

June 29, 2021

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, NY 12233-7016

Attn: Ronnie Lee

Re: Groundwater and Soil Vapor Investigation

Parkchester Crossing - Off-site

1590 White Plains Road - Bronx, NY 10462

NYSDEC Site No. C203079A (Off-site to BCP Site No. C203079)

Dear Ronnie.

On March 24, 2021, Tenen Environmental, LLC (Tenen) conducted groundwater and soil vapor sampling within sidewalks surrounding the above-referenced Site on behalf of West Lane Realty Corp. and Park-Plains, Inc. The sampling was conducted to determine whether there has been off-site migration of contamination from the above-referenced property that is enrolled by a "Volunteer" in the Brownfield Cleanup Program (BCP). This letter report provides a summary of our findings, including the results of the laboratory analysis, conclusions and recommendations.

Background

The BCP Site is located at 1590 White Plains Road in the Borough of the Bronx, New York (BCP Site). The BCP Site is an irregularly shaped parcel, identified as Block 3952, Lots 1, 7, 8, 17 and 23 on the New York City Tax Map, as shown on Figure 1. The Site is situated on an approximately 1.493-acre area bounded by East Tremont Avenue to the north, Guerlain Street to the south, Unionport Road to the east, and White Plains Road to the west.

In May 2013, a Phase I Environmental Site Assessment (ESA) was prepared for the Site by Merritt Environmental Consulting Corp. (Merritt). The Phase I ESA identified the following Recognized Environmental Conditions (RECs) in connection with the Site:

- A gasoline station occupied the 1596 White Plains Road, a.k.a. 1880 East Tremont Avenue (Block 3952, Lot 8) portion of the Site. According to the historical sources, the gasoline station has occupied this location since approximately 1953. Our database review indicated eight (8) underground storage tanks (USTs) registered to this Site with a "closed-removed" status and six (6) USTs registered to the Site with an "in service" status. The former and current usage of the Site as a filling station constitutes a REC.
- According to sources reviewed, a dry cleaner occupied the 1597 Unionport Road portion of the Site during the years 1965-2012. The presence of a dry cleaner utilizing solvents onsite elevates the degree of concern as any improper handling, storage or disposal of these solvents may have impacts to the sub-surface conditions of the property. This constitutes a REC.

Tenen also notes that a dry cleaner was historically located at 1584 White Plains Road, based on a review of the city directories. The first of the dry cleaners is located on the property formerly owned by West Lane Realty Corp. and the second of the dry cleaners, on the property formerly owned by Park-Plains, Inc.

In August 2014, a Phase II Environmental Site Investigation (ESI) was performed at the BCP Site by D&B Engineers and Architects, P.C. (D&B) to investigate the potential for impacts to soil, groundwater and soil vapor in connection with the RECs identified in the Merritt Phase I ESA. The Phase II ESI identified the presence of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), metals and pesticides at concentrations exceeding applicable soil cleanup objectives (SCOs) in soil at the Site, likely attributable to historic Site operations and the presence of historic fill. In addition, VOCs, specifically chlorinated solvents and petroleum-related VOCs, were detected in soil vapor and groundwater above the applicable comparison criteria, likely attributable to historic Site operations.

A Remedial Investigation (RI) was more recently conducted by Roux Associates, Inc. (Roux) and the results presented in a Remedial Investigation Report (RIR)/Remedial Action Work Plan (RAWP) dated August 2019. The results of the RI confirmed the presence of concentrations of VOCs, specifically chlorinated solvents and petroleum-related VOCs, in soil, groundwater and soil vapor at the Site above the applicable comparison criteria.

The BCP Site was remediated in accordance with a New York State Department of Environmental Conservation (NYSDEC)-approved Interim Remedial Measures Work Plan (IRMWP) dated September 2016 and the August 2019 RIR/RAWP. Subsequent to the completion of the remedial action, Roux prepared a Final Engineering Report (FER) and Site Management Plan (SMP) for the BCP Site in December 2019. A Track 4 cleanup was achieved and residual contamination remains in soil and groundwater; post-remedial soil vapor samples were not collected but residual impacts may remain. A composite cover system was installed across the BCP Site to prevent contact with residual contamination and groundwater is being monitored quarterly in accordance with the SMP. Residual contamination in groundwater and soil vapor that may be migrating off-site was assessed during this investigation.

Groundwater and Soil Vapor Investigation, Tenen

Groundwater and soil vapor sampling were completed by Tenen to further investigate the presence of chlorinated solvents in groundwater and soil vapor off-site to determine if there has been an off-site impact from the BCP Site. Tenen's investigation was conducted on March 24, 2021. Sampling locations are depicted on Figure 2. A community air monitoring plan (CAMP) was implemented during all boring activities; a table of readings is included in Table 3.

Hydrogeology

Bedrock is present at approximately six to 20 feet below grade (ft-bg) surrounding the BCP Site. Perched water is present above the bedrock at approximately nine to twelve ft-bg. Monitoring well construction logs are presented in Attachment 1.

Sample Collection

Soil Vapor

On March 15, 2021, AARCO Environmental Services (AARCO) installed five soil vapor points, as shown on Figure 2. Tenen collected five soil vapor samples (SV-1 through SV-5) from sidewalks surrounding the BCP Site and one ambient air sample (AA 3/24) on March 24, 2021.

Soil Vapor Sample Designations – March 2021

Sample Name	Sample Type	Sample Location
SV-1	Exterior Soil Vanor	Western sidewalk of White
SV-1	Exterior Soil Vapor	Plains Road, north of SV-2
CV 2	Exterior Soil Vener	Western sidewalk of White
SV-2	Exterior Soil Vapor	Plains Road, south of SV-1

Sample Name	Sample Type	Sample Location		
SV-3	Exterior Soil Vapor	Southern sidewalk of Guerlain		
3 V - 3	Exterior Son Vapor	Street, west of SV-4		
SV-4	Exterior Soil Vanor	Southern sidewalk of Guerlain		
5 V -4	Exterior Soil Vapor	Street, east of SV-3		
SV-5	Exterior Soil Vener	Eastern sidewalk of Unionport		
3 V-3	Exterior Soil Vapor	Road		
		Northwest corner of the		
AA 3/24	Ambient Air	intersection of Guerlain Street		
		and Archer Road		

At each soil vapor sampling location, a ½-inch diameter, 6-inch long perforated soil vapor sampling probe (AMS gas vapor probe tip) was placed directly into the soil. All soil vapor sampling locations were installed with a direct push track-mounted Geoprobe®. Access to the sub-slab soil was gained by drilling through the top surface material (concrete) using a drill bit. All probes were installed at the approximate depth of the lowest occupied level based on field estimates.

The soil vapor sampling probe was connected to dedicated tubing that was extended to grade. In accordance with the New York State Department of Health (NYSDOH) October 2006 Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (Soil Vapor Guidance) protocols, a tracer gas (helium) was used to verify the integrity of the soil vapor probe. A plastic chamber was sealed above the borehole. The sampling tube was pushed through the top of the sealed chamber. The atmosphere inside the chamber was enriched with the tracer gas (helium). A portable helium monitor was attached to the sampling tube to measure a vapor sample from the probe for the presence of high concentrations (>10%) of the tracer gas.

Soil vapor was purged from the boring hole by attaching the surface end of the tubing to an air valve and then to a vacuum pump. The vacuum pump removed one to three volumes of air (volume of the sample probe and tube) prior to sample collection. The flow rate for both purging and sample collection did not exceed 0.2 liters per minute (L/min).

The soil vapor sample was first screened for organic vapors using a photoionization detector (PID). Pre-sample PID readings from the soil vapor points were non-detect at all five locations. Soil vapor samples were collected in 2.7-liter, batch-certified clean Summa canisters using two-hour regulators and analyzed for VOCs using EPA Method TO-15.

The ambient air sample was collected within the breathing zone (approximately three to five feet above the floor) in accordance with the NYSDOH Soil Vapor Guidance protocols. The sample was collected in a six-liter, batch-certified clean Summa canister using an eight-hour regulator. Samples were collected at flow rates no greater than 0.2 liters per minute and analyzed for VOCs using EPA Method TO-15.

Field notes were maintained summarizing sample identification, date and time of sample collection, sampling depth, identity of samplers, sampling methods and devices, soil vapor purge volumes, volume of the soil vapor extracted, vacuum of canisters before and after samples were collected and chain of custody protocols. Soil vapor logs are included as Attachment 2.

Groundwater

Five two-inch diameter, pre-packed permanent groundwater monitoring wells, MW-1 through MW-5, were installed via drill and drop without soil borings on March 15, 2021 using a direct push track-mounted Geoprobe®. MW-5 was installed to a depth of six ft-bg, MW-4 was installed to a depth of ten ft-bg, MW-3 was installed to a depth of 12.5 ft-bg, MW-2 was installed to a depth of 14.5 ft-bg and MW-1 was installed to a depth of 20 ft-bg.

All five monitoring wells were set to the bedrock interface. Monitoring wells MW-1, MW-2 and MW-3 were installed with ten-foot pre-packed screens and monitoring wells MW-4 and MW-5 were installed with five-foot pre-packed screens. Groundwater was measured at depths ranging from approximately 8.89 ft-bg in MW-3 to 12.38 ft-bg in MW-1.

Monitoring Well Locations, Sample Designations, and Descriptions of Location

Well Location	Sample Name	Description of Location
MW-1	MW-1	Western sidewalk of White Plains Road,
IVI VV - I	IVI VV - I	north of MW-2
MW-2	MW-2	Western sidewalk of White Plains Road,
1V1 VV -2	IVI VV -2	south of MW-1
MW-3	MW-3	Southern sidewalk of Guerlain Street,
1V1 VV -3	IVI VV -3	west of MW-4
MW-4	MW-4	Southern sidewalk of Guerlain Street, east
1V1 VV4	IVI VV -4	of MW-3
MW-5	MW-5	Eastern sidewalk of Unionport Road

Monitoring wells MW-1 and MW-3 were developed and sampled on March 24, 2021. Monitoring wells MW-2, MW-4 and MW-5 were either dry or did not contain enough water to sample (less than one inch). A PID was used to measure head-space readings in each of the wells prior to sampling. Readings ranged from 0.1 parts-per-million (ppm) in MW-4 to 0.6 ppm in MW-5. PID readings in MW-1, MW-2 and MW-3 were non-detect. Field instrumentation could not be employed to measure water temperature, pH, turbidity, and dissolved oxygen in the sampled wells due to the small water column present in the wells. Sampling was completed in MW-1 and MW-3 using a polyethylene bailer as a peristaltic pump did not draw water. No visual evidence of petroleum impacts was observed in purged groundwater.

One well, MW-1, was relocated to the south from the proposed location based on the presence of scaffolding in front of the building.

Monitoring well construction logs are included as Attachment 1.

Sample Analysis

All samples were sent under chain-of-custody documentation to Alpha Analytical, Inc. (Alpha). Alpha is certified by the NYSDOH Environmental Laboratory Approval Program (ELAP) as LABIDs 11627 and 11148. Soil vapor, ambient air and groundwater samples were analyzed for VOCs.

Analytical Results

Soil Vapor

Soil vapor results were compared to the NYSDOH Soil Vapor Intrusion Matrices as presented in the NYSDOH Soil Vapor Guidance, October 2006 with May 2017 updates and the Environmental Protection Agency (EPA) Vapor Intrusion Screening Limits (VISL), Residential Target Sub-Slab and Exterior Soil Gas Concentrations (TSSGC).

Soil vapor results are included in Table 1 and Figure 3. Laboratory deliverables are included in Attachment 3. The analytical results are summarized below.

One chlorinated VOC (cVOC), chloroform, was detected in exceedance of its EPA-VISL-TSSGC of 4.07 micrograms per cubic meter (ug/m3) in one soil vapor sample, SV-5 (concentration of 10.7 ug/m3). Chloroform

is a common laboratory contaminant. No other VOCs were detected in exceedance of EPA-VISL-TSSGCs in any soil vapor samples.

Low concentrations of one cVOC, tetrachloroethene (PCE), were detected in all five soil vapor samples below the EPA-VISL-TSSGC. PCE is part of NYSDOH Matrix B. PCE was detected at concentrations ranging from 5.07 ug/m3 in SV-1 to 12.4 ug/m3 in SV-3. Other cVOCs included on the NYSDOH Soil Vapor Intrusion Matrices, including trichloroethene (TCE), 1,1,1-trichloroethane (1,1,1-TCA), cis-1,2-dichloroethene (cis-1,2-DCE), 1,1-DCE, methylene chloride, carbon tetrachloride and vinyl chloride, were not detected in any soil vapor samples.

Groundwater

The groundwater results were compared to the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA Water Quality Standards and Guidance Values (Class GA Standards).

Groundwater sample results are included in Table 2 and Figure 4. Laboratory deliverables are included in Attachment 3. The analytical results are summarized below.

All VOCs in well MW-3, located downgradient of the BCP Site, were detected below the Class GA Standards. Two cVOCs, PCE and TCE, were detected at low concentration in MW-3, collected from the southern sidewalk of Guerlain Street, downgradient of the BCP Site. PCE was detected below its Class GA Standard of 5 micrograms per liter (ug/l) at a concentration of 2.9 ug/l and TCE was detected below its Class GA Standard of 5 ug/l at a concentration of 0.18 ug/l.

PCE and TCE were not detected in well MW-1. A variety of petroleum-related VOCs, including benzene, toluene, p/m-xylene, 1,2,4,5-tetramethylbenzene, isopropylbenzene, n-butylbenzene, n-propylbenzene and secbutylbenzene were detected in exceedance of Class GA Standards in MW-1, collected from the western sidewalk of White Plains Road, cross-gradient of the BCP Site. None of these compounds were detected above the Class GA Standards in any well on the BCP Site during the RI or post-remedial sampling. Benzene was detected at a concentration of 750 ug/L with a Class GA Standard of 1 ug/l; toluene was detected at a concentration of 7.6 ug/l with a Class GA Standard of 5 ug/l; p/m-xylene was detected at a concentration of 53 ug/l with a Class GA Standard of 5 ug/l; isopropylbenzene was detected at a concentration of 32 ug/l with a Class GA Standard of 5 ug/l; n-butylbenzene was detected at a concentration of 9 ug/l with a Class GA Standard of 5 ug/l; n-propylbenzene was detected at a concentration of 73 ug/l with a Class GA Standard of 5 ug/l; and sec-butylbenzene was detected at a concentration of 11 ug/l with a Class GA Standard of 5 ug/l.

Acetone was detected in MW-1 at a concentration of 53 ug/l, slightly in exceedance of its Class GA Standard of 50 ug/l. Acetone is a common laboratory artifact.

Data Usability Summary Reports

Data Usability Summary Reports (DUSRs) were prepared by Lori Beyer at L.A.B. Validation Corp. of East Northport, NY and are included in Attachment 4.

No additional qualifiers were reported for the soil vapor samples. Qualifiers were added to the results for acetone (due to trip blank contamination); bromochloromethane (due to equipment calibrations); 1,4-dioxane (due to equipment response factors) and trans-1,4-dichloro-2-butene (due to equipment calibrations); of these, only 1,4-dioxane was considered unreliable. None of these compounds were contaminants of concern.

Findings and Conclusions

The offsite groundwater and soil vapor investigation conducted by Tenen indicates the following:

Soil Vapor:

- Only one cVOC included on the NYSDOH Soil Vapor Intrusion Matrices, PCE, was detected in all five off-site soil vapor samples. PCE was detected below its EPA-VISL-TSSGC at a maximum concentration of 12.4 ug/m3. No other cVOCs included on the NYSDOH Soil Vapor Intrusion Matrices were detected in any off-site soil vapor samples. Based upon comparison of the detected concentrations of PCE in soil vapor to applicable standards and guidance, it is unlikely that a soil vapor intrusion condition exists at off-site properties surrounding the Site.
- Chloroform was detected slightly in exceedance of its EPA-VISL-TSSGC in one off-site soil vapor sample, SV-5. Chloroform is a common laboratory contaminant.

Groundwater:

- Perched groundwater was present above the bedrock and was able to be sampled in only two wells.
- cVOCs were not detected in exceedance of Class GA Standards in either of the sampled off-site wells. Groundwater results indicate that residual contamination in groundwater at the BCP Site is not migrating off-site at this time.
- A variety of petroleum-related VOCs were detected in exceedance of Class GA Standards in MW-1, located in the western sidewalk of White Plains Road, cross-gradient of the BCP Site. The concentrations of petroleum-related VOCs detected in MW-1 are attributable to an off-site source as none of the compounds were detected above the Class GA Standards on the BCP Site.

The completed sampling indicates that there is no offsite migration in groundwater or soil vapor and Tenen recommends that no further investigation be required.

Please contact us if you need any additional information.

Sincerely,

Tenen Environmental, LLC

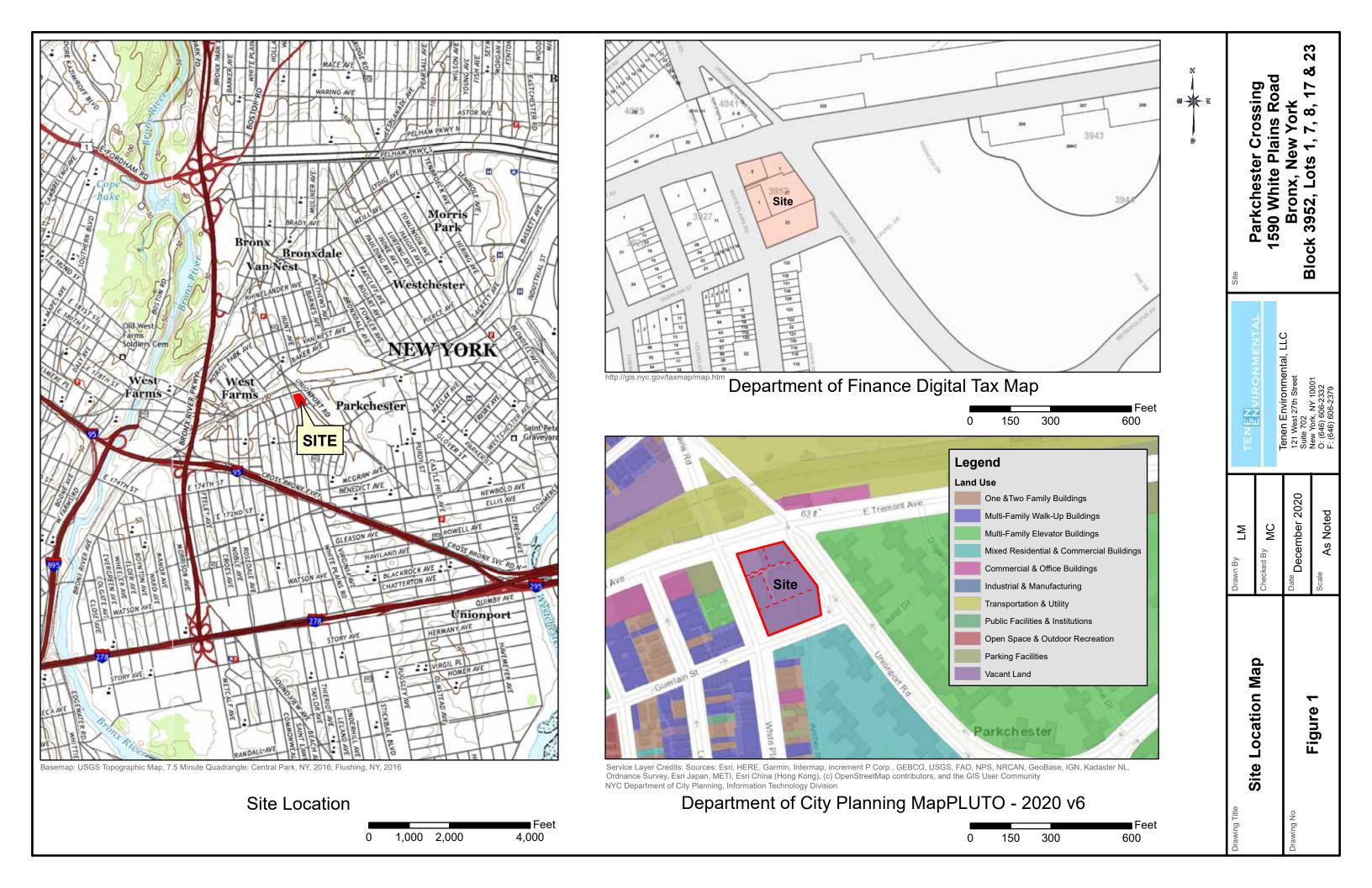
Matthew Carroll, P.E.

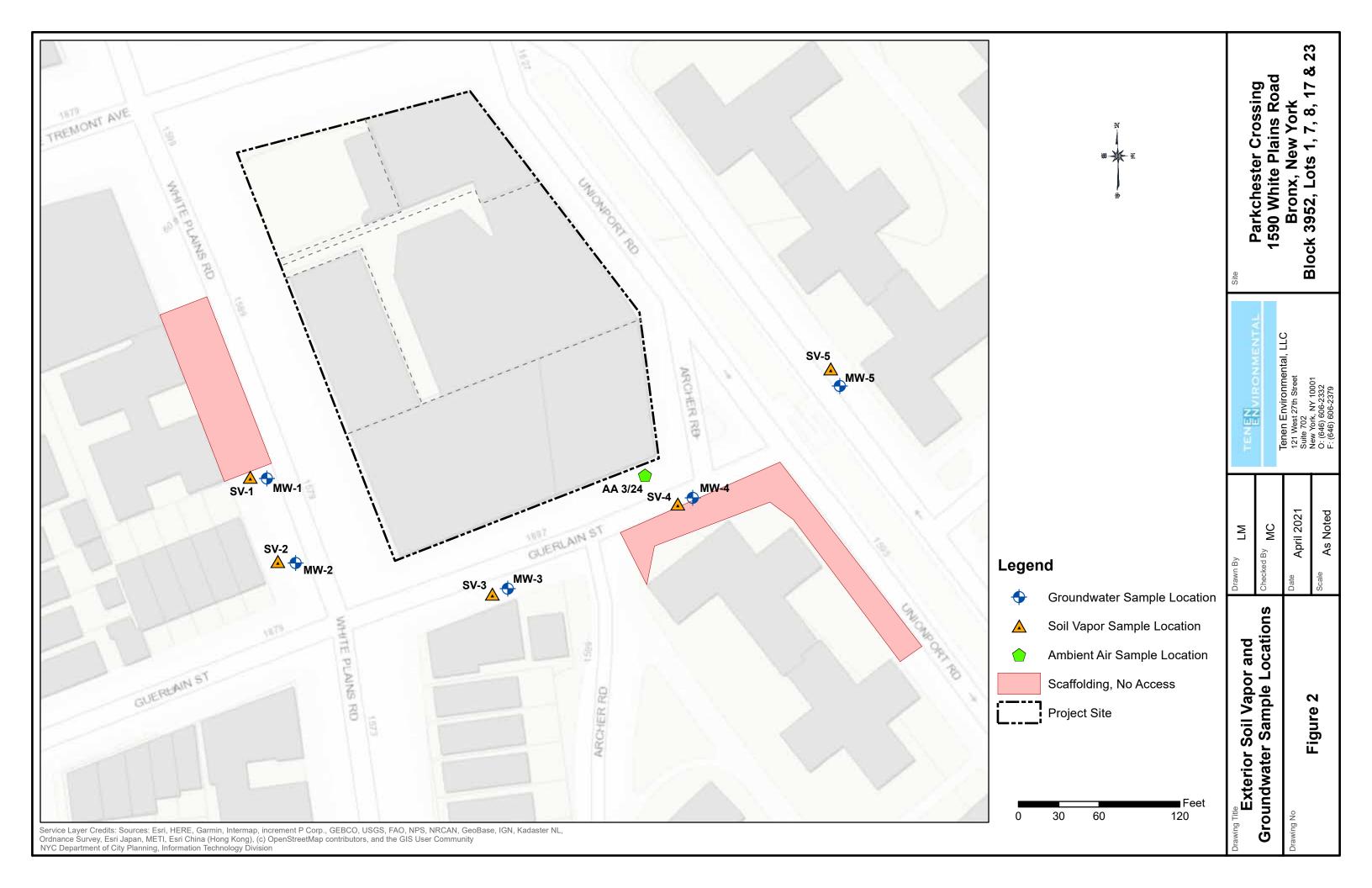
Principal / Environmental Engineer

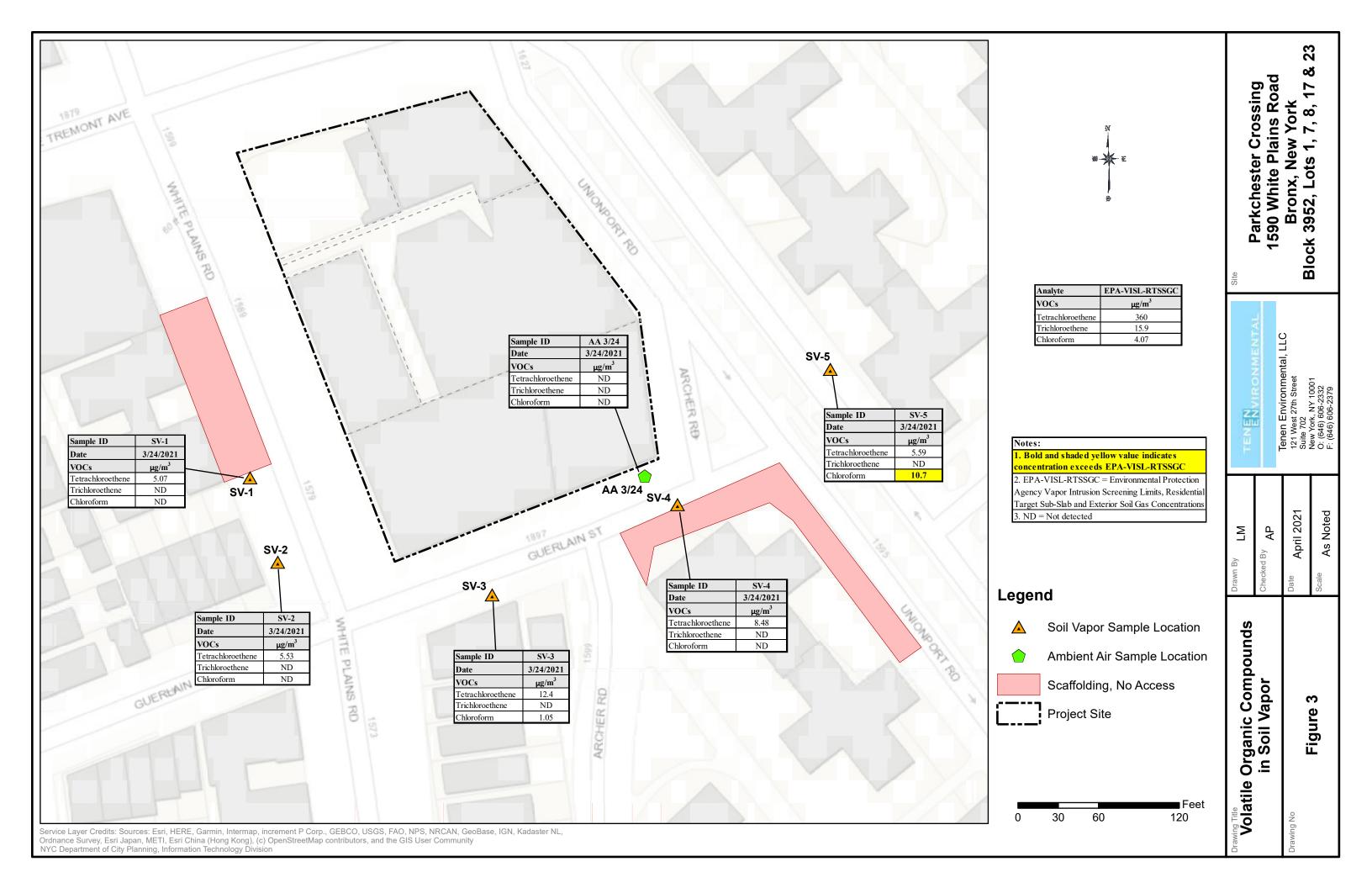
Figure 1 Site Location
Figure 2 Sample Locations
Figure 3 VOCs in Soil Vapor
Figure 4 VOCs in Groundwater

