FORMER BOYLE AUTO WRECKERS SITE

1346 BLONDELL AVENUE BRONX, NEW YORK 10461 Block 4133, Lot 12 and Block 4134, Lots 1, 2, 4, 62, 63 and 70

REMEDIAL INVESTIGATION REPORT

November 2018

Prepared for:

Exact Blondell LLC 477 Madison Avenue, 6th Floor New York, NY 10022

ENVIRONMENTAL BUSINESS CONSULTANTS

1808 Middle Country Road Ridge, NY 11961

TABLE OF CONTENTS REMEDIAL INVESTIGATION REPORT FORMER BOYLE AUTO WRECKERS SITE

1.0	INT	TRODUCTION	1
	1.1	Project Background	1
	1.2	Site Location and Description	1
	1.3	Redevelopment Plans	2
	1.4	Site History	2
	1.5	Summary of Previous Investigations	2
		1.5.1 NYSDEC Spill Files 0510000, 1305242	
		1.5.2 Phase I Environmental Site Assessment Screening- EBC (Dec. 2014)	
		1.5.3 Phase II Subsurface Investigation Data Summary - EBC (Jan. 2015)	
2.0	DE	MEDIAL INVESTIGATION	_
2.0		MEDIAL INVESTIGATION	-
		Field Investigation	
		Deviations from the Remedial Investigation Work Plan	
	2.3	1 0	
	2.4	UST Inspection	
	2.5	1 0	
	•	2.5.1 Soil Borings	
	2.6	Monitoring Well Installation	
		2.6.1 Groundwater Sampling	
	2.7	Soil Vapor Sampling	
		2.7.1 Installation of Soil Vapor Implants	
		2.7.2 Surface Seal Test Procedure	
		2.7.3 Soil vapor Sample Collection	
	2.8	Laboratory Analysis	
		2.8.1 Analytical Results - Soil Samples	
		2.8.2 Analytical Results - Groundwater Samples	
		2.8.3 Analytical Results - Soil Vapor Samples	
		2.8.4 Data Usability Summary Report	14
3.0	HYI	DROGEOLOGIC ASSESSMENT AND PHYSICAL SETTING	15
	3.1	Site Topography	15
	3.2		
	3.3	Regional Geology / Hydrogeology	
		Site Geology / Hydrogeology	
4.0	NI A	TURE AND EXTENT OF CONTAMINATION	17
4.0		Identification of Source Areas	
	4.1		
	4.2	1	
	4.4	1 1	
	4.4	Site Conceptual Woder	10
5.0	QU	ALITATIVE EXPOSURE ASSESSMENT	19
	5.1	Contaminant Areas	19
	5.2	Contaminant Release and Transport Mechanism	19
		Point of Exposure, Route of Exposure and Potentially Exposed Populations	
6.0	CO	NCLUSIONS AND RECOMENDATIONS	21
0.0	CO	NOLUSIONS AND RECOMENDATIONS	∠1
7.0	RE	FFRENCES	23

TABLE OF CONTENTS

Remedial Investigation Report FORMER BOYLE AUTO WRECKERS SITE

TABLES

Table 1	Summary of Sampling Program Rationale and Analysis
Table 2	Monitoring Well Specifications and Elevation
Table 3	Laboratory Results – Soil Samples, Volatile Organic Compounds
Table 4	Laboratory Results – Soil Samples, Semi-Volatile Organic Compounds
Table 5	Laboratory Results – Soil Samples, Pesticides/PCBs
Table 6	Laboratory Results – Soil Samples, Metals
Table 7	Laboratory Results - Groundwater Samples, Volatile Organic Compounds
Table 8	Laboratory Results - Groundwater Samples, Semi-Volatile Organic Compounds
Table 9	Laboratory Results – Groundwater Samples, Pesticides/PCBs
Table 10	Laboratory Results – Groundwater Samples, Total Metals
Table 11	Laboratory Results – Groundwater Samples, Dissolved Metals
Table 12	Laboratory Results – Groundwater Samples, PFAS
Table 13	Laboratory Results – Soil Vapor Samples, Volatile Organic Compounds
Table 14	Parameters Detected Above Track 1 Soil Cleanup Objectives
Table 15	Parameters Detected Above Ambient Groundwater Standards

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Soil Sampling Locations
Figure 4	Soil Gas and Groundwater Sampling Locations
Figure 5	Groundwater Elevation Map
Figure 6	Posted Soil Results above Unrestricted / Restricted Residential SCOs.
Figure 7	Groundwater Results above AWQS
Figure 8	Soil Gas Detections
Figure 9	Geologic Cross-Section

APPENDICES

Appendix A	Geophysical Investigation Report
Appendix B	Soil Boring Logs
Appendix C	Monitoring Well Completion Reports
Appendix D	Groundwater Sampling Logs
Appendix E	Soil Vapor Sampling Log
Appendix F	Laboratory Reports (On Disk)
Appendix G	Data Usability Summary Reports

LIST OF ACRONYMS

Acronym	Definition
AOC	Area of Concern
AST	Aboveground Storage Tank
BCP	Brownfields Cleanup Program
BCA	Brownfield Site Cleanup Agreement
CVOC	Chlorinated VOC
ESA	Environmental Site Assessment
EBC	Environmental Business Consultants
IRM	Interim Remedial Measure Work Plan
NYCDEP	New York City Department of Environmental Protection
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
PID	Photo-Ionization Detector
PCB	Polychlorinated Biphenyls
REC	Recognized Environmental Condition
RI	Remedial Investigation
RIWR	Remedial Investigation Work Plan
SVOC	Semi-Volatile Organic Compound
UST	Underground Storage Tank
VOC	Volatile Organic Compound

REPORT CERTIFICAION

I, Charles Sosik, certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Remedial Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Date: 11/5/2018

Charles Sosik, PG

Charles Sosik

Principal

1.0 INTRODUCTION

1.1 Project Background

This Remedial Investigation Report (RIR) was prepared on behalf of Blondell Equities LLC for the property known as the Former Boyle Auto Wreckers Site, located at 1346 Blondell Avenue in the Bronx, New York (hereafter referred to as the Site). In February 2017, Blondell Equities LLC filed an application with the New York State Department of Environmental Conservation (NYSDEC), to admit the Project Site into the New York State Brownfield Cleanup Program (BCP). The application was deemed complete by the NYSDEC on March 13, 2017. On March 13, 2017, the NYSDEC informed Blondell Equities LLC that the project (Site No. C203089) had been accepted into the BCP with Blondell Equities LLC classified as a "Volunteer". The Brownfield Cleanup Agreement was executed by NYSDEC on August 18, 2017.

The purpose of this Remedial Investigation Report is to collect data of sufficient quality and quantity to characterize the nature and extent of residual contamination associated with the UST(s) / historic operations at the site and to complete a qualitative exposure assessment for future occupants of the proposed building and the surrounding community and to evaluate alternatives to remediate the contamination.

The overall objectives of the project are to prepare the Site for commercial use and to remediate known and unknown environmental conditions at the Site to the satisfaction of the NYSDEC and the New York State Department of Health (NYSDOH).

The field work portion of the RI was conducted by EBC in February and March 2018.

1.2 Site Location and Description

The street address for the Site is 1346 Blondell Avenue in the Bronx, NY (**Figure 1**). The Site is located in the City of New York in the Pelham Bay neighborhood of the Borough of the Bronx. The Site is known as the Former Boyle Auto Wreckers property, and is comprised of seven tax parcels which were recently merged into one lot. The former seven lots are identified as Block 4133, Lot12, Block 4134 Lots 1, 2, 4, 62, 63 and 70 totaling 46,360 sq. ft (1.064 acres). The Site has approximately 206 ft of street frontage on Blondell Avenue (**Figure 2**). The property is improved with a 1-story 2,920 square foot (footprint) masonry commercial building constructed in 1920, a 1-3/4-story 684 square foot (footprint) wood frame shed building constructed in 1931 and a 1-1/2 story 490 square foot (footprint) wood frame house constructed in 1930.

The buildings are currently unoccupied, but the property has historically been used as an auto wrecking yard, auto repair shop, motorcycle repair shop, auto body shop and as a truck / equipment yard. The east side of the site is bordered by a NYC Transit Rail Yard, the south side by Block 4133 Lot 10 and Cooper Avenue and to the north by Block 4139 Lot 14. An easement is shown on the tax map running through Lot 62 and portions of Lot 1, Lot 12 and Lot 62.

The elevation of the Site is approximately 7 feet above the National Geodetic Vertical Datum (NGVD). The area topography gradually slopes to the east toward the rail yard. Groundwater occurs

beneath the Site at a depth of approximately 6 feet below grade under water table conditions. Based on regional flow maps and the proximity to surface water, groundwater flow is expected to be to the southeast toward Westchester Creek.

The area surrounding the property is highly urbanized and is primarily industrial / commercial in accordance with the M1-1 which surrounds the property. Adjacent land use includes a NYC Transit Authority rail yard and related facilities to the east, commercial properties to the north and west consisting primarily of auto repair shops and warehouse buildings, and residential and commercial office buildings to the south.

1.3 Redevelopment Plans

The redevelopment project consists of the construction of a new nine story mixed-use building. The project will include 212 affordable housing apartment units, 22,000 square feet (sf) of retail space and underground parking for 90 cars. The developer is currently in the process of rezoning the property from M1-1 light manufacturing to R7A residential with a C2-4 commercial overlay. One hundred percent of the lot would be excavated to a depth of approximately 11 feet for the cellar level of the proposed building. It is estimated that a total of 8,962 cubic yards (13,444 tons) of soil will require excavation and off-Site disposal. With groundwater present at 6 feet below grade, dewatering will likely be required during construction of the building's foundation.

1.4 Site History

The Site was originally developed with several small residential homes in the late 1800's. It was converted to commercial use around 1929-1930 when the current commercial building was constructed. Use as an automobile junk yard and equipment storage were identified from 1966 through 2013 through Sanborn Fire Insurance maps, aerial photographs and city directory listings. Other uses which overlapped this period included an instrument company (1971-1983), a contracting company (1965-2000), a boiler plate erecting company (1976), a carting company (2013) and a motorcycle repair shop (2005-2015).

1.5 Summary of Previous Investigations

Environmental investigations performed at the Site include the following:

- Phase II Subsurface Investigation Report AKRF, Inc. July 2006
- Phase II Environmental Site Assessment Report HydroTech Environmental Corp., December 2015
- Subsurface Investigation Data Summary Environmental Business Consultants, May 2016
- NYSDEC Spill Files NYSDEC, Multiple Dates

1.5.1 July 2006 - Phase II Subsurface Investigation Report (AKRF)

A Phase II Subsurface Investigation Report was prepared by AKRF Inc. in July, 2006. The report included a summary of a Phase I Environmental Site Assessment which was prepared by AKRF in February 2006.

AKRF identified the following environmental conditions:

- The subject property was listed twice on the closed status New York State Department of Environmental Protection (NYSDEC) spills database in connection with Spill Numbers 9708308 and 9710270. On October 8, 1997, Spill No. 9708308 was opened when an unknown quantity of gasoline and waste oil was reported spilled onto the ground surface. The listing reported that spills from vehicles were a regular occurrence at the site and that tires were burned on a daily basis. This spill was closed in March 1998. Spill No. 9710270 was reported on December 8, 1997 in which an unknown material and quantity was spilled at the property. The spill was closed in July 2003. According to John Mercorella, a representative of the property owner, an oil and gasoline spill had occurred in the northeastern portion of the site several years ago. Based on the details provided, this spill may be associated with the database listed on-site spill reported in October 1997, though this could not be positively confirmed. The surface pavement at the site was observed to be in poor condition and a portion of the site was surfaced with gravel. Surficial oil staining was observed by AKRF on visible exterior portions of the paved and gravel surfaces. These reported spills or releases from vehicles could have affected subsurface soil and groundwater.
- A 275-gallon storage tank was located in the basement of the northernmost dwelling at the site. Based on observations made during the site visit by AKRF, this tank may be a used oil tank operated by the south-adjacent motorcycle repair shop. A 275-gallon used oil aboveground storage tank was listed on the New York State Department of Environmental Conservation (NYSDEC) Petroleum Bulk Storage (PBS) database for Boyle Auto Wreckers, Inc., a previous tenant of the 1346 Blondell Avenue property. It is possible that this listing represents the 275-gallon aboveground storage tank located in the basement of the residential dwelling. However, AKRF did not have access to the motorcycle repair shop building. Other petroleum storage tanks may be present inside this structure that could be related to the PBS listing for the subject site. In addition, a violation for an unregistered waste oil tank at the site was issued by the NYSDEC, as noted in the December 1997 spill listing for the site.
- The study site was labeled as an "Auto Junk Yard" on historic Sanborn maps from 1977 to 1996. Historic operations as a junk yard may have affected the subsurface soil and/or groundwater at the property.
- Historical land use maps, the regulatory database search, and results of the site reconnaissance indicated that the surrounding area has a long history of auto-related, manufacturing and light industrial operations. Such land use included the presence of historic gasoline filling stations directly across Ponton Avenue to the north and across Blondell Avenue to the southwest. Several fuel oil spills were noted in the NY SPILLS database in the area surrounding the subject site. Known and potential releases from these sites may have affected the local groundwater quality.

The Phase II investigation completed by AKRF included the installation of 8 soil borings and the collection and analysis of 8 soil samples and 5 groundwater samples. Overburden soil consisted entirely of fill material to the groundwater surface which was encountered at a depth of approximately six feet below grade.

AKRF concluded the following:

"Laboratory analytical results indicated that volatile organic compounds (VOCs) were detected in soil samples S-2, S-3, and S-4 that are typically associated with gasoline, including benzene, ethylbenzene, toluene, and xylenes (BTEX), as well as naphthalene and several benzene-related compounds. The laboratory results and the field screening results, which included the detection of petroleum-like odors and elevated photoionization detector (PID) readings, suggest that releases of gasoline and/or other petroleum products in these areas have affected soil and groundwater."

"The results of the analyses for VOCs and SVOCs in groundwater suggest potential gasoline contamination to groundwater in samples collected from borings S-2, S-3, S-4, and to a lesser extent in S-8, where only methyl tert butyl ether (MTBE) was detected. The concentration of gasoline-related contaminants on the northern portion of the site may suggest that contaminated groundwater could have migrated on-site from the historic gasoline station properties to the north identified by AKRF's Phase IESA dated February 2006. Specifically, one of these historic sites was identified directly across Ponton Avenue from the subject site. These historic gasoline station properties were located in a presumed upgradient groundwater flow direction. However, similar compounds and petroleum-like odors and elevated PID readings were detected in the soil samples from these soil boring locations indicating that reported and/or unreported on-site petroleum spills may have been the main source of the groundwater impact."

"In addition, the site has a history of petroleum use related to automotive and motorcycle repair operations. The New York State Department of Environmental Conservation (NYSDEC) spill listings for the site note the repeated discharge of gasoline and oil to the ground surface. The detected concentrations of metals in the soil, including those above the TAGM guidelines and established eastern U.S. background levels, may be attributable to the urban fill at the site and not necessarily to environmental contamination from historic on-site operations. However, the elevated lead levels may be related to the past use and release of leaded gasoline or lead-containing batteries. Based on the results, elevated levels of lead may exceed the threshold for characterization as hazardous waste under Title 40 of the Code of Federal Regulations when reanalyzed for Toxicity Characteristic Leaching Procedure (TCLP), an analysis for the characterization of waste for disposal. Such soil may require management as hazardous waste if excavated as part of site development activities."

"Soil excavated as part of any future site development activities at the site should be managed in accordance with all applicable regulations. Soil intended for off-site disposal should be tested in accordance with the requirements of the receiving facility. Transportation of material leaving the site for off-site disposal should be in accordance with federal, state and local requirements covering licensing of haulers and trucks, placarding, truck routes, and manifesting, etc. If dewatering is necessary for construction and development purposes, groundwater may require treatment as part of the dewatering handling and discharge process. Prior to initiating any dewatering activities, a groundwater sample should be analyzed to insure it meets the New York City Department of Environmental Protection (NYCDEP) criteria for effluent to municipal sewers, should these be the selected course of action for development."

A copy of the complete AKRF Phase II Report is provided in digital form in **Attachment A**.

1.5.2 December 2015 – Phase II Environmental Site Assessment Report (HydroTech)

A Phase II investigation consisting of six soil borings and the collection and analysis of six soil samples and three groundwater samples.

Based on the results obtained during the investigation, HydroTech concluded the following:

- Petroleum related VOCs were detected in soil samples beneath the northern portion of the Site
 at concentrations exceeding their respective Unrestricted SCOs and a petroleum odor was also
 detected in these samples during soil screening;
- SVOCs characterized as PAHs and metals most likely related to urban fill materials were detected in soil throughout the Site at concentrations greater than their respective regulatory standards.
- No VOCs or SVOCs were identified in the groundwater above their respective GQS.
- Three dissolved metals including magnesium, manganese and sodium were identified in the groundwater at concentrations exceeding their respective GQS.
- The impacts identified during this investigation appear to the effects of the closed NYSDEC spill incident.

A copy of the complete HydroTech Report is provided in digital form in **Attachment A**.

1.5.3 May 2016 – Subsurface Investigation Data Summary (EBC)

A supplemental subsurface investigation consisting of 11 borings with analysis of 7 soil and 5 groundwater samples was completed in May 2016.

Laboratory analysis included VOCs, PAHs, pesticides / PCBs and metals for all soil samples and VOCs for the groundwater samples. The results of the investigation identified petroleum contamination (VOCs) in four of seven samples collected with petroleum SVOC contamination reported in one of the four samples with elevated VOCs. Fill material was reported to be present at depths ranging from 2 to 7 ft below the surface. One or more metals and /or SVOCs were reported above restricted residential SCOs in the fill samples.

Groundwater at the Site is present at a depth of approximately 5-6 feet below surface grade. Petroleum VOCs were reported above groundwater standards in one of the samples with Chlorinated VOCs (CVOCs) reported in another sample. Figures for soil exceedances groundwater and soil vapor detections are included. A copy of the complete Data Summary is provided in digital form in **Attachment A**.

1.5.4 NYSDEC Spill Files

Two NYSDEC spill cases are associated with the property and are identified as Spill Numbers 9708308 and 9710270. Spill Number 9708308 was reported on October 15, 1997. According to the NYSDEC, a former automobile junk yard at the property was spilling oil from used vehicles onto the

ground. The NYSDEC investigated the spill incident and did not observe any oil-stained pavement at the property. This Spill case was closed by the NYSDEC on March 3, 1998. Spill Number 9710270 was reported on December 8, 1997. According to the NYSDEC, a former automobile junk yard at the property was burning used automobile tires and spilling oil onto on the ground. The NYSDEC investigated the spill incident and a full site remediation was conducted. This Spill case was closed by the NYSDEC on July 14, 2003. No other spill cases were reported by the NYSDECL.

6

2.0 REMEDIAL INVESTIGATION

2.1 Field Investigation

The field work portion of the RI was conducted by EBC from February 26, 2018 through March 20, 2018. The field investigation consisted of a geophysical survey, environmental sampling, field observations and measurements to determine:

- Local geologic/hydro geological conditions;
- Definition of source areas;
- Potential migration of contaminants from the Site to surrounding areas; and,
- Overall characterization of site-related contamination in all media.

The field effort included the collection and analysis of soil, groundwater and soil vapor samples. Laboratory services for soil, groundwater and soil vapor analysis were provided by Phoenix Environmental Laboratories of Manchester, CT (NY Cert No. 11301). A sample matrix showing the number, type and analysis of samples collected during the Remedial Investigation is provided as **Table 1**.

2.2 Deviations from the Remedial Investigation Work Plan

The following changes were made in performing the Remedial Investigation:

- The location of soil borings 17SB2 and 17SB3 were moved to the west towards the center of the Site due to accessibility issues.
- In addition to the analyses specified in the RIWP, three groundwater samples were analyzed for 1,4-dioxane and PFAS compounds as requested by DEC.
- One sample, as opposed to the two samples specified in the RAWP, was taken from 17SB8 due to refusal.

2.3 Soil Sampling

2.3.1 *Soil Borings*

A total of ten soil borings were advanced between February 26, 2018 to identify source areas and to obtain general soil quality information present at the Site (**Figure 3**).

Soil borings were collected in continuous five foot intervals to a terminal depth of 15 feet below grade. In accordance with the RI Work Plan, two to three samples were retained for analysis per boring with the exception of 17SB8, where one sample was taken.

Soil recovered from each soil boring was field screened by an environmental professional for the presence of VOCs with a photo-ionization detector (PID) and visually inspected for evidence of contamination. Soil samples exhibiting the highest levels of contamination were retained for analysis. Soil boring logs are provided in **Appendix B**.

Twenty-one (21) soil samples were retained for analysis from the ten (10) soil boring locations. Samples were collected in pre-cleaned, laboratory supplied glassware, stored in a cooler with ice and submitted for analysis to Phoenix Environmental Laboratories (Phoenix) of 587 East Middle Turnpike, Manchester, CT 06040, a New York State ELAP certified environmental laboratory (ELAP Certification No. 11301). Samples were analyzed for one or more of the following analyses depending on boring location and depth: VOCs (EPA Method 8260), SVOCs (EPA Method 8270), TAL metals and dissolved metals (EPA Method 6010), and Pesticides and PCBs (EPA Method 8081/8082). Soil sample analytical results were compared to NYSDEC Part 375.6 Unrestricted Use and Residential Restricted SCOs.

2.6 Monitoring Well Installation

Six monitoring wells (MW1 through MW6) were installed at the Site on February 26, 2018 and March 1, 2018. All of the wells were installed with a track mounted GeoprobeTM Model 6712DT drilling machine to a depth of approximately 12 feet below grade with 10 feet of 0.010 PVC well screen and 10 feet of PVC riser.

A No.00 morie filter-pack sand filled the annulus surrounding the screen within two feet above the top of the screen. A one-foot hydrated bentonite seal was then placed on top of the filter sand and the remainder of the borehole was backfilled to grade. Following installation, each of the wells were surveyed to determine relative casing elevation to the nearest 0.01 ft and horizontal position to the nearest 0.1 ft. Groundwater elevations and monitoring well specifications for each well is provided in **Table 2**. Monitoring well locations are identified in **Figure 4**. Well completion reports detailing monitoring well construction are provided in **Appendix C**.

Prior to sampling, a synoptic round of depth-to-groundwater (DTW) measurements were obtained from wells MW1-MW6 on March 16, 2018 to determine the water table elevation and to calculate the volume of standing water in the well. The depth to groundwater ranged from 3.30-5.49 feet below grade. Depth to water and survey readings are provided in **Table 2**. A groundwater elevation map from the March 2018 depth to water readings is provided as **Figure 5**.

2.6.1 Groundwater Sampling

Six monitoring wells (MW1-MW6) were sampled on March 16-20, 2018. Samples were collected from the monitoring wells using low-flow sampling techniques and were monitored continuously until parameters stabilized. A peristaltic pump and polyethylene sampling tube were used to purge and collect samples from each well location. Sample tubing and the silicone pump tubing were replaced between each sample location. Samples were collected directly into pre-cleaned laboratory supplied glassware, stored in a cooler with ice and submitted to Phoenix Environmental Laboratories of Manchester, CT, a New York State ELAP certified environmental laboratory (ELAP Certification No. 11301). Groundwater sampling logs are provided in **Appendix D**.

All groundwater samples from the monitoring wells were analyzed for VOCs / SVOCs by EPA method 8260 / 8270, target analyte list (TAL) metals and dissolved metals by EPA method 6010 and Pesticides/PCBs by method 8081/8082. Three of the groundwater samples were analyzed for PFAS compounds and 1,4-dioxane.

2.7 Soil Vapor Sampling

Eight soil vapor samples were collected during the RI. All samples (SG1 through SG9) were collected at a depth of 2 feet below grade on March 15, 2018. Soil vapor sampling locations are shown on **Figure 4**. All soil vapor samples were collected over a 2-hr sampling period.

Soil vapor samples were collected in accordance with the procedures as described in the *Guidance* for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH 10/06).

2.7.1 Installation of Soil Vapor Implants

Eight soil vapor implants were installed at the Site on February 26, 2018 and March 1, 2018. The vapor implants (GeoprobeTM Model AT86 series), were constructed of a 6-inch length of double woven stainless steel wire and installed to a depth of 2 ft below grade using GeoprobeTM equipment.

During installation, the barbed end of each implant was attached to ¼ inch polyethylene tubing which extended approximately 24 inches beyond that needed to reach the surface. The tubing was capped with a ¼ inch plastic end to prevent the infiltration of foreign particles into the tube. Coarse sand was placed around the vapor implant to a height of approximately 1 foot above the bottom of the implant. The remainder of the borehole was sealed with a bentonite slurry to the surface. The tubing and borehole were then sealed at the surface with hydrated granular bentonite and a 12" x 12" (approx.) plastic sheet.

2.7.2 Surface Seal Test Procedure

In accordance with NYSDOH guidance, a tracer gas (helium) was used as a quality assurance/quality control device to verify the integrity of the sampling point seal prior to collecting the samples. This was accomplished by enriching the air space above the seal with a tracer gas (helium) while continuously monitoring air drawn from the implant with a helium detector (Ionscience Gas Check G).

