     | 107-06-2 | 98.96   | 1       | UD | 4.05    |        |       |
| •                      | 79-01-6  | 131.4   | 0.3     | UD | 1.61    |        |       |
| 1,2-Dichloropropane    |          | 113     | 1       | UD | 4.62    |        |       |
| Bromodichlorometha     |          | 163.8   | 1       | UD | 6.7     |        |       |
| 4-Methyl-2-Pentanor    |          | 100.2   | 1       | UD | 4.1     |        |       |
| Toluene                | 108-88-3 | 92.14   | 5.2     | D  | 19.6    |        |       |
| t-1,3-Dichloropropen   |          |         | 1       | UD | 4.54    |        |       |
| cis-1,3-Dichloroprop   |          |         | 1       | UD | 4.54    |        |       |
| 1,1,2-Trichloroethan   |          | 133.4   | 1       | UD | 5.46    |        |       |
| Dibromochlorometha     |          | 208.3   | 1       | UD | 8.52    |        |       |
| 1,2-Dibromoethane      | 106-93-4 | 187.9   | 1       | UD | 7.69    |        |       |
| Tetrachloroethene      | 127-18-4 |         | 0.3     | UD | 2.03    |        |       |
| Chlorobenzene          |          | 112.6   | 1       | UD |         |        |       |
|                        | 108-90-7 |         | 1       | UD | 4.61    |        |       |
| Ethyl Benzene          | 100-41-4 | 106.2   |         |    | 4.34    |        |       |
| m/p-Xylene             | 179601-2 |         | 2       | UD | 8.69    |        |       |
| o-Xylene               | 95-47-6  | 106.2   | 1       | UD | 4.34    |        |       |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-12DL TARGET ANALYTES - Laboratory ID Number: F2940-05DL AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 1   | UD | 4.26 |  |
|----------------------|----------|--------|-----|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 1   | UD | 10.3 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3 | UD | 2.06 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1   | UD | 5.18 |  |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 1   | UD | 4.92 |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 1   | UD | 4.92 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1   | UD | 6.01 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1   | UD | 6.01 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1   | UD | 6.01 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1   | UD | 7.42 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1   | UD | 10.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 1   | UD | 5.24 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1   | UD | 2.21 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 1   | UD | 4.92 |  |
| Hexane               | 110-54-3 | 86.17  | 1   | UD | 3.52 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 1   | UD | 3.13 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1   | UD | 3.6  |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1   | UD | 4.09 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-15 TARGET ANALYTES Laboratory ID Number: F2940-06 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|---|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 0.7                          | J | 3.46                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 2.4                          | J | 4.96                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.3                          | U | 0.77                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 1                            | U | 3.88                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 1                            | U | 2.64                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 1                            | U | 2.95                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 0.4                          | J | 2.25                                    |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 1                            | U | 6.99                                    |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 1                            | U | 7.66                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 1                            | U | 4.37                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 1                            | U | 3.03                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 2.2                          | J | 9.02                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 1                            | U | 3.96                                    |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 20.5                         |   | 48.7                                    |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 7.3                          |   | 22.7                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 1                            | U | 3.61                                    |                     |                |
| Methylene Chloride     | 75-09-2       | 84.94                   | 1.5                          | J | 5.21                                    |                     |                |
| trans-1,2-Dichloroetl  | 156-60-5      | 96.94                   | 1                            | U | 3.96                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 1                            | U | 4.05                                    |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 1.3                          | J | 4.47                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 1                            | U | 2.95                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.3                          | U | 1.89                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 1                            | U | 3.96                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 2.3                          | J | 11.2                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.3                          | U | 1.64                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 1                            | U | 4.67                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 2.2                          | J | 7.03                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 1                            | U | 4.05                                    |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 33.2                         |   | 178                                     |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 1                            | U | 4.62                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 1                            | U | 6.7                                     |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 1                            | U | 4.1                                     |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 5.8                          |   | 21.9                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 1                            | U | 4.54                                    |                     |                |
| cis-1,3-Dichloroprop   |               | 111                     | 1                            | U | 4.54                                    |                     |                |
| 1,1,2-Trichloroethan   |               | 133.4                   | 1                            | U | 5.46                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 1                            | U | 8.52                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 1                            | U | 7.69                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 1300                         | Е | 8815                                    |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 1                            | U | 4.61                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 1.5                          | J | 6.52                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 4.9                          | J | 21.3                                    |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 1.9                          | J | 8.25                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/26/14

Field ID Number: SV-15 TARGET ANALYTES - Laboratory ID Number: F2940-06 AIR RESULTS

| 100-42-5 | 104.1                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                         | 4.26                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 75-25-2  | 252.8                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                         | 10.3                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 79-34-5  | 167.9                                                                                                                                                                                 | 0.3                                                                                                                                                                                                                                                                              | U                                                                                                                                                                                                                                                                         | 2.06                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 95-49-8  | 126.6                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                         | 5.18                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 108-67-8 | 120.2                                                                                                                                                                                 | 1.1                                                                                                                                                                                                                                                                              | J                                                                                                                                                                                                                                                                         | 5.41                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 95-63-6  | 120.2                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                                         | 14.8                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 541-73-1 | 147                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                         | 6.01                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 106-46-7 | 147                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                         | 6.01                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 95-50-1  | 147                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                         | 6.01                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 120-82-1 | 181.5                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                         | 7.42                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 87-68-3  | 260.8                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                         | 10.7                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 91-20-3  | 128.17                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                                         | 5.24                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 106-99-0 | 54.09                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                         | 2.21                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 622-96-8 | 120.2                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                         | 4.92                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 110-54-3 | 86.17                                                                                                                                                                                 | 3.4                                                                                                                                                                                                                                                                              | J                                                                                                                                                                                                                                                                         | 12                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 107-05-1 | 76.53                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                         | 3.13                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 123-91-1 | 88.12                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                         | 3.6                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
| 80-62-6  | 100.12                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                         | 4.09                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
|          | 75-25-2<br>79-34-5<br>95-49-8<br>108-67-8<br>95-63-6<br>541-73-1<br>106-46-7<br>95-50-1<br>120-82-1<br>87-68-3<br>91-20-3<br>106-99-0<br>622-96-8<br>110-54-3<br>107-05-1<br>123-91-1 | 75-25-2 252.8<br>79-34-5 167.9<br>95-49-8 126.6<br>108-67-8 120.2<br>95-63-6 120.2<br>541-73-1 147<br>106-46-7 147<br>95-50-1 147<br>120-82-1 181.5<br>87-68-3 260.8<br>91-20-3 128.17<br>106-99-0 54.09<br>622-96-8 120.2<br>110-54-3 86.17<br>107-05-1 76.53<br>123-91-1 88.12 | 75-25-2 252.8 1 79-34-5 167.9 0.3 95-49-8 126.6 1 108-67-8 120.2 1.1 95-63-6 120.2 3 541-73-1 147 1 106-46-7 147 1 95-50-1 147 1 120-82-1 181.5 1 87-68-3 260.8 1 91-20-3 128.17 1 106-99-0 54.09 1 622-96-8 120.2 1 110-54-3 86.17 3.4 107-05-1 76.53 1 123-91-1 88.12 1 | 75-25-2 252.8 1 U 79-34-5 167.9 0.3 U 95-49-8 126.6 1 U 108-67-8 120.2 1.1 J 95-63-6 120.2 3 J 541-73-1 147 1 U 106-46-7 147 1 U 120-82-1 181.5 1 U 87-68-3 260.8 1 U 91-20-3 128.17 1 J 106-99-0 54.09 1 U 622-96-8 120.2 1 U 110-54-3 86.17 3.4 J 107-05-1 76.53 1 U 123-91-1 88.12 1 U | 75-25-2         252.8         1         U         10.3           79-34-5         167.9         0.3         U         2.06           95-49-8         126.6         1         U         5.18           108-67-8         120.2         1.1         J         5.41           95-63-6         120.2         3         J         14.8           541-73-1         147         1         U         6.01           106-46-7         147         1         U         6.01           95-50-1         147         1         U         6.01           120-82-1         181.5         1         U         7.42           87-68-3         260.8         1         U         10.7           91-20-3         128.17         1         J         5.24           106-99-0         54.09         1         U         2.21           622-96-8         120.2         1         U         4.92           110-54-3         86.17         3.4         J         12           107-05-1         76.53         1         U         3.13           123-91-1         88.12         1         U         3.6 <td>75-25-2 252.8 1 U 10.3 79-34-5 167.9 0.3 U 2.06 95-49-8 126.6 1 U 5.18 108-67-8 120.2 1.1 J 5.41 95-63-6 120.2 3 J 14.8 541-73-1 147 1 U 6.01 106-46-7 147 1 U 6.01 95-50-1 147 1 U 6.01 120-82-1 181.5 1 U 7.42 87-68-3 260.8 1 U 10.7 91-20-3 128.17 1 J 5.24 106-99-0 54.09 1 U 2.21 622-96-8 120.2 1 U 4.92 110-54-3 86.17 3.4 J 12 107-05-1 76.53 1 U 3.13 123-91-1 88.12 1 U 3.6</td> | 75-25-2 252.8 1 U 10.3 79-34-5 167.9 0.3 U 2.06 95-49-8 126.6 1 U 5.18 108-67-8 120.2 1.1 J 5.41 95-63-6 120.2 3 J 14.8 541-73-1 147 1 U 6.01 106-46-7 147 1 U 6.01 95-50-1 147 1 U 6.01 120-82-1 181.5 1 U 7.42 87-68-3 260.8 1 U 10.7 91-20-3 128.17 1 J 5.24 106-99-0 54.09 1 U 2.21 622-96-8 120.2 1 U 4.92 110-54-3 86.17 3.4 J 12 107-05-1 76.53 1 U 3.13 123-91-1 88.12 1 U 3.6 |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ Sampling Date: 06/26/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-15DL TARGET ANALYTES Laboratory ID Number: F2940-06DL AIR RESULTS

|                        |               |         |         |    | Generat |        |                |
|------------------------|---------------|---------|---------|----|---------|--------|----------------|
|                        | 0.0           | Molecul | Insert  |    | es      | QAS    |                |
| Chemical               | CAS<br>Number | ar      | Results | Q  | Results | Decisi | Foot-<br>Notes |
|                        | Number        | Weight  | in ppbv |    | in      | on     | NOICS          |
|                        |               |         |         |    | ug/m3   |        |                |
| Dichlorodifluorometh   |               | 120.9   | 20      | UD | 98.9    |        |                |
| Chloromethane          | 74-87-3       | 50.49   | 20      | UD | 41.3    |        |                |
| Vinyl Chloride         | 75-01-4       | 62.5    | 6       | UD | 15.3    |        |                |
| Bromomethane           | 74-83-9       | 94.94   | 20      | UD | 77.7    |        |                |
| Chloroethane           | 75-00-3       | 64.52   | 20      | UD | 52.8    |        |                |
| Tetrahydrofuran        | 109-99-9      |         | 20      | UD | 59      |        |                |
| Trichlorofluorometha   |               | 137.4   | 20      | UD | 112     |        |                |
| Dichlorotetrafluoroet  |               | 170.9   | 20      | UD | 139     |        |                |
| 1,1,2-Trichlorotrifluo |               | 187.4   | 20      | UD | 153     |        |                |
| Bromoethene            | 593-60-2      | 106.9   | 20      | UD | 87.4    |        |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12   | 20      | UD | 60.6    |        |                |
| Heptane                | 142-82-5      |         | 20      | UD | 82      |        |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94   | 20      | UD | 79.3    |        |                |
| Acetone                | 67-64-1       | 58.08   | 20      | UD | 47.5    |        |                |
| Carbon Disulfide       | 75-15-0       | 76.14   | 20      | UD | 62.3    |        |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15   | 20      | UD | 72.1    |        |                |
| Methylene Chloride     | 75-09-2       | 84.94   | 20      | UD | 69.5    |        |                |
| trans-1,2-Dichloroetl  | 156-60-5      | 96.94   | 20      | UD | 79.3    |        |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96   | 20      | UD | 81      |        |                |
| Cyclohexane            | 110-82-7      | 84.16   | 20      | UD | 68.8    |        |                |
| 2-Butanone             | 78-93-3       | 72.11   | 20      | UD | 59      |        |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8   | 6       | UD | 37.7    |        |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94   | 20      | UD | 79.3    |        |                |
| Chloroform             | 67-66-3       | 119.4   | 20      | UD | 97.7    |        |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4   | 6       | UD | 32.7    |        |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2   | 20      | UD | 93.4    |        |                |
| Benzene                | 71-43-2       | 78.11   | 20      | UD | 63.9    |        |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96   | 20      | UD | 81      |        |                |
| Trichloroethene        | 79-01-6       | 131.4   | 22      | D  | 118     |        |                |
| 1,2-Dichloropropane    | 78-87-5       | 113     | 20      | UD | 92.4    |        |                |
| Bromodichlorometha     | 75-27-4       | 163.8   | 20      | UD | 133     |        |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2   | 20      | UD | 82      |        |                |
| Toluene                | 108-88-3      | 92.14   | 20      | UD | 75.4    |        |                |
| t-1,3-Dichloropropen   | 10061-02      | 111     | 20      | UD | 90.8    |        |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111     | 20      | UD | 90.8    |        |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4   | 20      | UD | 109     |        |                |
| Dibromochlorometha     | 124-48-1      | 208.3   | 20      | UD | 170     |        |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9   | 20      | UD | 153     |        |                |
| Tetrachloroethene      | 127-18-4      | 165.8   | 2300    | D  | 15596   |        |                |
| Chlorobenzene          | 108-90-7      | 112.6   | 20      | UD | 92.1    |        |                |
| Ethyl Benzene          | 100-41-4      | 106.2   | 20      | UD | 86.9    |        |                |
| m/p-Xylene             | 179601-2      |         | 40      | UD | 173     |        |                |
| o-Xylene               | 95-47-6       | 106.2   | 20      | UD | 86.9    |        |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/26/14

Field ID Number: SV-15DL TARGET ANALYTES - Sampling Date: 06/26/14
Laboratory ID Number: F2940-06DL AIR RESULTS

Sampling Date: 06/26/14
Analysis Date: 07/03/14

| Styrene              | 100-42-5 | 104.1  | 20 | UD | 85.2 |  |
|----------------------|----------|--------|----|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 20 | UD | 206  |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 6  | UD | 41.2 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 20 | UD | 103  |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 20 | UD | 98.3 |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 20 | UD | 98.3 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 20 | UD | 120  |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 20 | UD | 120  |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 20 | UD | 120  |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 20 | UD | 148  |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 20 | UD | 213  |  |
| Naphthalene          | 91-20-3  | 128.17 | 20 | UD | 104  |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 20 | UD | 44.2 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 20 | UD | 98.3 |  |
| Hexane               | 110-54-3 | 86.17  | 20 | UD | 70.5 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 20 | UD | 62.6 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 20 | UD | 72.1 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 20 | UD | 81.9 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-16 TARGET ANALYTES Laboratory ID Number: F2940-07 AIR RESULTS

|                        |               |         |         |   | Generat |        |                |
|------------------------|---------------|---------|---------|---|---------|--------|----------------|
|                        |               | Molecul | Insert  |   | es      | QAS    |                |
| Chemical               | CAS<br>Number | ar      | Results | Q | Results | Decisi | Foot-<br>Notes |
|                        | Number        | Weight  | in ppbv |   | in      | on     | NOICS          |
|                        |               |         |         |   | ug/m3   |        |                |
| Dichlorodifluorometh   |               | 120.9   | 0.51    |   | 2.52    |        |                |
| Chloromethane          | 74-87-3       | 50.49   | 0.89    |   | 1.84    |        |                |
| Vinyl Chloride         | 75-01-4       | 62.5    | 0.03    | U | 0.08    |        |                |
| Bromomethane           | 74-83-9       | 94.94   | 0.12    | J | 0.47    |        |                |
| Chloroethane           | 75-00-3       | 64.52   | 0.1     | U | 0.26    |        |                |
| Tetrahydrofuran        | 109-99-9      |         | 0.1     | U | 0.29    |        |                |
| Trichlorofluorometha   |               | 137.4   | 0.28    | J | 1.57    |        |                |
| Dichlorotetrafluoroet  |               | 170.9   | 0.1     | U | 0.7     |        |                |
| 1,1,2-Trichlorotrifluo |               | 187.4   | 0.1     | J | 0.77    |        |                |
| Bromoethene            | 593-60-2      | 106.9   | 0.1     | U | 0.44    |        |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12   | 0.1     | U | 0.3     |        |                |
| Heptane                | 142-82-5      |         | 0.5     |   | 2.05    |        |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94   | 0.1     | U | 0.4     |        |                |
| Acetone                | 67-64-1       | 58.08   | 48.2    | E | 114     |        |                |
| Carbon Disulfide       | 75-15-0       | 76.14   | 1.4     |   | 4.36    |        |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15   | 0.1     | U | 0.36    |        |                |
| Methylene Chloride     | 75-09-2       | 84.94   | 2       |   | 6.95    |        |                |
| trans-1,2-Dichloroetl  | 156-60-5      | 96.94   | 0.1     | U | 0.4     |        |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96   | 0.1     | U | 0.4     |        |                |
| Cyclohexane            | 110-82-7      | 84.16   | 0.33    | J | 1.14    |        |                |
| 2-Butanone             | 78-93-3       | 72.11   | 1.3     |   | 3.83    |        |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8   | 0.08    |   | 0.5     |        |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94   | 0.1     | U | 0.4     |        |                |
| Chloroform             | 67-66-3       | 119.4   | 0.28    | J | 1.37    |        |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4   | 0.03    | U | 0.16    |        |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2   | 0.91    |   | 4.25    |        |                |
| Benzene                | 71-43-2       | 78.11   | 0.62    |   | 1.98    |        |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96   | 0.1     | U | 0.4     |        |                |
| Trichloroethene        | 79-01-6       | 131.4   | 0.03    | U | 0.16    |        |                |
| 1,2-Dichloropropane    | 78-87-5       | 113     | 0.1     | U | 0.46    |        |                |
| Bromodichlorometha     | 75-27-4       | 163.8   | 0.1     | U | 0.67    |        |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2   | 0.1     | U | 0.41    |        |                |
| Toluene                | 108-88-3      | 92.14   | 3.2     |   | 12.1    |        |                |
| t-1,3-Dichloropropen   | 10061-02      | 111     | 0.1     | U | 0.45    |        |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111     | 0.1     | U | 0.45    |        |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4   | 0.1     | U | 0.55    |        |                |
| Dibromochlorometha     |               | 208.3   | 0.1     | U | 0.85    |        |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9   | 0.1     | U | 0.77    |        |                |
| Tetrachloroethene      | 127-18-4      |         | 0.49    |   | 3.32    |        |                |
| Chlorobenzene          | 108-90-7      | 112.6   | 0.1     | U | 0.46    |        |                |
| Ethyl Benzene          | 100-41-4      | 106.2   | 0.75    |   | 3.26    |        |                |
| m/p-Xylene             | 179601-2      |         | 2.7     |   | 11.7    |        |                |
| o-Xylene               | 95-47-6       | 106.2   | 1.3     |   | 5.65    |        |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-16 TARGET ANALYTES - Laboratory ID Number: F2940-07 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 0.1  | U | 0.43 |  |
|----------------------|----------|--------|------|---|------|--|
| Bromoform            | 75-25-2  | 252.8  | 0.1  | U | 1.03 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.03 | U | 0.21 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 0.1  | U | 0.52 |  |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 0.84 |   | 4.13 |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 3.1  |   | 15.2 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 0.1  | U | 0.6  |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 0.1  | U | 0.6  |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 0.1  | U | 0.6  |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 0.1  | U | 0.74 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 0.1  | U | 1.07 |  |
| Naphthalene          | 91-20-3  | 128.17 | 0.38 | J | 1.99 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 0.1  | U | 0.22 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 0.99 |   | 4.87 |  |
| Hexane               | 110-54-3 | 86.17  | 1.2  |   | 4.23 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 0.1  | U | 0.31 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 0.1  | U | 0.36 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 0.1  | U | 0.41 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-16DL TARGET ANALYTES Laboratory ID Number: F2940-07DL AIR RESULTS

|                        |               |         |         |    | Generat |        |                |
|------------------------|---------------|---------|---------|----|---------|--------|----------------|
|                        | 0.0           | Molecul | Insert  |    | es      | QAS    |                |
| Chemical               | CAS<br>Number | ar      | Results | Q  | Results | Decisi | Foot-<br>Notes |
|                        | Number        | Weight  | in ppbv |    | in      | on     | NOICS          |
|                        |               |         |         |    | ug/m3   |        |                |
| Dichlorodifluorometh   |               | 120.9   | 1       | UD | 4.94    |        |                |
| Chloromethane          | 74-87-3       | 50.49   | 1       | UD | 2.07    |        |                |
| Vinyl Chloride         | 75-01-4       | 62.5    | 0.3     | UD | 0.77    |        |                |
| Bromomethane           | 74-83-9       | 94.94   | 1       | UD | 3.88    |        |                |
| Chloroethane           | 75-00-3       | 64.52   | 1       | UD | 2.64    |        |                |
| Tetrahydrofuran        | 109-99-9      |         | 1       | UD | 2.95    |        |                |
| Trichlorofluorometha   |               | 137.4   | 1       | UD | 5.62    |        |                |
| Dichlorotetrafluoroet  |               | 170.9   | 1       | UD | 6.99    |        |                |
| 1,1,2-Trichlorotrifluo |               | 187.4   | 1       | UD | 7.66    |        |                |
| Bromoethene            | 593-60-2      | 106.9   | 1       | UD | 4.37    |        |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12   | 1       | UD | 3.03    |        |                |
| Heptane                | 142-82-5      |         | 1       | UD | 4.1     |        |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94   | 1       | UD | 3.96    |        |                |
| Acetone                | 67-64-1       | 58.08   | 46.4    | D  | 110     |        |                |
| Carbon Disulfide       | 75-15-0       | 76.14   | 1       | UD | 3.11    |        |                |
| Methyl tert-Butyl Eth  |               | 88.15   | 1       | UD | 3.61    |        |                |
| Methylene Chloride     | 75-09-2       | 84.94   | 1       | UD | 3.47    |        |                |
| trans-1,2-Dichloroetl  | 156-60-5      | 96.94   | 1       | UD | 3.96    |        |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96   | 1       | UD | 4.05    |        |                |
| Cyclohexane            | 110-82-7      | 84.16   | 1       | UD | 3.44    |        |                |
| 2-Butanone             | 78-93-3       | 72.11   | 1.5     | JD | 4.42    |        |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8   | 0.3     | UD | 1.89    |        |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94   | 1       | UD | 3.96    |        |                |
| Chloroform             | 67-66-3       | 119.4   | 1       | UD | 4.88    |        |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4   | 0.3     | UD | 1.64    |        |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2   | 1       | UD | 4.67    |        |                |
| Benzene                | 71-43-2       | 78.11   | 1       | UD | 3.19    |        |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96   | 1       | UD | 4.05    |        |                |
| Trichloroethene        | 79-01-6       | 131.4   | 0.3     | UD | 1.61    |        |                |
| 1,2-Dichloropropane    |               | 113     | 1       | UD | 4.62    |        |                |
| Bromodichlorometha     |               | 163.8   | 1       | UD | 6.7     |        |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2   | 1       | UD | 4.1     |        |                |
| Toluene                | 108-88-3      | 92.14   | 2.7     | JD | 10.2    |        |                |
| t-1,3-Dichloropropen   | 10061-02      |         | 1       | UD | 4.54    |        |                |
| cis-1,3-Dichloroprop   |               |         | 1       | UD | 4.54    |        |                |
| 1,1,2-Trichloroethan   |               | 133.4   | 1       | UD | 5.46    |        |                |
| Dibromochlorometha     | 124-48-1      | 208.3   | 1       | UD | 8.52    |        |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9   | 1       | UD | 7.69    |        |                |
| Tetrachloroethene      | 127-18-4      | 165.8   | 0.3     | UD | 2.03    |        |                |
| Chlorobenzene          | 108-90-7      | 112.6   | 1       | UD | 4.61    |        |                |
| Ethyl Benzene          | 100-41-4      | 106.2   | 1       | UD | 4.34    |        |                |
| m/p-Xylene             | 179601-2      | 106.2   | 2.1     | JD | 9.12    |        |                |
| o-Xylene               | 95-47-6       | 106.2   | 1       | JD | 4.34    |        |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-16DL TARGET ANALYTES - Laboratory ID Number: F2940-07DL AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 1   | UD | 4.26 |  |
|----------------------|----------|--------|-----|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 1   | UD | 10.3 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3 | UD | 2.06 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1   | UD | 5.18 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 1   | UD | 4.92 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 2.8 | JD | 13.8 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1   | UD | 6.01 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1   | UD | 6.01 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1   | UD | 6.01 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1   | UD | 7.42 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1   | UD | 10.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 1   | UD | 5.24 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1   | UD | 2.21 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 1   | UD | 4.92 |  |
| Hexane               | 110-54-3 | 86.17  | 1   | UD | 3.52 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 1   | UD | 3.13 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1   | UD | 3.6  |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1   | UD | 4.09 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-18 TARGET ANALYTES Laboratory ID Number: F2940-08 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|---|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 0.94                         |   | 4.65                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 0.49                         | J | 1.01                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.03                         | U | 80.0                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 0.1                          | U | 0.39                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 0.1                          | U | 0.26                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 1.1                          |   | 3.24                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 0.51                         |   | 2.87                                    |                     |                |
| Dichlorotetrafluoroet  | 76-14-2       | 170.9                   | 0.1                          | U | 0.7                                     |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 0.16                         | J | 1.23                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 0.1                          | U | 0.44                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 0.1                          | U | 0.3                                     |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 5.5                          |   | 22.5                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 450                          | E | 1068                                    |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 17                           | E | 52.9                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 0.1                          | U | 0.36                                    |                     |                |
| Methylene Chloride     | 75-09-2       | 84.94                   | 11.9                         |   | 41.3                                    |                     |                |
| trans-1,2-Dichloroeth  | 156-60-5      | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 2.3                          |   | 7.92                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 9.2                          |   | 27.1                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.09                         |   | 0.57                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 100                          | E | 488                                     |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.03                         | U | 0.16                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 1.6                          |   | 7.47                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 3                            |   | 9.58                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.16                         |   | 0.86                                    |                     |                |
| 1,2-Dichloropropane    |               | 113                     | 0.1                          | U | 0.46                                    |                     |                |
| Bromodichlorometha     |               | 163.8                   | 2.7                          |   | 18.1                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 2.1                          |   | 8.61                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 26                           | Е | 98                                      |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| 1,1,2-Trichloroethan   |               | 133.4                   | 0.1                          | U | 0.55                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 0.1                          | U | 0.85                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 0.1                          | U | 0.77                                    |                     |                |
| Tetrachloroethene      | 127-18-4      |                         | 6.9                          |   | 46.8                                    |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 0.1                          | U | 0.46                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 10.6                         |   | 46                                      |                     |                |
| m/p-Xylene             | 179601-2      |                         | 35.7                         | E | 155                                     |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 14.7                         |   | 63.8                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-18 TARGET ANALYTES - Laboratory ID Number: F2940-08 AIR RESULTS Sampling Date: 06/25/14 Analysis Date: 07/02/14

| Styrene              | 100-42-5 | 104.1  | 0.6  |   | 2.55 |  |
|----------------------|----------|--------|------|---|------|--|
| Bromoform            | 75-25-2  | 252.8  | 0.1  | U | 1.03 |  |
| 1,1,2,2-Tetrachloroe |          | 167.9  | 0.03 | Ū | 0.21 |  |
|                      | 95-49-8  | 126.6  | 0.1  | U | 0.52 |  |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 4.8  |   | 23.6 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 18   | E | 88.5 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 0.1  | U | 0.6  |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 0.1  | U | 0.6  |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 0.1  | U | 0.6  |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 0.1  | U | 0.74 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 0.1  | U | 1.07 |  |
| Naphthalene          | 91-20-3  | 128.17 | 3.2  |   | 16.8 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 0.1  | U | 0.22 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 7.3  |   | 35.9 |  |
| Hexane               | 110-54-3 | 86.17  | 7.9  |   | 27.8 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 0.1  | U | 0.31 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 0.1  | U | 0.36 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 0.1  | U | 0.41 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-18DL TARGET ANALYTES Laboratory ID Number: F2940-08DL AIR RESULTS

|                        |          |         |         |    | Generat |        |       |
|------------------------|----------|---------|---------|----|---------|--------|-------|
|                        |          | Molecul | Insert  |    | es      | QAS    |       |
| Chemical               | CAS      | ar      | Results | Q  | Results | Decisi | Foot- |
|                        | Number   | Weight  | in ppbv |    | in      | on     | Notes |
|                        |          |         |         |    | ug/m3   |        |       |
| Dichlorodifluorometh   |          | 120.9   | 1       | UD | 4.94    |        |       |
| Chloromethane          | 74-87-3  | 50.49   | 1       | UD | 2.07    |        |       |
| Vinyl Chloride         | 75-01-4  | 62.5    | 0.3     | UD | 0.77    |        |       |
| Bromomethane           | 74-83-9  | 94.94   | 1       | UD | 3.88    |        |       |
| Chloroethane           | 75-00-3  | 64.52   | 1       | UD | 2.64    |        |       |
| Tetrahydrofuran        | 109-99-9 |         | 1       | UD | 2.95    |        |       |
| Trichlorofluorometha   |          | 137.4   | 1       | UD | 5.62    |        |       |
| Dichlorotetrafluoroet  |          | 170.9   | 1       | UD | 6.99    |        |       |
| 1,1,2-Trichlorotrifluo | 76-13-1  | 187.4   | 1       | UD | 7.66    |        |       |
| Bromoethene            | 593-60-2 | 106.9   | 1       | UD | 4.37    |        |       |
| tert-Butyl alcohol     | 75-65-0  | 74.12   | 1       | UD | 3.03    |        |       |
| Heptane                | 142-82-5 |         | 3.6     | JD | 14.8    |        |       |
| 1,1-Dichloroethene     | 75-35-4  | 96.94   | 1       | UD | 3.96    |        |       |
| Acetone                | 67-64-1  | 58.08   | 580     | ED | 1377    |        |       |
| Carbon Disulfide       | 75-15-0  | 76.14   | 9.4     | D  | 29.3    |        |       |
| Methyl tert-Butyl Eth  |          | 88.15   | 1       | UD | 3.61    |        |       |
| Methylene Chloride     |          | 84.94   | 9.4     | D  | 32.7    |        |       |
| trans-1,2-Dichloroetl  | 156-60-5 | 96.94   | 1       | UD | 3.96    |        |       |
| 1,1-Dichloroethane     | 75-34-3  | 98.96   | 1       | UD | 4.05    |        |       |
| Cyclohexane            | 110-82-7 | 84.16   | 1       | UD | 3.44    |        |       |
| 2-Butanone             | 78-93-3  | 72.11   | 7       | D  | 20.6    |        |       |
| Carbon Tetrachloride   |          | 153.8   | 0.3     | UD | 1.89    |        |       |
| cis-1,2-Dichloroethe   | 156-59-2 | 96.94   | 1       | UD | 3.96    |        |       |
| Chloroform             | 67-66-3  | 119.4   | 100     | D  | 488     |        |       |
| 1,1,1-Trichloroethan   |          | 133.4   | 0.3     | UD | 1.64    |        |       |
| 2,2,4-Trimethylpenta   |          | 114.2   | 1       | UD | 4.67    |        |       |
| Benzene                | 71-43-2  | 78.11   | 2.3     | JD | 7.35    |        |       |
| 1,2-Dichloroethane     | 107-06-2 | 98.96   | 1       | UD | 4.05    |        |       |
| Trichloroethene        | 79-01-6  | 131.4   | 0.3     | UD | 1.61    |        |       |
| 1,2-Dichloropropane    |          | 113     | 1       | UD | 4.62    |        |       |
| Bromodichlorometha     |          | 163.8   | 1.8     | JD | 12.1    |        |       |
| 4-Methyl-2-Pentanor    | 108-10-1 | 100.2   | 1       | UD | 4.1     |        |       |
| Toluene                | 108-88-3 | 92.14   | 26.5    | D  | 99.9    |        |       |
| t-1,3-Dichloropropen   |          |         | 1       | UD | 4.54    |        |       |
| cis-1,3-Dichloroprop   |          |         | 1       | UD | 4.54    |        |       |
| 1,1,2-Trichloroethan   |          | 133.4   | 1       | UD | 5.46    |        |       |
| Dibromochlorometha     |          | 208.3   | 1       | UD | 8.52    |        |       |
| 1,2-Dibromoethane      | 106-93-4 | 187.9   | 1       | UD | 7.69    |        |       |
| Tetrachloroethene      | 127-18-4 | 165.8   | 5.3     | D  | 35.9    |        |       |
| Chlorobenzene          | 108-90-7 | 112.6   | 1       | UD | 4.61    |        |       |
| Ethyl Benzene          | 100-41-4 | 106.2   | 7.2     | D  | 31.3    |        |       |
| m/p-Xylene             | 179601-2 |         | 27.1    | D  | 117     |        |       |
| o-Xylene               | 95-47-6  | 106.2   | 10.2    | D  | 44.3    |        |       |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-18DL TARGET ANALYTES - Laboratory ID Number: F2940-08DL AIR RESULTS

| I=                   |          |        |      | 1  |      |  |
|----------------------|----------|--------|------|----|------|--|
| Styrene              | 100-42-5 | 104.1  | 1    | UD | 4.26 |  |
| Bromoform            | 75-25-2  | 252.8  | 1    | UD | 10.3 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3  | UD | 2.06 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1    | UD | 5.18 |  |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 3.5  | JD | 17.2 |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 13.3 | D  | 65.4 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1    | UD | 6.01 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1    | UD | 6.01 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1    | UD | 6.01 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1    | UD | 7.42 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1    | UD | 10.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 5.8  | D  | 30.4 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1    | UD | 2.21 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 5    | D  | 24.6 |  |
| Hexane               | 110-54-3 | 86.17  | 5.2  | D  | 18.3 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 1    | UD | 3.13 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1    | UD | 3.6  |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1    | UD | 4.09 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-18DL2 TARGET ANALYTES Laboratory ID Number: F2940-08DL2 AIR RESULTS

|                        |          |         |         |    | Canarat       |        |          |
|------------------------|----------|---------|---------|----|---------------|--------|----------|
|                        |          | Molecul | Insert  |    | Generat<br>es | QAS    |          |
| Chemical               | CAS      | ar      | Results | Q  | Results       | Decisi | Foot-    |
|                        | Number   | Weight  |         |    | in            | on     | Notes    |
|                        |          |         |         |    | ug/m3         |        |          |
| Dichlorodifluorometh   | 75-71-8  | 120.9   | 10      | UD | 49.4          |        |          |
| Chloromethane          | 74-87-3  | 50.49   | 10      | UD | 20.6          |        |          |
| Vinyl Chloride         | 75-01-4  | 62.5    | 3       | UD | 7.67          |        |          |
| Bromomethane           | 74-83-9  | 94.94   | 10      | UD | 38.8          |        |          |
| Chloroethane           | 75-00-3  | 64.52   | 10      | UD | 26.4          |        |          |
| Tetrahydrofuran        | 109-99-9 | 72.11   | 10      | UD | 29.5          |        |          |
| Trichlorofluorometha   | 75-69-4  | 137.4   | 10      | UD | 56.2          |        |          |
| Dichlorotetrafluoroet  |          | 170.9   | 10      | UD | 69.9          |        |          |
| 1,1,2-Trichlorotrifluo | 76-13-1  | 187.4   | 10      | UD | 76.6          |        |          |
| Bromoethene            | 593-60-2 | 106.9   | 10      | UD | 43.7          |        |          |
| tert-Butyl alcohol     | 75-65-0  | 74.12   | 10      | UD | 30.3          |        |          |
| Heptane                | 142-82-5 | 100.2   | 10      | UD | 41            |        |          |
| 1,1-Dichloroethene     | 75-35-4  | 96.94   | 10      | UD | 39.6          |        |          |
| Acetone                | 67-64-1  | 58.08   | 560     | D  | 1330          |        |          |
| Carbon Disulfide       | 75-15-0  | 76.14   | 10      | UD | 31.1          |        |          |
| Methyl tert-Butyl Eth  | 1634-04- | 88.15   | 10      | UD | 36            |        |          |
| Methylene Chloride     | 75-09-2  | 84.94   | 10      | UD | 34.7          |        |          |
| trans-1,2-Dichloroeth  | 156-60-5 | 96.94   | 10      | UD | 39.6          |        |          |
| 1,1-Dichloroethane     | 75-34-3  | 98.96   | 10      | UD | 40.5          |        |          |
| Cyclohexane            | 110-82-7 | 84.16   | 10      | UD | 34.4          |        |          |
| 2-Butanone             | 78-93-3  | 72.11   | 10      | UD | 29.5          |        |          |
| Carbon Tetrachloride   | 56-23-5  | 153.8   | 3       | UD | 18.9          |        |          |
| cis-1,2-Dichloroethe   | 156-59-2 | 96.94   | 10      | UD | 39.6          |        |          |
| Chloroform             | 67-66-3  | 119.4   | 110     | D  | 537           |        |          |
| 1,1,1-Trichloroethan   | 71-55-6  | 133.4   | 3       | UD | 16.4          |        |          |
| 2,2,4-Trimethylpenta   | 540-84-1 | 114.2   | 10      | UD | 46.7          |        |          |
| Benzene                | 71-43-2  | 78.11   | 10      | UD | 32            |        |          |
| 1,2-Dichloroethane     | 107-06-2 | 98.96   | 10      | UD | 40.5          |        |          |
| Trichloroethene        | 79-01-6  | 131.4   | 3       | UD | 16.1          |        |          |
| 1,2-Dichloropropane    | 78-87-5  | 113     | 10      | UD | 46.2          |        |          |
| Bromodichlorometha     | 75-27-4  | 163.8   | 10      | UD | 67            |        |          |
| 4-Methyl-2-Pentanor    | 108-10-1 | 100.2   | 10      | UD | 41            |        |          |
| Toluene                | 108-88-3 | 92.14   | 19      | JD | 71.6          |        |          |
| t-1,3-Dichloropropen   | 10061-02 | 111     | 10      | UD | 45.4          |        |          |
| cis-1,3-Dichloroprop   | 10061-01 | 111     | 10      | UD | 45.4          |        |          |
| 1,1,2-Trichloroethan   | 79-00-5  | 133.4   | 10      | UD | 54.6          |        |          |
| Dibromochlorometha     | 124-48-1 | 208.3   | 10      | UD | 85.2          |        |          |
| 1,2-Dibromoethane      | 106-93-4 | 187.9   | 10      | UD | 76.8          |        |          |
| Tetrachloroethene      | 127-18-4 | 165.8   | 5       | D  | 33.9          |        |          |
| Chlorobenzene          | 108-90-7 | 112.6   | 10      | UD | 46            |        |          |
| Ethyl Benzene          | 100-41-4 | 106.2   | 10      | UD | 43.4          |        |          |
| m/p-Xylene             | 179601-2 | 106.2   | 17      | JD | 73.8          |        |          |
| o-Xylene               | 95-47-6  | 106.2   | 10      | UD | 43.4          |        | <u>-</u> |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-18DL2 TARGET ANALYTES - Laboratory ID Number: F2940-08DL2 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 10 | UD | 42.6 |   |
|----------------------|----------|--------|----|----|------|---|
| Bromoform            | 75-25-2  | 252.8  | 10 | UD | 103  |   |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 3  | UD | 20.6 |   |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 10 | UD | 51.8 |   |
| 1,3,5-Trimethylbenze | 108-67-8 | 120.2  | 10 | UD | 49.2 |   |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 10 | UD | 49.2 |   |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 10 | UD | 60.1 |   |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 10 | UD | 60.1 |   |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 10 | UD | 60.1 |   |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 10 | UD | 74.2 |   |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 10 | UD | 106  |   |
| Naphthalene          | 91-20-3  | 128.17 | 10 | UD | 52.4 |   |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 10 | UD | 22.1 |   |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 10 | UD | 49.2 |   |
| Hexane               | 110-54-3 | 86.17  | 10 | UD | 35.2 | · |
| Allyl Chloride       | 107-05-1 | 76.53  | 10 | UD | 31.3 |   |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 10 | UD | 36   |   |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 10 | UD | 41   |   |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-9 TARGET ANALYTES Laboratory ID Number: F2940-09 AIR RESULTS