Table 1 Volatile Organic Compounds in Soil Vapor
 Table 2 Volatile Organic Compounds in Groundwater
 Table 3 Community Air Monitoring Plan (CAMP) Readings

Attachment 1 Monitoring Well Construction Logs


Attachment 2 Soil Vapor Logs


Attachment 3 Laboratory Deliverables


Attachment 4 Data Usability Summary Reports (DUSRs)


Parkchester Crossing – Off-Site Groundwater and Soil Vapor Investigation Letter Report

Figures

Parkchester Crossing – Off-Site Groundwater and Soil Vapor Investigation Letter Report

Tables

Table 1. Volatile Organic Compounds in Soil Vapor Parkchester Crossing - Bronx, NY Groundwater and Soil Vapor Investigation Letter Report

LAB SAMPLE ID	LOCATION			SV-1	SV-2	SV-3	SV-4	SV-5	AA 3/24
ABSAC 13 13 13 13 13 13 13 1	SAMPLING DATE		Units					3/24/2021	
Volume (Paramic Components) Volu	LAB SAMPLE ID	RTSSGC	Cints						
Discharcealthneomename	Volatila Organia Compounds			Qual	Qual	Qual	Qual	Qual	Qual
Chloromestane			11g/m ³	2.25	2.1	1.05	2.05	ND	2 24
From-114									
Visry tehrorine									
13-Bathaliace									
BomomeRates	·								
Calconcatance									
Ethanol									
Visign December Color December Dec									
Accione 1070000 ug/m² 207 309 134 104 136 4.56									
Trichlorofluoromethane	·								
Isopropanol 6950 ug/m² 25.6 27.8 29 49.2 15.9 4.3 -1,1-Dichlorocheme 6950 ug/m² ND ND ND ND ND ND ND -1,1-Dichlorocheme 6950 ug/m² ND ND ND ND ND ND ND -1,1-Dichlorocheme 6950 ug/m² ND ND ND ND ND ND ND -1,1-Dichlorocheme 15.6 ug/m² ND ND ND ND ND ND ND N									
1,1-Dichloroethene									
Tertiary butyl Alcohol	1 1								
Methylene chloride									
3-Chloropropene	<u> </u>		_						
Carbon disulfide 24300 ug/m² 2.37 ND N									
Freen-113									
Parametric Properties Pro									
1,1-Dichloroethane									
Methyl terr buryl ether 360 ug/m³ ND ND ND ND ND ND ND N									
2-Butanone 174000 ug/m³ 16.3 34.5 16.8 12.8 14.7 ND cis-12-Dichloroethene NS ug/m³ ND <	,								
cis-1,2-Dichloroethene NS ug/m³ ND	Methyl tert butyl ether						ND	ND	ND
Eithyl Acetate 2430 ug/m³ ND ND <td>2-Butanone</td> <td></td> <td></td> <td></td> <td>34.5</td> <td>16.8</td> <td>12.8</td> <td>14.7</td> <td></td>	2-Butanone				34.5	16.8	12.8	14.7	
Chloroform 4.07 ug/m³ ND ND 1.05 ND 10.7 ND Tetrahydrofuran 69500 ug/m³ 23.6 44.2 24.6 27.4 29.8 ND 1.2-Dichloroethane 3.6 ug/m³ ND ND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td></td<>							ND		
Tetrahydrofuran 69500 ug/m³ 23.6 44.2 24.6 27.4 29.8 ND 1,2-Dichloroethane 3.6 ug/m³ ND ND ND ND ND ND ND 1,2-Dichloroethane 24300 ug/m³ 1.74 1.18 0.796 0.712 134 ND 1,1,1-Trichloroethane 174000 ug/m³ ND ND ND ND ND ND ND Benzene 12 ug/m³ 1.15 0.856 0.661 ND ND ND ND Benzene 15.6 ug/m³ ND ND ND ND ND ND ND N	Ethyl Acetate	2430		ND	ND	ND	ND	ND	ND
1,2-Dichloroethane 3.6 ug/m³ ND ND<	Chloroform								ND
n-Hexane 24300 ug/m³ 1.74 1.18 0.796 0.712 134 ND 1,1,1-Trichloroethane 174000 ug/m³ ND									
1,1,1-Trichloroethane	1,2-Dichloroethane	3.6		ND	ND	ND	ND	ND	ND
Benzene 12	n-Hexane	24300		1.74	1.18	0.796	0.712	134	ND
Carbon tetrachloride 15.6 ug/m³ ND	1,1,1-Trichloroethane	174000		ND	ND	ND	ND	ND	ND
Cyclohexane 209000 ug/m³ 1.02 0.733 0.981 ND 83.6 ND 1,2-Dichloropropane 25.3 ug/m³ ND	Benzene	12			0.856	0.661	ND	3.8	ND
1,2-Dichloropropane 25.3 ug/m³ ND N	Carbon tetrachloride	15.6		ND	ND	ND	ND	ND	ND
Bromodichloromethane 2.53 ug/m³ ND ND ND ND ND ND 1,4-Dioxane 18.7 ug/m³ ND ND ND ND ND ND ND Trichloroethene 15.9 ug/m³ ND ND ND ND ND ND ND 2,2,4-Trimethylpentane NS ug/m³ 1.12 0.943 1.91 ND 105 ND Heptane NS ug/m³ ND ND ND ND ND ND cis-1,3-Dichloropropene NS ug/m³ ND ND ND ND ND ND 4-Methyl-2-pentanone 104000 ug/m³ ND 2.09 ND ND ND ND ND trans-1,3-Dichloropropene NS ug/m³ ND ND ND ND ND ND 1,1,2-Trichloroethane 5.85 ug/m³ ND ND ND ND ND ND Toluene 174000 ug/m³ 5.35 7.05 6.48 6.59 6.14 1.21 2-Hexanone 1040 ug/m³ ND ND ND ND ND ND Dibromochloromethane NS ug/m³ ND ND ND ND ND ND ND ND	Cyclohexane	209000		1.02	0.733	0.981	ND	83.6	ND
1,4-Dioxane 18.7 ug/m³ ND	1,2-Dichloropropane	25.3	_	ND	ND	ND	ND	ND	ND
Trichloroethene 15.9 ug/m³ ND ND <td>Bromodichloromethane</td> <td>2.53</td> <td></td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Bromodichloromethane	2.53		ND	ND	ND	ND	ND	ND
2.2,4-Trimethylpentane NS ug/m³ 1.12 0.943 1.91 ND 105 ND Heptane NS ug/m³ 3 3.47 2.22 2.19 25.3 ND cis-1,3-Dichloropropene NS ug/m³ ND	1,4-Dioxane	18.7		ND	ND	ND	ND	ND	ND
Heptane	Trichloroethene	15.9		ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene NS ug/m³ ND ND <th< td=""><td>2,2,4-Trimethylpentane</td><td>NS</td><td>ug/m³</td><td>1.12</td><td>0.943</td><td>1.91</td><td>ND</td><td>105</td><td>ND</td></th<>	2,2,4-Trimethylpentane	NS	ug/m ³	1.12	0.943	1.91	ND	105	ND
4-Methyl-2-pentanone 104000 ug/m³ ND 2.09 ND ND ND ND trans-1,3-Dichloropropene NS ug/m³ ND	Heptane	NS	ug/m ³	3	3.47	2.22	2.19	25.3	ND
trans-1,3-Dichloropropene NS ug/m³ ND <	cis-1,3-Dichloropropene	NS	ug/m ³	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane 5.85 ug/m³ ND ND <th< td=""><td>4-Methyl-2-pentanone</td><td>104000</td><td>ug/m³</td><td>ND</td><td>2.09</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></th<>	4-Methyl-2-pentanone	104000	ug/m ³	ND	2.09	ND	ND	ND	ND
Toluene 174000 ug/m³ 5.35 7.05 6.48 6.59 6.14 1.21 2-Hexanone 1040 ug/m³ 1.01 1.95 ND ND<	trans-1,3-Dichloropropene	NS	ug/m ³	ND	ND	ND	ND	ND	ND
2-Hexanone 1040 ug/m³ 1.01 1.95 ND ND ND ND Dibromochloromethane NS ug/m³ ND ND <td>1,1,2-Trichloroethane</td> <td>5.85</td> <td>ug/m³</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	1,1,2-Trichloroethane	5.85	ug/m ³	ND	ND	ND	ND	ND	ND
Dibromochloromethane NS ug/m³ ND	Toluene	174000	ug/m ³	5.35	7.05	6.48	6.59	6.14	1.21
Dibromochloromethane NS ug/m³ ND	2-Hexanone	1040		1.01	1.95	ND	ND	ND	ND
1,2-Dibromoethane 0.156 ug/m³ ND	Dibromochloromethane	NS		ND	ND	ND	ND	ND	ND
Tetrachloroethene 360 ug/m³ 5.07 5.53 12.4 8.48 5.59 ND Chlorobenzene 1740 ug/m³ ND ND <td< td=""><td>1,2-Dibromoethane</td><td>0.156</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></td<>	1,2-Dibromoethane	0.156		ND	ND	ND	ND	ND	ND
Chlorobenzene 1740 ug/m³ ND ND ND ND ND ND ND							8.48	5.59	ND
		1740							ND
	Ethylbenzene	37.4		2.24	3.73	2.35	2.3	3.74	ND

Table 1. Volatile Organic Compounds in Soil Vapor Parkchester Crossing - Bronx, NY Groundwater and Soil Vapor Investigation Letter Report

LOCATION			SV-1	SV-2	SV-3	SV-4	SV-5	AA 3/24				
SAMPLING DATE	EPA-VISL-	Units	3/24/2021	3/24/2021	3/24/2021	3/24/2021	3/24/2021	3/24/2021				
LAB SAMPLE ID	RTSSGC	Units	L2114833-01	L2114833-02	L2114833-03	L2114833-04	L2114833-05	L2114833-06				
			Qual	Qual	Qual	Qual	Qual	Qual				
Volatile Organic Compound												
p/m-Xylene	3480	ug/m ³	10.5	18	11.7	11.6	18.8	ND				
Bromoform	85.1	ug/m ³	ND	ND	ND	ND	ND	ND				
Styrene	34800	ug/m ³	ND	ND	ND	ND	ND	ND				
1,1,2,2-Tetrachloroethane	1.61	ug/m ³	ND	ND	ND	ND	ND	ND				
o-Xylene	3480	ug/m ³	3.07	5.13	3.18	3.31	5.6	ND				
4-Ethyltoluene	NS	ug/m ³	ND	ND	ND	ND	ND	ND				
1,3,5-Trimethylbenzene	2090	ug/m ³	ND	ND	ND	ND	ND	ND				
1,2,4-Trimethylbenzene	2090	ug/m ³	ND	ND	ND	ND	ND	ND				
Benzyl chloride	1.91	ug/m ³	ND	ND	ND	ND	ND	ND				
1,3-Dichlorobenzene	NS	ug/m ³	ND	ND	ND	ND	ND	ND				
1,4-Dichlorobenzene	8.51	ug/m ³	ND	ND	ND	ND	ND	ND				
1,2-Dichlorobenzene	6950	ug/m ³	ND	ND	ND	ND	ND	ND				
1,2,4-Trichlorobenzene	69.5	ug/m ³	ND	ND	ND	ND	ND	ND				
Hexachlorobutadiene	4.25	ug/m ³	ND	ND	ND	ND	ND	ND				

Notes:

Bold and shaded yellow value indicates concentration exceeds EPA-VISL-RTSSGC

EPA-VISL-RTSSGC = EPA Vapor Intrusion Screening Levels, Residential Target Sub-Slab and Exterior Soil Gas Concentrations

ND = Not detected

NS = No standard

Table 2. Volatile Organic Compounds in Groundwater Parkchester Crossing - Bronx, NY Groundwater and Soil Vapor Investigation Letter Report

CLIENT SAMPLE ID			MW-1	MW-3	TRIP BLANK
SAMPLING DATE			3/24/2021	3/24/2021	3/24/2021
LAB SAMPLE ID	NY-AWQS	Units	L2114831-01	L2114831-02	L2114831-03
			Qual	Qual	Qual
Volatile Organic Compounds					
1,1,1,2-Tetrachloroethane	5	ug/l	ND	ND	ND
1,1,1-Trichloroethane	5	ug/l	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ug/l	ND	ND	ND
1,1,2-Trichloroethane	1	ug/l	ND	ND	ND
1,1-Dichloroethane	5	ug/l	ND	ND	ND
1,1-Dichloroethene	5	ug/l	ND	ND	ND
1,1-Dichloropropene	5	ug/l	ND	ND	ND
1,2,3-Trichlorobenzene	5	ug/l	ND	ND	ND
1,2,3-Trichloropropane	0.04	ug/l	ND	ND	ND
1,2,4,5-Tetramethylbenzene	5	ug/l	53	ND	ND
1,2,4-Trichlorobenzene	5	ug/l	ND	ND	ND
1,2,4-Trimethylbenzene	5	ug/l	ND	ND	ND
1,2-Dibromo-3-chloropropane	0.04	ug/l	ND	ND	ND
1,2-Dibromoethane	0.0006	ug/l	ND	ND	ND
1,2-Dichlorobenzene	3	ug/l	ND	ND	ND
1,2-Dichloroethane	0.6	ug/l	ND	ND	ND
1,2-Dichloroethene, Total	NS	ug/l	ND	ND	ND
1,2-Dichloropropane	1	ug/l	ND	ND	ND
1,3,5-Trimethylbenzene	5	ug/l	ND	ND	ND
1,3-Dichlorobenzene	3	ug/l	ND	ND	ND
1,3-Dichloropropane	5	ug/l	ND	ND	ND
1,3-Dichloropropene, Total	NS	ug/l	ND	ND	ND
1,4-Dichlorobenzene	3	ug/l	ND	ND	ND
1,4-Dioxane	NS	ug/l	ND	ND	ND
2,2-Dichloropropane	5	ug/l	ND	ND	ND
2-Butanone	50	ug/l	ND	ND	ND
2-Hexanone	50	ug/l	ND	ND	ND
4-Methyl-2-pentanone	NS	ug/l	ND	ND	ND
Acetone	50	ug/l	53	8.8	2.5 J
Acrylonitrile	5	ug/l	ND	ND	ND
Benzene	1	ug/l	750	ND	ND
Bromobenzene	5	ug/l	ND	ND	ND
Bromochloromethane	5	ug/l	ND	ND	ND
Bromodichloromethane	50	ug/l	ND	ND	ND
Bromoform	50	ug/l	ND	ND	ND
Bromomethane	5	ug/l	ND	ND	ND
Carbon disulfide	60	ug/l	ND	ND	ND
Carbon tetrachloride	5	ug/l	ND	ND	ND
Chlorobenzene	5	ug/l	ND	ND	ND
Chloroethane	5	ug/l	ND	ND	ND
Chloroform	7	ug/l	ND	ND	ND
Chloromethane	NS	ug/l	ND	ND	ND

Table 2. Volatile Organic Compounds in Groundwater Parkchester Crossing - Bronx, NY Groundwater and Soil Vapor Investigation Letter Report

CLIENT SAMPLE ID			MW-1		MW-3		TRIP BLANK	
SAMPLING DATE	NW AWOC	TI*4	3/24/2021		3/24/2021		3/24/2021	
LAB SAMPLE ID	NY-AWQS	Units	L21148	31-01	L2114831-	02	L2114831-03	
				Qual	(Qual	Qual	
Volatile Organic Compounds								
cis-1,2-Dichloroethene	5	ug/l	ND		ND		ND	
cis-1,3-Dichloropropene	0.4	ug/l	ND		ND		ND	
Dibromochloromethane	50	ug/l	ND		ND		ND	
Dibromomethane	5	ug/l	ND		ND		ND	
Dichlorodifluoromethane	5	ug/l	ND		ND		ND	
Ethyl ether	NS	ug/l	ND		ND		ND	
Ethylbenzene	5	ug/l	5	J	ND		ND	
Hexachlorobutadiene	0.5	ug/l	ND		ND		ND	
Isopropylbenzene	5	ug/l	32		ND		ND	
Methyl tert butyl ether	10	ug/l	ND		ND		ND	
Methylene chloride	5	ug/l	ND		ND		ND	
n-Butylbenzene	5	ug/l	9	J	ND		ND	
n-Propylbenzene	5	ug/l	73		ND		ND	
Naphthalene	10	ug/l	8.7	J	ND		ND	
o-Chlorotoluene	5	ug/l	ND		ND		ND	
o-Xylene	5	ug/l	ND		ND		ND	
p-Chlorotoluene	5	ug/l	ND		ND		ND	
p-Diethylbenzene	NS	ug/l	18		ND		ND	
p-Ethyltoluene	NS	ug/l	5.7	J	ND		ND	
p-Isopropyltoluene	5	ug/l	ND		ND		ND	
p/m-Xylene	5	ug/l	20		ND		ND	
sec-Butylbenzene	5	ug/l	11	J	ND		ND	
Styrene	5	ug/l	ND		ND		ND	
tert-Butylbenzene	5	ug/l	ND		ND		ND	
Tetrachloroethene	5	ug/l	ND		2.9		ND	
Toluene	5	ug/l	7.6	J	ND		ND	
trans-1,2-Dichloroethene	5	ug/l	ND		ND		ND	
trans-1,3-Dichloropropene	0.4	ug/l	ND		ND		ND	
trans-1,4-Dichloro-2-butene	5	ug/l	ND		ND		ND	
Trichloroethene	5	ug/l	ND		0.18	J	ND	
Trichlorofluoromethane	5	ug/l	ND		ND		ND	
Vinyl acetate	NS	ug/l	ND		ND		ND	
Vinyl chloride	2	ug/l	ND		ND		ND	
Xylenes, Total	NS	ug/l	20		ND		ND	

Notes:

Bold and shaded yellow value indicates concentration exceeds NY-AWQS

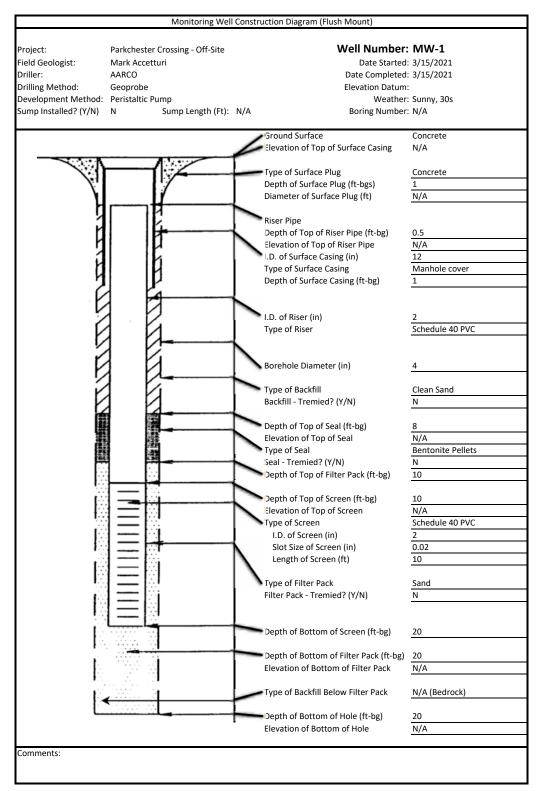
NY-AWQS = NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA Ambient Water Quality Standards

J = Estimated value

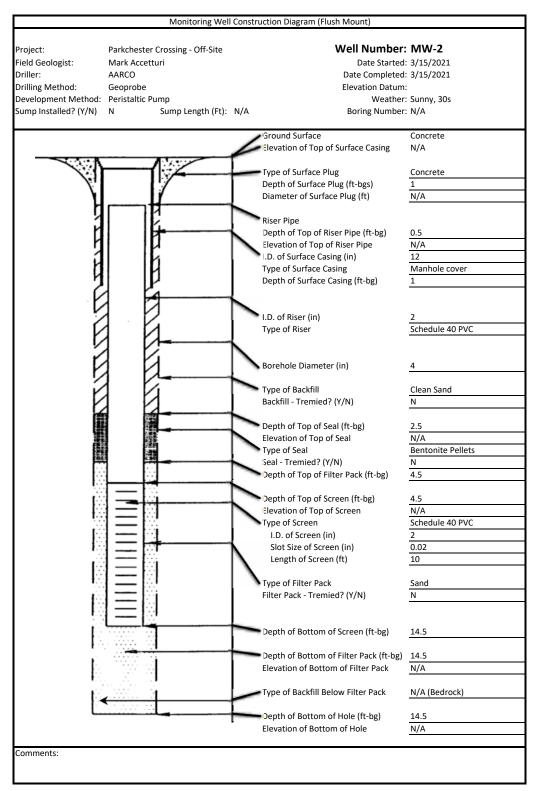
ND = Not detected

NS = No standard

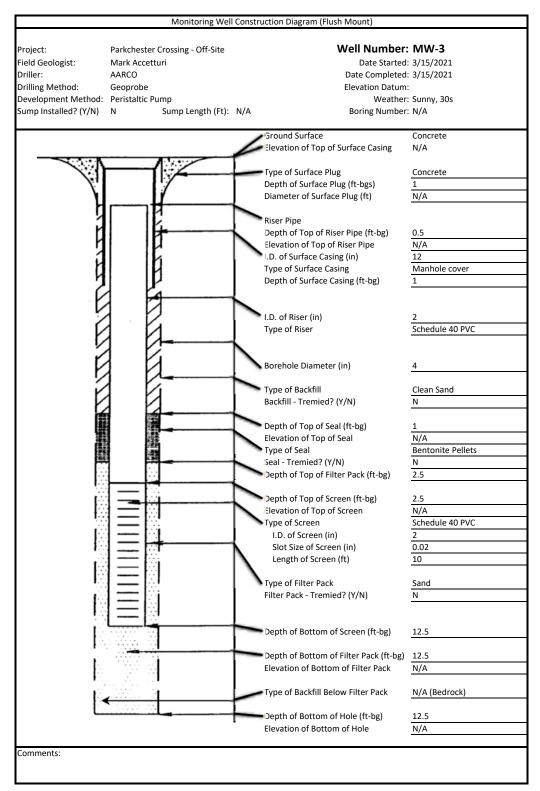
Table 3
CAMP Results
Parkchester Crossing
Site No. C203079A

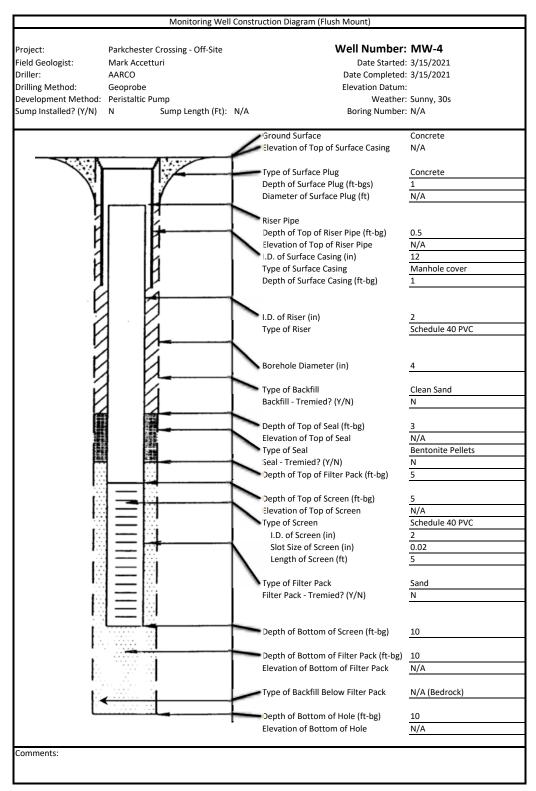

Time	PID (ppm)	Particulates (ug/m3)
7:30	0.0	0.008
8:00	0.1	0.010
8:30	0.1	0.009
9:00	0.0	0.011
9:30	0.2	0.006
10:00	0.0	0.008
10:30	0.0	0.008
11:00	0.1	0.009
11:30	0.1	0.010
12:00	0.3	0.010
12:30	0.2	0.011
13:00	0.1	0.010

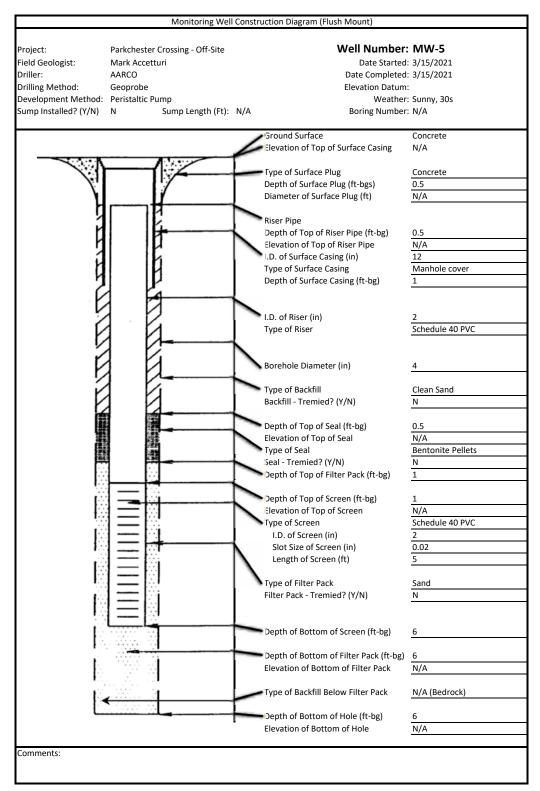
PID readings are total
Particulate readings are 15-minute TWA
ppm - parts per million
ug/m3 - micrograms per cubic meter


Parkchester Crossing – Off-Site Groundwater and Soil Vapor Investigation Letter Report

Attachment 1 Monitoring Well Construction Logs







Parkchester Crossing – Off-Site Groundwater and Soil Vapor Investigation Letter Report

Attachment 2 Soil Vapor Logs

Attachment 2 - Soil Vapor Logs Parkchester Crossing - Off-Site Groundwater and Soil Vapor Investigation Letter Report

11	TENENVIRONMENTAL										
Site:			l	Parkcheste	r Crossin	g - Off-Sit	e				
Weathe	r:			40°	F, Overca	ast					
Date:					3/24/2021						
Observe	ers:			K. Malna	ati & M. A	ccetturi					
Sample ID	He (ppm)	(mdd) OIA	FID (ppm) Can ID Flow ID Initial Time Final Time Final Pressure (in-Hg)								
SV-1	0	0	3206	01785	8:45	11:09	-79.50	N/A			
SV-2	0	0	2386	01166	8:45	11:08	-30.65	-2.88			
SV-3	0	0	202	02095	7:56	11:00	-30.70	-0.09			
SV-4	0	0	3213	01526	8:08	10:57	-30.51	-0.36			
SV-5	0	0	2185	1806	8:49	11:15	-70.76	N/A			
AA 3/24	N/A	N/A	590	01449	7:32	16:46	-32.03	-8.45			
Note: S	SV-1 & S\	/-5 flow (controllers I	nad error me	essages &	could not	give a final	vacuum			

Note: SV-1 & SV-5 flow controllers had error messages & could not give a final vacuum ppm: parts per million in-Hg: inches mercury

Parkchester Crossing – Off-Site Groundwater and Soil Vapor Investigation Letter Report

Attachment 3 *Laboratory Deliverables*

ANALYTICAL REPORT

Lab Number: L2114833

Client: Tenen Environmental, LLC

121 West 27th Street

Suite 702

New York City, NY 10001

ATTN: Matthew Carroll Phone: (646) 606-2332

Project Name: PARK CHESTER CROSSING

Project Number: PARK CHESTER CROSSIN

Report Date: 03/31/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:PARK CHESTER CROSSINGProject Number:PARK CHESTER CROSSIN

 Lab Number:
 L2114833

 Report Date:
 03/31/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2114833-01	SV1	SOIL_VAPOR	1585 WHITE PLAINS RD.	03/24/21 11:09	03/24/21
L2114833-02	SV2	SOIL_VAPOR	1585 WHITE PLAINS RD.	03/24/21 11:08	03/24/21
L2114833-03	SV3	SOIL_VAPOR	1585 WHITE PLAINS RD.	03/24/21 11:00	03/24/21
L2114833-04	SV4	SOIL_VAPOR	1585 WHITE PLAINS RD.	03/24/21 10:57	03/24/21
L2114833-05	SV5	SOIL_VAPOR	1585 WHITE PLAINS RD.	03/24/21 11:15	03/24/21
L2114833-06	AA 3/24	AIR	1585 WHITE PLAINS RD.	03/24/21 16:46	03/24/21

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:03312114:59

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on March 24, 2021. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/31/21

Christopher J. Anderson

Дерна

AIR

03/24/21 11:09

Not Specified

03/24/21

Date Collected:

Date Received:

Field Prep:

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

SAMPLE RESULTS

Lab ID: L2114833-01

Client ID: SV1

Sample Location: 1585 WHITE PLAINS RD.