The tracer gas test procedure was employed at all eight soil vapor sampling locations. All seals tested tight with no infiltration of helium through the surface.

2.7.3 Soil Vapor Sample Collection

Following verification that the surface seal was tight, one to three volumes (i.e., the volume of the sample probe and tube) were purged with a handheld vacuum pump prior to collecting the samples to ensure samples collected were representative. After purging, a 6-liter summa canister, fitted with a 2-hour flow regulator was attached to the surface tube of each of the sampling points and the valve opened to initiate sampling. Sample identification, date, start time, start vacuum, end time and end vacuum were recorded on tags attached to each canister and on a sample log sheet (**Appendix E**). When the remaining vacuum in the canisters was between 0 and 7 inches Hg, (after approximately 2 hrs of run-time) the valve was closed and the canisters were detached from the sampling tube.

Sample canisters were picked up the following day by a Phoenix laboratory courier and delivered to the laboratory for analysis of VOCs by USEPA Method TO-15.

2.8 Laboratory Analysis

Data tables summarizing the laboratory results are provided in **Tables 3** through **13** and copies of the laboratory reports (with chains-of-custody) are included in digital format in **Appendix F**. Soil sample results were compared to both Unrestricted Use and Restricted Residential Soil Cleanup Objectives (SCOs) as promulgated in 6 NYCRR Subpart 375-6. Groundwater results were compared to NYSDEC Division of Water, Technical & Operational Guidance Series 1.1.1, Ambient Water Quality Standards and Guidance Values (AWQS), June 1998. Soil vapor analytical results were compared to Outdoor Background Levels for Selected Compounds and sub-slab and indoor air guidance levels as presented in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006. **Table 14** contains a list of parameters detected above Track 1 unrestricted soil cleanup objectives and the range in detections. **Table 15** contains a list of parameters detected above ambient groundwater standards and the range in detections.

2.8.1 Analytical Results – Soil Samples

A total of twenty-one (21) soil samples were collected from ten (10) soil borings for laboratory analysis of VOCs (EPA Method 8260), SVOCs (EPA Method 8270), TAL metals and pesticides/PCBs (EPA Method 8081/8082).

Soil sampling results are summarized in **Tables 3** through **6**. All soil results above Unrestricted Use SCOs are presented in **Table 14** and posted on **Figure 6**. Soil samples collected from the borings had elevated levels of VOCs, SVOCs, metals and pesticides that exceeded Unrestricted Use and/or Restricted Residential SCOs as follows:

VOCs in Soil Above Unrestricted Use SCOs:

17SB2 (2-4') –Ethylbenzene (34,000 μg/Kg), n-Propylbenzene (25,000 μg/Kg), o-Xylene (4,900 μg/Kg), sec-Butylbenzene (12,000 μg/Kg), toluene (1,800 μg/Kg)

17SB2 (5-7') – Acetone (82 µg/Kg)

17SB3 (5-7') – Acetone (350 μg/Kg)

17SB3 (12.5-15) – Acetone (77 µg/Kg)

17SB4 (5-7') – Acetone (120 µg/Kg)

17SB5 (2-4) – Acetone (56 μg/Kg)

17SB5 (5-7') – Acetone (210 µg/Kg)

17SB6 (0-6) – Acetone (67 μg/Kg)

17SB9 (2-4) — Benzene (190 µg/Kg), ethylbenzene (14,000 µg/Kg), n-Propylbenzene (8,200 µg/Kg), toluene (13,000 µg/Kg)

17SB9 (5-7') – Acetone (110 μg/Kg)

17SB10 (5-7') – Acetone (990 μg/Kg) and methyl ethyl ketone (2-Butanone) (340 μg/Kg)

VOCs in Soil Above Restricted Residential SCOs:

17SB2 (2-4') – 1,2,4-Trimethylbenzene (1,400,000 μg/Kg), 1,3,5-Trimethylbenzene (520,000 μg/Kg), m&p Xylenes (930,000 μg/Kg), naphthalene (210,000 μg/Kg)

17SB9 (2-4') - 1,2,4-Trimethylbenzene (53,000 µg/Kg), 1,3,5-Trimethylbenzene (18,000 µg/Kg)

SVOCs in Soil Above Unrestricted Use SCOs:

17SB2 (2-4') – Naphthalene (63,000 μg/Kg)

17SB7 (12.5-15') – Benzo(k)fluoranthene (1,200 μg/Kg), chrysene (2,700 μg/Kg)

17SB10 (5-7') – Chrysene (1,000 µg/Kg)

SVOCs in Soil Above Restricted Residential SCOs:

17SB5 (2-4') – Indeno(1,2,3-cd)pyrene (630 µg/Kg)

17SB7 (12.5-15') — Benz(a)anthracene (2,200 μ g/Kg), benzo(a)pyrene (1,800 μ g/Kg), benzo(b)fluoranthene (1,300 μ g/Kg), indeno(1,2,3-cd)pyrene (940 μ g/Kg)

17SB10 (2-4') – Indeno(1,2,3)cd-pyrene (540 µg/Kg)

17SB10 (5-7') – Benz(a)anthracene (1,100 μg/Kg)

Metals in Soil Above Unrestricted Use SCOs:

17SB2 (2-4') – Chromium (49.5 mg/Kg), copper (238 mg/Kg), lead (394 mg/Kg), mercury (0.56 mg/Kg), nickel (71.5 mg/Kg), zinc (247 mg/Kg)

17SB3 (12.5-15) – Chromium (37.7 mg/Kg), copper (56 mg/Kg), nickel (32 mg/Kg)

17SB5 (2-4') - Chromium (35.4 mg/Kg), copper (102 mg/Kg), nickel (36.8 mg/Kg), zinc (305 mg/Kg)

17SB6 (0-2') - Chromium (42.5 mg/Kg), lead (230 mg/Kg), mercury (0.23 mg/Kg), nickel (36 mg/Kg), zinc (150 mg/Kg)

17SB6 (4-6') – Chromium (86.9 mg/Kg), copper (55 mg/Kg), nickel (40.9 mg/Kg)

17SB7 (2-4') – Chromium (36.2 mg/Kg), copper (50.3 mg/Kg)

17SB7 (12.5-15') - Lead (141 mg/Kg), mercury (0.3 mg/Kg), zinc (128 mg/Kg)

17SB9 (2-4') - Copper (55.1 mg/Kg), lead (270 mg/Kg), mercury (0.23 mg/Kg), zinc (227 mg/Kg)

17SB10 (2-4') - Copper (116 mg/Kg), lead (177 mg/Kg), zinc (137 mg/Kg)

Duplicate 2 (17SB4 12.5'15') - Chromium (52 mg/Kg), copper (60.5 mg/Kg), nickel (36.9 mg/Kg)

Metals in Soil Above Restricted Residential SCOs:

17SB5 (12.5-15') –Lead (598 mg/Kg), mercury (0.91 mg/Kg)

17SB6 (4-6') –Barium (691 mg/Kg)

Duplicate 2 (17SB4 12.5-15') – Barium (371 mg/Kg)

Pesticides in Soil Above Unrestricted Use SCOs:

 $17SB2 (2-4') - 4,4'-DDE (11 \mu g/Kg), 4,4'-DDT (15 \mu g/Kg)$

 $17SB5 (2-4') - 4,4'-DDD (20 \mu g/Kg)$

 $17SB9 (2-4') - 4,4'-DDT (9.5 \mu g/Kg)$

 $17SB10 (2-4') - 4,4'-DDT (8.1 \mu g/Kg)$

No Pesticides were detected above NYSDEC Restricted Residential SCOs

No PCBs were detected above NYSDEC Unrestricted Use and Restricted Residential Use SCOs.

2.8.2 Analytical Results – Groundwater Samples

A total of six (6) groundwater samples were collected from six (6) groundwater monitoring wells for laboratory analysis of VOCs (EPA Method 8260), SVOCs (EPA Method 8270), TAL metals and pesticides/PCBs (EPA Method 8081/8082). Three of the groundwater samples were also analyzed for PFAS Compounds (EPA Method 537) and 1,4-dioxane (EPA Method 8260).

The results of groundwater samples collected during the RI are summarized in **Tables 7** through **11**. Several VOC and metals detections were in excess of the NYSDEC Division of Water, Technical & Operational Guidance Series 1.1.1, Ambient Water Quality Standards and Guidance Values (AWQS), June 1998.

VOCs in Groundwater Above NYSDEC AWQS:

MWI-1,2,4-Trimethylbenzene (370 µg/L), 1,3,5-Trimethylbenzene (170 µg/L), benzene (6.8 µg/L), ethylbenzene (900 µg/L), isopropylbenzene (98 µg/L), m&p xylenes (1,800 µg/L), naphthalene (55 µg/L), n-Butylbenzene (6.3 µg/L), n-Propylbenzene (180 µg/L), o-Xylene (130 µg/L), sec-Butylbenzene (9.8 µg/L), toluene (91 µg/L)

MW2 –Isopropylbenzene (15 μg/L), n-Propylbenzene (40 μg/L), sec-Butylbenzene (7.4 μg/L)

MW3 – Chloroform (16 µg/L)

MW4 - Chloroform (9.2 µg/L)

Emerging Contaminants in Groundwater Above NYSDEC AWQS:

No emerging contaminants were identified above NYSDEC AWQS as there are currently no standards in place for them.

12

SVOCs in Groundwater Above NYSDEC AWQS:

MW1 - Naphthalene (38 μg/L)

MW2 – Benz(a)anthracene (0.08 µg/L), benzo(b)fluoranthene (0.07 µg/L), benzo(k)fluoranthene (0.07 µg/L), chrysene (0.07 µg/L), indeno(1,2,3-cd)pyrene (0.04 µg/L)

MW3 – Benz(a)anthracene (0.08 μ g/L), benzo(b)fluoranthene (0.1 μ g/L), benzo(k)fluoranthene (0.09 μ g/L), chrysene (0.09 μ g/L), indeno(1,2,3-cd)pyrene (0.05 μ g/L)

MW4 – Benz(a)anthracene (0.16 μ g/L), benzo(b)fluoranthene (0.15 μ g/L), benzo(k)fluoranthene (0.14 μ g/L), chrysene (0.16 μ g/L), indeno(1,2,3-cd)pyrene (0.12 μ g/L)

MW5- Benzo(b)fluoranthene (0.02 μg/L)

MW6 – Benzo(b)fluoranthene (0.02 µg/L)

GW Duplicate (MW5)- Benzo(b)fluoranthene (0.02 μg/L), benzo(k)fluoranthene (0.02 μg/L)

Dissolved Metals in Groundwater Above NYSDEC AWQS:

MW1 – Iron (13.4 mg/L), magnesium (37.6 mg/L), manganese (5.63 mg/L), sodium (71.1 mg/L)

MW2 – Iron (0.65 mg/L), manganese (0.881 mg/L), sodium (80.5 mg/L)

MW3 – Sodium (35.1 mg/L)

MW4 –Manganese (0.901 mg/L), sodium (76.3 mg/L)

MW5 – Iron (6.19 mg/L), manganese (1.31 mg/L), sodium (121 mg/L)

MW6 – Iron (1.44 mg/L), manganese (0.429 mg/L), sodium (97.8 mg/L)

GW Duplicate (MW5) – Iron (8.99 mg/L), manganese (1.29 mg/L), sodium (117 mg/L)

Total Metals in Groundwater Above NYSDEC AWQS:

Multiple metals were reported above standards in the unfiltered samples from all of the wells including chromium, copper, iron, lead, magnesium, manganese, and sodium. As demonstrated by the filtered samples, these detections are a function of suspended solids in the sample and are not representative of metals concentrations dissolved in the groundwater.

Groundwater parameters reported above groundwater standards are presented in **Table 14** and posted on **Figure 7**.

2.8.3 Analytical Results – Soil Vapor Samples

In order to determine the vapor quality in the soil beneath the Site, soil vapor samples were collected from eight soil vapor implants (SG1 - SG8) installed across the Site. Analytical results were compared to the Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor values, 2003).

Total petroleum-related VOCs (BTEX) were low in soil vapor samples. Total BTEX compounds ranged from $8.9 \,\mu\text{g/m}^3$ (SG8) to $50.02 \,\mu\text{g/m}^3$ (SG7).

Benzene was detected in 5 of the 8 soil vapor samples, and benzene concentrations ranged from 1.1 $\mu g/m^3$ in SG3 located in the central portion of the Site to 27.9 $\mu g/m^3$ in SG4 located in the north-central portion of the Site. Ethylbenzene was detected in 3 of the 8 soil vapor samples, and concentrations ranged from 1.3 $\mu g/m^3$ in SG4 located in the north-central portion of the Site to 8.29 $\mu g/m^3$ in SG7 located on the eastern portion of the Site. M&p xylenes were detected in all 8 soil vapor samples, and concentrations ranged from 3.14 $\mu g/m^3$ in SG6 in the southeast corner of the Site to 11 $\mu g/m^3$ in SG1 located on the northeastern border of the Site. O-xylenes were detected in all 8 soil vapor samples, and concentrations ranged from 1.07 $\mu g/m^3$ in SG2 located on the northern border of the Site to 8.03 $\mu g/m^3$ in SG7 located on the eastern portion of the Site. Toluene was detected in all 8 soil vapor samples, and concentrations ranged from 4.44 $\mu g/m^3$ in SG6 in the southeast corner of the Site to 21.1 $\mu g/m^3$ in SG1 located on the northeastern border of the Site.

Chlorinated VOCs (CVOCs) were reported in all of the soil vapor samples with carbon tetrachloride reported in all 8 soil vapor samples, tetrachloroethene (PCE) reported in 6 of the 8 soil vapor samples, and trichloroethene (TCE) reported in 1 of the 8 soil vapor samples.

Carbon tetrachloride concentrations ranged from 0. 3 $\mu g/m^3$ in SG5 located in the northeastern corner of the Site to 0.62 $\mu g/m^3$ in SG3 located in the central portion of the Site. PCE concentrations ranged from 0.48 $\mu g/m^3$ in SG8 located in the historic motorcycle repair shop building on the western portion of the Site to 1.71 $\mu g/m^3$ in SG2 located on the northern border of the Site. Detectable concentrations of TCE were identified at 0.38 $\mu g/m^3$ in SG7 located on the eastern portion of the Site.

Soil vapor results are summarized on Table 13 and posted on Figure 8.

2.8.4 Data Usability Summary Report

Data validation services were provided by Koman Government Solutions, LLC (KGS) of Westborough, Massachusetts. KGS reported that, in general, the data are valid as reported and may be used for decision making purposes. Selected data points were disqualified as they were outside laboratory control limits and their results were estimated. In addition, the Department of Environmental Conservation has received notification that the electronic data deliverables (EDDs) package was submitted and successfully uploaded. The Data Usability Summary Reports prepared by KGS are provided in **Appendix G**.

3.0 HYDROGEOLOGIC ASSESSMENT AND PHYSICAL SETTING

3.1 Site Topography

The elevation of the Site is approximately 7 feet above the National Geodetic Vertical Datum (NGVD). The area topography gradually slopes to the east toward the rail yard.

3.2 Surrounding Land Use

The area surrounding the property is highly urbanized and is primarily industrial / commercial in accordance with the M1-1 which surrounds the property. Adjacent land use includes a NYC Transit Authority rail yard and related facilities to the east, commercial properties to the north and west consisting primarily of auto repair shops and warehouse buildings, and residential and commercial office buildings to the south.

3.3 Regional Geology / Hydrogeology

According to geologic maps of the area created by the United States Geologic Survey (USGS), the bedrock in this area of the Bronx is the Pelham Bay Member of the Hartland formation which consists of middle Ordovician to lower Cambrian age metamorphic plagioclase-sillimanite-biotite gneisses of middle Ordovician to lower Cambrian age. The depth to bedrock in this area of the Bronx is approximately 20 ft below surface grade. Unconsolidated sediments overlie the bedrock and consist of Pleistocene aged sand, gravel and silty clays, deposited by glacial-fluvial activity. Nonnative artificial fill materials consisting of dredge spoils, rubble and / or other materials have historically been used to raise and improve the drainage of low lying areas and reclaim land and marsh areas associated with Westchester Creek.

3.4 Site Geology / Hydrogeology

Subsurface soils at the Site consist of historic fill materials to a depth of approximately 2 to 5 feet below grade with fill in some areas extending to 12 feet below grade. Silty sand is present immediately below this layer (**Figure 9**).

Groundwater at the Site is present under water table conditions at a depth of 3.3 to 5.5 feet below grade (**Table 2**). Based upon on-site measurements, groundwater flow is to the northeast and east (**Figure 5**).

4.0 NATURE AND EXTENT OF CONTAMINATION

4.1 Identification of Source Areas

Shallow petroleum VOC contamination was reported in two areas of the Site; central northwest area and the central southeast area. The northern area is considerable larger and has higher VOC concentrations that that of the southern area. Based on borings from previous investigations, the north impacted area is approximately 9,000 sf. The south impacted area is estimated to be approximately 1,000 sf. Total petroleum VOCs in the north area exceed 3,000,000 ug/kg while VOCs in the south impact are total 217,000 ug/kg. In both cases the depth of impact is limited to the water table and does not extend beyond 5 ft.

Historic fill materials have been identified across the Site to depths 2 to 6 feet below grade extending as deep as 10 feet in at least one of the borings. Depending on location, the historic fill material contains one or more metals including barium, chromium, copper, lead, mercury, nickel and zinc, pesticides and PAHs above unrestricted and / or restricted use SCOs.

4.2 Groundwater Impacts

Petroleum VOCs above NYSDEC Ambient Water Quality Standards (AWQS) were reported on the central northwest are of the Site which correlates with the area of soil impact. Total petroleum VOCs in groundwater in this area ranged from 78 ug/L to 2746 ug/L. With the exception of chloroform at concentrations slightly above its standard at two locations, no other VOCs were detected above AWQS across the Site.

SVOC detections above groundwater standards were limited to naphthalene and those PAH compounds with standards in the parts per trillion range.

Several dissolved metals were detected above standards including iron, manganese and sodium in most of the wells. These metals are consistent with general groundwater quality throughout the area and are indicative of salt water intrusion which is likely related to reclaimed marshlands located just east of the Site at the NYC Transit Authority facility.

Low levels of PFAS compounds were detected in the central northeast of the Site, with the highest detections identified on the central portion.

4.3 Soil-Vapor Impacts

Petroleum-related and chlorinated VOCs were generally low in soil vapor samples and consistent with typical levels. Acetone was reported in high concentrations in several samples and is most likely a laboratory introduced contaminant. Lighter end petroleum compounds such as heptane, hexane and ethanol may be related to incidental surface spillage from parked vehicles and equipment.

4.4 Site Conceptual Model

Petroleum contamination at the Site consists of gasoline VOCs in soil in two areas: northwest-central and southeast central. As noted the north impact area is significantly larger with much greater VOC

concentrations. There are no known or suspect underground storage tanks (USTs) in this area. As noted in previous reports, surface spills associated with the auto dismantling operations have been reported. This combined with the long history of use as a "junk yard" and equipment storage yard, the lack of a surface cover and the presence of a shallow water table, it is likely that the petroleum contamination is related to surface spills which have occurred over time (1966-2013). Obviously, the north area seems to have received the greatest impact. That is consistent with surface spills related to historic use as most of the operations were concentrated in the north area of the Site.

Groundwater impacted with petroleum VOCs is associated with the petroleum impacted soil areas. In this case gasoline released at the surface migrated through the 4-5 feet of the soil column to the shallow water table. Gasoline constituents then dissolved into the groundwater which was in contact with the contaminated soil and migrated with groundwater flow.

The metals and SVOCs reported in soil are related to fill materials documented at the Site which was likely filled in at some point due to its low elevation, proximity to a marshland and the shallow water table.

5.0 QUALITATIVE EXPOSURE ASSESSMENT

The objective of the qualitative exposure assessment under the Brownfields Cleanup Program (BCP) is to identify potential receptors to the contaminants of concern (COC) that are present at, or migrating from, the Site. The identification of exposure pathways describes the route that the COC takes to travel from the source to the receptor. An identified pathway indicates that the potential for exposure exists; it does not imply that exposures actually occur. An exposure pathway has five elements; a contaminant source, release and transport mechanisms, point of exposure, route of exposure and a receptor population.

The potential exposure pathways identified below, represent both current and future exposure scenarios.

5.1 Contaminant Source

Source areas of the Site include petroleum VOCs in soil in two general areas: northwest central and southeast central. The impact in these areas extends to the shallow water table at 4-5 ft below surface grade.

Elevated levels of metals, PAHs and pesticides are also present in fill materials throughout the Site.

5.2 Contaminant Release and Transport Mechanism

Petroleum contamination is present in soil in the two impacted areas which put it in direct contact with the groundwater. Contaminants in surficial soil can affect groundwater quality as surface runoff infiltrates the impacted zone and acts as transport water for dissolved constituents. Although surficial petroleum impacts were not identified, they have undoubtably occurred in the past.

Dissolved components migrating from the source area or infiltrating through surface runoff would travel south to southeast with groundwater flow.

There appears to be some transfer of lighter petroleum VOCs to the vapor phase throughout the Site. These lighter end petroleum VOCs such as heptanes, hexane and ethanol are likely off-gassing from impacted soil.

5.3 Point of Exposure, Route of Exposure and Potentially Exposed Populations

<u>Potential On-Site Exposures</u>: Remediation workers and construction workers engaged in the excavation of impacted and non-impacted soil at the site may be exposed to petroleum VOCs / SVOCs, CVOCs, pesticides and heavy metals through several routes. Workers excavating impacted soil may be exposed through inhalation, ingestion and dermal contact. A site specific Health and Safety Plan has been developed to identify and minimize the potential hazards to on-site workers. Site trespassers could also be exposed to impacted soil during excavation, however, security measures including an 8 ft high construction fence and 24 hr security will minimize potential exposure through this route. Potential vapor intrusion does not appear to be a significant concern for

residents of the planned construction. In addition remediation of the source areas is expected to further reduce or eliminate this potential.

<u>Potential Off-Site Exposures</u>: Off-Site residents could also be exposed to dust or vapors during the excavation of impacted soil. A site specific Community Air Monitoring Plan has been developed to identify and minimize the potential for off-site exposure to residents through continuous air monitoring during excavation activity.

The entire area is serviced by the New York City Water System which distributes water from the Croton Reservoir system. Since there are no public or private potable supply wells in the area, exposure from contact with tap water is not a concern. Off-site exposure is therefore limited to vapor intrusion from light end petroleum VOCs. This potential will be further reduced following the removal of the source are under the planned redevelopment of the Site.

<u>Potential Off-Site Environmental Impacts</u>: Since petroleum VOCs in groundwater may be migrating beneath the Site at low concentrations in a northeasterly direction, the groundwater to surface water discharge pathway was evaluated. The nearest surface water to the Site is Westchester Creek located approximately 925 feet to the southeast. Based upon the concentrations of contaminants currently in groundwater beneath the Site, there are no expected impacts to surface water environments from contaminants migrating from the Site.

6.0 CONCLUSIONS AND RECOMENDATIONS

Subsurface soils at the Site consist of historic fill materials to a depth of approximately 2 to 7 feet below grade with some areas extending to 10 feet below grade. Silty sand is present immediately below this layer. The fill material contains elevated levels of metals, pesticides and SVOCs.

Groundwater at the Site is present under water table conditions at a depth of 5 to 6 feet below grade and flows north and northeast.

The results of sampling performed during this RI, identified petroleum VOCs in two main areas of the property. The impacted area in the northwest-central area is approximately 9,000 sf with total VOC concentrations above 3,000,000 ug/kg. Petroleum contamination in the southeast-central area is approximately 1,000 sf with VOC concentrations of approximately 217,000 ug/kg. In both cases the vertical depth of contamination extends to the water table approximately 5 to 6 ft below grade.

Historic fill material has been identified across the Site to depths 2 to 6 feet below grade extending as deep as 10 feet in at least one of the borings. Depending on location, the historic fill material contains one or more metals including barium, chromium, copper, lead, mercury, nickel and zinc, pesticides and PAHs above unrestricted and / or restricted use SCOs.

Petroleum VOCs above NYSDEC AWQS standards were reported within the northwest-central impacted area. No other petroleum VOCs were detected above NYSDEC AWQS across the Site.

Petroleum-related and chlorinated VOCs were generally low in soil vapor samples.

The qualitative exposure assessment identified potential completed routes of exposure to construction workers and remediation workers through inhalation, ingestion and dermal contact of petroleum compounds, VOCs, pesticides and heavy metals during excavation activities. The Health and Safety Plan prepared for the site identifies such exposures and provides instructions for on-site workers to minimize potential exposure. Vapor exposure for occupants of the proposed building are minimal. No potential off-site exposures were identified.

Potential environmental impacts through the groundwater to surface water discharge were considered unlikely based on the concentrations of VOCs in groundwater, the groundwater flow direction at the Site and the distance to Westchester Creek.

Recommendations include excavation and disposal of petroleum contaminated soil within the source areas, and proper handling and disposal of all soils excavated for structural elements of the new building. This work would be performed under an approved Remedial Action Work Plan which includes a Soil Management Plan, a Construction Health and Safety Plan and a Community Air Monitoring Plan.

Construction dewatering will require treatment prior to discharge into the combined sewer system.