|                        |               |         |         |   | Generat |        |                |
|------------------------|---------------|---------|---------|---|---------|--------|----------------|
|                        | 0.0           | Molecul | Insert  |   | es      | QAS    |                |
| Chemical               | CAS<br>Number | ar      | Results | Q | Results | Decisi | Foot-<br>Notes |
|                        | Number        | Weight  | in ppbv |   | in      | on     | NOICS          |
|                        |               |         |         |   | ug/m3   |        |                |
| Dichlorodifluorometh   |               | 120.9   | 0.9     |   | 4.45    |        |                |
| Chloromethane          | 74-87-3       | 50.49   | 10.6    |   | 21.9    |        |                |
| Vinyl Chloride         | 75-01-4       | 62.5    | 2.7     |   | 6.9     |        |                |
| Bromomethane           | 74-83-9       | 94.94   | 0.1     | U | 0.39    |        |                |
| Chloroethane           | 75-00-3       | 64.52   | 2.1     |   | 5.54    |        |                |
| Tetrahydrofuran        | 109-99-9      |         | 0.1     | U | 0.29    |        |                |
| Trichlorofluorometha   |               | 137.4   | 0.32    | J | 1.8     |        |                |
| Dichlorotetrafluoroet  |               | 170.9   | 0.1     | U | 0.7     |        |                |
| 1,1,2-Trichlorotrifluo |               | 187.4   | 0.11    | J | 0.84    |        |                |
| Bromoethene            | 593-60-2      | 106.9   | 0.1     | U | 0.44    |        |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12   | 0.1     | U | 0.3     |        |                |
| Heptane                | 142-82-5      | 100.2   | 2.7     |   | 11.1    |        |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94   | 0.1     | U | 0.4     |        |                |
| Acetone                | 67-64-1       | 58.08   | 130     | E | 308     |        |                |
| Carbon Disulfide       | 75-15-0       | 76.14   | 9.3     |   | 29      |        |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15   | 1.6     |   | 5.77    |        |                |
| Methylene Chloride     | 75-09-2       | 84.94   | 1       |   | 3.47    |        |                |
| trans-1,2-Dichloroeth  | 156-60-5      | 96.94   | 0.1     | U | 0.4     |        |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96   | 0.1     | U | 0.4     |        |                |
| Cyclohexane            | 110-82-7      | 84.16   | 0.91    |   | 3.13    |        |                |
| 2-Butanone             | 78-93-3       | 72.11   | 4       |   | 11.8    |        |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8   | 0.06    |   | 0.38    |        |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94   | 0.1     | U | 0.4     |        |                |
| Chloroform             | 67-66-3       | 119.4   | 1.3     |   | 6.35    |        |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4   | 0.03    | U | 0.16    |        |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2   | 0.61    |   | 2.85    |        |                |
| Benzene                | 71-43-2       | 78.11   | 11.3    |   | 36.1    |        |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96   | 0.1     | U | 0.4     |        |                |
| Trichloroethene        | 79-01-6       | 131.4   | 0.03    | U | 0.16    |        |                |
| 1,2-Dichloropropane    | 78-87-5       | 113     | 0.1     | U | 0.46    |        |                |
| Bromodichlorometha     |               | 163.8   | 0.1     | U | 0.67    |        |                |
| 4-Methyl-2-Pentanor    |               | 100.2   | 0.1     | U | 0.41    |        |                |
| Toluene                | 108-88-3      | 92.14   | 9.9     |   | 37.3    |        |                |
| t-1,3-Dichloropropen   |               |         | 0.1     | U | 0.45    |        |                |
| cis-1,3-Dichloroprop   |               |         | 0.1     | Ū | 0.45    |        |                |
| 1,1,2-Trichloroethan   |               | 133.4   | 0.1     | U | 0.55    |        |                |
| Dibromochlorometha     |               | 208.3   | 0.1     | Ū | 0.85    |        |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9   | 0.1     | U | 0.77    |        |                |
| Tetrachloroethene      | 127-18-4      |         | 7       |   | 47.5    |        |                |
| Chlorobenzene          | 108-90-7      | 112.6   | 0.1     | U | 0.46    |        |                |
| Ethyl Benzene          | 100-41-4      | 106.2   | 4.6     | ļ | 20      |        |                |
| m/p-Xylene             | 179601-2      |         | 12.8    |   | 55.6    |        |                |
| o-Xylene               | 95-47-6       | 106.2   | 5.3     |   | 23      |        |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-9 TARGET ANALYTES - Laboratory ID Number: F2940-09 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 2    |   | 8.52 |  |
|----------------------|----------|--------|------|---|------|--|
| Bromoform            | 75-25-2  | 252.8  | 0.1  | U | 1.03 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.03 | U | 0.21 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 0.1  | U | 0.52 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 2.5  |   | 12.3 |  |
| 1,2,4-Trimethylbenzo | 95-63-6  | 120.2  | 10.2 |   | 50.1 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 0.1  | U | 0.6  |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 0.1  | U | 0.6  |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 0.1  | U | 0.6  |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 0.1  | U | 0.74 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 0.1  | U | 1.07 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 0.1  | U | 0.22 |  |
| Naphthalene          | 91-20-3  | 128.17 | 1.8  |   | 9.44 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 3.6  |   | 17.7 |  |
| Hexane               | 110-54-3 | 86.17  | 5.6  |   | 19.7 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 0.1  | U | 0.31 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 0.1  | U | 0.36 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 0.1  | U | 0.41 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-9DL TARGET ANALYTES Laboratory ID Number: F2940-09DL AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q  | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|----|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 1                            | UD | 4.94                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 8.6                          | D  | 17.8                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 2.3                          | D  | 5.88                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 1                            | UD | 3.88                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 1.9                          | JD | 5.01                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 1                            | UD | 2.95                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 1                            | UD | 5.62                                    |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 1                            | UD | 6.99                                    |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 1                            | UD | 7.66                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 1                            | UD | 4.37                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 1                            | UD | 3.03                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 2.3                          | JD | 9.43                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 130                          | D  | 308                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 6.1                          | D  | 19                                      |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 1                            | UD | 3.61                                    |                     |                |
| Methylene Chloride     | 75-09-2       | 84.94                   | 1                            | UD | 3.47                                    |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 1                            | UD | 3.44                                    |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 3.5                          | JD | 10.3                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.3                          | UD | 1.89                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 1                            | UD | 4.88                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.3                          | UD | 1.64                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 1                            | UD | 4.67                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 10.3                         | D  | 32.9                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.3                          | UD | 1.61                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 1                            | UD | 4.62                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 1                            | UD | 6.7                                     |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 1                            | UD | 4.1                                     |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 9.5                          | D  | 35.8                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| 1,1,2-Trichloroethan   | 79-00-5       | 133.4                   | 1                            | UD | 5.46                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 1                            | UD | 8.52                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 1                            | UD | 7.69                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 6.5                          | D  | 44.1                                    |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 1                            | UD | 4.61                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 3.5                          | JD | 15.2                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 10.6                         | D  | 46                                      |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 4.2                          | JD | 18.2                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Sampling Date: 06/25/14 Field ID Number: SV-9DL TARGET ANALYTES -Analysis Date: 07/02/14 Laboratory ID Number: F2940-09DL AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 1.5 | JD | 6.39 |  |
|----------------------|----------|--------|-----|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 1   | UD | 10.3 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3 | UD | 2.06 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1   | UD | 5.18 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 2.2 | JD | 10.8 |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 8.9 | D  | 43.8 |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1   | UD | 6.01 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1   | UD | 6.01 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1   | UD | 6.01 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1   | UD | 7.42 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1   | UD | 10.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 2.9 | JD | 15.2 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1   | UD | 2.21 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 2.8 | JD | 13.8 |  |
| Hexane               | 110-54-3 | 86.17  | 4.6 | JD | 16.2 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 1   | UD | 3.13 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1   | UD | 3.6  |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1   | UD | 4.09 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-14 TARGET ANALYTES Laboratory ID Number: F2940-10 AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|---|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 0.51                         |   | 2.52                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 0.74                         |   | 1.53                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.15                         |   | 0.38                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 0.1                          | U | 0.39                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 0.1                          | U | 0.26                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 0.1                          | U | 0.29                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 0.89                         |   | 5                                       |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 0.1                          | U | 0.7                                     |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 0.09                         | J | 0.69                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 0.1                          | U | 0.44                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 0.1                          | U | 0.3                                     |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 3.1                          |   | 12.7                                    |                     |                |
|                        | 75-35-4       | 96.94                   | 0.1                          | U | 0.4                                     |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 51.6                         | E | 122                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 0.18                         | J | 0.56                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 0.31                         | J | 1.12                                    |                     |                |
| Methylene Chloride     |               | 84.94                   | 170                          | E | 590                                     |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 0.25                         | J | 0.99                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 55.5                         | E | 191                                     |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 1.1                          |   | 3.24                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.1                          |   | 0.63                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 2.2                          |   | 8.72                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 3.1                          |   | 15.1                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.03                         | U | 0.16                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 1.7                          |   | 7.94                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 0.91                         |   | 2.91                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 0.1                          | U | 0.4                                     |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.52                         |   | 2.79                                    |                     |                |
| 1,2-Dichloropropane    | 78-87-5       | 113                     | 0.1                          | U | 0.46                                    |                     |                |
| Bromodichlorometha     | 75-27-4       | 163.8                   | 0.1                          | U | 0.67                                    |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 0.1                          | U | 0.41                                    |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 6                            |   | 22.6                                    |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 0.1                          | U | 0.45                                    |                     |                |
| 1,1,2-Trichloroethan   |               | 133.4                   | 0.1                          | U | 0.55                                    |                     |                |
| Dibromochlorometha     |               | 208.3                   | 0.1                          | U | 0.85                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 0.1                          | U | 0.77                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 18.4                         | E | 124                                     |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 0.1                          | U | 0.46                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 3.7                          |   | 16.1                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 13.7                         |   | 59.5                                    |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 7                            |   | 30.4                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-14 TARGET ANALYTES - Laboratory ID Number: F2940-10 AIR RESULTS

100-42-5 104.1 Styrene 0.44 1.87 75-25-2 Bromoform 252.8 0.1 U 1.03 1,1,2,2-Tetrachloroe 79-34-5 167.9 0.03 U 0.21 2-Chlorotoluene 95-49-8 U 126.6 0.1 0.52 1,3,5-Trimethylbenz 108-67-8 120.2 14.2 69.8 1,2,4-Trimethylbenz 95-63-6 37.8 120.2 185 1,3-Dichlorobenzene541-73-1 147 0.1 0.6 1,4-Dichlorobenzene106-46-7 147 1.8 10.8 1,2-Dichlorobenzene95-50-1 U 147 0.1 0.6 1,2,4-Trichlorobenze120-82-1 181.5 0.1 U 0.74 Hexachloro-1,3-Buta87-68-3 U 1.07 260.8 0.1 128.17 Naphthalene 91-20-3 1.7 8.91 1,3-Butadiene 106-99-0 54.09 0.1 0.22 4-Ethyltoluene 622-96-8 120.2 16.7 82.1 Hexane 110-54-3 86.17 20.8 73.3 Allyl Chloride 107-05-1 76.53 0.1 0.31 1,4-Dioxane 123-91-1 0.1 U 0.36 88.12

100.12

0.1

U

0.41

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Methyl Methacrylate 80-62-6

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-14DL TARGET ANALYTES Laboratory ID Number: F2940-10DL AIR RESULTS

| Chemical               | CAS<br>Number | Molecul<br>ar<br>Weight | Insert<br>Results<br>in ppbv | Q  | Generat<br>es<br>Results<br>in<br>ug/m3 | QAS<br>Decisi<br>on | Foot-<br>Notes |
|------------------------|---------------|-------------------------|------------------------------|----|-----------------------------------------|---------------------|----------------|
| Dichlorodifluorometh   | 75-71-8       | 120.9                   | 0.8                          | JD | 3.96                                    |                     |                |
| Chloromethane          | 74-87-3       | 50.49                   | 1                            | UD | 2.07                                    |                     |                |
| Vinyl Chloride         | 75-01-4       | 62.5                    | 0.3                          | UD | 0.77                                    |                     |                |
| Bromomethane           | 74-83-9       | 94.94                   | 1                            | UD | 3.88                                    |                     |                |
| Chloroethane           | 75-00-3       | 64.52                   | 1                            | UD | 2.64                                    |                     |                |
| Tetrahydrofuran        | 109-99-9      | 72.11                   | 1                            | UD | 2.95                                    |                     |                |
| Trichlorofluorometha   | 75-69-4       | 137.4                   | 0.8                          | JD | 4.5                                     |                     |                |
| Dichlorotetrafluoroet  |               | 170.9                   | 1                            | UD | 6.99                                    |                     |                |
| 1,1,2-Trichlorotrifluo | 76-13-1       | 187.4                   | 1                            | UD | 7.66                                    |                     |                |
| Bromoethene            | 593-60-2      | 106.9                   | 1                            | UD | 4.37                                    |                     |                |
| tert-Butyl alcohol     | 75-65-0       | 74.12                   | 1                            | UD | 3.03                                    |                     |                |
| Heptane                | 142-82-5      | 100.2                   | 2.5                          | JD | 10.2                                    |                     |                |
| 1,1-Dichloroethene     | 75-35-4       | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| Acetone                | 67-64-1       | 58.08                   | 54.1                         | D  | 128                                     |                     |                |
| Carbon Disulfide       | 75-15-0       | 76.14                   | 1                            | UD | 3.11                                    |                     |                |
| Methyl tert-Butyl Eth  | 1634-04-      | 88.15                   | 1                            | UD | 3.61                                    |                     |                |
| Methylene Chloride     | 75-09-2       | 84.94                   | 220                          | ED | 764                                     |                     |                |
| trans-1,2-Dichloroeth  |               | 96.94                   | 1                            | UD | 3.96                                    |                     |                |
| 1,1-Dichloroethane     | 75-34-3       | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Cyclohexane            | 110-82-7      | 84.16                   | 79                           | D  | 271                                     |                     |                |
| 2-Butanone             | 78-93-3       | 72.11                   | 1                            | JD | 2.95                                    |                     |                |
| Carbon Tetrachloride   | 56-23-5       | 153.8                   | 0.3                          | UD | 1.89                                    |                     |                |
| cis-1,2-Dichloroethe   | 156-59-2      | 96.94                   | 1.9                          | JD | 7.53                                    |                     |                |
| Chloroform             | 67-66-3       | 119.4                   | 2.9                          | JD | 14.2                                    |                     |                |
| 1,1,1-Trichloroethan   | 71-55-6       | 133.4                   | 0.3                          | UD | 1.64                                    |                     |                |
| 2,2,4-Trimethylpenta   | 540-84-1      | 114.2                   | 1.5                          | JD | 7.01                                    |                     |                |
| Benzene                | 71-43-2       | 78.11                   | 0.8                          | JD | 2.56                                    |                     |                |
| 1,2-Dichloroethane     | 107-06-2      | 98.96                   | 1                            | UD | 4.05                                    |                     |                |
| Trichloroethene        | 79-01-6       | 131.4                   | 0.5                          | D  | 2.69                                    |                     |                |
| 1,2-Dichloropropane    |               | 113                     | 1                            | UD | 4.62                                    |                     |                |
| Bromodichlorometha     |               | 163.8                   | 1                            | UD | 6.7                                     |                     |                |
| 4-Methyl-2-Pentanor    | 108-10-1      | 100.2                   | 1                            | UD | 4.1                                     |                     |                |
| Toluene                | 108-88-3      | 92.14                   | 5.3                          | D  | 20                                      |                     |                |
| t-1,3-Dichloropropen   | 10061-02      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| cis-1,3-Dichloroprop   | 10061-01      | 111                     | 1                            | UD | 4.54                                    |                     |                |
| 1,1,2-Trichloroethan   |               | 133.4                   | 1                            | UD | 5.46                                    |                     |                |
| Dibromochlorometha     | 124-48-1      | 208.3                   | 1                            | UD | 8.52                                    |                     |                |
| 1,2-Dibromoethane      | 106-93-4      | 187.9                   | 1                            | UD | 7.69                                    |                     |                |
| Tetrachloroethene      | 127-18-4      | 165.8                   | 21.1                         | D  | 143                                     |                     |                |
| Chlorobenzene          | 108-90-7      | 112.6                   | 1                            | UD | 4.61                                    |                     |                |
| Ethyl Benzene          | 100-41-4      | 106.2                   | 3.3                          | JD | 14.3                                    |                     |                |
| m/p-Xylene             | 179601-2      | 106.2                   | 14.2                         | D  | 61.7                                    |                     |                |
| o-Xylene               | 95-47-6       | 106.2                   | 7.1                          | D  | 30.8                                    |                     |                |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Field ID Number: SV-14DL TARGET ANALYTES - Laboratory ID Number: F2940-10DL AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 1    | UD | 4.26 |  |
|----------------------|----------|--------|------|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 1    | UD | 10.3 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 0.3  | UD | 2.06 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 1    | UD | 5.18 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 16.5 | D  | 81.1 |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 53.7 | D  | 264  |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 1    | UD | 6.01 |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 1.6  | JD | 9.62 |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 1    | UD | 6.01 |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 1    | UD | 7.42 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 1    | UD | 10.7 |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 1    | UD | 2.21 |  |
| Naphthalene          | 91-20-3  | 128.17 | 1.2  | JD | 6.29 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 18.6 | D  | 91.4 |  |
| Hexane               | 110-54-3 | 86.17  | 20.9 | D  | 73.7 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 1    | UD | 3.13 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 1    | UD | 3.6  |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 1    | UD | 4.09 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14

Project: NYCSCA Unionport Road Bronx TO-15
Field ID Number: SV-14DL2 TARGET ANALYTES Laboratory ID Number: F2940-10DL2 AIR RESULTS

Generat Molecul Insert es **QAS CAS** Foot-Chemical Results Q Results Decisi ar Number **Notes** Weight in ppbv in on ug/m3 Dichlorodifluorometh 75-71-8 120.9 4 UD 19.8 Chloromethane 74-87-3 50.49 4 UD 8.26 Vinyl Chloride 75-01-4 62.5 1.2 UD 3.07 Bromomethane 74-83-9 94.94 4 UD 15.5 Chloroethane 75-00-3 64.52 4 UD 10.6 UD Tetrahydrofuran 109-99-9 72.11 4 11.8 4 UD Trichlorofluorometha 75-69-4 137.4 22.5 Dichlorotetrafluoroet 76-14-2 UD 4 28 170.9 1,1,2-Trichlorotrifluo 76-13-1 187.4 4 UD 30.7 UD Bromoethene 593-60-2 106.9 4 17.5 UD tert-Butyl alcohol 75-65-0 74.12 4 12.1 142-82-5 4 UD 16.4 Heptane 100.2 1,1-Dichloroethene 75-35-4 96.94 4 UD 15.9 Acetone 67-64-1 58.08 66.4 D 157 Carbon Disulfide 75-15-0 76.14 4 UD 12.5 88.15 Methyl tert-Butyl Eth 1634-04-4 UD 14.4 Methylene Chloride 75-09-2 84.94 270 D 937 trans-1,2-Dichloroetl 156-60-5 UD 96.94 4 15.9 1,1-Dichloroethane 75-34-3 98.96 4 UD 16.2 Cyclohexane 110-82-7 88.88 305 84.16 D 78-93-3 2-Butanone 72.11 4 UD 11.8 Carbon Tetrachlorid 56-23-5 1.2 UD 7.55 153.8 cis-1,2-Dichloroethe 156-59-2 96.94 4 UD 15.9 Chloroform 67-66-3 119.4 4 UD 19.5 1,1,1-Trichloroethan 71-55-6 1.2 133.4 UD 6.55 2,2,4-Trimethylpenta540-84-1 114.2 4 UD 18.7 71-43-2 4 UD 12.8 Benzene 78.11 1.2-Dichloroethane 107-06-2 98.96 4 UD 16.2 Trichloroethene 79-01-6 1.2 UD 6.45 131.4 1,2-Dichloropropane 78-87-5 UD 18.5 113 4 4 UD Bromodichlorometha 75-27-4 163.8 26.8 4-Methyl-2-Pentanor 108-10-1 4 UD 100.2 16.4 Toluene 108-88-3 92.14 6 JD 22.6 t-1,3-Dichloropropen 10061-02 111 4 UD 18.2 cis-1,3-Dichloroprop 10061-0 111 4 UD 18.2 1,1,2-Trichloroethan 79-00-5 133.4 4 UD 21.8 Dibromochlorometha124-48-1 208.3 4 UD 34.1 1,2-Dibromoethane 106-93-4 187.9 4 UD 30.7 Tetrachloroethene 127-18-4 165.8 23.2 D 157

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

108-90-7

100-41-4

179601-2

95-47-6

112.6

106.2

106.2

106.2

Chlorobenzene

Ethyl Benzene

m/p-Xylene

o-Xylene

18.4

17.4

71.2

34.8

UD

JD

JD

JD

4

4

16.4

8

Sampling Date: 06/25/14

Field ID Number: SV-14DL2 TARGET ANALYTES - Laboratory ID Number: F2940-10DL2 AIR RESULTS

| Styrene              | 100-42-5 | 104.1  | 4    | UD | 17   |  |
|----------------------|----------|--------|------|----|------|--|
| Bromoform            | 75-25-2  | 252.8  | 4    | UD | 41.4 |  |
| 1,1,2,2-Tetrachloroe | 79-34-5  | 167.9  | 1.2  | UD | 8.24 |  |
| 2-Chlorotoluene      | 95-49-8  | 126.6  | 4    | UD | 20.7 |  |
| 1,3,5-Trimethylbenzo | 108-67-8 | 120.2  | 18   | JD | 88.5 |  |
| 1,2,4-Trimethylbenze | 95-63-6  | 120.2  | 62.8 | D  | 308  |  |
| 1,3-Dichlorobenzene  | 541-73-1 | 147    | 4    | UD | 24   |  |
| 1,4-Dichlorobenzene  | 106-46-7 | 147    | 4    | UD | 24   |  |
| 1,2-Dichlorobenzene  | 95-50-1  | 147    | 4    | UD | 24   |  |
| 1,2,4-Trichlorobenze | 120-82-1 | 181.5  | 4    | UD | 29.7 |  |
| Hexachloro-1,3-Buta  | 87-68-3  | 260.8  | 4    | UD | 42.7 |  |
| Naphthalene          | 91-20-3  | 128.17 | 4    | UD | 21   |  |
| 1,3-Butadiene        | 106-99-0 | 54.09  | 4    | UD | 8.85 |  |
| 4-Ethyltoluene       | 622-96-8 | 120.2  | 20.8 | D  | 102  |  |
| Hexane               | 110-54-3 | 86.17  | 24.8 | D  | 87.4 |  |
| Allyl Chloride       | 107-05-1 | 76.53  | 4    | UD | 12.5 |  |
| 1,4-Dioxane          | 123-91-1 | 88.12  | 4    | UD | 14.4 |  |
| Methyl Methacrylate  | 80-62-6  | 100.12 | 4    | UD | 16.4 |  |

Laboratory Name: CHEMTECH Laboratory City: Mountainside, NJ

Sampling Date: 06/25/14



# **DATA FOR**

# VOLATILE ORGANICS SEMI-VOLATILE ORGANICS GC SEMI-VOLATILES METALS GENERAL CHEMISTRY

**PROJECT NAME: NYCSCA UNIONPORT ROAD BRONX** 

DVIRKA & BARTILUCCI
330 Crossways Park Drive

Woodbury, NY - 11797

Phone No: 516-364-9890

ORDER ID: F2981

ATTENTION: MARIA WRIGHT







Date: 07/08/2014

Dear MARIA WRIGHT,

**5** water and **2** soil samples for the **NYCSCA Unionport Road Bronx** project were received on **07/01/2014.** The analytical fax results for those samples requested for an expedited turn around time may be seen in this report. Please contact me if you have any questions or concerns regarding this report.

Regards,

Corey J. Petitt

Corey@chemtech.net



# 284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

|                                               | CLIENT INFORMATION                                                        | CLIENT PROJECT INFORMATION                                                                                                                                             | CLIENT BILLING INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COMPANY:                                      | Dulkay Budilucci Engran                                                   | PROJECT NAME: DVIKa - B. Ailucci Englaces BII                                                                                                                          | LL TO: NIKA BLALVELI PO#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ADDRESS:                                      | 330 Cosseys Pet Druk                                                      | PROJECT NO. 34 18 LOCATION: Unword Brown AD                                                                                                                            | DORESS: 330 Crossings Pett Drun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CITY: L                                       | WIGG STATEM ZIP: //757                                                    | N. 11 C a                                                                                                                                                              | TY: Which buf STATE: MY ZIP: 11/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ATTENTION:                                    | Mike Hotgren                                                              |                                                                                                                                                                        | TENTION: Mile Hotsrephone: 5763645890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PHONE: آل                                     | 16364-9450 FAX: 5/6364-9075                                               | PHONE: 576364-9496 FAXTO3649645                                                                                                                                        | ANALYTES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               | DATA TURNAROUND INFORMATION                                               | DATA DELIVERABLE INFORMATION                                                                                                                                           | Ted field feelings from the state of the sta |
|                                               | DAYS DAYS DAYS DAYS  ZED TAT: YES NO  TURNAROUND TIME IS 10 BUSINESS DAYS | □ LEVEL 1: Results only □ Others □ LEVEL 2: Results + QC □ LEVEL 3: Results (plus results raw data) + QC □ LEVEL 4: Results + QC (all raw data) □ EDD Format: □ 1123 3 | Post in Contract (Contract of Contract of  |
| CHEMTECH<br>SAMPLE<br>ID                      | PROJECT<br>SAMPLE IDENTIFICATION                                          | SAMPLE SAMPLE COLLECTION E E E                                                                                                                                         | Specify Preservatives  A - HCI B - HNO <sub>3</sub> C - H <sub>2</sub> SO <sub>4</sub> D - NaOH  E - ICF F - Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.                                            | GW-1                                                                      | Weter V 6/30/14 1100 an 6                                                                                                                                              | Filter in lab for model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.                                            | Trip Blank -9/20/14                                                       | Agrow - 6/2/4 - 2 V                                                                                                                                                    | 1 tocsoner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.                                            | GW-13                                                                     | Water - V 6/20/14 /3-pa 6 V V V                                                                                                                                        | Fillen Lab forts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.                                            | GP-13 (18-20)                                                             | Jail - U 6/3 a/ 109m 6 / V -                                                                                                                                           | V/V/VHOLATCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.                                            |                                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.                                            |                                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.                                            |                                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.                                            |                                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.                                            |                                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.                                           |                                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               | SAMPLE CUSTODY MUST BE DOC                                                | CUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION I                                                                                                                   | CLUDING COURIER DELIVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RELINQUISHED BY:  1. CLUT RELINQUISHED BY: 2. | DATE/TIME: RECEIVED BY                                                    | MeOH extraction requires an additional 4 oz jar                                                                                                                        | for percent solid.  Non Compliant Cooler Temp: 40  to in Cooler?: 40  Cooler Temp: 40  To desire the cooler?: 40  To desire the cooler?: 40  To desire the cooler?: 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RELINQUISHED BY:                              | DATE/TIME: 1305 RECEIVED FOR LAND                                         | Page of SHIPPED VIA:                                                                                                                                                   | CLIENT: HAND DELIVERED OVERNIGHT Shipment Complete: CHEMTECH: PICKED OVERNIGHT. YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-1 SDG No.: F2981

Lab Sample ID: F2981-01 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD  | LOQ | CRQL Un | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|------|-----|---------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.76  | J    | 1  | 0.14 | 1.0  | 2   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7440-38-2 | Arsenic   | 0.54  | J    | 1  | 0.18 | 0.5  | 1   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7440-39-3 | Barium    | 166   |      | 1  | 0.1  | 5.0  | 10  | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.59  | J    | 1  | 0.09 | 0.5  | 1   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7440-43-9 | Cadmium   | 1.1   |      | 1  | 0.13 | 0.5  | 1   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7440-47-3 | Chromium  | 14.9  | N*   | 1  | 0.04 | 1.0  | 2   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7440-48-4 | Cobalt    | 15.2  |      | 1  | 0.05 | 0.5  | 1   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7440-50-8 | Copper    | 20.4  | *    | 1  | 0.04 | 1.0  | 2   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7439-92-1 | Lead      | 48.7  | N*   | 1  | 0.04 | 0.5  | 1   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7439-96-5 | Manganese | 13500 | D    | 25 | 1.3  | 12.5 | 25  | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1  | 0.2 | ug/L    | 07/02/14      | 07/03/14  | SW7470A  |
| 7440-02-0 | Nickel    | 50.5  | N*   | 1  | 0.06 | 0.5  | 1   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7782-49-2 | Selenium  | 3.6   | J    | 1  | 0.7  | 2.5  | 5   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7440-22-4 | Silver    | 0.048 | J    | 1  | 0.03 | 0.5  | 1   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.14  | J    | 1  | 0.02 | 0.5  | 1   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7440-62-2 | Vanadium  | 7.2   |      | 1  | 0.15 | 2.5  | 5   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |
| 7440-66-6 | Zinc      | 52.5  | *    | 1  | 0.09 | 1.0  | 2   | ug/L    | 07/02/14      | 07/04/14  | SW6020   |

Color Before: Brown Clarity Before: Cloudy Texture:

Color After: Yellow Clarity After: Clear Artifacts:

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



PC017846.D

2051-24-3

### **Report of Analysis**

Client: Date Collected: Dvirka & Bartilucci 06/30/14 Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14 SDG No.: Client Sample ID: GW-1 F2981

F2981-01 Lab Sample ID: Matrix: Water

Analytical Method: SW8082A % Moisture: 100 Decanted: Sample Wt/Vol: 990 Units: mLFinal Vol: 10000 uL

PCB Soil Aliquot Vol: uL Test:

**Extraction Type:** Injection Volume:

1.0 PH: GPC Factor:

1

Decachlorobiphenyl

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

07/02/14

**CAS Number** Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units **TARGETS** 12674-11-2 Aroclor-1016 0.101 U 0.097 0.101 0.505 ug/L 11104-28-2 Aroclor-1221 0.101 U 0.101 0.101 0.505 ug/L 11141-16-5 Aroclor-1232 0.101 U 0.101 0.101 0.505 ug/L Aroclor-1242 0.101 U 0.09 0.101 53469-21-9 0.505 ug/L 12672-29-6 Aroclor-1248 0.101 U 0.101 0.101 0.505 ug/L Aroclor-1254 0.101 U 0.044 0.101 11097-69-1 0.505 ug/L Aroclor-1260 U 0.082 0.101 11096-82-5 0.101 0.505 ug/L **SURROGATES** 877-09-8 Tetrachloro-m-xylene 12.5 35 - 13763% SPK: 20 12.5 40 - 135

07/03/14

PB77584

62%

SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-1 SDG No.: F2981

Lab Sample ID: F2981-01 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 970 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE086683.D 1 07/02/14 07/05/14 PB77579

| BE000003.D | •                           | 07/02/11 | 07           | 703/11 |     | 18//5//    |       |
|------------|-----------------------------|----------|--------------|--------|-----|------------|-------|
| CAS Number | Parameter                   | Con      | c. Qualifier | MDL    | LOD | LOQ / CRQL | Units |
| TARGETS    |                             |          |              |        |     |            |       |
| 100-52-7   | Benzaldehyde                | 1        | U            | 0.79   | 1   | 10.3       | ug/L  |
| 108-95-2   | Phenol                      | 1        | U            | 0.22   | 1   | 10.3       | ug/L  |
| 111-44-4   | bis(2-Chloroethyl)ether     | 1        | U            | 0.57   | 1   | 10.3       | ug/L  |
| 95-57-8    | 2-Chlorophenol              | 1        | U            | 0.56   | 1   | 10.3       | ug/L  |
| 95-48-7    | 2-Methylphenol              | 1        | U            | 0.25   | 1   | 10.3       | ug/L  |
| 108-60-1   | 2,2-oxybis(1-Chloropropane) | 1        | U            | 0.18   | 1   | 10.3       | ug/L  |
| 98-86-2    | Acetophenone                | 1        | U            | 0.14   | 1   | 10.3       | ug/L  |
| 65794-96-9 | 3+4-Methylphenols           | 1        | U            | 0.39   | 1   | 10.3       | ug/L  |
| 621-64-7   | n-Nitroso-di-n-propylamine  | 1        | U            | 0.21   | 1   | 10.3       | ug/L  |
| 67-72-1    | Hexachloroethane            | 1        | U            | 0.26   | 1   | 10.3       | ug/L  |
| 98-95-3    | Nitrobenzene                | 1        | U            | 0.7    | 1   | 10.3       | ug/L  |
| 78-59-1    | Isophorone                  | 1        | U            | 0.31   | 1   | 10.3       | ug/L  |
| 88-75-5    | 2-Nitrophenol               | 1        | U            | 0.54   | 1   | 10.3       | ug/L  |
| 105-67-9   | 2,4-Dimethylphenol          | 1        | U            | 0.73   | 1   | 10.3       | ug/L  |
| 111-91-1   | bis(2-Chloroethoxy)methane  | 1        | U            | 0.57   | 1   | 10.3       | ug/L  |
| 120-83-2   | 2,4-Dichlorophenol          | 1        | U            | 0.68   | 1   | 10.3       | ug/L  |
| 91-20-3    | Naphthalene                 | 1        | U            | 0.12   | 1   | 10.3       | ug/L  |
| 106-47-8   | 4-Chloroaniline             | 1        | U            | 1      | 1   | 10.3       | ug/L  |
| 87-68-3    | Hexachlorobutadiene         | 1        | U            | 0.26   | 1   | 10.3       | ug/L  |
| 105-60-2   | Caprolactam                 | 1        | U            | 1      | 1   | 10.3       | ug/L  |
| 59-50-7    | 4-Chloro-3-methylphenol     | 1        | U            | 0.41   | 1   | 10.3       | ug/L  |
| 91-57-6    | 2-Methylnaphthalene         | 1        | U            | 0.33   | 1   | 10.3       | ug/L  |
| 77-47-4    | Hexachlorocyclopentadiene   | 1        | U            | 0.25   | 1   | 10.3       | ug/L  |
| 88-06-2    | 2,4,6-Trichlorophenol       | 1        | U            | 0.58   | 1   | 10.3       | ug/L  |
| 95-95-4    | 2,4,5-Trichlorophenol       | 1        | U            | 0.41   | 1   | 10.3       | ug/L  |
| 92-52-4    | 1,1-Biphenyl                | 1        | U            | 0.15   | 1   | 10.3       | ug/L  |
| 91-58-7    | 2-Chloronaphthalene         | 1        | U            | 0.16   | 1   | 10.3       | ug/L  |
| 88-74-4    | 2-Nitroaniline              | 1        | U            | 0.51   | 1   | 10.3       | ug/L  |
| 131-11-3   | Dimethylphthalate           | 8.1      | J            | 0.23   | 1   | 10.3       | ug/L  |
| 208-96-8   | Acenaphthylene              | 1        | U            | 0.72   | 1   | 10.3       | ug/L  |
| 606-20-2   | 2,6-Dinitrotoluene          | 1        | U            | 0.33   | 1   | 10.3       | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-1 SDG No.: F2981

Lab Sample ID: F2981-01 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 970 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE086683.D 1 07/02/14 07/05/14 PB77579

| BE086683.D | 1                          | 07/02/14 | 07        | /05/14 |     | PB77579    |       |
|------------|----------------------------|----------|-----------|--------|-----|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 1        | U         | 1      | 1   | 10.3       | ug/L  |
| 83-32-9    | Acenaphthene               | 1        | U         | 0.22   | 1   | 10.3       | ug/L  |
| 51-28-5    | 2,4-Dinitrophenol          | 8.2      | U         | 2.2    | 8.2 | 10.3       | ug/L  |
| 100-02-7   | 4-Nitrophenol              | 5.2      | U         | 2.1    | 5.2 | 10.3       | ug/L  |
| 132-64-9   | Dibenzofuran               | 1        | U         | 0.25   | 1   | 10.3       | ug/L  |
| 121-14-2   | 2,4-Dinitrotoluene         | 1        | U         | 1      | 1   | 10.3       | ug/L  |
| 84-66-2    | Diethylphthalate           | 1        | U         | 0.39   | 1   | 10.3       | ug/L  |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 1        | U         | 0.22   | 1   | 10.3       | ug/L  |
| 86-73-7    | Fluorene                   | 1        | U         | 0.32   | 1   | 10.3       | ug/L  |
| 100-01-6   | 4-Nitroaniline             | 2.1      | U         | 1.4    | 2.1 | 10.3       | ug/L  |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 2.1      | U         | 0.76   | 2.1 | 10.3       | ug/L  |
| 86-30-6    | n-Nitrosodiphenylamine     | 1        | U         | 0.62   | 1   | 10.3       | ug/L  |
| 101-55-3   | 4-Bromophenyl-phenylether  | 1        | U         | 0.24   | 1   | 10.3       | ug/L  |
| 118-74-1   | Hexachlorobenzene          | 1        | U         | 0.19   | 1   | 10.3       | ug/L  |
| 1912-24-9  | Atrazine                   | 1        | U         | 0.41   | 1   | 10.3       | ug/L  |
| 87-86-5    | Pentachlorophenol          | 1        | U         | 1      | 1   | 10.3       | ug/L  |
| 85-01-8    | Phenanthrene               | 1        | U         | 0.27   | 1   | 10.3       | ug/L  |
| 120-12-7   | Anthracene                 | 1        | U         | 0.16   | 1   | 10.3       | ug/L  |
| 86-74-8    | Carbazole                  | 1        | U         | 0.23   | 1   | 10.3       | ug/L  |
| 84-74-2    | Di-n-butylphthalate        | 1        | U         | 1      | 1   | 10.3       | ug/L  |
| 206-44-0   | Fluoranthene               | 1        | U         | 0.41   | 1   | 10.3       | ug/L  |
| 129-00-0   | Pyrene                     | 1        | U         | 0.21   | 1   | 10.3       | ug/L  |
| 85-68-7    | Butylbenzylphthalate       | 1        | U         | 0.2    | 1   | 10.3       | ug/L  |
| 91-94-1    | 3,3-Dichlorobenzidine      | 1        | U         | 1      | 1   | 10.3       | ug/L  |
| 56-55-3    | Benzo(a)anthracene         | 1        | U         | 0.16   | 1   | 10.3       | ug/L  |
| 218-01-9   | Chrysene                   | 1        | U         | 0.19   | 1   | 10.3       | ug/L  |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 1        | U         | 0.16   | 1   | 10.3       | ug/L  |
| 117-84-0   | Di-n-octyl phthalate       | 1        | U         | 0.53   | 1   | 10.3       | ug/L  |
| 205-99-2   | Benzo(b)fluoranthene       | 1        | U         | 0.3    | 1   | 10.3       | ug/L  |
| 207-08-9   | Benzo(k)fluoranthene       | 1        | U         | 0.19   | 1   | 10.3       | ug/L  |
| 50-32-8    | Benzo(a)pyrene             | 1        | U         | 0.14   | 1   | 10.3       | ug/L  |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 1        | U         | 0.15   | 1   | 10.3       | ug/L  |
| 53-70-3    | Dibenzo(a,h)anthracene     | 1        | U         | 0.43   | 1   | 10.3       | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-1 SDG No.: F2981

Lab Sample ID: F2981-01 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 970 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE086683.D 1 07/02/14 07/05/14 PB77579

| BE000005.B    | -                                  | ,,,, <b>, _</b> ,, , . |        | 077       | 00,1.    |     | 15,,0,,    |          |
|---------------|------------------------------------|------------------------|--------|-----------|----------|-----|------------|----------|
| CAS Number    | Parameter                          |                        | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
| 191-24-2      | Benzo(g,h,i)perylene               |                        | 1      | U         | 0.3      | 1   | 10.3       | ug/L     |
| 95-94-3       | 1,2,4,5-Tetrachlorobenzene         |                        | 1      | U         | 0.21     | 1   | 10.3       | ug/L     |
| 58-90-2       | 2,3,4,6-Tetrachlorophenol          |                        | 1      | U         | 0.21     | 1   | 10.3       | ug/L     |
| SURROGATES    |                                    |                        |        |           |          |     |            |          |
| 367-12-4      | 2-Fluorophenol                     |                        | 73.6   |           | 10 - 130 | )   | 49%        | SPK: 150 |
| 13127-88-3    | Phenol-d6                          |                        | 51.3   |           | 10 - 130 | )   | 34%        | SPK: 150 |
| 4165-60-0     | Nitrobenzene-d5                    |                        | 84.1   |           | 36 - 131 |     | 84%        | SPK: 100 |
| 321-60-8      | 2-Fluorobiphenyl                   |                        | 86     |           | 39 - 131 |     | 86%        | SPK: 100 |
| 118-79-6      | 2,4,6-Tribromophenol               |                        | 150    |           | 25 - 155 | 5   | 97%        | SPK: 150 |
| 1718-51-0     | Terphenyl-d14                      |                        | 74.4   |           | 23 - 130 | )   | 74%        | SPK: 100 |
| INTERNAL STA  | NDARDS                             |                        |        |           |          |     |            |          |
| 3855-82-1     | 1,4-Dichlorobenzene-d4             |                        | 174216 | 6.74      |          |     |            |          |
| 1146-65-2     | Naphthalene-d8                     |                        | 764825 | 8.31      |          |     |            |          |
| 15067-26-2    | Acenaphthene-d10                   |                        | 374379 | 10.45     |          |     |            |          |
| 1517-22-2     | Phenanthrene-d10                   |                        | 578662 | 12.25     |          |     |            |          |
| 1719-03-5     | Chrysene-d12                       |                        | 513778 | 15.47     |          |     |            |          |
| 1520-96-3     | Perylene-d12                       |                        | 472057 | 17.08     |          |     |            |          |
| TENTATIVE IDI | ENTIFIED COMPOUNDS                 |                        |        |           |          |     |            |          |
| 000994-05-8   | Butane, 2-methoxy-2-methyl-        |                        | 91.9   | J         |          |     | 1.49       | ug/L     |
|               | unknown2.67                        |                        | 5.7    | J         |          |     | 2.67       | ug/L     |
| 219667-42-2   | 2,3-Dimethyl-3-decanol             |                        | 6.5    | J         |          |     | 3.08       | ug/L     |
| 000123-42-2   | 2-Pentanone, 4-hydroxy-4-methyl-   |                        | 7.8    | A         |          |     | 4.41       | ug/L     |
|               | unknown6.46                        |                        | 85     | J         |          |     | 6.46       | ug/L     |
| 074630-67-4   | 5-Undecene, 3-methyl-, (E)-        |                        | 2.4    | J         |          |     | 7.8        | ug/L     |
| 103385-97-3   | Tricyclo[5.2.1.0(2,6)]decan-10-one |                        | 2.7    | J         |          |     | 9.24       | ug/L     |
| 000057-10-3   | n-Hexadecanoic acid                |                        | 2.3    | J         |          |     | 13.02      | ug/L     |
| 031158-91-5   | Hexadecanoic acid, 1,1-dimethyleth | Ł                      | 2.9    | J         |          |     | 14.11      | ug/L     |



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx 07/01/14

Client Sample ID: GW-1 SDG No.: F2981

Lab Sample ID: F2981-01 Matrix:

SW8270 Analytical Method:

% Moisture:

Date Received:

Water 100

Sample Wt/Vol:

970 Units: mL Final Vol:

1000 uL

Soil Aliquot Vol:

uL

Test:

SVOCMS Group1

Extraction Type:

Decanted:

N

Level:

LOW

Injection Volume:

GPC Factor:

1.0

GPC Cleanup:

Ν

PH:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PB77579

BE086683.D

1

07/02/14

07/05/14

**CAS Number** 

**Parameter** 

Conc.