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/30/21 20:24

Analyst: TS

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.456	0.200		2.25	0.989			1
Chloromethane	0.393	0.200		0.812	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	79.5	5.00		150	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	87.2	1.00		207	2.38			1
Trichlorofluoromethane	0.208	0.200		1.17	1.12			1
Isopropanol	10.4	0.500		25.6	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	2.00	0.500		6.06	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.760	0.200		2.37	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	5.53	0.500		16.3	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

SAMPLE RESULTS

Lab ID: L2114833-01

Client ID: SV1

Sample Location: 1585 WHITE PLAINS RD.

Date Collected: 03/24/21 11:09

Date Received: 03/24/21
Field Prep: Not Specified

Sample Depth:

	ppbV		ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
d Lab							
ND	0.500		ND	1.80			1
ND	0.200		ND	0.977			1
8.01	0.500		23.6	1.47			1
ND	0.200		ND	0.809			1
0.495	0.200		1.74	0.705			1
ND	0.200		ND	1.09			1
0.361	0.200		1.15	0.639			1
ND	0.200		ND	1.26			1
0.297	0.200		1.02	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	1.07			1
0.239	0.200		1.12	0.934			1
0.733	0.200		3.00	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
1.42	0.200		5.35	0.754			1
0.246	0.200		1.01	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
0.747	0.200		5.07	1.36			1
ND	0.200		ND	0.921			1
0.515	0.200		2.24	0.869			1
	ND ND ND 0.495 ND 0.361 ND 0.297 ND	Results RL d Lab ND 0.500 ND 0.200 8.01 0.500 ND 0.200 0.200 0.200 ND 0.200 0.200 0.200 ND 0.200 0.200 0.200 0.200 ND 0.200 ND 0.200 0.200 ND 0.200 0.200 0.200 0.200 0.200 0.200 0.500 ND 0.200 0.200 ND 0.200 0.200 ND 0.200	Results RL MDL ND 0.500 ND 0.200 8.01 0.500 ND 0.200 ND 0.500 ND 0.200 ND 0.200	Results RL MDL Results ND 0.500 ND ND 0.200 ND 8.01 0.500 ND 0.495 0.200 ND 0.495 0.200 ND 0.361 0.200 ND 0.297 0.200 ND ND 0.200	Results RL MDL Results RL B Lab ND 0.500 ND 1.80 ND 0.200 ND 0.977 8.01 0.500 23.6 1.47 ND 0.200 ND 0.809 0.495 0.200 ND 1.09 0.361 0.200 ND 1.09 0.361 0.200 ND 1.26 0.297 0.200 ND 1.26 0.297 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 1.07 0.239 0.200 ND 1.07 0.239 0.200 ND 0.908 ND 0.500 ND 0.908	Results RL MDL Results RL MDL Id Lab ND 0.500 ND 1.80 ND 0.200 ND 0.977 8.01 0.500 23.6 1.47 ND 0.200 ND 0.809 0.495 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 1.09 ND 0.200 ND 1.09 ND 0.200 ND 1.26 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 1.07	Results RL MDL Results RL MDL Qualifier Id Lab ND 0.500 ND 1.80 ND 0.200 ND 0.977 8.01 0.500 23.6 1.47 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 1.09 ND 0.200 ND 1.09 ND 0.200 ND 0.688 ND 0.200 ND 0.721 ND 0.200 ND 0.721 ND 0.239 0.200

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

SAMPLE RESULTS

Lab ID: L2114833-01

Client ID: SV1

Sample Location: 1585 WHITE PLAINS RD.

Date Collected: 03/24/21 11:09

Date Received: 03/24/21 Field Prep: Not Specified

Sample Depth:

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Lab							
2.42	0.400		10.5	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
0.706	0.200		3.07	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	2.42 ND ND ND O.706 ND	Results RL	Results RL MDL Lab 2.42 0.400 ND 0.200 ND 0.200	Results RL MDL Results Lab 2.42 0.400 10.5 ND 0.200 ND ND 0.200 ND ND 0.200 ND 0.706 0.200 ND ND 0.200 ND	Results RL MDL Results RL Lab 2.42 0.400 10.5 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 0.706 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab 2.42 0.400 10.5 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 0.706 0.200 ND 1.37 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier Lab 2.42 0.400 10.5 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	95		60-140

03/24/21 11:08

Not Specified

03/24/21

Date Collected:

Date Received:

Field Prep:

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

SAMPLE RESULTS

Lab ID: L2114833-02

Client ID: SV2

Sample Location: 1585 WHITE PLAINS RD.

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/30/21 21:41

Analyst: TS

ppbV		ug/m3				Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
d Lab							
0.424	0.200		2.10	0.989			1
0.521	0.200		1.08	0.413			1
ND	0.200		ND	1.40			1
ND	0.200		ND	0.511			1
ND	0.200		ND	0.442			1
ND	0.200		ND	0.777			1
ND	0.200		ND	0.528			1
86.8	5.00		164	9.42			1
ND	0.200		ND	0.874			1
130	1.00		309	2.38			1
ND	0.200		ND	1.12			1
11.3	0.500		27.8	1.23			1
ND	0.200		ND	0.793			1
2.02	0.500		6.12	1.52			1
ND	0.500		ND	1.74			1
ND	0.200		ND	0.626			1
ND	0.200		ND	0.623			1
ND	0.200		ND	1.53			1
ND	0.200		ND	0.793			1
ND	0.200		ND	0.809			1
ND	0.200		ND	0.721			1
11.7	0.500		34.5	1.47			1
ND	0.200		ND	0.793			1
	0.424 0.521 ND ND ND ND ND S6.8 ND 130 ND 11.3 ND 2.02 ND	Results RL 0.424 0.200 0.521 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 86.8 5.00 ND 0.200 130 1.00 ND 0.200 11.3 0.500 ND 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.200	Results RL MDL 0.424 0.200 0.521 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 130 1.00 ND 0.200 ND 0.200 ND 0.200 ND 0.500 ND 0.200 ND 0.200 <	Results RL MDL Results 0.424 0.200 2.10 0.521 0.200 1.08 ND 0.200 ND 86.8 5.00 ND 130 1.00 ND 130 1.00 ND 11.3 0.500 ND 11.3 0.500 ND 10 0.200 ND ND 0.200 ND ND 0.500 ND ND 0.200 ND ND 0.200 ND ND 0.200 ND ND 0.200 <td< td=""><td>Results RL MDL Results RL 0 Lab 0.424 0.200 2.10 0.989 0.521 0.200 1.08 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 86.8 5.00 ND 0.528 86.8 5.00 ND 0.874 130 1.00 ND 0.874 130 1.00 ND 0.874 130 1.00 ND 1.12 11.3 0.500 ND 1.12 11.3 0.500 ND 0.793 2.02 0.500 ND 0.793</td><td>Results RL MDL Results RL MDL d Lab 0.424 0.200 2.10 0.989 0.521 0.200 1.08 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 ND 0.200 ND 0.528 ND 0.200 ND 0.874 ND 0.200 ND 0.874 ND 0.200 ND 1.12 ND 0.200 ND 0.793 ND 0.500 ND 0.626</td><td>Results RL MDL Results RL MDL Qualifier d Lab 0.424 0.200 2.10 0.989 </td></td<>	Results RL MDL Results RL 0 Lab 0.424 0.200 2.10 0.989 0.521 0.200 1.08 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 86.8 5.00 ND 0.528 86.8 5.00 ND 0.874 130 1.00 ND 0.874 130 1.00 ND 0.874 130 1.00 ND 1.12 11.3 0.500 ND 1.12 11.3 0.500 ND 0.793 2.02 0.500 ND 0.793	Results RL MDL Results RL MDL d Lab 0.424 0.200 2.10 0.989 0.521 0.200 1.08 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 ND 0.200 ND 0.528 ND 0.200 ND 0.874 ND 0.200 ND 0.874 ND 0.200 ND 1.12 ND 0.200 ND 0.793 ND 0.500 ND 0.626	Results RL MDL Results RL MDL Qualifier d Lab 0.424 0.200 2.10 0.989

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

SAMPLE RESULTS

Lab ID: L2114833-02

Client ID: SV2

Sample Location: 1585 WHITE PLAINS RD.

Date Collected: 03/24/21 11:08

Date Received: 03/24/21
Field Prep: Not Specified

Sample Depth:

Parameter		ppbV			ug/m3			Dilution
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	15.0	0.500		44.2	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.335	0.200		1.18	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	0.268	0.200		0.856	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	0.213	0.200		0.733	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	0.202	0.200		0.943	0.934			1
Heptane	0.847	0.200		3.47	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	0.511	0.500		2.09	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	1.87	0.200		7.05	0.754			1
2-Hexanone	0.477	0.200		1.95	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	0.815	0.200		5.53	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.858	0.200		3.73	0.869			1

SAMPLE RESULTS

Lab ID: L2114833-02

Client ID: SV2

Sample Location: 1585 WHITE PLAINS RD.

Date Collected: 03/24/21 11:08

Date Received: 03/24/21
Field Prep: Not Specified

Campio Bopaii		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
p/m-Xylene	4.15	0.400		18.0	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	1.18	0.200		5.13	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	96		60-140

03/24/21 11:00

Not Specified

03/24/21

Date Collected:

Date Received:

Field Prep:

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

SAMPLE RESULTS

Lab ID: L2114833-03

Client ID: SV3

Sample Location: 1585 WHITE PLAINS RD.

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/30/21 22:20

Analyst: TS

		ppbV			ug/m3		_	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.394	0.200		1.95	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	95.5	5.00		180	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	56.3	1.00		134	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
sopropanol	11.8	0.500		29.0	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	2.62	0.500		7.94	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	5.71	0.500		16.8	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

SAMPLE RESULTS

Lab ID: L2114833-03

Client ID: SV3

Sample Location: 1585 WHITE PLAINS RD.

Date Collected: 03/24/21 11:00

Date Received: 03/24/21
Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.215	0.200		1.05	0.977			1
Tetrahydrofuran	8.35	0.500		24.6	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.226	0.200		0.796	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	0.207	0.200		0.661	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	0.285	0.200		0.981	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	0.408	0.200		1.91	0.934			1
Heptane	0.541	0.200		2.22	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	1.72	0.200		6.48	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	1.83	0.200		12.4	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.541	0.200		2.35	0.869			1

SAMPLE RESULTS

Lab ID: L2114833-03

Client ID: SV3

Sample Location: 1585 WHITE PLAINS RD.

Date Collected: 03/24/21 11:00

Date Received: 03/24/21
Field Prep: Not Specified

ppbV			ug/m3			_	Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Lab							
2.69	0.400		11.7	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
0.732	0.200		3.18	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	Lab 2.69 ND ND ND 0.732 ND ND ND ND ND ND ND ND ND N	Results RL	Results RL MDL Lab 2.69 0.400 ND 0.200 ND 0.200	Results RL MDL Results Lab 2.69 0.400 11.7 ND 0.200 ND ND 0.200 ND ND 0.200 ND 0.732 0.200 ND ND 0.200 ND	Results RL MDL Results RL Lab 2.69 0.400 11.7 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 0.732 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab 2.69 0.400 11.7 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 0.732 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier Lab 2.69 0.400 11.7 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	97		60-140

03/24/21 10:57

Not Specified

03/24/21

Date Collected:

Date Received:

Field Prep:

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

SAMPLE RESULTS

Lab ID: L2114833-04

Client ID: SV4

Sample Location: 1585 WHITE PLAINS RD.

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/30/21 22:59

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.414	0.200		2.05	0.989			1
Chloromethane	0.388	0.200		0.801	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	121	5.00		228	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	43.7	1.00		104	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	20.0	0.500		49.2	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	3.18	0.500		9.64	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	4.35	0.500		12.8	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

SAMPLE RESULTS

Lab ID: L2114833-04

Client ID: SV4

Sample Location: 1585 WHITE PLAINS RD.

Date Collected: 03/24/21 10:57

Date Received: 03/24/21
Field Prep: Not Specified

	ppbV			ug/m3				Dilution
arameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
olatile Organics in Air - Mansfiel	d Lab							
thyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
etrahydrofuran	9.29	0.500		27.4	1.47			1
,2-Dichloroethane	ND	0.200		ND	0.809			1
-Hexane	0.202	0.200		0.712	0.705			1
,1,1-Trichloroethane	ND	0.200		ND	1.09			1
enzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
romodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
richloroethene	ND	0.200		ND	1.07			1
,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
leptane	0.535	0.200		2.19	0.820			1
is-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	1.75	0.200		6.59	0.754			1
-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
etrachloroethene	1.25	0.200		8.48	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
thylbenzene	0.530	0.200		2.30	0.869			1

SAMPLE RESULTS

Lab ID: L2114833-04

Client ID: SV4

Sample Location: 1585 WHITE PLAINS RD.

Date Collected: 03/24/21 10:57

Date Received: 03/24/21 Field Prep: Not Specified

Campio Dopaii		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
p/m-Xylene	2.66	0.400		11.6	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.761	0.200		3.31	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	98		60-140

03/24/21 11:15

Not Specified

03/24/21

Date Collected:

Date Received:

Field Prep:

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

SAMPLE RESULTS

Lab ID: L2114833-05

Client ID: SV5

Sample Location: 1585 WHITE PLAINS RD.

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/30/21 23:37

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	70.8	5.00		133	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	57.3	1.00		136	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	6.48	0.500		15.9	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	1.36	0.500		4.12	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	4.99	0.500		14.7	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

SAMPLE RESULTS

Lab ID: L2114833-05

Client ID: SV5

Sample Location: 1585 WHITE PLAINS RD.

Date Collected: 03/24/21 11:15

Date Received: 03/24/21
Field Prep: Not Specified

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
d Lab							
ND	0.500		ND	1.80			1
2.20	0.200		10.7	0.977			1
10.1	0.500		29.8	1.47			1
ND	0.200		ND	0.809			1
37.9	0.200		134	0.705			1
ND	0.200		ND	1.09			1
1.19	0.200		3.80	0.639			1
ND	0.200		ND	1.26			1
24.3	0.200		83.6	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	1.07			1
22.5	0.200		105	0.934			1
6.17	0.200		25.3	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
1.63	0.200		6.14	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
0.824	0.200		5.59	1.36			1
ND	0.200		ND	0.921			1
0.862	0.200		3.74	0.869			1
	ND 2.20 10.1 ND 37.9 ND 1.19 ND 24.3 ND	Results RL d Lab ND 0.500 2.20 0.200 10.1 0.500 ND 0.200 ND 0.500 ND 0.200 ND	Results RL MDL 3 Lab 2.20 0.200 10.1 0.500 ND 0.200 ND 0.500 ND 0.200 ND 0.20	Results RL MDL Results Id Lab ND 0.500 ND 2.20 0.200 10.7 10.1 0.500 29.8 ND 0.200 ND 37.9 0.200 ND 1.19 0.200 ND 1.19 0.200 ND ND 0.200	Results RL MDL Results RL B Lab ND 0.500 ND 1.80 2.20 0.200 10.7 0.977 10.1 0.500 29.8 1.47 ND 0.200 ND 0.809 37.9 0.200 ND 1.09 ND 0.200 ND 1.09 1.19 0.200 ND 1.09 1.19 0.200 ND 1.26 24.3 0.200 ND 1.26 24.3 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 1.07 22.5 0.200 ND 0.908 ND 0.200 ND 0.908	Results RL MDL Results RL MDL d Lab ND 0.500 ND 1.80 2.20 0.200 10.7 0.977 10.1 0.500 29.8 1.47 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 1.09 ND 0.200 ND 1.09 ND 0.200 ND 1.26 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.924 ND 0.200 ND 0.93	Results RL MDL Results RL MDL Qualifier d Lab ND 0.500 ND 1.80 2.20 0.200 10.7 0.977 10.1 0.500 29.8 1.47 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 1.09 ND 0.200 ND 1.09 ND 0.200 ND 1.26 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.721 ND 0.200 <

SAMPLE RESULTS

Lab ID: L2114833-05

Client ID: SV5

Sample Location: 1585 WHITE PLAINS RD.

Date Collected: 03/24/21 11:15

Date Received: 03/24/21 Field Prep: Not Specified

ppbV ug/m3					Dilution		
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Lab							
4.32	0.400		18.8	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
1.29	0.200		5.60	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	AB 4.32 ND ND ND 1.29 ND ND ND ND ND ND ND ND ND N	Results RL _ab 4.32 0.400 ND 0.200 ND 0.200	Results RL MDL Lab 4.32 0.400 ND 0.200 ND 0.200 ND 0.200 1.29 0.200 ND 0.200	Results RL MDL Results Lab 4.32 0.400 18.8 ND 0.200 ND ND 0.200 ND ND 0.200 ND 1.29 0.200 ND ND 0.200 ND	Results RL MDL Results RL Lab 4.32 0.400 18.8 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 1.29 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab 4.32 0.400 18.8 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 1.29 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier Lab 4.32 0.400 18.8 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	104		60-140
Bromochloromethane	106		60-140
chlorobenzene-d5	102		60-140

03/24/21 16:46

Not Specified

03/24/21

Date Collected:

Date Received:

Field Prep:

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

SAMPLE RESULTS

Lab ID: L2114833-06

Client ID: AA 3/24

Sample Location: 1585 WHITE PLAINS RD.

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/30/21 17:06

Analyst: TS

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab							
Dichlorodifluoromethane	0.454	0.200		2.24	0.989			1
Chloromethane	0.557	0.200		1.15	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	8.05	5.00		15.2	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	1.92	1.00		4.56	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	1.75	0.500		4.30	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

SAMPLE RESULTS

Lab ID: L2114833-06 Client ID: AA 3/24

Sample Location: 1585 WHITE PLAINS RD.

Date Collected: 03/24/21 16:46
Date Received: 03/24/21

Field Prep: Not Specified

Campio Dopuii		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.321	0.200		1.21	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1

SAMPLE RESULTS

Lab ID: L2114833-06 Client ID: AA 3/24

Sample Location: 1585 WHITE PLAINS RD.

Date Collected: 03/24/21 16:46

Date Received: 03/24/21
Field Prep: Not Specified

ppbV				ug/m3		Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
.ab							
ND	0.400		ND	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	AB ND ND ND ND ND ND ND ND ND N	Results RL	Results RL MDL ab ND 0.400 ND 0.200 ND 0.200	Results RL MDL Results Aab ND 0.400 ND ND 0.200 ND	Results RL MDL Results RL ab ND 0.400 ND 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL ab ND 0.400 ND 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier .ab ND 0.400 ND 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	92		60-140

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/30/21 15:07

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab for samp	ole(s): 01	-06 Batch:	WG14805	34-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/30/21 15:07

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	ole(s): 01	-06 Batch	n: WG14805	34-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/30/21 15:07

		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for samp	ole(s): 01	-06 Batch	: WG14805	34-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Lab Control Sample Analysis Batch Quality Control

Project Name: PARK CHESTER CROSSING

Project Number: PARK CHESTER CROSSIN

Lab Number: L2114833

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	ssociated sample(s):	01-06	Batch: WG148053	34-3				
Dichlorodifluoromethane	98		-		70-130	-		
Chloromethane	105		-		70-130	-		
Freon-114	104		-		70-130	-		
Vinyl chloride	102		-		70-130	-		
1,3-Butadiene	103		-		70-130	-		
Bromomethane	103		-		70-130	-		
Chloroethane	103		-		70-130	-		
Ethanol	98		-		40-160	-		
Vinyl bromide	106		-		70-130	-		
Acetone	94		-		40-160	-		
Trichlorofluoromethane	100		-		70-130	-		
Isopropanol	91		-		40-160	-		
1,1-Dichloroethene	104		-		70-130	-		
Tertiary butyl Alcohol	102		-		70-130	-		
Methylene chloride	100		-		70-130	-		
3-Chloropropene	123		-		70-130	-		
Carbon disulfide	96		-		70-130	-		
Freon-113	110		-		70-130	-		
trans-1,2-Dichloroethene	109		-		70-130	-		
1,1-Dichloroethane	114		-		70-130	-		
Methyl tert butyl ether	104		-		70-130	-		
2-Butanone	114		-		70-130	-		
cis-1,2-Dichloroethene	118		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: PARK CHESTER CROSSING

Project Number: PARK CHESTER CROSSIN

Lab Number: L2114833

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Ass	sociated sample(s)	01-06	Batch: WG148053	34-3				
Ethyl Acetate	106		-		70-130	-		
Chloroform	105		-		70-130	-		
Tetrahydrofuran	118		-		70-130	-		
1,2-Dichloroethane	113		-		70-130	-		
n-Hexane	102		-		70-130	-		
1,1,1-Trichloroethane	108		-		70-130	-		
Benzene	93		-		70-130	-		
Carbon tetrachloride	104		-		70-130	-		
Cyclohexane	103		-		70-130	-		
1,2-Dichloropropane	114		-		70-130	-		
Bromodichloromethane	103		-		70-130	-		
1,4-Dioxane	111		-		70-130	-		
Trichloroethene	107		-		70-130	-		
2,2,4-Trimethylpentane	107		-		70-130	-		
Heptane	111		-		70-130	-		
cis-1,3-Dichloropropene	108		-		70-130	-		
4-Methyl-2-pentanone	116		-		70-130	-		
trans-1,3-Dichloropropene	95		-		70-130	-		
1,1,2-Trichloroethane	112		-		70-130	-		
Toluene	104		-		70-130	-		
2-Hexanone	127		-		70-130	-		
Dibromochloromethane	113		-		70-130	-		
1,2-Dibromoethane	106		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: PARK CHESTER CROSSING

Project Number: PARK CHESTER CROSSIN

Lab Number: L2114833

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab A	Associated sample(s):	01-06	Batch: WG148053	34-3				
Tetrachloroethene	104		-		70-130	-		
Chlorobenzene	102		-		70-130	-		
Ethylbenzene	112		-		70-130	-		
p/m-Xylene	111		-		70-130	-		
Bromoform	113		-		70-130	-		
Styrene	108		-		70-130	-		
1,1,2,2-Tetrachloroethane	111		-		70-130	-		
o-Xylene	113		-		70-130	-		
4-Ethyltoluene	100		-		70-130	-		
1,3,5-Trimethylbenzene	103		-		70-130	-		
1,2,4-Trimethylbenzene	110		-		70-130	-		
Benzyl chloride	112		-		70-130	-		
1,3-Dichlorobenzene	108		-		70-130	-		
1,4-Dichlorobenzene	108		-		70-130	-		
1,2-Dichlorobenzene	108		-		70-130	-		
1,2,4-Trichlorobenzene	114		-		70-130	-		
Hexachlorobutadiene	109		-		70-130	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: PARK CHESTER CROSSING Lab Number:

L2114833

Project Number: Report Date: 03/31/21 PARK CHESTER CROSSIN

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
platile Organics in Air - Mansfield Lab	Associated sample(s): 01-06	QC Batch ID: WG1480534-5	QC Sample:	L2114833-0	1 Client ID: SV1
Dichlorodifluoromethane	0.456	0.425	ppbV	7	25
Chloromethane	0.393	0.378	ppbV	4	25
Freon-114	ND	ND	ppbV	NC	25
Vinyl chloride	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
Bromomethane	ND	ND	ppbV	NC	25
Chloroethane	ND	ND	ppbV	NC	25
Ethanol	79.5	85.1	ppbV	7	25
Vinyl bromide	ND	ND	ppbV	NC	25
Acetone	87.2	84.1	ppbV	4	25
Trichlorofluoromethane	0.208	0.208	ppbV	0	25
Isopropanol	10.4	10.2	ppbV	2	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
Tertiary butyl Alcohol	2.00	1.94	ppbV	3	25
Methylene chloride	ND	ND	ppbV	NC	25
3-Chloropropene	ND	ND	ppbV	NC	25
Carbon disulfide	0.760	0.752	ppbV	1	25
Freon-113	ND	ND	ppbV	NC	25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25