7.0 REFERENCES

6 NYCRR Part 375 Environmental Remediation Programs Subparts 375-1, 375-3 and 375-6.

Environmental Business Consultants, Remedial Investigation Work Plan – January 2018.

NYSDEC, Division of Environmental Remediation, May 2004, *Draft Brownfield Program Cleanup Guide*.

NYSDEC, Division of Environmental Remediation, December 2002, *DER-10*, *Technical Guidance* for Site Investigation and Remediation.

NYSDEC, Division of Environmental Remediation, December 14, 2006, 6 NYCRR Part 375, Environmental Remediation Programs, subparts 375-1 to 375-4 & 375-6.

NYSDEC, Division of Water, June 1998, Addendum April 2000, Technical and Administrative Guidance Series 1:1:1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

NYSDOH, Center for Environmental Health, October 2006, Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

TABLES

TABLE 1 SUMMARY OF SAMPLING PROGRAM RATIONALE AND ANALYSIS

Matrix	Location	Approximate Number of Samples	Rationale for Sampling	Laboratory Analysis
Subsurface soil (0-2 feet below grade)	from 1 of the borings throughout the site.	1	To assess quality of historic fill across the Site.	VOCs EPA Method 8260B, SVOCs EPA Method 8270, pesticide / PCBs EPA Method 8081/8082, TAL metals EPA 6010
Subsurface soil (2 to 4 feet bgs)	from 5 of the borings throughout the site.	5	To assess quality of historic fill across the Site.	VOCs EPA Method 8260B, SVOCs EPA Method 8270, pesticide / PCBs EPA Method 8081/8082, TAL metals EPA 6010
Subsurface soil (4-6 feet below grade.)	from 1 of the borings throughout the site.	1	To evaluate the extent of soil impact and delineate petroleum source areas	VOCs EPA Method 8260B, SVOCs EPA Method 8270
Subsurface soil (5-7 feet bgs)	from 9 borings throughout the site.	9	To evaluate the extent of soil impact and delineate petroleum source areas	VOCs EPA Method 8260B, SVOCs EPA Method 8270
Subsurface soil (12.5-15 feet below grade)	from 5 of the borings throughout the site.	5	To assess quality of native soil at the site with respect to Unrestricted SCOs at the Site.	VOCs EPA Method 8260B, SVOCs EPA Method 8270, EPA Method 8270, pesticide / PCBs EPA Method 8081/8082, TAL metals EPA 6010.
Total (Soils)		21		
Groundwater (water table)	From 3 monitoring wells across the Site.	3	To assess groundwater quality at the Site .	PFAS EPA method 537, 1,4- Dioxine 8260
Groundwater (water table)	From 6 monitoring wells across the Site.	6	To assess groundwater quality at the Site.	VOCs EPA Method 8260B, SVOCs EPA Method 8270, pesticide / PCBs EPA Method 8081/8082, TAL metals EPA 6010 dissolved and total.
Total (Groundwater)		6		
Soil Gas (2 ft below existing grade)	8 soil gas implants installed across the Site.	8	Evaluate soil gas across the Site.	VOCs EPA Method TO15
Total (Soil Gas)		8		
MS/MSD	Matrix spike and Matrix spike duplicates at the rate 5%	3	To meet requirements of QA / QC program	4 soil and 2 groundwater MS/MSD for VOCs EPA Method 8260B, SVOCs EPA Method 8270, pesticide / PCBs EPA Method 8081/8082, TAL metals. Soil for VOCs EPA Method 8260B, SVOCs EPA Method 8270 and TAL metals EPA 6010.
Trip Blanks	One laboratory prepared trip blank to accompany samples each time they are delivered to the laboratory.	4	To meet requirements of QA / QC program	VOCs EPA Method 8260B
Total (QA / QC Samples)		7		

TABLE 2 Monitoring Well Specifications and Elevation

Well No.	Well Diamter (in)	Total Well Depth (ft)	Screened Interval	Survey Reading (ft)	Casing Elevation	DTW 3/16/2018	DTP	PT	GW ELV 3/16/2018
MW1	1	12	2-12 ft	3.07	96.93	5.21	-	-	91.72
MW2	1	12	2-12 ft	1.87	98.13	5.49	-	-	92.64
MW3	1	12	2-12 ft	2.62	97.38	3.53	-	-	93.85
MW4	1	12	2-12 ft	4.54	95.46	3.30	-	-	92.16
MW5	1	12	2-12 ft	3.44	96.56	5.01	-	-	91.55
MW6	1	12	2-12 ft	4.56	95.44	3.82	-	-	91.62

			B1		В	2	В		ise II Results		16	B5			B10			1	7SB1			RIR	Results	- February	2018		17SB2				
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil	NYDEC Part 375.6 Restricted Residential Soil	(4-5)	(1-:		(3-4		(3-5")	(0-2')		(5-7')		(6-8")		(5-7')		T	(12.5-1		+		(2-4')			(5-7')		T	(12.5-15	
	Cleanup Objectives*	Cleanup Objectives*	5/26/2 μg/K	g	5/26/2 μg/l	Kg	5/26/2 μg/l	Kg	5/26/20 μg/K	g	5/26/201 μg/Kg		5/26/2016 μg/Kg		5/26/2016 μg/Kg		2/26/2018 μg/Kg			2/26/20 μg/K	3			26/2018 μg/Kg			2/26/2018 μg/Kg			2/26/201 μg/Kg	
,1,1,2-Tetrachlorothane			Result <1400	1400	Result <880	RL 880	<1300	RL 1300	Result <4.8	4.8	Result <800		Result <24	24 R	esult RL	Result <24	24 C	Qual MDI	Result	19	Qual M	DL Resi		RL Qual	1200	Result < 18	RL Qu	mal MDI	<6.0	RL 6.0	Qual N
I,1,1-Trichloroethane	680	100.000	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9	5.9 <	4.2 4.2	< 380	380	U 38	< 4.7	4.7	U 0		_	880 U	600	< 4.4	4.4 L	0.44	_	6.0	U
I,1,2,2-Tetrachloroethane		100,000	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200 -	< 5.9	5.9 <	4.2 4.2	< 380	380	U 77	< 4.7	4.7	U 0.	94 < 60	00 6,	000 U	1200	< 4.4	4.4 L	0.88	< 6.0	6.0	U
I,1,2-Trichloroethane			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200 -	< 5.9	5.9	4.2 4.2	< 380	380	U 77	< 4.7	4.7	U 0.	94 < 60	00 6,	000 U	1200	< 4.4	4.4 L	0.88	< 6.0	6.0	U
I,1-Dichloroethane	270	26,000	< 270	270	< 220	220	< 270	270	< 4.8		< 200		0.0	5.9	4.2 4.2	< 270	270	U 77	< 4.7	4.7	U 0.	94 < 12	00 1,	200 U	1200	< 4.4	4.4 L	0.88	0.0	6.0	U
1,1-Dichloroethene	330	100,000	< 330	330	< 220	220	< 330	330	< 4.8		< 200		< 5.9	_	4.2 4.2	< 330	330	U 38	< 4.7	4.7	U 0.		_	300 U	600	< 4.4	4.4 L	0.44		6.0	U C
I,1-Dichloropropene			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200 -	< 5.9	_	4.2 4.2	< 380	380	U 38	< 4.7	4.7	U 0	47 < 60	00 6,	000 U	600	< 4.4	4.4 L	0.44		6.0	U C
I,2,3-Trichlorobenzene			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 380	380	U 77	< 4.7	4.7	U 0.	94 < 60	_	000 U	1200	< 4.4	4.4 L	0.88	< 6.0	6.0	U
1,2,3-Trichloropropane			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 380	380	U 38	< 4.7	4.7	U 0.	47 < 60		000 U	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U
I,2,4-Trichlorobenzene			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9	_	4.2 4.2	< 380	380	U 77	< 4.7	4.7	U 0			000 U	1200	< 4.4	4.4 L	0.88	< 6.0	6.0	U
I,2,4-Trimethylbenzene	3,600	52,000	4,000	350	3,900 < 220	220	720	330	230 < 4.8		6,300 < 200		1.8 < 5.9	_	4.2 4.2 4.2 4.2	< 380	380	U 38	120 < 4.7	4.7	- 0.	47 1400		1000 D	6000	5.4	4.4 L	- 0.44	< 6.0	6.0	U
I,2-Dibromo-3-chloropropane I,2-Dibromomethane				350	-	220		330	_	4.8				_	4.2 4.2 4.2 4.2		380	U //	< 4.7	4.7	U 0.	47 < 60		000 U	1200	< 4.4	4.4 L	0.88	_	6.0	U
I,2-Dichlorobenzene			< 350	350	< 220	220	< 330	330	< 4.8	4.0	< 200		< 5.9		4.2 4.2	< 380	300	U 30	< 4.7	4.7	U 0.	47 < 11	_	100 11	600	< 4.4	4.4 U	0.44	< 6.0	6.0	11 0
I.2-Dichloroethane	1,100	100,000	< 35	350	< 22	220	< 33	330	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 38	38	U 38	< 4.7	4.7	U 0.	**	00 1,	00 0	600	< 4.4	4.4 U	0.44	< 6.0	6.0	11 0
I,2-Dichloropropane	20	3,100	< 350	350	< 220	220	e 330	330	< 4.8	4.8	< 200		< 5.9	_	4.2 4.2	< 380	380	11 77	< 4.7	4.7	11 0	94 < 60	nn s	000 0	1200	< 4.4	4.4 L	0.44	< 6.0	6.0	11
I,3,5-Trimethylbenzene	8,400	52,000	2,000	350	740	220	350	330	47	320	2,600		1.2	_	4.2 4.2	< 380	380	U 38	55	4.7	- 0.	47 520.0	000 60	1000 D	6000	2.4	4.4	0.44	_	6.0	U
I,3-Dichlorobenzene	2,400	4,900	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	_	< 5.9		4.2 4.2	< 380	380	U 38	< 4.7	4.7	U 0.	47 < 24		400 U	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U
I,3-Dichloropropane	2,400	7,000	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9	_	4.2 4.2	< 380	380	U 77	< 4.7	4.7	U 0.	94 < 60		000 U	1200	< 4.4	4.4 L	0.88	< 6.0	6.0	U
I,4-Dichlorobenzene	1,800	13,000	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9	5.9 <	4.2 4.2	< 380	380	U 38	< 4.7	4.7	U 0.	47 < 18	00 1,	800 U	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U C
2,2-Dichloropropane			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9	5.9	4.2 4.2	< 380	380	U 38	< 4.7	4.7	U 0.	47 < 60	00 6,	000 U	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U
2-Chlorotoluene			< 350	350	< 220	220	110	330	< 4.8	4.8	< 200	200	< 5.9	5.9 <	4.2 4.2	< 380	380	U 77	< 4.7	4.7	U 0.	94 < 60	00 6,	000 U	1200	< 4.4	4.4 L	0.88	< 6.0	6.0	U
2-Hexanone (Methyl Butyl Ketone)			< 1800	1,800	< 1100	1,100	< 1600	1,600	< 24	24	< 1000		< 29		21 21	< 1900	1,900	U 380	< 24	24	U 4	.7 < 301	000 30	0000 U	6000	< 22	22 L	4.4	< 30	30	U
2-IsopropyItoluene			58	350	1,500	220	< 330	330	0.96	4.8	120	200 (0.92		4.2 4.2	48	380	J 38	0.68	4.7	J 0.	47 7,8	00 6,	000	600	5.7	4.4	- 0.44		6.0	J
1-Chlorotoluene			< 350	350	< 220	220	49	330	< 4.8	4.8	< 200	200 4	< 5.9	_	4.2 4.2	< 380	380	U 38	< 4.7	4.7	U 0.	47 < 60	00 6,	000 U	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U
4-Methyl-2-Pentanone			< 1800	1,800	< 1100	1,100	< 1600	1,600	< 24		< 1000		< 29		21 21	< 1900	1,900	U 380	< 24	24	U 4	- 001		0000 U	6000	< 22	22 L	1 4.4		30	U
Acetone	50	100,000	360	3,500	< 220	220	440	3,200	68	48	< 200		62	50	40 42	< 380	380	U 380	19	24	JS 4	.7 < 60	00 6,	000 U	6000	82	22 8	4.4		30	S
Acrolein			<1400	1,400	<880	880	<1300	1,300	<19 <9.5	19	<800		<24	24 •	:17 17	<380	380	U 77	<4.7	4.7	U 0.	94 <60	00 6,	000 U	1200	<4.4	4.4 L	0.88	<6.0	6.0	U
Acrylonitrile			<1400 480	1,400	< 880 860	880	<1300 430	1,300	< 4.8		< 800 21				4.2 4.2	<1500	1,500	U 38	<19	19	U 0.	47 < 240 47 1,5 0		1000 U	600	< 4.4	18 L	0.44	<24	24	U
Benzene Bromobenzene	60	4,800	< 350	350	< 220	220	< 330	330	< 4.8		< 200		< 5.9 : < 5.9 :		4.2 4.2	< 380	290	U 38	< 4.7	4.7	- 0.	47 1,50		000 J	600	< 4.4	4.4 L	0.44	3.3	6.0	J
Bromochloromethane			< 350	350	< 220	220	< 330	330	< 4.8	4.0	< 200		< 5.9		4.2 4.2	< 380	380	11 38	< 4.7	4.7	11 0	47 < 60		000 0	600	< 4.4	4.4 L	0.44	< 6.0	6.0	11 0
Bromodichloromethane			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 380	380	U 77	< 4.7	4.7	U 0	94 < 60	00 0,	000 U	1200	< 4.4	4.4	0.44	< 6.0	6.0	U
Bromoform			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 380	380	U 77	< 4.7	4.7	U 0	94 < 60	00 6,	000 U	1200	< 4.4	4.4 L	0.88	< 6.0	6.0	U
Bromomethane			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 380	380	U 150	< 4.7	4.7	U 1	.9 < 60		000 U	2400	< 4.4	4.4 L	1.8	< 6.0	6.0	U
Carbon Disulfide			< 350	350	< 220	220	< 330	330	3.5	4.8	< 200		1.7		1.5 4.2	< 380		U 77	1.3	4.7	J 0.			000 U	1200	1.8	4.4	0.88	_	6.0	U
Carbon tetrachloride	760	2,400	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 380	380	U 77	< 4.7	4.7	U 0.	94 < 12	00 1,	200 U	1200	< 4.4	4.4 L	0.88	< 6.0	6.0	U
Chlorobenzene	1,100	100,000	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9	5.9 <	4.2 4.2	< 380	380	U 38	< 4.7	4.7	U 0.	47 < 11	00 1,	100 U	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U C
Chloroethane			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200 -	< 5.9	5.9	4.2 4.2	< 380	380	U 38	< 4.7	4.7	U 0.	47 < 60	00 6,	000 U	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U
Chloroform	370	49,000	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 370	370	U 38	< 4.7	4.7	U 0.	47 < 60	00 6	300 U	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U C
Chloromethane			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 380	380	U 77	< 4.7	4.7	U 0	94 < 60		000 U	1200	< 4.4	4.4 L	0.88	< 6.0	6.0	U
cis-1,2-Dichloroethene	250	100,000	< 250	250	< 220	220	< 250	250	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 250	250	U 38	< 4.7	4.7	U 0.	47 < 60	_	000 U	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U C
cis-1,3-Dichloropropene			< 350	350	< 220	220	< 330	330	< 4.8		< 200		< 5.9		4.2 4.2	< 380	380	U 38	< 4.7	4.7	U 0.	47 < 60		000 U	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U
Dibromochloromethane			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 380	380	U 77	< 4.7	4.7	U 0.			000 U	1200	< 4.4	4.4 L	0.88	< 6.0	6.0	U
Dibromomethane Dichlorodifluoromethane			< 350	350	< 220	220	< 330	330	< 4.8		< 200		< 5.9		4.2 4.2 4.2 4.2	< 380	380	U 77	< 4.7	4.7	U 0.	94 < 60 47 < 60		000 U	1200	< 4.4	4.4 L	0.88		6.0	U
Ethylbenzene			510	350	11,000	220	230	330	< 4.8		350		< 5.9		4.2 4.2 4.2 4.2	< 380	380	U 38	330	4.7	0 0.	0 34,0		000 U	600	17	4.4 U	0.44	1.8	6.0	0 0
Hexachlorobutadiene	1,000	41,000	< 350	350	< 220	220	< 330	330	< 4.0		< 200		< 5.9		4.2 4.2	< 380	380	U 38	< 4.7	4.7	11 0	47 < 60		000 -	600	< 4.4	4.4	0.44	< 6.0	6.0	J (
			110	350	2,800	220	53	330	40		270		< 5.9		4.2 4.2	230	230	_ 38	43	4.7	- n	47 9,70		000 -	600	52	4.4	. 0.44	27	6.0	- 1
sopropylbenzene n&p-Xylenes	260	100,000	3,000	350	8,000	220	1,800	330	91		1,300		< 5.9		4.2 4.2	< 380	380	U 77	740	300	- 5	9 930.0		1000 D	12000	27	4.4	- 0.88		6.0	J
Methyl Ethyl Ketone (2-Butanone)	120	100,000	< 350	350	< 220	220	< 330	330	< 29	29	< 200		15		3.4 25	< 380	380	U 380	< 28	28	U 4	7 < 60	-	000 U	6000	< 27	27 L	1 4.4	< 36	36	U
Methyl t-butyl ether (MTBE)	930	100,000	< 710	710	280	440	< 650	650	< 9.5	9.5	130		9.7		8.4 8.4	< 770	770	U 77	< 9.4	9.4	U 0.	94 < 12	00 1,	200 U	1200	< 8.8	8.8 L	0.88	< 12	12	U
Methylene chloride	50	100,000	< 350	350	< 22	22	< 330	330	< 4.8	4.8	< 200	200 -	< 5.9	5.9 <	4.2 4.2	< 380	380	U 380		4.7	- 4			000 U	6000	< 4.4	4.4 L	4.4	< 6.0	6.0	U
Naphthalene	12,000	100,000	910	350	46,000	4,400	1,300	330	< 4.8	4.8	13,000	4,000	140 :	360 <	4.2 4.2	< 380	380	U 77	13	4.7	- 0.	94 210,0	6,	000 -	1200	2.8	4.4	0.88	< 6.0	6.0	U
n-Butylbenzene	12,000	100,000	210	350	7,400	4,400	60	330	96	320	880	200 -	< 5.9		4.2 4.2	760	380	- 38	3.4	4.7	J 0.			000 U	600	7.6	4.4	- 0.44		6.0	J
n-Propylbenzene	3,900	100,000	380	350	9,100	4,400	140	330	180		830		< 5.9	_	4.2 4.2	1,500	380	- 77	89	4.7	- 0.	94 25,0		000 -	1200	140	4.4	- 0.88	47	6.0	-
o-Xylene	260	100,000	480	350	870	220	630	330	< 4.8		1,300		< 5.9		4.2 4.2	< 380	380	U 77	13	4.7	- 0.	94 4,91		000 J	1200	< 4.4	4.4 L	0.88	< 6.0	6.0	U
o-Isopropyltoluene			140	350	450	220	86	330	< 4.8		440		320		4.2 4.2	70	380	J 38	0.63	4.7	J 0.	47 19,0		000 -	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U C
sec-Butylbenzene	11,000	100,000	88	350	2,700	220	38	330	79		600		< 5.9		4.2 4.2	470	380	- 38	4.2	4.7	J 0.	47 12,0		- 000	600	30	4.4	- 0.44	3.7	6.0	J
Styrene			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9	_	4.2 4.2	< 380	380	U 38	< 4.7	4.7	U 0.	47 < 60		000 U	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U
Fert-butyl alcohol			<7100 < 350	/100	<4400	4400	<6500 < 330	6500	<95	4.9	< 200		120 < 5.9		84 84 53 4.2	<7700	7,700	U 1500	< 4.7	94	U 1	9 < 120		2000 U	24000	< 4.4	88 U	18	<120	120	U
ert-Butylbenzene Fetrachloroethene	5,900	100,000	< 350	350	130 < 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9		. 53 4.2	< 380	380	U 38	< 4.7	4.7	U 0.	***	00 0,	900 U	1200	< 4.4	4.4 L	0.44	< 6.0	6.0	U C
Fetrachioroethene	1,300	19,000	< 350	740	< 220	220	< 330	330	< 4.8	9.0	< 400	400	< 5.9		4.2 4.2 8.4 8.4	< 380	770	U /7	< 4.7	0.4	U 0.	4 - 10	ou 1,	000 U	3000	< 4.4	4.4 L	0.88	12	6.0	U
etranydroturan (THF)	700	400.000	1,200	350	7.500	440	790	330	1.1	4.8	260	200 -	< 12	_	4.2 4.2	< 380	380	U 190	29	9.4	- 0	47 1.80	00 F	U 000,	600	0.61	4.4 L	0.44		6.0	J :
rans-1,2-Dichloroethene	700 190	100,000	< 190	100	< 190	100	< 190	100	< 4.8	4.8	< 190		< 5.9	_	4.2 4.2	< 190	190	U 20	< 4.7	A.7	11 0	47 < 60		300 11	600	< 4.4	4.4 L	0.44	< 6.0	6.0	11 6
rans-1,3-Dichloropropene	190	100,000	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 380	380	U 38	< 4.7	4.7	Un	47 < 60		000 11	600	< 4.4	4.4 U	0.44	< 6.0	6.0	U
rabs-1,4-dichloro-2-butene			< 710	710	< 440	440	< 650	650	< 9.5	9.5	< 400		< 12		8.4 8.4	< 770	770	U 190	< 9.4	9.4	U 2	4 < 12		,000 U	3000	< 8.8	8.8	2.2	< 12	12	U
Frichloroethene	470	21.000	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 380	380	U 38	< 4.7	4.7	U 0.	47 < 61	00 6	000 U	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U
richlorofluoromethane		2.,000	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	_	< 5.9	_	4.2 4.2	< 380	380	U 77	< 4.7	4.7	U 0	94 < 60	00 6,	000 U	1200	< 4.4	4.4 L	0.88	< 6.0	6.0	U
Frichlorotrifluoroethane			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200		< 5.9		4.2 4.2	< 380	380	U 38	< 4.7	4.7	U 0.	47 < 60	00 6,	000 U	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U
		900	< 35	35	< 22	22	< 33	33	< 4.8	4.8	< 20		< 5.9	_	4.2 4.2	< 38	38	U 38	< 4.7	4.7	U 0.	47 < 60	10 6	inn 11	600	< 4.4	4.4 L	0.44	< 6.0	6.0	U
inyl Chloride	20		- 00																												
'inyl Chloride ,4- dioxane	100	13,000	<7100	7100	<4400	4400	<6500	6500	<95	95	<4000	4000 -	<100		84 84	<3100	3,100	U 3101	<71	71	U S	5 <480	00 48	8000 U	48000	<66	66 L	35	<91	91	U
			<7100	7100	<4400 45	4400	<6500 86	6500	<95	95	<4000	4000	<100			<3100	3,100	U 3100	<71	71 1146.	U 3	5 <480	00 48	72200	48000	<66	66 L	J 35	<91	91	U

- Notes:

 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
 RL- Reporting Limit
 U- The compound was analoxyzed for but not detected at or above the MDL.
 J- The value is estimated.
 N- The concentration is based on the response fo the nearest internal.

- S- This compound is a solvent that is used in the laboratory.

 D- The reported concentration is the result of a diluted analysis.