Qualifier

**MDL** 

LOD

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client:Dvirka & BartilucciDate Collected:06/30/14Project:NYCSCA Unionport Road BronxDate Received:07/01/14Client Sample ID:GW-1SDG No.:F2981

Lab Sample ID:F2981-01Matrix:WaterAnalytical Method:SW8260% Moisture:100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016972.D 1 07/03/14 VN070314

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-87-3    | Chloromethane                  | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-83-9    | Bromomethane                   | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-00-3    | Chloroethane                   | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 67-64-1    | Acetone                        | 1     | U         | 0.5  | 1   | 5          | ug/L  |
| 75-15-0    | Carbon Disulfide               | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 39.6  |           | 0.35 | 0.5 | 1          | ug/L  |
| 79-20-9    | Methyl Acetate                 | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-09-2    | Methylene Chloride             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 110-82-7   | Cyclohexane                    | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-93-3    | 2-Butanone                     | 2.5   | U         | 1.3  | 2.5 | 5          | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-97-5    | Bromochloromethane             | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 67-66-3    | Chloroform                     | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-87-2   | Methylcyclohexane              | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-43-2    | Benzene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 79-01-6    | Trichloroethene                | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-27-4    | Bromodichloromethane           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1     | U         | 1    | 1   | 5          | ug/L  |
| 108-88-3   | Toluene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |



 Client:
 Dvirka & Bartilucci
 Date Collected:
 06/30/14

 Project:
 NYCSCA Unionport Road Bronx
 Date Received:
 07/01/14

Client Sample ID: GW-1 SDG No.: F2981
Lab Sample ID: F2981-01 Matrix: Water
Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016972.D 1 07/03/14 VN070314

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|-----|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 79-00-5     | 1,1,2-Trichloroethane       | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 591-78-6    | 2-Hexanone                  | 2.5   | U         | 1.9      | 2.5 | 5          | ug/L    |
| 124-48-1    | Dibromochloromethane        | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 106-93-4    | 1,2-Dibromoethane           | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 127-18-4    | Tetrachloroethene           | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 108-90-7    | Chlorobenzene               | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 100-41-4    | Ethyl Benzene               | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 179601-23-1 | m/p-Xylenes                 | 0.4   | U         | 0.4      | 0.4 | 2          | ug/L    |
| 95-47-6     | o-Xylene                    | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 100-42-5    | Styrene                     | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 75-25-2     | Bromoform                   | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 98-82-8     | Isopropylbenzene            | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 103-65-1    | n-propylbenzene             | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 98-06-6     | tert-Butylbenzene           | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 135-98-8    | sec-Butylbenzene            | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 99-87-6     | p-Isopropyltoluene          | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 106-46-7    | 1,4-Dichlorobenzene         | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 104-51-8    | n-Butylbenzene              | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 95-50-1     | 1,2-Dichlorobenzene         | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 91-20-3     | Naphthalene                 | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 0.2   | U         | 0.2      | 0.2 | 1          | ug/L    |
| 123-91-1    | 1,4-Dioxane                 | 100   | U         | 100      | 100 | 100        | ug/L    |
| SURROGATES  |                             |       |           |          |     |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 47.7  |           | 61 - 141 |     | 95%        | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 44.1  |           | 69 - 133 | 3   | 88%        | SPK: 50 |

Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-1 SDG No.: F2981

Lab Sample ID: F2981-01 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016972.D 1 07/03/14 VN070314

| CAS Number   | Parameter                   | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units   |
|--------------|-----------------------------|--------|-----------|----------|-----|------------|---------|
| 2037-26-5    | Toluene-d8                  | 47.6   |           | 65 - 126 |     | 95%        | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene        | 60     |           | 58 - 135 |     | 120%       | SPK: 50 |
| INTERNAL ST  | ANDARDS                     |        |           |          |     |            |         |
| 363-72-4     | Pentafluorobenzene          | 242114 | 7.87      |          |     |            |         |
| 540-36-3     | 1,4-Difluorobenzene         | 393553 | 8.79      |          |     |            |         |
| 3114-55-4    | Chlorobenzene-d5            | 422201 | 11.61     |          |     |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      | 195410 | 13.56     |          |     |            |         |
| TENTATIVE II | DENTIFIED COMPOUNDS         |        |           |          |     |            |         |
| 75-65-0      | Tert butyl alcohol          | 83.6   | J         |          |     | 4.95       | ug/L    |
| 108-20-3     | Diisopropyl ether           | 2.2    | J         |          |     | 6.18       | ug/L    |
| 000637-92-3  | Propane, 2-ethoxy-2-methyl- | 61.9   | J         |          |     | 6.81       | ug/L    |
| 000994-05-8  | Butane, 2-methoxy-2-methyl- | 5.2    | J         |          |     | 8.44       | ug/L    |
|              | unknown10.13                | 9.1    | J         |          |     | 10.13      | ug/L    |
|              | unknown10.45                | 8.4    | J         |          |     | 10.45      | ug/L    |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: TRIPBKLANK-6-30-14 SDG No.: F2981

Lab Sample ID: F2981-02 Matrix: Water
Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL
Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016971.D 1 07/03/14 VN070314

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-87-3    | Chloromethane                  | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-83-9    | Bromomethane                   | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-00-3    | Chloroethane                   | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 67-64-1    | Acetone                        | 1     | U         | 0.5  | 1   | 5          | ug/L  |
| 75-15-0    | Carbon Disulfide               | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 0.5   | U         | 0.35 | 0.5 | 1          | ug/L  |
| 79-20-9    | Methyl Acetate                 | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 75-09-2    | Methylene Chloride             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 110-82-7   | Cyclohexane                    | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-93-3    | 2-Butanone                     | 2.5   | U         | 1.3  | 2.5 | 5          | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 74-97-5    | Bromochloromethane             | 0.5   | U         | 0.2  | 0.5 | 1          | ug/L  |
| 67-66-3    | Chloroform                     | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-87-2   | Methylcyclohexane              | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 71-43-2    | Benzene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 79-01-6    | Trichloroethene                | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 75-27-4    | Bromodichloromethane           | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 1     | U         | 1    | 1   | 5          | ug/L  |
| 108-88-3   | Toluene                        | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 0.2   | U         | 0.2  | 0.2 | 1          | ug/L  |



 Client:
 Dvirka & Bartilucci
 Date Collected:
 06/30/14

 Project:
 NYCSCA Unionport Road Bronx
 Date Received:
 07/01/14

Client Sample ID:TRIPBKLANK-6-30-14SDG No.:F2981Lab Sample ID:F2981-02Matrix:WaterAnalytical Method:SW8260% Moisture:100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016971.D 1 07/03/14 VN070314

| , , , , , , , , , , , , , , , , , |                             |       | *****     |         |     |            |         |
|-----------------------------------|-----------------------------|-------|-----------|---------|-----|------------|---------|
| CAS Number                        | Parameter                   | Conc. | Qualifier | MDL     | LOD | LOQ / CRQL | Units   |
| 10061-01-5                        | cis-1,3-Dichloropropene     | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 79-00-5                           | 1,1,2-Trichloroethane       | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 591-78-6                          | 2-Hexanone                  | 2.5   | U         | 1.9     | 2.5 | 5          | ug/L    |
| 124-48-1                          | Dibromochloromethane        | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 106-93-4                          | 1,2-Dibromoethane           | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 127-18-4                          | Tetrachloroethene           | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 108-90-7                          | Chlorobenzene               | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 100-41-4                          | Ethyl Benzene               | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 179601-23-1                       | m/p-Xylenes                 | 0.4   | U         | 0.4     | 0.4 | 2          | ug/L    |
| 95-47-6                           | o-Xylene                    | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 100-42-5                          | Styrene                     | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 75-25-2                           | Bromoform                   | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 98-82-8                           | Isopropylbenzene            | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 79-34-5                           | 1,1,2,2-Tetrachloroethane   | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 103-65-1                          | n-propylbenzene             | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 108-67-8                          | 1,3,5-Trimethylbenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 98-06-6                           | tert-Butylbenzene           | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 95-63-6                           | 1,2,4-Trimethylbenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 135-98-8                          | sec-Butylbenzene            | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 99-87-6                           | p-Isopropyltoluene          | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 541-73-1                          | 1,3-Dichlorobenzene         | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 106-46-7                          | 1,4-Dichlorobenzene         | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 104-51-8                          | n-Butylbenzene              | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 95-50-1                           | 1,2-Dichlorobenzene         | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 96-12-8                           | 1,2-Dibromo-3-Chloropropane | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 120-82-1                          | 1,2,4-Trichlorobenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 91-20-3                           | Naphthalene                 | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 87-61-6                           | 1,2,3-Trichlorobenzene      | 0.2   | U         | 0.2     | 0.2 | 1          | ug/L    |
| 123-91-1<br>SURROGATES            | 1,4-Dioxane                 | 100   | U         | 100     | 100 | 100        | ug/L    |
| 17060-07-0                        | 1,2-Dichloroethane-d4       | 48.8  |           | 61 - 14 | 1   | 98%        | SPK: 50 |
| 1868-53-7                         | Dibromofluoromethane        | 43.8  |           | 69 - 13 | 3   | 88%        | SPK: 50 |



284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

### **Report of Analysis**

Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: TRIPBKLANK-6-30-14

Lab Sample ID: F2981-02

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol: uL

GC Column: RXI-624 ID: 0.25

Level: LOW

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Matrix:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VOCMS Group1

06/30/14

07/01/14

F2981

Water

100

5000

uL

VN016971.D

1

07/03/14

VN070314

| CAS Number   | Parameter              | Conc.  | Qualifier | MDL LO   | D LOQ / CRQL | Units   |
|--------------|------------------------|--------|-----------|----------|--------------|---------|
| 2037-26-5    | Toluene-d8             | 47.2   |           | 65 - 126 | 94%          | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 59.2   |           | 58 - 135 | 118%         | SPK: 50 |
| INTERNAL ST. | ANDARDS                |        |           |          |              |         |
| 363-72-4     | Pentafluorobenzene     | 236869 | 7.87      |          |              |         |
| 540-36-3     | 1,4-Difluorobenzene    | 389070 | 8.79      |          |              |         |
| 3114-55-4    | Chlorobenzene-d5       | 426842 | 11.61     |          |              |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 190149 | 13.56     |          |              |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Level (low/med):

7440-62-2

7440-66-6

Vanadium

Zinc

12

40.2

low

### **Report of Analysis**

% Solid:

ug/L

ug/L

07/02/14

07/02/14

07/04/14

07/04/14

SW6020

SW6020

0

Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-13 SDG No.: F2981

Lab Sample ID: F2981-03 Matrix: WATER

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ / | CRQL Uni | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|-------|----------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.31  | J    | 1  | 0.14 | 1.0 | 2     | ug/L     | 07/02/14      | 07/04/14  | SW6020   |
| 7440-38-2 | Arsenic   | 3.3   |      | 1  | 0.18 | 0.5 | 1     | ug/L     | 07/02/14      | 07/04/14  | SW6020   |
| 7440-39-3 | Barium    | 117   |      | 1  | 0.1  | 5.0 | 10    | ug/L     | 07/02/14      | 07/04/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | J    | 1  | 0.09 | 0.5 | 1     | ug/L     | 07/02/14      | 07/04/14  | SW6020   |
| 7440-43-9 | Cadmium   | 0.14  | J    | 1  | 0.13 | 0.5 | 1     | ug/L     | 07/02/14      | 07/04/14  | SW6020   |
| 7440-47-3 | Chromium  | 13.1  | N*   | 1  | 0.04 | 1.0 | 2     | ug/L     | 07/02/14      | 07/04/14  | SW6020   |
| 7440-48-4 | Cobalt    | 6     |      | 1  | 0.05 | 0.5 | 1     | ug/L     | 07/02/14      | 07/04/14  | SW6020   |
| 7440-50-8 | Copper    | 55.6  | *    | 1  | 0.04 | 1.0 | 2     | ug/L     | 07/02/14      | 07/04/14  | SW6020   |
| 7439-92-1 | Lead      | 20.4  | N*   | 1  | 0.04 | 0.5 | 1     | ug/L     | 07/02/14      | 07/04/14  | SW6020   |
| 7439-96-5 | Manganese | 3550  |      | 1  | 0.05 | 0.5 | 1     | ug/L     | 07/02/14      | 07/04/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1 | 0.2   | ug/L     | 07/02/14      | 07/03/14  | SW7470A  |
| 7440-02-0 | Nickel    | 18.4  | N*   | 1  | 0.06 | 0.5 | 1     | ug/L     | 07/02/14      | 07/04/14  | SW6020   |
| 7782-49-2 | Selenium  | 2.4   | J    | 1  | 0.7  | 2.5 | 5     | ug/L     | 07/02/14      | 07/04/14  | SW6020   |
| 7440-22-4 | Silver    | 0.072 | J    | 1  | 0.03 | 0.5 | 1     | ug/L     | 07/02/14      | 07/04/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.11  | J    | 1  | 0.02 | 0.5 | 1     | ug/L     | 07/02/14      | 07/04/14  | SW6020   |

0.15

0.09

2.5

5

2

Color Before: Brown Clarity Before: Cloudy Texture:

Color After: Yellow Clarity After: Clear Artifacts:

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Sample Wt/Vol:

Final Vol:

10000

иL

### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/30/14 Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14 SDG No.: Client Sample ID: GW-13 F2981 Lab Sample ID: F2981-03 Matrix: Water

Analytical Method: SW8082A % Moisture: 100 Decanted:

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume:

mL

GPC Factor: 1.0 PH:

1000

Units:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PC017847.D 1 07/02/14 07/03/14 PB77584

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD | LOQ / CRQL Units |         |
|------------|----------------------|-------|-----------|----------|-----|------------------|---------|
| TARGETS    |                      |       |           |          |     |                  |         |
| 12674-11-2 | Aroclor-1016         | 0.1   | U         | 0.096    | 0.1 | 0.5              | ug/L    |
| 11104-28-2 | Aroclor-1221         | 0.1   | U         | 0.1      | 0.1 | 0.5              | ug/L    |
| 11141-16-5 | Aroclor-1232         | 0.1   | U         | 0.1      | 0.1 | 0.5              | ug/L    |
| 53469-21-9 | Aroclor-1242         | 0.1   | U         | 0.089    | 0.1 | 0.5              | ug/L    |
| 12672-29-6 | Aroclor-1248         | 0.1   | U         | 0.1      | 0.1 | 0.5              | ug/L    |
| 11097-69-1 | Aroclor-1254         | 0.1   | U         | 0.044    | 0.1 | 0.5              | ug/L    |
| 11096-82-5 | Aroclor-1260         | 0.1   | U         | 0.081    | 0.1 | 0.5              | ug/L    |
| SURROGATES |                      |       |           |          |     |                  |         |
| 877-09-8   | Tetrachloro-m-xylene | 12.6  |           | 35 - 137 | 7   | 63%              | SPK: 20 |
| 2051-24-3  | Decachlorobiphenyl   | 9.88  |           | 40 - 135 | 5   | 49%              | SPK: 20 |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-13 SDG No.: F2981
Lab Sample ID: F2981-03 Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 980 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE086684.D 1 07/02/14 07/05/14 PB77579

| CAS Number | Parameter                   | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|-----------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                             |       |           |      |     |            |       |
| 100-52-7   | Benzaldehyde                | 1     | U         | 0.79 | 1   | 10.2       | ug/L  |
| 108-95-2   | Phenol                      | 1     | U         | 0.21 | 1   | 10.2       | ug/L  |
| 111-44-4   | bis(2-Chloroethyl)ether     | 1     | U         | 0.56 | 1   | 10.2       | ug/L  |
| 95-57-8    | 2-Chlorophenol              | 1     | U         | 0.55 | 1   | 10.2       | ug/L  |
| 95-48-7    | 2-Methylphenol              | 1     | U         | 0.24 | 1   | 10.2       | ug/L  |
| 108-60-1   | 2,2-oxybis(1-Chloropropane) | 1     | U         | 0.17 | 1   | 10.2       | ug/L  |
| 98-86-2    | Acetophenone                | 1     | U         | 0.14 | 1   | 10.2       | ug/L  |
| 65794-96-9 | 3+4-Methylphenols           | 1     | U         | 0.39 | 1   | 10.2       | ug/L  |
| 621-64-7   | n-Nitroso-di-n-propylamine  | 1     | U         | 0.2  | 1   | 10.2       | ug/L  |
| 67-72-1    | Hexachloroethane            | 1     | U         | 0.26 | 1   | 10.2       | ug/L  |
| 98-95-3    | Nitrobenzene                | 1     | U         | 0.69 | 1   | 10.2       | ug/L  |
| 78-59-1    | Isophorone                  | 1     | U         | 0.31 | 1   | 10.2       | ug/L  |
| 88-75-5    | 2-Nitrophenol               | 1     | U         | 0.53 | 1   | 10.2       | ug/L  |
| 105-67-9   | 2,4-Dimethylphenol          | 7.7   | J         | 0.72 | 1   | 10.2       | ug/L  |
| 111-91-1   | bis(2-Chloroethoxy)methane  | 1     | U         | 0.56 | 1   | 10.2       | ug/L  |
| 120-83-2   | 2,4-Dichlorophenol          | 1     | U         | 0.67 | 1   | 10.2       | ug/L  |
| 91-20-3    | Naphthalene                 | 230   | E         | 0.12 | 1   | 10.2       | ug/L  |
| 106-47-8   | 4-Chloroaniline             | 1     | U         | 1    | 1   | 10.2       | ug/L  |
| 87-68-3    | Hexachlorobutadiene         | 1     | U         | 0.26 | 1   | 10.2       | ug/L  |
| 105-60-2   | Caprolactam                 | 1     | U         | 1    | 1   | 10.2       | ug/L  |
| 59-50-7    | 4-Chloro-3-methylphenol     | 1     | U         | 0.41 | 1   | 10.2       | ug/L  |
| 91-57-6    | 2-Methylnaphthalene         | 96.8  | E         | 0.33 | 1   | 10.2       | ug/L  |
| 77-47-4    | Hexachlorocyclopentadiene   | 1     | U         | 0.24 | 1   | 10.2       | ug/L  |
| 88-06-2    | 2,4,6-Trichlorophenol       | 1     | U         | 0.57 | 1   | 10.2       | ug/L  |
| 95-95-4    | 2,4,5-Trichlorophenol       | 1     | U         | 0.41 | 1   | 10.2       | ug/L  |
| 92-52-4    | 1,1-Biphenyl                | 3.7   | J         | 0.15 | 1   | 10.2       | ug/L  |
| 91-58-7    | 2-Chloronaphthalene         | 1     | U         | 0.16 | 1   | 10.2       | ug/L  |
| 88-74-4    | 2-Nitroaniline              | 1     | U         | 0.5  | 1   | 10.2       | ug/L  |
| 131-11-3   | Dimethylphthalate           | 3.6   | J         | 0.22 | 1   | 10.2       | ug/L  |
| 208-96-8   | Acenaphthylene              | 1     | U         | 0.71 | 1   | 10.2       | ug/L  |
| 606-20-2   | 2,6-Dinitrotoluene          | 1     | U         | 0.33 | 1   | 10.2       | ug/L  |
|            |                             |       |           |      |     |            |       |



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-13 SDG No.: F2981
Lab Sample ID: F2981-03 Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 980 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE086684.D 1 07/02/14 07/05/14 PB77579

| BE086684.D | 1                          | 07/02/14 | 07        | /05/14 |     | PB77579    |       |
|------------|----------------------------|----------|-----------|--------|-----|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 1        | U         | 1      | 1   | 10.2       | ug/L  |
| 83-32-9    | Acenaphthene               | 1        | U         | 0.21   | 1   | 10.2       | ug/L  |
| 51-28-5    | 2,4-Dinitrophenol          | 8.2      | U         | 2.1    | 8.2 | 10.2       | ug/L  |
| 100-02-7   | 4-Nitrophenol              | 5.1      | U         | 2      | 5.1 | 10.2       | ug/L  |
| 132-64-9   | Dibenzofuran               | 1        | U         | 0.24   | 1   | 10.2       | ug/L  |
| 121-14-2   | 2,4-Dinitrotoluene         | 1        | U         | 1      | 1   | 10.2       | ug/L  |
| 84-66-2    | Diethylphthalate           | 1        | U         | 0.39   | 1   | 10.2       | ug/L  |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 1        | U         | 0.21   | 1   | 10.2       | ug/L  |
| 86-73-7    | Fluorene                   | 1        | U         | 0.32   | 1   | 10.2       | ug/L  |
| 100-01-6   | 4-Nitroaniline             | 2        | U         | 1.4    | 2   | 10.2       | ug/L  |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 2        | U         | 0.76   | 2   | 10.2       | ug/L  |
| 86-30-6    | n-Nitrosodiphenylamine     | 1        | U         | 0.61   | 1   | 10.2       | ug/L  |
| 101-55-3   | 4-Bromophenyl-phenylether  | 1        | U         | 0.23   | 1   | 10.2       | ug/L  |
| 118-74-1   | Hexachlorobenzene          | 1        | U         | 0.18   | 1   | 10.2       | ug/L  |
| 1912-24-9  | Atrazine                   | 1        | U         | 0.41   | 1   | 10.2       | ug/L  |
| 87-86-5    | Pentachlorophenol          | 1        | U         | 1      | 1   | 10.2       | ug/L  |
| 85-01-8    | Phenanthrene               | 1        | U         | 0.27   | 1   | 10.2       | ug/L  |
| 120-12-7   | Anthracene                 | 1        | U         | 0.16   | 1   | 10.2       | ug/L  |
| 86-74-8    | Carbazole                  | 1        | U         | 0.22   | 1   | 10.2       | ug/L  |
| 84-74-2    | Di-n-butylphthalate        | 1        | U         | 1      | 1   | 10.2       | ug/L  |
| 206-44-0   | Fluoranthene               | 1        | U         | 0.41   | 1   | 10.2       | ug/L  |
| 129-00-0   | Pyrene                     | 1        | U         | 0.2    | 1   | 10.2       | ug/L  |
| 85-68-7    | Butylbenzylphthalate       | 1        | U         | 0.19   | 1   | 10.2       | ug/L  |
| 91-94-1    | 3,3-Dichlorobenzidine      | 1        | U         | 1      | 1   | 10.2       | ug/L  |
| 56-55-3    | Benzo(a)anthracene         | 1        | U         | 0.16   | 1   | 10.2       | ug/L  |
| 218-01-9   | Chrysene                   | 1        | U         | 0.18   | 1   | 10.2       | ug/L  |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 1        | U         | 0.16   | 1   | 10.2       | ug/L  |
| 117-84-0   | Di-n-octyl phthalate       | 1        | U         | 0.52   | 1   | 10.2       | ug/L  |
| 205-99-2   | Benzo(b)fluoranthene       | 1        | U         | 0.3    | 1   | 10.2       | ug/L  |
| 207-08-9   | Benzo(k)fluoranthene       | 1        | U         | 0.18   | 1   | 10.2       | ug/L  |
| 50-32-8    | Benzo(a)pyrene             | 1        | U         | 0.14   | 1   | 10.2       | ug/L  |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 1        | U         | 0.15   | 1   | 10.2       | ug/L  |
| 53-70-3    | Dibenzo(a,h)anthracene     | 1        | U         | 0.43   | 1   | 10.2       | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-13 SDG No.: F2981

Lab Sample ID: F2981-03 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 980 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BE086684.D 1 07/02/14 07/05/14 PB77579

| BE086684.D   | 1 0'                               | 7/02/14 |        | 07/       | 05/14    |     | PB77579    |          |
|--------------|------------------------------------|---------|--------|-----------|----------|-----|------------|----------|
| CAS Number   | Parameter                          |         | Conc.  | Qualifier | MDL      | LOD | LOQ / CRQL | Units    |
| 191-24-2     | Benzo(g,h,i)perylene               |         | 1      | U         | 0.3      | 1   | 10.2       | ug/L     |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene         |         | 1      | U         | 0.2      | 1   | 10.2       | ug/L     |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol          |         | 1      | U         | 0.2      | 1   | 10.2       | ug/L     |
| SURROGATES   |                                    |         |        |           |          |     |            |          |
| 367-12-4     | 2-Fluorophenol                     |         | 26.4   |           | 10 - 130 |     | 18%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                          |         | 29.4   |           | 10 - 130 |     | 20%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5                    |         | 74.8   |           | 36 - 131 |     | 75%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl                   |         | 87.7   |           | 39 - 131 |     | 88%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol               |         | 140    |           | 25 - 155 |     | 94%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14                      |         | 73.3   |           | 23 - 130 |     | 73%        | SPK: 100 |
| INTERNAL STA | ANDARDS                            |         |        |           |          |     |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4             |         | 175148 | 6.76      |          |     |            |          |
| 1146-65-2    | Naphthalene-d8                     |         | 730547 | 8.32      |          |     |            |          |
| 15067-26-2   | Acenaphthene-d10                   |         | 366271 | 10.45     |          |     |            |          |
| 1517-22-2    | Phenanthrene-d10                   |         | 556933 | 12.25     |          |     |            |          |
| 1719-03-5    | Chrysene-d12                       |         | 515418 | 15.47     |          |     |            |          |
| 1520-96-3    | Perylene-d12                       |         | 465566 | 17.08     |          |     |            |          |
| TENTATIVE II | DENTIFIED COMPOUNDS                |         |        |           |          |     |            |          |
| 000994-05-8  | Butane, 2-methoxy-2-methyl-        |         | 3.5    | J         |          |     | 1.49       | ug/L     |
| 000565-75-3  | Pentane, 2,3,4-trimethyl-          |         | 3.4    | J         |          |     | 2.39       | ug/L     |
| 000560-21-4  | Pentane, 2,3,3-trimethyl-          |         | 4.2    | J         |          |     | 2.5        | ug/L     |
| 000544-25-2  | 1,3,5-Cycloheptatriene             |         | 15     | J         |          |     | 2.72       | ug/L     |
| 061142-07-2  | Cyclopentene, 1-ethenyl-3-methylen |         | 99.8   | J         |          |     | 5.38       | ug/L     |
| 000098-82-8  | Benzene, (1-methylethyl)-          |         | 5.7    | J         |          |     | 5.71       | ug/L     |
| 000103-65-1  | Benzene, propyl-                   |         | 13.5   | J         |          |     | 6.09       | ug/L     |
| 000108-67-8  | Benzene, 1,3,5-trimethyl-          |         | 21.5   | J         |          |     | 6.3        | ug/L     |
| 000526-73-8  | Benzene, 1,2,3-trimethyl-          |         | 59.7   | J         |          |     | 6.6        | ug/L     |
| 000620-14-4  | Benzene, 1-ethyl-3-methyl-         |         | 20.4   | J         |          |     | 6.85       | ug/L     |
| 000496-11-7  | Indane                             |         | 12.2   | J         |          |     | 6.99       | ug/L     |
| 001074-43-7  | Benzene, 1-methyl-3-propyl-        |         | 5.2    | J         |          |     | 7.12       | ug/L     |
| 000934-74-7  | Benzene, 1-ethyl-3,5-dimethyl-     |         | 10.7   | J         |          |     | 7.18       | ug/L     |
| 001758-88-9  | Benzene, 2-ethyl-1,4-dimethyl-     |         | 4.6    | J         |          |     | 7.35       | ug/L     |



Client: Dvirka & Bartilucci Date Collected: 06/30/14 Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14 Client Sample ID: SDG No.: F2981 GW-13 Lab Sample ID: F2981-03 Matrix: Water SW8270 % Moisture: 100 Analytical Method:

Sample Wt/Vol: 980 Units: mL Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BE086684.D 1 07/02/14 07/05/14 PB77579

| CAS Number  | Parameter                          | Conc. | Qualifier | MDL | LOD | LOQ / CRQL | Units |
|-------------|------------------------------------|-------|-----------|-----|-----|------------|-------|
| 000527-84-4 | Benzene, 1-methyl-2-(1-methylethyl | 3.8   | J         |     |     | 7.38       | ug/L  |
| 000095-93-2 | Benzene, 1,2,4,5-tetramethyl-      | 5.6   | J         |     |     | 7.72       | ug/L  |
| 000527-53-7 | Benzene, 1,2,3,5-tetramethyl-      | 6.9   | J         |     |     | 7.76       | ug/L  |
| 002039-89-6 | Benzene 2-ethenyl-1 4-dimethyl-    | 9 7   | Ţ         |     |     | 8.01       | 11g/L |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-13DL SDG No.: F2981
Lab Sample ID: F2981-03DL Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 980 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072405.D 10 07/02/14 07/08/14 PB77579

| BI 072 103.B | 10                          | 07/02/11 | 07        | 700/11 |      | 1 1 1 1 1 1 1 |       |
|--------------|-----------------------------|----------|-----------|--------|------|---------------|-------|
| CAS Number   | Parameter                   | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL    | Units |
| TARGETS      |                             |          |           |        |      |               |       |
| 100-52-7     | Benzaldehyde                | 10.2     | UD        | 7.9    | 10.2 | 100           | ug/L  |
| 108-95-2     | Phenol                      | 10.2     | UD        | 2.1    | 10.2 | 100           | ug/L  |
| 111-44-4     | bis(2-Chloroethyl)ether     | 10.2     | UD        | 5.6    | 10.2 | 100           | ug/L  |
| 95-57-8      | 2-Chlorophenol              | 10.2     | UD        | 5.5    | 10.2 | 100           | ug/L  |
| 95-48-7      | 2-Methylphenol              | 10.2     | UD        | 2.4    | 10.2 | 100           | ug/L  |
| 108-60-1     | 2,2-oxybis(1-Chloropropane) | 10.2     | UD        | 1.7    | 10.2 | 100           | ug/L  |
| 98-86-2      | Acetophenone                | 10.2     | UD        | 1.4    | 10.2 | 100           | ug/L  |
| 65794-96-9   | 3+4-Methylphenols           | 10.2     | UD        | 3.9    | 10.2 | 100           | ug/L  |
| 621-64-7     | n-Nitroso-di-n-propylamine  | 10.2     | UD        | 2      | 10.2 | 100           | ug/L  |
| 67-72-1      | Hexachloroethane            | 10.2     | UD        | 2.6    | 10.2 | 100           | ug/L  |
| 98-95-3      | Nitrobenzene                | 10.2     | UD        | 6.9    | 10.2 | 100           | ug/L  |
| 78-59-1      | Isophorone                  | 10.2     | UD        | 3.1    | 10.2 | 100           | ug/L  |
| 88-75-5      | 2-Nitrophenol               | 10.2     | UD        | 5.3    | 10.2 | 100           | ug/L  |
| 105-67-9     | 2,4-Dimethylphenol          | 10.2     | UD        | 7.2    | 10.2 | 100           | ug/L  |
| 111-91-1     | bis(2-Chloroethoxy)methane  | 10.2     | UD        | 5.6    | 10.2 | 100           | ug/L  |
| 120-83-2     | 2,4-Dichlorophenol          | 10.2     | UD        | 6.7    | 10.2 | 100           | ug/L  |
| 91-20-3      | Naphthalene                 | 390      | D         | 1.2    | 10.2 | 100           | ug/L  |
| 106-47-8     | 4-Chloroaniline             | 10.2     | UD        | 10.2   | 10.2 | 100           | ug/L  |
| 87-68-3      | Hexachlorobutadiene         | 10.2     | UD        | 2.6    | 10.2 | 100           | ug/L  |
| 105-60-2     | Caprolactam                 | 10.2     | UD        | 10.2   | 10.2 | 100           | ug/L  |
| 59-50-7      | 4-Chloro-3-methylphenol     | 10.2     | UD        | 4.1    | 10.2 | 100           | ug/L  |
| 91-57-6      | 2-Methylnaphthalene         | 110      | D         | 3.3    | 10.2 | 100           | ug/L  |
| 77-47-4      | Hexachlorocyclopentadiene   | 10.2     | UD        | 2.4    | 10.2 | 100           | ug/L  |
| 88-06-2      | 2,4,6-Trichlorophenol       | 10.2     | UD        | 5.7    | 10.2 | 100           | ug/L  |
| 95-95-4      | 2,4,5-Trichlorophenol       | 10.2     | UD        | 4.1    | 10.2 | 100           | ug/L  |
| 92-52-4      | 1,1-Biphenyl                | 10.2     | UD        | 1.5    | 10.2 | 100           | ug/L  |
| 91-58-7      | 2-Chloronaphthalene         | 10.2     | UD        | 1.6    | 10.2 | 100           | ug/L  |
| 88-74-4      | 2-Nitroaniline              | 10.2     | UD        | 5      | 10.2 | 100           | ug/L  |
| 131-11-3     | Dimethylphthalate           | 10.2     | UD        | 2.2    | 10.2 | 100           | ug/L  |
| 208-96-8     | Acenaphthylene              | 10.2     | UD        | 7.1    | 10.2 | 100           | ug/L  |
| 606-20-2     | 2,6-Dinitrotoluene          | 10.2     | UD        | 3.3    | 10.2 | 100           | ug/L  |
|              |                             |          |           |        |      |               |       |



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID:GW-13DLSDG No.:F2981Lab Sample ID:F2981-03DLMatrix:WaterAnalytical Method:SW8270% Moisture:100

Sample Wt/Vol: 980 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF072405.D 10 07/02/14 07/08/14 PB77579

| BF072405.D | 10                         | 07/02/14 | 07.       | /08/14 |      | PB77579    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 10.2     | UD        | 10.2   | 10.2 | 100        | ug/L  |
| 83-32-9    | Acenaphthene               | 10.2     | UD        | 2.1    | 10.2 | 100        | ug/L  |
| 51-28-5    | 2,4-Dinitrophenol          | 81.6     | UD        | 21.4   | 81.6 | 100        | ug/L  |
| 100-02-7   | 4-Nitrophenol              | 51       | UD        | 20.4   | 51   | 100        | ug/L  |
| 132-64-9   | Dibenzofuran               | 10.2     | UD        | 2.4    | 10.2 | 100        | ug/L  |
| 121-14-2   | 2,4-Dinitrotoluene         | 10.2     | UD        | 10.2   | 10.2 | 100        | ug/L  |
| 84-66-2    | Diethylphthalate           | 10.2     | UD        | 3.9    | 10.2 | 100        | ug/L  |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 10.2     | UD        | 2.1    | 10.2 | 100        | ug/L  |
| 86-73-7    | Fluorene                   | 10.2     | UD        | 3.2    | 10.2 | 100        | ug/L  |
| 100-01-6   | 4-Nitroaniline             | 20.4     | UD        | 13.9   | 20.4 | 100        | ug/L  |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 20.4     | UD        | 7.6    | 20.4 | 100        | ug/L  |
| 86-30-6    | n-Nitrosodiphenylamine     | 10.2     | UD        | 6.1    | 10.2 | 100        | ug/L  |
| 101-55-3   | 4-Bromophenyl-phenylether  | 10.2     | UD        | 2.3    | 10.2 | 100        | ug/L  |
| 118-74-1   | Hexachlorobenzene          | 10.2     | UD        | 1.8    | 10.2 | 100        | ug/L  |
| 1912-24-9  | Atrazine                   | 10.2     | UD        | 4.1    | 10.2 | 100        | ug/L  |
| 87-86-5    | Pentachlorophenol          | 10.2     | UD        | 10.2   | 10.2 | 100        | ug/L  |
| 85-01-8    | Phenanthrene               | 10.2     | UD        | 2.7    | 10.2 | 100        | ug/L  |
| 120-12-7   | Anthracene                 | 10.2     | UD        | 1.6    | 10.2 | 100        | ug/L  |
| 86-74-8    | Carbazole                  | 10.2     | UD        | 2.2    | 10.2 | 100        | ug/L  |
| 84-74-2    | Di-n-butylphthalate        | 10.2     | UD        | 10.2   | 10.2 | 100        | ug/L  |
| 206-44-0   | Fluoranthene               | 10.2     | UD        | 4.1    | 10.2 | 100        | ug/L  |
| 129-00-0   | Pyrene                     | 10.2     | UD        | 2      | 10.2 | 100        | ug/L  |
| 85-68-7    | Butylbenzylphthalate       | 10.2     | UD        | 1.9    | 10.2 | 100        | ug/L  |
| 91-94-1    | 3,3-Dichlorobenzidine      | 10.2     | UD        | 10.2   | 10.2 | 100        | ug/L  |
| 56-55-3    | Benzo(a)anthracene         | 10.2     | UD        | 1.6    | 10.2 | 100        | ug/L  |
| 218-01-9   | Chrysene                   | 10.2     | UD        | 1.8    | 10.2 | 100        | ug/L  |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 10.2     | UD        | 1.6    | 10.2 | 100        | ug/L  |
| 117-84-0   | Di-n-octyl phthalate       | 10.2     | UD        | 5.2    | 10.2 | 100        | ug/L  |
| 205-99-2   | Benzo(b)fluoranthene       | 10.2     | UD        | 3      | 10.2 | 100        | ug/L  |
| 207-08-9   | Benzo(k)fluoranthene       | 10.2     | UD        | 1.8    | 10.2 | 100        | ug/L  |
| 50-32-8    | Benzo(a)pyrene             | 10.2     | UD        | 1.4    | 10.2 | 100        | ug/L  |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 10.2     | UD        | 1.5    | 10.2 | 100        | ug/L  |
| 53-70-3    | Dibenzo(a,h)anthracene     | 10.2     | UD        | 4.3    | 10.2 | 100        | ug/L  |



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-13DL SDG No.: F2981
Lab Sample ID: F2981-03DL Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 980 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF072405.D 10 07/02/14 07/08/14 PB77579

| CAS Number  | Parameter                  | Conc.  | Qualifier | MDL      | LOD  | LOQ / CRQL | Units    |
|-------------|----------------------------|--------|-----------|----------|------|------------|----------|
| 191-24-2    | Benzo(g,h,i)perylene       | 10.2   | UD        | 3        | 10.2 | 100        | ug/L     |
| 95-94-3     | 1,2,4,5-Tetrachlorobenzene | 10.2   | UD        | 2        | 10.2 | 100        | ug/L     |
| 58-90-2     | 2,3,4,6-Tetrachlorophenol  | 10.2   | UD        | 2        | 10.2 | 100        | ug/L     |
| SURROGATES  | F                          |        |           |          |      |            |          |
| 367-12-4    | 2-Fluorophenol             | 69     |           | 10 - 130 | )    | 46%        | SPK: 150 |
| 13127-88-3  | Phenol-d6                  | 44.8   |           | 10 - 130 | )    | 30%        | SPK: 150 |
| 4165-60-0   | Nitrobenzene-d5            | 91.8   |           | 36 - 131 |      | 92%        | SPK: 100 |
| 321-60-8    | 2-Fluorobiphenyl           | 100    |           | 39 - 131 |      | 101%       | SPK: 100 |
| 118-79-6    | 2,4,6-Tribromophenol       | 120    |           | 25 - 155 |      | 80%        | SPK: 150 |
| 1718-51-0   | Terphenyl-d14              | 99.9   |           | 23 - 130 | )    | 100%       | SPK: 100 |
| INTERNAL ST | ANDARDS                    |        |           |          |      |            |          |
| 3855-82-1   | 1,4-Dichlorobenzene-d4     | 56456  | 7.05      |          |      |            |          |
| 1146-65-2   | Naphthalene-d8             | 245510 | 8.63      |          |      |            |          |
| 15067-26-2  | Acenaphthene-d10           | 134713 | 10.79     |          |      |            |          |
| 1517-22-2   | Phenanthrene-d10           | 237322 | 12.62     |          |      |            |          |
| 1719-03-5   | Chrysene-d12               | 276471 | 15.88     |          |      |            |          |
| 1520-96-3   | Perylene-d12               | 254800 | 17.53     |          |      |            |          |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

<sup>\* =</sup> Values outside of QC limits

D = Dilution



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID:GW-13SDG No.:F2981Lab Sample ID:F2981-03Matrix:WaterAnalytical Method:SW8260% Moisture:100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN016973.D 50 07/03/14 VN070314

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|-----|------------|-------|
| TARGETS    |                                |       |           |      |     |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 10    | U         | 10   | 10  | 50         | ug/L  |
| 74-87-3    | Chloromethane                  | 10    | U         | 10   | 10  | 50         | ug/L  |
| 75-01-4    | Vinyl Chloride                 | 10    | U         | 10   | 10  | 50         | ug/L  |
| 74-83-9    | Bromomethane                   | 10    | U         | 10   | 10  | 50         | ug/L  |
| 75-00-3    | Chloroethane                   | 25    | U         | 10   | 25  | 50         | ug/L  |
| 75-69-4    | Trichlorofluoromethane         | 10    | U         | 10   | 10  | 50         | ug/L  |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 10    | U         | 10   | 10  | 50         | ug/L  |
| 75-35-4    | 1,1-Dichloroethene             | 10    | U         | 10   | 10  | 50         | ug/L  |
| 67-64-1    | Acetone                        | 50    | U         | 25   | 50  | 250        | ug/L  |
| 75-15-0    | Carbon Disulfide               | 10    | U         | 10   | 10  | 50         | ug/L  |
| 1634-04-4  | Methyl tert-butyl Ether        | 25    | U         | 17.5 | 25  | 50         | ug/L  |
| 79-20-9    | Methyl Acetate                 | 25    | U         | 10   | 25  | 50         | ug/L  |
| 75-09-2    | Methylene Chloride             | 10    | U         | 10   | 10  | 50         | ug/L  |
| 156-60-5   | trans-1,2-Dichloroethene       | 10    | U         | 10   | 10  | 50         | ug/L  |
| 75-34-3    | 1,1-Dichloroethane             | 10    | U         | 10   | 10  | 50         | ug/L  |
| 110-82-7   | Cyclohexane                    | 10    | U         | 10   | 10  | 50         | ug/L  |
| 78-93-3    | 2-Butanone                     | 130   | U         | 66   | 130 | 250        | ug/L  |
| 56-23-5    | Carbon Tetrachloride           | 10    | U         | 10   | 10  | 50         | ug/L  |
| 156-59-2   | cis-1,2-Dichloroethene         | 10    | U         | 10   | 10  | 50         | ug/L  |
| 74-97-5    | Bromochloromethane             | 25    | U         | 10   | 25  | 50         | ug/L  |
| 67-66-3    | Chloroform                     | 10    | U         | 10   | 10  | 50         | ug/L  |
| 71-55-6    | 1,1,1-Trichloroethane          | 10    | U         | 10   | 10  | 50         | ug/L  |
| 108-87-2   | Methylcyclohexane              | 130   |           | 10   | 10  | 50         | ug/L  |
| 71-43-2    | Benzene                        | 10    | U         | 10   | 10  | 50         | ug/L  |
| 107-06-2   | 1,2-Dichloroethane             | 10    | U         | 10   | 10  | 50         | ug/L  |
| 79-01-6    | Trichloroethene                | 10    | U         | 10   | 10  | 50         | ug/L  |
| 78-87-5    | 1,2-Dichloropropane            | 10    | U         | 10   | 10  | 50         | ug/L  |
| 75-27-4    | Bromodichloromethane           | 10    | U         | 10   | 10  | 50         | ug/L  |
| 108-10-1   | 4-Methyl-2-Pentanone           | 50    | U         | 50   | 50  | 250        | ug/L  |
| 108-88-3   | Toluene                        | 530   |           | 10   | 10  | 50         | ug/L  |
| 10061-02-6 | t-1,3-Dichloropropene          | 10    | U         | 10   | 10  | 50         | ug/L  |



Chlorobenzene

Ethyl Benzene

m/p-Xylenes

Bromoform

Isopropylbenzene

n-propylbenzene

tert-Butylbenzene

sec-Butylbenzene

p-Isopropyltoluene

1.3-Dichlorobenzene

1.4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

1,2-Dichloroethane-d4

Dibromofluoromethane

1,2-Dibromo-3-Chloropropane

n-Butvlbenzene

Naphthalene

1,4-Dioxane

1,1,2,2-Tetrachloroethane

1,3,5-Trimethylbenzene

1.2.4-Trimethylbenzene

o-Xylene

Styrene

108-90-7

100-41-4

95-47-6

100-42-5

75-25-2

98-82-8

79-34-5

103-65-1

108-67-8

98-06-6

95-63-6

135-98-8

99-87-6

541-73-1

106-46-7

104-51-8

95-50-1

96-12-8

120-82-1

91-20-3

87-61-6

123-91-1

**SURROGATES** 

17060-07-0

1868-53-7

179601-23-1

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

SDG No.: F2981 Client Sample ID: GW-13 F2981-03 Matrix: Lab Sample ID: Water 100 Analytical Method: SW8260 % Moisture:

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed

VN016973.D 50 07/03/14 VN070314 Qualifier **MDL CAS Number** Parameter Conc. LOD LOQ / CRQL Units 10061-01-5 cis-1,3-Dichloropropene 10 U 10 10 50 ug/L 79-00-5 1,1,2-Trichloroethane 10 50 U 10 10 ug/L 250 591-78-6 2-Hexanone 130 U 97 130 ug/L 124-48-1 Dibromochloromethane 10 U 10 10 50 ug/L 106-93-4 1,2-Dibromoethane 10 U 10 10 50 ug/L 127-18-4 Tetrachloroethene 10 U 10 10 50 ug/L

10

4600

13800

5100

10

10

130

10

400

750

10

30

10

10

10

10

10

10

500

10

5000

47.5

43.7

14.5

2600

IJ

U

U

U

U

J

J

U

U

U

U

U

U

IJ

U

10

10

20

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

5000

61 - 141

69 - 133

10

10

20

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

5000

50

50

100

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

5000

95%

87%

ug/L

SPK: 50

SPK: 50

Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-13 SDG No.: F2981

Lab Sample ID: F2981-03 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN016973.D 50 07/03/14 VN070314