Lab Duplicate Analysis Batch Quality Control

Project Name: PARK CHESTER CROSSING
Project Number: PARK CHESTER CROSSIN

Lab Number: L2114833 **Report Date:** 03/31/21

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-06	QC Batch ID: WG1480534-5	QC Sample:	L2114833-01	1 Client ID:	SV1
2-Butanone	5.53	5.41	ppbV	2		25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC		25
Ethyl Acetate	ND	ND	ppbV	NC		25
Chloroform	ND	ND	ppbV	NC		25
Tetrahydrofuran	8.01	7.80	ppbV	3		25
1,2-Dichloroethane	ND	ND	ppbV	NC		25
n-Hexane	0.495	0.508	ppbV	3		25
1,1,1-Trichloroethane	ND	ND	ppbV	NC		25
Benzene	0.361	0.362	ppbV	0		25
Carbon tetrachloride	ND	ND	ppbV	NC		25
Cyclohexane	0.297	0.295	ppbV	1		25
1,2-Dichloropropane	ND	ND	ppbV	NC		25
Bromodichloromethane	ND	ND	ppbV	NC		25
1,4-Dioxane	ND	ND	ppbV	NC		25
Trichloroethene	ND	ND	ppbV	NC		25
2,2,4-Trimethylpentane	0.239	0.235	ppbV	2		25
Heptane	0.733	0.749	ppbV	2		25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC		25
4-Methyl-2-pentanone	ND	ND	ppbV	NC		25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC		25
1,1,2-Trichloroethane	ND	ND	ppbV	NC		25

Lab Duplicate Analysis Batch Quality Control

Project Name: PARK CHESTER CROSSING
Project Number: PARK CHESTER CROSSIN

Lab Number: L2114833

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-06	QC Batch ID: WG1480534-5	QC Sample:	L2114833-0	1 Client ID: SV1	
Toluene	1.42	1.40	ppbV	1	25	
2-Hexanone	0.246	0.246	ppbV	0	25	
Dibromochloromethane	ND	ND	ppbV	NC	25	
1,2-Dibromoethane	ND	ND	ppbV	NC	25	
Tetrachloroethene	0.747	0.741	ppbV	1	25	
Chlorobenzene	ND	ND	ppbV	NC	25	
Ethylbenzene	0.515	0.526	ppbV	2	25	
p/m-Xylene	2.42	2.44	ppbV	1	25	
Bromoform	ND	ND	ppbV	NC	25	
Styrene	ND	ND	ppbV	NC	25	
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25	
o-Xylene	0.706	0.706	ppbV	0	25	
4-Ethyltoluene	ND	ND	ppbV	NC	25	
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC	25	
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25	
Benzyl chloride	ND	ND	ppbV	NC	25	
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25	
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25	
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25	
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25	
Hexachlorobutadiene	ND	ND	ppbV	NC	25	

PARK CHESTER CROSSING Lab Number: L2114833

Project Number: PARK CHESTER CROSSIN Report Date: 03/31/21

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2114833-01	SV1	01785	Flow 3	03/24/21	346598		-	-	-	Pass	18.0	0.5	189
L2114833-01	SV1	3206	2.7L Can	03/24/21	346598	L2113738-01	Pass	-29.7	0.0	-	-	-	
L2114833-02	SV2	01166	Flow 3	03/24/21	346598		-	-	-	Pass	18.0	15.9	12
L2114833-02	SV2	2386	2.7L Can	03/24/21	346598	L2113738-01	Pass	-29.5	-1.1	-	-	-	-
L2114833-03	SV3	02095	Flow 3	03/24/21	346598		-	-	-	Pass	18.0	17.0	6
L2114833-03	SV3	202	2.7L Can	03/24/21	346598	L2113738-01	Pass	-29.4	1.8	-	-	-	-
L2114833-04	SV4	01526	Flow 3	03/24/21	346598		-	-	-	Pass	18.0	17.1	5
L2114833-04	SV4	3213	2.7L Can	03/24/21	346598	L2113738-01	Pass	-29.4	1.7	-	-	-	-
L2114833-05	SV5	01806	Flow 3	03/24/21	346598		-	-	-	Pass	18.0	16.8	7
L2114833-05	SV5	2185	2.7L Can	03/24/21	346598	L2113738-01	Pass	-29.5	0.0	-	-	-	-
L2114833-06	AA 3/24	01449	Flow 4	03/24/21	346598		-	-	-	Pass	10.0	9.4	6
L2114833-06	AA 3/24	590	6.0L Can	03/24/21	346598	L2114053-04	Pass	-29.4	-3.5	-	-	-	-

Project Name:

L2113738

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/31/21

Air Canister Certification Results

Lab ID: L2113738-01 Date Collected: 03/18/21 16:00

Client ID: CAN 2079 SHELF 7 Date Received: 03/19/21

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 03/19/21 18:41

Analyst: TS

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
)							
ND	0.200		ND	0.707			1
ND	0.500		ND	0.861			1
ND	0.500		ND	0.902			1
ND	0.200		ND	0.989			1
ND	0.200		ND	0.413			1
ND	0.200		ND	1.40			1
ND	5.00		ND	6.55			1
ND	0.200		ND	0.511			1
ND	0.200		ND	0.442			1
ND	0.200		ND	0.475			1
ND	0.200		ND	0.777			1
ND	0.200		ND	0.528			1
ND	5.00		ND	9.42			1
ND	0.200		ND	0.842			1
ND	0.200		ND	0.874			1
ND	0.500		ND	1.15			1
ND	1.00		ND	2.38			1
ND	0.200		ND	0.336			1
ND	0.200		ND	1.12			1
ND	0.500		ND	1.23			1
ND	0.500		ND	1.09			1
ND	0.200		ND	0.590			1
ND	0.200		ND	0.606			1
ND	0.200		ND	0.793			1
	ND N	ND 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.500 ND 0.200 ND 0.500 ND 0.500 ND 0.200	Results RL MDL ND 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.200 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.200	Results RL MDL Results ND 0.200 ND ND 0.500 ND ND 0.500 ND ND 0.200 ND ND 0.500 ND ND 0.200 ND ND 0.200 ND ND 0.200 ND ND 0.500 ND </td <td>Results RL MDL Results RL D ND 0.200 ND 0.707 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.441 ND 0.200 ND 0.555 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528 ND 0.200 ND 0.528 ND 0.200 ND 0.842 ND 0.200 ND 0.842 ND 0.500 ND 0.336 <td< td=""><td>Results RL MDL Results RL MDL ND 0.200 ND 0.707 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.511 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 ND 0.200 ND 0.842 </td><td>Results RL MDL Results RL MDL Qualifier ND 0.200 ND 0.7077 ND 0.500 ND 0.961 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.777 ND 0.200 ND 0.842 ND 0.200</td></td<></td>	Results RL MDL Results RL D ND 0.200 ND 0.707 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.441 ND 0.200 ND 0.555 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528 ND 0.200 ND 0.528 ND 0.200 ND 0.842 ND 0.200 ND 0.842 ND 0.500 ND 0.336 <td< td=""><td>Results RL MDL Results RL MDL ND 0.200 ND 0.707 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.511 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 ND 0.200 ND 0.842 </td><td>Results RL MDL Results RL MDL Qualifier ND 0.200 ND 0.7077 ND 0.500 ND 0.961 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.777 ND 0.200 ND 0.842 ND 0.200</td></td<>	Results RL MDL Results RL MDL ND 0.200 ND 0.707 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.511 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 ND 0.200 ND 0.842	Results RL MDL Results RL MDL Qualifier ND 0.200 ND 0.7077 ND 0.500 ND 0.961 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.777 ND 0.200 ND 0.842 ND 0.200

L2113738

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/31/21

Air Canister Certification Results

Lab ID: L2113738-01

Date Collected: 03/18/21 16:00 Client ID: **CAN 2079 SHELF 7** Date Received: 03/19/21

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Volatile Organics in Air - Mansfield Lab ND 0.500 ND 1.52 Tertiary butyl Alcohol ND 0.500 ND 1.74 Methylene chloride ND 0.500 ND 1.74 3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 0.793 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.721 Methyl tert butyl ether ND 0.200 ND 0.721	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tertiary butyl Alcohol ND 0.500 ND 1.52 Methylene chloride ND 0.500 ND 1.74 3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 1.53 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809	1 1 1 1 1
Methylene chloride ND 0.500 ND 1.74 3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 1.53 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809	1 1 1 1 1
3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 ND 0.200 ND 1.53 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809	1 1 1 1
Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 1.53 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809	1 1 1
Freon-113	1 1 1
trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809	1
1,1-Dichloroethane ND 0.200 ND 0.809	1
Methyl tert butyl ether ND 0.200 ND 0.721	1
	'
Vinyl acetate ND 1.00 ND 3.52	1
Xylenes, total ND 0.600 ND 0.869	1
2-Butanone ND 0.500 ND 1.47	1
cis-1,2-Dichloroethene ND 0.200 ND 0.793	1
Ethyl Acetate ND 0.500 ND 1.80	1
Chloroform ND 0.200 ND 0.977	1
Tetrahydrofuran ND 0.500 ND 1.47	1
2,2-Dichloropropane ND 0.200 ND 0.924	1
1,2-Dichloroethane ND 0.200 ND 0.809	1
n-Hexane ND 0.200 ND 0.705	1
Diisopropyl ether ND 0.200 ND 0.836	1
tert-Butyl Ethyl Ether ND 0.200 ND 0.836	1
1,2-Dichloroethene (total) ND 1.00 ND 1.00	1
1,1,1-Trichloroethane ND 0.200 ND 1.09	1
1,1-Dichloropropene ND 0.200 ND 0.908	1
Benzene ND 0.200 ND 0.639	1
Carbon tetrachloride ND 0.200 ND 1.26	1
Cyclohexane ND 0.200 ND 0.688	1
tert-Amyl Methyl Ether ND 0.200 ND 0.836	

L2113738

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/31/21

Air Canister Certification Results

Lab ID: L2113738-01

Date Collected: 03/18/21 16:00 Client ID: CAN 2079 SHELF 7 Date Received: 03/19/21

Sample Location:

Field Prep: Not Specified

Sample Deptn:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
richloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	ND	0.200		ND	0.754			1
,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2113738

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/31/21

Air Canister Certification Results

Lab ID: L2113738-01

Date Collected: 03/18/21 16:00 Client ID: CAN 2079 SHELF 7 Date Received:

Sample Location:

03/19/21 Field Prep: Not Specified

, ,	<u> </u>	ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfi	eld Lab								
o-Xylene	ND	0.200		ND	0.869			1	
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1	
Nonane	ND	0.200		ND	1.05			1	
sopropylbenzene	ND	0.200		ND	0.983			1	
Bromobenzene	ND	0.200		ND	0.793			1	
2-Chlorotoluene	ND	0.200		ND	1.04			1	
n-Propylbenzene	ND	0.200		ND	0.983			1	
4-Chlorotoluene	ND	0.200		ND	1.04			1	
4-Ethyltoluene	ND	0.200		ND	0.983			1	
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1	
ert-Butylbenzene	ND	0.200		ND	1.10			1	
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1	
Decane	ND	0.200		ND	1.16			1	
Benzyl chloride	ND	0.200		ND	1.04			1	
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1	
sec-Butylbenzene	ND	0.200		ND	1.10			1	
o-Isopropyltoluene	ND	0.200		ND	1.10			1	
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1	
n-Butylbenzene	ND	0.200		ND	1.10			1	
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1	
Jndecane	ND	0.200		ND	1.28			1	
Dodecane	ND	0.200		ND	1.39			1	
,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1	
Naphthalene	ND	0.200		ND	1.05			1	
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1	
Hexachlorobutadiene	ND	0.200		ND	2.13			1	

Project Name: BATCH CANISTER CERTIFICATION

Lab Number: L2113738

Project Number: CANISTER QC BAT **Report Date:** 03/31/21

Air Canister Certification Results

Lab ID: L2113738-01

Date Collected: 03/18/21 16:00 Client ID: **CAN 2079 SHELF 7** Date Received: 03/19/21

Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	89		60-140

L2113738

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/31/21

Air Canister Certification Results

Lab ID: L2113738-01

Date Collected: 03/18/21 16:00 Client ID: CAN 2079 SHELF 7 Date Received: 03/19/21

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 03/19/21 18:41

Analyst: TS

	PpbV			ug/m3				Dilution
nrameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
olatile Organics in Air by SIM - Ma	insfield Lab							
chlorodifluoromethane	ND	0.200		ND	0.989			1
nloromethane	ND	0.200		ND	0.413			1
eon-114	ND	0.050		ND	0.349			1
nyl chloride	ND	0.020		ND	0.051			1
3-Butadiene	ND	0.020		ND	0.044			1
omomethane	ND	0.020		ND	0.078			1
nloroethane	ND	0.100		ND	0.264			1
crolein	ND	0.050		ND	0.115			1
cetone	ND	1.00		ND	2.38			1
ichlorofluoromethane	ND	0.050		ND	0.281			1
crylonitrile	ND	0.500		ND	1.09			1
1-Dichloroethene	ND	0.020		ND	0.079			1
ethylene chloride	ND	0.500		ND	1.74			1
eon-113	ND	0.050		ND	0.383			1
ans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1-Dichloroethane	ND	0.020		ND	0.081			1
ethyl tert butyl ether	ND	0.200		ND	0.721			1
Butanone	ND	0.500		ND	1.47			1
s-1,2-Dichloroethene	ND	0.020		ND	0.079			1
nloroform	ND	0.020		ND	0.098			1
2-Dichloroethane	ND	0.020		ND	0.081			1
1,1-Trichloroethane	ND	0.020		ND	0.109			1
enzene	ND	0.100		ND	0.319			1
arbon tetrachloride	ND	0.020		ND	0.126			1

L2113738

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/31/21

Air Canister Certification Results

Lab ID: L2113738-01

Date Collected: 03/18/21 16:00 Client ID: CAN 2079 SHELF 7 Date Received:

Sample Location:

03/19/21 Field Prep: Not Specified

Запріє Берці.		mmhV						
Parameter	Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air by SIM - I		KL_	MDL	Nesuits	INE.	WIDE	Qualifier	
-								
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2113738

Project Number: CANISTER QC BAT Report Date: 03/31/21

Air Canister Certification Results

Lab ID: L2113738-01

Client ID: CAN 2079 SHELF 7

Sample Location:

Date Collected: 03/18/21 16:00 Date Received: 03/19/21

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria		
1,4-difluorobenzene	91		60-140		
bromochloromethane	94		60-140		
chlorobenzene-d5	89		60-140		

L2114053

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/31/21

Air Canister Certification Results

Lab ID: L2114053-04

Date Collected: 03/20/21 08:00 Client ID: **CAN 2487 SHELF 41** Date Received: 03/20/21

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 03/21/21 18:47

Analyst: TS

	ppbV ug/m3				Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2114053

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/31/21

Air Canister Certification Results

Lab ID: L2114053-04

Date Collected: 03/20/21 08:00 Client ID: **CAN 2487 SHELF 41** 03/20/21 Date Received:

Sample Location: Field Prep: Not Specified

Запріє Беріп.		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2114053

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/31/21

Air Canister Certification Results

Lab ID: L2114053-04

Date Collected: 03/20/21 08:00 Client ID: **CAN 2487 SHELF 41** 03/20/21 Date Received:

Sample Location: Field Prep: Not Specified

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2114053

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/31/21

Air Canister Certification Results

Lab ID: L2114053-04

Date Collected: 03/20/21 08:00 Client ID: **CAN 2487 SHELF 41** 03/20/21 Date Received:

Sample Location: Field Prep: Not Specified

Запріє Бериі.	ppbV ug/m3				Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number: L2114053

Project Number: CANISTER QC BAT **Report Date:** 03/31/21

Air Canister Certification Results

Lab ID: L2114053-04

Date Collected: 03/20/21 08:00 Client ID: **CAN 2487 SHELF 41** Date Received: 03/20/21

Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	85		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	86		60-140

L2114053

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/31/21

Air Canister Certification Results

Lab ID: L2114053-04

Date Collected: 03/20/21 08:00 Client ID: **CAN 2487 SHELF 41** Date Received: 03/20/21

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 03/21/21 18:47

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2114053

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/31/21

Air Canister Certification Results

Lab ID: L2114053-04

Date Collected: 03/20/21 08:00 Client ID: **CAN 2487 SHELF 41** 03/20/21 Date Received:

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
richloroethene	ND	0.020		ND	0.107			1
sis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2114053

Project Number: CANISTER QC BAT Report Date: 03/31/21

Air Canister Certification Results

Lab ID: L2114053-04

Date Collected: 03/20/21 08:00 Client ID: CAN 2487 SHELF 41 Date Received: 03/20/21

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - I	Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	86		60-140
bromochloromethane	89		60-140
chlorobenzene-d5	85		60-140

Project Name: PARK CHESTER CROSSING **Lab Number:** L2114833 **Project Number:** PARK CHESTER CROSSIN

Report Date: 03/31/21

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

N/A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2114833-01A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30)
L2114833-02A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30)
L2114833-03A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30)
L2114833-04A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30)
L2114833-05A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30)
L2114833-06A	Canister - 6 Liter	N/A	NA			Υ	Absent		TO15-LL(30)

GLOSSARY

Acronyms

LOQ

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

RPD

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:PARK CHESTER CROSSINGLab Number:L2114833Project Number:PARK CHESTER CROSSINReport Date:03/31/21

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:03312114:59

ID No.:17873 Revision 18

Published Date: 2/16/2021 5:32:02 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ANALYTICAL REPORT

Lab Number: L2114831

Client: Tenen Environmental, LLC

121 West 27th Street

Suite 702

New York City, NY 10001

ATTN: Matthew Carroll Phone: (646) 606-2332

Project Name: PARKCHESTER CROSSING

Project Number: PARKCHESTER CROSSING

Report Date: 03/31/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2114831-01	MW 1	WATER	1585 WHITE PLAINS RD	03/24/21 12:01	03/24/21
L2114831-02	MW 3	WATER	1585 WHITE PLAINS RD	03/24/21 11:45	03/24/21
L2114831-03	TRIP BLANK	TRIP BLANK (AQUEOUS)	1585 WHITE PLAINS RD	03/24/21 00:00	03/24/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:PARKCHESTER CROSSINGLab Number:L2114831Project Number:PARKCHESTER CROSSINGReport Date:03/31/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/31/21

ALPHA

ORGANICS

VOLATILES

L2114831

03/24/21

Lab Number:

Date Received:

Project Name: PARKCHESTER CROSSING

Project Number: PARKCHESTER CROSS Report Date: 03/31/21

SAMPLE RESULTS

Lab ID: L2114831-01 D Date Collected: 03/24/21 12:01

Client ID: MW 1

Sample Location: 1585 WHITE PLAINS RD Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 03/29/21 13:05

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	12	3.5	5	
1,1-Dichloroethane	ND		ug/l	12	3.5	5	
Chloroform	ND		ug/l	12	3.5	5	
Carbon tetrachloride	ND		ug/l	2.5	0.67	5	
1,2-Dichloropropane	ND		ug/l	5.0	0.68	5	
Dibromochloromethane	ND		ug/l	2.5	0.74	5	
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5	
Tetrachloroethene	ND		ug/l	2.5	0.90	5	
Chlorobenzene	ND		ug/l	12	3.5	5	
Trichlorofluoromethane	ND		ug/l	12	3.5	5	
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5	
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5	
Bromodichloromethane	ND		ug/l	2.5	0.96	5	
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5	
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5	
1,3-Dichloropropene, Total	ND		ug/l	2.5	0.72	5	
1,1-Dichloropropene	ND		ug/l	12	3.5	5	
Bromoform	ND		ug/l	10	3.2	5	
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5	
Benzene	750		ug/l	2.5	0.80	5	
Toluene	7.6	J	ug/l	12	3.5	5	
Ethylbenzene	5.0	J	ug/l	12	3.5	5	
Chloromethane	ND		ug/l	12	3.5	5	
Bromomethane	ND		ug/l	12	3.5	5	
Vinyl chloride	ND		ug/l	5.0	0.36	5	
Chloroethane	ND		ug/l	12	3.5	5	
1,1-Dichloroethene	ND		ug/l	2.5	0.84	5	
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5	

Project Name: PARKCHESTER CROSSING Lab Number: L2114831

Project Number: PARKCHESTER CROSS Report Date: 03/31/21

SAMPLE RESULTS

Lab ID: L2114831-01 D Date Collected: 03/24/21 12:01

Client ID: MW 1 Date Received: 03/24/21

Sample Location: 1585 WHITE PLAINS RD Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND		ug/l	2.5	0.88	5
1,2-Dichlorobenzene	ND		ug/l	12	3.5	5
1,3-Dichlorobenzene	ND		ug/l	12	3.5	5
1,4-Dichlorobenzene	ND		ug/l	12	3.5	5
Methyl tert butyl ether	ND		ug/l	12	3.5	5
p/m-Xylene	20		ug/l	12	3.5	5
o-Xylene	ND		ug/l	12	3.5	5
Xylenes, Total	20		ug/l	12	3.5	5
cis-1,2-Dichloroethene	ND		ug/l	12	3.5	5
1,2-Dichloroethene, Total	ND		ug/l	12	3.5	5
Dibromomethane	ND		ug/l	25	5.0	5
1,2,3-Trichloropropane	ND		ug/l	12	3.5	5
Acrylonitrile	ND		ug/l	25	7.5	5
Styrene	ND		ug/l	12	3.5	5
Dichlorodifluoromethane	ND		ug/l	25	5.0	5
Acetone	53		ug/l	25	7.3	5
Carbon disulfide	ND		ug/l	25	5.0	5
2-Butanone	ND		ug/l	25	9.7	5
Vinyl acetate	ND		ug/l	25	5.0	5
4-Methyl-2-pentanone	ND		ug/l	25	5.0	5
2-Hexanone	ND		ug/l	25	5.0	5
Bromochloromethane	ND		ug/l	12	3.5	5
2,2-Dichloropropane	ND		ug/l	12	3.5	5
1,2-Dibromoethane	ND		ug/l	10	3.2	5
1,3-Dichloropropane	ND		ug/l	12	3.5	5
1,1,1,2-Tetrachloroethane	ND		ug/l	12	3.5	5
Bromobenzene	ND		ug/l	12	3.5	5
n-Butylbenzene	9.0	J	ug/l	12	3.5	5
sec-Butylbenzene	11	J	ug/l	12	3.5	5
tert-Butylbenzene	ND		ug/l	12	3.5	5
o-Chlorotoluene	ND		ug/l	12	3.5	5
p-Chlorotoluene	ND		ug/l	12	3.5	5
1,2-Dibromo-3-chloropropane	ND		ug/l	12	3.5	5
Hexachlorobutadiene	ND		ug/l	12	3.5	5
Isopropylbenzene	32		ug/l	12	3.5	5
p-Isopropyltoluene	ND		ug/l	12	3.5	5
Naphthalene	8.7	J	ug/l	12	3.5	5

Project Name: PARKCHESTER CROSSING **Lab Number:** L2114831

Project Number: PARKCHESTER CROSS Report Date: 03/31/21

SAMPLE RESULTS

Lab ID: L2114831-01 D Date Collected: 03/24/21 12:01

Client ID: MW 1 Date Received: 03/24/21

Sample Location: 1585 WHITE PLAINS RD Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
n-Propylbenzene	73		ug/l	12	3.5	5
1,2,3-Trichlorobenzene	ND		ug/l	12	3.5	5
1,2,4-Trichlorobenzene	ND		ug/l	12	3.5	5
1,3,5-Trimethylbenzene	ND		ug/l	12	3.5	5
1,2,4-Trimethylbenzene	ND		ug/l	12	3.5	5
1,4-Dioxane	ND		ug/l	1200	300	5
p-Diethylbenzene	18		ug/l	10	3.5	5
p-Ethyltoluene	5.7	J	ug/l	10	3.5	5
1,2,4,5-Tetramethylbenzene	53		ug/l	10	2.7	5
Ethyl ether	ND		ug/l	12	3.5	5
trans-1,4-Dichloro-2-butene	ND		ug/l	12	3.5	5

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	94	70-130	

L2114831

03/31/21

03/24/21 11:45

Not Specified

03/24/21

Project Name: PARKCHESTER CROSSING

Project Number: PARKCHESTER CROSS

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2114831-02

Client ID: MW 3

Sample Location: 1585 WHITE PLAINS RD

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 03/29/21 13:33

Analyst: AJK

Volatile Organics by GC/MS - Westborough Lab ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Chloroform ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,12-Trichloroethane ND ug/l 1.5 0.50 1 1,12-Trichloroethane ND ug/l 0.50 0.18 1 1-Trichlorotethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.19 1 1-1,1-Trichloropethane ND ug/l 0.50	r	Dilution Factor	MDL	RL	Units	Qualifier	Result	Parameter
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 2.9 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromofolloromethane ND ug/l 0.50 0.16 1 Intaction of propene ND ug/l 0.50 0.14 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>orough Lab</td> <td>Volatile Organics by GC/MS - Westbo</td>							orough Lab	Volatile Organics by GC/MS - Westbo
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 2.9 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroffluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroptopene ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 trans-1,3-Dichloropropene, Total ND ug/l 0.		1	0.70	2.5	ug/l		ND	Methylene chloride
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 2.9 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroffluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloropropene ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene, Total ND ug/l		1	0.70	2.5	ug/l		ND	1,1-Dichloroethane
1,2-Dichloropropane ND		1	0.70	2.5	ug/l		ND	Chloroform
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 1,1,2-Trichloroethane 2.9 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5		1	0.13	0.50	ug/l		ND	Carbon tetrachloride
1,1,2-Trichloroethane ND		1	0.14	1.0	ug/l		ND	1,2-Dichloropropane
Tetrachloroethene 2.9 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16		1	0.15	0.50	ug/l		ND	Dibromochloromethane
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Benzene ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 <td></td> <td>1</td> <td>0.50</td> <td>1.5</td> <td>ug/l</td> <td></td> <td>ND</td> <td>1,1,2-Trichloroethane</td>		1	0.50	1.5	ug/l		ND	1,1,2-Trichloroethane
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene, Total ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70		1	0.18	0.50	ug/l		2.9	Tetrachloroethene
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene, Total ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1		1	0.70	2.5	ug/l		ND	Chlorobenzene
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1		1	0.70	2.5	ug/l		ND	Trichlorofluoromethane
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1		1	0.13	0.50	ug/l		ND	1,2-Dichloroethane
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1		1	0.70	2.5	ug/l		ND	1,1,1-Trichloroethane
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1		1	0.19	0.50	ug/l		ND	Bromodichloromethane
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1		1	0.16	0.50	ug/l		ND	trans-1,3-Dichloropropene
1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1		1	0.14	0.50	ug/l		ND	cis-1,3-Dichloropropene
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1		1	0.14	0.50	ug/l		ND	1,3-Dichloropropene, Total
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1		1	0.70	2.5	ug/l		ND	1,1-Dichloropropene
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1		1	0.65	2.0	ug/l		ND	Bromoform
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1		1	0.17	0.50	ug/l		ND	1,1,2,2-Tetrachloroethane
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1		1	0.16	0.50	ug/l		ND	Benzene
Chloromethane ND ug/l 2.5 0.70 1		1	0.70	2.5	ug/l		ND	Toluene
ag.		1	0.70	2.5	ug/l		ND	Ethylbenzene
Remomethans ND ug/L 25 070 1		1	0.70	2.5	ug/l		ND	Chloromethane
ug/j 2.5 0.70 I		1	0.70	2.5	ug/l		ND	Bromomethane
Vinyl chloride ND ug/l 1.0 0.07 1		1	0.07	1.0	ug/l		ND	Vinyl chloride
Chloroethane ND ug/l 2.5 0.70 1		1	0.70	2.5	ug/l		ND	Chloroethane
1,1-Dichloroethene ND ug/l 0.50 0.17 1		1	0.17	0.50	ug/l		ND	1,1-Dichloroethene
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1		1	0.70	2.5	ug/l		ND	trans-1,2-Dichloroethene