 Boldhighlighted- Indicated exceedance of the MYSBEC USEC Guidance Value

 Boldhighlighted-Indicated exceedance of the NYSBEC RRSCO Guidance Value

TABLE 3 Soil Analytical Results Volatile Organic Compounds

11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1							175	SB3					RIR I	Results	- Febur	ary and Ma	arch 20	18					178	B5			
1. Separate properties	COMPOUND	Unrestricted Use Soil	Restricted Residential Soil																								
51.5. Selectionshould				Domb	μg/K	g Out) my	Domle		g Out	NO.	Dle			L MOV	Dle			MDI	Dh			Mor	Domle			MON
7.15. Propose protection with a control of the cont	1,1,1,2-Tetrachlorothane					Ī			Ī					U				U			_	U	1.1		T	U	1.7
1.3.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.		680	100,000			_					-		_	_	_		_		0.00		_	_			_		0.87
Columnic					_	_	_		-		-		-	_	_		_	_		I	_	_	_		_	_	1.7
1.5. Osciolare 20		070	00.000	_	_	_					-	_	_	_					_	_	_	-			_	_	1.7
1.5 Contempore 1.5 1						_	_		_		-			_	-			_	_			_			_		0.87
1.3.5. Propose process and seed the seed of the seed o	1,1-Dichloropropene		,	< 6.0	6.0	U	0.60	< 5.9	5.9	U	0.59	< 9.2	9.2	U	0.92	< 9.8	9.8	U	0.98	< 5.6	5.6	U	0.56	< 8.7	8.7	U	0.87
1.3. A Fromenomenomenomenomenomenomenomenomenomen					_	_	_				-			_	_		_	_	_	I		_	_		_	_	1.7
13.4. Trensprengeneen					_	-					_	_	_	-				-	0.00	_	_	U				-	0.87
14 Septembers 1.0 1.		3 600	£2,000		_	_	_		_	-	-		_	_			_	U	_			J	_		_	_	0.87
1.30 Discontenume		0,000	52,550	< 6.0	6.0	U	1.2	< 5.9	5.9	U	1.2	< 9.2	9.2	U	1.8	< 9.8	9.8	U	2.0		_	U	1.1	< 8.7	8.7	U	1.7
1.30 Contendemore					_	_	_		-		-			_	_		_	_	0.98	I		U	-		_	_	0.87
13-Dischargemorpus 1.00 1.					_	_					_	_	_	_						_	_	U				_	0.87
1.3. Trionylopezner		20	3,100			_					_			_	-			_				U					0.87
1.3 Contensemen 5.4 5.6 5.6 5.7 5.7 5.8		8,400	52 000		_	_	_				_		_	_	_		_	_		l	_	_	_				0.87
1.30 Contropropose 1.00 1.					_	_	_		-	U	0.59	< 9.2	9.2	U	0.92		9.8	U	0.98	I	5.6	U	0.56		_	U	0.87
2.3 Dischangements					_	-						_	_	-				U		_	_	U				-	1.7
2-Discontenium 1.0 2		1,800	13,000			_	_		_	-	_		_	_	-			U			_	U			_	_	0.87
2-bearson-bear					_	_	_		_		_		-	_	_			U		l	-	U	_			_	1.7
2-Propositional	2-Hexanone (Methyl Butyl Ketone)				_	_	_		_		-			_	_				_			_			_		8.7
2-Aberly-2-Prince 1.00 1.0	2-Isopropyltoluene				_	_					_	_	_	_				-		_	_	U			_	J	0.87
Accidence (a) 1.00 (a) 1.00 (b) 1.00 (c) 1.00 (c	4-Chlorotoluene				_	_	_				-			_	-							U				_	0.87
Acceles 1.0 1.	-					_	_				-	_	_	U	_		_	_			_	_	_			_	8.7
Acpointring 6. 4.20 6		50	100,000		_	_				_	-		_	U			_					_					1.7
Stromochemenemenemenemenemenemenemenemenemeneme	Acrylonitrile				_	_	_		-	U	0.59			U	_		_	_	_			U	0.56		_		0.87
Strong-contendemename Control	Benzene	60	4,800		6.0	U	0.60	< 5.9		U	0.59	< 9.2		U	0.92	< 9.8		U	0.98			J	40		_	U	0.87
Promote Prom	Bromobenzene				_	_	_				_		_	_	_		_	_			_	_	_			_	0.87
Strong-line					_	_			_		-			_			_				_	_			_		0.87
Stromomenhane					_	_	_		-		-		-	_	_		_		_	I	_	U	_		_		1.7
Carbon eterschieride 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	Bromomethane			< 6.0	6.0	U	2.4	< 5.9	5.9	U	2.4	< 9.2	9.2	U	3.7	< 9.8	9.8	U	3.9	< 5.6	5.6	U	2.2	< 8.7	8.7	U	3.5
Chlore-brane	Carbon Disulfide			1.8	6.0	J	1.2	< 5.9	5.9	U	1.2	< 9.2	9.2	U	1.8	< 9.8	9.8	U	2.0	< 5.6	5.6	U	1.1	< 8.7	8.7	U	1.7
Chloredhane 370 48.00	Carbon tetrachloride				_	_			_		-			_	_		_		_			_			_		1.7
Chorsonemen		1,100	100,000		_	_	_		-	_	_		-	_	_		_	_		I	_	U	_		_		0.87
Chlorenthame 100 10		370	49 000	_	_	_				J		_	_	-				U	0.98	_	_	U				-	0.87
isis-1.5-bit-chropropene isis-1.5-bit-chrop			10,000		6.0	U	1.2	< 5.9		U	1.2	< 9.2		U	1.8		9.8	U	2.0			U	1.1		8.7	U	1.7
Disconnectheremethane -46	cis-1,2-Dichloroethene	250	100,000		_	_			_		_		_	_			_				_	_					0.87
Division of the properties and t					_	_	_		-		-		-	_	_		_	_		I	_	U	_		_	_	0.87
Dichlorodifuloromethane 1.000				_	_	_					-	_	_	_				-	_	_	_	U			_	-	1.7
Hexachrobutadisne 4-0 6,0 0,0	Dichlorodifluoromethane					_					-			_								U				_	0.87
September Sept	Ethylbenzene	1,000	41,000		_	U	0.60		_	U	0.59		_	U	0.92		_	U	0.98		_	U	0.56	< 8.7	_	U	0.87
Metry Helpy Kstone 2-Butanone) 120 100.000 48 30 100.000 3.4 112 100.000 3.4 112 100.000 3.4 112 100.000 3.4 112 100.000 3.4 112 100.000 3.4 112 100.000 3.4 112 112 100.000 3.4 112 112 100.000 3.4 112 112 100.000 3.4 112 112 112 112 112 112 112 112 112 11	Hexachlorobutadiene				_	_	_		-	_	_		-	_			_	_		I	_	U			_	_	0.87
Mothyle Ethyl Ketone (2-Batanone) 1200 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0	Isopropylbenzene m&n,Xvienes	200	400.000		_	_	0.60				0.59	_	_	-				U	0.00	_	_	U				-	0.87
Methylene (MTBE) 90 100,000 -60 60 100,000 -60 60 100,000 -60 60 100,000 -60 60 100,000 -60 60 100,000 -60 60 100,000 -60 60 100,000 -60 60 100,000 -60 60 100,000 -60 60 100,000 -60 60 100,000 -60 60 100,000 -60 60 60 100,000 -60 60 100,000 -60 60 100,000 -60 60 100,000 -60 60 100,000 -60 -60 60 100,000 -60 -60 60 100,000 -60 -60 -60 -60 -60 -60 -6					_	-	6.0				5.9		_	J				U	_			U					8.7
Methylence chloride 50 100,000 <6,0 6,0 0, 0 0,	Methyl t-butyl ether (MTBE)				_	J	_				-	_	-	U	_		_	_		l	_	_				_	1.7
## Description 1,000 100,000 <60 60 U 0.60 <59 59 U 0.50 <62 0.2 U 0.50 <68 68 U 0.50 <66 6.6 U 0.60 <87 8.7 U 0.70 ## Proprietion 3,900 100,000 <60 60 U 1.2 <59 59 U 1.2 <69 <59 0.2 U 1.8 <8.8 8.8 U 2.0 <66 6.6 U 1.1 <87 8.7 U 1.0 ## Proprietion 2.00 100,000 <60 6.0 U 1.2 <59 5.9 U 1.2 <69 <59 0.2 U 1.8 <8.8 8.8 U 2.0 <66 6.6 U 1.1 <87 8.7 U 1.0 ## Proprietion 2.00 100,000 <60 6.0 U 1.2 <59 5.9 U 1.2 <59 5.9 U 1.2 <69 <59 0.2 U 1.8 <8.8 8.8 U 2.0 <66 6.6 U 1.1 <87 8.7 U 1.0 ## Proprietion 2.00	Methylene chloride	50			_	_	_		-		-		-	_	_		_	_			_	U	_		_	_	8.7
n-Propylbanzene 3.900 100.000	Naphthalene				_	_					-	_	_	_					_		_	J			_		1.7
O-Xylene 289 100,000 -80 80 U 12 - 85 85 U 1						_			_		_			_	_			_	_			U			_		0.87
p-soprelytolune					_	_	_		_		_		_	_	_		_	_		l	_	_	_			_	1.7
Styrené	p-lsopropyltoluene		,		_	U	0.60	< 5.9	5.9	U	0.59		9.2	U	0.92	< 9.8	_	U	0.98		5.6	U	0.56	< 8.7	8.7	U	0.87
Tert-butyl alcohol feet-Butyl alcohol feet-B	sec-Butylbenzene	11,000	100,000	_	_	_					_	_	_	_				-			_	-			_		0.87
Tetra-blytheracene 5,900 100,000	Styrene Tort butul alcohol					U					0.59			U	0.92		9.8	U	0.98		5.6	U				U	0.87
Totrachyordynam (THF)		5,000	100.000		_	U	_		_		0.59		-	U	0.92		9.8	U	0.98		5.6	U	_		+	U	0.87
Tetrahydrofuran (THF)	Tetrachloroethene				_	_					_			_	_						_	_			_		1.7
trans-1,2-Dichloroethene 190 100,000	Tetrahydrofuran (THF)	,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 12	12	U	3.0	< 12	12	U	3.0	10	18	J	4.6	8	20	J	4.9	5.9	11	J	2.8	7.4	17	J	4.3
trans-1,3-Dichloropropene trans-1,3-Dichlor	Toluene													-								_					0.87
trabs-1,4-dichloro-2-butene 470 21,000 480 800 10 10 10 10 10 10 10 10 10 10 10 10 1		190	100,000			_			_		-			_	_		_		_	1	_	_	_		_		0.87
Trichlorostene 470 21,000 480 880 880 880 880 880 880 880 880						_					_			_	_							_					4.3
Trichlorofiluromethane	Trichloroethene	470	21,000			_					-			_				_	_			_					0.87
Viryl Chloride 20 900 900 <60 60 0 0 900 60 60 0 50 0 0<	Trichlorofluoromethane			< 6.0	6.0	U	1.2	< 5.9	5.9	U	1.2	< 9.2	_	U	1.8	< 9.8	9.8	U	2.0	< 5.6	_	U	1.1	< 8.7	8.7	U	1.7
1,4 clioxane 100 13,000 <0 90 U 48 <0 89 89 U 47 <100 100 U 73 <100 100 U 79 <44 84 U 45 <100 100 U 60 U 70 COLOR TOTAL BTEX Concentration 0.0 0.6 1.0 0 U 70	Trichlorotrifluoroethane				_	_					-	_	_	_	_		_		_		_	_	_				0.87
Total BTEX Concentration 0.0 0.6 1.0 0 230.00 0.92						_	_				-			_								_					0.87
		100	13,000	<90			48	<89	_		47	<100	_		/3	<100			79	<84	_		45	<100		-	- 69
Total VOCs Concentration 403.20 78.62 152.00 36.00 484.90 223.92	Total VOCs Concentration																										

Notes:

*-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
RL- Reporting Limit
U- The compound was anlayzed for but not detected at or above the MDL.
J- The value is estimated.
N- The concentration is based on the response fo the nearest internal.

S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Boldhightighted-indicated exceedance of the NYSDEC UUSCO Guidance Value

Boldhightighted-indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 3 Soil Analytical Results Volatile Organic Compounds

													RIR R	esults - I	February 2											
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil	NYDEC Part 375.6 Restricted Residential Soil		(0-2	n	175	SB6	(4-6')			(2-4")		1	(5-7')			(12.5-	15')			17SB (5-7')		
COMPOUND	Cleanup Objectives*	Cleanup Objectives*		3/1/2 μg/I	(g			3/1/20 μg/K	g			2/26/2 0 μg/K)18 8			2/26/2 0 μg/K)18 g			2/26/2 μg/k	(g			2/26/20 μg/Kg	18	
1,1,1,2-Tetrachiorothane			Result <28	RL 28	Qual	MDL 1.4	Result <5.0	RL 5.0	Qual	MDL 1.0	Result <18	RL 18	Qual	MDL 0.89	Result <25	RL 25	Qual	MDL 1.2	Result <32	RL 32	Qual	MDL 1.6	Result <760	760	Qual	MDL 39
1,1,1-Trichloroethane	680	100,000	< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
1,1,2,2-Tetrachloroethane			< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
1,1,2-Trichloroethane 1,1-Dichloroethane			< 7.1 < 7.1	7.1	U	1.4	< 5.0 < 5.0	5.0	U	1.0	< 4.5 < 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190 < 190	190 190	U	38
1,1-Dichloroethane	270 330	26,000 100,000	< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
1,1-Dichloropropene	550	100,000	< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
1,2,3-Trichlorobenzene			< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
1,2,3-Trichloropropane			< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	3,600	F2 000	< 7.1 < 7.1	7.1	U	0.71	< 5.0 < 5.0	5.0	U	1.0 0.50	< 4.5 < 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2 0.61	< 8.1	8.1	U	0.81	< 190 < 190	190 190	U	38 19
1,2-Dibromo-3-chloropropane	3,000	52,000	< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
1,2-Dibromomethane			< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
1,2-Dichlorobenzene	1,100	100,000	< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
1,2-Dichloroethane	20	3,100	< 7.1 < 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5 < 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1 < 8.1	8.1	U	0.81	< 20	20 190	U	19
1,2-Dichloropropane 1,3,5-Trimethylbenzene	8.400	52.000	< 7.1	7.1	U	0.71	< 5.0 < 5.0	5.0	U	0.50	< 4.5	4.5	U	0.89	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	38 19
1,3-Dichlorobenzene	2,400	52,000 4,900	< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
1,3-Dichloropropane	4,	,	< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
1,4-Dichlorobenzene	1,800	13,000	< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
2,2-Dichloropropane			< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
2-Chlorotoluene 2-Hexanone (Methyl Butyl Ketone)			< 7.1	7.1	U	7.1	< 5.0 < 25	5.0	U	1.0 5.0	< 4.5	4.5	U	0.89 4.5	< 6.1	6.1	U	1.2 6.1	< 8.1	8.1	U	1.6 8.1	< 190 < 950	190 950	U	38 190
2-lexanone (Methyl Butyl Retone) 2-lsopropyltoluene			< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	190	190	-	190
4-Chlorotoluene			< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
4-Methyl-2-Pentanone			< 35	35	U	7.1	< 25	25	U	5.0	< 22	22	U	4.5	< 31	31	U	6.1	< 40	40	U	8.1	< 950	950	U	190
Acetone	50	100,000	67	35	S	7.1	7	25	JS	5.0	5.7	22	JS	4.5	13	31	JS	6.1	< 40	40	U	8.1	< 190	190	U	190
Acrolein			<7.1	7.1	U	1.4	<5.0	5.0	U	1.0	<4.5	5	U	0.89	<6.1	6.1	U	1.2	<8.1	8.1	U	1.6	<190	190	U	38
Acrylonitrile Benzene		4 000	<28 < 7.1	28 7.1	U	0.71	<10 < 5.0	10 5.0	U	1.0 0.50	<18 < 4.5	18 4.5	U	0.45	<25 < 6.1	25 6.1	U	0.61	<32 < 8.1	32 8.1	U	0.81	<760 < 60	760 60	U	19 19
Bromobenzene	60	4,800	< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
Bromochloromethane			< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
Bromodichloromethane			< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
Bromoform			< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
Bromomethane Carbon Disulfide			< 7.1 < 7.1	7.1	U	2.8	< 5.0 < 5.0	5.0	U	1.0	< 4.5 < 4.5	4.5	U	1.8	< 6.1	6.1	U	2.5	< 8.1	8.1	U	3.2 1.6	< 190	190 190	U	76 38
Carbon bisunde Carbon tetrachloride	760	2.400	< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
Chlorobenzene	1,100	100,000	< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
Chloroethane	, , , , , , , , , , , , , , , , , , , ,		< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
Chloroform	370	49,000	< 7.1	7.1	U	0.71	2.1	5.0	J	0.50	3.7	4.5	J	0.45	1	6.1	J	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
Chloromethane			< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	250	100,000	1.4 < 7.1	7.1	U	0.71	< 5.0 < 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1 < 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190 < 190	190 190	U	19 19
Dibromochloromethane			< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
Dibromomethane			< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
Dichlorodifluoromethane			< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
Ethylbenzene	1,000	41,000	< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
Hexachlorobutadiene			< 7.1 < 7.1	7.1	U	0.71	< 5.0 < 5.0	5.0	U	0.50	< 4.5 < 4.5	4.5	U	0.45	< 6.1 < 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190 88	190 190	U	19 19
Isopropylbenzene m&p-Xylenes	260	100,000	< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.45	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
Methyl Ethyl Ketone (2-Butanone)	120	100,000	8.2	43	J	7.1	< 30	30	U	5.0	< 27	27	U	4.5	< 37	37	U	6.1	< 48	48	U	8.1	< 190	190	U	190
Methyl t-butyl ether (MTBE)	930	100,000	< 14	14	U	1.4	< 10	10	U	1.0	< 8.9	8.9	U	0.89	< 12	12	U	1.2	< 16	16	U	1.6	< 380	380	U	38
Methylene chloride	50	100,000	< 7.1	7.1	U	7.1	< 5.0	5.0	U	5.0	< 4.5	4.5	U	4.5	< 6.1	6.1	U	6.1	< 8.1	8.1	U	8.1	< 190	190	U	190
Naphthalene n-Butylbenzene	12,000 12,000	100,000	< 7.1 < 7.1	7.1	U	1.4 0.71	< 5.0 < 5.0	5.0	U	1.0 0.50	< 4.5 < 4.5	4.5 4.5	U	0.89	< 6.1 < 6.1	6.1	U	1.2 0.61	< 8.1 < 8.1	8.1	U	0.81	160 230	190 190	J	38 19
n-Propylbenzene	3,900	100,000	< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	150	190	J	38
o-Xylene	260	100,000	< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
p-Isopropyltoluene			< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
sec-Butylbenzene	11,000	100,000	< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	370	190	-	19
Styrene Tert-butyl alcohol	+		< 7.1 <140	7.1	U	0.71	< 5.0 <100	5.0	U	0.50	< 4.5 <89	4.5 89	U	0.45	< 6.1 <120	6.1	U	0.61	< 8.1 <160	8.1	U	0.81	< 190 <3800	190 3.800	U	19 760
tert-Butyl accolor	5,900	100,000	< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	87	190	J	19
Tetrachloroethene	1,300	19,000	15	7.1		1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
Tetrahydrofuran (THF)			9.7	14	J	3.5	6	10	J	2.5	2.5	8.9	J	2.2	6.2	12	J	3.1	4.7	16	J	4.0	< 380	380	U	95
Toluene	700	100,000	< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	190	100,000	< 7.1	7.1	U	0.71	< 5.0 < 5.0	5.0	U	0.50	< 4.5 < 4.5	4.5	U	0.45	< 6.1 < 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190 < 190	190 190	U	19 19
trans-1,3-Dicnioropropene trabs-1,4-dichloro-2-butene	+		< 7.1	7.1	U	3.5	< 5.0	10	U	2.5	< 4.5	4.5 8.9	U	2.2	< 6.1	6.1	U	3.1	< 8.1	16	U	4.0	< 190	190 380	U	19 95
Trichloroethene	470	21,000	48	350	J	35	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
Trichlorofluoromethane	7.0	2.,000	< 7.1	7.1	U	1.4	< 5.0	5.0	U	1.0	< 4.5	4.5	U	0.89	< 6.1	6.1	U	1.2	< 8.1	8.1	U	1.6	< 190	190	U	38
Trichlorotrifluoroethane			< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 190	190	U	19
Vinyl Chloride	20	900	< 7.1	7.1	U	0.71	< 5.0	5.0	U	0.50	< 4.5	4.5	U	0.45	< 6.1	6.1	U	0.61	< 8.1	8.1	U	0.81	< 20	20	U	19
1,4- dioxane	100	13,000	<100	100	U	57	<75	75 0	U	40	<67	67 0	U	36	<92	92	U	49	<100	100	U	65	<100	100	U	1500
Total BTEX Concentration Total VOCs Concentration			-	14				15.1	1	=	_	12				20.2				4.7			-	1,27	5	
. o.u ooa oonomii alion	1	1		.4	-		I .	10.				12				20.2	-			7.7	-		II .	.,_/:	•	

Notes:

- 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
RL- Reporting Limit

U- The compound was anlayzed for but not detected at or above the MDL.

- J- The value is estimated.

N- The concentration is based on the response fo the nearest internal.

S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Boldhighilighted-indicated exceedance of the NYSDEC UUSCO Guidance Value

Boldhighilighted-indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 3 Soil Analytical Results Volatile Organic Compounds