MDL **CAS Number** Parameter Conc. Qualifier LOD LOQ / CRQL Units 2037-26-5 Toluene-d8 65 - 126 92% SPK: 50 46.1 4-Bromofluorobenzene 58 - 135 122% 460-00-4 60.8 SPK: 50 INTERNAL STANDARDS 247036 7.87 363-72-4 Pentafluorobenzene 1,4-Difluorobenzene 409453 8.79 540-36-3 3114-55-4 Chlorobenzene-d5 429320 11.61 13.56 3855-82-1 1.4-Dichlorobenzene-d4 218148 TENTATIVE IDENTIFIED COMPOUNDS 000078-78-4 Butane, 2-methyl-2500 J 2.88 ug/L 000107-83-5 Pentane, 2-methyl-560 J 4.81 ug/L J 5.29 000096-14-0 Pentane, 3-methyl-460 ug/L 000096-37-7 Cyclopentane, methyl-450 J 6.88 ug/L 000590-73-8 Hexane, 2,2-dimethyl-1400 J 8.42 ug/L 000565-75-3 Pentane, 2,3,4-trimethyl-560 J 9.72 ug/L 000560-21-4 Pentane, 2,3,3-trimethyl-890 J 9.85 ug/L 000620-14-4 Benzene, 1-ethyl-3-methyl-1900 J 12.86 ug/L 000611-14-3 Benzene, 1-ethyl-2-methyl-700 J 13.1 ug/L 000873-49-4 Benzene, cyclopropyl-430 J 13.76 ug/L

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/30/14 13:00

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

 Client Sample ID:
 GP-13(18-20)
 SDG No.:
 F2981

 Lab Sample ID:
 F2981-04
 Matrix:
 SOIL

% Solid: 86.7

| Parameter           | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CRQL | Units | Prep Date | Date Ana.      | Ana Met. |
|---------------------|-------|------|----|-------|-------|------------|-------|-----------|----------------|----------|
| Cyanide             | 0.143 | U    | 1  | 0.038 | 0.143 | 0.285      | mg/Kg | 07/02/14  | 07/02/14 16:28 | 9012B    |
| Hexavalent Chromium | 0.092 | J    | 1  | 0.092 | 0.229 | 0.458      | mg/Kg | 07/02/14  | 07/02/14 15:37 | 7196A    |

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/30/14 Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14 SDG No.: Client Sample ID: GP-13(18-20) F2981 Lab Sample ID: F2981-04 Matrix: **SOIL** 

Analytical Method: SW8151A % Moisture: 13.3 Decanted: Sample Wt/Vol: 30.09 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE010374.D 1 07/02/14 07/07/14 PB77580

| CAS Number | Parameter         | Conc. | Qualif | ier MDL  | LOD  | LOQ / CRQL Units |          |
|------------|-------------------|-------|--------|----------|------|------------------|----------|
| TARGETS    |                   |       |        |          |      |                  |          |
| 1918-00-9  | DICAMBA           | 19.2  | U      | 15.3     | 19.2 | 77               | ug/Kg    |
| 120-36-5   | DICHLORPROP       | 19.2  | U      | 14.2     | 19.2 | 77               | ug/Kg    |
| 94-75-7    | 2,4-D             | 19.2  | U      | 19.2     | 19.2 | 77               | ug/Kg    |
| 93-72-1    | 2,4,5-TP (Silvex) | 19.2  | U      | 12.5     | 19.2 | 77               | ug/Kg    |
| 93-76-5    | 2,4,5-T           | 19.2  | U      | 11.8     | 19.2 | 77               | ug/Kg    |
| 94-82-6    | 2,4-DB            | 19.2  | U      | 19.2     | 19.2 | 77               | ug/Kg    |
| 88-85-7    | DINOSEB           | 19.2  | U      | 19.2     | 19.2 | 77               | ug/Kg    |
| SURROGATES |                   |       |        |          |      |                  |          |
| 19719-28-9 | 2,4-DCAA          | 322   |        | 12 - 189 | )    | 65%              | SPK: 500 |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



#### **Report of Analysis**

Matrix:

SOIL

Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: SDG No.: GP-13(18-20) F2981

Lab Sample ID: % Solid: 86.7 Level (low/med): low

F2981-04

| Cas       | Parameter | Conc. | Qua. | DF | MDL   | LOD   | LOQ / CR | QL Units Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|-------|-------|----------|--------------------|-----------|----------|
| 7440-36-0 | Antimony  | 1.2   | UN   | 1  | 0.538 | 1.2   | 2.4      | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-38-2 | Arsenic   | 2.25  |      | 1  | 0.317 | 0.481 | 0.961    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-39-3 | Barium    | 33.8  |      | 1  | 0.384 | 2.4   | 4.81     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-41-7 | Beryllium | 0.54  |      | 1  | 0.058 | 0.144 | 0.288    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-43-9 | Cadmium   | 0.144 | U    | 1  | 0.058 | 0.144 | 0.288    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-47-3 | Chromium  | 14.9  |      | 1  | 0.125 | 0.24  | 0.481    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-48-4 | Cobalt    | 9.04  |      | 1  | 0.548 | 0.721 | 1.44     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-50-8 | Copper    | 27.1  |      | 1  | 0.308 | 0.481 | 0.961    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7439-92-1 | Lead      | 11.1  | N    | 1  | 0.115 | 0.288 | 0.577    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7439-96-5 | Manganese | 194   |      | 1  | 0.183 | 0.481 | 0.961    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7439-97-6 | Mercury   | 0.01  | J    | 1  | 0.005 | 0.005 | 0.011    | mg/Kg 07/02/14     | 07/03/14  | SW7471A  |
| 7440-02-0 | Nickel    | 24.8  |      | 1  | 0.442 | 0.961 | 1.92     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7782-49-2 | Selenium  | 0.716 | J    | 1  | 0.394 | 0.481 | 0.961    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-22-4 | Silver    | 0.791 |      | 1  | 0.144 | 0.24  | 0.481    | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-28-0 | Thallium  | 0.961 | U    | 1  | 0.26  | 0.961 | 1.92     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-62-2 | Vanadium  | 15.8  |      | 1  | 0.567 | 0.961 | 1.92     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |
| 7440-66-6 | Zinc      | 64.5  |      | 1  | 0.673 | 0.961 | 1.92     | mg/Kg 07/02/14     | 07/02/14  | SW6010   |

Color Before: Gray Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



Analytical Method:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

% Moisture:

13.3

Decanted:

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/30/14 Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14 SDG No.: Client Sample ID: GP-13(18-20) F2981 Lab Sample ID: F2981-04 Matrix: **SOIL** 

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume:

GPC Factor: 1.0 PH:

SW8082A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PC017866.D 1 07/02/14 07/04/14 PB77586

| CAS Number | Parameter            | Conc. | Qualifie | MDL      | LOD | LOQ / CF | RQL Units |
|------------|----------------------|-------|----------|----------|-----|----------|-----------|
| TARGETS    |                      |       |          |          |     |          |           |
| 12674-11-2 | Aroclor-1016         | 3.8   | U        | 3.8      | 3.8 | 19.6     | ug/kg     |
| 11104-28-2 | Aroclor-1221         | 3.8   | U        | 3.8      | 3.8 | 19.6     | ug/kg     |
| 11141-16-5 | Aroclor-1232         | 3.8   | U        | 3.8      | 3.8 | 19.6     | ug/kg     |
| 53469-21-9 | Aroclor-1242         | 3.8   | U        | 3.8      | 3.8 | 19.6     | ug/kg     |
| 12672-29-6 | Aroclor-1248         | 3.8   | U        | 3.8      | 3.8 | 19.6     | ug/kg     |
| 11097-69-1 | Aroclor-1254         | 3.8   | U        | 1.7      | 3.8 | 19.6     | ug/kg     |
| 11096-82-5 | Aroclor-1260         | 3.8   | U        | 3.8      | 3.8 | 19.6     | ug/kg     |
| SURROGATES |                      |       |          |          |     |          |           |
| 877-09-8   | Tetrachloro-m-xylene | 11.1  |          | 10 - 160 | 5   | 56%      | SPK: 20   |
| 2051-24-3  | Decachlorobiphenyl   | 12.8  |          | 60 - 12: | 5   | 64%      | SPK: 20   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Pesticide-TCL

Test:



Soil Aliquot Vol:

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

 Client Sample ID:
 GP-13(18-20)
 SDG No.:
 F2981

 Lab Sample ID:
 F2981-04
 Matrix:
 SOIL

Analytical Method: SW8081 % Moisture: 13.3 Decanted:

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Extraction Type: Injection Volume :

uL

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023271.D 1 07/02/14 07/03/14 PB77585

| CAS Number | Parameter            | Conc. | Qualifier | MDL      | LOD  | LOQ / CR | QL Units |
|------------|----------------------|-------|-----------|----------|------|----------|----------|
| TARGETS    |                      |       |           |          |      |          |          |
| 319-84-6   | alpha-BHC            | 0.38  | U         | 0.15     | 0.38 | 2        | ug/kg    |
| 319-85-7   | beta-BHC             | 0.38  | U         | 0.207    | 0.38 | 2        | ug/kg    |
| 319-86-8   | delta-BHC            | 0.38  | U         | 0.115    | 0.38 | 2        | ug/kg    |
| 58-89-9    | gamma-BHC (Lindane)  | 0.38  | U         | 0.173    | 0.38 | 2        | ug/kg    |
| 76-44-8    | Heptachlor           | 0.38  | U         | 0.161    | 0.38 | 2        | ug/kg    |
| 309-00-2   | Aldrin               | 0.38  | U         | 0.115    | 0.38 | 2        | ug/kg    |
| 1024-57-3  | Heptachlor epoxide   | 0.38  | U         | 0.184    | 0.38 | 2        | ug/kg    |
| 959-98-8   | Endosulfan I         | 0.38  | U         | 0.173    | 0.38 | 2        | ug/kg    |
| 60-57-1    | Dieldrin             | 0.38  | U         | 0.15     | 0.38 | 2        | ug/kg    |
| 72-55-9    | 4,4-DDE              | 0.38  | U         | 0.23     | 0.38 | 2        | ug/kg    |
| 72-20-8    | Endrin               | 0.38  | U         | 0.207    | 0.38 | 2        | ug/kg    |
| 33213-65-9 | Endosulfan II        | 0.38  | U         | 0.161    | 0.38 | 2        | ug/kg    |
| 72-54-8    | 4,4-DDD              | 0.38  | U         | 0.196    | 0.38 | 2        | ug/kg    |
| 1031-07-8  | Endosulfan Sulfate   | 0.38  | U         | 0.173    | 0.38 | 2        | ug/kg    |
| 50-29-3    | 4,4-DDT              | 0.38  | U         | 0.161    | 0.38 | 2        | ug/kg    |
| 72-43-5    | Methoxychlor         | 0.38  | U         | 0.196    | 0.38 | 2        | ug/kg    |
| 53494-70-5 | Endrin ketone        | 0.38  | U         | 0.15     | 0.38 | 2        | ug/kg    |
| 7421-93-4  | Endrin aldehyde      | 0.38  | U         | 0.173    | 0.38 | 2        | ug/kg    |
| 5103-71-9  | alpha-Chlordane      | 0.38  | U         | 0.161    | 0.38 | 2        | ug/kg    |
| 5103-74-2  | gamma-Chlordane      | 0.38  | U         | 0.15     | 0.38 | 2        | ug/kg    |
| 8001-35-2  | Toxaphene            | 3.8   | U         | 3.8      | 3.8  | 19.6     | ug/kg    |
| SURROGATES |                      |       |           |          |      |          |          |
| 2051-24-3  | Decachlorobiphenyl   | 18.2  |           | 10 - 169 | )    | 91%      | SPK: 20  |
| 877-09-8   | Tetrachloro-m-xylene | 20    |           | 31 - 151 |      | 100%     | SPK: 20  |



Sample Wt/Vol:

Date Collected:

Date Received:

SDG No.:

Final Vol:

Matrix:

06/30/14

07/01/14

F2981

**SOIL** 

10000

иL

#### **Report of Analysis**

Client: Dvirka & Bartilucci

g

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-13(18-20)

Lab Sample ID: F2981-04

Analytical Method: SW8081 % Moisture: 13.3 Decanted:

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

30.05

Units:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD023271.D 1 07/02/14 07/03/14 PB77585

CAS Number Parameter Conc. Qualifier MDL LOD LOQ/CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GP-13(18-20) SDG No.: F2981
Lab Sample ID: F2981-04 Matrix: SOIL
Analytical Method: SW8270 % Moisture: 13.3

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE086686.D 1 07/02/14 07/05/14 PB77587

| BE000000.B | •                           | 07702711 | 07        | 703/11 |      | 1 1 7 7 5 0 7 |       |
|------------|-----------------------------|----------|-----------|--------|------|---------------|-------|
| CAS Number | Parameter                   | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL    | Units |
| TARGETS    |                             |          |           |        |      |               |       |
| 100-52-7   | Benzaldehyde                | 38.4     | U         | 20.1   | 38.4 | 380           | ug/Kg |
| 108-95-2   | Phenol                      | 38.4     | U         | 8.9    | 38.4 | 380           | ug/Kg |
| 111-44-4   | bis(2-Chloroethyl)ether     | 38.4     | U         | 18.4   | 38.4 | 380           | ug/Kg |
| 95-57-8    | 2-Chlorophenol              | 38.4     | U         | 20.3   | 38.4 | 380           | ug/Kg |
| 95-48-7    | 2-Methylphenol              | 38.4     | U         | 20.9   | 38.4 | 380           | ug/Kg |
| 108-60-1   | 2,2-oxybis(1-Chloropropane) | 38.4     | U         | 15.9   | 38.4 | 380           | ug/Kg |
| 98-86-2    | Acetophenone                | 38.4     | U         | 11.8   | 38.4 | 380           | ug/Kg |
| 65794-96-9 | 3+4-Methylphenols           | 38.4     | U         | 19.9   | 38.4 | 380           | ug/Kg |
| 621-64-7   | n-Nitroso-di-n-propylamine  | 38.4     | U         | 19.4   | 38.4 | 380           | ug/Kg |
| 67-72-1    | Hexachloroethane            | 38.4     | U         | 17.2   | 38.4 | 380           | ug/Kg |
| 98-95-3    | Nitrobenzene                | 38.4     | U         | 14.5   | 38.4 | 380           | ug/Kg |
| 78-59-1    | Isophorone                  | 38.4     | U         | 12.7   | 38.4 | 380           | ug/Kg |
| 88-75-5    | 2-Nitrophenol               | 38.4     | U         | 18.6   | 38.4 | 380           | ug/Kg |
| 105-67-9   | 2,4-Dimethylphenol          | 89.6     | J         | 21.8   | 38.4 | 380           | ug/Kg |
| 111-91-1   | bis(2-Chloroethoxy)methane  | 38.4     | U         | 22.1   | 38.4 | 380           | ug/Kg |
| 120-83-2   | 2,4-Dichlorophenol          | 38.4     | U         | 14.6   | 38.4 | 380           | ug/Kg |
| 91-20-3    | Naphthalene                 | 710      |           | 13.3   | 38.4 | 380           | ug/Kg |
| 106-47-8   | 4-Chloroaniline             | 38.4     | U         | 27.1   | 38.4 | 380           | ug/Kg |
| 87-68-3    | Hexachlorobutadiene         | 38.4     | U         | 14     | 38.4 | 380           | ug/Kg |
| 105-60-2   | Caprolactam                 | 76.9     | U         | 17.9   | 76.9 | 380           | ug/Kg |
| 59-50-7    | 4-Chloro-3-methylphenol     | 38.4     | U         | 17.1   | 38.4 | 380           | ug/Kg |
| 91-57-6    | 2-Methylnaphthalene         | 750      |           | 9.7    | 38.4 | 380           | ug/Kg |
| 77-47-4    | Hexachlorocyclopentadiene   | 38.4     | U         | 9.3    | 38.4 | 380           | ug/Kg |
| 88-06-2    | 2,4,6-Trichlorophenol       | 38.4     | U         | 11.8   | 38.4 | 380           | ug/Kg |
| 95-95-4    | 2,4,5-Trichlorophenol       | 38.4     | U         | 27     | 38.4 | 380           | ug/Kg |
| 92-52-4    | 1,1-Biphenyl                | 38.4     | U         | 14.5   | 38.4 | 380           | ug/Kg |
| 91-58-7    | 2-Chloronaphthalene         | 38.4     | U         | 8.8    | 38.4 | 380           | ug/Kg |
| 88-74-4    | 2-Nitroaniline              | 38.4     | U         | 17.1   | 38.4 | 380           | ug/Kg |
| 131-11-3   | Dimethylphthalate           | 510      |           | 10.4   | 38.4 | 380           | ug/Kg |
| 208-96-8   | Acenaphthylene              | 38.4     | U         | 9.7    | 38.4 | 380           | ug/Kg |
| 606-20-2   | 2,6-Dinitrotoluene          | 38.4     | U         | 15.7   | 38.4 | 380           | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

 Client Sample ID:
 GP-13(18-20)
 SDG No.:
 F2981

 Lab Sample ID:
 F2981-04
 Matrix:
 SOIL

Analytical Method: SW8270 % Moisture: 13.3

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE086686.D 1 07/02/14 07/05/14 PB77587

| BE086686.D | 1                          | 07/02/14 | 07.       | /05/14 |      | PB77587    |       |
|------------|----------------------------|----------|-----------|--------|------|------------|-------|
| CAS Number | Parameter                  | Conc.    | Qualifier | MDL    | LOD  | LOQ / CRQL | Units |
| 99-09-2    | 3-Nitroaniline             | 76.9     | U         | 24.7   | 76.9 | 380        | ug/Kg |
| 83-32-9    | Acenaphthene               | 38.4     | U         | 10.8   | 38.4 | 380        | ug/Kg |
| 51-28-5    | 2,4-Dinitrophenol          | 310      | U         | 39.1   | 310  | 380        | ug/Kg |
| 100-02-7   | 4-Nitrophenol              | 190      | U         | 71.4   | 190  | 380        | ug/Kg |
| 132-64-9   | Dibenzofuran               | 38.4     | U         | 15     | 38.4 | 380        | ug/Kg |
| 121-14-2   | 2,4-Dinitrotoluene         | 38.4     | U         | 11.5   | 38.4 | 380        | ug/Kg |
| 84-66-2    | Diethylphthalate           | 38.4     | U         | 6      | 38.4 | 380        | ug/Kg |
| 7005-72-3  | 4-Chlorophenyl-phenylether | 38.4     | U         | 20.9   | 38.4 | 380        | ug/Kg |
| 86-73-7    | Fluorene                   | 38.4     | U         | 14.5   | 38.4 | 380        | ug/Kg |
| 100-01-6   | 4-Nitroaniline             | 76.9     | U         | 50     | 76.9 | 380        | ug/Kg |
| 534-52-1   | 4,6-Dinitro-2-methylphenol | 190      | U         | 22     | 190  | 380        | ug/Kg |
| 86-30-6    | n-Nitrosodiphenylamine     | 38.4     | U         | 9.2    | 38.4 | 380        | ug/Kg |
| 101-55-3   | 4-Bromophenyl-phenylether  | 38.4     | U         | 7.5    | 38.4 | 380        | ug/Kg |
| 118-74-1   | Hexachlorobenzene          | 38.4     | U         | 15.7   | 38.4 | 380        | ug/Kg |
| 1912-24-9  | Atrazine                   | 38.4     | U         | 20.3   | 38.4 | 380        | ug/Kg |
| 87-86-5    | Pentachlorophenol          | 38.4     | U         | 26.3   | 38.4 | 380        | ug/Kg |
| 85-01-8    | Phenanthrene               | 38.4     | U         | 10.4   | 38.4 | 380        | ug/Kg |
| 120-12-7   | Anthracene                 | 38.4     | U         | 7.8    | 38.4 | 380        | ug/Kg |
| 86-74-8    | Carbazole                  | 38.4     | U         | 8.4    | 38.4 | 380        | ug/Kg |
| 84-74-2    | Di-n-butylphthalate        | 38.4     | U         | 30.2   | 38.4 | 380        | ug/Kg |
| 206-44-0   | Fluoranthene               | 38.4     | U         | 7.7    | 38.4 | 380        | ug/Kg |
| 129-00-0   | Pyrene                     | 38.4     | U         | 9.2    | 38.4 | 380        | ug/Kg |
| 85-68-7    | Butylbenzylphthalate       | 38.4     | U         | 18.4   | 38.4 | 380        | ug/Kg |
| 91-94-1    | 3,3-Dichlorobenzidine      | 38.4     | U         | 24.7   | 38.4 | 380        | ug/Kg |
| 56-55-3    | Benzo(a)anthracene         | 38.4     | U         | 18.3   | 38.4 | 380        | ug/Kg |
| 218-01-9   | Chrysene                   | 38.4     | U         | 17.4   | 38.4 | 380        | ug/Kg |
| 117-81-7   | Bis(2-ethylhexyl)phthalate | 38.4     | U         | 13.6   | 38.4 | 380        | ug/Kg |
| 117-84-0   | Di-n-octyl phthalate       | 38.4     | U         | 4.4    | 38.4 | 380        | ug/Kg |
| 205-99-2   | Benzo(b)fluoranthene       | 38.4     | U         | 12.6   | 38.4 | 380        | ug/Kg |
| 207-08-9   | Benzo(k)fluoranthene       | 38.4     | U         | 18.1   | 38.4 | 380        | ug/Kg |
| 50-32-8    | Benzo(a)pyrene             | 38.4     | U         | 8.3    | 38.4 | 380        | ug/Kg |
| 193-39-5   | Indeno(1,2,3-cd)pyrene     | 38.4     | U         | 12.8   | 38.4 | 380        | ug/Kg |
| 53-70-3    | Dibenzo(a,h)anthracene     | 38.4     | U         | 11.1   | 38.4 | 380        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GP-13(18-20) SDG No.: F2981 Lab Sample ID: F2981-04 Matrix: SOIL

Analytical Method: SW8270 % Moisture: 13.3

Sample Wt/Vol: 30.01 Units: g 1000 uL Soil Aliquot Vol: uL Test: SVOCMS Group1

Final Vol:

Extraction Type: Level: Decanted: N LOW

GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BE086686 D 07/02/14 07/05/14 PR77587

| BE086686.D   | 1                           | 07/02/14 |        | 07/05/14  |          | PB77587 |            |          |
|--------------|-----------------------------|----------|--------|-----------|----------|---------|------------|----------|
| CAS Number   | Parameter                   |          | Conc.  | Qualifier | MDL      | LOD     | LOQ / CRQL | Units    |
| 191-24-2     | Benzo(g,h,i)perylene        |          | 38.4   | U         | 15.6     | 38.4    | 380        | ug/Kg    |
| 95-94-3      | 1,2,4,5-Tetrachlorobenzene  |          | 38.4   | U         | 15.1     | 38.4    | 380        | ug/Kg    |
| 58-90-2      | 2,3,4,6-Tetrachlorophenol   |          | 38.4   | U         | 15.1     | 38.4    | 380        | ug/Kg    |
| SURROGATES   |                             |          |        |           |          |         |            |          |
| 367-12-4     | 2-Fluorophenol              |          | 82.8   |           | 28 - 127 | '       | 55%        | SPK: 150 |
| 13127-88-3   | Phenol-d6                   |          | 78.3   |           | 34 - 127 | ,       | 52%        | SPK: 150 |
| 4165-60-0    | Nitrobenzene-d5             |          | 47.3   |           | 31 - 132 |         | 47%        | SPK: 100 |
| 321-60-8     | 2-Fluorobiphenyl            |          | 44.7   |           | 39 - 123 | }       | 45%        | SPK: 100 |
| 118-79-6     | 2,4,6-Tribromophenol        |          | 83.3   |           | 30 - 133 | ;       | 56%        | SPK: 150 |
| 1718-51-0    | Terphenyl-d14               |          | 37.3   |           | 37 - 115 |         | 37%        | SPK: 100 |
| INTERNAL STA | ANDARDS                     |          |        |           |          |         |            |          |
| 3855-82-1    | 1,4-Dichlorobenzene-d4      |          | 184855 | 6.74      |          |         |            |          |
| 1146-65-2    | Naphthalene-d8              |          | 798903 | 8.31      |          |         |            |          |
| 15067-26-2   | Acenaphthene-d10            |          | 404142 | 10.45     |          |         |            |          |
| 1517-22-2    | Phenanthrene-d10            |          | 614743 | 12.25     |          |         |            |          |
| 1719-03-5    | Chrysene-d12                |          | 563778 | 15.47     |          |         |            |          |
| 1520-96-3    | Perylene-d12                |          | 542170 | 17.07     |          |         |            |          |
| TENTATIVE II | DENTIFIED COMPOUNDS         |          |        |           |          |         |            |          |
| 000540-84-1  | Pentane, 2,2,4-trimethyl-   |          | 1600   | J         |          |         | 1.58       | ug/Kg    |
| 000565-75-3  | Pentane, 2,3,4-trimethyl-   |          | 1500   | J         |          |         | 2.39       | ug/Kg    |
| 000560-21-4  | Pentane, 2,3,3-trimethyl-   |          | 1700   | J         |          |         | 2.5        | ug/Kg    |
| 000592-27-8  | Heptane, 2-methyl-          |          | 870    | J         |          |         | 2.68       | ug/Kg    |
| 000589-81-1  | Heptane, 3-methyl-          |          | 860    | J         |          |         | 2.83       | ug/Kg    |
| 000111-65-9  | Octane                      |          | 770    | J         |          |         | 3.5        | ug/Kg    |
| 000103-65-1  | Benzene, propyl-            |          | 1600   | J         |          |         | 6.07       | ug/Kg    |
| 000526-73-8  | Benzene, 1,2,3-trimethyl-   |          | 2600   | J         |          |         | 6.26       | ug/Kg    |
|              | unknown6.46                 |          | 2300   | J         |          |         | 6.46       | ug/Kg    |
| 000108-67-8  | Benzene, 1,3,5-trimethyl-   |          | 6300   | J         |          |         | 6.54       | ug/Kg    |
| 000095-63-6  | Benzene, 1,2,4-trimethyl-   |          | 1900   | J         |          |         | 6.82       | ug/Kg    |
| 000135-01-3  | Benzene, 1,2-diethyl-       |          | 900    | J         |          |         | 7.07       | ug/Kg    |
| 001074-43-7  | Benzene, 1-methyl-3-propyl- |          | 1300   | J         |          |         | 7.11       | ug/Kg    |
| 000141-93-5  | Benzene, 1,3-diethyl-       |          | 2900   | J         |          |         | 7.16       | ug/Kg    |



Client: Dvirka & Bartilucci Date Collected: 06/30/14 Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14 Client Sample ID: SDG No.: GP-13(18-20) F2981 Lab Sample ID: F2981-04 Matrix: SOIL SW8270 % Moisture: 13.3 Analytical Method: Sample Wt/Vol: 30.01 Units: Final Vol: 1000 uL g Test: SVOCMS Group1 Soil Aliquot Vol: uL Extraction Type: Decanted: N Level: LOW GPC Factor: GPC Cleanup: Ν Injection Volume: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BE086686.D 1 07/02/14 07/05/14 PB77587

| CAS Number  | Parameter                          | Conc. | Qualifier | MDL | LOD | LOQ / CRQL | Units |
|-------------|------------------------------------|-------|-----------|-----|-----|------------|-------|
| 000535-77-3 | Benzene, 1-methyl-3-(1-methylethyl | 930   | J         |     |     | 7.35       | ug/Kg |
| 000527-84-4 | Benzene, 1-methyl-2-(1-methylethyl | 850   | J         |     |     | 7.37       | ug/Kg |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



VR013981.D

20

#### **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GP-13(18-20)DL SDG No.: F2981

Lab Sample ID: F2981-04DL Matrix: SOIL

Analytical Method: SW8260 % Moisture: 13.3

Sample Wt/Vol: 14 Units: g Final Vol: 5000 uL

07/07/14

VR070714

Soil Aliquot Vol: 100 uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

**MDL CAS Number** Parameter Conc. Qualifier LOD LOQ / CRQL Units **TARGETS** 75-71-8 Dichlorodifluoromethane 210 UD 210 210 2100 ug/Kg 210 UD 210 210 2100 74-87-3 Chloromethane ug/Kg Vinyl Chloride 210 UD 210 210 2100 75-01-4 ug/Kg UD Bromomethane 410 410 410 2100 74-83-9 ug/Kg 75-00-3 Chloroethane 210 UD 210 210 2100 ug/Kg UD 75-69-4 Trichlorofluoromethane 210 210 210 2100 ug/Kg 1,1,2-Trichlorotrifluoroethane 210 UD 210 210 2100 76-13-1 ug/Kg UD 75-35-4 1,1-Dichloroethene 210 210 210 2100 ug/Kg UD 67-64-1 Acetone 1000 1000 1000 10300 ug/Kg UD 75-15-0 Carbon Disulfide 210 210 210 2100 ug/Kg Methyl tert-butyl Ether 210 UD 210 2100 1634-04-4 210 ug/Kg 79-20-9 Methyl Acetate 410 UD 410 410 2100 ug/Kg 210 UD 210 75-09-2 Methylene Chloride 210 2100 ug/Kg 156-60-5 trans-1,2-Dichloroethene 210 UD 210 210 2100 ug/Kg 75-34-3 1,1-Dichloroethane 210 UD 210 210 2100 ug/Kg 110-82-7 Cvclohexane 210 UD 210 210 2100 ug/Kg 78-93-3 2-Butanone 3100 UD 1300 3100 10300 ug/Kg 56-23-5 Carbon Tetrachloride 210 UD 210 210 2100 ug/Kg 156-59-2 cis-1.2-Dichloroethene 210 UD 210 210 2100 ug/Kg 74-97-5 Bromochloromethane 210 UD 210 210 2100 ug/Kg UD 67-66-3 Chloroform 210 210 210 2100 ug/Kg 1,1,1-Trichloroethane 71-55-6 210 UD 210 210 2100 ug/Kg 108-87-2 Methylcyclohexane 210 UD 210 210 2100 ug/Kg 71-43-2 Benzene 210 UD 160 210 2100 ug/Kg 107-06-2 1,2-Dichloroethane 210 UD 210 210 2100 ug/Kg 79-01-6 Trichloroethene 210 UD 210 210 2100 ug/Kg 78-87-5 1,2-Dichloropropane 210 UD 110 210 2100 ug/Kg 75-27-4 Bromodichloromethane 210 UD 210 210 2100 ug/Kg 108-10-1 4-Methyl-2-Pentanone 1000 UD 1000 1000 10300 ug/Kg UD 108-88-3 Toluene 210 210 210 2100 ug/Kg UD 10061-02-6 t-1,3-Dichloropropene 210 210 210 2100 ug/Kg



Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GP-13(18-20)DL SDG No.: F2981
Lab Sample ID: F2981-04DL Matrix: SOIL
Analytical Method: SW8260 % Moisture: 13.3

Sample Wt/Vol: 14 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: 100 uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013981.D 20 07/07/14 VR070714

| CAS Number  | Parameter                   | Conc. | Qualifier | MDL      | LOD   | LOQ / CRQL | Units   |
|-------------|-----------------------------|-------|-----------|----------|-------|------------|---------|
| 10061-01-5  | cis-1,3-Dichloropropene     | 210   | UD        | 210      | 210   | 2100       | ug/Kg   |
| 79-00-5     | 1,1,2-Trichloroethane       | 410   | UD        | 370      | 410   | 2100       | ug/Kg   |
| 591-78-6    | 2-Hexanone                  | 1000  | UD        | 1000     | 1000  | 10300      | ug/Kg   |
| 124-48-1    | Dibromochloromethane        | 210   | UD        | 210      | 210   | 2100       | ug/Kg   |
| 106-93-4    | 1,2-Dibromoethane           | 210   | UD        | 210      | 210   | 2100       | ug/Kg   |
| 127-18-4    | Tetrachloroethene           | 210   | UD        | 210      | 210   | 2100       | ug/Kg   |
| 108-90-7    | Chlorobenzene               | 210   | UD        | 210      | 210   | 2100       | ug/Kg   |
| 100-41-4    | Ethyl Benzene               | 13500 | D         | 210      | 210   | 2100       | ug/Kg   |
| 179601-23-1 | m/p-Xylenes                 | 43800 | D         | 300      | 410   | 4100       | ug/Kg   |
| 95-47-6     | o-Xylene                    | 12700 | D         | 210      | 210   | 2100       | ug/Kg   |
| 100-42-5    | Styrene                     | 210   | UD        | 190      | 210   | 2100       | ug/Kg   |
| 75-25-2     | Bromoform                   | 620   | UD        | 300      | 620   | 2100       | ug/Kg   |
| 98-82-8     | Isopropylbenzene            | 1500  | JD        | 200      | 210   | 2100       | ug/Kg   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 210   | UD        | 190      | 210   | 2100       | ug/Kg   |
| 103-65-1    | n-propylbenzene             | 6800  | D         | 150      | 210   | 2100       | ug/Kg   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 11000 | D         | 190      | 210   | 2100       | ug/Kg   |
| 98-06-6     | tert-Butylbenzene           | 210   | UD        | 210      | 210   | 2100       | ug/Kg   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 33600 | D         | 210      | 210   | 2100       | ug/Kg   |
| 135-98-8    | sec-Butylbenzene            | 1300  | JD        | 210      | 210   | 2100       | ug/Kg   |
| 99-87-6     | p-Isopropyltoluene          | 460   | JD        | 120      | 210   | 2100       | ug/Kg   |
| 541-73-1    | 1,3-Dichlorobenzene         | 210   | UD        | 150      | 210   | 2100       | ug/Kg   |
| 106-46-7    | 1,4-Dichlorobenzene         | 210   | UD        | 170      | 210   | 2100       | ug/Kg   |
| 104-51-8    | n-Butylbenzene              | 2300  | D         | 190      | 210   | 2100       | ug/Kg   |
| 95-50-1     | 1,2-Dichlorobenzene         | 210   | UD        | 210      | 210   | 2100       | ug/Kg   |
| 96-12-8     | 1,2-Dibromo-3-Chloropropane | 2100  | UD        | 360      | 2100  | 2100       | ug/Kg   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 210   | UD        | 210      | 210   | 2100       | ug/Kg   |
| 91-20-3     | Naphthalene                 | 5700  | D         | 190      | 210   | 2100       | ug/Kg   |
| 87-61-6     | 1,2,3-Trichlorobenzene      | 410   | UD        | 210      | 410   | 2100       | ug/Kg   |
| 123-91-1    | 1,4-Dioxane                 | 41200 | UD        | 41200    | 41200 | 41200      | ug/Kg   |
| SURROGATES  |                             |       |           |          |       |            |         |
| 17060-07-0  | 1,2-Dichloroethane-d4       | 52.7  |           | 56 - 120 |       | 105%       | SPK: 50 |
| 1868-53-7   | Dibromofluoromethane        | 44.5  |           | 57 - 135 |       | 89%        | SPK: 50 |



Client: Dvirka & Bartilucci

Project: NYCSCA Unionport Road Bronx

Client Sample ID: GP-13(18-20)DL

Lab Sample ID: F2981-04DL

Analytical Method: SW8260

Sample Wt/Vol: 14 Units: g

Soil Aliquot Vol: 100 uL

GC Column: RXI-624 ID: 0.25

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Level:

Matrix:

06/30/14

07/01/14

F2981

SOIL

13.3

5000

**MED** 

VOCMS Group1

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VR013981.D 20 07/07/14 VR070714

| CAS Number   | Parameter              | Conc.   | Qualifier | MDL LO   | DD LOQ/CRQL | Units   |
|--------------|------------------------|---------|-----------|----------|-------------|---------|
| 2037-26-5    | Toluene-d8             | 49.3    |           | 67 - 123 | 99%         | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene   | 54.7    |           | 33 - 141 | 109%        | SPK: 50 |
| INTERNAL ST. | ANDARDS                |         |           |          |             |         |
| 363-72-4     | Pentafluorobenzene     | 1905500 | 7.49      |          |             |         |
| 540-36-3     | 1,4-Difluorobenzene    | 2858240 | 8.43      |          |             |         |
| 3114-55-4    | Chlorobenzene-d5       | 2365200 | 11.28     |          |             |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4 | 933213  | 13.22     |          |             |         |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



Analytical Method:

SW8260

## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/30/14 Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14 Client Sample ID: GP-13(18-20) SDG No.: F2981 F2981-04 SOIL Lab Sample ID: Matrix:

Sample Wt/Vol: 14 Units: g Final Vol: 5000 uL

% Moisture:

13.3

Soil Aliquot Vol: 100 uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013966.D 1 07/04/14 VR070314

| CAS Number | Parameter                      | Conc. | Qualifier | MDL  | LOD  | LOQ / CRQL | Units |
|------------|--------------------------------|-------|-----------|------|------|------------|-------|
| TARGETS    |                                |       |           |      |      |            |       |
| 75-71-8    | Dichlorodifluoromethane        | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 74-87-3    | Chloromethane                  | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 75-01-4    | Vinyl Chloride                 | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 74-83-9    | Bromomethane                   | 20.6  | U         | 20.6 | 20.6 | 100        | ug/Kg |
| 75-00-3    | Chloroethane                   | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 75-69-4    | Trichlorofluoromethane         | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 76-13-1    | 1,1,2-Trichlorotrifluoroethane | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 75-35-4    | 1,1-Dichloroethene             | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 67-64-1    | Acetone                        | 51.5  | U         | 51.5 | 51.5 | 510        | ug/Kg |
| 75-15-0    | Carbon Disulfide               | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 1634-04-4  | Methyl tert-butyl Ether        | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 79-20-9    | Methyl Acetate                 | 20.6  | U         | 20.6 | 20.6 | 100        | ug/Kg |
| 75-09-2    | Methylene Chloride             | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 156-60-5   | trans-1,2-Dichloroethene       | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 75-34-3    | 1,1-Dichloroethane             | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 110-82-7   | Cyclohexane                    | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 78-93-3    | 2-Butanone                     | 150   | U         | 64.1 | 150  | 510        | ug/Kg |
| 56-23-5    | Carbon Tetrachloride           | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 156-59-2   | cis-1,2-Dichloroethene         | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 74-97-5    | Bromochloromethane             | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 67-66-3    | Chloroform                     | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 71-55-6    | 1,1,1-Trichloroethane          | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 108-87-2   | Methylcyclohexane              | 1300  |           | 10.3 | 10.3 | 100        | ug/Kg |
| 71-43-2    | Benzene                        | 10.3  | U         | 7.8  | 10.3 | 100        | ug/Kg |
| 107-06-2   | 1,2-Dichloroethane             | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 79-01-6    | Trichloroethene                | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 78-87-5    | 1,2-Dichloropropane            | 10.3  | U         | 5.4  | 10.3 | 100        | ug/Kg |
| 75-27-4    | Bromodichloromethane           | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |
| 108-10-1   | 4-Methyl-2-Pentanone           | 51.5  | U         | 51.5 | 51.5 | 510        | ug/Kg |
| 108-88-3   | Toluene                        | 160   |           | 10.3 | 10.3 | 100        | ug/Kg |
| 10061-02-6 | t-1,3-Dichloropropene          | 10.3  | U         | 10.3 | 10.3 | 100        | ug/Kg |



Client: Dvirka & Bartilucci Date Collected: 06/30/14 Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14 Client Sample ID: GP-13(18-20) SDG No.: F2981 Lab Sample ID: F2981-04 Matrix: SOIL Analytical Method: SW8260 % Moisture: 13.3 Sample Wt/Vol: 14 Units: g Final Vol: 5000 uL Soil Aliquot Vol: 100 uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013966.D 1 07/04/14 VR070314

| , 510 10 , 50 , 1 | -                           |       |           |          |      | ,          |         |
|-------------------|-----------------------------|-------|-----------|----------|------|------------|---------|
| CAS Number        | Parameter                   | Conc. | Qualifier | MDL      | LOD  | LOQ / CRQL | Units   |
| 10061-01-5        | cis-1,3-Dichloropropene     | 10.3  | U         | 10.3     | 10.3 | 100        | ug/Kg   |
| 79-00-5           | 1,1,2-Trichloroethane       | 20.6  | U         | 18.5     | 20.6 | 100        | ug/Kg   |
| 591-78-6          | 2-Hexanone                  | 51.5  | U         | 51.5     | 51.5 | 510        | ug/Kg   |
| 124-48-1          | Dibromochloromethane        | 10.3  | U         | 10.3     | 10.3 | 100        | ug/Kg   |
| 106-93-4          | 1,2-Dibromoethane           | 10.3  | U         | 10.3     | 10.3 | 100        | ug/Kg   |
| 127-18-4          | Tetrachloroethene           | 10.3  | U         | 10.3     | 10.3 | 100        | ug/Kg   |
| 108-90-7          | Chlorobenzene               | 10.3  | U         | 10.3     | 10.3 | 100        | ug/Kg   |
| 100-41-4          | Ethyl Benzene               | 3400  | E         | 10.3     | 10.3 | 100        | ug/Kg   |
| 179601-23-1       | m/p-Xylenes                 | 9800  | E         | 14.8     | 20.6 | 210        | ug/Kg   |
| 95-47-6           | o-Xylene                    | 6700  | E         | 10.3     | 10.3 | 100        | ug/Kg   |
| 100-42-5          | Styrene                     | 10.3  | U         | 9.3      | 10.3 | 100        | ug/Kg   |
| 75-25-2           | Bromoform                   | 30.9  | U         | 15.2     | 30.9 | 100        | ug/Kg   |
| 98-82-8           | Isopropylbenzene            | 1500  |           | 9.9      | 10.3 | 100        | ug/Kg   |
| 79-34-5           | 1,1,2,2-Tetrachloroethane   | 10.3  | U         | 9.5      | 10.3 | 100        | ug/Kg   |
| 103-65-1          | n-propylbenzene             | 2400  | E         | 7.4      | 10.3 | 100        | ug/Kg   |
| 108-67-8          | 1,3,5-Trimethylbenzene      | 3200  | E         | 9.3      | 10.3 | 100        | ug/Kg   |
| 98-06-6           | tert-Butylbenzene           | 10.3  | U         | 10.3     | 10.3 | 100        | ug/Kg   |
| 95-63-6           | 1,2,4-Trimethylbenzene      | 4900  | E         | 10.3     | 10.3 | 100        | ug/Kg   |
| 135-98-8          | sec-Butylbenzene            | 1300  |           | 10.3     | 10.3 | 100        | ug/Kg   |
| 99-87-6           | p-Isopropyltoluene          | 510   |           | 6        | 10.3 | 100        | ug/Kg   |
| 541-73-1          | 1,3-Dichlorobenzene         | 10.3  | U         | 7.6      | 10.3 | 100        | ug/Kg   |
| 106-46-7          | 1,4-Dichlorobenzene         | 10.3  | U         | 8.4      | 10.3 | 100        | ug/Kg   |
| 104-51-8          | n-Butylbenzene              | 2200  | E         | 9.5      | 10.3 | 100        | ug/Kg   |
| 95-50-1           | 1,2-Dichlorobenzene         | 10.3  | U         | 10.3     | 10.3 | 100        | ug/Kg   |
| 96-12-8           | 1,2-Dibromo-3-Chloropropane | 100   | U         | 17.9     | 100  | 100        | ug/Kg   |
| 120-82-1          | 1,2,4-Trichlorobenzene      | 10.3  | U         | 10.3     | 10.3 | 100        | ug/Kg   |
| 91-20-3           | Naphthalene                 | 3100  | E         | 9.3      | 10.3 | 100        | ug/Kg   |
| 87-61-6           | 1,2,3-Trichlorobenzene      | 20.6  | U         | 10.3     | 20.6 | 100        | ug/Kg   |
| 123-91-1          | 1,4-Dioxane                 | 2100  | U         | 2100     | 2100 | 2100       | ug/Kg   |
| SURROGATES        |                             |       |           |          |      |            |         |
| 17060-07-0        | 1,2-Dichloroethane-d4       | 49    |           | 56 - 120 |      | 98%        | SPK: 50 |
| 1868-53-7         | Dibromofluoromethane        | 42.7  |           | 57 - 135 | 5    | 85%        | SPK: 50 |
|                   |                             |       |           |          |      |            |         |