Project Name: PARKCHESTER CROSSING Lab Number: L2114831

Project Number: PARKCHESTER CROSS Report Date: 03/31/21

SAMPLE RESULTS

Lab ID: L2114831-02 Date Collected: 03/24/21 11:45

Client ID: MW 3 Date Received: 03/24/21

Sample Location: 1585 WHITE PLAINS RD Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Triabless athere	0.40	ı	//	0.50	0.40	4
Trichloroethene	0.18	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	<u> </u>
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	8.8		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
•			. 3			

Project Name: PARKCHESTER CROSSING **Lab Number:** L2114831

Project Number: PARKCHESTER CROSS Report Date: 03/31/21

SAMPLE RESULTS

Lab ID: L2114831-02 Date Collected: 03/24/21 11:45

Client ID: MW 3 Date Received: 03/24/21 Sample Location: 1585 WHITE PLAINS RD Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	98	70-130	

L2114831

03/24/21 00:00

Not Specified

03/24/21

Project Name: PARKCHESTER CROSSING

Project Number: PARKCHESTER CROSS

SAMPLE RESULTS

03/31/21

Report Date:

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2114831-03

Client ID: TRIP BLANK

Sample Location: 1585 WHITE PLAINS RD

Sample Depth:

Matrix: Trip Blank (Aqueous)

Analytical Method: 1,8260C

Analytical Date: 03/29/21 14:00

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: PARKCHESTER CROSSING Lab Number: L2114831

Project Number: PARKCHESTER CROSS Report Date: 03/31/21

SAMPLE RESULTS

Lab ID: L2114831-03 Date Collected: 03/24/21 00:00

Client ID: TRIP BLANK Date Received: 03/24/21

Sample Location: 1585 WHITE PLAINS RD Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.5	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: PARKCHESTER CROSSING **Lab Number:** L2114831

Project Number: PARKCHESTER CROSS Report Date: 03/31/21

SAMPLE RESULTS

Lab ID: L2114831-03 Date Collected: 03/24/21 00:00

Client ID: TRIP BLANK Date Received: 03/24/21 Sample Location: 1585 WHITE PLAINS RD Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	122	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	99	70-130	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/29/21 09:28

Analyst: PD

arameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-03 Batch:	WG1480206-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/29/21 09:28

Analyst: PD

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample((s):	01-03	Batch:	WG1480206-5
1,2-Dichlorobenzene	ND		ug/l		2.5	0.70
1,3-Dichlorobenzene	ND		ug/l		2.5	0.70
1,4-Dichlorobenzene	ND		ug/l		2.5	0.70
Methyl tert butyl ether	ND		ug/l		2.5	0.70
p/m-Xylene	ND		ug/l		2.5	0.70
o-Xylene	ND		ug/l		2.5	0.70
Xylenes, Total	ND		ug/l		2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l		2.5	0.70
1,2-Dichloroethene, Total	ND		ug/l		2.5	0.70
Dibromomethane	ND		ug/l		5.0	1.0
1,2,3-Trichloropropane	ND		ug/l		2.5	0.70
Acrylonitrile	ND		ug/l		5.0	1.5
Styrene	ND		ug/l		2.5	0.70
Dichlorodifluoromethane	ND		ug/l		5.0	1.0
Acetone	2.1	J	ug/l		5.0	1.5
Carbon disulfide	ND		ug/l		5.0	1.0
2-Butanone	ND		ug/l		5.0	1.9
Vinyl acetate	ND		ug/l		5.0	1.0
4-Methyl-2-pentanone	ND		ug/l		5.0	1.0
2-Hexanone	ND		ug/l		5.0	1.0
Bromochloromethane	ND		ug/l		2.5	0.70
2,2-Dichloropropane	ND		ug/l		2.5	0.70
1,2-Dibromoethane	ND		ug/l		2.0	0.65
1,3-Dichloropropane	ND		ug/l		2.5	0.70
1,1,1,2-Tetrachloroethane	ND		ug/l		2.5	0.70
Bromobenzene	ND		ug/l		2.5	0.70
n-Butylbenzene	ND		ug/l		2.5	0.70
sec-Butylbenzene	ND		ug/l		2.5	0.70
tert-Butylbenzene	ND		ug/l		2.5	0.70

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/29/21 09:28

Analyst: PD

Parameter	Result	Qualifier Unit	s	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s):	01-03	Batch:	WG1480206-5
o-Chlorotoluene	ND	ug/	1	2.5	0.70
p-Chlorotoluene	ND	ug/	1	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/	1	2.5	0.70
Hexachlorobutadiene	ND	ug/	1	2.5	0.70
Isopropylbenzene	ND	ug/	1	2.5	0.70
p-Isopropyltoluene	ND	ug/	1	2.5	0.70
Naphthalene	ND	ug/	1	2.5	0.70
n-Propylbenzene	ND	ug/	1	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/	1	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/	1	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/	1	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/	1	2.5	0.70
1,4-Dioxane	ND	ug/	Ί :	250	61.
p-Diethylbenzene	ND	ug/	1	2.0	0.70
p-Ethyltoluene	ND	ug/	1	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/	1	2.0	0.54
Ethyl ether	ND	ug/	1	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/	1	2.5	0.70

		Accep	tance
Surrogate	%Recovery	Qualifier Crit	eria
1,2-Dichloroethane-d4	96	70-1	30
Toluene-d8	106	70-1	30
4-Bromofluorobenzene	109	70-1	30
Dibromofluoromethane	99	70-1	30

Project Name: PARKCHESTER CROSSING

Project Number: PARKCHESTER CROSSING

Lab Number: L2114831

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Wes	stborough Lab Associated	sample(s): (01-03 Batch: V	VG1480206-3	WG1480206-4				
Methylene chloride	110		110		70-130	0		20	
1,1-Dichloroethane	120		110		70-130	9		20	
Chloroform	110		110		70-130	0		20	
Carbon tetrachloride	110		110		63-132	0		20	
1,2-Dichloropropane	110		110		70-130	0		20	
Dibromochloromethane	97		110		63-130	13		20	
1,1,2-Trichloroethane	96		120		70-130	22	Q	20	
Tetrachloroethene	98		110		70-130	12		20	
Chlorobenzene	100		110		75-130	10		20	
Trichlorofluoromethane	110		110		62-150	0		20	
1,2-Dichloroethane	100		100		70-130	0		20	
1,1,1-Trichloroethane	110		110		67-130	0		20	
Bromodichloromethane	110		110		67-130	0		20	
trans-1,3-Dichloropropene	94		110		70-130	16		20	
cis-1,3-Dichloropropene	100		110		70-130	10		20	
1,1-Dichloropropene	100		110		70-130	10		20	
Bromoform	88		100		54-136	13		20	
1,1,2,2-Tetrachloroethane	97		120		67-130	21	Q	20	
Benzene	100		110		70-130	10		20	
Toluene	100		110		70-130	10		20	
Ethylbenzene	99		110		70-130	11		20	
Chloromethane	120		110		64-130	9		20	
Bromomethane	80		87		39-139	8		20	

Project Name: PARKCHESTER CROSSING

Project Number:

PARKCHESTER CROSSING

Lab Number: L2114831

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated s	sample(s):	01-03 Batch:	WG1480206-3	WG1480206-4		
Vinyl chloride	110		100		55-140	10	20
Chloroethane	110		100		55-138	10	20
1,1-Dichloroethene	110		110		61-145	0	20
trans-1,2-Dichloroethene	110		110		70-130	0	20
Trichloroethene	98		100		70-130	2	20
1,2-Dichlorobenzene	100		110		70-130	10	20
1,3-Dichlorobenzene	100		120		70-130	18	20
1,4-Dichlorobenzene	100		120		70-130	18	20
Methyl tert butyl ether	95		110		63-130	15	20
p/m-Xylene	100		115		70-130	14	20
o-Xylene	100		110		70-130	10	20
cis-1,2-Dichloroethene	110		110		70-130	0	20
Dibromomethane	110		110		70-130	0	20
1,2,3-Trichloropropane	92		110		64-130	18	20
Acrylonitrile	110		110		70-130	0	20
Styrene	105		115		70-130	9	20
Dichlorodifluoromethane	110		110		36-147	0	20
Acetone	120		120		58-148	0	20
Carbon disulfide	110		110		51-130	0	20
2-Butanone	93		99		63-138	6	20
Vinyl acetate	120		140	Q	70-130	15	20
4-Methyl-2-pentanone	93		110		59-130	17	20
2-Hexanone	92		110		57-130	18	20

Project Name: PARKCHESTER CROSSING

Project Number: PARKCHESTER CROSSING

Lab Number: L2114831

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS -	Westborough Lab Associated	sample(s):	01-03 Batch: 1	WG1480206-3	WG1480206-4				
Bromochloromethane	120		110		70-130	9		20	
2,2-Dichloropropane	110		110		63-133	0		20	
1,2-Dibromoethane	93		110		70-130	17		20	
1,3-Dichloropropane	96		110		70-130	14		20	
1,1,1,2-Tetrachloroethane	97		110		64-130	13		20	
Bromobenzene	100		120		70-130	18		20	
n-Butylbenzene	110		120		53-136	9		20	
sec-Butylbenzene	100		120		70-130	18		20	
tert-Butylbenzene	100		120		70-130	18		20	
o-Chlorotoluene	100		120		70-130	18		20	
p-Chlorotoluene	100		110		70-130	10		20	
1,2-Dibromo-3-chloropropane	83		100		41-144	19		20	
Hexachlorobutadiene	110		120		63-130	9		20	
Isopropylbenzene	99		120		70-130	19		20	
p-Isopropyltoluene	110		120		70-130	9		20	
Naphthalene	85		120		70-130	34	Q	20	
n-Propylbenzene	100		120		69-130	18		20	
1,2,3-Trichlorobenzene	96		120		70-130	22	Q	20	
1,2,4-Trichlorobenzene	100		120		70-130	18		20	
1,3,5-Trimethylbenzene	100		110		64-130	10		20	
1,2,4-Trimethylbenzene	110		120		70-130	9		20	
1,4-Dioxane	82		88		56-162	7		20	
p-Diethylbenzene	110		120		70-130	9		20	

Project Name: PARKCHESTER CROSSING

Project Number: PARKCHESTER CROSSING

Lab Number: L2114831

Parameter	LCS %Recovery	Qual	_	CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 E	Batch:	WG1480206-3	WG1480206-4				
p-Ethyltoluene	100			120		70-130	18		20	
1,2,4,5-Tetramethylbenzene	110			120		70-130	9		20	
Ethyl ether	99			110		59-134	11		20	
trans-1,4-Dichloro-2-butene	65	Q		87		70-130	29	Q	20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	l %Recovery Qual	Criteria
1,2-Dichloroethane-d4	108	99	70-130
Toluene-d8	103	105	70-130
4-Bromofluorobenzene	103	104	70-130
Dibromofluoromethane	110	98	70-130

Lab Number: L2114831

Report Date: 03/31/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Project Number: PARKCHESTER CROSSING

PARKCHESTER CROSSING

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	он рн		Pres	Seal	Date/Time	Analysis(*)	
L2114831-01A	Vial HCl preserved	Α	NA		2.5	Υ	Absent		NYTCL-8260(14)	
L2114831-01B	Vial HCl preserved	Α	NA		2.5	Υ	Absent		NYTCL-8260(14)	
L2114831-01C	Vial HCl preserved	Α	NA		2.5	Υ	Absent		NYTCL-8260(14)	
L2114831-02A	Vial HCl preserved	Α	NA		2.5	Υ	Absent		NYTCL-8260(14)	
L2114831-02B	Vial HCl preserved	Α	NA		2.5	Υ	Absent		NYTCL-8260(14)	
L2114831-02C	Vial HCl preserved	Α	NA		2.5	Υ	Absent		NYTCL-8260(14)	
L2114831-03A	Vial HCl preserved	Α	NA		2.5	Υ	Absent		NYTCL-8260(14)	
L2114831-03B	Vial HCI preserved	Α	NA		2.5	Υ	Absent		NYTCL-8260(14)	

GLOSSARY

Acronyms

EDL

EMPC

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

receipt, if applicable.

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:03312111:17

Project Name:PARKCHESTER CROSSINGLab Number:L2114831Project Number:PARKCHESTER CROSSINGReport Date:03/31/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:03312111:17

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 18

Published Date: 2/16/2021 5:32:02 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

				of these	ver.							Seria	ıl_No:03312111:17	
Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	ey Rd, Suite 5	Cho	Page	f\		Date R in La		312	5 21		ALPHA Job# L2114831	
8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Project Location:	1585 W		Rd 1	1, au		ASP-A EQuIS		200	ASP-	B S (4 File)	Same as Client Info	
Client Information	A SHIP OF THE		ne as 1	Name				Other		80-			0 10/15	_
1011	en	(Use Project name as F							equiremen	-	NY Pa	-4 27E	Disposal Site Information	
Address:			·Carrell	7-22				NY TOO		_	NY C		Please identify below location of applicable disposal facilities.	
Western		ALPHAQuote #:	Control of the last				님	AWQ St	andards ricted Use	land.	Other		Disposal Facility:	
Phone:		Turn-Around Time	·Sh	STATE OF THE PERSON			님				Outer		□ NJ □ NY	
ax:	010 5	Standa		Due Date			님		estricted Use					
THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.		Rash (only if pre approve	10)	# of Days			43::		wer Dischar	ge			Other:	T
These samples have b Other project specific							ANA	LYSIS					Sample Filtration	ò
Please specify Metals	s or TAL.						200						Preservation Lab to do	a - Bot
ALPHA Lab ID (Lab Use Only)	S	ample ID	Coll	ection Time	Sample Matrix	Sampler's Initials	12	74					Sample Specific Comments	1 1 0
14831-01	MWY		3124	10:01	Water	KM	X						DO 201	
-02	mw3		2174	11145	2 0	Km	×			\vdash			0000	ī
703	Tripble	n.K	3/24	1111	nu	Km	X						1,00 //	
	T.									_				_
						-	1 0	\vdash						_
Preservative Code:	Container Code	Westbare: Cartification	No: MAD2E					-	_				A CONTRACTOR OF THE PROPERTY AND ADDRESS OF THE PROPERTY OF TH	_
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certification				rtainer Type							Please print clearly, legibly and completely. Samples control to the logged in and turnaround time clock will not start until any ambiguities a	an
F = MeOH	C = Cube	Relinquishe	d By:	, Date	/Time		Recei	ved By:			Date	/Time	resolved, BY EXECUTING	100
$G = NaHSO_4$ $H = Na_2S_2O_3$	O = Other E = Encore	M. Chy		3/24	1770	MAS		less			24/2	117:20	THIS COC, THE CLIENT HAS READ AND AGREES	
H = 14050505	D = BOD Bottle	amos pelo	1	3000	20130	1/-	_	- N	X23	13.	15,	200	TO BE BOUND BY ALPHA	

Parkchester Crossing – Off-Site Groundwater and Soil Vapor Investigation Letter Report

Attachment 4 Data Usability Summary Reports

DATA USABILITY SUMMARY REPORT (DUSR)

ORGANIC ANALYSIS

EPA Compendium Method TO-15
LOW LEVEL VOLATILES BY GC/MS
For Soil Vapor and Ambient Air Samples
Collected March 24, 2021
From 1585 White Plains Road, Bronx, New York
Park Chester Crossing
by Tenen Environmental

SAMPLE DELIVERY GROUP NUMBER: L2114833 Alpha Analytical (ELAP #11148)

SUBMITTED TO:

Ms. Claire Zaccheo Tenen Environmental 121 West 27th Street, Suite 702 New York, NY 10001

June 05, 2021

PREPARED BY:

Lori A. Beyer/President
L.A.B. Validation Corp.
14 West Point Drive
East Northport, NY 11731

L.A.B. Validation Corp. 14 West Point Drive, East Northport, N.Y. 11731

1585 White Plains Road, Bronx, New York; March 2021 Data Validation Report: Volatile Organics by EPA Method TO15

Table of Contents:

Introduction

Data Qualifier Definitions

Sample Receipt

- 1.0 Volatile Organics by GC/MS EPA Compendium Method TO-15
 - 1.1 Holding Time
 - 1.2 Surrogate Standards
 - 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD), Laboratory Duplicate, Field Duplicate Analysis
 - 1.4 Laboratory Control Sample
 - 1.5 Blank Contamination
 - 1.6 GC/MS Instrument Performance Check
 - 1.7 Initial and Continuing Calibrations
 - 1.8 Internal Standards
 - 1.9 Target Compound List Identification
 - 1.10 Tentatively Identified Compounds
 - 1.11 Compound Quantification and Reported Detection Limits
 - 1.12 Overall System Performance

APPENDICES:

- A. Chain of Custody Document and Sample Receipt Checklist
- B. Case Narrative
- C. Data Summary Form Is with Qualifications

Introduction:

A validation was performed on soil vapor and ambient air samples for Volatile Organic analysis collected by Tenen Environmental and submitted to Alpha Analytical for subsequent analysis under chain of custody documentation. This report contains the laboratory and validation results for the field samples itemized below. The samples were collected on March 24, 2021.

The samples were analyzed by Alpha Analytical utilizing EPA Method TO-15 and in accordance with NYSDEC Analytical Services Protocol (2005) and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodology employed. The analytical testing consisted of the full TO-15 Compound List.

The data was evaluated in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (Publication 9240.1-05), EPA SOP #HW31 (Revision 6-Updated September 2016) and in conjunction with the analytical methodology for which the samples were analyzed, where applicable and relevant.

The data validation report pertains to the following field air samples:

Sample Identification	Laboratory Identification	Sample Matrix (Air Type)	Collection Date
SV1	L2114833-01	Soil Vapor	03/24/2021
SV2	L2114833-02	Soil Vapor	03/24/2021
SV3	L2114833-03	Soil Vapor	03/24/2021
SV4	L2114833-04	Soil Vapor	03/24/2021
SV5	L2114833-05	Soil Vapor	03/24/2021
AA 3/24	L2114833-06	Ambient Air	03/24/2021

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- ${f U}$ The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was analyzed for but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.
- D Analyte concentration was obtained from diluted analysis.

Sample Receipt:

The Chain of Custody document indicates that the air samples were received following completion of the sampling event via laboratory courier. Sample login notes and the chain of custody indicate that at the Validated Time of Sample Receipt (VTSR) at the laboratory no discrepancies were notated and therefore the integrity of the summa canister samples is assumed to be good.

Summa Canisters were leak tested prior to collection of each sample. Initial pressure gauge is recorded on the chain of custody and is required to be approximately 30 psi with zero air. Acceptable canister pressure was observed for these samples. All canisters pass the leak check requirements.

The data summary Form I's included in Appendix C includes all usable (qualified) and unusable (rejected) results for the samples identified above and summarize the detailed narrative section of the report. Data validation qualifications have been reported on the Form I's for ease of review and verification.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Volatile Organics by EPA Compendium Method TO-15

The following method criteria were reviewed: holding times, surrogate standards, LCS, Blanks, Laboratory Duplicate, Tunes, Calibrations, Internal Standards, Target Component Identification and Quantitation, Reported Quantitation Limits and Overall System Performance. The volatile results are valid and useable as noted on the data summary Form I's in Appendix C and within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Air samples pertaining to this SDG were performed within the method and technical required holding times of thirty (30) days from sample collection for analysis. No qualifications were required based upon holding time criteria.

1.2 Surrogate Standards

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specifications, qualifications are required to be applied to associated samples and analytes.

Samples were not spiked with surrogate standards. Method TO15 does not mandate the addition of surrogate standards.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)/Laboratory Duplicate /Field Duplicate Analysis

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Matrix Spike/Matrix Spike Duplicate analysis was not performed on samples pertaining to this SDG.

Laboratory duplicate was performed on SV1. Precision is acceptable and all detected analytes are below laboratory criteria of 25%. No qualifications are required based on laboratory duplicate analysis.

Field Duplicate analysis was not required for this sampling event. When performed, acceptable precision for air samples is 25%. The following criteria are utilized for Field/Lab Duplicate analysis when performed:

Criteria	Detected Compounds	Non-Detected Compounds
The RPD is within the limits of 0 and 25%	No qualification	No qualification
The RPD >25%	J in the parent and duplicate samples	Not applicable
The RPD could not be calculated since the compound was only detected in either the parent of duplicate sample. However, the detected concentration was =2x the reporting limit</td <td>No qualification</td> <td>No qualification</td>	No qualification	No qualification
The RPD could not be calculated since the compound was only detected in either the parent or duplicate sample However, the detected concentration was >2x the reporting limit.	J in the parent and duplicate sample	UJ in the parent of duplicate sample

No qualifications to the data were applied based on MS/MSD/Laboratory Duplicate or Field Duplicate analysis.

1.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

The following table summarizes the LCS criteria and the data qualification guidelines for all associated field samples.

R NOT QUALIFIED LCS % Recovery: <70%,>130% 70-130% Detects <50% 50-69% Non-Detects >/=130% Absolute RT of LCS Compounds: >/=0.33 LCS Compounds in +/-0 .33 samples RT: (min)

Acceptable LCS was analyzed with this SDG pertaining to these sampling events. Recovery values for all spiked compounds was determined to be >70%-<130% for all analytes.

1.5 Blank Contamination

Quality assurance (QA) blanks, i.e., method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations. Storage blanks measure cross-contamination during sample storage of the field samples and are not required for TO15 analysis. Canister blanks measure cross-contamination from the sampling media.

The following table was utilized to qualify target analyte results due to method blank contamination. The largest value from all the associated blanks is required to be utilized. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples
Method, Storage, field,	Detects	Not Detected	No qualification required
Trip, Instrument	<crql*< td=""><td><crql*< td=""><td>Report CROL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CROL value with a U</td></crql*<>	Report CROL value with a U
		>/= CRQL* and <2x the CRQL**	No qualification required
	>CRQL*	= CROL*</td <td>Report CROL value with a U</td>	Report CROL value with a U
		>/=CRQL* and = blank</td <td>Report blank value for sample concentration</td>	Report blank value for sample concentration
		concentration	with a U
		>/= CRQL* and > blank	No qualification required
		concentration	
	=CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>CROL*	No qualification required
	Gross Contamination**	Detects	Report blank value for sample concentration with a U

^{*2}x the CRQL for methylene chloride, 2-butanone, and acetone.

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

The table below is utilized to qualify samples with target compound results also present in certification blanks.

Certification Contamination	Sample Result	Action for Sample
>/=detect limit	>5x certification contamination	No qualification required
>/=detect limit	<detect limit<="" td=""><td>Detection limit "U"</td></detect>	Detection limit "U"
>/=detect limit	>/=detect limit and = 5x certification contamination level</td <td>5x certification contamination "U"</td>	5x certification contamination "U"
<detect limit<="" td=""><td><!--=detection limit and<br-->>/= detection limit</td><td>No qualification</td></detect>	=detection limit and /= detection limit	No qualification

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination:

Method and Canister blanks were determined to be free of any contamination.

B) Field Blank Contamination:

Field Blank analysis was not required.

C) Trip Blank Contamination:

Trip Blank analysis was not required.

^{**4}x the CRQL for methylene chloride, 2-butanone, and acetone

^{***}Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L.

^{*}Acetone and 2-Butanone are common laboratory contaminants. The end user should proceed with caution when making decisions based on these detections since these are common solvents utilized in the organic extraction laboratory and could not be negated due to lack of presence in the corresponding blanks.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency (24 hours) for Bromofluorobenzene (BFB) for all analyses.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial calibration demonstrates that the instrument can give acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R".

The following compounds can be >0.01 without qualification:

2-Butanone

Carbon Disulfide

Chloroethane

Chloromethane

1,2-Dibromoethane

1,2-Dichloropropane

1,4-Dioxane

1,2-Dibromo-3-chloropropane

Methylene Chloride

Response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) [or >/=0.01 for the 9 compounds above] and remaining analytes, for the initial and continuing calibrations.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <30% and %D must be <30%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria (>90%), non-detect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 30% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-level results will be qualified, "J" in the portion of the curve where non-linearity exists. Acceptable ICV was analyzed.

Initial Calibrations: The initial calibrations provided and the %RSD was within acceptable limits (30%) and (40%) for poor responders for all requested target compounds. Initial calibration verification standard met QC requirements.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (30%) and (40%) for poor responders for all reported compounds.

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-40% to +40%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-20 seconds from the associated continuing calibration standard. If the area count is outside the (-40% to +40%) range of the associated standard, all positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 20 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

Internal Standard area responses met QC requirements for all analysis pertaining to this data set as compared to the continuing calibration.

1.9 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. GC/MS spectra met the qualitative criteria for identification. Retention times were within required specifications.

1.10 Tentatively Identified Compounds (TICs)

TICs were not required for this project. When submitted, the identification must be considered tentative (both quantitative and qualitative) due to the lack of required compound specific response factors. Consequently, all concentrations should be considered estimated, "J" and because of the qualitative uncertainty should be qualified, "N" where an identification has been made.

TICs were not required with this data set. Sample chromatograms for SV1, SV2, SV3, SV4 and SV5 demonstrate late eluting non-target peaks that are most likely gasoline range organic hydrocarbons.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis are acceptable. Correct internal standards and response factors and air volumes were used to calculate final concentrations.

Sample results have been presented in ug/m3 as well as ppbv on the laboratory reporting forms. Samples were analyzed undiluted at 250mls.

1.12 Overall System Performance

GC/MS analytical methodology was acceptable for this analysis. The data reported agrees with the raw data provided in the final report. The laboratory provided complete data package and reported all data using acceptable protocols and laboratory qualifiers as defined in the report package.