													RIR R	esults - I	February 2	018								_	_	
	10/0050 D-1 075 0	NVDE0 D-+ 075 0				175	SB9							178	B10					Duplic 17S				Duplica (17SB		
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*		(2-4 2/26/2				(5-7' 2/26/20				(2-4) 2/26/20				(5-7 2/26/2				(12.5- 2/26/2				(12.5-1 2/26/20		
			Result	μg/k RL	Qual	MDL	Result	μg/K RL	g Qual	MDL	Result	μg/K RL	Qual	MDL	Result	μg/K RL	g Qual	MDL	Result	μg/l RL		MDL	Result	μg/Kg RL		MDL
1,1,1,2-Tetrachlorothane			<1300	1,300	U	37	<24	24	U	1.2	<20	20	U	1.0	<63	63	U	3.1	<5.2	5.2	U	1.0	<27	27	U	1.3
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	680	100,000	< 330	330	U	33 67	< 6.0 < 6.0	6.0	U	0.60	< 5.1 < 350	5.1 350	U	0.51 70	< 16	16 16	U	1.6	< 5.2 < 5.2	5.2	U	1.0	< 6.6 < 6.6	6.6	U	0.66
1,1,2-Trichloroethane			< 330	330	U	67	< 6.0	6.0	U	1.2	< 5.1	5.1	U	1.0	< 16	16	U	3.1	< 5.2	5.2	U	1.0	< 6.6	6.6	U	1.3
1,1-Dichloroethane	270	26,000	< 270	270	U	67	< 6.0	6.0	U	1.2	< 5.1	5.1	U	1.0	< 16	16	U	3.1	< 5.2	5.2	U	1.0	< 6.6	6.6	U	1.3
1,1-Dichloroethene	330	100,000	< 330	330	U	33	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
1,1-Dichloropropene			< 330	330	U	33	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane			< 330	330	U	67	< 6.0	6.0	U	0.60	< 350 < 350	350 350	U	70 35	< 16	16 16	U	3.1	< 5.2	5.2	U	1.0 0.52	< 6.6 < 6.6	6.6	U	1.3
1,2,4-Trichlorobenzene			< 330	330	U	67	< 6.0	6.0	U	1.2	< 350	350	U	70	< 16	16	U	3.1	< 5.2	5.2	U	1.0	< 6.6	6.6	U	1.3
1,2,4-Trimethylbenzene	3,600	52,000	53,000	3,300	D	330	< 6.0	6.0	U	0.60	< 350	350	U	35	3.1	16	J	1.6	87	5.2	-	0.52	< 6.6	6.6	U	0.66
1,2-Dibromo-3-chloropropane			< 330	330	U	67	< 6.0	6.0	U	1.2	< 350	350	U	70	< 16	16	U	3.1	< 5.2	5.2	U	1.0	< 6.6	6.6	U	1.3
1,2-Dibromomethane			< 330	330	U	33	< 6.0	6.0	U	0.60	< 5.1 < 350	5.1 350	U	0.51	< 16	16 16	U	1.6	< 5.2	5.2	U	0.52	< 6.6 < 6.6	6.6	U	0.66
1,2-Dichlorobenzene 1,2-Dichloroethane	1,100 20	100,000 3,100	< 33	33	U	33	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
1,2-Dichloropropane	20	5,100	< 330	330	U	67	< 6.0	6.0	U	1.2	< 5.1	5.1	U	1.0	< 16	16	U	3.1	< 5.2	5.2	U	1.0	< 6.6	6.6	U	1.3
1,3,5-Trimethylbenzene	8,400	52,000	18,000	3,300	D	330	< 6.0	6.0	U	0.60	< 350	350	U	35	< 16	16	U	1.6	38	5.2		0.52	< 6.6	6.6	U	0.66
1,3-Dichlorobenzene	2,400	4,900	< 330	330	U	33	< 6.0	6.0	U	0.60	< 350	350	U	35	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
1,3-Dichloropropane			< 330	330	U	67	< 6.0	6.0	U	1.2	< 5.1	5.1	U	1.0	< 16	16 16	U	3.1	< 5.2	5.2	U	1.0	< 6.6	6.6	U	1.3
1,4-Dichlorobenzene 2,2-Dichloropropane	1,800	13,000	< 330	330	U	33	< 6.0	6.0	U	0.60	< 350 < 5.1	350 5.1	U	35 0.51	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6 < 6.6	6.6	U	0.66
2-Chlorotoluene			< 330	330	U	67	< 6.0	6.0	U	1.2	< 350	350	U	70	< 16	16	U	3.1	< 5.2	5.2	U	1.0	< 6.6	6.6	U	1.3
2-Hexanone (Methyl Butyl Ketone)			< 1700	1,700	U	330	< 30	30	U	6.0	< 26	26	U	5.1	< 78	78	U	16	< 26	26	U	5.2	< 33	33	U	6.6
2-Isopropyltoluene			210	330	J	33	< 6.0	6.0	U	0.60	< 350	350	U	35	< 16	16	U	1.6	0.53	5.2	J	0.52	< 6.6	6.6	U	0.66
4-Chlorotoluene			< 330	330	U	33	< 6.0	6.0	U	0.60	< 350	350	U	35	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
4-Methyl-2-Pentanone Acetone	50	100.000	< 1700	1,700	U	330	< 30 110	30	U	6.0	< 26 34	26 26	U	5.1	< 78 990	78 78	U	16	< 26 14	26 26	JS	5.2	< 33 15	33	JS	6.6
Acrolein	50	100,000	<330	330	U	67	<6.0	6.0	U	1.2	<5.1	5.1	U	1.0	<16	16	U	3.1	<5.2	5.2	U	1.0	<6.6	6.6	U	1.3
Acrylonitrile			<1300	1,300	U	33	<24	24	U	0.60	<20	20	U	0.51	<63	63	U	1.6	<21	21	U	0.52	<27	27	U	0.66
Benzene	60	4,800	190	330	J	33	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	27	5.2	-	0.52	< 6.6	6.6	U	0.66
Bromobenzene			< 330	330	U	33	< 6.0	6.0	U	0.60	< 350	350	U	35	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
Bromochloromethane Bromodichloromethane			< 330	330	U	33 67	< 6.0 < 6.0	6.0	U	0.60	< 5.1 < 5.1	5.1	U	0.51 1.0	< 16	16 16	U	1.6	< 5.2 < 5.2	5.2	U	1.0	< 6.6 < 6.6	6.6	U	0.66
Bromoform			< 330	330	U	67	< 6.0	6.0	U	1.2	< 5.1	5.1	U	1.0	< 16	16	U	3.1	< 5.2	5.2	U	1.0	< 6.6	6.6	U	1.3
Bromomethane			< 330	330	U	130	< 6.0	6.0	U	2.4	< 5.1	5.1	U	2.0	< 16	16	U	6.3	< 5.2	5.2	U	2.1	< 6.6	6.6	U	2.7
Carbon Disulfide			< 330	330	U	67	< 6.0	6.0	U	1.2	< 5.1	5.1	U	1.0	13	16	J	3.1	1.1	5.2	J	1.0	< 6.6	6.6	U	1.3
Carbon tetrachloride	760	2,400	< 330	330	U	67	< 6.0	6.0	U	1.2	< 5.1	5.1	U	1.0	< 16	16	U	3.1	< 5.2	5.2	U	1.0	< 6.6	6.6	U	1.3
Chlorosthana	1,100	100,000	< 330	330	U	33	< 6.0	6.0	U	0.60	< 5.1 < 5.1	5.1	U	0.51	< 16	16 16	U	1.6	< 5.2	5.2	U	0.52	< 6.6 < 6.6	6.6	U	0.66
Chloroethane Chloroform	370	49,000	< 330	330	U	33	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
Chloromethane	370	49,000	< 330	330	U	67	< 6.0	6.0	U	1.2	< 5.1	5.1	U	1.0	< 16	16	U	3.1	< 5.2	5.2	U	1.0	< 6.6	6.6	U	1.3
cis-1,2-Dichloroethene	250	100,000	< 250	250	U	33	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
cis-1,3-Dichloropropene			< 330	330	U	33	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
Dibromochloromethane			< 330	330	U	67	< 6.0	6.0	U	1.2	< 5.1	5.1	U	1.0	< 16	16	U	3.1	< 5.2	5.2	U	1.0	< 6.6	6.6	U	1.3
Dibromomethane Dichlorodifluoromethane			< 330	330 330	U	67	< 6.0	6.0	U	0.60	< 5.1 < 5.1	5.1	U	1.0 0.51	< 16	16 16	U	3.1	< 5.2 < 5.2	5.2	U	1.0 0.52	< 6.6 < 6.6	6.6	U	1.3
Ethylbenzene	1,000	41.000	14,000	3,300	D	330	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	280	270	-	33	< 6.6	6.6	U	0.66
Hexachlorobutadiene	1,000		< 330	330	U	33	< 6.0	6.0	U	0.60	< 350	350	U	35	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
Isopropylbenzene			3,200	2,700	D	330	< 6.0	6.0	U	0.60	< 350	350	U	35	< 16	16	U	1.6	30	5.2	-	0.52	< 6.6	6.6	U	0.66
m&p-Xylenes	260	100,000	62,000 < 330	3,300	D	670 330	< 6.0 28	6.0	U	1.2 6.0	< 5.1 5.4	5.1	U	1.0	< 16 340	16 94	U	3.1	390 < 31	5.2 31	-	1.0 5.2	< 6.6 < 40	6.6	U	1.3 6.6
Methyl Ethyl Ketone (2-Butanone) Methyl t-butyl ether (MTBE)	120	100,000	< 670	670	U	67	< 12	12	U	1.2	< 10	10	U	5.1 1.0	< 31	31	U	16 3.1	< 10	10	U	1.0	< 40	13	U	1.3
Methylene chloride	930 50	100,000	< 330	330	U	330	< 6.0	6.0	U	6.0	< 5.1	5.1	U	5.1	< 16	16	U	16	< 5.2	5.2	U	5.2	< 6.6	6.6	U	6.6
Naphthalene	12,000	100,000	3,700	330		67	< 6.0	6.0	U	1.2	< 350	350	U	70	41	16		3.1	11	5.2		1.0	< 6.6	6.6	U	1.3
n-Butylbenzene	12,000	100,000	1,900	1,300	D	330	< 6.0	6.0	U	0.60	< 350	350	U	35	< 16	16	U	1.6	2.3	5.2	J	0.52	< 6.6	6.6	U	0.66
n-Propylbenzene	3,900	100,000	8,200	3,300	D	670	< 6.0	6.0	U	1.2	< 350	350	U	70	< 16	16	U	3.1	63	5.2	-	1.0	< 6.6	6.6	U	1.3
o-Xylene p-isopropyitoluene	260	100,000	23,000 570	3,300	D .	670	< 6.0	6.0	U	1.2 0.60	< 5.1 < 350	5.1 350	U	1.0	< 16	16 16	U	3.1	9.8	5.2	111	1.0 0.52	< 6.6 < 6.6	6.6	U	1.3 0.66
sec-Butylbenzene	11,000	100,000	840	330	1	33	< 6.0	6.0	U	0.60	< 350	350	U	35	< 16	16	U	1.6	2.8	5.2	J	0.52	< 6.6	6.6	U	0.66
Styrene	11,000	100,000	< 330	330	U	33	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	0.72	5.2	J	0.52	< 6.6	6.6	U	0.66
Tert-butyl alcohol			<6700	6,700	U	1300	<120	120	U	24	<100	100	U	20	<310	310	U	63	<100	100	U	21	<130	130	U	27
tert-Butylbenzene	5,900	100,000	39	330	J	33	< 6.0	6.0	U	0.60	< 350	350	U	35	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
Tetrachloroethene Tetrahydrofuran (THF)	1,300	19,000	< 330	330 670	U	67 170	< 6.0 4.5	6.0	U	1.2	< 5.1 3.2	5.1	U	1.0	< 16 8.6	16 31	U J	3.1 7.8	< 5.2 5.2	5.2	U J	1.0 2.6	< 6.6 5.9	6.6	U	1.3
Toluene	700	100,000	13,000	3,300	_	330	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	22	5.2		0.52	< 6.6	6.6	U	0.66
trans-1,2-Dichloroethene	700 190	100,000	< 190	190	U	33	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
trans-1,3-Dichloropropene		,	< 330	330	U	33	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
trabs-1,4-dichloro-2-butene			< 670	670	U	170	< 12	12	U	3.0	< 700	700	U	180	< 31	31	U	7.8	< 10	10	U	2.6	< 13	13	U	3.3
Trichloroethene	470	21,000	< 330	330	U	33	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
Trichlorofluoromethane Trichlorotrifluoroethane			< 330	330 330	U	67	< 6.0	6.0	U	1.2 0.60	< 5.1 < 5.1	5.1	U	1.0 0.51	< 16 < 16	16 16	U	3.1	< 5.2 < 5.2	5.2	U	1.0 0.52	< 6.6 < 6.6	6.6	U	1.3
Vinyl Chloride	20	900	< 330	330	U	33	< 6.0	6.0	U	0.60	< 5.1	5.1	U	0.51	< 16	16	U	1.6	< 5.2	5.2	U	0.52	< 6.6	6.6	U	0.66
1,4- dioxane	100	13,000	<2700	2,700	U	2700	<90	90	U	48	<77	77	U	41	<100	100	U	100	<79	79	U	42	<99	99	U	53
Total BTEX Concentration				112,1				0				0				0				72				0.00		
Total VOCs Concentration				201,8	849			142.	5			43				1395	.7			98	4			20.9	0	

Notes:

- 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
RL- Reporting Limit

U- The compound was anlayzed for but not detected at or above the MDL.

- J- The value is estimated.

N- The concentration is based on the response fo the nearest internal.

S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Boldhighighted-indicated exceedance of the NYSDEC USSCO Guidance Value

Boldhighighted-indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 4 Soil Analytical Results Semi-Volatile Organic Compounds

							Phs	se II Resu	ilte - Mar	v 2016												RIR Re	sults - F	ehruar	2018							
			B1		B2		33		34	2010	E	B5		B10)			17	SB1			I	ouito - i	cuidai	2010		175	SB2				
	NYSDEC Part 375.6	NYDEC Part 375.6 Restricted Residential			(1-3')		-5")	-	-	(0-:	an.			40.01			(5-7')			(12.5-1	ren.		(2-4								(12.5-15")	
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Soil Cleanup	5/26/20	1	5/26/2016		-0) /2016		-5') /2016	5/26/2		5/26/2	1	(6-8° 5/26/20			2/26/2018			2/26/2			2/26/2				2/26/				2/26/2018	
		Objectives*	μg/К	(g	μg/Kg	В	/Kg	με	/Kg	μg/1	Kg	μg/F	Kg	μg/K	g		µg/Кg			µg/К	g		μg/9	(g			μg	Kg			µg/Кg	
1,2,4,5-Tetrachlorobenzene			Result	RL -	Result R	L Result	RL	Result	RL.	Result	RL .	Result	RL -	Result	RL .	Result < 240	240 U	120	Result < 250	RL 250	Qual MDL U 130	< 260	RL 260	Qual	MDL 130	Result < 270			MDL 130	Result < 280	280	Qual
1,2,4-Trichlorobenzene			-	-			-		-	T -	-	-	-	-	-	< 240	240 U	100	< 250	250	U 110	< 260	260	U	110	< 270	270	U	120	< 280	280	U
1,2-Dichlorobenzene			-	-			-	-	-	-	-	-	-	-	-	< 240	240 U	97	< 250	250	U 100	< 260	260	U	110	< 270	270	U	110	< 280	280	U
1,2-Diphenylhydrazine			-	-			-		-		-	-	-	-	-	< 240	240 U	110	< 250	250	U 120	< 260	260	U	120	< 270	270	U	120	< 280	280	U
1,3-Dichlorobenzene			-		-					<u> </u>		-	-	-	-	< 240	240 U	100	< 250	250	U 110	< 260	260	U	110	< 270	270	U	110	< 280	_	U
1,4-Dichlorobenzene 2,4,5-Trichlorophenol			-		-			-	+	<u> </u>	-	-		-	-	< 240	240 U	100	< 250 < 250	250 250	U 110	< 260 < 260	260	U	110 210	< 270 < 270	_	U	110 210	< 280 < 280	280	U
2,4,6-Trichlorophenol				-			+:	H	+:	+ :			1			< 170	170 U	110	< 180	180	U 110	< 190	190	U	120	< 190		U	120	< 200	200	U
2,4-Dichlorophenol			-					.	+-	-		-		-		< 170	170 U	120	< 180	180	U 130	< 190	190	U	130	< 190	_	U	130	< 200	200	U
2,4-Dimethylphenol			-	-			-		1	-	-	-	-	-	-	< 240	240 U	85	< 250	250	U 89	< 260	260	U	93	< 270	270	U	95	< 280	280	U
2,4-Dinitrophenol			-				-			-		-		-		< 240	240 U	240	< 250	250	U 250	< 260	260	U	260	< 270	270	U	270	< 280	280	U
2,4-Dinitrotoluene			-	-			-		-		-	-	-	-	-	< 170	170 U	140	< 180	180	U 140	< 190	190	U	150	< 190	190	U	150	< 200	200	U
2,6-Dinitrotoluene			-						+ -		-	-		-	-	< 170	170 U	110	< 180	180	U 110	< 190	190	U	120	< 190	190	U	120	< 200	200	U
2-Chlorophenol			-	-	-	-	-	<u> </u>	-	<u> </u>	-	-		-	-	< 240	240 U	98	< 250	250	U 100	< 260	260	U	110	< 270 < 270	270	U	110	< 280	280	U
2-Methylnaphthalene							+:		+:	1	H		H	H		< 240	240 11	100	< 250	250	U 110	63,000	5.300	D	2200	< 270	270	U	110	< 280	280	U
2-Methylphenol (o-cresol)	330	100,000	—	-			+-		1	-	-		-	-	-	< 240	240 U	160	< 250	250	U 170	< 260	260	U	180	< 270	270	U	180	< 280	280	U
2-Nitroaniline	-30	,		-			-		-		-		-	-	-	< 240	240 U	240	< 250	250	U 250	< 260	260	U	260	< 270	270	U	270	< 280	280	U
2-Nitrophenol			-	-	-		-		-		-		-		-	< 240	240 U	220	< 250	250	U 230	< 260	260	U	240	< 270		U	240	< 280	280	U
3&4-Methylphenol (m&p-cresol)	330	100,000	-	-			-		-		-	-	-	-	-	< 240	240 U	140	< 250	250	U 140	< 260	260	U	150	< 270	_	U	150	< 280	280	U
3,3'-Dichlorobenzidine				•		-	1 -	<u> </u>	1		-	-	1 -	-	-	< 170	170 U	160	< 180	180	U 170	< 190	190	U	180	< 190		U	180	< 200	200	U
3-Nitroaniline 4,6-Dinitro-2-methylphenol			-				+:	 	+	1	-		1		-	< 340	340 U	690	< 360	360	U 720	< 380	380	U	750	< 380	_	11	760 76	< 400 < 240	400 240	U
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether			-	1	1		+ :		+:	-	-		+ 1			< 210	210 U	100	< 220	250	U 110	< 280	260	U	110	< 230	270	U	110	< 240	280	U
4-Chloro-3-methylphenol				-	- I		+-	-	+-		-	-	-	-	-	< 240	240 U	120	< 250	250	U 130	< 260	260	U	130	< 270		U	130	< 280	280	U
4-Chloroaniline				L -			1 -	Ŀ	1 -	<u> </u>	L -	<u> </u>	L -	<u> </u>		< 270	270 U	160	< 290	290	U 170	< 300	300	U	170	< 310		U	180	< 320	320	U
4-Chlorophenyl phenyl ether			-	-	-		-	-	-		-		-	-	-	< 240	240 U	120	< 250	250	U 120	< 260	260	U	130	< 270	_	U	130	< 280	280	U
4-Nitroaniline			-	-			-		-		-	-	-	-	-	< 340	340 U	110	< 360	360	U 120	< 380	380	U	130	< 380	380	U	130	< 400	400	U
4-Nitrophenol					-		-			1		-		-	-	< 340	340 U	160	< 360	360	U 160	< 380	380	U	170	< 380	380	U	170	< 400	400	U
Acenaphthene	20,000	100,000	2,500 < 2700	2,700	< 2500 2,5 < 2500 2,5	00 < 260	260	< 270	270	15,000 < 2400	2,400	600	270	< 280	280	< 240	240 U	100	< 250	250 250	U 110	690	260	-	110	< 270 < 270	270	U	120	< 280	_	U
Acenaphthylene Acetophenone	100,000	100,000	~ 2700	2,700	< 2000 Z,0	- 200	200	< 270	210	× 2400	2,400	190	270	~ 200	200	< 240	240 U	110	< 250	250	U 110	420 < 260	260	-	120	< 270	_	- 11	120	< 280	280	11
Aniline				-	-						-			-	-	< 270	270 U	270	< 290	290	U 290	< 300	300	U	300	< 310		U	310	< 320	320	U
Anthracene	100,000	100,000	5,900	2,700	< 2500 2,5	00 150	260	< 270	270	19,000	2,400	2,000	270	< 280	280	< 240	240 U	110	< 250	250	U 120	630	260	-	120	< 270	270	U	130	< 280	280	U
Benz(a)anthracene	1,000	1,000	8,800	2,700	< 1000 1,0	00 270	260	240	270	38,000	2,400	3,600	270	< 280	280	< 240	240 U	120	< 250	250	U 120	640	260	-	130	< 270	270	U	130	< 280	280	U
Benzidine			-				-					-	-	-		< 340	340 U	200	< 360	360	U 210	< 380	380	U	220	< 380	_	U	220	< 400		U
Benzo(a)pyrene	1,000	1,000	6,100	2,700	< 1000 1,0	00 210	260	230	270	37,000	2,400	2,900	270	< 280	280	< 170	170 U	110	< 180	180	U 120	510	190	-	120	< 190	_	U	120	< 200	200	U
Benzo(b)fluoranthene	1,000	1,000	5,300 2,800	2,700	< 1000 1,0 < 2500 2.5	00 310	260	250 230	270	36,000 21,000	2,400	2,700 1,200	270	< 280	280	< 240	240 U	120	< 250	250	U 120	610 410	260	-	130	< 270 < 270	270	- 0	130	< 280	280	
Benzo(ghi)perylene Benzo(k)fluoranthene	100,000	100,000	6,200	2,700	< 1000 2,5	00 220	260	190	270	34,000	2,400	2,500	270	< 280	280	< 240	240 U	110	< 250	250	U 120	440	260	-	120	< 270	270	U	130	< 280	280	U
Benzoic acid	800	3,900	-	-	-		-			-	-	-	-	-	-	< 1700	1,700 U	690	< 1800	1,800	U 720	< 1900	1,900	U	750	< 1900	1,90	0 U	760	< 2000	2,000	U
Benzyl butyl phthalate			-	-			-		-	-	-	-	-	-	-	< 240	240 U	89	< 250	250	U 92	< 260	260	U	97	< 270	270	U	98	< 280	280	U
Bis(2-chloroethoxy)methane			-				-			-		-		-		< 240	240 U	95	< 250	250	U 99	< 260	260	U	100	< 270	270	U	110	< 280	280	U
Bis(2-chloroethyl)ether			-				-		-		-	-	-	-	-	< 170	170 U	93	< 180	180	U 97	< 190	190	U	100	< 190		U	100	< 200	200	U
Bis(2-chloroisopropyl)ether			-		-					<u> </u>		-		-	-	< 240	240 U	95	< 250	250	U 100	< 260	260	U	100	< 270	_	U	110	< 280	280	U
Bis(2-ethylhexyl)phthalate Carbazole			-				+ -	H :	+	-			1	-		< 240	240 U	99	< 250	250	U 100	4,000	260	-	110	< 270	_	U	110	< 280	200	U
Chrysene	1,000	3,900	8,300	2,700	1,000 1,0	00 370	260	280	270	40,000	2,400	3,500	270	< 280	280	< 240	240 U	120	< 250	250	U 120	690	260	-	130	< 270		U	130	< 280	280	U
Dibenz(a,h)anthracene	330	3,900	< 2700	2,700	< 1000 1,0	00 < 260	260	< 270	270	5,400	2,400	260	270	< 280	280	< 170	170 U	110	< 180	180	U 120	< 190	190	U	120	< 190	_	U	120	< 200	200	U
Dibenzofuran	7,000	59,000	-	<u> </u>			1	-	L				<u> </u>	-	-	< 240	240 U	100	< 250	250	U 100	< 260	260	U	110	< 270	270	U	110	< 280	280	U
Diethyl phthalate			-	-			-		-		-	-	-	-	-	< 240	240 U	110	< 250	250	U 110	< 280	260	U	120	< 270	_	U	120	< 280	280	U
Dimethylphthalate				-			-		-		-		-	-	-	< 240	240 U	110	< 250	250	U 110	< 260	260	U	120	< 270	270	U	120	< 280	280	U
Di-n-butylphthalate Di-n-octylphthalate			· ·	-		-	+ -	<u> </u>	+-	<u> </u>	-		1	-	-	< 240	240 U	91	< 250	250	U 96	< 260	260	U	100	< 270	270	U	100	< 280	200	U
Di-n-octylphthalate Fluoranthene	400.000	100 000	21,000	2,700	1,800 2,5	00 810	280	540	270	85,000	12 000	7,900	270	< 280	280	< 240	240 U	110	< 250 < 250	250	U 92 U 120	< 280 1,500	260	U .	120	< 270 < 270	270	11	98	< 280	280	U
Fluorantnene	100,000 30,000	100,000	4,100	2,700	1,700 2,5	00 150	260	< 270	270	12,000	2,400	1,100	270	< 280	280	< 240	240 U	110	< 250	250	U 120	1,600		Ė	120	< 270	_	U	130	< 280	_	U
Hexachlorobenzene	30,000	100,000	-	-			1		1	1 .	-	,		-	-	< 170	170 U	100	< 180	180	U 100	< 190	190	U	110	< 190	_	U	110	< 200	200	U
Hexachlorobutadiene				-	-		-				-	-	-	-	-	< 240	240 U	120	< 250	250	U 130	< 280	260	U	140	< 270		U	140	< 280	280	U
Hexachlorocyclopentadiene			-	-	-		-		-		-		-	-	-	< 240	240 U	110	< 250	250	U 110	< 260	260	U	110	< 270	270	U	120	< 280	280	U
Hexachloroethane			-				-	-	1 -	<u> </u>	-				-	< 170	170 U	100	< 180	180	U 110	< 190	190	U	110	< 190	190	U	110	< 200	200	U
Indeno(1,2,3-cd)pyrene	500	500	3,300	2,700	< 1000 1,0	00 190	260	240	270	24,000	2,400	1,600	270	140	280	< 240	240 U	110	< 250	250	U 120	440	260	-	120	< 270	270	U	130	< 280	280	U
Isophorone Naphthalene	40.000	400.000	1,500	2 700	22,000 2,5	00 360	280	< 270	270	5,900	2 400	290	270	< 280	280	< 170	240 11	98	< 180	250	U 100	63,000	5 300	D	2200	< 190	190	U	110	< 200	200	U
Nitrobenzene	12,000	100,000	1,300	2,700	- 22,000	. 360	200	- 210	- 270	3,300	2,400	230		- 200	.00	< 170	170 U	120	< 180	180	U 130	< 190	190	U	130	< 190	_	U	130	< 200	200	U
N-Nitrosodimethylamine			-	-				.				-		-		< 240	240 U	97	< 250	250	U 100	< 260	260	U	110	< 270	_	U	110	< 280		U
N-Nitrosodi-n-propylamine			-	-	1		-	T -	1 -	1	-		-	-	-	< 170	170 U	110	< 180	180	U 120	< 190	190	U	120	< 190	_	U	120	< 200	200	U
N-Nitrosodiphenylamine			-	-	-						-		-		-	< 240	240 U	130	< 250	250	U 140	< 260	260	U	140	< 270	270	U	150	< 280	280	U
Deutschlerenitrebenne::			-	-			-		-		-	-	-	-	-	< 240	240 U	_	< 250	250	U 130	< 280	260	U	140	< 270		_	140	< 280		U
Pentachloronitrobenzene		1		1 .		. 11	1 -		1 -		1 -	1 -	1 .		ı . I	< 210	210 U	130	< 220	220	U 140	< 230	230	U	140	< 230	230	U	140	< 240	240	U
Pentachlorophenol	800	6,700					-						-					_					_	_				-			+	
Pentachlorophenol Phenanthrene	100,000	100,000	22,000	2,700	3,700 2,5	00 640	260	250	270	88,000	12,000	6,400	270	< 280	280	< 240	240 U	98	< 250	250	U 100	3,100	260	-	110	< 270	270	_	110	< 280		U
Pentachlorophenol			22,000	2,700	3,700 2,5 - 2,500 2,5	00 640 	260	250 - 480		88,000 - 70,000	-	6,400	270	< 280	280			_					260 260	U	110 120 130		270 270	U			280	U

- Notes:

 *-6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
 RL- Reporting Limit
 U- The compound was anialyzed for but not detected at or above the MDL.
 J-The value is estimated.
 N-The concentration is based on the response fo the nearest internal.