Client: Dvirka & Bartilucci Date Collected: 06/30/14 Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14 Client Sample ID: SDG No.: GP-13(18-20) F2981 Lab Sample ID: F2981-04 Matrix: SOIL % Moisture: 13.3 Analytical Method: SW8260 Sample Wt/Vol: 14 Units: Final Vol: 5000 uL g Test: Soil Aliquot Vol: 100 uL VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: MED

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR013966.D 1 07/04/14 VR070314

| CAS Number   | Parameter                        | Conc.   | Qualifier | MDL LOD  | LOQ / CRQL | Units   |
|--------------|----------------------------------|---------|-----------|----------|------------|---------|
| 2037-26-5    | Toluene-d8                       | 57.8    |           | 67 - 123 | 116%       | SPK: 50 |
| 460-00-4     | 4-Bromofluorobenzene             | 61.3    |           | 33 - 141 | 123%       | SPK: 50 |
| INTERNAL ST  | ANDARDS                          |         |           |          |            |         |
| 363-72-4     | Pentafluorobenzene               | 2036860 | 7.5       |          |            |         |
| 540-36-3     | 1,4-Difluorobenzene              | 3209910 | 8.43      |          |            |         |
| 3114-55-4    | Chlorobenzene-d5                 | 2635850 | 11.28     |          |            |         |
| 3855-82-1    | 1,4-Dichlorobenzene-d4           | 1095250 | 13.22     |          |            |         |
| TENTATIVE II | DENTIFIED COMPOUNDS              |         |           |          |            |         |
| 000564-02-3  | Pentane, 2,2,3-trimethyl-        | 4500    | J         |          | 8.1        | ug/Kg   |
| 000565-75-3  | Pentane, 2,3,4-trimethyl-        | 3400    | J         |          | 9.41       | ug/Kg   |
| 000921-47-1  | Hexane, 2,3,4-trimethyl-         | 4100    | J         |          | 9.54       | ug/Kg   |
| 000589-81-1  | Heptane, 3-methyl-               | 2500    | J         |          | 9.73       | ug/Kg   |
| 003522-94-9  | Hexane, 2,2,5-trimethyl-         | 1300    | J         |          | 9.89       | ug/Kg   |
| 000111-65-9  | Octane                           | 2600    | J         |          | 10.15      | ug/Kg   |
| 003221-61-2  | Octane, 2-methyl-                | 3500    | J         |          | 11.07      | ug/Kg   |
| 002216-33-3  | Octane, 3-methyl-                | 2100    | J         |          | 11.17      | ug/Kg   |
| ABZT         | Alkylbenzenes, Total             | 16000   | J         |          | 12.46      | ug/Kg   |
| 017634-51-4  | 1,3,5-Cycloheptatriene, 7-ethyl- | 1700    | J         |          | 12.53      | ug/Kg   |
| 000135-01-3  | Benzene, 1,2-diethyl-            | 1700    | J         |          | 13.46      | ug/Kg   |

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

\* = Values outside of QC limits

D = Dilution



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected: 06/30/14

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-1 SDG No.: F2981

Lab Sample ID: F2981-06 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD  | LOQ | CRQL Un | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|------|-----|---------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.54  | J    | 1  | 0.14 | 1.0  | 2   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7440-38-2 | Arsenic   | 1.3   |      | 1  | 0.18 | 0.5  | 1   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7440-39-3 | Barium    | 143   |      | 1  | 0.1  | 5.0  | 10  | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | U    | 1  | 0.09 | 0.5  | 1   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7440-43-9 | Cadmium   | 1.1   |      | 1  | 0.13 | 0.5  | 1   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7440-47-3 | Chromium  | 3     | *    | 1  | 0.04 | 1.0  | 2   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7440-48-4 | Cobalt    | 12.3  |      | 1  | 0.05 | 0.5  | 1   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7440-50-8 | Copper    | 8.4   |      | 1  | 0.04 | 1.0  | 2   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7439-92-1 | Lead      | 0.099 | J    | 1  | 0.04 | 0.5  | 1   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7439-96-5 | Manganese | 14400 | DN   | 25 | 1.3  | 12.5 | 25  | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1  | 0.2 | ug/L    | 07/02/14      | 07/03/14  | SW7470A  |
| 7440-02-0 | Nickel    | 38.9  |      | 1  | 0.06 | 0.5  | 1   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7782-49-2 | Selenium  | 3     | J    | 1  | 0.7  | 2.5  | 5   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7440-22-4 | Silver    | 0.048 | J    | 1  | 0.03 | 0.5  | 1   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.025 | J    | 1  | 0.02 | 0.5  | 1   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7440-62-2 | Vanadium  | 2.5   | U    | 1  | 0.15 | 2.5  | 5   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |
| 7440-66-6 | Zinc      | 14.4  |      | 1  | 0.09 | 1.0  | 2   | ug/L    | 07/03/14      | 07/04/14  | SW6020   |

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Dissolved Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



## **Report of Analysis**

Client: Dvirka & Bartilucci Date Collected:

Project: NYCSCA Unionport Road Bronx Date Received: 07/01/14

Client Sample ID: GW-13 SDG No.: F2981

Lab Sample ID: F2981-07 Matrix: WATER

Level (low/med): low % Solid: 0

| Cas       | Parameter | Conc. | Qua. | DF | MDL  | LOD | LOQ/ | CRQL Uni | its Prep Date | Date Ana. | Ana Met. |
|-----------|-----------|-------|------|----|------|-----|------|----------|---------------|-----------|----------|
| 7440-36-0 | Antimony  | 0.22  | J    | 1  | 0.14 | 1.0 | 2    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7440-38-2 | Arsenic   | 1.9   |      | 1  | 0.18 | 0.5 | 1    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7440-39-3 | Barium    | 68.9  |      | 1  | 0.1  | 5.0 | 10   | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7440-41-7 | Beryllium | 0.5   | U    | 1  | 0.09 | 0.5 | 1    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7440-43-9 | Cadmium   | 0.5   | U    | 1  | 0.13 | 0.5 | 1    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7440-47-3 | Chromium  | 1.2   | J*   | 1  | 0.04 | 1.0 | 2    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7440-48-4 | Cobalt    | 1.8   |      | 1  | 0.05 | 0.5 | 1    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7440-50-8 | Copper    | 6     |      | 1  | 0.04 | 1.0 | 2    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7439-92-1 | Lead      | 0.12  | J    | 1  | 0.04 | 0.5 | 1    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7439-96-5 | Manganese | 3200  | N    | 1  | 0.05 | 0.5 | 1    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7439-97-6 | Mercury   | 0.1   | U    | 1  | 0.1  | 0.1 | 0.2  | ug/L     | 07/02/14      | 07/03/14  | SW7470A  |
| 7440-02-0 | Nickel    | 4.2   |      | 1  | 0.06 | 0.5 | 1    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7782-49-2 | Selenium  | 1.8   | J    | 1  | 0.7  | 2.5 | 5    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7440-22-4 | Silver    | 0.5   | U    | 1  | 0.03 | 0.5 | 1    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7440-28-0 | Thallium  | 0.5   | U    | 1  | 0.02 | 0.5 | 1    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7440-62-2 | Vanadium  | 0.58  | J    | 1  | 0.15 | 2.5 | 5    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |
| 7440-66-6 | Zinc      | 4.3   |      | 1  | 0.09 | 1.0 | 2    | ug/L     | 07/03/14      | 07/04/14  | SW6020   |

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Dissolved Metals Group1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

\* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

06/30/14

OR = Over Range

N =Spiked sample recovery not within control limits

APPENDIX F

SUPPORTING DOCUMENTS



# NEW YORK CITY SCHOOL CONSTRUCTION AUTHORITY ARCHITECTURE & ENGINEERING

Test Fit / Sketch Study

To : Nina Kubota – Vice President, Capital Planning

Through : Stan Dahir, RA - Director, Quality Control & Construction Support Studio - A&E

From : Peter J. Percudani, RA - Design Manager, Quality Control & Construction Support Studio - A&E

Requested Facility: New Primary / Intermediate School

Site / Address : 1609 Unionport Road

Bronx, N.Y. 10462 [Block: 3952 / Lots: 1, 7, 8, 17 and 23]

District : 12

Adjusted Capacity: 793 LLW#: 091486

Date : March 6, 2014 Estimated Cost<sup>1</sup>: \$73,000,000

As requested, a "Test Fit / Sketch Study" was initiated in lieu of a Feasibility Study to determine whether or not the subject Site, which has an approximately Lot Area of <u>70,600 square feet</u>, could accommodate a <u>New Primary / Intermediate School with an Adjusted Capacity of 793.</u>

Please note that this "Test Fit / Sketch Study" is not as informative as a typical Feasibility Study, which would typically provide an overview of an Educational Program of Requirements (POR), describe existing positive and negative site characteristics, topography and geology, zoning, utilities, transportation, traffic and sustainable site development density information as well as a design approach for the school; nor does it include either a "Phase I or II Environmental Site Assessment", a "Geotechnical Report", or a "State Environmental Quality Review (SEQRA) Assessment".

Although various codes, rules and regulations may be noted herein, the principal objective of this *Study* is to assess what may physically be provided at the subject Site and identify, as follows, those <u>issues</u> and <u>concerns</u> that should be given due consideration so that an informed decision may be made by the <u>Feasibility Committee</u> as to whether or not a project should move forward, or if additional research and development is warranted prior to such a decision.

#### The major issues and concerns that are associated with the subject Site are as follows:

- 1. Volume and Type of Local Vehicular Traffic and Traffic Patterns
- 2. Site and Site Adjacencies (Local Environs)
- 3. Compliance with NYC Zoning Regulations

| 00. | I Crillo  | M La Pacca    | D Dorrott  | I O'Connoll  | A Lampart    | I Cutormon       | Aniav Shah |
|-----|-----------|---------------|------------|--------------|--------------|------------------|------------|
| CC: | L. Grillo | IVI. La NUCCA | B. Barrett | J. O'Connell | A. Lempert   | L. Guterman      | Anjay Shah |
|     |           |               |            | <b>-</b>     | '            | D : (E) (4)      | , ,        |
|     | K. Ou     | G Roussey     | E. Abneri  | C. Liu       | M. Gomez     | Project File (1) |            |
|     | ix. Ou    | G. Noussey    | L. ADITOTI | O. Liu       | IVI. COILIEZ | 1 1010011110 (1) |            |

<sup>&</sup>quot;Estimated Cost" is based gross square footage provided in the Draft POR, on the "magnitude" of the proposed work and does not include the cost of "license agreements" with adjacent property owners for the execution of the work, nor does it include the removal of hazardous materials such as, but not limited to, "asbestos".

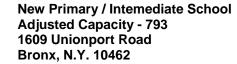


#### 1. Volume and Type of Local Vehicular Traffic, and Traffic Patterns

The proposed Site is an entire city block that is bounded four (4) street fronts. The following is a general description of these streets, the type of vehicular traffic and observed traffic patterns:

- East Tremont Avenue: Is a wide two-way street, with a narrow concrete street median, that appears to have moderate traffic that consists of commercial, public (MTA Bus Lines: Bx40 and Bx42) and private vehicles.
- <u>Unionport Road</u>: Is a wide two-way street, with a wide tree lined street median, that appears to have moderate traffic that consists of commercial, public (MTA Bus Lines: Bx22, Bx40 and Bx42) and private vehicles. Although the direction of vehicular traffic on this street would be conducive to student drop-off and pick-up during arrival and dismissal times as children would be discharging/boarding busses to/from a sidewalk, the vehicular traffic from school buses and private vehicles may cause traffic congestion on this street.
- <u>Guerlain Street</u>: Is a narrow two- one-way street, which appears to have light traffic that consists of commercial and private vehicles.

Although the direction of vehicular traffic on this street would be conducive to student drop-off and pick-up during arrival and dismissal times as children would be discharging/boarding busses to/from a sidewalk, the vehicular traffic from school buses and private vehicles may cause significant congestion on this street.


■ <u>White Plains Road</u>: Is a wide two-way street, which appears to have moderate traffic that consists of commercial, public (MTA Bus Line: Bx39) and private vehicles.

#### 2. Site and Site Adjacencies (Local Environs)

The Site is an entire "Tax Block", with a gross lot area of <u>+/- 70,600 square feet</u> that is bounded by East Tremont Avenue, Unionport Road, Guerlain Street and White Plains Road. The Site is presently utilized by various commercial establishments whose structures vary between one and two stories high. All existing site improvements, including an existing gas service station, would be demolished to facilitate the construction of the proposed school.

- East Tremont Avenue North Property/Street Line: This property/street line is approximately 175-feet of street frontage with deep sidewalks, metered parking, no street trees, and no overhead utilities.
  - □ An existing open rail cut for Amtrak/Conrail lines, which is located to the north side of this street, may be within 200-feet of the proposed site and filings may be required with Amtrak/Conrail.
  - ☐ There is a Con Edison power station on the north side of the open rail cut.
  - □ There is an existing gas station on the northeast corner and southeast corner (site) of the street intersection formed by East Tremont Avenue and White Plains Road.
  - ☐ There is a bus-stop for two (2) MTA Surface Line Busses (Bx40 and Bx42).
- <u>Unionport Road East Property/Street Line</u>: This property/street line is approximately <u>310-feet</u> of street frontage with deep sidewalks, metered parking, no street trees, and no overhead utilities.
  - □ There is a bus-stop for three (3) MTA Surface Line Busses (Bx22, Bx40 and Bx42), which may require relocation.
  - The wide street median reduces the width of the road bed to the equivalent to that of a narrow street.
  - □ The wide street median appears to have been recently constructed by NYC/DOT and roadway repair may follow shortly. Hence, coordination may be required with NYC/DOT to ensure that work for the proposed school can be performed in spite of any NYC/DOT moratorium regarding a recently paved street.

<sup>2</sup> Streets whose width are 75-feet or greater are wide streets; and streets whose width is less than 75-feet are narrow streets.





- <u>Guerlain Street South Property/Street Line</u>: This property/street line is approximately <u>205-feet</u> of street frontage with deep sidewalks, metered parking, no street trees, and no overhead utilities.
- White Plains Road West Property/Street Line: This property/street line is approximately <u>320-feet</u> of street frontage with deep sidewalks, metered parking, street trees, and no overhead utilities. There is a bus-stop a MTA Surface Line Bus (Bx39).
- During what is deemed a conceptual design phase, the area needed for structural systems and mechanical systems (ducts, pipes, closets, etc...) are not typically accounted for at this level of design, and due to the limited area and constrained dimensions there may be an <u>adverse</u> impact on the final design and the POR when these systems are accounted for in the actual design and development of the subject school.
- For a <u>PS/IS793</u> Adjusted Capacity School there appears to be an opportunity for an outdoor play<sup>3</sup> area at grade for rest and recreation by the children that may <u>exceed</u> what is targeted in a standard educational program of requirements.

Target = 793 students x 30sf/student = 23,790sf <u>Conceptual Outdoor Play Yard Area</u> = 23,800sf <u>Difference</u> = 10sf (greater)

#### 3. NYC Zoning Regulations

■ The subject Site is located within both a (R6)<sup>4</sup> Residential Zoning District (underlying district) and a (C1-2 and C8-1)<sup>5</sup> Commercial Zoning District (overlying district). Although schools are permitted as-of-right in an R6 and C1-2 Districts, they are not permitted as-of-right in a C8-1 Commercial District. At this time it is anticipated, at a minimum, that a "Special Permit" ("use"); and "Zoning Waivers" ("bulk") would be required for:

| ZR24-11(R6)                     | Lot Coverage (Corner Lots (70%)     |
|---------------------------------|-------------------------------------|
| ZR24-522(R6) and ZR33-431(C1-2) | Maximum Front Wall Height (60-Feet) |

If a project were to move forward, the actual type and need for "Zoning Waivers" would be determined by the project's final design.

The Plans, Photographs and other attachments that follow are provided to illustrate the above noted issues and concerns, to provide a basis for open discussion, and direction for the possible development of a project. *Please note that the POR is <u>not</u> an approved Program of Educational Requirements and that the Scheme provided herein is <u>not</u> a final design solution.* 

Outdoor Space - "NYC Health Department and NYS Law" requires a school to have outdoor area for rest and recreation - New York City Rules & Regulations - Title 24 - Health Code, Sections §45:11(h) and §49.13; and NY CLS Educ. 2556(5).

In addition to rest and recreation, when available, open space is typically utilized for the gathering of children during arrival times and for the organized dismissal of the children at the end of each school day.

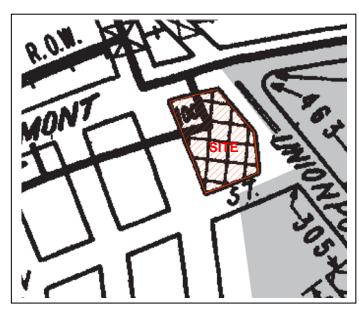
R6 Residential District: These districts are designed to provide for all types of residential buildings, in order to permit a broad range of housing types, with appropriate standards for each district on density, open space, and spacing of buildings. However, R4B Districts are limited to single-or two-family dwellings, and zero lot line buildings are not permitted in R3-2, R4, (except R4-1 and R4B), and R5 (except R5B) Districts. The various districts are mapped in relation to a desirable future residential density pattern, with emphasis on accessibility to transportation facilities and to various community facilities, and upon the character of existing development. These districts also include community facilities and open uses which serve the residents of these districts or benefit from a residential environment.

<sup>5</sup> C1 Local Service Districts - These districts are designed to provide for local shopping and include a wide range of retail stores and personal service establishments which cater to frequently recurring needs. Since these establishments are required in convenient locations near all residential areas, and since they are relatively unobjectionable to nearby residences, these districts are widely mapped. The district regulations are designed to promote convenient shopping and the stability of retail development by encouraging continuous retail frontage and by prohibiting local service and manufacturing establishments which tend to break such continuity.

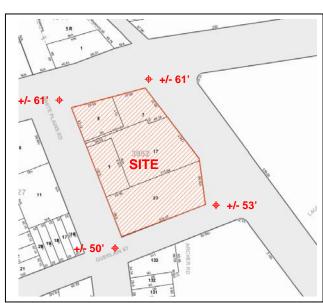
<sup>&</sup>lt;u>C8 General Service Districts</u>: These districts are designed to provide for necessary services for a wider area than is served by the Local Service Districts. Since these service establishments often involve objectionable influences, such as noise from heavy service operations and large volumes of truck traffic, they are incompatible with both residential and retail uses. New residential development is excluded from these districts.






#### **Existing Schools:**

- 1. PS102X Addition (1993)
- 2. PS106X Addition (Under Construction)
- **3.** MS127X


## **SITE LOCATION PLAN**

### Other Structures:

- 4. Gas Service Station
- 5. Open Rail Line (Amtrak/Conrail)
- 6. Con Edison Power Station



**NYC ZONING MAP (4b)** 



**NYC DIGITAL MAP / LOT ASSEMBLAGE** 





**View looking East on Guerlain Street** 



View looking West on Guerlain Street
STREET VIEWS





**View looking North on Unionport Road** 



View looking South on Unionport Road

STREET VIEWS

6 of 17





**View looking West on East Tremont Avenue** 

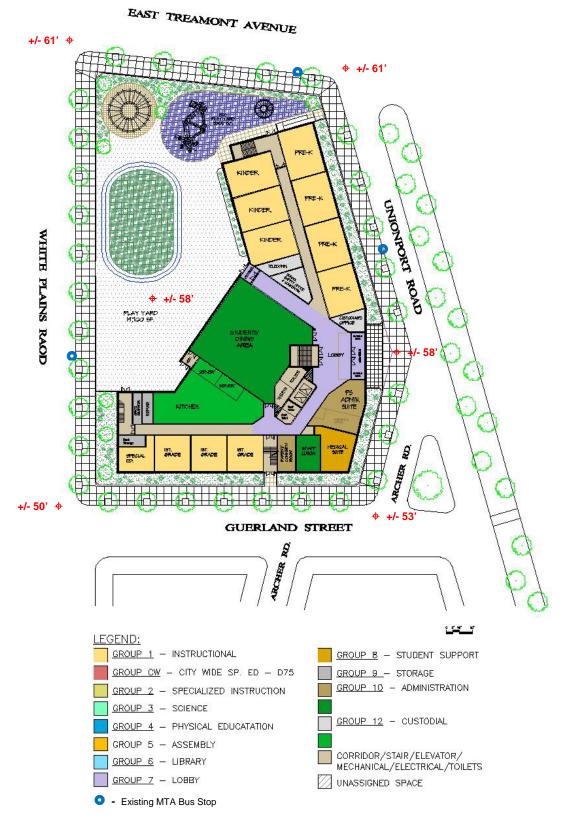


View looking East on East Tremont Avenue

STREET VIEWS



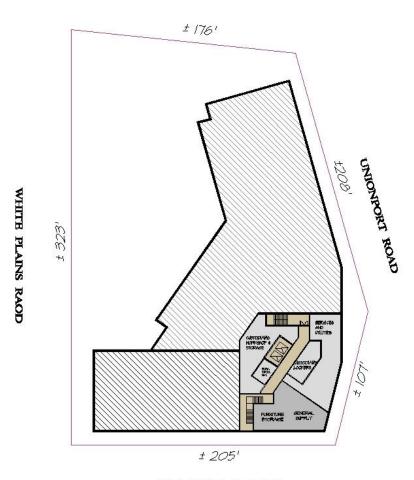



**View looking South on White Plains Road** 

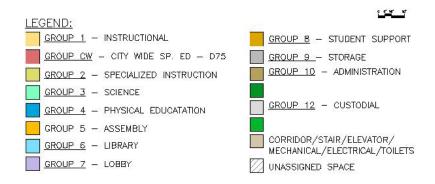


View looking North on White Plains Road

STREET VIEWS





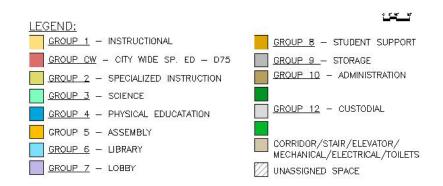


# **SITE / FIRST FLOOR PLAN**



# EAST TREAMONT AVENUE

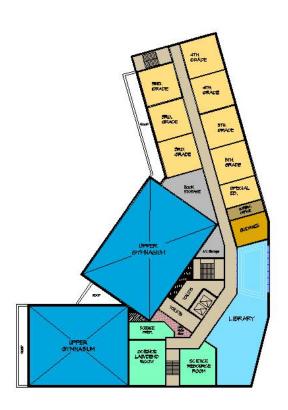


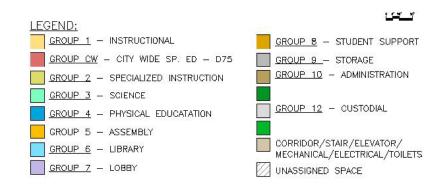
#### **GUERLAND STREET**




## **CELLAR FLOOR PLAN**

10 of 17

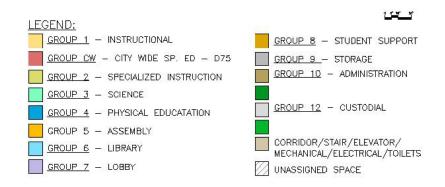





# **SECOND FLOOR PLAN**






## **THIRD FLOOR PLAN**

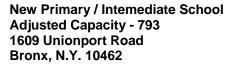






## **FOURTH FLOOR PLAN**

PS-IS 793




(School Name) Region XX / District XX FM8#

Program of Requirements for a New Primary / Intermediate School Building Capital Budget Line E-2362

| ROOM<br>LAYOUT | ROOM TYPE                                                                                                | NO. OF | CAPACITY<br>PER UNIT | TOTAL | UNIT<br>Area<br>Ist | TOTA<br>NE<br>ARE |
|----------------|----------------------------------------------------------------------------------------------------------|--------|----------------------|-------|---------------------|-------------------|
|                |                                                                                                          |        |                      |       |                     |                   |
|                | GROUP 1-INSTRUCTION PS Org                                                                               |        |                      |       |                     |                   |
| 1-10           | Pre-Kindergarten (w/ tollets) (if appropriate for District)                                              | 4      | 18                   | 72    | 1,000               | 4,00              |
| 1-11           | Kindergarten (w/toliets) (@ first fl. If possible)                                                       | 1      | 20                   | 20    | 1,000               | 1,00              |
| 1-18           | Kindergarten (w/tolists) (@ first fl. If possible)                                                       | 2      | 20                   | 40    | 1,000               | 2,00              |
| 1-12           | Typical Classrooms - Grade 1 (tollets optional)                                                          | 3      | 20                   | 60    | 750                 | 2,25              |
| 1-12           | Typical Classrooms - Grade 2 (tolete optional)                                                           | 3      | 20                   | 60    | 750                 | 2,25              |
| 1-14           | Typical Classrooms - Grade 3                                                                             | 3      | 20                   | 60    | 750                 | 2,25              |
| 1-15           | Typical Classrooms - Grade 4                                                                             | 2      | 28                   | 56    | 750                 | 1,50              |
| 1-15           | Typical Classrooms - Grade 5                                                                             | 2      | 28                   | 56    | 750                 | 1,50              |
| 1-30           | CSD Special Education Classrooms IS org                                                                  | 2      | 12                   | 24    | 500                 | 1,00              |
| 1-19           | Typical Classrooms - Grade 6                                                                             | 3      | 28                   | 84    | 750                 | 2.25              |
| 1-19           | Typical Classrooms - Grade 7                                                                             | 3      | 28                   | 84    | 750                 | 2.25              |
| 1-19           | Typical Classrooms - Grade 8                                                                             | 3      | 28                   | 84    | 750                 | 2.29              |
| 1-30           | CSD Special Education Classrooms                                                                         | 2      | 12                   | 24    | 500                 | 1.00              |
| 1-31           | Reading Resource Room                                                                                    | 1      |                      | _     | 375                 | 37                |
| 1-32           | Speech Resource Room                                                                                     | 4      | _                    | _     | 375                 | 37                |
| 1-34           | Small Group Instruction/Resource Ripom (w/ tolsing pin)                                                  | 1      | _                    | _     | 750                 | 79                |
|                | GROUP CW - CITY-WIDE SPECIAL ED - DISTRICT 75 (clus                                                      |        |                      |       |                     |                   |
|                | Special Education Classrooms (w/tolena) - District 75 Special Education Classrooms- District 75 (provide | 2      | 12                   | 24    | 750                 | 1,50              |
|                | tollets in vicinity of classrooms)                                                                       | 3      | 12                   | 36    | 500                 | 1,50              |
|                | Citywide Special Ed Speech Rm (w/ storage) - Dist. 75                                                    | 1      | _                    | _     | 200                 | 20                |
| CW30-00        | Guidance Office - District 75 Occupational/Physical Therapy Room - Dist. 75 adj to                       | 1      | _                    | _     | 100                 | 10                |
| CW34-00        | gym w/ doors to gym and comidor                                                                          | 1      | _                    | _     | 500                 | 50                |
| CW40-70        | Supervisory Office (w/ storage) - District 75                                                            | 1      | _                    | _     | 250                 | 26                |
| CW80-00        | Storage Room - District 75                                                                               | 1      | _                    | _     | 150                 | 15                |
| cw12-10        | Changing room                                                                                            | 1      | _                    | -     | 100                 | 10                |
|                | GROUP 2- SPECIALIZED INSTRUCTION                                                                         |        |                      |       |                     |                   |
| 2-10           | Art Classroom                                                                                            | 1      | 28                   | 28    | 1,125<br>250        | 1,12              |
| 2-11           | Art Storage (w/ doors to art room & comidor)                                                             | 1      | _                    | _     | 250                 |                   |
| 2-30           | Music Suite                                                                                              | 1      | 28                   | 28    | 1,050               | 1,05              |
| 2-30.1         | Music Classroom- use stage as Music CR                                                                   | 1      |                      |       | 750                 |                   |
| 2-30.2         | Small Practice Cubicle                                                                                   |        |                      |       | 60                  |                   |
| 2-30.3         | Large Practice Cubicle                                                                                   |        |                      |       | 120                 |                   |
| 2-30.4         | Music Instrument Storeroom                                                                               | 1      | _                    | -     | 120                 |                   |
|                | GROUP 3- SCIENCE                                                                                         |        |                      |       |                     |                   |
| 3-14           | Science Lab/Demo-for MS use                                                                              | 1      | 28                   | 28    | 875                 | 87                |
|                |                                                                                                          |        |                      |       |                     |                   |
| 3-14<br>3-15   | Science Project/Prep Rm (w/ doors to science ms & comdor)                                                | 1      | _                    | _     | 375                 | 37                |

PS-IS-2org-793 Final 022 12014.xlax 7:01 AM2/27/2014



45

100



Region XX / District XX FMS# PS-IS 793 Program of Requirements for a New Primary / Intermediate School Building Capital Budget Line E-2362 DETAILED PROGRAM OF REQUIREMENTS. UNIT Area <u>Ist</u> TOTAL ROOM
LAYOUT ROOM TYPE NET TOTAL PERUNIT UNITS **GROUP 4- PHYSICAL EDUCATION** 56 — 4-12 Gymnasium 5.400 5,400 4-30 Locker/Changing Rooms (boys and girls) 450 900 4-50 Health Instructor's Office (w/shower & tolet) (adj. to gym) 250 250 Gymnasium Storeroom PLAYGROUND: 3,000 sf ECC Playground separate 4-53 150 150 from larger yard; Hard-surface General Playground @ 30 st/student if possible (exclude Pre-K & K count) GROUP 6 - ASSEMBLY 4-90 Gymatorium 4,400 Play/Seating area 3,000 Platform 1,000 Chair storage room Dressing/Utility Room 125 125 GROUP 6 - LIBRARY Library Complex 2,700 2,700 GROUP 7 - LOBBY lobby-each org 150 300 750 GROUP 8 - STUDENT SUPPORT Guidance/SBST Suite 1 8-10.1 8-30.1 100 100 **Guidance Offices** SBST Office 8-30.2 Interview/Conference Room 150 8-10.3 Store Room 50 Walting Room Guidance/SBST Suite 2 100 8-10.1 Guidance Offices 8-30.1 SBST Office 100 150 50 8-30.2 Interview/Conference Room 8-10.3 Store Room Waiting Room 8-51 665 Medical Suite Tollet (for students) 50 Nurse's Office 100

resting area

Walting area

Examination Room

P6-16-20rg-783 Final 02212014 site: 2 7:01 AM2/27/2014

### <u>PS/IS 793 – DRAFT PROGRAM OF REQUIREMENTS</u>

15 of 17





(School Name) Region XX / District XX FMS# 140

|              | of Requirements for a New Primary / Intermediate School Bi<br>udget Line E-2362 |                       | PS-IS 7              |            |                            |                      |
|--------------|---------------------------------------------------------------------------------|-----------------------|----------------------|------------|----------------------------|----------------------|
| ETAILE       | ED PROGRAM OF REQUIREMENTS                                                      |                       |                      |            |                            |                      |
| DOM<br>NYOUT | ROOM TYPE                                                                       | NO. OF                | CAPACITY<br>PER UNIT | TOTAL      | UNIT<br>AREA<br><u>IST</u> | TOTAL<br>NET<br>AREA |
|              | GROUP 8 - STORAGE                                                               |                       |                      |            |                            |                      |
| 11           | Book Storeroom                                                                  | 1 at 1000 or 2 at 500 |                      |            | 1,000                      | 1,000                |
| 14           | Furniture Storeroom                                                             | 1                     | _                    | _          | 500                        | 500                  |
| 16           | General Supply w/ 100 SF receiving area                                         | 1                     | _                    | _          | 500                        | 500                  |
| 9            | Grounds Equipment Storeroom                                                     | 1                     | _                    | _          | 125                        | 125                  |
| 21           | Audio-Visual /Secure Storeroom                                                  | 1                     | _                    | _          | 250                        | 250                  |
|              | Refuse and Recycling room w/ 70 8F trash refrigerator                           |                       |                      |            |                            |                      |
| 24           | (Wif floor drain and hose bib) (on 1st floor if possible)                       | 1                     |                      | _          | 175                        | 175                  |
| 25           | Computer/AV Storeroom (1 ea. Instr. floor)                                      | 4                     | _                    | -          | 50                         | 200                  |
|              | GROUP 10 - ADMINISTRATION                                                       |                       |                      |            |                            |                      |
|              | Administration Suite1                                                           | 1                     | _                    | _          | _                          | 1,025                |
| H11          | General Office/Walting Room mail and time/duplicating                           | 1 1                   | _                    | _          | 500                        | _                    |
| H13          | Principal's Office /Conference                                                  | 1                     | _                    | _          | 375                        | _                    |
| H14          | Records Room                                                                    | 1                     | _                    | _          | 150                        | -                    |
|              | supervisory office                                                              | 1                     | _                    | _          | 150                        | 150                  |
|              | Administration Suite2                                                           | 1                     | _                    | _          | _                          | 1,025                |
| -11          | General Office/Walting Room mail and time/duplicating                           | 1 1                   | _                    | _          | 500                        | _                    |
| -13          | Principal's Office /Conference                                                  | 1                     | _                    | _          | 375                        | -                    |
| 14           | Records Room                                                                    | 1                     | _                    | _          | 150                        | _                    |
|              | supervisory office                                                              | 1                     | _                    | _          | 150                        | 150                  |
| -24          | Teachers' & Aides Work Rm/Lounge (w/lookers & tollet)                           | 1                     | _                    | _          | 500                        | 500                  |
| -25          | Parents / Community Room                                                        | 1                     | _                    | _          | 375                        | 375                  |
|              | GROUP 11 - CAFETERIA/STAFF LUNCH                                                |                       |                      |            |                            |                      |
| 1-10         | Students' Dining Area (110% Capacity / 3*15 st)                                 | 1                     | 291                  | _          | 4,362                      | 4,362                |
| -11          | Staff Lunch / Conference Room                                                   | 1                     | -                    | -          | 500                        | 500                  |
|              | GROUP 12 - CUSTODIAL                                                            |                       |                      |            |                            |                      |
| -10          | Custodial Locker Rms - M/F                                                      | 2                     | _                    | -          | 150                        | 300                  |
| -11          | unisex tollet & shower (for custodial use)<br>Custodian's Office                | 1                     | _                    |            | 100<br>250                 | 100<br>250           |
| -14          |                                                                                 | 1                     | _                    | _          | 450                        | 250<br>450           |
| 14<br>15     | Custodian's Storage (notade hydraulic lift)<br>Custodian's Workshop             | 1                     | _                    | _          | 450<br>375                 | 450<br>375           |
| 17           | Janitor's Sink Closet                                                           | 1                     |                      | -          | 3/5                        | 3/5                  |
| -17          | Telecommunications Room                                                         | 1                     | (1                   | per floor) | 250                        | 250                  |
| -25          | Telecommunications Switch Closet (@ floors wio tal. room)                       | 3                     | _                    | _          | 250<br>70                  | 210                  |
| -27          | Unisex tollet for non-ambulatory use                                            | 1                     | _                    | _          | 60                         | 60                   |
| 28           | School Safety Office/Locker Rms                                                 | 1                     | _                    | _          | 375                        | 375                  |
|              | GROUP K - KITCHEN                                                               |                       |                      |            |                            |                      |
|              | Kitchen Complex                                                                 | 1                     | _                    | _          | 2,900                      | 2,900                |
|              | Kitchen                                                                         |                       |                      |            |                            |                      |
|              | Dietitian's Office                                                              |                       |                      |            |                            |                      |
| ,            | Help Locker Room - M/F (w/ tolet)                                               |                       |                      |            |                            |                      |
|              | Food Storage (75% may be remote from kitchen)                                   |                       |                      |            |                            |                      |
|              | TOTAL PROGRAMMED AREA (84% Gross)                                               |                       |                      |            |                            | 68,847               |
|              | TOTAL CORE AREA (38% Gross)                                                     |                       |                      |            |                            | 38,726               |
|              |                                                                                 |                       |                      |            |                            |                      |

TOTAL ADJUSTED CAPACITY: 788

(As per OSP PS UBitation Calculations) (PS unadjusted capacity-3 cluster-1 funded) + (MS Regular CR\*0.875 + MS Specialty CR\*0.675 weighted everage size for cluster deduction 22

Unedjusted Capacity: 952

TOTAL SF PER PUPIL: 138

P5-15-2crg-789 Final 02212014.slip: 3 7:01 AM2/27/2014





From: OU, KENRICK

Sent: Monday, February 24, 2014 12:12 PM

To: PERCUDANI, PETER

Subject: FW: Due Diligence Request: 1609 Unionport Road et al., Bronx (D12)

Attachments: 130910\_InterimSummary.pdf

From: OU, KENRICK

Sent: Friday, February 14, 2014 5:55 PM

To: BARRETT, E BRUCE; LEMPERT, ALEX; GUTERMAN, DEBORAH LEE; KUBOTA, NINA

Cc: ABNERI, ELAN; DAHIR, STANLEY; PERCUDANI, PETER; KANAPARTHI, SRINIVAS; LIU, CORA; HAQUE, MOHAMMAD;

SHAH, ANJAYKUMAR; FONTANET, JENNIFER; BRENNAN, FRANK; AMBACHEN, JENSEN; CONA, MICHAEL

Subject: Due Diligence Request: 1609 Unionport Road et al., Bronx (D12)

The below property assemblage, which is located in the Tremont/West Farms subdistrict of District 12, is on the market. The Draft Capital Plan for Fiscal Years 2015-2019 identifies the need and allocates capital funding for the creation of Capacity seats in this subdistrict, and this site may also be a potential candidate for Replacement seats. Therefore we requesting that due diligence for the assemblage move forward as described below.

#### Property Information:

CSD: 12 (Tremont/West Farms Subdistrict)

Addresses: 1609 and 1623 Unionport Road, 1897 Guerlain Street, 1578-92 White Plains Road, and 1880 East

Tremont Avenue, Bronx

Block/Lots: 3592/1, 7, 8, 17, and 22

Description: The subject property is an assemblage containing a total of approximately 70,600 square feet (1.62

acres) of lot area. It contains several low-rise structures occupied by commercial uses and retail storefronts, many of which are vacant, along with an occupied gas station (Lot 8). The assemblage comprises the entire block bounded by East Tremont Avenue, White Plains Road, Unionport Road, and

Guerlain Street. Please note that the gas station is subject to a long-term lease.

Access: Access to this property should be coordinated with John Peters from Cushman & Wakefield, which is

the SCA's broker. He may be reached at 212-841-7510 (o), 917-847-1547 (c), and by email at

john.peters@cushwake.com

#### Request:

- Capital Plan Management is requested to create an LLW# for these investigations.
- A&E is requested to assess the cost and feasibility of the demolition of all on-site structures and construction of a new school facility to accommodate a Program of Requirements to be developed in consultation with Capital Plan Management. The zoning analysis that was completed for the property owner is attached for your reference.

1

### REQUEST FOR "TEST FIT - SKETCH STUDY"



# LANGAN

Revised June 20, 2014

Mr. Yujaya Mikkilineni NYC School Construction Authority 30-30 Thomson Avenue Long Island City, NY 11101

Re: **Post Probe Asbestos Survey** 

Project # 1 - D-10 X (X882)

1597-1592 Unionport Road, 1889-1905 Guerlain Street, 1572-1592 White Plains

Road, 1880-1894 East Tremont Avenue, Bronx, New York

IEH Job # X882-49756, LLW # 091486

Langan Project # 100468201

Dear Mr. Mikkilineni:

As per the NYCSCA proceed order request, Langan Engineering, Environmental, Survey & Landscape Architecture, D.P.C. (Langan) performed a limited asbestos investigation for the proposed boring locations as marked on the drawings prepared by D&B Engineers and Architects, P.C. dated April 8, 2014.

The investigation was performed by Langan representative Mr. Parthiban Munirathinam (NYSDOL / NYCDEP # 11-21477 / 128650) & Mr. Dixitkumar Patel (NYSDOL # 10-21571) on June 16-17, 2014 in accordance with AHERA and New York City School Construction Authority requirements. The abatement contractor Empire Control Abatement, Inc. assisted Langan with the boring clearance activities.

The following is a summary of findings which would be impacted by the proposed boring activities.

| Location            | Boring #                             | Material                                            | No. of Samples | Result          | Notes                                                        |
|---------------------|--------------------------------------|-----------------------------------------------------|----------------|-----------------|--------------------------------------------------------------|
| EXTERIOR            | ·                                    |                                                     |                |                 |                                                              |
| Exterior            | 1, 2, 4 to 7, 9, 12, 13, 15 to 18    | Black Mastic on Sidewalk                            | 12             | Non-ACM         |                                                              |
| Exterior            | 1, 2, 4 to 7, 9, 12, 13, 15 to 18    | Sidewalk Expansion Joint Caulking (Grey)            | 12             | Non-ACM         |                                                              |
| Exterior            | 1, 2, 4 to 7, 9,<br>12, 13, 15 to 18 | Sidewalk Expansion Joint<br>Material under Caulking | 12             | Non-ACM         |                                                              |
| Exterior            | 1, 2, 4 to 7, 9,<br>12, 13, 15 to 18 | Concrete Sidewalk                                   | 0              | Non-<br>Suspect |                                                              |
| Exterior            | 1, 2, 4 to 7, 9, 12, 13, 15 to 18    | Asphalt Pavement                                    | 3              | Non-ACM         |                                                              |
| INTERIOR            |                                      |                                                     |                |                 |                                                              |
| <b>1589 WHITE P</b> | LAINS ROAD, BE                       | RONX, NY                                            |                |                 |                                                              |
| Basement            | 8                                    | Concrete Floor                                      | 0              | Non-<br>Suspect | No suspect materials were observed under the concrete floor. |
| <b>1894 EAST TR</b> | EMONT AVENUE                         | E, BRONX, NY                                        |                |                 |                                                              |
| Basement            | 3                                    | Concrete Floor                                      | 0              | Non-<br>Suspect |                                                              |
| Basement            | 3                                    | Loose Fill Materials under Concrete Floor           | 3              | Non-ACM         |                                                              |
| <b>1615 UNIONPO</b> | ORT ROAD, BRO                        | NX, NY                                              |                |                 |                                                              |
| Basement            | 11                                   | Concrete Floor                                      | 0              | Non-<br>Suspect |                                                              |

Curtis HS R (R450) 105 Hamilton Avenue, Staten Island, NY IEH Job # R450-48438, LLW # 089515, Design # TBD Langan Project # 100443201

| Location      | Boring #      | Material                                     | No. of Samples | Result          | Notes                                                        |
|---------------|---------------|----------------------------------------------|----------------|-----------------|--------------------------------------------------------------|
| Basement      | 11            | Loose Fill Materials under<br>Concrete Floor | 3              | Non-ACM         |                                                              |
| 1603 UNIONPO  | RT ROAD, BRO  | NX, NY                                       |                |                 |                                                              |
| Basement      | 10            | Grey Floor Paint                             | 3              | Non-ACM         |                                                              |
| Basement      | 10            | Concrete Floor                               | 0              | Non-<br>Suspect | No suspect materials were observed under the concrete floor. |
| 1897 GUERLAII | N STREET, BRO | NX, NY                                       |                |                 |                                                              |
| Basement      | 14            | Black Mastic on Concrete Floor               | 3              | Non-ACM         |                                                              |
| Basement      | 14            | Beige Carpet                                 | 0              | Non-<br>Suspect |                                                              |
| Basement      | 14            | Capet Glue                                   | 3              | Non-ACM         |                                                              |
| Basement      | 14            | Leveling Compound                            | 3              | Non-ACM         |                                                              |
| Basement      | 14            | Concrete Floor                               | 0              | Non-<br>Suspect |                                                              |
| Basement      | 14            | Loose Fill Materials under<br>Concrete Floor | 6              | Non-ACM         |                                                              |

#### Notes:

- 1. Borings can be performed by a General Contractor.
- 2. Any suspect building material that is not listed must be assumed as ACM unless otherwise confirmed negative via laboratory analytical results.