Reviewer's Signature Sou'a Bly Date 06/05/202/

Appendix A
Chain of Custody Document
And Sample Receipt Checklist

1 100	Regulatory Requirements/Report Limits	ANALYSIS	Sample Comments in PiD)					Please print clearly legicity and completely. Sangles can not be logged in sent turnarcund lime	5.00
Cate Ruc d is Lab S 25 2 1 ALPH Report Information - Data Deliverables Billing	D FAX D ADE: Contents Checker Content Formatic D Additional Deliverables Report for Tributional Wayner	The same of the sa	Starple Sample's Controller Controller	X 300 0000 0000 0000 X	A Story County	1 3.81 2 1 (Sub.)	X & WALL SAS HIT AN X	Container Type	Received By. Date Time A.M. (2) (1) (1) (1) (2) (2) (2) (2)
NALTOIO Project Information	Turn-Around Time	A Standard Lingth Time Time	COLLECTION MUST FINAL END DATE OF SOUTH FOR SOUTH SOUT	ST 50 - 30 - 35 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		JUNE 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		AA = Ambient Air (Indoos/Outdoon) SV = Soil Vaport andfill Gas/SVE Other = Please Specity	Refindement By Date Time
A MA CHAIN OF CUSTODY	100 FAX 508-872-3288	AStar J C AN (イルン C A G A A Star J C A A A A A A A A A A A A A A A A A A	Sample 19	453		j- (^	AA 3/24	*SAMPLE MATRIX CODES	
ALPHA CHAINOFO	Client Information Client Information Client Information Count Cou	The series specific in	ALPHALabiD Lab Use Only)	14853-01	S	67	Ce	*SAMPLE	

Sample Delivery Group Summary

Alpha Job Number: L2114833

Received Reviewer : 24-MAR-2021 : Kelly ONeill

Account Name

: Tenen Environmental, LLC : PARK CHESTER CROSSIN

Project Number Project Name

: PARK CHESTER CROSSING

Delivery Information

Samples Delivered By: Alpha Courier

Chain of Custody

: Present

Cooler Information

Cooler Seal/Seal#

Preservation

Temperature(°C) Additional Information

N/A Absent/

Condition Information

1) All samples on COC received?

2) Extra samples received?

3) Are there any sample container discrepancies?

4) Are there any discrepancies between sample labels & COC? NO

5) Are samples in appropriate containers for requested analysis? YES

6) Are samples properly preserved for requested analysis? YES

7) Are samples within holding time for requested analysis? YES

8) All sampling equipment returned?

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?

Appendix B
Case Narrative

Project Name: Project Number:

PARK CHESTER CROSSING PARK CHESTER CROSSIN

Lab Number:

L2114833

Report Date:

03/31/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:

PARK CHESTER CROSSING

Lab Number:

L2114833

Project Number: PARK CHESTER CROSSIN Report Date: 03/31/21

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on March 24, 2021. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative

Christoph J Onderson

Report Date: 03/31/21

Appendix C
Data Summary Form I's
With Qualifications

Results Summary Form 1

Volatile Organics in Air

Vdqq

Client : Tenen Environmental, LLC : PARK CHESTER CROSSING

Project Name Lab ID : L2114833-01

Client ID : SV1

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : SOIL VAPOR Analytical Method: 48,TO-15 Lab File ID : R1623110 Sample Amount : 250 ml

Lab Number : L2114833

Project Number : PARK CHESTER CROSSIN **Date Collected** : 03/24/21 11:09

Date Received : 03/24/21 Date Analyzed : 03/30/21 20:24

Dilution Factor : 1 Analyst : TS

ua/m3

Instrument ID : AIRLAB16 GC Column : RTX-1

			ppbv			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
75-71 - 8	Dichlorodifluoromethane	0.456	0.200		2.25	0.989				
4-87-3	Chloromethane	0.393	0.200		0.812	0.413				
6-14-2	Freon-114	ND	0.200		ND	1.40		U		
75-01-4	Vlnyl chloride	ND	0.200		ND	0.511		U		
106-99-0	1,3-Butadlene	ND	0.200		ND	0.442	-	U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	ND	0.200	416	ND	0.528	hold.	U		
64-17-5	Ethanol	79.5	5.00		150	9.42				
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U		
67-64-1	Acetone	87.2	1.00		207	2.38				
75-69-4	Trlchlorofluoromethane	0.208	0.200		1.17	1.12				
67-63-0	Isopropanol	10.4	0.500		25.6	1.23				
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		U		
′5-65-0	Tertlary butyl Alcohol	2.00	0.500		6.06	1.52				
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U		
07-05-1	3-Chloropropene	ND	0.200	**	ND	0.626		U		
'5-15-0	Carbon disulfide	0.760	0.200		2.37	0.623				
'6-13-1	Freon-113	ND	0.200	**	ND	1.53		U		
56-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
5-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U		
634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U		
8-93-3	2-Butanone	5.53	0.500		16.3	1.47				
56-59-2	cis-1,2-Dichloroethene	ND	0.200		ND	0.793		U		
41-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U		
7-66-3	Chloroform	ND	0.200	46	ND	0.977		U		
09-99-9	Tetrahydrofuran	8.01	0.500		23.6	1.47				

Client : Tenen Environmental, LLC

Project Name : PARK CHESTER CROSSING

Lab ID : L2114833-01

Client ID : SV1

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : SOIL VAPOR Analytical Method: 48,TO-15 Lab File ID : R1623110 Sample Amount : 250 ml

Project Number

: L2114833 : PARK CHESTER CROSSIN

Date Collected : 03/24/21 11:09 Date Received : 03/24/21 Date Analyzed : 03/30/21 20:24

Dilution Factor : 1 Analyst : TS

Lab Number

Instrument ID : AIRLAB16 GC Column : RTX-1

Sample Amount . 250 mi			nnh\/		40 00		. 112	N-1
CAS NO.	Parameter	Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier
107-06-2	1,2-Dichloroethane	ND	0.200	**	ND	0.809		U
110-54-3	n-Hexane	0.495	0.200		1.74	0.705		
71-55-6	1,1,1-Trichloroethane	ND	0.200		ND	1.09		U
71-43-2	Benzene	0.361	0.200		1.15	0.639		
56-23-5	Carbon tetrachloride	ND	0.200		ND	1.26		U
110-82-7	Cyclohexane	0.297	0.200		1.02	0.688	**	
78-87 - 5	1,2-Dichloropropane	ND	0.200		ND	0.924		U
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U
123-91-1	1,4-Dloxane	ND	0.200	**	ND	0.721		U
79-01-6	Trichloroethene	ND	0.200		ND	1.07		U
540-84-1	2,2,4-Trimethylpentane	0.239	0.200		1.12	0.934		
42-82-5	Heptane	0.733	0.200		3.00	0.820		
0061-01-5	cis-1,3-Dichloropropene	ND	0.200	**	ND	0.908		υ
08-10-1	4-Methyl-2-pentanone	ND	0.500	b-d	ND	2.05		U
0061-02-6	trans-1,3-Dichloropropene	ND	0.200	π =	ND	0.908		U
9-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U
08-88-3	Toluene	1.42	0.200		5.35	0.754		
591-78 - 6	2-Hexanone	0.246	0.200	**	1.01	0.820		
24-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U
06-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U
27-18-4	Tetrachloroethene	0.747	0.200		5.07	1.36		
08-90-7	Chlorobenzene	ND	0.200		ND	0.921		U
00-41-4	Ethylbenzene	0.515	0.200		2.24	0.869		
79601-23-1	p/m-Xylene	2.42	0.400		10.5	1.74		
5-25-2	Bromoform	ND	0.200		ND	2.07		U
00-42-5	Styrene	ND	0.200	**	ND	0.852		U

Client : Tenen Environmental, LLC

Project Name : PARK CHESTER CROSSING

Lab ID : L2114833-01

Client ID : SV1

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : SOIL_VAPOR
Analytical Method : 48,TO-15
Lab File ID : R1623110
Sample Amount : 250 ml

R1623110

Instrument ID : AIRLAB16
GC Column : RTX-1

Lab Number

Date Collected

Date Received

Date Analyzed

Dilution Factor

Analyst

: L2114833

Project Number : PARK CHESTER CROSSIN

: 03/24/21

: 1

: TS

: 03/24/21 11:09

: 03/30/21 20:24

			ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifler		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37	220	Ų		
95-47-6	o-Xylene	0.706	0.200	***	3.07	0.869	**1			
622-96-8	4-Ethyltoluene	ND	0.200	**	ND	0.983		Ų		
108-67-8	1,3,5-Trimethylbenzene	ND	0.200	473	ND	0.983	22.	U		
95-63-6	1,2,4-Trimethylbenzene	ND	0.200	***	ND	0.983	***	U		
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U		
541-73-1	1,3-Dichlorobenzene	ND	0.200	**	ND	1.20	***	U		
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U		
95-50-1	1,2-Dichlorobenzene	ND	0.200	**	ND	1.20	***	U		
120-82-1	1,2,4-Trichlorobenzene	ND	0.200	**	ND	1.48	**	U		
87-68-3	Hexachlorobutadiene	ND	0.200	***	ND	2.13	***	U		

Client : Tenen Environmental, LLC

Project Name : PARK CHESTER CROSSING

Lab ID : L2114833-02

Client ID : SV2

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : SOIL_VAPOR
Analytical Method : 48,TO-15
Lab File ID : R1623112
Sample Amount : 250 ml

Lab Number : L2114833

Project Number : PARK CHESTER CROSSIN

Date Collected : 03/24/21 11:08
Date Received : 03/24/21

Date Analyzed : 03/30/21 21:41

Dilution Factor : 1 Analyst : TS

Instrument ID : AIRLAB16 GC Column : RTX-1

Outil	pic Amount . 200 mi				40 00	, idiliii		V	
		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.424	0.200	lend	2.10	0.989	-		
74-87-3	Chloromethane	0.521	0.200		1.08	0.413			
76-14-2	Freon-114	ND	0.200		ND	1.40		U	
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		Ų	
06-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U	
4-83-9	Bromomethane	ND	0.200		ND	0.777	Min	U	
5-00-3	Chloroethane	ND	0.200		ND	0.528		U	
4-17-5	Ethanol	86.8	5.00		164	9.42			
93-60-2	Vinyl bromide	ND	0.200		ND	0.874		U	
7-64-1	Acetone	130	1.00		309	2.38			
5-69-4	Trichlorofluoromethane	ND	0.200		ND	1.12		U	
7-63-0	Isopropanol	11.3	0.500		27.8	1.23			
5-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		U	
5-65-0	Tertiary butyl Alcohol	2.02	0.500	ired	6.12	1.52			
5-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
07-05-1	3-Chloropropene	ND	0.200		ND	0.626		Ų	
5-15-0	Carbon disulfide	ND	0.200		ND	0.623	**	U	
6-13-1	Freon-113	ND	0.200		ND	1.53		U	
56-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
5-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U	
8-93-3	2-Butanone	11.7	0.500		34.5	1.47			
56-59-2	cls-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
41-78-6	Ethyl Acetate	ND	0.500		ND	1.80	*-	U	
7-66-3	Chloroform	ND	0.200		ND	0.977		U	
9-99-9	Tetrahydrofuran	15.0	0.500		44.2	1.47			

Client : Tenen Environmental, LLC

Project Name : PARK CHESTER CROSSING

Lab ID : L2114833-02

Client ID : SV2

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : SOIL VAPOR Analytical Method : 48,TO-15 Lab File ID : R1623112 Sample Amount : 250 ml

: L2114833 Project Number : PARK CHESTER CROSSIN

Date Collected : 03/24/21 11:08 Date Received : 03/24/21 Date Analyzed : 03/30/21 21:41

Dilution Factor : 1 : TS Analyst

Lab Number

Instrument ID : AIRLAB16 GC Column : RTX-1

Campie Amount . 200 m			ppbV		40 00		, III X-1		
CAS NO.	Parameter	Results	RL	MDL	Results	ug/m3 RL	MDL	Qualifier	
107-06-2	1,2-Dichloroethane	ND	0.200	**	ND	0.809		U	
110-54-3	n-Hexane	0.335	0.200		1.18	0.705			
71-55-6	1,1,1-Trichloroethane	ND	0.200		ND	1.09		U	
71-43-2	Benzene	0.268	0.200		0.856	0.639			
56-23-5	Carbon tetrachloride	ND	0.200		ND	1.26		U	
110-82-7	Cyclohexane	0.213	0.200		0.733	0.688			
78-87-5	1,2-Dichloropropane	ND	0.200	**	ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dloxane	ND	0.200		ND	0.721		U	
79-01-6	Trichloroethene	ND	0.200		ND	1.07		U	
540-84-1	2,2,4-Trimethylpentane	0.202	0.200	-	0.943	0.934			
42-82-5	Heptane	0.847	0.200		3.47	0.820			
0061-01-5	cls-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
08-10-1	4-Methyl-2-pentanone	0.511	0.500		2.09	2.05			
0061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
9-00-5	1,1,2-Trichloroethane	ND	0.200	••	ND	1.09		U	
08-88-3	Toluene	1.87	0.200	-	7.05	0.754			
591-78-6	2-Hexanone	0.477	0.200		1.95	0.820			
24-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
06-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		Ü	
27-18-4	Tetrachloroethene	0.815	0.200		5.53	1.36			
08-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
00-41-4	Ethylbenzene	0.858	0.200		3.73	0.869			
79601-23-1	p/m-Xylene	4.15	0.400	344	18.0	1.74			
5-25-2	Bromoform	ND	0.200	Del.	ND	2.07		U	
00-42-5	Styrene	ND	0.200	000	ND	0.852		U	

Client : Tenen Environmental, LLC Lab Number

Project Name : PARK CHESTER CROSSING Project Number : PARK CHESTER CROSSIN Date Collected : 03/24/21 11:08

: L2114833

: 03/30/21 21:41

Date Received : 03/24/21

Date Analyzed

Dilution Factor : 1

Lab ID : L2114833-02

Client ID : SV2

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : SOIL VAPOR Analytical Method: 48,TO-15 Lab File ID : R1623112

Analyst : TS : AIRLAB16 Instrument ID

: RTX-1 Sample Amount : 250 ml GC Column

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
			ppbV			ug/m3				
CAS NO.	Parameter	Results	RĻ	MDL	Results	RL	MDL	Qualifier		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37	**	U		
95-47-6	o-Xylene	1.18	0.200	***	5.13	0.869	**:			
522-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U		
108-67-8	1,3,5-Trimethylbenzene	ND	0.200	***	ND	0.983	400	U		
95-63-6	1,2,4-Trimethylbenzene	ND	0.200	- 61	ND	0.983	-	U		
100-44-7	Benzyl chloride	ND	0.200	**	ND	1.04	-90	U		
541-73-1	1,3-Dichlorobenzene	ND	0.200	40	ND	1.20		U		
06-46-7	1,4-Dichlorobenzene	ND	0.200	220	ND	1.20	***	U		
5-50-1	1,2-Dichlorobenzene	ND	0.200	**	ND	1.20	100	U		
20-82-1	1,2,4-Trichlorobenzene	ND	0.200	100	ND	1.48	100	U		
7-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U		

Client : Tenen Environmental, LLC
Project Name : PARK CHESTER CROSSING

Lab ID : L2114833-03

Client ID : SV3

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : SOIL_VAPOR
Analytical Method : 48,TO-15
Lab File ID : R1623113
Sample Amount : 250 ml

Lab Number : L2114833

Project Number : PARK CHESTER CROSSIN

Date Collected : 03/24/21 11:00

Date Received : 03/24/21
Date Analyzed : 03/30/21 22:20

Dilution Factor : 1 Analyst : TS

Instrument ID : AIRLAB16 GC Column : RTX-1

Sample Amount : 250 mil					ao oolaliilii			
		ppbV				ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-71-8	Dichlorodifluoromethane	0.394	0.200		1.95	0.989		
74-87-3	Chloromethane	ND	0.200		ND	0.413		U
76-14-2	Freon-114	ND	0.200		ND	1.40		U
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		U
06-99-0	1,3-Butadlene	ND	0.200		ND	0.442		U
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528		U
64-17-5	Ethanol	95.5	5.00		180	9.42		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U
67-64-1	Acetone	56.3	1.00		134	2.38		
75-69-4	Trichlorofluoromethane	ND	0.200		ND	1.12	••	U
37-63-0	Isopropanol	11.8	0.500		29.0	1.23		
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		U
' 5-65 - 0	Tertlary butyl Alcohol	2.62	0.500		7.94	1.52		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U
07-05-1	3-Chloropropene	ND	0.200		ND	0.626		U
75-15-0	Carbon disuifide	ND	0.200		ND	0.623		U
76-13-1	Freon-113	ND	0.200		ND	1.53		U
56-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721	•-	U
78-93-3	2-Butanone	5.71	0.500		16.8	1.47		
156-59-2	cls-1,2-Dichloroethene	ND	0.200		ND	0.793		U
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U
7-66-3	Chloroform	0.215	0.200		1.05	0.977		
09-99-9	Tetrahydrofuran	8.35	0.500		24.6	1.47		

Client : Tenen Environmental, LLC

Project Name : PARK CHESTER CROSSING

Lab ID : L2114833-03

Client ID : SV3

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : SOIL_VAPOR
Analytical Method : 48,TO-15
Lab File ID : R1623113
Sample Amount : 250 ml

Date Received : 03/24/21
Date Analyzed : 03/30/21 22:20

Lab Number

Project Number

Date Collected

Dilution Factor : 1
Analyst : TS

Instrument ID : AIRLAB16 GC Column : RTX-1

: L2114833

: 03/24/21 11:00

: PARK CHESTER CROSSIN

Campic Amount 1 200 mil					ac column		. 1112	N-1	
_		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	0.226	0.200		0.796	0.705			
71-55-6	1,1,1-Trichloroethane	ND	0.200		ND	1.09		U	
71-43-2	Benzene	0.207	0.200		0.661	0.639			
56-23-5	Carbon tetrachloride	ND	0.200		ND	1.26		U	
110-82-7	Cyclohexane	0.285	0.200		0.981	0.688			
7 8-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
23-91-1	1,4-Dloxane	ND	0.200		ND	0.721	60	U	
79-01-6	Trichloroethene	ND	0.200		ND	1.07	***	U	
40-84-1	2,2,4-Trlmethylpentane	0.408	0.200		1.91	0.934			
42-82-5	Heptane	0.541	0.200		2.22	0.820	-		
0061-01-5	cls-1,3-Dichloropropene	ND	0.200		ND	0.908	-	U	
08-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
0061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
9-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
08-88-3	Toluene	1.72	0.200		6.48	0.754			
91-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
24-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
06-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
27-18-4	Tetrachloroethene	1.83	0.200		12.4	1.36	044		
08-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
00-41-4	Ethylbenzene	0.541	0.200		2.35	0.869			
79601-23-1	p/m-Xylene	2.69	0.400		11.7	1.74			
5-25-2	Bromoform	ND	0.200		ND	2.07		U	
00-42-5	Styrene	ND	0.200	-	ND	0.852		U	

Client : Tenen Environmental, LLC Lab Number

Project Name : PARK CHESTER CROSSING Project Number : PARK CHESTER CROSSIN

: L2114833

 Lab ID
 : L2114833-03
 Date Collected
 : 03/24/21 11:00

 Client ID
 : SV3
 Date Received
 : 03/24/21

Sample Location : 1585 WHITE PLAINS RD. Date Analyzed : 03/30/21 22:20 Sample Matrix : SOIL_VAPOR Dilution Factor : 1

Analytical Method : 48,TO-15 Analyst : TS
Lab File ID : R1623113 Instrument ID ; AIRLAB16
Sample Amount : 250 ml GC Column : RTX-1

ppbV ug/m3 Parameter CAS NO. Results RL MDL Results RL MDL Qualifier 79-34-5 1,1,2,2-Tetrachloroethane ND 0.200 ND U 1.37 95-47-6 o-Xylene 0.732 0.200 3.18 0.869 622-96-8 4-Ethyltoluene ND 0.200 ND U 0.983 108-67-8 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 U 95-63-6 1,2,4-Trimethylbenzene ND 0.200 ND 0.983 --U 100-44-7 Benzyl chloride ND 0.200 ND 1.04 U 541-73-1 1,3-Dichlorobenzene ND 0.200 ND 1.20 U 106-46-7 1,4-Dichlorobenzene ND 0.200 ND 1.20 U ** 95-50-1 1,2-Dichlorobenzene ND 0.200 ND 1.20 U . 120-82-1 1,2,4-Trichlorobenzene ND 0.200 ND ... 1.48 --U 87-68-3 Hexachlorobutadiene ND 0.200 ND 2.13 U

Client : Tenen Environmental, LLC

Project Name : PARK CHESTER CROSSING

Lab ID : L2114833-04

Client ID : SV4

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : SOIL_VAPOR
Analytical Method : 48,TO-15
Lab File ID : R1623114
Sample Amount : 250 ml

Lab Number : L2114833

Project Number : PARK CHESTER CROSSIN

Date Collected : 03/24/21 10:57
Date Received : 03/24/21

Date Analyzed : 03/30/21 22:59

Dilution Factor : 1 Analyst : TS

Instrument ID : AIRLAB16 GC Column : RTX-1

Jampie Amount , 200 mi		ppbV			40 00	ug/m3	. 1117	-1
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-71-8	Dichlorodifluoromethane	0.414	0.200		2.05	0.989		
74-87-3	Chloromethane	0.388	0.200		0.801	0.413		
76-14-2	Freon-114	ND	0.200		ND	1.40		U
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		U
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442	•	U
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528	••	U
64-17-5	Ethanol	121	5.00		228	9.42		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U
67-64-1	Acetone	43.7	1.00		104	2.38		
75-69-4	Trichlorofluoromethane	ND	0.200		ND	1.12		U
67-63-0	Isopropanol	20.0	0.500		49.2	1.23		
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		U
75-65-0	Tertiary butyl Alcohol	3.18	0.500		9.64	1.52		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U
76-13-1	Freon-113	ND	0.200		ND	1.53		U
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U
78-93-3	2-Butanone	4.35	0.500		12.8	1,47		
56-59-2	cls-1,2-Dichloroethene	ND	0.200	- 20	ND	0.793		U
141-78-6	Ethyl Acetate	ND	0.500	**	ND	1.80		U
7-66-3	Chloroform	ND	0.200	**	ND	0.977	••	U
109-99-9	Tetrahydrofuran	9.29	0.500	***	27.4	1.47		

ppbV

Client : Tenen Environmental, LLC

Project Name : PARK CHESTER CROSSING

Lab ID : L2114833-04

Client ID : SV4

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : SOIL_VAPOR
Analytical Method : 48,TO-15
Lab File ID : R1623114
Sample Amount : 250 ml

Project Number : PARK CHESTER CROSSIN
Date Collected : 03/24/21 10:57

Date Received : 03/24/21
Date Analyzed : 03/30/21 22:59

: L2114833

Dilution Factor : 1 Analyst : TS

ug/m3

Lab Number

Instrument ID : AIRLAB16 GC Column : RTX-1

CAS NO.	Parameter	ppov			ugnito			
		Results	RL	MDL	Results	RL	MDL	Qualifier
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U
110-54-3	n-Hexane	0.202	0.200		0.712	0.705		
71-55-6	1,1,1-Trichloroethane	ND	0.200		ND	1.09		U
71-43-2	Benzene	ND	0.200		ND	0.639		U
6-23-5	Carbon tetrachloride	ND	0.200		ND	1.26		U
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U
23-91-1	1,4-Dloxane	ND	0.200		ND	0.721		U
9-01-6	Trichloroethene	ND	0.200		ND	1.07		U
640-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U
42-82-5	Heptane	0.535	0.200		2.19	0.820		
0061-01-5	cls-1,3-Dichloropropene	ND	0.200		ND	0.908		U
08-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U
0061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U
108-88-3	Toluene	1.75	0.200		6.59	0.754		
91-78-6	2-Hexanone	ND	0.200		ND	0.820		U
24-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U
06-93-4	1,2-Dibromoethane	ND	0.200	**	ND	1.54		U
27-18-4	Tetrachloroethene	1.25	0.200		8.48	1.36		
08-90-7	Chlorobenzene	ND	0.200		ND	0.921		U
100-41-4	Ethylbenzene	0.530	0.200		2.30	0.869		
79601-23-1	p/m-Xylene	2.66	0.400		11.6	1.74		
5-25-2	Bromoform	ND	0.200		ND	2.07		U
00-42-5	Styrene	ND	0.200		ND	0.852		U

Client : Tenen Environmental, LLC Lab Number

Project Name : PARK CHESTER CROSSING Project Number : PARK CHESTER CROSSIN

:: L2114833

Lab ID : L2114833-04 : Date Collected : 03/24/21 10:57 Client ID : SV4 : Date Received : 03/24/21

Sample Location : 1585 WHITE PLAINS RD. Date Analyzed : 03/30/21 22:59
Sample Matrix : SOIL VAPOR Dilution Factor : 1

Analytical Method : 48,TO-15 Analyst : TS
Lab File ID : R1623114 Instrument ID : AIRLAB16

Sample Amount : 250 ml GC Column : RTX-1

CAS NO.	Parameter	ppbV				ug/m3			
		Results	RL	MDL	Results	RL	MDL	Qualifier	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200	-	ND	1.37		U	
95-47-6	o-Xylene	0.761	0.200		3.31	0.869			
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200	22	ND	0.983	***	U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983	***	U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200	940	ND	1.20	**	U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48	**	U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13	-	U	

Client : Tenen Environmental, LLC

Project Name : PARK CHESTER CROSSING

Lab ID : L2114833-05

Client ID : SV5

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : SOIL_VAPOR
Analytical Method : 48,TO-15
Lab File ID : R1623115
Sample Amount : 250 ml

Date Received
IITE PLAINS RD.