S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Boldhighighted: Indicated exceedance of the NYSDEC UNISCO Guidance Value

Boldhighighted: Indicated exceedance of the NYSDEC RISCO Guidance Value

TABLE 4 Soil Analytical Results Semi-Volatile Organic Compounds

			RIR Results - February and March 2018 17SB3 17SB4 17SB5																						
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	17SB3								17SB4										175	SB5			
				(5-7° 2/26/20	018			(12.5-1: 2/26/20		(5-7') 2/26/2018				(12.5-15') 2/26/2018				(2-4') 2/26/2018				(5-7') 2/26/2018			
			Result	μg/K RL		MDL	Result	μg/Kg RL	Qual MDL		Result	μg/Kg RL	Qual	MDL	Result	μg/K RL	g Qual	MDL	Result	μg/k	Qual	MDL	Result	Qual MDL	
1,2,4,5-Tetrachlorobenzene			< 300	300	U	150	< 260	260 260	U	130	< 290	290 290	U	150 130	< 270 < 270	270 270	U	140	< 280	280	U	140	< 290 < 290	290 290	U 150
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene			< 300	300	U	120	< 260	260	U	100	< 290	290	U	120	< 270	270	U	110	< 280	280	U	110	< 290	290	U 120
1,2-Diphenylhydrazine			< 300	300	U	140	< 260	260	U	120	< 290	290	U	140	< 270	270	U	130	< 280	280	U	130	< 290	290	U 140
1,3-Dichlorobenzene			< 300	300	U	130	< 260	260	U	110	< 290	290	U	120	< 270	270	U	110	< 280	280	U	120	< 290	290	U 120
1,4-Dichlorobenzene			< 300	300	U	130	< 260	260	U	110	< 290	290	U	120	< 270	270	U	110	< 280	280	U	120	< 290	290	U 120
2,4,5-Trichlorophenol			< 300	300 220	U	240 140	< 260	260 180	U	200	< 290	290	U	230 130	< 270	270 190	U	210	< 280	280	U	220 130	< 290	290	U 230
2,4,6-Trichlorophenol 2,4-Dichlorophenol			< 220	220	U	150	< 180	180	U	120	< 210	210	U	150	< 190	190	U	120	< 200	200	U	140	< 210	210	U 150
2,4-Dimethylphenol			< 300	300	U	110	< 260	260	U	92	< 290	290	U	100	< 270	270	U	96	< 280	280	U	99	< 290	290	U 100
2,4-Dinitrophenol			< 300	300	U	300	< 260	260	U	260	< 290	290	U	290	< 270	270	U	270	< 280	280	U	280	< 290	290	U 290
2,4-Dinitrotoluene			< 220	220	U	170	< 180	180	U	150	< 210	210	U	160	< 190	190	U	150	< 200	200	U	160	< 210	210	U 160
2,6-Dinitrotoluene			< 220	220	U	140	< 180	180	U	120	< 210	210	U	130	< 190	190	U	120	< 200	200	U	130	< 210	210	U 130
2-Chloronaphthalene 2-Chlorophenol			< 300	300	U	120	< 260	260 260	U	100	< 290	290 290	U	120 120	< 270 < 270	270 270	U	110	< 280 < 280	280	U	110	< 290	290 290	U 120
2-Methylnaphthalene			< 300	300	U	130	< 260	260	U	110	< 290	290	U	120	< 270	270	U	120	130	280	J	120	< 290	290	U 120
2-Methylphenol (o-cresol)	330	100,000	< 300	300	U	200	< 260	260	U	170	< 290	290	U	200	< 270	270	U	180	< 280	280	U	190	< 290	290	U 200
2-Nitroaniline			< 300	300	U	300	< 260	260	U	260	< 290	290	U	290	< 270	270	U	270	< 280	280	U	280	< 290	290	U 290
2-Nitrophenol			< 300	300	U	270	< 260	260	U	230	< 290	290	U	270	< 270	270	U	250	< 280	280	U	250	< 290	290	U 260
3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine	330	100,000	< 300	300 220	U	170 200	< 260	260 180	U	150	< 290	290	U	160 200	< 270	270 190	U	150	< 280	280	U	160	< 290	290	U 160
3-Nitroaniline			< 430	430	U	870	< 370	370	U	740	< 420	420	U	840	< 390	390	U	770	< 400	400	U	800	< 420	420	U 830
4,6-Dinitro-2-methylphenol			< 260	260	U	87	< 220	220	U	74	< 250	250	U	84	< 230	230	U	77	< 240	240	U	80	< 250	250	U 83
4-Bromophenyl phenyl ether			< 300	300	U	130	< 260	260	U	110	< 290	290	U	120	< 270	270	U	110	< 280	280	U	120	< 290	290	U 120
4-Chloro-3-methylphenol			< 300	300	U	150	< 260	260	U	130	< 290	290	U	150	< 270	270	U	140	< 280	280	U	140	< 290	290	U 150
4-Chlorophenyl phonyl ether			< 350	350	U	200	< 300	300 260	U	170	< 330	330 290	U	200	< 310	310 270	U	180	< 320	320	U	190	< 330	330 290	U 190
4-Chlorophenyl phenyl ether 4-Nitroaniline			< 430	430	U	140	< 370	370	U	120	< 420	420	U	140	< 390	390	U	130	< 400	400	U	130	< 420	420	U 140
4-Nitrophenol			< 430	430	U	200	< 370	370	U	170	< 420	420	U	190	< 390	390	U	170	< 400	400	U	180	< 420	420	U 190
Acenaphthene	20,000	100,000	< 300	300	U	130	< 260	260	U	110	< 290	290	U	130	< 270	270	U	120	150	280	J	120	< 290	290	U 130
Acenaphthylene	100,000	100,000	< 300	300	U	120	< 260	260	U	100	< 290	290	U	120	< 270	270	U	110	120	280	J	110	< 290	290	U 120
Acetophenone Aniline			< 300	300 350	U	140 350	< 260	260 300	U	120 300	< 290	290 330	U	130 330	< 270	270 310	U	120 310	< 280 < 320	280 320	U	120 320	< 290	290 330	U 130
Anthracene Anthracene	100,000	100,000	< 350	350	U	140	< 260	260	U	120	< 330	290	U	140	< 310	270	U	130	< 320 290	280	-	130	< 330	290	U 330
Benz(a)anthracene	1,000	1,000	210	300	J	150	< 260	260	U	120	< 290	290	U	140	< 270	270	U	130	750	280	-	130	< 290	290	U 140
Benzidine	2		< 430	430	U	250	< 370	370	U	220	< 420	420	U	250	< 390	390	U	230	< 400	400	U	230	< 420	420	U 240
Benzo(a)pyrene	1,000	1,000	200	220	J	140	< 180	180	U	120	< 210	210	U	140	< 190	190	U	130	710	200	-	130	< 210	210	U 140
Benzo(b)fluoranthene Benzo(ghi)perylene	1,000	1,000	220 210	300	J	150 140	< 260	260 260	U	130	< 290 < 290	290 290	U	140	< 270 < 270	270 270	U	130	770 560	280	-	140	< 290	290 290	U 140
Benzo(gni)perylene Benzo(k)fluoranthene	100,000 800	100,000 3,900	180	300	J	140	< 260	260	U	120	< 290	290	U	140	< 270	270	U	130	610	280		130	< 290	290	U 140
Benzoic acid	550	5,300	< 2200	2,200	U	870	< 1800	1,800	U	740	< 2100	2,100	U	840	< 1900	1,900	U	770	< 2000	2,000	U	800	< 2100	2,100	U 830
Benzyl butyl phthalate			< 300	300	U	110	< 260	260	U	95	< 290	290	U	110	< 270	270	U	100	< 280	280	U	100	< 290	290	U 110
Bis(2-chloroethoxy)methane			< 300	300	U	120	< 260	260	U	100	< 290	290	U	120	< 270	270	U	110	< 280	280	U	110	< 290	290	U 110
Bis(2-chloroethyl)ether			< 220	220 300	U	120	< 180	180 260	U	100	< 210	210 290	U	110	< 190 < 270	190 270	U	100	< 200 < 280	200	U	110	< 210	210 290	U 110
Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate			< 300	300	U	120	< 260	260	U	110	< 290	290	U	120 120	< 270	270	U	110	770	280	-	110	< 290	290	U 120
Carbazole			< 220	220	U	170	< 180	180	U	150	< 210	210	U	170	< 190	190	U	150	< 200	200	U	160	< 210	210	U 170
Chrysene	1,000	3,900	240	300	J	150	< 260	260	U	120	< 290	290	U	140	< 270	270	U	130	800	280	-	130	< 290	290	U 140
Dibenz(a,h)anthracene	330	330	< 220	220	U	140	< 180	180	U	120	< 210	210	U	140	< 190	190	U	130	170	200	J	130	< 210	210	U 130
Dibenzofuran	7,000	59,000	< 300	300	U	130	< 260	260 260	U	110	< 290	290 290	U	120 130	< 270 < 270	270 270	U	110	< 280	280	U	120	< 290	290 290	U 120
Direthyl phthalate Dimethylphthalate			< 300	300	U	140	< 260	260	U	120	< 290	290	U	130	< 270	270	U	120	< 280	280	U	130	< 290	290	U 130
Di-n-butylphthalate			< 300	300	U	120	< 260	260	U	98	< 290	290	U	110	< 270	270	U	100	< 280	280	U	110	< 290	290	U 110
Di-n-octylphthalate			< 300	300	U	110	< 260	260	U	95	< 290	290	U	110	< 270	270	U	100	< 280	280	U	100	< 290	290	U 110
Fluoranthene	100,000	100,000	350	300	-	140	< 260	260	U	120	< 290	290	U	140	< 270	270	U	130	1,400	280	-	130	< 290	290	U 130
Fluorene	30,000	100,000	< 300	300	U	140	< 260	260	U	120	< 290	290	U	140	< 270	270	U	130	150	280	J	130	< 290	290	U 140
Hexachlorobenzene Hexachlorobutadiene			< 220	220 300	U	130	< 180	180 260	U	110	< 210	210 290	U	120 150	< 190 < 270	190 270	U	110	< 200 < 280	200	U	120	< 210	210 290	U 120 U 150
Hexachlorocyclopentadiene			< 300	300	U	130	< 260	260	U	110	< 290	290	U	130	< 270	270	U	120	< 280	280	U	120	< 290	290	U 130
Hexachloroethane			< 220	220	U	130	< 180	180	U	110	< 210	210	U	130	< 190	190	U	120	< 200	200	U	120	< 210	210	U 120
Indeno(1,2,3-cd)pyrene	500	500	220	300	J	140	< 260	260	U	120	< 290	290	U	140	< 270	270	U	130	630	280	-	130	< 290	290	U 140
Isophorone			< 220	220	U	120	< 180	180	U	100	< 210	210	U	120	< 190	190	U	110	< 200	200	U	110	< 210	210	U 120
Naphthalene Nitrobenzene	12,000	100,000	< 300	300 220	U	120 150	< 260	260 180	U	110	< 290	290 210	U	120 150	< 270	270 190	U	110	220 < 200	280	J	110	< 290	290 210	U 120 U 150
N-Nitrosodimethylamine			< 300	300	U	120	< 260	260	U	100	< 210	290	U	120	< 270	270	U	110	< 200	280	U	110	< 210	290	U 120
N-Nitrosodi-n-propylamine			< 220	220	U	140	< 180	180	U	120	< 210	210	U	140	< 190	190	U	130	< 200	200	U	130	< 210	210	U 130
N-Nitrosodiphenylamine			< 300	300	U	170	< 260	260	U	140	< 290	290	U	160	< 270	270	U	150	< 280	280	U	150	< 290	290	U 160
Pentachloronitrobenzene			< 300	300	U	160	< 260	260	U	140	< 290	290	U	160	< 270	270	U	140	< 280	280	U	150	< 290	290	U 150
Pentachlorophenol	800	6,700	< 260	260	U	160	< 220	220	U	140	< 250	250	U	160	< 230	230	U	150	< 240	240	U	150	< 250	250	U 160
Phenal Phanal	100,000	100,000	160 < 300	300	J	120	< 260	260 260	U	110	< 290	290	U	120	< 270 < 270	270 270	U	110	860 < 280	280	- U	110	< 290	290 290	U 120
Phenol Pyrene	330	100,000	310	300	-	150	< 260	260	U	120	< 290	290	U	140	< 270	270	U	130	1,300	280	-	140	< 290	290	U 140
Pyridine	100,000	100,000	< 300	300	U	110	< 260	260	U	91	< 290	290	U	100	< 270	270	U	95	< 280	280	U	98	< 290	290	U 100
-											-					<u> </u>	_			1					

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
RL- Reporting Limit
U- The compound was analyzed for but not detected at or above the MDL.

- J- The value is estimated.
N- The concentration is based on the response fo the nearest internal.

S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Boldhighlighted- indicated exceedance of the NYSDEC UISCO Guidance Value

Boldhighlighted-indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 4 Soil Analytical Results Semi-Volatile Organic Compounds

		NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*											RIR Re	esults -	February 2											
COMPOUND	NYSDEC Part 375.6					178	B6								1	7SB7				(12.5-1				17SE		
	Unrestricted Use Soil Cleanup Objectives*		(0-2') 3/1/2018 µg/Kg				(4-6') 3/1/2018 #g/Kg Result RL Oual MDL				(2-4') 2/26/2018 μg/Kg					(5-7 2/26/2 μg/k	018 (g			(5-7') 2/26/2018 μg/Kg						
1,2,4,5-Tetrachlorobenzene			< 260	RL 260	Qual	MDL 130	Result < 260	RL 260	Qual	MDL 130	Result < 270	RL 270	Qual	MDL 140	< 290	RL 290	Qual	MDL 140	Result < 300	μg/K RL 300	Qual	MDL 150	Result < 240	RL 240	Qual	MDL 120
1,2,4-Trichlorobenzene			< 260	260	U	110	< 260	260	U	110	< 270	270	U	120	< 290	290	U	120	< 300	300	U	130	< 240	240	U	100
1,2-Dichlorobenzene			< 260	260	U	110	< 260	260	U	100	< 270	270	U	110	< 290	290	U	120	< 300	300	U	120	< 240	240	U	98
1,2-Diphenylhydrazine			< 260	260 260	U	120 110	< 260 < 260	260 260	U	120	< 270 < 270	270 270	U	130	< 290 < 290	290 290	U	130	< 300	300	U	140	< 240	240	U	110
1,3-Dichlorobenzene 1,4-Dichlorobenzene			< 260	260	U	110	< 260	260	U	110	< 270	270	U	120	< 290	290	U	120	< 300	300	U	130	< 240	240	U	100
2,4,5-Trichlorophenol			< 260	260	U	210	< 260	260	U	200	< 270	270	U	210	< 290	290	U	220	< 300	300	U	230	< 240	240	U	190
2,4,6-Trichlorophenol			< 190	190	U	120	< 190	190	U	120	< 200	200	U	130	< 200	200	U	130	< 210	210	U	140	< 170	170	U	110
2,4-Dichlorophenol			< 190	190	U	130 93	< 190	190 260	U	130	< 200	200	U	140 97	< 200	200	U	140	< 210	210 300	U	150	< 170 < 240	170 240	U	120 86
2,4-Dimethylphenol 2,4-Dinitrophenol			< 260	260	U	260	< 260	260	U	260	< 270	270	U	270	< 290	290	U	290	< 300	300	U	300	< 240	240	U	240
2,4-Dinitrotoluene			< 190	190	U	150	< 190	190	U	150	< 200	200	U	150	< 200	200	U	160	< 210	210	U	170	< 170	170	U	140
2,6-Dinitrotoluene			< 190	190	U	120	< 190	190	U	120	< 200	200	U	120	< 200	200	U	130	< 210	210	U	130	< 170	170	U	110
2-Chloronaphthalene			< 260	260 260	U	110	< 260 < 260	260 260	U	110	< 270 < 270	270 270	U	110	< 290 < 290	290 290	U	120	< 300	300	U	120	< 240	240	U	98 98
2-Chlorophenol 2-Methylnaphthalene			< 260	260	U	110	< 260	260	U	110	< 270	270	U	120	< 290	290	U	120	740	300	-	130	2,200	240	-	100
2-Methylphenol (o-cresol)	330	100,000	< 260	260	U	180	< 260	260	U	170	< 270	270	U	180	< 290	290	U	190	< 300	300	U	200	< 240	240	U	160
2-Nitroaniline			< 260	260 260	U	260	< 260	260 260	U	260	< 270	270 270	U	270	< 290	290 290	U	290 260	< 300	300	U	300 270	< 240	240	U	240
2-Nitrophenol 3&4-Methylphenol (m&p-cresol)	330	100,000	< 260	260	U	240 150	< 260	260	U	240 150	< 270	270	U	250 150	< 290 < 290	290	U	160	< 300	300	U	170	< 240	240	U	220 140
3,3'-Dichlorobenzidine	330	100,000	< 190	190	U	180	< 190	190	U	180	< 200	200	U	180	< 200	200	U	190	< 210	210	U	200	< 170	170	U	160
3-Nitroaniline			< 380	380	U	750	< 370	370	U	740	< 390	390	U	780	< 410	410	U	820	< 420	420	U	850	< 350	350	U	690
4,6-Dinitro-2-methylphenol			< 260	260 260	U	260 110	< 260	260 260	U	260 110	< 230 < 270	230 270	U	78 110	< 240 < 290	240 290	U	82 120	< 250	250 300	U	85 120	< 210	210 240	U	69 100
4-Bromophenyl phenyl ether			< 260	260	U	110	< 260	260	U	110	< 270	270	U	110	< 290	290	U	120	< 300	300	U	120	< 240	240	U	100
4-Chloro-3-methylphenol 4-Chloroaniline			< 300	300	U	180	< 300	300	U	170	< 310	310	U	180	< 330	330	U	190	< 340	340	U	200	< 280	280	U	160
4-Chlorophenyl phenyl ether			< 260	260	U	130	< 260	260	U	130	< 270	270	U	130	< 290	290	U	140	< 300	300	U	140	< 240	240	U	120
4-Nitroaniline			< 380	380	U	130	< 370	370	U	120	< 390	390 390	U	130	< 410 < 410	410	U	140	< 420 < 420	420	U	140	< 350	350	U	120 160
4-Nitrophenol	20,000	100,000	< 380	260	U	170 110	< 370	370 260	U	170	< 390 < 270	270	U	180	< 410	290	U	120	880	420 300	-	130	330	350 240	U -	110
Acenaphthene Acenaphthylene	100,000	100,000	< 260	260	U	110	< 260	260	U	100	< 270	270	U	110	< 290	290	U	110	120	300	J	120	< 240	240	U	97
Acetophenone	·		< 260	260	U	120	< 260	260	U	120	< 270	270	U	120	< 290	290	U	130	< 300	300	U	130	< 240	240	U	110
Aniline			< 300	300 260	U	300 120	< 300	300 260	U	300 120	< 310	310 270	U	310 130	< 330	330 290	U	330 130	< 340 820	340 300	U	340 140	< 280 140	280	U	280 110
Anthracene Benz(a)anthracene	1,000	1,000	240	260	J	130	< 260	260	U	130	< 270	270	U	130	< 290	290	U	140	2,200	300	-	140	< 240	240	U	120
Benzidine	1,000	1,500	< 380	380	U	220	< 370	370	U	220	< 390	390	U	230	< 410	410	U	240	< 420	420	U	250	< 350	350	U	200
Benzo(a)pyrene	1,000	1,000	300	190	-	120	< 190	190	U	120	< 200	200	U	130	< 200	200	U	130	1,800	210	-	140	< 170	170	U	110
Benzo(b)fluoranthene	1,000	1,000	270 220	260	- J	130	< 260	260 260	U	130	< 270	270	U	130	< 290 < 290	290	U	140	1,300 820	300	-	140	< 240	240	U	120
Benzo(ghi)perylene Benzo(k)fluoranthene	100,000	100,000 3,900	280	260	-	120	< 260	260	U	120	< 270	270	U	130	< 290	290	U	140	1,200	300	-	140	< 240	240	U	110
Benzoic acid		3,000	< 1900	1,900	U	750	< 1900	1,900	U	740	< 2000	2,000	U	780	< 2000	2,000	U	820	< 2100	2,100	U	850	< 1700	1,700	U	690
Benzyl butyl phthalate			< 260	260	U	97	< 260	260	U	96	< 270	270	U	100	< 290	290	U	110	< 300	300	U	110	< 240	240	U	89
Bis(2-chloroethoxy)methane			< 260	260 190	U	100	< 260	260 190	U	100	< 270	270	U	110	< 290	290	U	110	< 300	300 210	U	120	< 240	240 170	U	95 93
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether			< 260	260	U	100	< 260	260	U	100	< 270	270	U	110	< 290	290	U	110	< 300	300	U	120	< 240	240	U	96
Bis(2-ethylhexyl)phthalate			110	260	J	110	< 260	260	U	110	< 270	270	U	110	< 290	290	U	120	< 300	300	U	120	< 240	240	U	100
Carbazole			< 190	190	U	150	< 190	190	U	150	< 200	200	U	160	< 200	200	U	160	410	210	-	170	< 170	170	U	140
Chrysene Dibenz(a h)anthracene	1,000 330	3,900 330	280 < 190	260 190	- U	130	< 260	260 190	U	130	< 270	270	U	130	< 290	290	U	140	2,700 250	300 210	-	140	< 240	240 170	U	120
Dibenz(a,h)anthracene Dibenzofuran	7,000	59,000	< 260	260	U	110	< 260	260	U	110	< 270	270	U	110	< 290	290	U	120	600	300	-	120	< 240	240	U	100
Diethyl phthalate			< 260	260	U	120	< 260	260	U	120	< 270	270	U	120	< 290	290	U	130	< 300	300	U	130	< 240	240	U	110
Dimethylphthalate			< 260	260 260	U	120	< 260	260 260	U	120 99	< 270 < 270	270 270	U	120	< 290 < 290	290 290	U	130	< 300	300	U	130	< 240	240	U	110 92
Di-n-butylphthalate Di-n-octylphthalate			< 260	260	U	100 97	< 260	260	U	99	< 270	270	U	100	< 290	290	U	110	< 300	300	U	110	< 240	240	U	92 89
Fluoranthene	100,000	100,000	250	260	J	120	< 260	260	U	120	< 270	270	U	130	< 290	290	U	130	4,800	300		140	< 240	240	U	110
Fluorene	30,000	100,000	< 260	260	U	120	< 260	260	U	120	< 270	270	U	130	< 290	290	U	130	920	300	-	140	460	240		110
Hexachlorobenzene			< 190	190	U	110	< 190	190 260	U	110	< 200	200	U	110	< 200	200	U	120	< 210	210 300	U	120	< 170	170 240	U	100
Hexachlorobutadiene Hexachlorocyclopentadiene			< 260	260	U	110	< 260	260	U	110	< 270	270	U	120	< 290	290	U	120	< 300	300	U	130	< 240	240	U	110
Hexachloroethane			< 190	190	U	110	< 190	190	U	110	< 200	200	U	120	< 200	200	U	120	< 210	210	U	130	< 170	170	U	100
Indeno(1,2,3-cd)pyrene	500	500	220	260	J	120	< 260	260	U	120	< 270	270	U	130	< 290	290	U	140	940	300	-	140	< 240	240	U	110
Isophorone	40.555	400	< 190	190	U	110	< 190	190 260	U	100	< 200	200	U	110	< 200	200	U	110	< 210 1,400	210 300	U .	120	< 170	170 240	U	97
Naphthalene Nitrobenzene	12,000	100,000	< 190	190	U	130	< 190	190	U	130	< 200	200	U	140	< 200	200	U	140	< 210	210	U	150	< 170	170	U	120
N-Nitrosodimethylamine			< 260	260	U	110	< 260	260	U	100	< 270	270	U	110	< 290	290	U	120	< 300	300	U	120	< 240	240	U	98
N-Nitrosodi-n-propylamine			< 190	190	U	120	< 190	190	U	120	< 200	200	U	130	< 200	200	U	130	< 210	210	U	140	< 170	170	U	110
N-Nitrosodiphenylamine			< 260	260	U	140	< 260	260	U	140	< 270	270	U	150	< 290	290	U	160	< 300	300	U	160	< 240	240	U	130
Pentachloronitrobenzene			< 260	260	U	140	< 260	260 220	U	140	< 270	270	U	150 150	< 290	290	U	150 150	< 300	300 250	U	160	< 240	240	U	130
	ลบบ	6700											-				_			_	+	-	-	1	\vdash	_
Pentachlorophenol Phenanthrene	800 100,000	6,700 100,000	< 260	260	U	110	< 260	260	U	110	< 270	270	U	110	< 290	290	U	120	7,400	300	-	120	910	240	-	99
			< 260 < 260	260	U	120	< 260	260	U	120	< 270	270	U	130	< 290	290	U	130	< 300	300	U	140	< 240	240	U	110
Phenanthrene	100,000	100,000	< 260	-	-			_		_			_	_		-	_		-	_	- U -	_	-		U U	_

- Notes:

 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
 RL- Reporting Limit
 U- The compound was aniayzed for but not detected at or above the MDL.
 J- The value is estimated.
 N- The concentration is based on the response fo the nearest internal.

- S- This compound is a solvent that is used in the laboratory.

 D- The reported concentration is the result of a diluted analysis.