This inspection was conducted solely for the proposed scope of work. If the proposed work should change, an additional survey will be necessary prior to any commencement of proposed work.

If you have any questions or require further information, please do not hesitate to call me at 732-501-7058.

Very truly yours,

Langan Engineering and Environmental Services, Inc.

Darshan Desais MV NYC Asbestos Investigator

Project Manager/QA/QC

#### **APPENDICES:**

Appendix A: Analytical Results, Chain of Custody & Certificates of Analysis

Appendix B: Laboratory Certification

Appendix C: Personal & Company Licenses

Appendix D: SCA Probe Request

\\Langan.com\\data\EP\\data2\100468201\Survey & Design Jobs\\Probe\\Post-Probe\X882 - ACM Post Probe Letter Report - 06-20-14.doc

# **APPENDIX A**

# ANALYTICAL RESULTS, CHAIN OF CUSTODY, AND CERTIFICATES OF ANALYSIS

# APPENDIX A SUMMARY OF BULK ASBESTOS SAMPLE ANALYSIS

| LINE      |                        | DESCRIPTION OF                              |                      | RESULTS  |          |          |    |
|-----------|------------------------|---------------------------------------------|----------------------|----------|----------|----------|----|
| LINE<br># | SAMPLE ID<br>NUMBER    | HOMOGENEOUS<br>MATERIAL                     | LOCATION             | PLM      | PLM-NOB  | TEM      |    |
|           |                        | Sur                                         | vey Dated: June 16-1 | 7, 2014  | T        | T        |    |
|           | E-MA-1-A               |                                             | Exterior – White     |          | ND       | ND       |    |
| 1.        | E-MA-1-B               | Black Mastic on Sidewalk                    | Plains Road —        |          | ND       | ND       |    |
|           | E-MA-1-C               |                                             |                      |          | ND       | ND       |    |
|           | E-MA-2-A               |                                             | Exterior – Guerlain  |          | ND       | ND       |    |
| 2.        | E-MA-2-B               | Black Mastic on Sidewalk                    | Street               |          | ND       | ND       |    |
|           | E-MA-2-C               |                                             |                      |          | ND       | ND       |    |
| _         | E-MA-3-A               |                                             | Exterior –           |          | ND       | ND       |    |
| 3.        | E-MA-3-B               | Black Mastic on Sidewalk                    | Unionport Road       |          | ND       | ND       |    |
|           | E-MA-3-C               |                                             |                      |          | ND       | ND       |    |
|           | E-MA-4-A               |                                             | Exterior – E.        |          | ND       | ND       |    |
| 4.        | E-MA-4-B               | Black Mastic on Sidewalk                    | Tremont Avenue       |          | ND       | ND       |    |
|           | E-MA-4-C               |                                             |                      |          | ND       | ND       |    |
| _         | E-EJC-1-A              | Sidewalk Expansion Joint                    | Exterior – White     |          | ND       | ND       |    |
| 5.        | E-EJC-1-B              | Caulking (Grey)                             | Plains Road          |          | ND       | ND       |    |
|           | E-EJC-1-C              |                                             |                      |          | ND       | ND       |    |
|           | E-EJC-2-A              | Sidewalk Expansion Joint<br>Caulking (Grey) | Exterior – Guerlain  |          | ND       | ND       |    |
| 6.        | E-EJC-2-B              |                                             | Street               |          | ND       | ND       |    |
|           | E-EJC-2-C              |                                             |                      |          |          | ND       | ND |
| _         | E-EJC-3-A Side         | Sidewalk Expansion Joint                    | Exterior –           |          | ND       | ND       |    |
| 7.        | E-EJC-3-B              | Caulking (Light Grey)                       | Unionport Road       |          | ND       | ND       |    |
|           | E-EJC-3-C              |                                             |                      |          | ND       | ND       |    |
|           | E-EJC-4-A              | Sidewalk Expansion Joint                    | Exterior – E.        |          | ND       | ND       |    |
| 8.        | E-EJC-4-B              | Caulking (Grey)                             | Tremont Avenue       |          | ND       | ND       |    |
|           | E-EJC-4-C              |                                             |                      |          | ND       | ND       |    |
|           | E-EJM-1-A              | Sidewalk Expansion Joint                    | Exterior – White     |          | ND       | ND       |    |
| 9.        | E-EJM-1-B              | Material under Caulking                     | Plains Road          |          | ND       | ND       |    |
|           | E-EJM-1-C              |                                             |                      |          | ND       | ND       |    |
| 40        | E-EJM-2-A              | Sidewalk Expansion Joint                    | Exterior – Guerlain  |          | ND       | ND       |    |
| 10.       | E-EJM-2-B              | Material under Caulking                     |                      |          | ND       | ND       |    |
|           | E-EJM-2-C              |                                             |                      |          | ND<br>ND | ND<br>ND |    |
| 11        | E-EJM-3-A<br>E-EJM-3-B | Sidewalk Expansion Joint                    | Exterior –           |          | ND<br>ND | ND<br>ND |    |
| 11.       | E-EJM-3-B              | Material under Caulking                     | Unionport Road       |          | ND<br>ND | ND<br>ND |    |
|           | E-EJM-3-C<br>E-EJM-4-A |                                             |                      |          | ND<br>ND | ND<br>ND |    |
| 12.       | E-EJM-4-A<br>E-EJM-4-B | Sidewalk Expansion Joint                    | Exterior – E.        |          | ND<br>ND | ND<br>ND |    |
| 14.       | E-EJM-4-C              | Material under Caulking                     | Tremont Avenue       |          | ND<br>ND | ND<br>ND |    |
| -         | E-ASH-1-A              |                                             |                      |          | ND<br>ND | ND<br>ND |    |
| 13.       | E-ASH-1-B              | Asphalt Pavement                            | Exterior – Drive     |          | ND<br>ND | ND<br>ND |    |
| 13.       | E-ASH-1-C              | Asphalt avenient                            | Way                  |          | ND<br>ND | ND<br>ND |    |
|           | TS-PA-1-A              |                                             |                      |          | ND ND    | ND       |    |
| 14.       | TS-PA-1-B              | Grey Floor Paint                            | Basement – 1603      |          | ND ND    | ND       |    |
| '         | TS-PA-1-C              |                                             | Unionport Road       |          | ND ND    | ND       |    |
|           | T3-FM-1-A              |                                             |                      | ND       |          |          |    |
| 15.       | T3-FM-1-B              | Loose Fill Materials                        | Basement – 1615      | ND<br>ND |          |          |    |
| 10.       | T3-FM-1-C              | below Concrete                              | Unionport Road       | ND<br>ND |          |          |    |
|           | 1011111-0              |                                             |                      | אור      |          |          |    |

| LINE | SAMPLE ID  | DESCRIPTION OF                            |                                  | RESULTS |         |     |  |
|------|------------|-------------------------------------------|----------------------------------|---------|---------|-----|--|
| #    | NUMBER     | HOMOGENEOUS<br>MATERIAL                   | LOCATION                         | PLM     | PLM-NOB | TEM |  |
|      | FM-1-A     | Lacas Ell Matariala                       | Danamant 4007                    | ND      |         |     |  |
| 16.  | FM-1-B     | Loose Fill Materials<br>below Concrete    | Basement – 1897<br>Guerlain Road | ND      |         |     |  |
|      | FM-1-C     |                                           | Oueriain Road                    | ND      |         |     |  |
|      | T2-MA-1-A  | Di IM C CO                                | D                                |         | ND      | ND  |  |
| 17.  | T2-MA-1-B  | Black Mastic on top of the Concrete Floor | Basement – 1897<br>Guerlain Road |         | ND      | ND  |  |
|      | T2-MA-1-C  | Concrete Floor                            | Gueriairi Koau                   |         | ND      | ND  |  |
|      | T2-CMA-1-A |                                           | Decement 4007                    |         | ND      | ND  |  |
| 18.  | T2-CMA-1-B | Carpet Glue                               | ue Basement – 1897               |         | ND      | ND  |  |
|      | T2-CMA-1-C |                                           | Guerlain Road                    |         | ND      | ND  |  |
|      | T2-LC-1-A  |                                           | Basement – 1897                  | ND      |         |     |  |
| 19.  | T2-LC-1-B  | Leveling Compound                         | Guerlain Road                    | ND      |         |     |  |
|      | T2-LC-1-C  |                                           | Gueriain Roau                    | ND      |         |     |  |
|      | T2-FM-1-A  | Loose Fill Materials                      | Basement – 1897                  | ND      |         |     |  |
| 20.  | T2-FM-1-B  | below Concrete                            | Guerlain Road                    | ND      |         |     |  |
|      | T2-FM-1-C  | Delow Collete                             | Gueriain Noau                    | ND      |         |     |  |
|      | T4-FM-1-A  | Loose Fill Materials                      | Basement – 1894                  | ND      |         |     |  |
| 21.  | T4-FM-1-B  | below Concrete                            | E. Tremont                       | ND      |         |     |  |
|      | T4-FM-1-C  | Delow Collete                             | Avenue                           | ND      |         |     |  |

#### Notes:

- 1) 2) 3)
- Concentrations in weight percent.

  ND = "None Detected" Asbestos not detected in that sample.

  PLM = Polarized Light Microscopy
- TEM = Transmission Electron Microscopy 4)
- NOB = Non-Friable Organically Bound. 5)
- A material with asbestos content greater than one percent is considered as an asbestos-6) containing material.
- NA = Not Analyzed 7)
- 8) NAPS = Not Analyzed Positive Stop



#### AmeriSci New York

117 EAST 30TH ST. NEW YORK, NY 10016 TEL: (212) 679-8600 • FAX: (212) 679-3114

# **PLM Bulk Asbestos Report**

Langan Engineering & Environmental S Date Received

AmeriSci Job # 06/17/14

214063643

Attn: Vijay Patel

Date Examined 06/18/14

P.O. #

River Drive Center 1

ELAP#

11480

Page 1 of

RE: 100468201; X882; Project # 1 - D10 - X, Bronx, NY 10462;

Elmwood Park, NJ 07407

SCA IEH Job #: X882-49756; LLW #: 91486

| Client No. /        | HGA                                                                    | Lab No.                                   | <b>Asbestos Present</b> | Total % Asbesto                                                   |
|---------------------|------------------------------------------------------------------------|-------------------------------------------|-------------------------|-------------------------------------------------------------------|
| E-MA-1-A<br>E-MA-1  |                                                                        | 214063643-01<br>ic On Sidewalk / Exterior |                         | NAD<br>(by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbesto             | cription: Black, Homogened<br>s Types:<br>Material: Non-fibrous 20.8 % |                                           | aterial                 |                                                                   |
| E-MA-1-B            |                                                                        | 214063643-02                              | No                      | NAD                                                               |
| E-MA-1              |                                                                        | ic On Sidewalk / Exterior                 |                         | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14        |
| Asbesto             | cription: Black, Homogened<br>s Types:<br>Material: Non-fibrous 25.8 % |                                           | aterial                 |                                                                   |
| E-MA-1-C            |                                                                        | 214063643-03                              | No                      | NAD                                                               |
| E-MA-1  Analyst Des | Location: Black Mast cription: Black, Homogeneo                        | ic On Sidewalk / Exterior                 |                         | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14        |
| Asbesto             | -                                                                      |                                           |                         |                                                                   |
| E-MA-2-A            |                                                                        | 214063643-04                              | No                      | NAD                                                               |
| E-MA-2              | Location: Black Mast                                                   | ic On Sidewalk / Exterior                 | - Guerlain Street       | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14        |
| Asbesto             | cription: Black, Homogened<br>s Types:<br>Material: Non-fibrous 16.2 % |                                           | aterial                 | 0.1 0.37 1.01                                                     |
| E-MA-2-B            |                                                                        | 214063643-05                              | No                      | NAD                                                               |
| E-MA-2              | Location: Black Mast                                                   | c On Sidewalk / Exterior                  | - Guerlain Street       | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14        |
| Asbesto             | cription: Black, Homogened<br>s Types:<br>Material: Non-fibrous 34.3 % |                                           | aterial .               | 011 00/10/14                                                      |
| Other               | naterial. Northibious 34.3 %                                           | ,                                         |                         |                                                                   |

# **PLM Bulk Asbestos Report**

100468201; X882; Project # 1 - D10 - X, Bronx, NY 10462; SCA IEH Job #: X882-49756; LLW #: 91486

| Client No. / | HGA Lab No. A                                                                                     | sbestos Present | Total % Asbestos                                           |
|--------------|---------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------|
| E-MA-2-C     | 214063643-06                                                                                      | No              | NAD                                                        |
| E-MA-2       | Location: Black Mastic On Sidewalk / Exterior - Guerla                                            | ain Street      | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbesto      | cription: Black, Homogeneous, Non-Fibrous, Bulk Material s Types:  Material: Non-fibrous 37.2 %   |                 |                                                            |
| E-MA-3-A     | 214063643-07                                                                                      | No              | NAD                                                        |
| E-MA-3       | Location: Black Mastic On Sidewalk / Exterior - Union                                             | Port Road       | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbesto      | cription: Black, Homogeneous, Non-Fibrous, Bulk Material s Types:  Material: Non-fibrous 19.9 %   |                 |                                                            |
| E-MA-3-B     | 214063643-08                                                                                      | No              | NAD                                                        |
| E-MA-3       | Location: Black Mastic On Sidewalk / Exterior - Union                                             | Port Road       | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbesto      | cription: Black, Homogeneous, Non-Fibrous, Bulk Material s Types:  Material: Non-fibrous 27.7 %   |                 |                                                            |
| E-MA-3-C     | 214063643-09                                                                                      | No              | NAD                                                        |
| E-MA-3       | Location: Black Mastic On Sidewalk / Exterior - Union                                             | Port Road       | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbesto      | cription: Black, Homogeneous, Non-Fibrous, Bulk Material s Types:  **Material** Non-fibrous 4.9 % |                 |                                                            |
| E-MA-4-A     | 214063643-10                                                                                      | No              | NAD                                                        |
| E-MA-4       | Location: Black Mastic On Sidewalk / Exterior - E. Tre                                            |                 | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbestos     | cription: Black, Homogeneous, Non-Fibrous, Bulk Material Types:  Material: Non-fibrous 27.7 %     | t               |                                                            |
| E-MA-4-B     | 214063643-11                                                                                      | No              | NAD                                                        |
| E-MA-4       | Location: Black Mastic On Sidewalk / Exterior - E. Tre                                            | -               | (by NYS ELAP 198.6)<br>by David W. Roderick                |
|              |                                                                                                   |                 | on 06/18/14                                                |

# **PLM Bulk Asbestos Report**

100468201; X882; Project # 1 - D10 - X, Bronx, NY 10462; SCA IEH Job #: X882-49756; LLW #: 91486

| Client No. / HGA |                                                                                              | Lab No.                   | <b>Asbestos Present</b>             | Total % Asbesto                                            |
|------------------|----------------------------------------------------------------------------------------------|---------------------------|-------------------------------------|------------------------------------------------------------|
| E-MA-4-C         |                                                                                              | 214063643-12              | No                                  | NAD                                                        |
| E-MA-4           | Location: Black Mastic                                                                       |                           |                                     | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbestos         | cription: Black, Homogeneous<br>Types:<br>Material: Non-fibrous 10.1 %                       | s, Non-Fibrous, Bulk Ma   | terial                              |                                                            |
| E-EJC-1-A        |                                                                                              | 214063643-13              | No                                  | NAD                                                        |
| E-EJC-1          |                                                                                              |                           | Grey / Exterior - White Plains Road | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Analyst Desc     | ription: Black, Homogeneous<br>Types:                                                        | s, Non-Fibrous, Bulk Mat  | terial                              |                                                            |
|                  | laterial: Non-fibrous 16.5 %                                                                 |                           |                                     |                                                            |
| E-EJC-1-B        |                                                                                              | 214063643-14              | No                                  | NAD                                                        |
| E-EJC-1          | Location: Sidewalk Exp                                                                       |                           | Grey / Exterior - White Plains Road | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbestos         | ription: Black, Homogeneous<br>Types:<br>laterial: Non-fibrous 13.2 %                        | s, Non-Fibrous, Bulk Mat  | erial                               | 0.1 00.10111                                               |
| E-EJC-1-C        |                                                                                              | 214063643-15              | No                                  | NAD                                                        |
| E-EJC-1          | Location: Sidewalk Exp                                                                       | ansion Joint Caulking - ( | Grey / Exterior - White Plains Road | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbestos         | ription: Black, Homogeneous<br>Types:<br> aterial: Non-fibrous 17.7 %                        | , Non-Fibrous, Bulk Mat   | erial                               |                                                            |
| E-EJC-2-A        |                                                                                              | 214063643-16              | No                                  | NAD                                                        |
| E-EJC-2          | Location: Sidewalk Expa                                                                      | ansion Joint Caulking - G | Grey / Exterior - Guerlain Street   | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbestos         | ription: Black, Homogeneous<br>Types:<br>aterial: Non-fibrous 16.8 %                         | , Non-Fibrous, Bulk Mate  | erial                               | 311 337 137 14                                             |
| E-EJC-2-B        |                                                                                              | 214063643-17              | No                                  | NAD                                                        |
| E-EJC-2          |                                                                                              |                           | Grey / Exterior - Guerlain Street   | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbestos         | ri <b>ption</b> : Black, Homogeneous<br><b>Types</b> :<br><b>aterial:</b> Non-fibrous 17.5 % | , Non-Fibrous, Bulk Mate  | erial                               |                                                            |

# **PLM Bulk Asbestos Report**

100468201; X882; Project # 1 - D10 - X, Bronx, NY 10462; SCA IEH Job #: X882-49756; LLW #: 91486

|                                                                                                   | A Lab No                                                                                                                                                                                             | o. Asbestos Present                                                                                                                                       | Total % Asbesto                                                                                                  |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| E-EJC-2-C                                                                                         | 21406364                                                                                                                                                                                             | 3-18 <b>No</b>                                                                                                                                            | NAD                                                                                                              |
| E-EJC-2                                                                                           |                                                                                                                                                                                                      | Caulking - Grey / Exterior - Guerlain Street                                                                                                              | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14                                                       |
| Asbestos T                                                                                        | tion: Black, Homogeneous, Non-Fibrous<br>rpes:<br>erial: Non-fibrous 20.4 %                                                                                                                          | s, Bulk Material                                                                                                                                          |                                                                                                                  |
| E-EJC-3-A                                                                                         | 214063643                                                                                                                                                                                            | 3-19 <b>No</b>                                                                                                                                            | NAD                                                                                                              |
| E-EJC-3                                                                                           |                                                                                                                                                                                                      | Caulking - Light Grey / Exterior - Union Port Road                                                                                                        |                                                                                                                  |
| Asbestos T                                                                                        | tion: Grey, Homogeneous, Non-Fibrous, pes: prial: Non-fibrous 5.1 %                                                                                                                                  | , Bulk Material                                                                                                                                           |                                                                                                                  |
| E-EJC-3-B                                                                                         | 214063643                                                                                                                                                                                            | 3-20 <b>No</b>                                                                                                                                            | NAD                                                                                                              |
| E-EJC-3                                                                                           |                                                                                                                                                                                                      | Caulking - Light Grey / Exterior - Union Port Road                                                                                                        | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14                                                       |
| Asbestos Ty                                                                                       | tion: Grey, Homogeneous, Non-Fibrous,<br>pes:<br>rial: Non-fibrous 5.8 %                                                                                                                             | , Bulk Material                                                                                                                                           |                                                                                                                  |
|                                                                                                   |                                                                                                                                                                                                      |                                                                                                                                                           |                                                                                                                  |
|                                                                                                   | 214063643                                                                                                                                                                                            | • - •                                                                                                                                                     | NAD                                                                                                              |
| E-EJC-3-C<br>E-EJC-3                                                                              | Location: Sidewalk Expansion Joint Ca                                                                                                                                                                | caulking - Light Grey / Exterior - Union Port Road                                                                                                        | NAD<br>(by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14                                                |
| E-EJC-3  Analyst Descrip  Asbestos Ty                                                             | Location: Sidewalk Expansion Joint California Grey, Homogeneous, Non-Fibrous,                                                                                                                        | caulking - Light Grey / Exterior - Union Port Road                                                                                                        | (by NYS ELAP 198.6)<br>by David W. Roderick                                                                      |
| E-EJC-3  Analyst Descrip  Asbestos Ty  Other Mate                                                 | Location: Sidewalk Expansion Joint Ca<br>ion: Grey, Homogeneous, Non-Fibrous,<br>pes:                                                                                                                | caulking - Light Grey / Exterior - Union Port Road Bulk Material                                                                                          | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14                                                       |
| E-EJC-3  Analyst Descrip  Asbestos Ty                                                             | Location: Sidewalk Expansion Joint Cation: Grey, Homogeneous, Non-Fibrous, pes: rial: Non-fibrous 5.2 %                                                                                              | caulking - Light Grey / Exterior - Union Port Road Bulk Material                                                                                          | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14<br>NAD<br>(by NYS ELAP 198.6)<br>by David W. Roderick |
| E-EJC-3  Analyst Descrip Asbestos Ty Other Mate  E-EJC-4-A  E-EJC-4  Analyst Descript Asbestos Ty | Location: Sidewalk Expansion Joint Cation: Grey, Homogeneous, Non-Fibrous, pes: rial: Non-fibrous 5.2 %  214063643 Location: Sidewalk Expansion Joint Cation: Grey, Homogeneous, Non-Fibrous, I      | Bulk Material  3-22  No aulking - Grey / Exterior - Union Port Road  Bulk Material                                                                        | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14<br>NAD<br>(by NYS ELAP 198.6)                         |
| E-EJC-3  Analyst Descrip Asbestos Ty Other Mate  E-EJC-4-A  E-EJC-4  Analyst Descript Asbestos Ty | Location: Sidewalk Expansion Joint Cation: Grey, Homogeneous, Non-Fibrous, pes: rial: Non-fibrous 5.2 %  214063643  Location: Sidewalk Expansion Joint Cation: Grey, Homogeneous, Non-Fibrous, Poes: | Bulk Material  No aulking - Light Grey / Exterior - Union Port Road  Bulk Material  R-22  No aulking - Grey / Exterior - E. Tremont Avenue  Bulk Material | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14<br>NAD<br>(by NYS ELAP 198.6)<br>by David W. Roderick |

Other Material: Non-fibrous 25.7 %

# **PLM Bulk Asbestos Report**

100468201; X882; Project # 1 - D10 - X, Bronx, NY 10462; SCA IEH Job #: X882-49756; LLW #: 91486

| Client No. / HGA                                                                                           |                                                                                                                                                                                                     | Lab No.                                                                                                                       | Asbestos Present                                                                                  | Total % Asbestos                                                                                                 |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| E-EJC-4-C                                                                                                  |                                                                                                                                                                                                     | 214063643-24                                                                                                                  | No                                                                                                | NAD                                                                                                              |
| E-EJC-4                                                                                                    |                                                                                                                                                                                                     |                                                                                                                               | Grey / Exterior - E. Tremont Avenue                                                               | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14                                                       |
| Asbestos                                                                                                   |                                                                                                                                                                                                     | neous, Non-Fibrous, Bulk Mat<br>.4 %                                                                                          | епаі                                                                                              |                                                                                                                  |
| E-EJM-1-A                                                                                                  | , at real real real real real real real real                                                                                                                                                        | 214063643-25                                                                                                                  | No                                                                                                | NAD                                                                                                              |
| E-EJM-1                                                                                                    | <b>Location</b> : Sidewa<br>Road                                                                                                                                                                    | lk Expansion Joint Material Ur                                                                                                | nder Caulking / Exterior - White Plains                                                           | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14                                                       |
| Asbestos                                                                                                   |                                                                                                                                                                                                     | eneous, Non-Fibrous, Bulk Ma<br>.9 %                                                                                          | terial                                                                                            |                                                                                                                  |
| E-EJM-1-B                                                                                                  |                                                                                                                                                                                                     | 214063643-26                                                                                                                  | No                                                                                                | NAD                                                                                                              |
| E-EJM-1                                                                                                    | <b>Location</b> : Sidewa<br>Road                                                                                                                                                                    | lk Expansion Joint Material Ur                                                                                                | nder Caulking / Exterior - White Plains                                                           | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14                                                       |
| Analyst Desc                                                                                               | ription: Black, Homoge                                                                                                                                                                              | neous, Non-Fibrous, Bulk Ma                                                                                                   | terial                                                                                            |                                                                                                                  |
| Asbestos                                                                                                   | _                                                                                                                                                                                                   |                                                                                                                               |                                                                                                   |                                                                                                                  |
| Asbestos<br>Other M                                                                                        | Types:                                                                                                                                                                                              |                                                                                                                               | No                                                                                                | NAD                                                                                                              |
| Asbestos                                                                                                   | Types:<br>laterial: Non-fibrous 47                                                                                                                                                                  | 214063643-27                                                                                                                  |                                                                                                   | NAD<br>(by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14                                                |
| Asbestos Other M E-EJM-1-C E-EJM-1 Analyst Desc Asbestos                                                   | Types: laterial: Non-fibrous 47  Location: Sidewal Road  ription: Black, Homoge                                                                                                                     | .7 %  214063643-27  Ik Expansion Joint Material Ur                                                                            | <b>No</b><br>oder Caulking / Exterior - White Plains                                              | (by NYS ELAP 198.6)<br>by David W. Roderick                                                                      |
| Asbestos Other M E-EJM-1-C E-EJM-1 Analyst Desc Asbestos Other M                                           | Location: Sidewal<br>Road                                                                                                                                                                           | .7 %  214063643-27  Ik Expansion Joint Material Ur                                                                            | <b>No</b><br>oder Caulking / Exterior - White Plains                                              | (by NYS ELAP 198.6)<br>by David W. Roderick                                                                      |
| Asbestos Other M E-EJM-1-C E-EJM-1  Analyst Desc Asbestos Other M E-EJM-2-A E-EJM-2                        | Location: Sidewal Road  ription: Black, Homoge Types: laterial: Non-fibrous 48.  Location: Sidewal                                                                                                  | 214063643-27 Ik Expansion Joint Material Uraneous, Non-Fibrous, Bulk Mar<br>214063643-28 Ik Expansion Joint Material Uraneous | No Ider Caulking / Exterior - White Plains Iderial  No Ider Caulking / Exterior - Guerlain Street | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14                                                       |
| Asbestos Other M E-EJM-1-C E-EJM-1  Analyst Desc Asbestos Other M E-EJM-2-A E-EJM-2  Analyst Desc Asbestos | Location: Sidewal Road  ription: Black, Homoge Stypes: laterial: Non-fibrous 48.  Location: Sidewal Road                                                                                            | 214063643-27 Ik Expansion Joint Material Ur neous, Non-Fibrous, Bulk Material 4 % 214063643-28 Ik Expansion Joint Material Ur | No Ider Caulking / Exterior - White Plains Iderial  No Ider Caulking / Exterior - Guerlain Street | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14<br>NAD<br>(by NYS ELAP 198.6)<br>by David W. Roderick |
| Asbestos Other M E-EJM-1-C E-EJM-1  Analyst Desc Asbestos Other M E-EJM-2-A E-EJM-2  Analyst Desc Asbestos | Location: Sidewal Road  ription: Black, Homoge laterial: Non-fibrous 48.  Location: Sidewal Road  ription: Black, Homoge laterial: Non-fibrous 48.  Location: Sidewal ription: Black, Homoge Types: | 214063643-27 Ik Expansion Joint Material Ur neous, Non-Fibrous, Bulk Material 4 % 214063643-28 Ik Expansion Joint Material Ur | No Ider Caulking / Exterior - White Plains Iderial  No Ider Caulking / Exterior - Guerlain Street | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14<br>NAD<br>(by NYS ELAP 198.6)<br>by David W. Roderick |

**Asbestos Types:** 

Other Material: Non-fibrous 5.5 %

# **PLM Bulk Asbestos Report**

100468201; X882; Project # 1 - D10 - X, Bronx, NY 10462; SCA IEH Job #: X882-49756; LLW #: 91486

| Client No. / HG                                         | A                                     | Lab No.                                                                                | Asbestos Present                                      | Total % Asbesto                                            |
|---------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|
| E-EJM-2-C<br>E-EJM-2                                    | Location:                             | 214063643-30<br>Sidewalk Expansion Joint Material Un                                   | <b>No</b><br>der Caulking / Exterior - Guerlain Stree | NAD<br>t (by NYS ELAP 198.6)<br>by David W. Roderick       |
| Asbestos T                                              |                                       | Homogeneous, Non-Fibrous, Bulk Mat                                                     | erial                                                 | on 06/18/14                                                |
| E-EJM-3-A                                               |                                       | 214063643-31                                                                           | No                                                    | NAD                                                        |
| E-EJM-3                                                 |                                       | Sidewalk Expansion Joint Material Une<br>Road                                          | der Caulking / Exterior - Union Port                  | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbestos Ty                                             |                                       | Homogeneous, Non-Fibrous, Bulk Mate                                                    | erial                                                 |                                                            |
| E-EJM-3-B                                               |                                       | 214063643-32                                                                           | No                                                    | NAD                                                        |
| E-EJM-3                                                 |                                       | Sidewalk Expansion Joint Material Und<br>Road                                          |                                                       | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbestos Ty                                             |                                       | Homogeneous, Non-Fibrous, Bulk Mate                                                    | erial                                                 |                                                            |
| E-EJM-3-C                                               |                                       | 214063643-33                                                                           | No                                                    | NAD                                                        |
| E-EJM-3                                                 | Location:                             | Sidewalk Expansion Joint Material Und<br>Road                                          | der Caulking / Exterior - Union Port                  | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbestos Ty                                             |                                       | Homogeneous, Non-Fibrous, Bulk Mate                                                    | erial                                                 | 611 667 167 14                                             |
| Other Mate                                              |                                       |                                                                                        | No                                                    | NAD                                                        |
|                                                         |                                       | 214063643-34                                                                           |                                                       |                                                            |
| Other Mate<br>E-EJM-4-A<br>E-EJM-4                      | Location: \$                          | 214063643-34<br>Sidewalk Expansion Joint Material Unc<br>Avenue                        | <del>-</del>                                          | (by NYS ELAP 198.6)<br>by David W. Roderick                |
| E-EJM-4-A<br>E-EJM-4<br>Analyst Descript<br>Asbestos Ty | t <b>ion:</b> Black, H                | Sidewalk Expansion Joint Material Und<br>Avenue<br>Homogeneous, Non-Fibrous, Bulk Mate | ler Caulking / Exterior - E. Tremont                  | (by NYS ELAP 198.6)                                        |
| E-EJM-4-A<br>E-EJM-4<br>Analyst Descript<br>Asbestos Ty | ti <b>on:</b> Black, H<br><b>pes:</b> | Sidewalk Expansion Joint Material Und<br>Avenue<br>Homogeneous, Non-Fibrous, Bulk Mate | ler Caulking / Exterior - E. Tremont                  | (by NYS ELAP 198.6)<br>by David W. Roderick                |

Other Material: Non-fibrous 6.3 %

# **PLM Bulk Asbestos Report**

100468201; X882; Project # 1 - D10 - X, Bronx, NY 10462; SCA IEH Job #: X882-49756; LLW #: 91486

| Client No. / F            | IGA                                                                  | Lab No.                                  | Asbestos Present                                  | Total % Asbestos                                           |
|---------------------------|----------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|------------------------------------------------------------|
| E-EJM-4-C<br>E-EJM-4      | Location: Sidewalk Exp<br>Avenue                                     | 214063643-36<br>ansion Joint Material Ur | <b>No</b><br>der Caulking / Exterior - E. Tremont | NAD<br>(by NYS ELAP 198.6)<br>by David W. Roderick         |
| Asbestos                  | ription: Black, Homogeneous<br>Types:<br>aterial: Non-fibrous 1.8 %  | s, Non-Fibrous, Bulk Mat                 | rerial                                            | on 06/18/14                                                |
| E-ASH-1-A                 |                                                                      | 214063643-37                             | No                                                | NAD                                                        |
| E-ASH-1                   | Location: Asphalt Paver                                              | ment / Exterior - Drivewa                | y ·                                               | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbestos                  | ription: Black, Homogeneous<br>Types:<br>aterial: Non-fibrous 52.7 % | , Non-Fibrous, Bulk Mat                  | erial                                             | 011 00/10/14                                               |
| E-ASH-1-B                 |                                                                      | 214063643-38                             | No                                                | NAD                                                        |
| E-ASH-1                   | Location: Asphalt Paver                                              | ment / Exterior - Drivewa                | у                                                 | (by NYS ELAP 198.6)<br>by David W. Roderick<br>on 06/18/14 |
| Asbestos                  | ription: Black, Homogeneous<br>Types:<br>aterial: Non-fibrous 77.4 % | , Non-Fibrous, Bulk Mat                  | erial                                             | 011 00/10/14                                               |
| E-ASH-1-C                 |                                                                      | 214063643-39                             | No                                                | NAD                                                        |
| E-ASH-1                   | Location: Asphalt Paver                                              | nent / Exterior - Drivewa                | у                                                 | (by NYS ELAP 198.6)<br>by David W. Roderick                |
| Analyst Descr<br>Asbestos | iption: Black, Homogeneous<br>Types:                                 | , Non-Fibrous, Bulk Mate                 | erial                                             | on 06/18/14                                                |

| Kep | ort | ımg | 140 | tes: |
|-----|-----|-----|-----|------|
|     |     |     |     |      |

Analyzed by: David W. Roderick

\*NAD/NSD =no asbestos detectes, NA =not analyzed; NA/PS=not analyzed/positive stop; PLM Bulk Asbestos Analysis by EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200546-0), ELAP PLM Method 198.1 for NY friable samples, which includes the identification and quantitation of vermiculite or 198.6 for NOB samples or EPA 400 pt ct by EPA 600/M4-82-020 (NY ELAP Lab ID11480); Note:PLM is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. NAD or Trace results by PLM are inconclusive, TEM is currently the only method that can be used to determine if this material can be considered or treated as non asbestos-containing in NY State (also see EPA Advisory for floor tile, FR 59,146,38970,8/1/94) National Institute of Standards and Technology Accreditation requirements mandate that this report must not be reproduced except in full without the approval of the lab.This PLM report relates ONLY to the items tested. AIHA Lab # 102843, RI Cert#AAL-094, CT Cert#PH-0186, Mass Cert#AA000054.

| Reviewed By: | END OF REPORT |
|--------------|---------------|
|              | END OF REPORT |

Table I Summary of Bulk Asbestos Analysis Results

100468201; X882; Project # 1 - D10 - X, Bronx, NY 10462; SCA IEH Job #: X882-49756; LLW #: 91486

| os % by                                  |          | j                                                       | c        | ב                                                       | c        | ם                                                       | ,        | <b>-</b>                                              | ,        | <b>.</b>                                              | ,        | <b>-</b>                                              | ,        | <b>-</b>                                              |          | _                                                     |          |                                                       | !        |                                          | _        |                                                                   | -        | _                                                                 | ٠.        | _                                                                                 | _         |                                                                                   |           | _                                                                       |           | _                                                                               |
|------------------------------------------|----------|---------------------------------------------------------|----------|---------------------------------------------------------|----------|---------------------------------------------------------|----------|-------------------------------------------------------|----------|-------------------------------------------------------|----------|-------------------------------------------------------|----------|-------------------------------------------------------|----------|-------------------------------------------------------|----------|-------------------------------------------------------|----------|------------------------------------------|----------|-------------------------------------------------------------------|----------|-------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------|
| ** Asbestos % by<br>TEM                  | NAD      | É                                                       | 2        | Š                                                       | 4        | P.                                                      |          | Ž                                                     | 74.4     | מאַ                                                   |          | ZAC                                                   |          | Z.                                                    | 4        | A P                                                   | 4        | 3                                                     | 1        | 3                                        | 1        |                                                                   | 4        | 2                                                                 | 2         | AAN<br>AAN                                                                        | 2         |                                                                                   | 2         | Q.                                                                      | CAN       | ֝֝֝֝֝֝֝֝֝֝֝֝֝֝֡֝֝֝֡֝                                                            |
| ** Asbestos % by PLM/DS                  | NAD      |                                                         | CAN      | )                                                       | C 4 2    | 3                                                       | CAN      | )<br>:                                                | C 4 2    | 3                                                     | C 40 Z   |                                                       | COZ      |                                                       | CAN      |                                                       | 2        | 2                                                     | CAN      |                                          | CAN      |                                                                   | C        | )                                                                 | CAN       |                                                                                   | CAN       | )<br>:                                                                            | C         | ;                                                                       | NAD       | )                                                                               |
| Insoluble<br>Non-Asbestos<br>Inorganic % | 20.8     |                                                         | 25.8     |                                                         | 28.8     |                                                         | 16.2     |                                                       | 34.3     |                                                       | 37.2     | !                                                     | 19.9     |                                                       | 27.7     | :                                                     | 4.9      |                                                       | 27.7     |                                          | 6.3      |                                                                   | 10.1     |                                                                   | 16.5      |                                                                                   | 13.2      |                                                                                   | 17.7      | :                                                                       | 16.8      |                                                                                 |
| Acid<br>Soluble<br>Inorganic %           | 26.7     |                                                         | 29.0     |                                                         | 7.6      |                                                         | 24.9     |                                                       | 23.8     |                                                       | 2.6      |                                                       | 20.5     |                                                       | 24.9     |                                                       | 39.5     |                                                       | 16.0     |                                          | 36.5     |                                                                   | 22.5     |                                                                   | 43.2      |                                                                                   | 43.1      |                                                                                   | 43.0      |                                                                         | 44.4      |                                                                                 |
| Heat<br>Sensitive<br>Organic %           | 52.5     |                                                         | 45.2     |                                                         | 63.6     |                                                         | 59.0     |                                                       | 42.0     |                                                       | 60.2     |                                                       | 59.6     |                                                       | 47.4     |                                                       | 55.6     |                                                       | 56.4     |                                          | 57.1     |                                                                   | 67.4     |                                                                   | 40.3      | Plains Road                                                                       | 43.8      | Pains Road                                                                        | 39.3      | Plains Road                                                             | 38.7      | n Street                                                                        |
| Sample<br>Weight<br>(gram)               | 0.101    | Plains Road                                             | 0.124    | Plains Road                                             | 0.066    | Plains Road                                             | 0.173    | n Street                                              | 0.143    | n Street                                              | 0.196    | n Street                                              | 0.156    | ort Road                                              | 0.213    | ort Road                                              | 0.307    | ort Road                                              | 0.094    | Tremont Avenue                           | 0.126    | ont Avenue                                                        | 0.227    | ont Avenue                                                        | 0.407     | xterior - White                                                                   | 0.288     | xterior - White                                                                   | 0.430     | xterior - White I                                                       | 0.279     | xterior - Guerla                                                                |
| HG<br>Area                               | E-MA-1   | Exterior - White F                                      | E-MA-1   | Exterior - White F                                      | E-MA-1   | Exterior - White F                                      | E-MA-2   | Exterior - Guerlai                                    | E-MA-2   | Exterior - Guerlai                                    | E-MA-2   | Exterior - Guerlai                                    | E-MA-3   | Exterior - Union F                                    | E-MA-3   | Exterior - Union F                                    | E-MA-3   | Exterior - Union F                                    | E-MA-4   | Exterior - E. Tren                       | E-MA-4   | Exterior - E. Tren                                                | E-MA-4   | Exterior - E. Trem                                                | E-EJC-1   | aulking - Grey / E                                                                | E-EJC-1   | aulking - Grey / E                                                                | E-EJC-1   | aulking - Grey / E                                                      | E-EJC-2   | aulking - Grey / E                                                              |
| Client Sample#                           | E-MA-1-A | Black Mastic On Sidewalk / Exterior - White Plains Road | E-MA-1-B | Black Mastic On Sidewalk / Exterior - White Plains Road | E-MA-1-C | Black Mastic On Sidewalk / Exterior - White Plains Road | E-MA-2-A | Black Mastic On Sidewalk / Exterior - Guerlain Street | E-MA-2-B | Black Mastic On Sidewalk / Exterior - Guerlain Street | E-MA-2-C | Black Mastic On Sidewalk / Exterior - Guerlain Street | E-MA-3-A | Black Mastic On Sidewalk / Exterior - Union Port Road | E-MA-3-B | Black Mastic On Sidewalk / Exterior - Union Port Road | E-MA-3-C | Black Mastic On Sidewalk / Exterior - Union Port Road | E-MA-4-A | Black Mastic On Sidewalk / Exterior - E. | E-MA-4-B | Location: Black Mastic On Sidewalk / Exterior - E. Tremont Avenue | E-MA-4-C | Location: Black Mastic On Sidewalk / Exterior - E. Tremont Avenue | E-EJC-1-A | Location: Sidewalk Expansion Joint Caulking - Grey / Exterior - White Plains Road | E-EJC-1-B | Location: Sidewalk Expansion Joint Caulking - Grey / Exterior - White Plains Road | E-EJC-1-C | Sidewalk Expansion Joint Caulking - Grey / Exterior - White Plains Road | E-EJC-2-A | Location: Sidewalk Expansion Joint Caulking - Grey / Exterior - Guerlain Street |
| AmeriSci<br>Sample #                     | 01       | Location:                                               | 05       | Location:                                               | 03       | Location:                                               | 04       | Location:                                             | 05       | Location:                                             | 90       | Location:                                             | 20       | Location:                                             | 90       | Location:                                             | 60       | Location:                                             | 10       | Location:                                | 1        | Location:                                                         | 12       | Location:                                                         | 13        | Location:                                                                         | 14        | Location:                                                                         | 15        | Location: \$                                                            | 16        | Location:                                                                       |