Date Analyzed

Vdaa

Dilution Factor : 1
Analyst : TS
Instrument ID : AIR

: L2114833

: 03/24/21

: 03/24/21 11:15

: 03/30/21 23:37

* PARK CHESTER CROSSIN

Instrument ID : AIRLAB16
GC Column : RTX-1
ug/m3

Lab Number

Project Number

Date Collected

	Parameter	ppbV				ug/m3			
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	ND	0.200		ND	0.989		U	
74-87-3	Chloromethane	ND	0.200		ND	0.413		U	
76-14-2	Freon-114	ND	0.200		ND	1.40		U	
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		U	
106-99-0	1,3-Butadlene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777	wi ba	U	
75-00-3	Chloroethane	ND	0.200		ND	0.528		U	
64-17-5	Ethanol	70.8	5.00		133	9.42			
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U	
67-64-1	Acetone	57.3	1.00		136	2.38			
75-69-4	Trichlorofluoromethane	ND	0.200		ND	1.12		U	
37-63-0	Isopropanol	6.48	0.500		15.9	1.23			
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		U	
75-65-0	Tertiary butyl Alcohol	1.36	0.500		4.12	1.52			
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U	
76-13-1	Freon-113	ND	0.200		ND	1.53		U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U	
8-93-3	2-Butanone	4.99	0.500		14.7	1.47			
56-59-2	cls-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
41-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U	
7-66-3	Chloroform	2.20	0.200		10.7	0.977			
09-99-9	Tetrahydrofuran	10.1	0.500		29.8	1.47			
	-								

Client : Tenen Environmental, LLC

Project Name : PARK CHESTER CROSSING

Lab ID : L2114833-05

Client ID : SV5

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : SOIL VAPOR Analytical Method : 48,TO-15 Lab File ID : R1623115 Sample Amount : 250 ml

Project Number : PARK CHESTER CROSSIN Date Collected : 03/24/21 11:15 Date Received

Lab Number

: 03/24/21

: L2114833

: 03/30/21 23:37 Date Analyzed

Dilution Factor : 1 Analyst : TS

Instrument ID : AIRLAB16 GC Column : RTX-1

Sample Amount , 250 mi		Velen			un/m²		. ATX-1	
CAS NO.	Parameter	Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U
110-54-3	n-Hexane	37.9	0.200		134	0.705		
71-55-6	1,1,1-Trichloroethane	ND	0.200	••	ND	1.09		U
71-43-2	Benzene	1.19	0.200	-	3.80	0.639		
56-23-5	Carbon tetrachloride	ND	0.200		ND	1.26		U
110-82-7	Cyclohexane	24.3	0.200	••	83.6	0.688		
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U
75-27-4	Bromodichloromethane	ND	0.200	••	ND	1.34		U
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U
79-01-6	Trichloroethene	ND	0.200		ND	1.07		U
540-84-1	2,2,4-Trimethylpentane	22.5	0.200		105	0.934		
142-82-5	Heptane	6.17	0.200		25.3	0.820		
10061-01-5	cls-1,3-Dichloropropene	ND	0.200		ND	0.908		U
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U
0061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U
08-88-3	Toluene	1.63	0.200		6.14	0.754		
91-78-6	2-Hexanone	ND	0.200		ND	0.820		U
24-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U
27-18-4	Tetrachloroethene	0.824	0.200		5.59	1.36		
08-90-7	Chlorobenzene	ND	0.200		ND	0.921		U
00-41-4	Ethylbenzene	0.862	0.200		3.74	0.869		
79601-23-1	p/m-Xylene	4.32	0.400		18.8	1.74		
75-25-2	Bromoform	ND	0.200		ND	2.07		U
00-42-5	Styrene	ND	0.200		ND	0.852		U

Results Summary Form 1

Volatile Organics in Air

: L2114833

: 03/24/21

: 03/24/21 11:15

: 03/30/21 23:37

: PARK CHESTER CROSSIN

Lab Number

Project Number

Date Collected

Date Received

Date Analyzed

Client : Tenen Environmental, LLC

Project Name : PARK CHESTER CROSSING

Lab ID : L2114833-05

Client ID : SV5

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : SOIL_VAPOR Analytical Method : 48,TO-15 Lab File ID : R1623115

IL_VAPOR Dilution Factor : 1
TO-15 Analyst : TS

Lab File ID : R1623115 : AIRLAB16 Sample Amount : 250 ml : GC Column : RTX-1

ppbV ug/m3 CAS NO. **Parameter** Results RL MDL Results MDL Qualifler 1,1,2,2-Tetrachloroethane U 79-34-5 ND 0.200 ND 1.37 95-47-6 o-Xylene 1.29 0.200 5.60 0.869 --622-96-8 4-Ethyltoluene ND 0.200 ND 0.983 U 108-67-8 1,3,5-Trimethylbenzene ND 0.200 ND 0.983 Ų 95-63-6 1,2,4-Trimethylbenzene ND 0.200 ND 0.983 U 100-44-7 Benzyl chloride ND 0.200 ND 1.04 U 541-73-1 1,3-Dichlorobenzene ND 0.200 ND 1.20 U 106-46-7 1,4-Dichlorobenzene ND 0.200 ND 1.20 U 95-50-1 1,2-Dichlorobenzene ND 0.200 ND 1.20 U U 120-82-1 1,2,4-Trichlorobenzene ND 0.200 ND 1.48 .. 87-68-3 U Hexachlorobutadiene ND 0.200 ND 2.13

Results Summary Form 1 Volatile Organics in Air

ppbV

Client : Tenen Environmental, LLC

Project Name : PARK CHESTER CROSSING

Lab ID : L2114833-06 Client ID : AA 3/24

Sample Location : 1585 WHITE PLAINS RD.

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1623105
Sample Amount : 250 ml

Lab Number : L2114833

Project Number : PARK CHESTER CROSSIN

Date Collected : 03/24/21 16:46

Date Received : 03/24/21 Date Analyzed : 03/30/21 17:06

Dilution Factor : 1 Analyst : TS

ug/m3

Instrument ID : AIRLAB16 GC Column : RTX-1

			ppov			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.454	0.200		2.24	0.989			
74-87-3	Chloromethane	0.557	0.200		1.15	0.413	_		
76-14-2	Freon-114	ND	0.200		ND	1.40		U	
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		U	
06-99-0	1,3-Butadlene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
5-00-3	Chloroethane	ND	0.200		ND	0.528		U	
34-17-5	Ethano!	8.05	5.00		15.2	9.42			
93-60-2	Vinyl bromide	ND	0.200		ND	0.874		U	
7-64-1	Acetone	1.92	1.00		4.56	2.38			
5-69-4	Trichlorofluoromethane	ND	0.200		ND	1.12		U	
7-63-0	Isopropanol	1.75	0.500		4.30	1.23			
5-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		U	
5-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52	**	U	
5-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
07-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
5-15-0	Carbon disulfide	ND	0.200		ND	0.623	M to	U	
6-13-1	Freon-113	ND	0.200	**	ND	1.53	**	U	
56-60-5	trans-1,2-Dichloroethene	ND	0.200	**	ND	0.793		U	
5-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U	
8-93-3	2-Butanone	ND	0.500		ND	1.47		U	
56-59-2	cls-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
41-78-6	Ethyl Acetate	ND	0.500	**	ND	1.80		U	
7-66-3	Chloroform	ND	0.200		ND	0.977		U	
09-99-9	Tetrahydrofuran	ND	0.500		ND	1.47	with	U	

Results Summary Form 1 Volatile Organics in Air

Client : Tenen Environmental, LLC

Project Name : PARK CHESTER CROSSING Project Number : PARK CHESTER CROSSIN

Lab Number

ug/m3

: L2114833

 Lab ID
 : L2114833-06
 Date Collected
 : 03/24/21 16:46

 Client ID
 : AA 3/24
 Date Received
 : 03/24/21

 Complete Application
 : 4507 MM MTE PLANS RP
 Page 4 Application
 : 03/29/21 17:06

Sample Location : 1585 WHITE PLAINS RD. Date Analyzed : 03/30/21 17:06
Sample Matrix : AIR Dilution Factor : 1

Analytical Method : 48,TO-15 Analyst : TS
Lab File ID : R1623105 Instrument ID : AIRLAB16
Sample Amount : 250 ml GC Column : RTX-1

ppbV

CAS NO. Parameter Results RL MDL Results RL MDL 107-06-2 1,2-Dichloroethane ND 0.200 ND 0.809 110-54-3 n-Hexane ND 0.200 ND 0.705 71-45-6 1,1,1-Trichloroethane ND 0.200 ND 1.09 56-23-5 Carbon tetrachloride ND 0.200 ND 0.688 78-87-5 1,2-Dichloropropane ND 0.200 ND 0.924 75-27-4 Bromodichloromethane ND 0.200 ND 0.721 79-01-6 Trichloroethene ND 0.200 ND 0.721 79-01-6 Trichloroethene ND 0.200 ND 0.934 142-82-5 Heptane ND 0.200 ND 0.932				PhoA			ug/iiio			
110-54-3 n-Hexane ND 0.200 ND 0.705 71-55-6 1,1,1-Trichloroethane ND 0.200 ND 1.09 71-43-2 Benzene ND 0.200 ND 0.6339 56-23-5 Carbon tetrachloride ND 0.200 ND 0.688 78-87-5 1,2-Dichloropropane ND 0.200 ND 0.924 75-27-4 Bromodichioromethane ND 0.200 ND 0.721 79-01-6 Trichloroethane ND 0.200 ND 0.721 79-01-6 Trichloroethane ND 0.200 ND 0.934 106-8-8-1 2,2,4-Trimethylpentane ND 0.200 ND 0.934 1061-01-5 cls-1,3-Dichloropropene ND 0.200 ND 0.908	10.	Parameter	Results		MDL	Results	RL	MDL	Qualifier	
71-55-6 1,1,1-Trichloroethane ND 0.200 ND 1.09 71-43-2 Benzene ND 0.200 ND 0.639 56-23-5 Carbon tetrachloride ND 0.200 ND 1.26 110-82-7 Cyclohexane ND 0.200 ND 0.924 78-87-5 1,2-Dichloropropane ND 0.200 ND 0.924 75-27-4 Bromodichloromethane ND 0.200 ND 0.721 123-91-1 1,4-Dioxane ND 0.200 ND 0.721 79-01-6 Trichloroathane ND 0.200 ND 0.934 79-01-6 Trichloroethane ND 0.200 ND 0.934 1061-01-5 cls-1,3-Dichloropropene ND 0.200 ND 0.908	-2	1,2-Dichloroethane	ND	0.200		ND	0.809	~~	U	
71-43-2 Benzene ND 0.200 ND 0.639 56-23-5 Carbon tetrachloride ND 0.200 ND 1.26 110-82-7 Cyclohexane ND 0.200 ND 0.688 78-87-5 1,2-Dichloropropane ND 0.200 ND 0.924 75-27-4 Bromodichloromethane ND 0.200 ND 1.34 123-91-1 1,4-Dioxane ND 0.200 ND 0.721 79-01-6 Trichloroethene ND 0.200 ND 0.934 540-84-1 2,2,4-Trimethylpentane ND 0.200 ND 0.934 1061-01-5 cls-1,3-Dichloropropene ND 0.200 ND 0.908 1061-02-6 trans-1,3-Dichloropropene ND 0.200 ND 0.908 </td <td>-3</td> <td>n-Hexane</td> <td>ND</td> <td>0.200</td> <td></td> <td>ND</td> <td>0.705</td> <td></td> <td>U</td> <td></td>	-3	n-Hexane	ND	0.200		ND	0.705		U	
56-23-5 Carbon tetrachloride ND 0.200 ND 1.26 110-82-7 Cyclohexane ND 0.200 ND 0.688 78-87-5 1,2-Dichloropropane ND 0.200 ND 0.924 75-27-4 Bromodichloromethane ND 0.200 ND 1.34 123-91-1 1,4-Dioxane ND 0.200 ND 0.721 79-01-6 Trichloroethene ND 0.200 ND 1.07 540-84-1 2,2,4-Trimethylpentane ND 0.200 ND 0.934 10261-01-5 Cls-1,3-Dichloropropene ND 0.200 ND 0.820 108-10-1 4-Methyl-2-pentanone ND 0.200 ND 0.908 108-10-2-6 trans-1,3-Dichloropropene ND 0.200 ND 0.908	6	1,1,1-Trichtoroethane	ND	0.200		ND	1.09		U	
110-82-7 Cyclohexane ND 0.200 ND 0.688 78-87-5 1,2-Dichloropropane ND 0.200 ND 0.924 75-27-4 Bromodichloromethane ND 0.200 ND 1.34 123-91-1 1,4-Dioxane ND 0.200 ND 0.721 79-01-6 Trichloroethene ND 0.200 ND 1.07 540-84-1 2,2,4-Trimethylpentane ND 0.200 ND 0.934 142-82-5 Heptane ND 0.200 ND 0.820 1061-01-5 cls-1,3-Dichloropropene ND 0.200 ND 0.908 108-10-1 4-Methyl-2-pentanone ND 0.500 ND 0.908 10061-02-6 trans-1,3-Dichloropropene ND 0.200 ND 1.09	2	Benzene	ND	0.200		ND	0.639		U	
78-87-5 1,2-Dichloropropane ND 0.200 ND 0.924 75-27-4 Bromodichloromethane ND 0.200 ND 1.34 123-91-1 1,4-Dioxane ND 0.200 ND 0.721 79-01-6 Trichloroethene ND 0.200 ND 1.07 540-84-1 2,2,4-Trimethylpentane ND 0.200 ND 0.934 142-82-5 Heptane ND 0.200 ND 0.820 10061-01-5 cls-1,3-Dichloropropene ND 0.200 ND 0.908 10061-02-6 trans-1,3-Dichloropropene ND 0.500 ND 0.908 79-00-5 1,1,2-Trichloroethane ND 0.200 ND 1.09 591-78-6 2-Hexanone ND 0.200 ND 0.820	5	Carbon tetrachloride	ND	0.200		ND	1.26		U	
75-27-4 Bromodichloromethane ND 0.200 ND 1.34 123-91-1 1,4-Dloxane ND 0.200 ND 0.721 79-01-6 Trichloroethene ND 0.200 ND 1.07 540-84-1 2,2,4-Trimethylpentane ND 0.200 ND 0.934 142-82-5 Heptane ND 0.200 ND 0.908 1061-01-5 cls-1,3-Dichloropropene ND 0.200 ND 0.908 108-10-1 4-Methyl-2-pentanone ND 0.500 ND 0.908 10061-02-6 trans-1,3-Dichloropropene ND 0.200 ND 0.908 79-00-5 1,1,2-Trichloroethane ND 0.200 ND 1.09 591-78-6 2-Hexanone ND 0.200 ND 0.820 -	-7	Cyclohexane	ND	0.200	**	ND	0.688		U	
123-91-1 1,4-Dloxane ND 0.200 ND 0.721 79-01-6 Trichloroethene ND 0.200 ND 1.07 540-84-1 2,2,4-Trimethylpentane ND 0.200 ND 0.934 142-82-5 Heptane ND 0.200 ND 0.820 10061-01-5 Cis-1,3-Dichloropropene ND 0.200 ND 0.908 108-10-1 4-Methyl-2-pentanone ND 0.500 ND 0.908 10061-02-6 trans-1,3-Dichloropropene ND 0.200 ND 0.908 79-00-5 1,1,2-Trichloroethane ND 0.200 ND 1.09 591-78-6 2-Hexanone ND 0.200 ND 0.820 124-48-1 Dibromochloromethane ND 0.200 ND 1.54 106-93-4 1,2-Dibromoethane ND 0.200 <t< td=""><td>5</td><td>1,2-Dichloropropane</td><td>ND</td><td>0.200</td><td></td><td>ND</td><td>0.924</td><td></td><td>U</td><td></td></t<>	5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
79-01-6 Trichloroethene ND 0.200 ND 1.07 540-84-1 2,2,4-Trimethylpentane ND 0.200 ND 0.934 142-82-5 Heptane ND 0.200 ND 0.820 10061-01-5 cls-1,3-Dichloropropene ND 0.200 ND 0.908 108-10-1 4-Methyl-2-pentanone ND 0.500 ND 0.908 10061-02-6 trans-1,3-Dichloropropene ND 0.200 ND 0.908 79-00-5 1,1,2-Trichloroethane ND 0.200 ND 1.09 108-88-3 Toluene 0.321 0.200 ND 0.820 591-78-6 2-Hexanone ND 0.200 ND 1.70 106-93-4 1,2-Dibromoethane ND 0.200 ND 1.54 </td <td>4</td> <td>Bromodichloromethane</td> <td>ND</td> <td>0.200</td> <td></td> <td>ND</td> <td>1.34</td> <td></td> <td>U</td> <td></td>	4	Bromodichloromethane	ND	0.200		ND	1.34		U	
540-84-1 2,2,4-Trimethylpentane ND 0.200 ND 0.934 142-82-5 Heptane ND 0.200 ND 0.820 10061-01-5 cls-1,3-Dichloropropene ND 0.200 ND 0.908 108-10-1 4-Methyl-2-pentanone ND 0.500 ND 0.908 10061-02-6 trans-1,3-Dichloropropene ND 0.200 ND 0.908 79-00-5 1,1,2-Trichloroethane ND 0.200 ND 1.09 591-78-6 2-Hexanone ND 0.200 ND 0.820 124-48-1 Dibromochloromethane ND 0.200 ND 1.70 106-93-4 1,2-Dibromoethane ND 0.200 ND 1.36 108-90-7 Chlorobenzene ND 0.200 ND 0.921 100-41-4 Ethylbenzene ND 0.400 <t< td=""><td>-1</td><td>1,4-Dloxane</td><td>ND</td><td>0.200</td><td></td><td>ND</td><td>0.721</td><td></td><td>U</td><td></td></t<>	-1	1,4-Dloxane	ND	0.200		ND	0.721		U	
142-82-5 Heptane ND 0.200 ND 0.820 10061-01-5 cls-1,3-Dichloropropene ND 0.200 ND 0.908 108-10-1 4-Methyl-2-pentanone ND 0.500 ND 2.05 10061-02-6 trans-1,3-Dichloropropene ND 0.200 ND 0.908 79-00-5 1,1,2-Trichloroethane ND 0.200 ND 1.09 108-88-3 Toluene 0.321 0.200 ND 0.754 591-78-6 2-Hexanone ND 0.200 ND 0.820 124-48-1 Dibromochloromethane ND 0.200 ND 1.70 106-93-4 1,2-Dibromoethane ND 0.200 ND 1.36 108-90-7 Chlorobenzene ND 0.200 ND 0.921 100-41-4 Ethylbenzene ND 0.400 ND	6	Trichloroethene	ND	0.200		ND	1.07		U	
10061-01-5 cls-1,3-Dichloropropene ND 0.200 ND 0.908 108-10-1 4-Methyl-2-pentanone ND 0.500 ND 2.05 10061-02-6 trans-1,3-Dichloropropene ND 0.200 ND 0.908 79-00-5 1,1,2-Trichloroethane ND 0.200 ND 1.09 108-88-3 Toluene 0.321 0.200 ND 1.21 0.754 591-78-6 2-Hexanone ND 0.200 ND 0.820 124-48-1 Dibromochloromethane ND 0.200 ND 1.70 106-93-4 1,2-Dibromoethane ND 0.200 ND 1.54 127-18-4 Tetrachloroethene ND 0.200 ND 0.921 100-41-4 Ethylbenzene ND 0.200 ND <td< td=""><td>-1</td><td>2,2,4-Trimethylpentane</td><td>ND</td><td>0.200</td><td></td><td>ND</td><td>0.934</td><td></td><td>U</td><td></td></td<>	-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
108-10-1 4-Methyl-2-pentanone ND 0.500 ND 2.05 10061-02-6 trans-1,3-Dichloropropene ND 0.200 ND 0.908 79-00-5 1,1,2-Trichloroethane ND 0.200 ND 1.09 108-88-3 Toluene 0.321 0.200 ND 0.754 591-78-6 2-Hexanone ND 0.200 ND 0.820 124-48-1 Dibromochloromethane ND 0.200 ND 1.70 106-93-4 1,2-Dibromoethane ND 0.200 ND 1.36 127-18-4 Tetrachloroethene ND 0.200 ND 1.36 108-90-7 Chlorobenzene ND 0.200 ND 0.869 100-41-4 Ethylbenzene ND 0.400 ND 1.74 179601-23-1 p/m-Xylene ND 0.400 ND <	-5	Heptane	ND	0.200		ND	0.820		U	
10061-02-6 trans-1,3-Dichloropropene ND 0.200 ND 0.908 79-00-5 1,1,2-Trichloroethane ND 0.200 ND 1.09 108-88-3 Toluene 0.321 0.200 ND 0.754 591-78-6 2-Hexanone ND 0.200 ND 0.820 124-48-1 Dibromochloromethane ND 0.200 ND 1.70 106-93-4 1,2-Dibromoethane ND 0.200 ND 1.54 127-18-4 Tetrachloroethene ND 0.200 ND 1.36 108-90-7 Chlorobenzene ND 0.200 ND 0.921 100-41-4 Ethylbenzene ND 0.400 ND 1.74 179601-23-1 p/m-Xylene ND 0.400 ND 1.74 <	01-5	cls-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5 1,1,2-Trichloroethane ND 0.200 ND 1.09 108-88-3 Toluene 0.321 0.200 1.21 0.754 591-78-6 2-Hexanone ND 0.200 ND 0.820 124-48-1 Dibromochloromethane ND 0.200 ND 1.70 106-93-4 1,2-Dibromoethane ND 0.200 ND 1.54 127-18-4 Tetrachloroethene ND 0.200 ND 1.36 108-90-7 Chlorobenzene ND 0.200 ND 0.921 100-41-4 Ethylbenzene ND 0.200 ND 0.869 179601-23-1 p/m-Xylene ND 0.400 ND 1.74	-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
108-88-3 Toluene 0.321 0.200 1.21 0.754 591-78-6 2-Hexanone ND 0.200 ND 0.820 124-48-1 Dibromochloromethane ND 0.200 ND 1.70 106-93-4 1,2-Dibromoethane ND 0.200 ND 1.54 127-18-4 Tetrachloroethene ND 0.200 ND 1.36 108-90-7 Chlorobenzene ND 0.200 ND 0.921 100-41-4 Ethylbenzene ND 0.200 ND 0.869 179601-23-1 p/m-Xylene ND 0.400 ND 1.74	02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
591-78-6 2-Hexanone ND 0.200 ND 0.820 124-48-1 Dibromochloromethane ND 0.200 ND 1.70 106-93-4 1,2-Dibromoethane ND 0.200 ND 1.54 127-18-4 Tetrachloroethene ND 0.200 ND 1.36 108-90-7 Chlorobenzene ND 0.200 ND 0.921 100-41-4 Ethylbenzene ND 0.200 ND 0.869 179601-23-1 p/m-Xylene ND 0.400 ND 1.74	5	1,1,2-Trichloroethane	ИD	0.200		ND	1.09		U	
124-48-1 Dibromochloromethane ND 0.200 ND 1.70 106-93-4 1,2-Dibromoethane ND 0.200 ND 1.54 127-18-4 Tetrachloroethene ND 0.200 ND 1.36 108-90-7 Chlorobenzene ND 0.200 ND 0.921 100-41-4 Ethylbenzene ND 0.200 ND 0.869 179601-23-1 p/m-Xylene ND 0.400 ND 1.74	-3	Toluene	0.321	0.200		1.21	0.754			
106-93-4 1,2-Dibromoethane ND 0.200 ND 1.54 127-18-4 Tetrachloroethene ND 0.200 ND 1.36 108-90-7 Chlorobenzene ND 0.200 ND 0.921 100-41-4 Ethylbenzene ND 0.200 ND 0.869 179601-23-1 p/m-Xylene ND 0.400 ND 1.74	-6	2-Hexanone	ND	0.200		ND	0.820		U	
127-18-4 Tetrachloroethene ND 0.200 ND 1.36 108-90-7 Chlorobenzene ND 0.200 ND 0.921 100-41-4 Ethylbenzene ND 0.200 ND 0.869 179601-23-1 p/m-Xylene ND 0.400 ND 1.74	-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
108-90-7 Chlorobenzene ND 0.200 ND 0.921 100-41-4 Ethylbenzene ND 0.200 ND 0.869 179601-23-1 p/m-Xylene ND 0.400 ND 1.74	-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
100-41-4 Ethylbenzene ND 0.200 ND 0.869 179601-23-1 p/m-Xylene ND 0.400 ND 1.74	-4	Tetrachloroethene	ND	0.200		ND	1.36		U	
179601-23-1 p/m-Xylene ND 0.400 ND 1.74	-7	Chlorobenzene	ИD	0.200		ND	0.921		U	
	-4	Ethylbenzene	ND	0.200		ND	0.869		U	
75-25-2 Bromoform ND 0.200 ND 2.07	-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
1.5	2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5 Styrene ND 0.200 ND 0.852	-5	Styrene	ND	0.200		ND	0.852		U	

Results Summary Form 1 Volatile Organics in Air

Client : Tenen Environmental, LLC Lab Number

Project Name : PARK CHESTER CROSSING Project Number : PARK CHESTER CROSSIN

: L2114833

 Lab ID
 : L2114833-06
 Date Collected
 : 03/24/21 16:46

 Client ID
 : AA 3/24
 Date Received
 : 03/24/21

Sample Location : 1585 WHITE PLAINS RD. Date Analyzed : 03/30/21 17:06
Sample Matrix : AIR Dilution Factor : 1

Analytical Method : 48,TO-15 Analyst : TS
Lab File ID : R1623105 Instrument ID : AIRLAB16
Sample Amount : 250 ml GC Column : RTX-1

ppbV ug/m3 CAS NO. Parameter Results RL MDL Results RL MDL Qualifier 79-34-5 1,1,2,2-Tetrachloroethane ND 0.200 ND U 1.37 95-47-6 o-Xylene ND 0.200 ND 0.869 U 622-96-8 4-Ethyltoluene ND 0.200 ND 0.983 U 108-67-8 1,3,5-Trimethylbenzene ΝĐ 0.200 ND 0.983 U 95-63-6 1,2,4-Trimethylbenzene ND 0.200 0.983 U ** ND .. 100-44-7 Benzyl chloride ND 0.200 ND 1.04 U 541-73-1 1,3-Dichlorobenzene ND 0.200 ND 1.20 U 106-46-7 1,4-Dichlorobenzene ND 0.200 ND 1.20 U 95-50-1 1,2-Dichlorobenzene ND 0.200 ND 1,20 U 120-82-1 1,2,4-Trichlorobenzene ND 0.200 ND 1.48 U 87-68-3 Hexachlorobutadiene ND 0.200 ND 2.13 U

DATA USABILITY SUMMARY REPORT – DUSR DATA VALIDATION SUMMARY

ORGANIC ANALYSES VOLATILES BY GC/MS

For Groundwater Samples
Collected March 24, 2021
From 1585 White Plains Road, Bronx, New York
Park Chester Crossing
by Tenen Environmental

SAMPLE DELIVERY GROUP NUMBER: L2114831

BY ALPHA ANALYTICAL (ELAP #11148)

SUBMITTED TO:

Ms. Claire Zaccheo Tenen Environmental 121 West 27th Street, Suite 702 New York, NY 10001

June 05, 2021

PREPARED BY:

Lori A. Beyer/President
L.A.B. Validation Corp.
14 West Point Drive
East Northport, NY 11731

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

1585 White Plains Road, Bronx, NY – Groundwater Sampling Data Usability Summary Report (Data Validation): March 2021 Groundwater Sampling Event; -Volatiles

Table of Contents:

Introduction
Data Qualifier Definitions
Sample Receipt

- 1.0 Volatile Organics by GC/MS SW846 Method 8260C
 - 1.1 Holding Time
 - 1.2 System Monitoring Compound (Surrogate) Recovery
 - 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 1.4 Laboratory Control Sample/Laboratory Control Duplicate
 - 1.5 Blank Contamination
 - 1.6 GC/MS Instrument Performance Check (Tuning)
 - 1.7 Initial and Continuing Calibrations
 - 1.8 Internal Standards
 - 1.9 Field Duplicates
 - 1.10 Target Compound List Identification
 - 1.11 Compound Quantification and Reported Detection Limits
 - 1.12 Overall System Performance

APPENDICES:

- A. Chain of Custody Document and Sample Receipt Checklist
- B. Case Narrative
- C. Data Summary Form Is with Qualifications

Introduction:

A validation was performed on groundwater samples and the associated quality control (Trip Blank) for organic analysis for samples collected under chain of custody documentation by Tenen Environmental and submitted to Alpha Analytical for subsequent analysis. This report contains the laboratory and validation results for the field samples itemized below.