 Boldhighlighted-indicated exceedance of the NYSDEC UISCO Guidance Value

 Boldhighlighted-indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 4 Soil Analytical Results Semi-Volatile Organic Compounds

	I												RIR R	esults -	February 2	2018				Dunlin	-4- 4			Dunling	4- 0	
	ANYONEO D 075 0	NYDEC Part 375.6				17	SB9							178	B10					Duplica 17SE				Duplica (17SE		
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*		2/26/2	018			(5-7° 2/26/20	118			2/26/20	118			(5-7° 2/26/20	18			2/26/2	018			(12.5-1 2/26/20	018	
			Result	μg/K RL	Qual	MDL			Qual	_	Result	μg/K RL	Qual	MDL		_	Qual		Result	μg/K RL	Qual	MDL	Result		Qual	
1,2,4,5-Tetrachlorobenzene			< 260	260 260	U	130	< 300	300	U	150 130	< 250 < 250	250 250	U	130	< 590 < 590	590 590	U	300 250	< 280 < 280	280	U	140	< 260	260	U	130
1,2,4-Trichlorobenzene			< 260	260	U	110	< 300	300	U	120	< 250	250	U	100	< 590	590	U	240	< 280	280	U	110	< 260	260	U	100
1,2-Dichlorobenzene 1,2-Diphenylhydrazine			< 260	260	U	120	< 300	300	U	140	< 250	250	U	120	< 590	590	U	270	< 280	280	U	130	< 260	260	U	120
1,3-Dichlorobenzene			< 260	260	U	110	< 300	300	U	130	< 250	250	U	110	< 590	590	U	250	< 280	280	U	120	< 260	260	U	110
1,4-Dichlorobenzene			< 260	260	U	110	< 300	300	U	130	< 250	250	U	110	< 590	590	U	250	< 280	280	U	120	< 260	260	U	110
2,4,5-Trichlorophenol			< 260	260	U	200	< 300	300	U	240	< 250	250	U	200	< 590	590	U	460	< 280	280	U	220	< 260	260	U	200
2,4,6-Trichlorophenol			< 190 < 190	190	U	120	< 210	210 210	U	140 150	< 180	180	U	120	< 420	420 420	U	270 300	< 200	200	U	130	< 190	190	U	120
2,4-Dichlorophenol 2,4-Dimethylphenol			< 260	260	U	92	< 300	300	U	110	< 250	250	U	89	< 590	590	U	210	< 280	280	U	99	< 260	260	U	92
2,4-Dinitrophenol			< 260	260	U	260	< 300	300	U	300	< 250	250	U	250	< 590	590	U	590	< 280	280	U	280	< 260	260	U	260
2,4-Dinitrotoluene			< 190	190	U	150	< 210	210	U	170	< 180	180	U	140	< 420	420	U	330	< 200	200	U	160	< 190	190	U	150
2,6-Dinitrotoluene			< 190	190	U	120	< 210	210	U	140	< 180	180	U	110	< 420	420	U	270	< 200	200	U	130	< 190	190	U	120
2-Chloronaphthalene			< 260	260	U	110	< 300	300	U	120	< 250	250	U	100	< 590	590	U	240	< 280	280	U	110	< 260	260	U	110
2-Chlorophenol			< 260 940	260	U	110	< 300	300	U	120	< 250 < 250	250 250	U	100	< 590 < 590	590 590	U	240	< 280	280	U	110	< 260	260	U	110
2-Methylnaphthalene	220	100.000	< 260	260	U	180	< 300	300	U	200	< 250	250	U	170	< 320	320	U	320	< 280	280	U	190	< 260	260	U	170
2-Methylphenol (o-cresol) 2-Nitroaniline	330	100,000	< 260	260	U	260	< 300	300	U	300	< 250	250	U	250	< 590	590	U	590	< 280	280	U	280	< 260	260	U	260
2-Nitrophenol			< 260	260	U	240	< 300	300	U	270	< 250	250	U	230	< 590	590	U	530	< 280	280	U	250	< 260	260	U	240
3&4-Methylphenol (m&p-cresol)	330	100,000	< 260	260	U	150	< 300	300	U	170	< 250	250	U	140	< 590	590	U	330	< 280	280	U	160	< 260	260	U	150
3,3'-Dichlorobenzidine			< 190	190	U	180	< 210	210	U	200	< 180	180	U	170	< 420	420	U	400	< 200	200	U	190	< 190	190	U	180
3-Nitroaniline			< 370	370	U	750	< 430	430	U	860	< 360	360	U	720	< 840	840	U	1700	< 400	400	U	800	< 370	370	U	740
4,6-Dinitro-2-methylphenol			< 220	220	U	75	< 260	260	U	86	< 220	220	U	72	< 510	510	U	170	< 240	240	U	80	< 220	220	U	74
4-Bromophenyl phenyl ether			< 260 < 260	260 260	U	110	< 300	300	U	130 150	< 250 < 250	250 250	U	110	< 590 < 590	590 590	U	250 300	< 280 < 280	280	U	120	< 260	260	U	110
4-Chloro-3-methylphenol			< 300	300	U	170	< 340	340	U	200	< 290	290	U	170	< 670	670	U	390	< 320	320	U	190	< 300	300	U	170
4-Chloroaniline 4-Chlorophenyl phenyl ether			< 260	260	U	130	< 300	300	U	140	< 250	250	U	120	< 590	590	U	280	< 280	280	U	130	< 260	260	U	120
4-Nitroaniline			< 370	370	U	120	< 430	430	U	140	< 360	360	U	120	< 840	840	U	280	< 400	400	U	130	< 370	370	U	120
4-Nitrophenol			< 370	370	U	170	< 430	430	U	190	< 360	360	U	160	< 840	840	U	380	< 400	400	U	180	< 370	370	U	170
Acenaphthene	20,000	100,000	< 260	260	U	110	< 300	300	U	130	< 250	250	U	110	< 590	590	U	260	< 280	280	U	120	< 260	260	U	110
Acenaphthylene	100,000	100,000	< 260	260	U	100	< 300	300	U	120	140	250	J	100	< 590	590	U	240	< 280	280	U	110	< 260	260	U	100
Acetophenone			< 260	260	U	120	< 300	300	U	130	< 250	250	U	110	< 590	590	U	260	< 280	280	U	130	< 260	260	U	120
Aniline			< 300 < 260	300 260	U	300 120	< 340	340	U	340 140	< 290 < 250	290 250	U	290 120	< 670 360	670 590	U	670 280	< 320	320 280	U	320 130	< 300	300 260	U	300 120
Anthracene	100,000	100,000	190	260	J	130	360	300	-	140	260	250	-	120	1,100	590	-	280	< 280	280	U	130	< 260	260	U	120
Benz(a)anthracene Benzidine	1,000	1,000	< 370	370	U	220	< 430	430	U	250	< 360	360	U	210	< 840	840	U	500	< 400	400	U	240	< 370	370	U	220
Benzo(a)pyrene	1,000	1,000	170	190	J	120	370	210		140	560	180	-	120	840	420	-	270	< 200	200	U	130	< 190	190	U	120
Benzo(b)fluoranthene	1,000	1,000	200	260	J	130	310	300		150	470	250	-	120	790	590	-	290	< 280	280	U	140	< 260	260	U	130
Benzo(ghi)perylene	100,000	100,000	140	260	J	120	220	300	J	140	530	250	-	120	390	590	J	270	< 280	280	U	130	< 260	260	U	120
Benzo(k)fluoranthene	800	3,900	140	260	J	120	280	300	J	140	450	250	-	120	670	590	-	280	< 280	280	U	130	< 260	260	U	120
Benzoic acid			< 1900	1,900	U	750	< 2100	2,100	U	860	< 1800	1,800	U	720	< 4200	4,200	U	1700	< 2000	2,000	U	800	< 1900	1,900	U	740
Benzyl butyl phthalate			< 260	260	U	96	< 300	300	U	110	1,000 < 250	250 250	U	93	< 590 < 590	590 590	U	220	< 280	280	U	100	< 260	260	U	96
Bis(2-chloroethoxy)methane			< 190	190	U	100	< 210	210	U	120	< 180	180	U	97	< 420	420	U	230	< 200	200	U	110	< 190	190	U	100
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether			< 260	260	U	100	< 300	300	U	120	< 250	250	U	100	< 590	590	U	230	< 280	280	U	110	< 260	260	U	100
Bis(2-ethylhexyl)phthalate			130	260	J	110	< 300	300	U	120	240	250	J	100	< 590	590	U	240	< 280	280	U	120	< 260	260	U	110
Carbazole			< 190	190	U	150	< 210	210	U	170	< 180	180	U	140	< 420	420	U	340	< 200	200	U	160	< 190	190	U	150
Chrysene	1,000	3,900	310	260	-	130	360	300	-	140	360	250	-	120	1,000	590	-	280	< 280	280	U	130	< 260	260	U	120
Dibenz(a,h)anthracene	330	330	< 190	190	U	120	< 210	210	U	140	200	180	-	120	< 330	330	U	270	< 200	200	U	130	< 190	190	U	120
Dibenzofuran	7,000	59,000	< 260	260	U	110	< 300	300	U	130	< 250	250	U	110	< 330	330	U	250	< 280	280	U	120	< 260	260	U	110
Diethyl phthalate			< 260 < 260	260 260	U	120	< 300	300	U	140	< 250 < 250	250 250	U	110	< 590 < 590	590 590	U	270 260	< 280 < 280	280	U	130	< 260	260	U	120 120
Dimethylphthalate Di p bythlebthalate			< 260	260	U	99	< 300	300	U	110	< 250	250	U	96	< 590	590	U	220	< 280	280	U	110	< 260	260	U	99
Di-n-butylphthalate Di-n-octylphthalate			< 260	260	U	96	< 300	300	U	110	< 250	250	U	93	< 590	590	U	220	< 280	280	U	100	< 260	260	U	96
Fluoranthene	100,000	100,000	430	260	-	120	700	300	-	140	450	250	-	120	1,900	590	-	270	< 280	280	U	130	< 260	260	U	120
Fluorene	30,000	100,000	140	260	J	120	< 300	300	U	140	< 250	250	U	120	< 590	590	U	280	< 280	280	U	130	< 260	260	U	120
Hexachlorobenzene			< 190	190	U	110	< 210	210	U	130	< 180	180	U	110	< 330	330	U	250	< 200	200	U	120	< 190	190	U	110
Hexachlorobutadiene			< 260	260	U	130	< 300	300	U	160	< 250	250	U	130	< 590	590	U	310	< 280	280	U	150	< 260	260	U	130
Hexachlorocyclopentadiene			< 260	260	U	110	< 300	300	U	130	< 250	250	U	110	< 590	590	U	260	< 280	280	U	120	< 260	260	U	110
Hexachloroethane			< 190 140	190	U	110	< 210 270	210	U	130	< 180 540	180 250	U	110	< 420 470	420 500	U	250	< 200	200	U	120	< 190	190	U	110
Indeno(1,2,3-cd)pyrene	500	500	< 190	190	U	100	< 210	210	U	120	< 180	180	U	100	< 420	420	U	240	< 200	200	U	110	< 190	190	U	100
Isophorone Naphthalene	12,000	100,000	970	260	-	110	< 300	300	U	120	< 250	250	U	100	< 590	590	U	240	< 280	280	U	120	< 260	260	U	110
Nitrobenzene	12,000	.00,000	< 190	190	U	130	< 210	210	U	150	< 180	180	U	130	< 420	420	U	300	< 200	200	U	140	< 190	190	U	130
N-Nitrosodimethylamine			< 260	260	U	110	< 300	300	U	120	< 250	250	U	100	< 590	590	U	240	< 280	280	U	110	< 260	260	U	100
N-Nitrosodi-n-propylamine			< 190	190	U	120	< 210	210	U	140	< 180	180	U	120	< 420	420	U	270	< 200	200	U	130	< 190	190	U	120
N-Nitrosodiphenylamine			< 260	260	U	140	< 300	300	U	160	< 250	250	U	140	< 590	590	U	320	< 280	280	U	150	< 260	260	U	140
Pentachloronitrobenzene			< 260	260	U	140	< 300	300	U	160	< 250	250	U	130	< 590	590	U	310	< 280	280	U	150	< 260	260	U	140
Pentachlorophenol	800	6,700	< 220 350	220 260	U	140	< 260	260	U	160	< 220	220 250	U	140	< 510 4 300	510 590	U	320 240	< 240	240	U	150	< 220	220	U	140
Phenanthrene	100,000	100,000	350 < 260	260	- U	110	510	300	U	120	250 < 250	250	U	120	1,300 < 330	330	U	270	< 280	280	U	110	< 260	260	U	120
Phenol Pyrene	330 100,000	100,000	360	260	Ė	130	660	300	-	150	460	250	-	120	1,500	590	Ť	290	< 280	280	U	140	< 260	260	U	130
Pyridine	.00,000	.00,000	< 260	260	U	92	< 300	300	U	110	< 250	250	U	89	< 590	590	U	210	< 280	280	U	99	< 260	260	U	91
																										-

- Notes:

 -- 6 NVCRR Part 375-6 Remedial Program Soil Cleanup Objectives
 RL- Reporting Limit

 U- The compound was anlayzed for but not detected at or above the MDL.

 -- 3. The value is estimated.

 N- The concentration is based on the response fo the nearest internal.

S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Boldhighlighted-indicated exceedance of the NYSDEC UISCO Guidance Value

Boldhighlighted-indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 5 Soil Analytical Results Pesticides and PCBs

							Phas	e II Result	ts - May	2016								RIR Res	ults - F	ebruary	2018				
		NYSDEC Part 375.6	NYDEC Part 375.6	B1			32	B4			36	B10			17SE						179	SB2			
	COMPOUND	Unrestricted Use Soil	Restricted Residential Soil	(0-2') 5/26/20			-2') /2016	(0-2 5/26/2			-3') /2016	(0-2) 5/26/2			(12.5-1 2/26/20				(2-4 2/26/2				(12.5-1 2/26/20		
		Cleanup Objectives*	Cleanup Objectives*	μg/K _ξ	g	μg	/Kg	μg/k	Cg .	μд	/Kg	μg/K	g		μg/K	g			μg/K	[g			μg/K	g	
_				Result	RL	Result	i	Result	RL	Result		Result	RL	Result	RL		MDL	Result	RL	Qual	i 	Result	RL	Qual	MDL
	4,4' -DDD	3.3	13,000	< 2.3	2.3	< 2.8	2.8	< 2.1	2.1	< 3.0	3.0	< 21	21	< 2.2	2.2	U	2.2	< 2.2	2.2	U	2.2	< 2.4	2.4	U	2.4
	4,4' -DDE	3.3	8,900	< 4.0	4.0	< 2.1	2.1	< 2.1	2.1	< 5.0	5.0	< 21	21	< 2.2	2.2	U	2.2	11	3.7	-	3.7	< 2.4	2.4	U	2.4
	4,4' -DDT	3.3	7,900	< 15	15	< 2.1	2.1	< 3.0	3.0	< 10	10	< 21	21	< 2.2	2.2	U	2.2	15	2.2	-	2.2	< 2.4	2.4	U	2.4
	a-BHC	20	480	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 18	18	< 7.3	7.3	U	7.3	< 7.5	7.5	U	7.5	< 7.9	7.9	U	7.9
	a-Chlordane	94	4,200	< 3.8	3.8	< 3.5	3.5	< 5.0	5.0	< 3.6	3.6	< 36	36	< 3.7	3.7	U	3.7	< 3.7	3.7	U	3.7	< 3.9	3.9	U	3.9
	Aldrin	5	97	< 3.8	3.8	< 3.5	3.5	< 3.5	3.5	< 3.6	3.6	< 18	18	< 3.7	3.7	U	3.7	< 3.7	3.7	U	3.7	< 3.9	3.9	U	3.9
	b-BHC	36	360	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 18	18	< 7.3	7.3	U	7.3	< 7.5	7.5	U	7.5	< 7.9	7.9	U	7.9
	Chlordane	94	4,200	< 38	38	< 35	35	< 200	200	< 36	36	< 360	360	< 37	37	U	37	< 37	37	U	37	< 39	39	U	39
	d-BHC	40	100,000	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 18	18	< 7.3	7.3	U	7.3	< 7.5	7.5	U	7.5	< 7.9	7.9	U	7.9
S	Dieldrin	5	200	< 5.0	5.0	< 3.5	3.5	< 3.5	3.5	< 3.6	3.6	< 11	11	< 3.7	3.7	U	3.7	< 3.7	3.7	U	3.7	< 3.9	3.9	U	3.9
cide	Endosulfan I	2,400	24,000	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 71	71	< 7.3	7.3	U	7.3	< 7.5	7.5	U	7.5	< 7.9	7.9	U	7.9
Pesticides	Endosulfan II	2,400	24,000	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 71	71	< 7.3	7.3	U	7.3	< 7.5	7.5	U	7.5	< 7.9	7.9	U	7.9
Ι "	Endosulfan sulfate	2,400	24,000	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 71	71	< 7.3	7.3	U	7.3	< 7.5	7.5	U	7.5	< 7.9	7.9	U	7.9
	Endrin	14	11,000	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 36	36	< 7.3	7.3	U	7.3	< 7.5	7.5	U	7.5	< 7.9	7.9	U	7.9
	Endrin aldehyde			< 10	10	< 15	15	< 7.1	7.1	< 7.2	7.2	< 71	71	< 7.3	7.3	U	7.3	< 7.5	7.5	U	7.5	< 7.9	7.9	U	7.9
	Endrin ketone			< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 71	71	< 7.3	7.3	U	7.3	< 7.5	7.5	U	7.5	< 7.9	7.9	U	7.9
	g-BHC			< 1.5	1.5	< 1.4	1.4	< 1.4	1.4	< 1.4	1.4	< 14	14	< 1.5	1.5	U	1.5	< 1.5	1.5	U	1.5	< 1.6	1.6	U	1.6
	g-Chlordane			< 3.8	3.8	< 10	10	< 10	10	< 3.6	3.6	< 36	36	< 3.7	3.7	U	3.7	< 3.7	3.7	U	3.7	< 3.9	3.9	U	3.9
	Heptachlor	42	2,100	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 36	36	< 7.3	7.3	U	7.3	< 7.5	7.5	U	7.5	< 7.9	7.9	U	7.9
	Heptachlor epoxide			< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 71	71	< 7.3	7.3	U	7.3	< 7.5	7.5	U	7.5	< 7.9	7.9	U	7.9
	Methoxychlor			< 38	38	< 35	35	< 35	35	< 36	36	< 360	360	< 37	37	U	37	< 37	37	U	37	< 39	39	U	39
	Toxaphene			< 150	150	< 140	140	< 140	140	< 140	140	< 1400	1,400	< 150	150	U	150	< 150	150	U	150	< 160	160	U	160
	PCB-1016	100	1,000	< 75	75	< 70	70	< 71	71	< 72	72	< 71	71	< 85	85	U	73	< 80	80	U	75	< 80	80	U	79
	PCB-1221	100	1,000	< 75	75	< 70	70	< 71	71	< 72	72	< 71	71	< 85	85	U	73	< 80	80	U	75	< 80	80	U	79
	PCB-1232	100	1,000	< 75	75	< 70	70	< 71	71	< 72	72	< 71	71	< 85	85	U	73	< 80	80	U	75	< 80	80	U	79
 "	PCB-1242	100	1,000	< 75	75	< 70	70	< 71	71	< 72	72	< 71	71	< 85	85	U	73	< 80	80	U	75	< 80	80	U	79
PCBs	PCB-1248	100	1,000	< 75	75	< 70	70	< 71	71	< 72	72	< 71	71	< 85	85	U	73	< 80	80	U	75	< 80	80	U	79
"	PCB-1254	100	1,000	210	75	< 70	70	< 71	71	< 72	72	< 71	71	< 85	85	U	73	< 80	80		75	< 80	80	U	79
	PCB-1260	100	1,000	< 75	75	< 70	70	< 71	71	110	72	< 71	71	< 85	85	U	73	< 80	80	U	75	< 80	80	U	79
	PCB-1262	100	1,000	< 75	75	< 70	70	< 71	71	< 72	72	< 71	71	< 85	85	U	73	< 80	80	U	75	< 80	80	U	79
	PCB-1268	100	1,000	< 75	75	< 70	70	< 71	71	< 72	72	< 71	71	< 85	85	U	73	< 80	80	U	75	< 80	80	U	79
_		1	.,						_																

Notes:

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.
- D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

											RIR	Results -	Februaı	y and I	March 2	2018							
		11/2050 D (4550	10/DEO D 4 000 0		17SE	33			17SE	4			17SE	35					179	SB6			
	COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*		(12.5-1 2/26/20 μg/K	018 g			(12.5-1 2/26/20 μg/Κ	18 3			(2-4' 2/26/20 μg/Κ	118 g			(0-2' 3/1/20 μg/K)18 ^{(g}			(4-6' 3/1/20 μg/K	, 18 g	
	4.4' -DDD			Result	RL 2.2	Qual	MDL 2.2	Result < 2.3	RL 2.3	Qual	MDL 2.3	Result 20	RL 3.3	Qual	MDL 3.3	Result < 2.3	RL 2.3	Qual	MDL 2.3	Result	2.2	Qual	MDL 2.2
	4,4' -DDE	3.3	13,000	< 2.2	2.2	U	2.2	< 2.3	2.3	U	2.3	< 3.3	3.3	U	3.3	< 2.3	2.3	U	2.3	< 2.2	2.2	U	2.2
	4,4' -DDE 4.4' -DDT	3.3	8,900	< 2.2	2.2	U	2.2	< 2.3	2.3	U	2.3	< 2.4	2.4	U	2.4	< 2.3	2.3	U	2.3	< 2.2	2.2	U	2.2
	a-BHC	3.3	7,900	< 7.5	7.5	U	7.5	< 7.6	7.6	U	7.6	< 7.9	7.9	U	7.9	< 7.7	7.7	U	7.7	< 7.5	7.5	U	7.5
	а-впс a-Chlordane		480	< 3.7	3.7	U	3.7	< 3.8	3.8	U	3.8	< 3.9	3.9	U	3.9	< 3.9	3.9	U	3.9	< 3.7	3.7	U	3.7
	Aldrin	94	4,200 97	< 3.7	3.7	U	3.7	< 3.8	3.8	U	3.8	< 3.9	3.9	U	3.9	< 3.9	3.9	U	3.9	< 3.7	3.7	U	3.7
	b-BHC	36	360	< 7.5	7.5	U	7.5	< 7.6	7.6	U	7.6	< 10	10	U	10	< 7.7	7.7	U	7.7	< 7.5	7.5	U	7.5
	Chlordane	94	4,200	< 37	37	U	37	< 38	38	U	38	< 39	39	U	39	< 39	39	U	39	< 37	37	U	37
	d-BHC	40	100,000	< 7.5	7.5	U	7.5	< 7.6	7.6	U	7.6	< 7.9	7.9	U	7.9	< 7.7	7.7	U	7.7	< 7.5	7.5	U	7.5
"	Dieldrin	5	200	< 3.7	3.7	U	3.7	< 3.8	3.8	U	3.8	< 3.9	3.9	U	3.9	< 3.9	3.9	U	3.9	< 3.7	3.7	U	3.7
Pesticides	Endosulfan I	2.400	24,000	< 7.5	7.5	U	7.5	< 7.6	7.6	U	7.6	< 7.9	7.9	U	7.9	< 7.7	7.7	U	7.7	< 7.5	7.5	U	7.5
stic	Endosulfan II	2,400	24,000	< 7.5	7.5	U	7.5	< 7.6	7.6	U	7.6	< 7.9	7.9	U	7.9	< 7.7	7.7	U	7.7	< 7.5	7.5	U	7.5
g	Endosulfan sulfate	2,400	24,000	< 7.5	7.5	U	7.5	< 7.6	7.6	U	7.6	< 7.9	7.9	U	7.9	< 7.7	7.7	U	7.7	< 7.5	7.5	U	7.5
	Endrin	14	11,000	< 7.5	7.5	U	7.5	< 7.6	7.6	U	7.6	< 7.9	7.9	U	7.9	< 7.7	7.7	U	7.7	< 7.5	7.5	U	7.5
	Endrin aldehyde		, , , , ,	< 7.5	7.5	U	7.5	< 7.6	7.6	U	7.6	< 7.9	7.9	U	7.9	< 7.7	7.7	U	7.7	< 7.5	7.5	U	7.5
	Endrin ketone			< 7.5	7.5	U	7.5	< 7.6	7.6	U	7.6	< 7.9	7.9	U	7.9	< 7.7	7.7	U	7.7	< 7.5	7.5	U	7.5
	g-BHC			< 1.5	1.5	U	1.5	< 1.5	1.5	U	1.5	< 1.6	1.6	U	1.6	< 1.5	1.5	U	1.5	< 1.5	1.5	U	1.5
	g-Chlordane			< 3.7	3.7	U	3.7	< 3.8	3.8	U	3.8	< 5.0	5.0	U	5.0	< 3.9	3.9	U	3.9	< 3.7	3.7	U	3.7
	Heptachlor	42	2,100	< 7.5	7.5	U	7.5	< 7.6	7.6	U	7.6	< 7.9	7.9	U	7.9	< 7.7	7.7	U	7.7	< 7.5	7.5	U	7.5
	Heptachlor epoxide			< 7.5	7.5	U	7.5	< 7.6	7.6	U	7.6	< 7.9	7.9	U	7.9	< 7.7	7.7	U	7.7	< 7.5	7.5	U	7.5
	Methoxychlor			< 37	37	U	37	< 38	38	U	38	< 39	39	U	39	< 39	39	U	39	< 37	37	U	37
	Toxaphene			< 150	150	U	150	< 150	150	U	150	< 160	160	U	160	< 150	150	U	150	< 150	150	U	150
	PCB-1016	100	1,000	< 76	76	U	75	< 78	78	U	76	< 72	72	U	79	< 77	77	U	77	< 75	75	U	75
	PCB-1221	100	1,000	< 76	76	U	75	< 78	78	U	76	< 72	72	U	79	< 77	77	U	77	< 75	75	U	75
	PCB-1232	100	1,000	< 76	76	U	75	< 78	78	U	76	< 72	72	U	79	< 77	77	U	77	< 75	75	U	75
s,	PCB-1242	100	1,000	< 76	76	U	75	< 78	78	U	76	< 72	72	U	79	< 77	77	U	77	< 75	75	U	75
PCBs	PCB-1248	100	1,000	< 76	76	U	75	< 78	78	U	76	< 72	72	U	79	< 77	77	U	77	< 75	75	U	75
_	PCB-1254	100	1,000	< 76	76	U	75	< 78	78	U	76	< 72	72	U	79	< 77	77	U	77	< 75	75	U	75
	PCB-1260	100	1,000	< 76	76	U	75	< 78	78	U	76	< 72	72	-	79	< 77	77	U	77	< 75	75	U	75
	PCB-1262	100	1,000	< 76	76	U	75	< 78	78	U	76	< 72	72	U	79	< 77	77	U	77	< 75	75	U	75
	PCB-1268	100	1,000	< 76	76	U	75	< 78	78	U	76	< 72	72	U	79	< 77	77	U	77	< 75	75	U	75