See Reporting notes on last page

AmeriSci Job #: 214063643

Client Name: Langan Engineering & Environmental Services

Table I

Summary of Bulk Asbestos Analysis Results 100468201; X882; Project # 1 - D10 - X, Bronx, NY 10462; SCA IEH Job #: X882-49756; LLW #: 91486

| ** Asbestos % by                         | 247       | O.S.                                                                            | 4         | NAD                                                                   | 2         | O.A.O.                                                                      | 2         | O.A.                                                                        | 2         | O. N.                                                                                 | 4         | O.A.                                                                    | 4         |                                                                         | C         |                                                                         | 2         | 2                                                                               | CAN       | 2                                                                               | 2         | Q.                                                                              | 2         |                                                                               | 2         |                                                                                         | 2         | D A                                                                           | 2         | NAD                                                                           | 2         |
|------------------------------------------|-----------|---------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------|-----------|
| ** Asbestos % by PLM/DS                  | CAN       | 2                                                                               | 2         |                                                                       | Q         |                                                                             | CAN       |                                                                             | CAN       |                                                                                       | C         |                                                                         | C         | j                                                                       | NAD       | )                                                                       | NAD       | )                                                                               | NAD       | !                                                                               | NAD       | )                                                                               | CAN       | )                                                                             | CAN       | )<br>:                                                                                  | CAN       | )                                                                             | CAX       |                                                                               | C 44 Z    |
| Insoluble<br>Non-Asbestos<br>Inorganic % | 17.5      |                                                                                 | 20.4      |                                                                       | 7.0       |                                                                             | 5.0       |                                                                             | 5.2       |                                                                                       | 18.3      | }                                                                       | 25.7      |                                                                         | 17.4      |                                                                         | 52.9      |                                                                                 | 47.7      |                                                                                 | 48.4      |                                                                                 | 20.9      |                                                                               | 5.5       |                                                                                         | 14.3      |                                                                               | 3.9       | <u>;</u>                                                                      | 5.        |
| Acid<br>Soluble<br>Inorganic %           | 42.0      |                                                                                 | 41.9      |                                                                       | 47.5      |                                                                             | 43.8      |                                                                             | 51.3      |                                                                                       | 44.6      |                                                                         | 30.2      |                                                                         | 41.9      |                                                                         | 7.9       |                                                                                 | 8.2       |                                                                                 | 10.3      |                                                                                 | 11.9      |                                                                               | 4.0       |                                                                                         | 6.9       |                                                                               | 4.3       |                                                                               | 3.3       |
| Heat<br>Sensitive<br>Organic %           | 40.4      | ain Street                                                                      | 37.7      | ain Street                                                            | 47.5      | Jnion Port Road                                                             | 50.4      | Jnion Port Road                                                             | 43.5      | Jnion Port Road                                                                       | 37.2      | mont Avenue                                                             | 44.1      | mont Avenue                                                             | 40.7      | mont Avenue                                                             | 39.2      | - White Plains Road                                                             | 44.2      | - White Plains Road                                                             | 41.4      | - White Plains Road                                                             | 67.3      | - Guerlain Street                                                             | 90.5      | - Guerlain Street                                                                       | 78.8      | - Guerlain Street                                                             | 91.8      | - Union Port Road                                                             | 95.2      |
| Sample<br>Weight<br>(gram)               | 0.314     | Exterior - Guerla                                                               | 0.334     | Exterior - Guerla                                                     | 0.198     | irey / Exterior - L                                                         | 0.276     | irey / Exterior - L                                                         | 0.154     | rey / Exterior - L                                                                    | 0.312     | Exterior - E. Tre                                                       | 0.331     | Exterior - E. Tre                                                       | 0.270     | Exterior - E. Tre                                                       | 0.885     | ulking / Exterior                                                               | 0.342     | ulking / Exterior                                                               | 0.457     | ulking / Exterior                                                               | 0.278     | ulking / Exterior                                                             | 0.199     | ulking / Exterior                                                                       | 0.259     | ulking / Exterior                                                             | 0.485     | ulking / Exterior                                                             | 0.334     |
| HG<br>Area                               | E-EJC-2   | ₃∪lking - Grey / ≀                                                              | E-EJC-2   | ulking - Grey / I                                                     | E-EJC-3   | ulking - Light G                                                            | E-EJC-3   | ulking - Light G                                                            | E-EJC-3   | ulking - Light G                                                                      | E-EJC-4   | tulking - Grey / E                                                      | E-EJC-4   | tulking - Grey / E                                                      | E-EJC-4   | ulking - Grey / E                                                       | E-EJM-1   | terial Under Ca                                                                 | E-EJM-1   | terial Under Ca                                                                 | E-EJM-1   | terial Under Ca                                                                 | E-EJM-2   | terial Under Ca                                                               | E-EJM-2   | terial Under Ca                                                                         | E-EJM-2   | terial Under Ca                                                               | E-EJM-3   | iterial Under Ca                                                              | E-EJM-3   |
| Client Sample#                           | E-EJC-2-B | Location: Sidewalk Expansion Joint Caulking - Grey / Exterior - Guerlain Street | E-EJC-2-C | Sidewalk Expansion Joint Caulking - Grey / Exterior - Guerlain Street | E-EJC-3-A | Sidewalk Expansion Joint Caulking - Light Grey / Exterior - Union Port Road | E-EJC-3-B | Sidewalk Expansion Joint Caulking - Light Grey / Exterior - Union Port Road | E-EJC-3-C | Location: Sidewalk Expansion Joint Caulking - Light Grey / Exterior - Union Port Road | E-EJC-4-A | Sidewalk Expansion Joint Caulking - Grey / Exterior - E. Tremont Avenue | E-EJC-4-B | Sidewalk Expansion Joint Caulking - Grey / Exterior - E. Tremont Avenue | E-EJC-4-C | Sidewalk Expansion Joint Caulking - Grey / Exterior - E. Tremont Avenue | E-EJM-1-A | Sidewalk Expansion Joint Material Under Caulking / Exterior - White Plains Road | E-EJM-1-8 | Sidewalk Expansion Joint Material Under Caulking / Exterior - White Plains Road | E-EJM-1-C | Sidewalk Expansion Joint Material Under Caulking / Exterior - White Plains Road | E-EJM-2-A | Sidewalk Expansion Joint Material Under Caulking / Exterior - Guerlain Street | E-EJM-2-B | Location: Sidewalk Expansion Joint Material Under Caulking / Exterior - Guerlain Street | E-EJM-2-C | Sidewalk Expansion Joint Material Under Caulking / Exterior - Guerlain Street | E-EJM-3-A | Sidewalk Expansion Joint Material Under Caulking / Exterior - Union Port Road | E-EJM-3-B |
| AmeriSci<br>Sample #                     | 17        | Location: \$                                                                    | 18        | Location: §                                                           | 19        | Location: S                                                                 | 20        | Location: S                                                                 | 21        | Location: \$                                                                          | 22        | Location: S                                                             | 23        | Location: S                                                             | 24        | Location: S                                                             | 25        | Location: S                                                                     | 26        | Location: S                                                                     | 27        | Location: S                                                                     | 28        | Location: S                                                                   | 29        | Location: S                                                                             | 30        | Location: S                                                                   | 31        | Location: S                                                                   | 32        |

See Reporting notes on last page

AmeriSci Job #: 214063643

Client Name: Langan Engineering & Environmental Services

# Table I Summary of Bulk Asbestos Analysis Results

100468201; X882; Project # 1 - D10 - X, Bronx, NY 10462; SCA IEH Job #: X882-49756; LLW #: 91486

| ** Asbestos % by<br>TEM                  | CAN       |                                                                                         | 2         | Q.                                                                         | 2         | Q                                                                          | 2         |                                                                              | CAN       | 2                                                | 2         |                                                  | 2         |                                                  |
|------------------------------------------|-----------|-----------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------|-----------|--------------------------------------------------|-----------|--------------------------------------------------|-----------|--------------------------------------------------|
|                                          |           |                                                                                         |           |                                                                            |           |                                                                            |           |                                                                              |           |                                                  |           |                                                  |           |                                                  |
| ** Asbestos % by PLM/DS                  | CAN       | )<br>:                                                                                  | CAN       | )                                                                          | OAN       | )                                                                          | CAN       | 3                                                                            | CAN       | )                                                | CAN       | }                                                | CAN       | <u>)</u>                                         |
| •                                        |           |                                                                                         |           |                                                                            |           |                                                                            |           |                                                                              |           |                                                  |           |                                                  |           |                                                  |
| Insoluble<br>Non-Asbestos<br>Inorganic % | 0.2       |                                                                                         | 6.4       |                                                                            | 6.3       |                                                                            | 1.8       |                                                                              | 52.7      |                                                  | 77.4      |                                                  | 6.99      |                                                  |
| Acid<br>Soluble<br>Inorganic %           | 2.6       |                                                                                         | 6.4       | ne                                                                         | 3.9       | ne                                                                         | 1.8       | re<br>re                                                                     | 40.5      |                                                  | 18.3      |                                                  | 28.5      |                                                  |
| Heat<br>Sensitive<br>Organic %           | 97.1      | - Union Port Road                                                                       | 87.2      | E. Tremont Avenue                                                          | 89.8      | - E. Tremont Avenue                                                        | 96.4      | - E. Tremont Avenue                                                          | 6.8       |                                                  | 4.3       |                                                  | 4.6       |                                                  |
| Sample<br>Weight<br>(gram)               | 0.454     | ulking / Exterior                                                                       | 0.218     | ulking / Exterior                                                          | 0.128     | ulking / Exterior                                                          | 0.169     | ulking / Exterior                                                            | 0.543     |                                                  | 0.646     |                                                  | 0.918     |                                                  |
| HG<br>Area                               | E-EJM-3   | aterial Under Ca                                                                        | E-EJM-4   | aterial Under Ca                                                           | E-EJM-4   | aterial Under Ca                                                           | E-EJM-4   | aterial Under Ca                                                             | E-ASH-1   | - Driveway                                       | E-ASH-1   | - Driveway                                       | E-ASH-1   | - Driveway                                       |
| Client Sample#                           | E-EJM-3-C | Location: Sidewalk Expansion Joint Material Under Caulking / Exterior - Union Port Road | E-EJM-4-A | Location: Sidewalk Expansion Joint Material Under Caulking / Exterior - E. | E-EJM-4-B | Location: Sidewalk Expansion Joint Material Under Caulking / Exterior - E. | E-EJM-4-C | Location: Sidewalk Expansion Joint Material Under Caulking / Exterior - E. T | E-ASH-1-A | Location: Asphalt Pavement / Exterior - Driveway | E-ASH-1-B | Location: Asphalt Pavement / Exterior - Driveway | E-ASH-1-C | Location: Asphalt Pavement / Exterior - Driveway |
| AmeriSci<br>Sample #                     | 33        | Location: \$                                                                            | 34        | Location: \$                                                               | 35        | Location: \$                                                               | 36        | Location: \$                                                                 | 37        | Location: /                                      | 38        | Location: #                                      | 39        | Location: A                                      |

Analyzed by: Marik Peysakhov ; Date Analyzed 6/18/2014

Warning Note: PLM limitation, only TEM will resolve fibers <0.25 micrometers in diameter. TEM bulk analysis is representative of the fine grained matrix material and may not be representative of non-uniformly dispersed debris for which PLM evaluation is recommended (i.e. soils and other heterogenous materials).

Reviewed By:

<sup>&</sup>lt;1%: Quantitation for beginning weights of <0.1 grams should be considered as qualitative only; Qualitative Analysis: Asbestos analysis results of "Present" or "NVA = No Visible Asbestos" represents results for Qualitative PLM or TEM Analysis only (no accreditation coverage available from any regulatory agency for qualitative analyses): AlHA Lab # 102843, NVLAP Lab Code 200546-0, NYSDOH ELAP</p> \*\*Quantitative Analysis (Semi/Full); Bulk Asbestos Analysis - PLM by EPA 600/M4-82-020 per 40 CFR or ELAP 198.1 for New York friable samples or ELAP 198.6 for New York NOB samples; TEM (Semi/Full) by EPA 600/R-93/116 (not covered by NVLAP Bulk accreditation) or ELAP 198.4; for New York samples; NAD = no asbestos detected during a quantitative analysis; NA = not analyzed; Trace = Lab ID#11480.

Laboratory Instructions: Stop analysis @ 1st positive (>1% by weight) for each homogenous sample group. Please analyze first floor tile mastic. If floor Results က 4 ဖ **EPA Method** Requested 406 RUDERICI Analysis for PCB 5 days PAGE TCLP Requested for 2 72 hr Analysis Lead DAVID **CHAIN OF CUSTODY RECORD / ANALYSIS REQUEST** 48 hr AAS 12 hr | 24 hr Analysis Requested for TEM Samples Analyzed By: Asbestos PLM-NOB Signature PLM 6 hr Date Time Black Maskic on Side wall Extensi-Mike Phin -fitablet 1 Sign Part License #: 11-21477(NYS) 128650(NYC) Analyze V samples for vermicuite only unless mentioned Sample Location Sampled By: Parthiban Munirathinam **BULK SAMPLE** Requested TAT: Phone No: (201) 398-4544 Langan Job No.: 100468201 Project Manager: Vijay Patel Sampling Date: 6/16/2014 tile mastic is positive (>1%) do not analyze the associated floor tile sample. 21 Penn Plaza, 360 West 31st St., 8th Floor, New York, NY 10001 Date Company: Signature Description of Sample Parthibah Munirathinam Phone: 212-479-5400 Fax: 212-479-5444 6/16/2014 Fedex 7pm School Name: Project #1 - D10 - X Site Location: Bronx, NY 10462 ANGAN **SCA IEH Job #:** X882-49756 LLW #(s): 91486 Project Name: X882 Total No. of Samples: 3-B  $\sigma$ E-MA-1-A Sample ID Number Company: LANGAN Relinquished By: Comments: Signature Date

Email results to: ddesai@langan.com, pmunirathinam@langan.com

0:30 Laboratory Instructions: Stop analysis @ 1st positive (>1% by weight) for each homogenous sample group. Please analyze first floor tile mastic. If floor Results 643 PAGE 🔏 4061 **EPA Method** Requested for PCB 5 days Analysis TCLP 72 hr Requested for Analysis **CHAIN OF CUSTODY RECORD / ANALYSIS REQUEST** 24 hr 48 hr AAS Analysis Requested for TEM Samples Analyzed By: Asbestos 12 hr PLM-NOB Signature 6 hr PLM Date Time コマやってる <u>8</u> SE 32 C License #: 11-21477(NYS) 128650(NYC) Analyze V samples for vermicuite only unless mentioned Sample Location Sampled By: Parthiban Munirathinam **BULK SAMPLE** Requested TAT: -Uney Exterin-Phone No: (201) 398-4544 Project Manager: Vijay Patel Langan Job No.: 100468201 Sampling Date: 6/16/2014 tile mastic is positive (>1%) do not analyze the associated floor file/sample 21 Penn Plaza, 360 West 31st St., 8th Floor, New York, NY 10001 Samples Receive Company: Signature Canton Low Date Description of Sample Parthiban Munirathinam Phone: 212-479-5400 Fax: 212-479-5444 6/16/2014 Fedex 7pm School Name: Project #1 - D10 - X E-EJC-1-A SINGUALIC Site Location: Bronx, NY 10462 ANGAN SCA IEH Job #: X882-49756 LLW #(s): 91486 Project Name: X882 Total No. of Samples: Sample ID Number Company: LANGAN Relinquished By: Comments: Signature Date

Email results to: ddesai@langan.com, pmunirathinam@langan.com

1010 214063643 Laboratory Instructions: Stop analysis @ 1st positive (>1% by weight). for each homogenous sample group. Please analyze first floor tile mastic. If floor Results TCLP EPA Method Requested for PCB 5 days Analysis PAGE\_ Requested for 72 hr Analysis **CHAIN OF CUSTODY RECORD / ANALYSIS REQUEST** 12 hr 24 hr 48 hr AAS TEM Analysis Requested for Samples Analyzed By: Asbestos PLM-NOB 6 hr Signature  $\mathsf{PLM}$ Date Time EXENCY - NWA ROUS Tremont -Gwertain Stract 45 License #: 11-21477(NYS) 128650(NYC) Analyze V samples for vermicuite only unless mentioned Sample Location L Chris tomense Sampled By: Parthiban Munirathinam **BULK SAMPLE** Requested TAT: Phone No: (201) 398-4544 Langan Job No.: 100468201 Project Manager: Vijay Patel Sampling Date: 6/16/2014 tile mastic is positive (>1%) do not analyze the associated floor Me sample E-EIM-1-A SIDEMIZIC EXPANSION TOINT Date Coliffy 21 Penn Plaza, 360 West 31st St., 8th Floor, New York, NY 10001 Company: Signature Description of Sample Parthiban Munirathinam Phone: 212-479-5400 Fax: 212-479-5444 6/16/2014 7pm Fedex School Name: Project #1 - D10 - X Site Location: Bronx, NY 10462 ANGAN **SCA IEH Job #:** X882-49756 LLW #(s): 91486 Project Name: X882 Total No. of Samples: <u>ل</u> <u>-</u> -2-B -3-A -3-B A-2-7-7-Sample ID Number Company: LANGAN Relinquished By: Comments: Signature Date

Email results to: ddesai@langan.com, pmunirathinam@langan.com

10,50 Laboratory Instructions: Stop analysis @ 1st positive (>1% by weight for each homogenous sample group. Please analyze first floor tile mastic. If floor Results Analysis Requested **EPA Method** PAGE for PCB 5 days TCLP Requested for 12 hr 24 hr 48 hr 72 hr Analysis CHAIN OF CUSTODY RECORD / ANALYSIS REQUEST AAS TEM Analysis Requested for Samples Analyzed By: Signature Asbestos PLM-NOB 6 hr <u>P</u> Time Date Exterior-Duyg License #: 11-21477(NYS) 128650(NYC) Analyze V samples for vermicuite only unless mentioned Sample Location Sampled By: Parthiban Munirathinam merso **BULK SAMPLE** Requested TAT: Phone No: (201) 398-4544 Langan Job No.: 100468201 Project Manager: Vijay Patel Sampling Date: 6/16/2014 tile mastic is positive (>1%) do not analyze the associated floor the sample. 43 2140636 Samples Received By 21 Penn Plaza, 360 West 31st St., 8th Floor, New York, NY 10001 Date/ Company: E-ASH-I-A Asphalt Pavement Signature Description of Sample thiban Munirathinam Phone: 212-479-5400 Fax: 212-479-5444 6/16/2014 Fedex 7pm School Name: Project #1 - D10 - X Site Location: Bronx, NY 10462 ANGAN **SCA IEH Job #:** X882-49756 LLW #(s): 91486 Project Name: X882 Total No. of Samples: Address: Sample ID Number Company: LANGAN Relinquished By: Comments: Signature Date

Email results to: ddesai@langan.com, pmunirathinam@langan.com



#### AmeriSci New York

117 EAST 30TH ST. NEW YORK, NY 10016 TEL: (212) 679-8600 • FAX: (212) 679-3114

# **PLM Bulk Asbestos Report**

Langan Engineering & Environmental S Date Received

06/17/14

AmeriSci Job #

214063782

Attn: Vijay Patel

Date Examined

06/18/14

P.O. #

River Drive Center 1

ELAP#

11480

Page

Elmwood Park, NJ 07407

RE: 100468204; X882; Project # 1 - D10 - X, 1603 Unionport Road, Bronx, NY 10462, SCA IEH Job #: X882-49756, LLW #:

91486

| Client No. / H | IGA Lab No.                                                                            | <b>Asbestos Present</b> | Total % Asbestos                                          |
|----------------|----------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------|
| TS-PA-1-A      | 214063782-01                                                                           | No                      | NAD                                                       |
| 1              | <b>Location</b> : 1603 Unionport Road, Bronx, NY [Furniture Shop] - Floor Paint (Gro   |                         | (by NYS ELAP 198.6)<br>by Bella J. Chernis<br>on 06/18/14 |
| Asbestos       | ription: Grey, Homogeneous, Non-Fibrous, Bulk<br>Types:<br>aterial: Non-fibrous 15.8 % | Material                |                                                           |
| TS-PA-1-B      | 214063782-02                                                                           | No                      | NAD                                                       |
| 1              | Location: 1603 Unionport Road, Bronx, NY [Furniture Shop] - Floor Paint (Gro           |                         | (by NYS ELAP 198.6)<br>by Bella J. Chernis<br>on 06/18/14 |
| Asbestos       | ription: Grey, Homogeneous, Non-Fibrous, Bulk<br>Types:<br>aterial: Non-fibrous 22 %   | Material                |                                                           |
| TS-PA-1-C      | 214063782-03                                                                           | No                      | NAD                                                       |
| 1              | Location: 1603 Unionport Road, Bronx, NY [Furniture Shop] - Floor Paint (Gre           |                         | (by NYS ELAP 198.6)<br>by Bella J. Chernis<br>on 06/18/14 |
| Asbestos       | ription: Grey, Homogeneous, Non-Fibrous, Bulk<br>Types:<br>aterial: Non-fibrous 24 %   | Material                |                                                           |

#### **Reporting Notes:**

Analyzed by: Bella J. Chernis

\*NAD/NSD =no asbestos detected; NA =not analyzed; NA/PS=not analyzed/positive stop; PLM Bulk Asbestos Analysis by EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200546-0), ELAP PLM Method 198.1 for NY friable samples, which includes the identification and quantitation of vermiculite or 198.6 for NOB samples or EPA 400 pt ct by EPA 600/M4-82-020 (NY ELAP Lab ID11480); Note:PLM is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. NAD or Trace results by PLM are inconclusive, TEM is currently the only method that can be used to determine if this material can be considered or treated as non asbestos-containing in NY State (also see EPA Advisory for floor tile, FR 59,146,38970,8/1/94) National Institute of Standards and Technology Accreditation requirements mandate that this report must not be reproduced except in full without the approval of the lab. This PLM report relates ONLY to the items tested. AIHA Lab # 102843, RI Cert#AAL-094, CT Cert#PH-0186, Mass Cert#AA000054.

| Reviewed By: | END OF REPORT |
|--------------|---------------|
|              |               |

# Table i

# Summary of Bulk Asbestos Analysis Results

100468204; X882; Project # 1 - D10 - X, 1603 Unionport Road, Bronx, NY 10462, SCA IEH Job #: X882-49756, LLW #: 91486

| AmeriSci<br>Sample # | Client Sample#                                                                                                   | HG<br>Area    | Sample<br>Weight<br>(gram) | Heat<br>Sensitive<br>Organic % | Acid<br>Soluble<br>Inorganic % | Insoluble<br>Non-Asbestos<br>Inorganic % | ** Asbestos % by PLM/DS | ** Asbestos % by TEM |
|----------------------|------------------------------------------------------------------------------------------------------------------|---------------|----------------------------|--------------------------------|--------------------------------|------------------------------------------|-------------------------|----------------------|
|                      | TS-PA-1-A                                                                                                        | -             | 0.101                      | 44.6                           | 39.6                           | 15.8                                     | NAD                     | NAD                  |
| ation:               | Location: 1603 Unionport Road, Bronx, NY [Upper Basement Hallway - Tent 3] [Furniture Shop] - Floor Paint (Grey) | , NY [Upper B | asement Hallway            | - Tent 3] [Furnitur            | e Shop] - Floor Paint (        | Grey)                                    |                         |                      |
|                      | TS-PA-1-B                                                                                                        | -             | 0.123                      | 65.0                           | 13.0                           | 22.0                                     | NAD                     | NAD                  |
| ation:               | Location: 1603 Unionport Road, Bronx, NY [Upper Basement Hallway - Tent 3] [Furniture Shop] - Floor Paint (Grey) | , NY [Upper B | asement Hallway            | - Tent 3] [Furnitur            | e Shop] - Floor Paint (        | Grey)                                    |                         |                      |
|                      | TS-PA-1-C                                                                                                        | _             | 0.104                      | 65.4                           | 10.6                           | 24.0                                     | NAD                     | NAD                  |
| ation:               | Location: 1603 Unionport Road, Bronx, NY [Upper Basement Hallway - Tent 3] [Furniture Shop] - Floor Paint (Grey) | , NY [Upper B | asement Hallway            | - Tent 3] [Furnitur            | e Shop] - Floor Paint (        | Grey)                                    |                         |                      |

Analyzed by: Marik Peysakhov ; Date Analyzed 6/18/2014

<1%; Quantitation for beginning weights of <0.1 grams should be considered as qualitative only; Qualitative Analysis: Asbestos analysis results of "Present" or "NVA = No Visible Asbestos" represents results for Qualitative PLM or TEM Analysis only (no accreditation coverage available from any regulatory agency for qualitative analyses): AIHA Lab # 102843, NVLAP Lab Code 200546-0, NYSDOH ELAP</p> \*\*Quantitative Analysis (Semi/Full); Bulk Asbestos Analysis - PLM by EPA 600/M4-82-020 per 40 CFR or ELAP 198.1 for New York friable samples or ELAP 198.6 for New York NOB samples; TEM (Semi/Full) by EPA 600/R-93/116 (not covered by NVLAP Bulk accreditation) or ELAP 198.4; for New York samples; NAD = no asbestos detected during a quantitative analysis; NA = not analyzed; Trace = Lab ID#11480.

Warning Note: PLM limitation, only TEM will resolve fibers <0.25 micrometers in diameter. TEM bulk analysis is representative of the fine grained matrix material and may not be representative of non-uniformly dispersed debris for which PLM evaluation is recommended (i.e. soils and other heterogenous materials).

Reviewed By:

# BULK SAMPLE CHAIN OF CUSTODY RECORD / ANALYSIS REQUEST

P.

PAGE

| Froject Name: X882        | X882                                                                                                                                                          | Langan Job No.: 100468204      | 100468204               | Analysis Requested for |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis      |                                         |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|
| School Name:              | School Name: Project #1 - D10- X                                                                                                                              | Project Manager: Darshan Desai | Darshan Desai           | Asbestos               | Hequested for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Requested     |                                         |
| Address:                  | Address: 0 1663 Union Boxt Dand                                                                                                                               | Phone No:                      |                         |                        | read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOT PCB       |                                         |
| Site Location:            | Site Location: Bronx, NY 10462                                                                                                                                | Sampled Bv.                    | Dist Comment            | <b>D</b>               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Doorlite                                |
| SCA IEH Job #: X882-49756 | X882-49756                                                                                                                                                    | License #:                     | Joseph Halle            | PLM-                   | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA Method    | Sinsau                                  |
| LLW #(s): 91486           | 91486                                                                                                                                                         | Sampling Date:                 | K-11719-11              | NOB                    | AAS ICLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8082          |                                         |
| Sample ID Number          | Description of Sample                                                                                                                                         |                                | Sample Location         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |
| 15-PA-1-A                 | ( Floor Paint CGREY)                                                                                                                                          | ) (k                           | 1603 Union But Rad      | *                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |
| 8-1                       |                                                                                                                                                               | <b>Y</b>                       | BOOTH, ITY (1,000 turns | at the                 | and the same of th |               |                                         |
| 2- 7                      | <b>&gt;</b>                                                                                                                                                   |                                | Hallutoy - Tow-2)       | →<br>—                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A |
|                           |                                                                                                                                                               |                                | LYUNITURE Shop]         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77.72         |                                         |
|                           |                                                                                                                                                               |                                |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |
|                           |                                                                                                                                                               |                                |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | - Lo.                                   |
|                           |                                                                                                                                                               | 7/14                           | 47/                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |
|                           |                                                                                                                                                               | 214                            | 214063782               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |
|                           |                                                                                                                                                               |                                |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |
|                           |                                                                                                                                                               |                                |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |
|                           |                                                                                                                                                               |                                |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |
|                           |                                                                                                                                                               |                                | 1740                    | 1991 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |
| Total No. of Samples:     | $\omega$                                                                                                                                                      | <u>.</u>                       | Requested TAT:          | 6 hr 12 hr 24 hr       | 48 hr 72 hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 days        |                                         |
| Laboratory Instructions   | Laboratory Instructions: Stop analysis @ 1st positive (>1% by weight) for each homogenous sample group. Please analyze first floor tile mastic. If floor tile | >1% by weight) f               | or each homogenous sam  | ple group. Please ar   | lalyze first floo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r tile mastic | If floor tile                           |
| Relinquished Bv.          | Relinquished By:                                                                                                                                              | d floor tile samp              | e.                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | S. Carr                                 |
| Signature                 | विम्हा                                                                                                                                                        | Samples Received By:           | (B) Malak               | Samples Analyzed By:   | Be1100 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cheanis       | 5 11/12 S                               |
| Date                      | 10 11/2014                                                                                                                                                    | Date                           | 111411                  | Signature              | Str. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1             | The same                                |
| Time                      |                                                                                                                                                               | Time                           | 71/1/0                  | Uare<br>Time           | 06, 18.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1/2/1/2                                 |
| Company: LANGAN           |                                                                                                                                                               | Company:                       | 20%0                    | DIE                    | 1130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 13.60                                   |

Email results to: ddesai@langan.com, Dpatel@langan.com,pmunirathinam@langan.com

Time Company:



#### AmeriSci New York

117 EAST 30TH ST. NEW YORK, NY 10016 TEL: (212) 679-8600 • FAX: (212) 679-3114

# **PLM Bulk Asbestos Report**

Langan Engineering & Environmental S Date Received

Attn: Vijay Patel

River Drive Center 1

Elmwood Park, NJ 07407

06/17/14

AmeriSci Job #

214063784

Date Examined 06/18/14

11480

P.O. # Page

of

RE: 100468204; X882; Project # 1 - D10 - X, 1615 Unionport

Road, Bronx, NY 10462, SCA IEH Job #: X882-49756, LLW #:

91486

ELAP#

| Client No. / HG | A Lab No.                                                                          | <b>Asbestos Present</b>  | Total % Asbestos                                          |
|-----------------|------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------|
| T3-FM-1-A       | 214063784-01                                                                       | No                       | NAD                                                       |
| T3-FM-1         | Location: Basement Boiler Room - Loose Fill N                                      | Materials Below Concrete | (by NYS ELAP 198.1)<br>by Bella J. Chernis<br>on 06/18/14 |
| Asbestos Ty     | tion: Grey/Black, Homogeneous, Non-Fibrous, Bupes:<br>rial: Non-fibrous 100 %      | ılk Material             |                                                           |
| T3-FM-1-B       | 214063784-02                                                                       | No                       | NAD                                                       |
| T3-FM-1         | Location: Basement Boiler Room - Loose Fill N                                      | Materials Below Concrete | (by NYS ELAP 198.1)<br>by Bella J. Chernis<br>on 06/18/14 |
| Asbestos Ty     | tion: Black, Homogeneous, Non-Fibrous, Cement<br>pes:<br>rial: Non-fibrous 100 %   | itious, Bulk Material    |                                                           |
| T3-FM-1-C       | 214063784-03                                                                       | No                       | NAD                                                       |
| T3-FM-1         | Location: Basement Boiler Room - Loose Fill N                                      | Materials Below Concrete | (by NYS ELAP 198.1)<br>by Bella J. Chernis<br>on 06/18/14 |
| Asbestos Ty     | tion: Black, Homogeneous, Non-Fibrous, Bulk Ma<br>pes:<br>erial: Non-fibrous 100 % | ateria!                  |                                                           |

**Reporting Notes:** 

Analyzed by: Bella J. Chernis

\*NAD/NSD =no asbestos detected; NA =not analyzed; NA/PS=not analyzed/positive stop; PLM Bulk Asbestos Analysis by EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200546-0), ELAP PLM Method 198.1 for NY friable samples, which includes the identification and quantitation of vermiculite or 198.6 for NOB samples or EPA 400 pt ct by EPA 600/M4-82-020 (NY ELAP Lab ID11480); Note:PLM is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. NAD or Trace results by PLM are inconclusive, TEM is currently the only method that can be used to determine if this material can be considered or treated as non asbestos-containing in NY State (also see EPA Advisory for floor tile, FR 59,146,38970,8/1/94) National Institute of Standards and Technology Accreditation requirements mandate that this report must not be reproduced except in full without the approval of the lab. This PLM report relates ONLY to the items tested. AIHA Lab # 102843, RI Cert#AAL-094, CT Cert#PH-0186, Mass Cert#AA000054.

| Reviewed By: | END OF REPORT |
|--------------|---------------|

Laboratory Instructions: Stop analysis @ 1st positive (>1% by weight) for each homogenous sample group. Please analyze first floor tile mastic. If floor tile Results Bella Chennis EPA Method 5 days PAGE Requested Analysis for PCB Dec 1847 12 hr | 24 hr | 48 hr | 72 hr AAS TCLP Requested for Analysis CHAIN OF CUSTODY RECORD / ANALYSIS REQUEST TEM Analysis Requested for Samples Analyzed By: Asbestos PLM-NOB Signature 6 hr PLM Date Time × (Boiles Reom. Sampled By: Dixitkumur (attell License #: 16 21571)
Impling Date: 6 (17/2014)
Sample Location Requested TAT: **BULK SAMPLE** Project Manager: Darshan Desai Langan Job No.: 100468204 mastic is positive (>1%) do not analyze the associated floor tile sample. Sampling Date: Samples Received By: Phone No: T3-FM-1-A) Loose Fil Materials below Company: Signature Time Date 4 21406378 Description of Sample Address: P. 1615 Union 1931 Road Site Location: Bronx, NY 10462 Dixifkumay Pate River Drive Center One, Elmwood Park, NJ 07407 Phone: 201-794-6900, Fax: 201-794-7501 6/17/2014 8:30 pm -B) Concrete School Name: Project #1 - D10- X SCA IEH Job #: X882-49756 LLW #(s): 91486 Project Name: X882 Sample ID Number Company: LANGAN Comments: Signature

P

Email results to: ddesai@langan.com, Dpatel@langan.com,pmunirathinam@langan.com



#### AmeriSci New York

117 EAST 30TH ST. NEW YORK, NY 10016

TEL: (212) 679-8600 • FAX: (212) 679-3114

# **PLM Bulk Asbestos Report**

Langan Engineering & Environmental S Date Received

AmeriSci Job # 06/16/14

214063565

Attn: Vijay Patel

**Date Examined** 

06/17/14

P.O. #

of

River Drive Center 1

Elmwood Park, NJ 07407

ELAP#

11480

Page

RE: 100468204; X882; 1897 Guerlain Street, Bronx, NY 10462

SCA IEH Job #X882-49756, LLW #91486

| Client No. / HO | GA Lab No.                                                                            | <b>Asbestos Present</b>                                                                       | Total % Asbesto                                         |  |  |
|-----------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|
| FM-1-A          | 214063565-01                                                                          | No                                                                                            | NAD                                                     |  |  |
| FM-1            | Location: Basement Hallway Near Bowling Play<br>Below Concrete Slab                   | asement Hallway Near Bowling Play Area (Tent -J) - Black Fill Material elow Concrete Slab     |                                                         |  |  |
| Asbestos T      | ption: Black, Homogeneous, Non-Fibrous, Cementi<br>ypes:<br>terial: Non-fibrous 100 % | tious, Bulk Material                                                                          |                                                         |  |  |
| FM-1-B          | 214063565-02                                                                          | No                                                                                            | NAD                                                     |  |  |
| FM-1            | Location: Basement Hallway Near Bowling Play<br>Below Concrete Slab                   | / Area (Tent -J) - Black Fill Material                                                        | (by NYS ELAP 198.1)<br>by Tara L. Fisher<br>on 06/17/14 |  |  |
| Asbestos T      | ption: Black, Homogeneous, Non-Fibrous, Cementi<br>ypes:<br>terial: Non-fibrous 100 % | tious, Bulk Material                                                                          |                                                         |  |  |
| FM-1-C          | 214063565-03                                                                          | No                                                                                            | NAD                                                     |  |  |
| FM-1            | Location: Basement Hallway Near Bowling Play<br>Below Concrete Slab                   | : Basement Hallway Near Bowling Play Area (Tent -J) - Black Fill Material Below Concrete Slab |                                                         |  |  |
| Asbestos T      | ption: Black, Homogeneous, Non-Fibrous, Cementi<br>ypes:<br>terial: Non-fibrous 100 % | tious, Bulk Material                                                                          |                                                         |  |  |

**Reporting Notes:** 

Analyzed by: Tara L. Fisher

\*NAD/NSD =no asbestos detected; NA =not analyzed; NA/PS=not analyzed/positive stop; PLM Bulk Asbestos Analysis by EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200546-0), ELAP PLM Method 198.1 for NY friable samples, which includes the identification and quantitation of vermiculite or 198.6 for NOB samples or EPA 400 pt ct by EPA 600/M4-82-020 (NY ELAP Lab ID11480); Note:PLM is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. NAD or Trace results by PLM are inconclusive, TEM is currently the only method that can be used to determine if this material can be considered or treated as non asbestos-containing in NY State (also see EPA Advisory for floor tile, FR 59,146,38970,8/1/94) National Institute of Standards and Technology Accreditation requirements mandate that this report must not be reproduced except in full without the approval of the lab. This PLM report relates ONLY to the items tested. AIHA Lab # 102843, RI Cert#AAL-094, CT Cert#PH-0186, Mass Cert#AA000054.

| Reviewed By: | END OF REPORT |
|--------------|---------------|
|              |               |

Laboratory Instructions: Stop analysis @ 1st positive (>1% by weight) for each homogenous sample group. Please analyze first floor tile mastic. If floor tile Results AAS TCLP EPA Method Requested 5 days PAGE\_ Analysis for PCB 12 hr 24 hr 48 hr 72 hr Requested for Analysis Lead BULK SAMPLE & TO TO TO THE CHAIN OF CUSTODY RECORD / ANALYSIS REQUEST 214063565 TEM Analysis Requested for Samples Analyzed By: Signature Asbestos PLM. 6 hr PLM Date Time Black Fill materials helped parment-pulliary near Dixitkumay Patel Dowling Play area 6 (16 | 20 / 4 Sample Location Imya Kasom 6/10/14 @1836 Clint-2). Requested TAT: Project Manager: Darshan Desai Langan Job No.: 100468204 mastic is positive (>1%) do not analyze the associated floor tile sample. Sampled By: Sampling Date: License #: Phone No: Samples Received By: Signature Date Time Address: 0 1897 Guerlain street Description of Sample Concrete slab. Hunay. Ket a River Drive Center One, Elmwood Park, NJ 07407 Phone: 201-794-6900, Fax: 201-794-7501 41108/91119 18.31 School Name: Project #1 - D10- X Site Location: Bronx, NY 10462 SCA IEH Job #: X882-49756 LLW #(s): 91486 Project Name: X882 Total No. of Samples: Sample ID Number 7-1-WJ 6m-1-B FM-1-A Relinquished By: Comments: Signature Date

Email results to: ddesai@langan.com, Dpatel@langan.com,pmunirathinam@langan.com

Company:

Company: LANGAN



#### AmeriSci New York

117 EAST 30TH ST. NEW YORK, NY 10016 TEL: (212) 679-8600 • FAX: (212) 679-3114

# PLM Bulk Asbestos Report

Langan Engineering & Environmental S Date Received

AmeriSci Job # 06/17/14

214063783

Attn: Vijay Patel

Date Examined

06/18/14

River Drive Center 1

ELAP#

11480

P.O. # Page

Elmwood Park, NJ 07407

RE: 100468204; X882; Project # 1- D10 - X, 1897 Guerlain St., Bronx, NY 10462, SCA IEH Job #: X882-49756, LLW # 91486

| Client No. / H       | IGA                                                                | Lab No.                                                             | Asbestos Present                                                 | Total % Asbesto            |
|----------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|----------------------------|
| T2-MA-1-A<br>T2-MA-1 | <b>Location:</b> 1897 Guerla<br>To Bar Area]                       | 214063783-01<br>n St., Bronx, NY (Tent -<br>- Black Mastic On Top ( | NAD<br>(by NYS ELAP 198.6)<br>by Bella J. Chernis<br>on 06/18/14 |                            |
|                      |                                                                    |                                                                     |                                                                  |                            |
| Asbestos             | ription: Black, Homogeneou<br>Types:<br>laterial: Non-fibrous 14 % | s, Non-Fibrous, Bulk Ma                                             | iterial                                                          |                            |
| Asbestos             | s Types:<br>laterial: Non-fibrous 14 %                             | 214063783-02                                                        | No 2) [Upper Basement Lounge Area Next                           | NAD<br>(by NYS ELAP 198.6) |

Analyst Description: Black, Homogeneous, Non-Fibrous, Bulk Material

**Asbestos Types:** 

Other Material: Non-fibrous 16.5 %

NAD No 214063783-03 T2-MA-1-C

To Bar Area] - Black Mastic On Top Of The Concrete Floor

Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next (by NYS ELAP 198.6) by Bella J. Chernis

on 06/18/14

Analyst Description: Black, Homogeneous, Non-Fibrous, Bulk Material

Asbestos Types:

Other Material: Non-fibrous 12.3 %

T2-CMA-1-A

214063783-04

No

NAD

T2-CMA-1

T2-MA-1

Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next

To Bar Area] - Carpet Glue

(by NYS ELAP 198.6) by Bella J. Chernis on 06/18/14

Analyst Description: Tan, Homogeneous, Non-Fibrous, Bulk Material

**Asbestos Types:** 

Other Material: Non-fibrous 20.8 %

T2-CMA-1-B

214063783-05

No

NAD

T2-CMA-1

Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next

To Bar Area] - Carpet Glue

(by NYS ELAP 198.6) by Bella J. Chernis on 06/18/14

Analyst Description: Tan, Homogeneous, Non-Fibrous, Bulk Material

**Asbestos Types:** 

Other Material: Non-fibrous 26.4 %

Analyst Description: Black, Homogeneous, Non-Fibrous, Cementitious, Bulk Material

Page 2 of 3 Client Name: Langan Engineering & Environmental Services

### PLM Bulk Asbestos Report

100468204; X882; Project # 1- D10 - X, 1897 Guerlain St., Bronx, NY 10462, SCA IEH Job #: X882-49756, LLW # 91486

**Total % Asbestos Asbestos Present** Lab No. Client No. / HGA NAD No 214063783-06 T2-CMA-1-C Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next (by NYS ELAP 198.6) T2-CMA-1 by Bella J. Chernis To Bar Area] - Carpet Glue on 06/18/14 Analyst Description: Tan, Homogeneous, Non-Fibrous, Bulk Material **Asbestos Types:** Other Material: Non-fibrous 20.1 % NAD No 214063783-07 T2-LC-1-A Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next (by NYS ELAP 198.1) T2-LC-1 by Bella J. Chernis To Bar Area] - Leveling Compound On Floor on 06/18/14 Analyst Description: Grey, Heterogeneous, Non-Fibrous, Bulk Material **Asbestos Types:** Other Material: Non-fibrous 100 % NAD No 214063783-08 T2-LC-1-B Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next (by NYS ELAP 198.1) T2-LC-1 by Bella J. Chernis To Bar Area] - Leveling Compound On Floor on 06/18/14 Analyst Description: Grey, Homogeneous, Non-Fibrous, Bulk Material **Asbestos Types:** Other Material: Non-fibrous 100 % NAD Nο 214063783-09 T2-LC-1-C Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next (by NYS ELAP 198.1) T2-LC-1 by Bella J. Chernis To Bar Areal - Leveling Compound On Floor on 06/18/14 Analyst Description: Grey, Homogeneous, Non-Fibrous, Bulk Material **Asbestos Types:** Other Material: Non-fibrous 100 % NAD No 214063783-10 T2-FM-1-A (by NYS ELAP 198.6) Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next T2-FM-1 To Bar Area] - Loose Fill - Materials Below Concrete (Mix With Sand / Soil) by Bella J. Chernis on 06/18/14 Analyst Description: Black, Homogeneous, Non-Fibrous, Cementitious, Bulk Material **Asbestos Types:** Other Material: Non-fibrous 100 % NAD No 214063783-11 T2-FM-1-B (by NYS ELAP 198.6) Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next T2-FM-1 To Bar Area] - Loose Fill - Materials Below Concrete (Mix With Sand / Soil) by Bella J. Chernis on 06/18/14