The samples were analyzed by Alpha Analytical, utilizing SW846 and EPA Methods and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodologies employed. The analytical testing and data review for groundwater samples consisted of the full compound analyte list for Volatile Organics. The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic Data Review and EPA Region II SOPs for 8260C and in conjunction with the analytical methodologies for which the

samples were analyzed, where applicable and relevant.

Sample ID	Lab ID	Analysis	Date
S		·	Collected/Received
MW-1	L2114831-01	Volatile Organics by 8260C	03/24/2021
MW-3	L2114831-02	Volatile Organics by 8260C	03/24/2021
Trip Blank	L2114831-03	Volatile Organics by 8260C	03/24/2021

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- D Analyte concentration is from diluted analysis.

Sample Receipt:

The Chain of Custody document indicates that the samples were received at Alpha Analytical via laboratory courier upon completion of the sampling event. Sample login notes were generated. The cooler temperature for sample receipts was recorded upon receipt and determined to be acceptable (< 6 degrees C). The actual temperature (2.5 degrees C) is recorded on the sample receipt checklist provided in Appendix A of this report. No problems and/or discrepancies were noted, consequently, the integrity of the samples has been assumed to be good.

The data summary Form I's included in Appendix C include all usable (qualified) and unusable (rejected) results for the samples identified above. The Form I's summarize the detailed narrative section of the report. All data validation qualifications have been reported on the Form I's for ease of review and verification.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Volatile Organics by GC/MS SW846 Method 8260C

The following method criteria were reviewed: holding times, SMCs, MS, MSD, LCS, Laboratory Spiked Blanks, Method Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and Overall System Performance. The Volatile results are valid and usable except for non-detects for 1,4-Dioxane due to low calibration response in all samples as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Samples pertaining to this SDG were analyzed within the method required holding times as well as the technical holding times for data validation of 14 days from collection for HCL preserved vials. No data validation qualifiers were required based upon holding time.

1.2 System Monitoring Compound (Surrogate) Recovery

Samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specification, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) for Dibromofluoromethane, 1,2-Dichloroethane-d4, Toluene-d8 and 4-Bromofluorobenzene were found to be within acceptable limits for surrogate compounds for all analyses.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

MS/MSD data was not provided in the lab report.

The National Functional Guidelines and EPA Region 2 SOPs state that "No qualifications to the data are necessary based on MS data <u>alone.</u>"

1.4 Laboratory Control Sample/Laboratory Control Duplicate

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

Acceptable LCS/Blank Spike and LCS/LCS Duplicate was analyzed. Acceptable recovery values were observed with the exception of Vinyl Acetate which recovered above limits at 140% in the LCS Duplicate and low trans-1,4-Dichloro-2-butene at 65% in the LCS. Since Vinyl Acetate was not detected in associated samples, no qualifications to the data were required. High recovery does not support any potential loss of detection and/or result bias. Non-detects for trans-1,4-Dichloro-2-butene have been qualified, "UJ." RPD for Naphthalene (34%), 1,2,3-Trichlorobenzene (22%), trans-1,4-Dichloro-2-butene (29%), 1,1,2-Trichloroethane (22%) and 1,1,2,2-Tetrachloroethane (21%) was outside laboratory criteria of 20%. Data was not qualified based on RPD outliers.

1.5 Blank Contamination

Quality assurance (QA) blanks, i.e., method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field

operations. The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples		
Method, Storage, field,	Detects	Not Detected	No qualification required		
Trip, Instrument	<crql*< td=""><td><crql*< td=""><td>Report CROL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CROL value with a U</td></crql*<>	Report CROL value with a U		
* '		>/= CRQL* and <2x the	No qualification required		
		CRQL**			
	>CRQL*	= CRQL*</td <td>Report CROL value with a U</td>	Report CROL value with a U		
		>/=CRQL* and = blank</td <td>Report blank value for sample concentration</td>	Report blank value for sample concentration		
		concentration	with a U		
		>/= CRQL* and > blank	No qualification required		
		concentration			
	=CRQL*	= CRQL*</td <td>Report CROL value with a U</td>	Report CROL value with a U		
		>CRQL*	No qualification required		
	Gross Contamination**	Detects	Report blank value for sample concentration with a U		

^{*2}x the CRQL for methylene chloride, 2-butanone, and acetone.

A) Method Blank Contamination:

No target analytes were detected in the method blank associated with sample analysis.

B) Field Blank Contamination:

Field Blank was not required.

C) Trip Blank Contamination:

Acetone was detected in the Trip Blank at 2.5 ug/L. The laboratory reported concentration of Acetone (53 ug/L) in MW1 at a 1:5 dilution has been qualified, "J+" biased high based on professional judgement since the reported value when corrected for dilution is slightly >2x the CRQL and could not be negated. The laboratory reported result in MW3 (8.8 ug/L) has been negated, "U" since the detection is less than 2x the CRQL (5 ug/L).

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency for Bromofluorobenzene (BFB) for all analyses conducted for this SDG.

^{**}Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L. Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial calibration demonstrates that the instrument can produce acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. Initial calibration verifications were acceptable.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R". Method 8260C allows for a minimum response factor of 0.1 for Acetone and 2-Butanone. Validation criteria allows response factor to be /=>0.01 for poor responders (Acetone, MEK, Carbon Disulfide, Chloroethane, Chloromethane, Cyclohexane, 1,2-Dibromoethane, Dichlorodifluoromethane, cis-1,2-Dichloroethene, 1,2-Dichloropropane, 1,2-Dibromo-3-chloropropane, Isopropylbenzene, Methyl Acetate, Methylene Chloride, Methylcyclohexane, MTBE, trans-1,2-Dichloroethene, 4-Methyl-2-Pentanone, 2-Hexanone, Trichlorofluoromethane, 1,1,2-Trichloro-1,2,2-Trifluoroethane.

Response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) and (>/= 0.01 for poor responders) and minimum response criteria in Table 4 of Method 8260C, for the initial and continuing calibrations for all reported analytes except for 1,4-Dioxane (0.001). Non-detects in MW1, MW3 and Trip Blank must be considered unreliable and have been rejected, "R."

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <20% and %D must be <20%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, non-detect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >20% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 20% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-level results will be qualified, "J" in the portion of the curve where non-

linearity exists. Closing CCV must meet 30% criteria. Poor responders must be </= 40%.

*Method 8260C allows for several analytes to be outside requirements due to the large number of compounds.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (20%) and (40% for poor responders) for all reported compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (20%) and (40% for poor responders) for all reported compounds with exceptions noted below:

CCAL GONZO 3/29/21 – Bromochloromethane – 21.9%, trans-1,4-Dichloro-2-butene – 34.6%; "UJ" non-detects in MW1, MW3 and the Trip Blank.

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than \pm -30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to \pm 100%) range of the associated standard, all the positive results for compounds quantitated using

that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

Samples were spiked with the internal standards Fluorobenzene, Chlorobenzene-d5 and 1,4-Dichlorobenzene-d4 prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples associated with this SDG.

1.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Acceptable RPD for groundwater is 25%. Field Duplicate was not required for this sampling event.

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is acceptable. Correct internal standards per SW846 and response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP). Groundwater sample MW3 and the Trip Blank were analyzed undiluted at 10mls. MW1 was analyzed at 2ml (1:5 dilution). Reporting limits have been adjusted accordingly. Dilution is acceptable based on review of the raw data and raw concentrations within the upper half of the instruments' linear calibration range.

1.12 Overall System Performance

Good resolution and chromatographic performance were observed.

Reviewer's Signature Loui a. Buy Date 06/05/202/

Appendix A
Chain of Custody Document
And Sample Receipt Checklist

Westborough, MA 01551 Mansfed, 8 Warkup Dr. 328 Fort TEL. 508 FAX 508 65-8153 FAX 508 Clent Information Client:	CUSTODY	Altiany, NY 12205, 14 Walker Way Tonawanda, NY 14150: 275 Gooper Ave, Sy	per Ave. Sylve the		, of		Date Rec'd in Lab	3/25/21	ALPHA Job #	# qc
08-598-528 08-596-5153 Information	in in	Project Information	1			0	Deliverables	STATISTICS .	Billing Information	CZ114% 61 formation
Informati	0.8	17	285	10 T	M-AS	Bu	ASP-A EQUIS (1 Fite)	ASP-B (4 File)	3	Same as Client info
2	Pro	Project F Sam	B.C. W	ame			Other			
	(US)	(Use Project name as Project #)				G.	egulatory Requirement	nent	Disposal S	Disposal Site Information
	Pro	Project Manager: 111-C	M. Carrell				NY TOGS	NY Part 375	Please den	Please dentify below focation of
	ALF	ALPHAQuote #:	8				AWQ Standards	NY CP-51	applicable di	applicable disposal facilities
Pharie		Tum-Around Time	STATE OF	THE REAL PROPERTY AND ADDRESS OF THE PERTY	None of	THE PERSON NAMED IN	NY Restricted Use	See Chrei	Disposal Facility	भागपुर
		Standard	2	Oue Date:			NY Unrestricted Use	Use	2	Ž
Email IN Court & PAID	11-6W COBE	Ano 11- Early Collected Conty if pre expressed		# of Days:			NYC Sever Discharge	charge	Other	
These samples have been previously analyzed by Alpha	usly analyzed by	Alpha				∢	ANALYSIS		Sample Filtration	
Other project specific requirements/comments:	lents/comments								Done Lab to do	op op
Please specify Metals or TAL.							2, 5		Lab to do	
ALPHA Lab ID	Cl signals	QI.	Collection	tion		Sampler's	ZI NG/!		(Flease of	(Fredse Specify bolow)
(Lab Use Only)	ŀ		Date	Time	Matnx	Inivals			Sample Spe	Sample Specific Comments
14831-01 MW	移		なと	13:El	wheter	Kry.	×		20	30 m
-02 miles	12 Ju		270	1 (145	* *	ズブ	×		04	250
T 20	كاستاط ماسا		φeης		3 5		*			
Premater Code Container Code To None P = Plastic A Amber Glass B = HCl		Westboro: Certification No: MA938 Mansfield: Certification No: MA018	o: MA935 o: MA015		Conta	Centainer Type			Please pand con	Please print clearly, legibly and completely. Samples can
					P.T.	Preservative			not be k turnaro. start uni	not be logged in and turnaround time clock will not start until any ambiguities are
		Rejinduished By	34:	Date/Time	ime	Re	Received By	Date/Time	resolved	resolved. BY EXECUTING
E = Encore O = BOD Borde O = Other	Borrie	And Apple	NAN'	2002	200	W.	10.99 LL	3/24/4 17:00		HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.
Form No. 01-25 HC (rev. 30-Sept-2013)	3)			1	0 7 77	111/	1	7000 1000	(See re	(See reverse side.)

Sample Delivery Group Summary

Alpha Job Number: L2114831

Received Reviewer : 24-MAR-2021 : Craig Green

Account Name

: Tenen Environmental, LLC : PARKCHESTER CROSSING

Project Number Project Name

: PARKCHESTER CROSSING

Delivery Information

Samples Delivered By: Alpha Courier

Chain of Custody

Present

Cooler Information

Cooler Seal/Seal# A Absent/ Preservation

Temperature(°C) Additional Information

lce

Condition Information

1) All samples on COC received?

YES

2.5

2) Extra samples received?

NO

3) Are there any sample container discrepancies?

NO

4) Are there any discrepancies between sample labels & COC?

NO

5) Are samples in appropriate containers for requested analysis?

YES

6) Are samples properly preserved for requested analysis?

YES

7) Are samples within holding time for requested analysis?

YES

8) All sampling equipment returned?

NA

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?

NO

Appendix B Case Narrative Project Name: Project Number:

PARKCHESTER CROSSING PARKCHESTER CROSSING

Lab Number:

L2114831

Report Date:

03/31/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:

PARKCHESTER CROSSING

Lab Number:

L2114831

Project Number:

PARKCHESTER CROSSING

Report Date:

03/31/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature

WH

Report Date: 03/31/21

for 16/3/11

Title: Technical Director/Representative

Appendix C
Data Summary Form I's
With Qualifications

Client : Tenen Environmental, LLC

Project Name : PARKCHESTER CROSSING

Lab ID : L2114831-01D

Client ID : MW 1

Sample Location : 1585 WHITE PLAINS RD

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VG210329A12

Sample Amount : 2 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2114831

Project Number : PARKCHESTER CROSSING

Date Collected : 03/24/21 12:01

Date Received : 03/24/21
Date Analyzed : 03/29/21 13:05

Dilution Factor : 5
Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75.00.0	Makhulana ahladda	ND	40	0.5	
75-09-2	Methylene chloride	ND	12	3.5	U
75-34-3	1,1-Dichloroethane	ND	12	3.5	U
67-66-3	Chloroform	ND	12	3.5	U
56-23-5	Carbon tetrachloride	ND	2.5	0.67	U
78-87-5	1,2-Dichloropropane	ND	5.0	0.68	U
124-48-1	Dibromochloromethane	ND	2.5	0.74	U
79-00-5	1,1,2-Trichloroethane	ND	7.5	2.5	U
127-18-4	Tetrachloroethene	ND	2.5	0.90	U
108-90-7	Chlorobenzene	ND	12	3.5	U
75-69-4	Trichiorofluoromethane	ND	12	3.5	U
107-06-2	1,2-Dichloroethane	ND	2.5	0.66	U
71-55-6	1,1,1-Trichloroethane	ND	12	3.5	U
75-27-4	Bromodichloromethane	ND	2.5	0.96	U
10061-02-6	trans-1,3-Dichloropropene	ND	2.5	0.82	U
10061-01-5	cls-1,3-Dichloropropene	ND	2.5	0.72	U
542-75-6	1,3-Dichloropropene, Total	ND	2.5	0.72	U
563-58-6	1,1-Dichloropropene	ND	12	3.5	U
75-25-2	Bromoform	ND	10	3.2	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.5	0.84	U
71-43-2	Benzene	750	2.5	0.80	
108-88-3	Toluene	7.6	12	3.5	J
100-41-4	Ethylbenzene	5.0	12	3.5	J
74-87-3	Chloromethane	ND	12	3.5	U
74-83-9	Bromomethane	ND	12	3.5	Ų
75-01-4	Vinyl chloride	ND	5.0	0.36	U

Client Tenen Environmental, LLC

Project Name : PARKCHESTER CROSSING Project Number : PARKCHESTER CROSSING

Lab ID £ L2114831-01D

Client ID : MW 1

Sample Location 1585 WHITE PLAINS RD

Sample Matrix : WATER Analytical Method 1,8260C Lab File ID ¥ VG210329A12

Sample Amount : 2 ml : LOW Level Extract Volume (MeOH) : N/A

Lab Number : L2114831

Date Collected : 03/24/21 12:01

Date Received : 03/24/21 Date Analyzed : 03/29/21 13:05

Dilution Factor : 5 Analyst : AJK Instrument ID : GONZO GC Column : RTX-502.2 %Solids : N/A

Injection Volume: N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	12	3.5	U
75-35-4	1,1-Dichloroethene	ND	2.5	0.84	U
156-60-5	trans-1,2-Dichloroethene	ND	12	3.5	U
79-01-6	Trichloroethene	ND	2.5	0.88	U
95-50-1	1,2-Dichlorobenzene	ND	12	3.5	υ
541-73-1	1,3-Dichlorobenzene	ND	12	3.5	U
106-46-7	1,4-Dichlorobenzene	ND	12	3.5	U
1634-04-4	Methyl tert butyl ether	ND	12	3.5	U
79601-23-1	p/m-Xylene	20	12	3.5	
95-47-6	o-Xylene	ND	12	3.5	u
330-20-7	Xylenes, Total	20	12	3.5	
56-59-2	cls-1,2-Dichloroethene	ND	12	3.5	U
40-59-0	1,2-Dichloroethene, Total	ND	12	3.5	U
4-95-3	Dibromomethane	ND	25	5.0	U
96-18-4	1,2,3-Trichloropropane	ND	12	3.5	U
07-13-1	Acrylonitrile	ND	25	7.5	U
00-42-5	Styrene	ND	12	3.5	U
5-71-8	Dichlorodifluoromethane	ND	25	5.0	U
57-64 - 1	Acetone	53	25	7.3	J+
7 5-15-0	Carbon disulfide	ND	25	5.0	U
78-93-3	2-Butanone	ND	25	9.7	U
08-05-4	Vinyl acetate	ND	25	5.0	U
08-10-1	4-Methyl-2-pentanone	ND	25	5.0	U
91-78-6	2-Hexanone	ND	25	5.0	U
74-97-5	Bromochloromethane	ND	12	3.5	- UJ

Client : Tenen Environmental, LLC

Project Name : PARKCHESTER CROSSING

Lab ID : L2114831-01D

Client ID : MW 1

Sample Location 1585 WHITE PLAINS RD

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VG210329A12

Sample Amount : 2 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2114831

Project Number PARKCHESTER CROSSING

Date Collected : 03/24/21 12:01 Date Received : 03/24/21

Date Analyzed : 03/29/21 13:05

Dilution Factor : 5
Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	12	3.5	U
106-93-4	1,2-Dibromoethane	ND	10	3.2	U
142-28-9	1,3-Dichloropropane	ND	12	3.5	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	12	3.5	U
108-86-1	Bromobenzene	ND	12	3.5	U
104-51-8	n-Butylbenzene	9.0	12	3.5	J
135-98-8	sec-Butylbenzene	11	12	3.5	J
98-06-6	tert-Butylbenzene	ND	12	3.5	U
95-49-8	o-Chlorotoluene	ND	12	3.5	U
106-43-4	p-Chlorotoluene	NĐ	12	3.5	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	12	3.5	U
87-68-3	Hexachlorobutadlene	ND	12	3.5	U
98-82-8	Isopropylbenzene	32	12	3.5	
99-87-6	p-Isopropyltoluene	ND	12	3.5	U
91-20-3	Naphthalene	8.7	12	3.5	J
103-65-1	n-Propylbenzene	73	12	3.5	
87-61-6	1,2,3-Trichlorobenzene	ND	12	3.5	U
120-82-1	1,2,4-Trichlorobenzene	ND	12	3.5	U
108-67-8	1,3,5-Trimethylbenzene	ND	12	3.5	U
95-63-6	1,2,4-Trimethylbenzene	ND	12	3.5	U
123-91-1	1,4-Dioxane	ND	1200	300	UR
105-05-5	p-Dlethylbenzene	18	10	3.5	
622-96-8	p-Ethyltoluene	5.7	10	3.5	J
95-93-2	1,2,4,5-Tetramethylbenzene	53	10	2.7	
60-29-7	Ethyl ether	ND	12	3.5	U

Client : Tenen Environmental, LLC Lab Number : L2114831

Project Name PARKCHESTER CROSSING Project Number PARKCHESTER CROSSING

Lab ID L2114831-01D

Client ID : MW 1

Sample Location : 1585 WHITE PLAINS RD

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VG210329A12

Sample Amount : 2 ml Level : LOW Extract Volume (MeOH) : N/A Date Collected : 03/24/21 12:01
Date Received : 03/24/21
Date Analyzed : 03/29/21 13:05

Dilution Factor : 5
Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2
%Solids : N/A

Injection Volume N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier
110-57-6	trans-1,4-Dichloro-2-butene	ND	12	3.5	*UJ

Client : Tenen Environmental, LLC

Project Name : PARKCHESTER CROSSING

Lab ID : L2114831-02

Client ID : MW 3

Sample Location : 1585 WHITE PLAINS RD

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VG210329A13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2114831

Project Number : PARKCHESTER CROSSING

Date Collected : 03/24/21 11:45

Date Received : 03/24/21
Date Analyzed : 03/29/21 13:33

Dilution Factor : 1
Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2
%Solids : N/A

%Solids : N/A Injection Volume : N/A

CAS NO.			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	ND	2.5	0.70	U	
66-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
8-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
24-48-1	Dibromochloromethane	ND	0.50	0.15	U	
9-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
27-18-4	Tetrachloroethene	2.9	0.50	0.18		
08-90-7	Chlorobenzene	ND	2.5	0.70	U	
5-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
07-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
1-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
5-27-4	Bromodichloromethane	ND	0.50	0.19	U	
0061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
0061-01-5	cls-1,3-Dichloropropene	ND	0.50	0.14	U	
42-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U	
63-58-6	1,1-Dichloropropene	ND	2.5	0.70	U	
5-25-2	Bromoform	ND	2.0	0.65	U	
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
1-43-2	Benzene	ND	0.50	0.16	U	
08-88-3	Toluene	ND	2.5	0.70	U	
00-41-4	Ethylbenzene	ND	2.5	0.70	U	
4-87-3	Chloromethane	ND	2.5	0.70	U	
4-83-9	Bromomethane	ND	2.5	0.70	U	
5-01-4	Vinyl chloride	ND	1.0	0.07	U	

Client : Tenen Environmental, LLC

Project Name : PARKCHESTER CROSSING

Lab ID : L2114831-02

Client ID : MW 3

Sample Location 1585 WHITE PLAINS RD

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VG210329A13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2114831

Project Number : PARKCHESTER CROSSING

Date Collected : 03/24/21 11:45

Date Received : 03/24/21
Date Analyzed : 03/29/21 13:33

Dilution Factor : 1
Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-00-3	Chloroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	0.18	0.50	0.18	J	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
1330-20-7	Xylenes, Total	ND	2.5	0.70	U	
156-59-2	cls-1,2-Dichloroethene	ND	2.5	0.70	U	
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U	
4-95-3	Dibromomethane	ND	5.0	1.0	U	
06-18-4	1,2,3-Trlchloropropane	ND	2.5	0.70	U	
07-13-1	Acrylonitrile	ND	5.0	1.5	U	
00-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
37-64-1	Acetone	8.8	5.0	1.5	\cup	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
8-93-3	2-Butanone	ND	5.0	1.9	U	
08-05-4	Vlnyl acetate	ND	5.0	1.0	U	
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
91-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	<u> </u>	

Client : Tenen Environmental, LLC

Project Name : PARKCHESTER CROSSING

Lab ID £ L2114831-02

Client ID : MW 3

Sample Location : 1585 WHITE PLAINS RD

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VG210329A13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2114831

Project Number : PARKCHESTER CROSSING

Date Collected : 03/24/21 11:45

Date Received : 03/24/21
Date Analyzed : 03/29/21 13:33

Dilution Factor : 1
Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichioropropane	ND	2.5	0.70	U
630 - 20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotolue ne	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	Ū
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadlene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
03-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
20-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dloxane	ND	250	61.	- or R
05-05-5	p-Dlethylbenzene	ND	2.0	0.70	U
22-96-8	p-Ethyltoluene	ND	2.0	0.70	U
5-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
0-29-7	Ethyl ether	ND	2.5	0.70	U

Client : Tenen Environmental, LLC

Project Name : PARKCHESTER CROSSING

Lab ID L2114831-02

Client ID : MW 3

Sample Location 1585 WHITE PLAINS RD

Sample Matrix WATER Analytical Method 1,8260C Lab File ID VG210329A13

Sample Amount 10 ml Level : LOW Extract Volume (MeOH): N/A

Lab Number : L2114831

Project Number : PARKCHESTER CROSSING

Date Collected : 03/24/21 11:45

Date Received : 03/24/21
Date Analyzed : 03/29/21 13:33

Dilution Factor 1 Analyst : AJK Instrument ID GONZO : RTX-502.2 : N/A GC Column

%Solids Injection Volume : N/A

CAS NO.	Parameter	ug/L				
		Results	RL	MDL	Qualifier	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	& () [

Client : Tenen Environmental, LLC

Project Name : PARKCHESTER CROSSING

Lab ID : L2114831-03 Client ID : TRIP BLANK

Sample Location : 1585 WHITE PLAINS RD Sample Matrix : Trip Blank (aqueous)

Analytical Method : 1,8260C Lab File ID : VG210329A14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2114831

Project Number : PARKCHESTER CROSSING

Date Collected : 03/24/21 00:00

Date Received : 03/24/21
Date Analyzed : 03/29/21 14:00

Dilution Factor : 1
Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2
%Solids : N/A

Injection Volume : N/A

CAS NO.	Parameter	9	ug/L		
		Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	υ
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
07-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
75-25-2	Bromoform	ND	2.0	0.65	U
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
4-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	U
5-01-4	Vinyl chloride	ND	1.0	0.07	U

Client Tenen Environmental, LLC

Project Name PARKCHESTER CROSSING

Lab ID : L2114831-03 Client ID : TRIP BLANK

Sample Location : 1585 WHITE PLAINS RD Sample Matrix : Trip Blank (aqueous)

Analytical Method : 1,8260C Lab File ID : VG210329A14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2114831

Project Number PARKCHESTER CROSSING

Date Collected : 03/24/21 00:00
Date Received : 03/24/21

Date Analyzed : 03/29/21 14:00
Dilution Factor : 1

Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2
%Solids : N/A

Injection Volume : N/A

CAS NO.	Parameter	ug/L			
		Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
7 5-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	2.5	5.0	1.5	J
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	-b- ())'

Client : Tenen Environmental, LLC

Project Name : PARKCHESTER CROSSING

Lab ID : L2114831-03 Client ID : TRIP BLANK

Sample Location : 1585 WHITE PLAINS RD
Sample Matrix : Trip Blank (aqueous)

Analytical Method : 1,8260C Lab File ID : VG210329A14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number L2114831

Project Number : PARKCHESTER CROSSING

Date Collected : 03/24/21 00:00
Date Received : 03/24/21
Date Analyzed : 03/29/21 14:00

Dilution Factor : 1
Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.	Parameter	ug/L			
		Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotolue ne	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dlbromo-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
9-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dloxane	ND	250	61.	uR
05-05-5	p-Dlethylbenzene	ND	2.0	0.70	U
522-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U

Client : Tenen Environmental, LLC Lab Number : L2114831

Project Name PARKCHESTER CROSSING Project Number PARKCHESTER CROSSING

 Lab ID
 : L2114831-03
 Date Collected
 : 03/24/21 00:00

 Client ID
 : TRIP BLANK
 Date Received
 : 03/24/21

 Sample Legister
 : 1585 WHITE BLANK BD
 Deta Applying
 : 02/20/21 14:00

Sample Location : 1585 WHITE PLAINS RD Date Analyzed : 03/29/21 14:00 Sample Matrix : Trip Blank (aqueous) Dilution Factor : 1

Analytical Method : 1,8260C Analyst : AJK
Lab File ID : VG210329A14 Instrument ID : GONZO
Sample Amount : 10 ml GC Column : RTX-502.2
Level : LOW %Solids : N/A

Extract Volume (MeOH): N/A Injection Volume: N/A

CAS NO.	Parameter	ug/L				
		Results	RL	MDL	Qualifler	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	4 0	