**Asbestos Types:** 

Other Material: Non-fibrous 100 %

AmeriSci Job #: 214063783

Page 3 of 3 Client Name: Langan Engineering & Environmental Services

### **PLM Bulk Asbestos Report**

100468204: X882: Project # 1- D10 - X, 1897 Guerlain St., Bronx, NY 10462, SCA IEH Job #: X882-49756, LLW # 91486

**Total % Asbestos Asbestos Present** Lab No. Client No. / HGA 214063783-12 No NAD T2-FM-1-C Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next (by NYS ELAP 198.6) T2-FM-1 To Bar Area] - Loose Fill - Materials Below Concrete (Mix With Sand / Soil) by Bella J. Chernis on 06/18/14 Analyst Description: Black/Grey, Homogeneous, Non-Fibrous, Cementitious, Bulk Material **Asbestos Types:** Other Material: Non-fibrous 100 %

**Reporting Notes:** 

Analyzed by: Bella J. Chernis

\*NAD/NSD =no asbestos detected; NA =not analyzed; NA/PS=not analyzed/positive stop; PLM Bulk Asbestos Analysis by EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200546-0), ELAP PLM Method 198.1 for NY friable samples, which includes the identification and quantitation of vermiculite or 198.6 for NOB samples or EPA 400 pt ct by EPA 600/M4-82-020 (NY ELAP Lab ID11480); Note:PLM is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. NAD or Trace results by PLM are inconclusive, TEM is currently the only method that can be used to determine if this material can be considered or treated as non asbestos-containing in NY State (also see EPA Advisory for floor tile, FR 59,146,38970,8/1/94) National Institute of Standards and Technology Accreditation requirements mandate that this report must not be reproduced except in full without the approval of the lab. This PLM report relates ONLY to the items tested. AIHA Lab # 102843, RI Cert#AAL-094, CT Cert#PH-0186, Mass Cert#AA000054.

| Reviewed By: | END OF REPORT |
|--------------|---------------|
| Reviewed by. |               |

Client Name: Langan Engineering & Environmental Services

Table I

Summary of Bulk Asbestos Analysis Results 100468204; X882; Project # 1- D10 - X, 1897 Guerlain St., Bronx, NY 10462, SCA IEH Job #: X882-49756, LLW # 91486

| ** Asbestos % by                         | W I       | NAD                                                                                                                                       |           | NAD                                                                                                                                       |           | NAD                                                                                                                                       | 4          | NAD                                                                                                           |            | NAD                                                                                                           |            | NAD                                                                                                           |           | Ϋ́                                                                                                                           | ;         | V<br>V                                                                                                                       | :         | V.                                                                                                                           | ;         | Y.                                                                                                                                                             | :         | Ā                                                                                                                                                              | 3         | Y.                                                                                                                                                             |
|------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ** Asbestos % by PLM/DS                  |           | O. P.                                                                                                                                     | CAN       |                                                                                                                                           | Z         |                                                                                                                                           | CAN        | )                                                                                                             | CAN        | 2                                                                                                             |            |                                                                                                               |           | NAD                                                                                                                          | 2         | Q.                                                                                                                           | 2         |                                                                                                                              | CAN       | 9                                                                                                                                                              |           |                                                                                                                                                                | CAN       | 2                                                                                                                                                              |
| Insoluble<br>Non-Asbestos<br>Inorganic % | 14.0      | Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next To Bar Area] - Black Mastic On Top Of The Concrete Flo | 16.5      | Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next To Bar Area] - Black Mastic On Top Of The Concrete Flo | 12.3      | Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next To Bar Area] - Black Mastic On Top Of The Concrete Flo | 20.8       |                                                                                                               | 26.4       |                                                                                                               | 20.1       |                                                                                                               |           | Compound On Floor                                                                                                            |           | Compound On Floor                                                                                                            |           | Compound On Floor                                                                                                            | 64.2      | Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next To Bar Area] - Loose Fill - Materials Below Concrete (Mix With Sand / Soil) | 70.1      | Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next To Bar Area] - Loose Fill - Materials Below Concrete (Mix With Sand / Soil) | 9.99      | Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next To Bar Area] - Loose Fill - Materials Below Concrete (Mix With Sand / Soil) |
| Acid<br>Soluble<br>Inorganic %           | 51.5      | Fo Bar Area] - Black M                                                                                                                    | 45.5      | Fo Bar Area] - Black Ma                                                                                                                   | 47.7      | Fo Bar Area] - Black Ma                                                                                                                   | 40.7       | To Bar Area] - Carpet G                                                                                       | 32.0       | o Bar Area] - Carpet G                                                                                        | 46.1       | o Bar Areal - Carpet G                                                                                        |           | o Bar Areal - Levelind                                                                                                       | .         | o Bar Area] - Leveling                                                                                                       | .         | o Bar Area] - Leveling                                                                                                       | 5.0       | 'o Bar Area] - Loose Fil                                                                                                                                       | 6.8       | o Bar Area] - Loose Fil                                                                                                                                        | 3.8       | o Bar Area] - Loose Fil                                                                                                                                        |
| Heat<br>Sensitive<br>Organic %           | 34.5      | Lounge Area Next                                                                                                                          | 38.0      | Lounge Area Next 7                                                                                                                        | 40.0      | Lounge Area Next 1                                                                                                                        | 38.5       | Lounge Area Next 1                                                                                            | 41.6       | Lounge Area Next 1                                                                                            | 33.9       | Lounge Area Next 1                                                                                            | ,         | Lounge Area Next T                                                                                                           |           | Lounge Area Next T                                                                                                           |           | Lounge Area Next T                                                                                                           | 30.7      | Lounge Area Next T                                                                                                                                             | 21.1      | Lounge Area Next T                                                                                                                                             | 29.5      | Lounge Area Next T                                                                                                                                             |
| Sample<br>Weight<br>(gram)               | 0.307     | er Basement                                                                                                                               | 0.303     | er Basement                                                                                                                               | 0.260     | er Basement                                                                                                                               | 0.491      | er Basement                                                                                                   | 0.603      | er Basement                                                                                                   | 0.369      | ar Basement                                                                                                   | İ         | r Basement                                                                                                                   | •         | r Basement                                                                                                                   | i         | r Basement                                                                                                                   | 0.794     | r Basement                                                                                                                                                     | 0.835     | r Basement                                                                                                                                                     | 1.022     | r Basement                                                                                                                                                     |
| HG                                       | T2-MA-1   | ۷۲ (Tent - 2) [Upp                                                                                                                        | T2-MA-1   | 1Y (Tent - 2) [Uppe                                                                                                                       | T2-MA-1   | 1Y (Tent - 2) [Uppe                                                                                                                       | T2-CMA-1   | 1Y (Tent - 2) [Uppe                                                                                           | T2-CMA-1   | IY (Tent - 2) [Uppe                                                                                           | T2-CMA-1   | IY (Tent - 2) [Uppe                                                                                           | T2-LC-1   | IY (Tent - 2) [Uppe                                                                                                          | T2-LC-1   | IY (Tent - 2) [Uppe                                                                                                          | T2-LC-1   | Y (Tent - 2) [Uppe                                                                                                           | T2-FM-1   | Y (Tent - 2) [Uppe                                                                                                                                             | T2-FM-1   | Y (Tent - 2) [Uppe                                                                                                                                             | T2-FM-1   | Y (Tent - 2) [Uppe                                                                                                                                             |
| Client Sample#                           | T2-MA-1-A | 1897 Guerlain St., Bronx, N                                                                                                               | T2-MA-1-B | 1897 Guerlain St., Bronx, N                                                                                                               | T2-MA-1-C | 1897 Guerlain St., Bronx, N                                                                                                               | T2-CMA-1-A | Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next To Bar Area] - Carpet Glue | T2-CMA-1-B | Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next To Bar Area] - Carpet Glue | T2-CMA-1-C | Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next To Bar Areal - Carnet Glue | T2-LC-1-A | Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next To Bar Areal - Leveling Compound On Floor | T2-LC-1-B | Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next To Bar Area] - Leveling Compound On Floor | T2-LC-1-C | Location: 1897 Guerlain St., Bronx, NY (Tent - 2) [Upper Basement Lounge Area Next To Bar Area] - Leveling Compound On Floor | T2-FM-1-A | 1897 Guerlain St., Bronx, N. With Sand / Soil)                                                                                                                 | T2-FM-1-B | 1897 Guerlain St., Bronx, N'<br>With Sand / Soil)                                                                                                              | T2-FM-1-C | 1897 Guerlain St., Bronx, N'<br>With Sand / Soil)                                                                                                              |
| AmeriSci<br>Sample #                     | 10        | Location:                                                                                                                                 | 02        | Location:                                                                                                                                 | 03        | Location:                                                                                                                                 | 94         | Location:                                                                                                     | 05         | Location:                                                                                                     | 90         | Location:                                                                                                     | 20        | Location:                                                                                                                    | 80        | Location:                                                                                                                    | 60        | Location:                                                                                                                    | 10        | Location:                                                                                                                                                      | 1         | Location:                                                                                                                                                      | 12        | Location:                                                                                                                                                      |

AmeriSci Job #: 214063783

Client Name: Langan Engineering & Environmental Services

### Table I

## Summary of Bulk Asbestos Analysis Results

100468204; X882; Project # 1- D10 - X, 1897 Guerlain St., Bronx, NY 10462, SCA IEH Job #: X882-49756, LLW # 91486

|           | ** Asbestos % by | TEM            |
|-----------|------------------|----------------|
|           | ** Asbestos % by | PLM/DS         |
| Insoluble | Non-Asbestos     | Inorganic %    |
| Acid      | Soluble          | Inorganic %    |
| Heat      | Sensitive        | Organic %      |
| Sample    | Weight           | (gram)         |
|           | 9<br>1           | Area           |
|           |                  | Client Sample# |
|           | AmeriSci         | Sample #       |

results for Qualitative PLM or TEM Analysis only (no accreditation coverage available from any regulatory agency for qualitative analyses): AIHA Lab # 102843, NVLAP Lab Code 200546-0, NYSDOH ELAP Semi/Full) by EPA 600/R-93/116 (not covered by NVLAP Bulk accreditation) or ELAP 198.4; for New York samples; NAD = no asbestos detected during a quantitative analysis; NA = not analyzed; Trace = <1%; Quantitation for beginning weights of <0.1 grams should be considered as qualitative only; Qualitative Analysis: Asbestos analysis results of "Present" or "NVA = No Visible Asbestos" represents Analyzed by: Aleksandr Barengolts ; Date Analyzed 6/18/2014 ; Date Analyzed 6/18/2020 per 40 CFR or ELAP 198.1 for New York friable samples or ELAP 198.6 for New York NOB samples; TEM \*\*Quantitative Analysis (Semi/Full); Bulk Asbestos Analysis - [LM] by EPA 600/M4-82-020 per 40 CFR or ELAP 198.1 for New York friable samples or ELAP 198.6 for New York NOB samples; TEM Lab ID#11480

Warning Note: PLM limitation, only TEM will resolve fibers <0.25 micrometers in diameter. TEM bulk analysis is representative of the fine grained matrix material and may not be representative of non-uniformly dispersed debris for which PLM evaluation is recommended (i.e. soils and other heterogenous materials).

Reviewed By:

| IFAN | Elmwood Park, NJ 07407<br>ax: 201-794-7501                                               |
|------|------------------------------------------------------------------------------------------|
| IAN  | River Drive Center One, Elmwood Park, NJ 07407<br>Phone: 201-794-6900, Fax: 201-794-7501 |

BULK SAMPLE CHAIN OF CUSTODY RECORD / ANALYSIS REQUEST

\_ OF \_

PAGE

| Project Name: X882                                                                                                                                            | Langan Job No.: 100468204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100468204                             | Analysis Requested for | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analysis    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| School Name: Project #1 - D10- X                                                                                                                              | Project Manager: Darshan Desai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Darshan Desai                         | Asbestos               | Requested for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Requested   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address: 0 1897 Guerbinet                                                                                                                                     | Phone No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                        | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for PCB     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Site Location: Bronx, NY 10462                                                                                                                                | Sampled Bv:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maria Villa                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | - Proceedings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SCA IEH Job #: X882-49756                                                                                                                                     | License #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                     | PLM PLM-               | 970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA Method  | Sinsau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LLW #(s): 91486                                                                                                                                               | Sampling Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 611712014                             | NOB                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8082        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample ID Number Description of Sample                                                                                                                        | nple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Location                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TA-MA-1-A Black Mashic on top                                                                                                                                 | to of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1897 Kuczlain st.                    | ×                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - B wantete Apor                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROWY NY                               |                        | 7//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | and the second state of th |
| 5-5                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Tent-2)                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | With a second control of the second control  |
| TA-CMA-1-A Curpet 9/Me                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Froman Dinamant                       |                        | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | A STATE OF THE STA |
| 1 B                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second second                     | 7774                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lounge then                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Z .                                                                                                                                                           | The state of the s | next to Ban                           | ->                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12-LC-1-A Leveling Company on                                                                                                                                 | nd on Hoor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Area 7                                | ×                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 -18 0 1                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2- 1                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                        | Vision in the last of the last |             | 7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| T2-FM-1-A Loose FIII-Materials.                                                                                                                               | B. broken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | <b>&gt;</b> ×          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 74.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -B Contrade (Mix with                                                                                                                                         | ] _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 70.                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >                                     | -                      | And the second s |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Comments:                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 200419                                                                                                                                                        | 163783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total No. of Samples:                                                                                                                                         | <u>u.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Requested TAT:                        | 6 hr 12 hr 24 hr       | 48 hr 72 hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 days      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Laboratory Instructions: Stop analysis @ 1st positive (>1% by weight) for each homogenous sample group. Please analyze first floor tile mastic. If floor tile | = (>1% by weight) for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | or each domogenous samp               | ole group. Please and  | alyze first floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tile mastic | . If floor tile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished By:                                                                                                                                              | Semple Project By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * Kampy I in I                                                                                                                                                | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | Samples Analyzed By:   | Bella Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Then "      | A ILAINANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Date 6   17   20   C                                                                                                                                          | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/1/19                               | Signature              | feller C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ナルル         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                               | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Time                   | 06.18.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11/4/1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Company: LANGAN                                                                                                                                               | Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 776                                   |                        | h/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1430 10     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           | マン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Email results to: ddesai@langan.com, Dpatel@langan.com,pmunirathinam@langan.com



### AmeriSci New York

117 EAST 30TH ST. NEW YORK, NY 10016 TEL: (212) 679-8600 • FAX: (212) 679-3114

### PLM Bulk Asbestos Report

Langan Engineering & Environmental S Date Received

AmeriSci Job # 06/17/14

214063781

Attn: Vijay Patel

**Date Examined** 

06/18/14 P.O. #

River Drive Center 1

ELAP#

11480

Page

Elmwood Park, NJ 07407

RE: 100468204; X882; Project # 1 - D10 - X, 1894 E. Tremont Ave., Bronx, NY 10462, SCA IEH Job #: X882-49756, LLW #:

91486

| Client No. / HG | A Lab No.                                                                               | <b>Asbestos Present</b>               | Total % Asbestos                                          |
|-----------------|-----------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------|
| T4-FM-1-A       | 214063781-01                                                                            | No                                    | NAD                                                       |
| 1               | Location: (Tent - 4) (Barbershop) - 1894 E. Tre<br>Soft Concrete Mixed With Sand / Soft |                                       | (by NYS ELAP 198.1)<br>by Bella J. Chernis<br>on 06/18/14 |
| Asbestos Ty     | tion: Grey, Homogeneous, Non-Fibrous, Cement<br>pes:<br>prial: Non-fibrous 100 %        | itious, Bulk Material                 |                                                           |
| T4-FM-1-B       | 214063781-02                                                                            | No                                    | NAD                                                       |
| 1               | Location: (Tent - 4) (Barbershop) - 1894 E. Tre<br>Soft Concrete Mixed With Sand / So   |                                       | (by NYS ELAP 198.1)<br>by Bella J. Chernis<br>on 06/18/14 |
| Asbestos Ty     | tion: Grey, Homogeneous, Non-Fibrous, Cement<br>rpes:<br>erial: Non-fibrous 100 %       | itious, Bulk Material                 |                                                           |
| T4-FM-1-C       | 214063781-03                                                                            | No                                    | NAD                                                       |
| 1               | Location: (Tent - 4) (Barbershop) - 1894 E. Tre<br>Soft Concrete Mixed With Sand / So   | · · · · · · · · · · · · · · · · · · · | (by NYS ELAP 198.1)<br>by Bella J. Chernis<br>on 06/18/14 |
| Asbestos Ty     | tion: Grey, Homogeneous, Non-Fibrous, Cement                                            | itious, Bulk Material                 |                                                           |

| Kepor | ung | NO | tes: |
|-------|-----|----|------|
|-------|-----|----|------|

Analyzed by: Bella J. Chernis

\*NAD/NSD =no asbestos detected; NA =not analyzed; NA/PS=not analyzed/positive stop; PLM Bulk Asbestos Analysis by EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200546-0), ELAP PLM Method 198.1 for NY friable samples, which includes the identification and quantitation of vermiculite or 198.6 for NOB samples or EPA 400 pt ct by EPA 600/M4-82-020 (NY ELAP Lab ID11480); Note:PLM is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. NAD or Trace results by PLM are inconclusive, TEM is currently the only method that can be used to determine if this material can be considered or treated as non asbestos-containing in NY State (also see EPA Advisory for floor tile, FR 59,146,38970,8/1/94) National Institute of Standards and Technology Accreditation requirements mandate that this report must not be reproduced except in full without the approval of the lab. This PLM report relates ONLY to the items tested. AIHA Lab # 102843, RI Cert#AAL-094, CT Cert#PH-0186, Mass Cert#AA000054.

| Reviewed By: | END OF REPORT |
|--------------|---------------|
|              |               |

Eiver Drive Center One Flawood Park N. 107407

BULK SAMPLE CHAIN OF CUSTODY RECORD / ANALYSIS REQUES<sup>·</sup>

P

PAGE

| Phone: 201-794-6900, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nivel Drive Certier Orie, Ellinwood Fair, No 0/40/<br>Phone: 201-794-6900, Fax: 201-794-7501                                                                  |                                | CHAIN OF CUSTODY RECORD / ANALYSIS REGUEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA / GRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALTSIS NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name: X882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X882                                                                                                                                                          | Langan Job No.: 100468204      | 100468204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis Requested for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analysis<br>Requested for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis<br>Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| School Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | School Name: Project #1 - D10- X                                                                                                                              | Project Manager: Darshan Desai | Darshan Desai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aspestos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Address: 8 1894 6 . Trenont . Ave.                                                                                                                            | Phone No:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Validade de la Contraction de | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ć                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Site Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Site Location: Bronx, NY 10462                                                                                                                                | Sampled By:                    | Dixitkuman Patel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hesuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SCA IEH Job #: X882-49756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X882-49756                                                                                                                                                    | License #:                     | 10-21571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLM-<br>NOB TEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AAS TCLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LLW #(s): 91486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91486                                                                                                                                                         | Sampling Date:                 | 611712014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample ID Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Description of Sample                                                                                                                                         | le .                           | Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TG-6M-1-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | loose soft consete                                                                                                                                            | Mixed with                     | mixed with (Tont-4) (Barbershup)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8- 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I sail.                                                                                                                                                       |                                | - 1501 F. Tuemat Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                | (0 0); my 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ļ.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                                                                                                                             |                                | Brenx. My. (30-3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⊋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A commencement of the comm | REPORT TO THE COLOR OF THE COLO | PPRINT A CYTICAL WINDS AND A CANADA AND A CA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mananamanananananananananananananananan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                | THE TAXABLE PROPERTY OF THE BUT TO THE TAXABLE PROPERTY OF TAXABLE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               | 83                             | 214063781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enning germannen i manne i manne i man sakaran dan antan dan antan antan antan antan dan antan antan antan anta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The second secon |                                                                                                                                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 hr 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 hr 24 hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 hr   24 hr   48 hr   72 hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total No. of Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a                                                                                                                                                             |                                | Requested TAT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Laboratory Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Laboratory Instructions: Stop analysis @ 1st positive (>1% by weight) for each homogenous sample group. Please analyze first floor tile mastic. If floor tile | (>1% by weight)                | for each homogenous sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ple grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o. Please an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | alyze first flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or tile mast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ic. If floor tile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| mastic is positive (>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mastic is positive (>1%) do not analyze the associated t                                                                                                      | ted floor tile sample          | ple //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pilithuman Paded                                                                                                                                              | Samples Received By:           | Nrouge,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Samples Analyzed By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alyzed By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Be119 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CheRnis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                             | Signature                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Beha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6117/2014                                                                                                                                                     | Date                           | 6/11/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.81.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Can St.                                                                                                                                                       | Time                           | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LANGUELLANGE III ALEENEN JAMES PER HAR SPRAASSERIEN PROCESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Company: LANGAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | />O A                                                                                                                                                         | Company:                       | 20KO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Email results to: ddesai@langan.com, Dpatel@langan.com,pmunirathinam@langan.com

### **APPENDIX B**

### LABORATORY CERTIFICATION

### NEW YORK STATE DEPARTMENT OF HEALTH WADSWORTH CENTER



Expires 12:01 AM April 01, 2014 Issued April 01, 2013

### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. RAVI KRISHNAPPA AMERICA SCIENCE TEAM NEW YORK INC 117 EAST 30TH ST NEW YORK, NY 10016

NY Lab Id No: 11480

is hereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved subcategories and/or analytes are listed below:

### Miscellaneous

Asbestos in Friable Material

EPA 600/M4/82/020

Item 198.1 of Manual

Asbestos in Non-Friable Material-PLM

Item 198.6 of Manual (NOB by PLM)

Asbestos in Non-Friable Material-TEM

Item 198.4 of Manual

Serial No.: 48678

Property of the New York State Department of Health. Certificates are valid only at the address shown, must be conspicuously posted, and are printed on secure paper. Continued accreditation depends on successful ongoing participation in the Program. Consumers are urged to call (518) 485-5570 to verify the laboratory's accreditation status.



### National Voluntary Laboratory Accreditation Program



### SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

### AmeriSci New York

DBA: AmeriSci New York 117 E. 30th Street New York, NY 10016 Mr. Paul Mucha

Phone: 212-679-8600 Fax: 212-679-2711 E-Mail: pmucha@amerisci.com

URL: http://www.amerisci.com

### **BULK ASBESTOS FIBER ANALYSIS (PLM)**

**NVLAP LAB CODE 200546-0** 

| NVLAP Code | Designation / Description                                                                      |
|------------|------------------------------------------------------------------------------------------------|
| 18/A01     | EPA 600/M4-82-020: Interim Method for the Determination of Asbestos in Bulk Insulation Samples |
| 18/A03     | EPA 600/R-93/116: Method for the Determination of Asbestos in Bulk Building Materials          |

United States Department of Commerce National Institute of Standards and Technology



# Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 200546-0

### AmeriSci New York

New York, NY

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

## BULK ASBESTOS FIBER ANALYSIS

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025;2005.

2013-07-01 through 2014-06-30

Effective dates



M- R. M.L.D

For the National Institute of Standards and Technology

### **APPENDIX C**

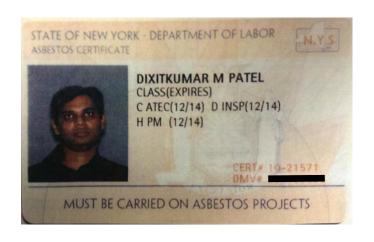
### PERSONAL & COMPANY LICENSES

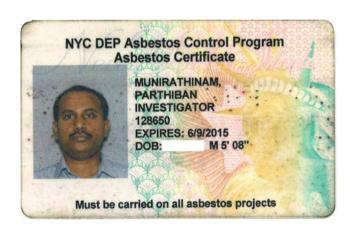
### New York State - Department of Labor

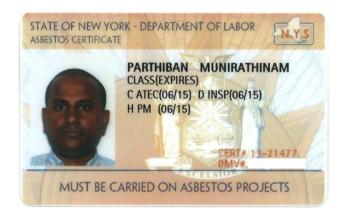
Division of Safety and Health License and Certificate Unit State Campus, Building 12 Albany, NY 12240

### **ASBESTOS HANDLING LICENSE**

Langan Engineering Environmental Surveying and Landscape Architecture, DPC 8th Floor 21 Penn Plaza 360 West 31st Street New York, NY 10001 FILE NUMBER: 13-70336 LICENSE NUMBER: 70336 LICENSE CLASS: RESTRICTED DATE OF ISSUE: 01/23/2014 EXPIRATION DATE: 02/28/2015


Duly Authorized Representative - Gerald Zambrella:


This license has been issued in accordance with applicable provisions of Article 30 of the Labor Law of New York State and of the New York State Codes, Rules and Regulations (12 NYCRR Part 56). It is subject to suspension or revocation for a (1) serious violation of state, federal or local laws with regard to the conduct of an asbestos project, or (2) demonstrated lack of responsibility in the conduct of any job involving asbestos or asbestos material.


This license is valid only for the contractor named above and this license or a photocopy must be prominently displayed at the asbestos project worksite. This license verifies that all persons employed by the licensee on an asbestos project in New York State have been issued an Asbestos Certificate, appropriate for the type of work they perform, by the New York State Department of Labor.

Eileen M. Franko, Acting Director For the Commissioner of Labor

SH 432 (8/12)







STATE OF NEW YORK - DEPARTMENT OF LABOR ASBESTOS CERTIFICATE





DARSHAN J DESAI CLASS(EXPIRES) C ATEC(01/15) D INSP(01/15) H PM (01/15) I PD (01/15)

-CERT# 04-17115

MUST BE CARRIED ON ASBESTOS PROJECTS

20

- 7

### STATE OF NEW YORK - DEPARTMENT OF LABOR

**ASBESTOS CERTIFICATE** 

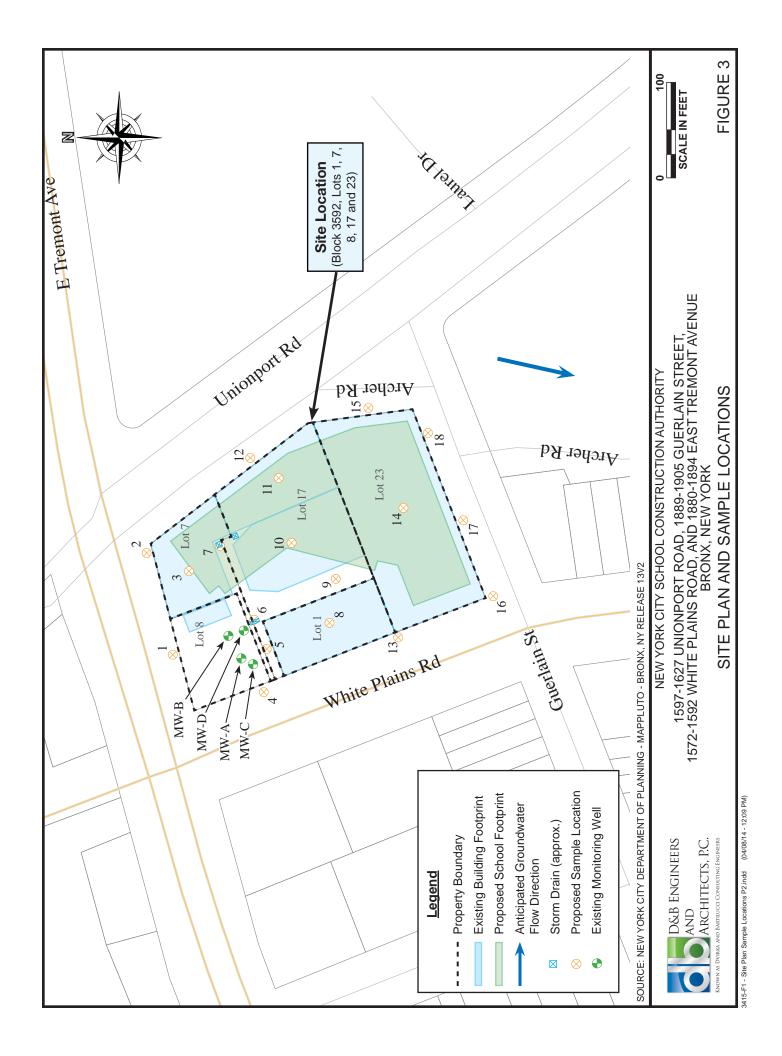


DARSHAN DESAI CLASS(EXPIRES) CATEC(01/14) DINSP(01/14) HPM (01/14) (PD (01/14)

CERT# 04-17115 DMV#

MUST BE CARRIED ON ASBESTOS PROJECTS

NYC DEP Asbestos Control Program
Asbestos Certificate




DESAI, DARSHAN J INVESTIGATOR 120828 EXPIRES: 1/22/2015

Must be carried on all asbestos projects

### **APPENDIX D**

**SCA PROBE REQUEST** 



100468201

**NEW YORK CITY SCHOOL** CONSTRUCTION AUTHORITY

Jun 12, 2014

### **Survey Proceed Order**

Date: June 12, 2014

Langan Eng. & Environmental SV 21 Penn Plaza, 360 W 31st St New York, NY 10001

Program: A&E S&D FY14

Contract #:

C000012721

Job #: 49756

BOE Work Order #(s): N/A

LLW#(s): 091486

This document shall serve as notice that Langan Eng. & Environmental SV is directed to proceed immediately to

Facility:

X882 School:

PROJECT #1 - D10 - X

Address:

0 **District:** 

Borough of:

Bronx 10462

and perform all necessary environmental health and safety work in accordance with SCA specifications and as directed by the Industrial and Environmental Hygiene Division. See the attachment to this document for detailed instructions,

Payment requests for work performed shall be prepared and submitted in accordance with the requirements specified within contract documents for contract C000012721 by and between New York City School Construction Authority and Langan Eng. & Environmental SV. Payments will be approved only after receipt of a completed Request for Payment form and all appropriate documentation.

### NOTE: NO WORK SHALL BE PERFORMED WHILE SCHOOL IS OCCUPIED.

All work designated for student areas shall be performed during non-school hours (on school days) or on Saturdays, Sundays or school holidays. No work shall commence without prior notification to the SCA representative and the school custodian.

Copy To: Active Job Folder

Custodian:

Custodian Phone:

SCA Inspector:

Yujaya Mikkilineni

Phone: (718)752-5042

### New York City School Construction Authority Industrial and Environmental Hygiene

### **Survey Job Scope**

Page 1 of 1

Facility: X882

School: PROJECT #1 - D10 - X

**Contract No:** 

C000012721

Job #: 49756

District: 0

Consultant:

Langan Eng. & Environmental S

Consultant/Contractor shall furnish the services described in the areas identified below in accordance with the terms of the contract, and will follow current legal requirements.

| Floor       | Room                                                | Quantity | Unit Price  | Item Price |
|-------------|-----------------------------------------------------|----------|-------------|------------|
| Var         | HAZMAT Asst.                                        | 1        | 600.00      | 600.00     |
| Description | Pre & Post Probe ACM Survey, Fee Schedule item      |          |             |            |
| Var         | HAZMAT Asst.                                        | 1        | 2,000.00    | 2,000.00   |
| Description | Laboratory and sampling reimbursables, Fee Schedule |          |             |            |
| Var         | HAZMAT Asst.                                        | 1        | 2,000.00    | 2,000.00   |
| Description | Consultant Labor Reimbursables, Fee Schedule        |          |             |            |
|             |                                                     |          | <del></del> |            |

**Total Price:** 

July 8 1 1 3 1 1

\$4,600.00

| APPENDIX G                             |
|----------------------------------------|
| RECOMMENDED REMEDIATION COST ESTIMATES |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |

For the Site to be suitable for construction of a New York City Public School facility, D&B recommends the following:

- Due to VOCs detected in soil vapor above the comparison criteria, an active SSDS and a soil vapor barrier are recommended for inclusion as part of the new school building design.
- If soils at the Site are excavated during construction activities, D&B recommends that the soils be characterized to identify material handling requirements and for material reuse, handling and/or waste disposal requirements and be managed in accordance with federal, state and local regulations and in consideration of the results of the characterization sampling and analysis. Material excavated from the Site is expected to be nonhazardous industrial waste, as defined in the standard NYCSCA 02200 Earthwork Specification section template.
- After the proposed new building and grounds are constructed, if exposed soils (landscaped areas) incorporated into the development of the Site, a minimum of two feet of environmentally clean fill should be placed over existing soil in these areas.
- Any dewatering necessary during school construction activities must be performed in accordance
  with applicable local, state and federal regulations. Dewatering required during construction
  should be minimized to mitigate potential influx of contaminated water from off-site sources
  toward the Site.
- All tanks, piping and appurtenances on the Site should be removed (i.e. gasoline station), and all
  other underground/aboveground storage tanks should be removed from the Site, and the
  NYSDEC Petroleum Bulk Storage registration should be updated to reflect the closed status of
  the tanks.
- To mitigate elevated concentrations of organic compounds, groundwater remediation should be completed followed by long-term groundwater monitoring both on-site and off-site.
- Suspect ACM, LBP, and/or PCB-containing materials should be properly managed during construction or demolition activities.

### First Remediation Measure - Contaminated Soil Removal

The cost estimate for the uses the following assumptions:

1. Soil encountered during construction of the 32,000 square foot building will be excavated and disposed of off-site as nonhazardous industrial waste. The existing on-site building currently has a basement and the proposed building will be primarily constructed within the footprint of the existing building. Therefore, it is estimated that 32,000 square feet will be excavated to a depth of 1 foot and two smaller areas outside the existing building footprint (total square footage of approximately 1,600) will be excavated to 15 feet.

### Transportation and Disposal of Contaminated Soil Remediation Cost Estimate

| Activity                                                                             | Units      | Rate         | Cost      |
|--------------------------------------------------------------------------------------|------------|--------------|-----------|
| Excavator with hoe-ram attachment and operator (local union)                         | 2,100 cy   | \$40/cy      | \$84,000  |
| Excavation Support Costs (sheet piling, backfill, etc.)                              | 4,800 sf   | \$40/sf      | \$192,000 |
| Transportation and disposal of nonhazardous industrial waste at a permitted landfill | 3,150 tons | \$90/ton     | \$283,500 |
| Laboratory analysis of endpoint samples for VOCs/SVOCs                               | 15 samples | \$250/sample | \$3,750   |
| Activity Total Cost                                                                  | \$563,250  |              |           |
| Engineering Costs: (Specifications, Drawings, Databor Expenses) (15%)                | \$84,488   |              |           |
| Subtotal Project Costs                                                               |            |              | \$647,738 |
| 15% Contingency on all Costs                                                         |            |              | \$97,161  |
| Total System Cost (rounded):                                                         |            |              | \$745,000 |

<sup>\*</sup> Please note that backfill and compaction costs are not provided in the above table.

### Second Remediation Measure – UST/AST, Associated Piping and Contaminated Soil Removal

The cost estimate for the uses the following assumptions:

- 1. Removal of existing active tanks on Lot 1 including the following: 5 4,000 gallon USTs and one 550 gallon UST; removal of two ASTs on Lots 7 and 17; removal of unknown USTs and ASTs on-site; removal of the associated piping and appurtenances and any associated impacted soil.
- 2. Performance of endpoint sampling and preparation of tank/spill closure report.

### Transportation and Disposal of Contaminated Soil Remediation Cost Estimate

| Activity                                                                             | Units      | Rate         | Cost      |
|--------------------------------------------------------------------------------------|------------|--------------|-----------|
| Excavation and tank removals including associated piping                             | Lump Sum   | Lump Sum     | \$75,000  |
| Excavation of Contaminated Soil                                                      | 1,500 cy   | \$40/cy      | \$60,000  |
| Transportation and disposal of nonhazardous industrial waste at a permitted landfill | 2,250 tons | \$90/ton     | \$202,500 |
| Laboratory analysis of endpoint samples for VOCs/SVOCs                               | 15 samples | \$250/sample | \$3,750   |
| Activity Total Cost                                                                  |            |              | \$341,250 |

| Activity                                                                                                                   | Units | Rate | Cost      |
|----------------------------------------------------------------------------------------------------------------------------|-------|------|-----------|
| Engineering Costs: (PBS Registration forms, Specifications, Drawings, Data Evaluation, and Reporting Labor Expenses) (15%) |       |      | \$51,190  |
| Subtotal Project Costs                                                                                                     |       |      | \$392,440 |
| 15% Contingency on all Costs                                                                                               |       |      | \$58,900  |
| Total System Cost (rounded):                                                                                               |       |      | \$451,000 |

<sup>\*</sup> Please note that backfill and compaction costs are not provided in the above table.

### Third Remediation Measure – Groundwater Remediation and Long Term Groundwater Monitoring

The cost estimate for the uses the following assumptions:

- 1. Injection of ORC into a 15,000 square foot area including Lot 8 and parts of Lots 1 and 10.
- 2. Installation of 10 groundwater monitoring wells to a depth of 25 feet (5 on-site and 5 off-site) to monitoring effectiveness of groundwater remedial activities.
- 3. Decommissioning of 8 existing on-site wells in accordance with applicable NYSDEC guidance.
- 4. Collection of groundwater samples from newly installed wells quarterly for 5 years.
- 5. Preparation of required annual reporting for groundwater monitoring.

### Transportation and Disposal of Contaminated Soil Remediation Cost Estimate

| Activity                                                                                           | Units       | Rate          | Cost        |
|----------------------------------------------------------------------------------------------------|-------------|---------------|-------------|
| ORC Injection (one injection)                                                                      | Lump Sum    | Per injection | \$600,000   |
| Installation of 10 groundwater monitoring wells                                                    | Per well    | \$6,000       | \$60,000    |
| Decommissioning of 8 groundwater monitoring wells                                                  | Per well    | \$1,000       | \$8,000     |
| Performance of quarterly groundwater monitoring for 5 years                                        | Per quarter | \$12,500      | \$250,000   |
| Annual Reporting                                                                                   | 5 Reports   | \$10,000      | \$50,000    |
| Activity Total Cost                                                                                |             |               | \$968,000   |
| Engineering Costs: (Specifications, Drawings, Data Evaluation, and Reporting Labor Expenses) (15%) |             |               | \$145,200   |
| Subtotal Project Costs                                                                             |             |               | \$1,113,200 |
| 15% Contingency on all Costs                                                                       |             |               | \$166,980   |
| Total System Cost (rounded):                                                                       |             |               | \$1,280,000 |

### First Engineering Control (Soil Vapor Barrier)

The cost estimate for the vapor barrier uses the following assumptions:

- 1. The proposed 4-story school building includes a basement based on a review of the Feasibility Study dated March 6, 2014.
- 2. The area of the vapor barrier includes an assumed 32,000-square-foot building footprint and a basement located approximately 12 feet below ground surface. The total assumed area of the basement and basement walls is approximately 41,000 square feet. The total area to be covered by the vapor barrier is approximately 41,000 square feet.

### **Vapor Barrier Cost Estimate**

| Activity                                                                                          | Units     | Rate    | Cost      |
|---------------------------------------------------------------------------------------------------|-----------|---------|-----------|
| Install Vapor Barrier (Basement footprint and walls)                                              | 41,000 sf | \$10/sf | \$410,000 |
| Engineering Design, Specifications, Drawings, Data Evaluation, and Reporting Labor Expenses (10%) |           |         | \$41,000  |
| Subtotal Project Costs                                                                            |           |         | \$451,000 |
| 15% Contingency on all Costs                                                                      |           |         | \$67,650  |
| Total Cost (rounded):                                                                             |           |         | \$519,000 |

### Second Engineering Control (Active Sub-Slab Depressurization System (SSDS)) Cost Estimate

Based on the review of the Feasibility Study dated March 6, 2014 for the proposed school building, this cost estimate was developed using the following assumptions:

- 1. The school building will be a 4-story structure with a basement.
- 2. The SSDS would underlie the entire 32,000-square-foot footprint of the proposed school building.
- 3. The major components of the system will consist of sub-slab pits embedded in an 8-inch thick layer of permeable aggregate, roof-mounted suction fans, and steel pipe risers.
- 4. One (1) sub-slab pit will be required for every 5,000 square feet of building footprint. Therefore, 6 sub-slab pits will be required. The sub-slab pits will be constructed of masonry block and <sup>3</sup>/<sub>4</sub>-inch concrete planks.
- 5. The estimate is limited to capital costs and it does not include operation, monitoring and maintenance costs.

### **Sub-Slab Depressurization System Cost Estimate**

| Activity                                                                                          | Units         | Rate               | <b>Total Cost</b> |
|---------------------------------------------------------------------------------------------------|---------------|--------------------|-------------------|
| Non-Woven Drainage Geotextile                                                                     | 3,600 sy      | \$7.50/sy          | \$27,000          |
| 8 Inches of Gas Permeable Aggregate Backfill and Compaction                                       | 790 cy        | \$50/cy            | \$39,500          |
| Suction Pits and Associated Sub-Slab Piping                                                       | 6 each        | \$8,000/ea         | \$48,000          |
| Schedule 40 Steel Pipe Risers (two)                                                               | 150 linear ft | \$125/linear<br>ft | \$18,750          |
| Roof-Mounted Suction Fans and Accessories                                                         | 2 ea          | \$8,000/ea         | \$16,000          |
| Monitoring Points                                                                                 | 5 ea          | \$800/ea           | \$4,000           |
| Testing                                                                                           | 1 ea          | \$5,000/ea         | \$5,000           |
| Activity Total Cost                                                                               |               |                    | \$158,250         |
| Engineering Design, Specifications, Drawings, Data Evaluation, and Reporting Labor Expenses (10%) |               |                    | \$15,825          |
| Subtotal Project Costs                                                                            |               |                    | \$174,075         |
| 15% Contingency on all Costs                                                                      |               |                    | \$26,111          |
| Total Cost (rounded):                                                                             |               |                    | \$200,200         |

### **Total Engineering Controls and Remediation Cost Estimate**

| Line Item Description                    | Cost        |
|------------------------------------------|-------------|
| First Remediation Measure                | \$745,000   |
| Second Remediation Measure               | \$451,000   |
| Third Remediation Measure                | \$1,280,000 |
| First Engineering Control Cost Estimate  | \$519,000   |
| Second Engineering Control Cost Estimate | \$200,200   |
| Approximate Total Cost                   | \$3,195,200 |