Notes:

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL. J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent t S- This compound is a solvent that is used in the laboratory. D- The reported concentration i D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedanc Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 5 Soil Analytical Results Pesticides and PCBs

														RIR Re	esults -	February 2	2018										
							179	SB7					17SE	39			17SB	10			Duplica 17SE				Duplica (17SB		
	COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil	NYDEC Part 375.6 Restricted Residential Soil		(2-4	')			(12.5-1	15')			(2-4	')			(2-4')			(12.5-1				(1758		
	COMIN COND	Cleanup Objectives*	Cleanup Objectives*		2/26/2 μg/K				2/26/20 μg/K				2/26/2 0 μg/K				2/26/2 0 μg/K				2/26/2 0 μg/K				2/26/20 μg/Κş		
				Result	RL		MDL	Result	RL	Qual	MDL	Result	RL		MDL	Result	RL	Qual	MDL	Result	RL		MDL	Result	RL	Qual	MDL
	4,4' -DDD	3.3	13,000	< 2.4	2.4	U	2.4	< 2.5	2.5	U	2.5	< 2.2	2.2	U	2.2	< 2.2	2.2	U	2.2	< 2.4	2.4	U	2.4	< 2.2	2.2	U	2.2
	4,4' -DDE	3.3	8,900	< 2.4	2.4	U	2.4	< 2.5	2.5	U	2.5	< 2.2	2.2	U	2.2	< 2.2	2.2	U	2.2	< 2.4	2.4	U	2.4	< 2.2	2.2	U	2.2
	4,4' -DDT	3.3	7,900	< 2.4	2.4	U	2.4	< 2.5	2.5	U	2.5	9.5	2.2	-	2.2	8.1	5.0	-	5.0	< 2.4	2.4	U	2.4	< 2.2	2.2	U	2.2
	a-BHC	20	480	< 7.9	7.9	U	7.9	< 8.4	8.4	U	8.4	< 7.4	7.4	U	7.4	< 7.2	7.2	U	7.2	< 8.0	8.0	U	8.0	< 7.4	7.4	U	7.4
	a-Chlordane	94	4,200	< 4.0	4.0	U	4.0	< 4.2	4.2	U	4.2	< 3.7	3.7	U	3.7	< 3.6	3.6	U	3.6	< 4.0	4.0	U	4.0	< 3.7	3.7	U	3.7
	Aldrin	5	97	< 4.0	4.0	U	4.0	< 4.2	4.2	U	4.2	< 3.7	3.7	U	3.7	< 3.6	3.6	U	3.6	< 4.0	4.0	U	4.0	< 3.7	3.7	U	3.7
	b-BHC	36	360	< 7.9	7.9	U	7.9	< 8.4	8.4	U	8.4	< 7.4	7.4	U	7.4	< 7.2	7.2	U	7.2	< 8.0	8.0	U	8.0	< 7.4	7.4	U	7.4
	Chlordane	94	4,200	< 40	40	U	40	< 42	42	U	42	< 37	37	U	37	< 36	36	U	36	< 40	40	U	40	< 37	37	U	37
	d-BHC	40	100,000	< 7.9	7.9	U	7.9	< 8.4	8.4	U	8.4	< 7.4	7.4	U	7.4	< 7.2	7.2	\supset	7.2	< 8.0	8.0	U	8.0	< 7.4	7.4	U	7.4
s	Dieldrin	5	200	< 4.0	4.0	U	4.0	< 4.2	4.2	U	4.2	< 3.7	3.7	U	3.7	< 3.6	3.6	J	3.6	< 4.0	4.0	U	4.0	< 3.7	3.7	U	3.7
Pesticides	Endosulfan I	2,400	24,000	< 7.9	7.9	U	7.9	< 8.4	8.4	U	8.4	< 7.4	7.4	U	7.4	< 7.2	7.2	U	7.2	< 8.0	8.0	U	8.0	< 7.4	7.4	U	7.4
esti	Endosulfan II	2,400	24,000	< 7.9	7.9	U	7.9	< 8.4	8.4	U	8.4	< 7.4	7.4	U	7.4	< 7.2	7.2	U	7.2	< 8.0	8.0	U	8.0	< 7.4	7.4	U	7.4
Δ.	Endosulfan sulfate	2,400	24,000	< 7.9	7.9	U	7.9	< 8.4	8.4	U	8.4	< 7.4	7.4	U	7.4	< 7.2	7.2	\supset	7.2	< 8.0	8.0	U	8.0	< 7.4	7.4	U	7.4
	Endrin	14	11,000	< 7.9	7.9	U	7.9	< 8.4	8.4	U	8.4	< 7.4	7.4	U	7.4	< 7.2	7.2	\supset	7.2	< 8.0	8.0	U	8.0	< 7.4	7.4	U	7.4
	Endrin aldehyde			< 7.9	7.9	U	7.9	< 8.4	8.4	U	8.4	< 7.4	7.4	U	7.4	< 7.2	7.2	\supset	7.2	< 8.0	8.0	U	8.0	< 7.4	7.4	U	7.4
	Endrin ketone			< 7.9	7.9	U	7.9	< 8.4	8.4	U	8.4	< 7.4	7.4	U	7.4	< 7.2	7.2	J	7.2	< 8.0	8.0	U	8.0	< 7.4	7.4	U	7.4
	g-BHC			< 1.6	1.6	U	1.6	< 1.7	1.7	U	1.7	< 1.5	1.5	U	1.5	< 1.4	1.4	U	1.4	< 1.6	1.6	U	1.6	< 1.5	1.5	U	1.5
	g-Chlordane			< 4.0	4.0	U	4.0	< 4.2	4.2	U	4.2	< 3.7	3.7	U	3.7	< 3.6	3.6	U	3.6	< 4.0	4.0	U	4.0	< 3.7	3.7	U	3.7
	Heptachlor	42	2,100	< 7.9	7.9	U	7.9	< 8.4	8.4	U	8.4	< 7.4	7.4	U	7.4	< 7.2	7.2	\cup	7.2	< 8.0	8.0	U	8.0	< 7.4	7.4	U	7.4
	Heptachlor epoxide			< 7.9	7.9	U	7.9	< 8.4	8.4	U	8.4	< 7.4	7.4	U	7.4	< 7.2	7.2	\supset	7.2	< 8.0	8.0	U	8.0	< 7.4	7.4	U	7.4
	Methoxychlor			< 40	40	U	40	< 42	42	U	42	< 37	37	U	37	< 36	36	U	36	< 40	40	U	40	< 37	37	U	37
	Toxaphene			< 160	160	U	160	< 170	170	U	170	< 150	150	U	150	< 140	140	U	140	< 160	160	U	160	< 150	150	U	150
	PCB-1016	100	1,000	< 78	78	U	79	< 78	78	U	84	< 75	75	U	74	< 72	72	U	72	< 74	74	U	80	< 74	74	U	74
	PCB-1221	100	1,000	< 78	78	U	79	< 78	78	U	84	< 75	75	U	74	< 72	72	U	72	< 74	74	U	80	< 74	74	U	74
	PCB-1232	100	1,000	< 78	78	U	79	< 78	78	U	84	< 75	75	U	74	< 72	72	U	72	< 74	74	U	80	< 74	74	U	74
s	PCB-1242	100	1,000	< 78	78	U	79	< 78	78	U	84	< 75	75	U	74	< 72	72	U	72	< 74	74	U	80	< 74	74	U	74
Second	PCB-1248	100	1,000	< 78	78	U	79	< 78	78	U	84	< 75	75	U	74	< 72	72	U	72	< 74	74	U	80	< 74	74	U	74
-	PCB-1254	100	1,000	< 78	78	U	79	< 78	78	U	84	< 75	75	U	74	< 72	72	-	72	< 74	74	U	80	< 74	74	U	74
	PCB-1260	100	1,000	< 78	78	U	79	< 78	78	U	84	< 75	75	U	74	< 72	72	U	72	< 74	74	U	80	< 74	74	U	74
	PCB-1262	100	1,000	< 78	78	U	79	< 78	78	U	84	< 75	75	U	74	< 72	72	U	72	< 74	74	U	80	< 74	74	U	74
	PCB-1268	100	1,000	< 78	78	U	79	< 78	78	U	84	< 75	75	U	74	< 72	72	U	72	< 74	74	U	80	< 74	74	U	74

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

RL- Reporting Limit

U- The compound was anlayzed for but not detected at or above the MDL.

J- The value is estimated.

N- The concentration is based on the response fo the nearest internal.

S- This compound is a solvent t S- This compound is a solvent that is used in the laboratory.

D- The reported concentration i D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedant Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 6 Soil Analytical Results Metals

						Phas	se II Result	s - May	2016								RIR Res	ults - F	ebruary	2018				
	NV0000 D (0000	NVD=0.0 (0==0	B1		B2		B4		В6	i	B10)		17SE	31					179	B2			
COMPOUND	NYSDEC Part 375.6 Unrestricted Use Soil Cleanup Objectives*	NYDEC Part 375.6 Restricted Residential Soil Cleanup Objectives*	(0-2' 5/26/20 mg/K Results	016	(0-2' 5/26/20 mg/K Results	16	(0-2' 5/26/20 mg/K Results	016	(1-3 5/26/2 mg/K Results	016	(0-2' 5/26/20 mg/K Results	16	Result	(12.5-1 2/26/20 mg/K	18	MDL	Result	(2-4' 2/26/20 mg/K) 18	MDL	Result	(12.5-15 2/26/20 mg/Kg	18	MDL
Aluminum			-	-		-	- resurts	-	-	- KL		-	6,090	35	- Quai	6.9	8,940	40	- Quai	8.0	10,700	37	- Quai	7.4
Antimony			-	-	-	-	-	-	-	-	-	-	< 1.7	1.7	U	1.7	< 2.0	2.0	U	2.0	< 1.9	1.9	U	1.9
Arsenic	13	16	6.7	0.8	4.5	0.7	3.6	0.7	5.8	0.7	4.4	0.7	0.7	0.69	*	0.69	12.5	0.80	*	0.80	< 0.74	0.74	U*	0.74
Barium	350	350	268	0.8	77.1	0.7	96.9	0.7	159	0.7	92.5	0.7	56.1	0.7	N	0.35	189	0.8	N	0.40	99.9	0.7	N	0.37
Beryllium	7.2	14	-	-	-	-	-	-	-	-	-	-	0.24	0.28	J	0.14	0.36	0.32	-	0.16	0.42	0.30	-	0.15
Cadmium	2.5	2.5	2.3	0.39	1.19	0.34	0.74	0.36	0.87	0.33	0.97	0.35	< 0.35	0.35	U	0.35	1.7	0.40	-	0.40	< 0.37	0.37	U	0.37
Calcium			-	-	-	-	-	-	-	-	-	-	962	3.5	-	3.2	18,200	40	-	37	1,190	3.7	-	3.4
Chromium	30	180	34.8	0.39	22.1	0.34	22.3	0.36	23	0.33	23.1	0.35	16.9	0.35	-	0.35	49.5	0.40	-	0.40	25.3	0.37	-	0.37
Cobalt			-	-	-	-	-	-	-	-	-	-	6.44	0.35	-	0.35	17.1	0.40	-	0.40	9.78	0.37	-	0.37
Copper	50	270	-	-	-	-	-	-	-	-	-	-	10.9	0.35	-	0.35	238	4.0	-	4.0	26	0.37	-	0.37
Iron			-	-	-	-	-	-	-	-	-	-	10,100	35	*	35	61,900	40	*	40	16,200	37	*	37
Lead	63	400	700	7.8	104	0.7	103	0.7	210	6.5	111	0.7	2.6	0.7	ı	0.35	394	8.0	-	4.0	2	0.7	-	0.37
Magnesium			-	-	-	-	-	-	-	-	-	-	2,650	3.5	-	3.5	8,480	40	-	40	4,850	3.7	-	3.7
Manganese	1,600	2,000	-	-	-	-	-	-	-	-	-	-	104	0.35	ı	0.35	495	4.0	-	4.0	155	3.7	-	3.7
Mercury	0.18	0.81	0.25	0.03	0.05	0.03	0.06	0.03	0.19	0.03	0.09	0.03	< 0.03	0.03	J	0.02	0.56	0.14	-	0.08	< 0.03	0.03	U	0.02
Nickel	30	140	-	-	-	-	-	-	-	-	-	-	10.6	0.35	-	0.35	71.5	0.40	-	0.40	22.1	0.37	-	0.37
Potassium			-	-	-	-	-	-	-	-	-	-	2,510	7	N	2.7	2,720	8	N	3.1	4,300	74	N	29
Selenium	3.9	36	< 1.6	1.6	< 1.4	1.4	< 1.4	1.4	< 1.3	1.3	< 1.4	1.4	< 1.4	1.4	U	1.2	< 1.6	1.6	U	1.4	< 1.5	1.5	U	1.3
Silver	2	36	< 0.39	0.39	< 0.34	0.34	< 0.36	0.36	< 0.33	0.33	< 0.35	0.35	< 0.35	0.35	U	0.35	1.48	0.40	-	0.40	< 0.37	0.37	U	0.37
Sodium			-	-	-	-	-	-	-	-	-	-	295	7	N, *	3.0	407	8	N, *	3.4	298	7	N, *	3.2
Thallium			-	-	-	-	-	-	-	-	-	-	< 1.4	1.4	U	1.4	< 1.6	1.6	U	1.6	< 1.5	1.5	U	1.5
Vanadium			-	-	-	-	-	-	-	-	-	-	20.9	0.35	-	0.35	89.6	0.40	-	0.40	32.1	0.37	-	0.37
Zinc	109	2,200	-	-	-	-	-	-	-	-	-	-	22	0.7	-	0.35	247	8.0	-	4.0	41.3	0.7	-	0.37

Notes:

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.
- D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/highlighted-Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 6 Soil Analytical Results Metals

										RIR	Results - I	Februa	ry and I	March 2	2018							\Box
	NYSDEC Part 375.6	NYDEC Part 375.6		17SE	33			17SE	34			17SE	35					179	SB6			
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*		(12.5-1 2/26/20 mg/K	018 .g			(12.5-1 2/26/20 mg/K	018 g			(2-4' 2/26/20 mg/K) 18 g			(0-2' 3/1/20 mg/K	, 18 g			(4-6') 3/1/20 mg/K	1 8 g	
			17.800	RL 36	Qual	7.1	Result 6.860	RL 40	Qual	MDL 76	11.700	RL 44	Qual	MDL 8.7	18,300	RL 42	Qual	MDL 8.3	Result 21,100	RL 340	Qual	MDL 68
Aluminum			< 1.8	1.8	U	1.8	< 2.0	2.0	U	1.9	< 2.2	2.2	U	2.2	< 2.1	2.1	U	2.1	< 1.7	1.7	U	1.7
Antimony													*				U				0	\vdash
Arsenic	13	16	0.76	0.71	*	0.71	1.44	0.81	U*	0.76	9.78	0.87		0.87	5.12	0.83	-	0.83	1.18	0.68	_	0.68
Barium	350	350	284	0.7	N	0.36	41.6	0.8	N	0.38	275	8.7	N	4.4	196	0.8	-	0.42	691	0.7	-	0.34
Beryllium	7.2	14	0.55	0.28	-	0.14	0.3	0.32	-	0.15	0.45	0.35	-	0.17	0.55	0.33	-	0.17	0.7	0.27		0.14
Cadmium	2.5	2.5	< 0.36	0.36	U	0.36	< 0.40	0.40	U	0.38	2.17	0.44	-	0.44	< 0.42	0.42	U	0.42	< 0.34	0.34	U	0.34
Calcium			957	3.6	-	3.3	2,020	4.0	-	3.5	19,000	44	-	40	4,820	4.2	*	3.8	6,750	3.4	*	3.1
Chromium	30	180	37.7	0.36	-	0.36	20.7	0.40	-	0.38	35.4	0.44	-	0.44	42.5	0.42	-	0.42	86.9	0.34	-	0.34
Cobalt			15.4	0.36	-	0.36	8.31	0.40	-	0.38	13.3	0.44	-	0.44	19	0.42	-	0.42	18	0.34	-	0.34
Copper	50	270	56	0.36	-	0.36	13.8	0.40	-	0.38	102	0.44	-	0.44	32.8	0.42	-	0.42	55	0.34	-	0.34
Iron			27,500	36	*	36	16,100	40	*	38	37,600	44	*	44	36,400	42	-	42	24,200	34	-	34
Lead	63	400	6.4	0.7	-	0.36	2.2	0.8	-	0.38	598	8.7	-	4.4	230	8.3	-	4.2	41.9	0.7	-	0.34
Magnesium			6,050	36	-	36	3,080	4.0	-	38	8,030	44	-	44	6,990	42	-	42	10,300	34	-	34
Manganese	1,600	2,000	499	3.6	-	3.6	332	4.0	-	3.8	374	4.4	-	4.4	408	3.8	-	3.8	488	3.4	-	3.4
Mercury	0.18	0.81	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02	0.91	0.15	-	0.09	0.23	0.15	-	0.09	< 0.14	0.14	U	0.08
Nickel	30	140	32	0.36	-	0.36	14	0.40	-	0.38	36.8	0.44	-	0.44	36	0.42	-	0.42	40.9	0.34	-	0.34
Potassium			8,020	71	N	28	1,750	8	N	29	3,470	9	N	3.4	7,220	83	-	32	7,880	68	-	27
Selenium	3.9	36	< 1.4	1.4	U	1.2	< 1.6	1.6	U	1.3	< 1.7	1.7	U	1.5	< 1.7	1.7	U	1.4	< 1.4	1.4	U	1.2
Silver	2	36	< 0.36	0.36	U	0.36	< 0.40	0.40	U	0.38	< 0.44	0.44	U	0.44	< 0.42	0.42	U	0.42	< 0.34	0.34	U	0.34
Sodium			264	7	N, *	3.1	194	8	N, *	3.2	447	8	N, *	3.3	479	8	N	3.6	707	7	N	2.9
Thallium			< 1.4	1.4	U	1.4	< 1.6	1.6	U	1.5	< 1.7	1.7	U	1.7	< 1.7	1.7	U	1.7	< 1.4	1.4	U	1.4
Vanadium			48.6	0.36	-	0.36	27.9	0.40	-	0.38	88.9	0.44	-	0.44	57.1	0.42	-	0.42	54.3	0.34	-	0.34
Zinc	109	2,200	64.7	0.7	-	0.36	35	0.8	-	0.38	305	8.7	-	4.4	150	8.3	-	4.2	61	6.8	-	3.4

Notes:

* - 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives

RL- Reporting Limit

U- The compound was anlayzed for but not detected at or above the MDL. J- The value is estimated.

N- The concentration is based on the response fo the nearest internal.

S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Bold/highlighted-Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted-Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 6 Soil Analytical Results Metals

										Meta	5		RIR R	esults -	February 2	018										
	NYSDEC Part 375.6	NYDEC Part 375.6				179	SB7					17SE	39			17SB	10			Duplic 17SI				Duplica (17SE		
COMPOUND	Unrestricted Use Soil Cleanup Objectives*	Restricted Residential Soil Cleanup Objectives*		(2-4' 2/26/20 mg/K	18			(12.5-1 2/26/20 mg/K	18			(2-4' 2/26/20 mg/K	18			(2-4' 2/26/20 mg/K	018			(12.5- 2/26/2 mg/F	018			(12.5-1 2/26/20 mg/K	018	
			Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL	Result	RL	Qual	MDL
Aluminum			11,700	43	-	8.5	18,500	39	-	7.8	4,470	37	-	7.4	9,380	37	-	7.4	8,890	37	-	7.4	23,300	360	-	72
Antimony			< 2.1	2.1	U	2.1	< 2.0	2.0	U	2.0	< 1.8	1.8	U	1.8	< 1.9	1.9	U	1.9	< 1.9	1.9	U	1.9	< 1.8	1.8	U	1.8
Arsenic	13	16	< 0.85	0.85	U*	0.85	5.43	0.78	*	0.78	4.69	0.74	*	0.74	4.23	0.74	-	0.74	1.08	0.74	*	0.74	0.96	0.72	*	0.72
Barium	350	350	162	0.9	N	0.43	114	0.8	N	0.39	144	0.7	N	0.37	135	0.7	-	0.37	105	0.7	N	0.37	371	0.7	N	0.36
Beryllium	7.2	14	0.34	0.34	J	0.17	0.68	0.31	-	0.16	0.32	0.30	-	0.15	0.32	0.30	-	0.15	0.31	0.30	-	0.15	0.53	0.29	-	0.14
Cadmium	2.5	2.5	< 0.43	0.43	U	0.43	< 0.39	0.39	U	0.39	0.42	0.37	-	0.37	1.12	0.37	-	0.37	< 0.37	0.37	U	0.37	< 0.36	0.36	U	0.36
Calcium			1,900	4.3	-	3.9	1,770	3.9	-	3.6	15,500	37	-	34	32,900	37	*	34	1,080	3.7	-	3.4	1,480	3.6	-	3.3
Chromium	30	180	36.2	0.43	-	0.43	28.6	0.39	-	0.39	13.5	0.37	-	0.37	27.7	0.37	-	0.37	27.6	0.37	-	0.37	52	0.36	-	0.36
Cobalt			12.3	0.43	-	0.43	10.2	0.39	-	0.39	6.61	0.37	-	0.37	13.3	0.37	*	0.37	10.3	0.37	-	0.37	21.2	0.36	-	0.36
Copper	50	270	50.3	0.43	-	0.43	24.6	0.39	-	0.39	55.1	0.37	-	0.37	116	0.37	-	0.37	23	0.37	-	0.37	60.5	0.36	-	0.36
Iron			21,000	43	*	43	21,300	39	*	39	9,920	37	*	37	35,600	37	-	37	15,500	37	*	37	41,900	36	*	36
Lead	63	400	4	0.9	-	0.43	141	0.8	-	0.39	270	7.4	-	3.7	177	7.4	-	3.7	2	0.7	-	0.37	4.6	0.7	-	0.36
Magnesium			5,720	4.3	-	4.3	3,580	3.9	-	3.9	5,910	37	-	37	15,600	37	*	37	4,390	3.7	-	3.7	9,910	36	-	36
Manganese	1,600	2,000	503	4.3	-	4.3	407	3.9	-	3.9	122	0.37	-	0.37	362	3.7	-	3.7	177	3.7	-	3.7	533	3.6	-	3.6
Mercury	0.18	0.81	< 0.03	0.03	U	0.02	0.3	0.03	-	0.02	0.23	0.15	-	0.09	0.09	0.03	-	0.02	< 0.03	0.03	U	0.02	< 0.03	0.03	U	0.02
Nickel	30	140	22.5	0.43	-	0.43	18	0.39	-	0.39	12.9	0.37	-	0.37	27.4	0.37	*	0.37	18.8	0.37	-	0.37	36.9	0.36	-	0.36
Potassium			5,930	85	N	33	1,130	8	N	3.0	1,400	7	N	2.9	5,170	74	-	29	3,760	74	N	29	12,900	72	N	28
Selenium	3.9	36	< 1.7	1.7	U	1.4	< 1.6	1.6	U	1.3	< 1.5	1.5	U	1.3	< 1.5	1.5	U	1.3	< 1.5	1.5	U	1.3	< 1.4	1.4	U	1.2
Silver	2	36	< 0.43	0.43	U	0.43	< 0.39	0.39	U	0.39	< 0.37	0.37	U	0.37	< 0.37	0.37	U	0.37	< 0.37	0.37	U	0.37	< 0.36	0.36	U	0.36
Sodium			286	9	N, *	3.7	165	8	N, *	3.4	240	7	N, *	3.2	311	7	N	3.2	193	7	N, *	3.2	415	7	N, *	3.1
Thallium			< 1.7	1.7	U	1.7	< 1.6	1.6	U	1.6	< 1.5	1.5	U	1.5	< 1.5	1.5	U	1.5	< 1.5	1.5	U	1.5	< 1.4	1.4	U	1.4
Vanadium			40.1	0.43	-	0.43	40.5	0.39	-	0.39	36.8	0.37	-	0.37	65.6	0.37	*	0.37	29.3	0.37	-	0.37	68.8	0.36	-	0.36
Zinc	109	2.200	43.6	0.9	-	0.43	128	0.8	-	0.39	227	7.4	-	3.7	137	0.7	-	0.37	32.6	0.7	-	0.37	92.2	0.7	-	0.36

Notes:

- * 6 NYCRR Part 375-6 Remedial Program Soil Cleanup Objectives
- RL- Reporting Limit
 U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.
- D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value

Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

	I				Phas	e II Result	s - May	2016				I		RIR F	Results	- March 2	018		
	NYSDEC Groundwater	GW	1	GW	2	GW	3	GW-	4	GW	5		MW	1			MW	12	
Compound	Quality Standards	5/26/2	016	5/26/2	016	5/26/2	016	5/26/20	016	5/26/20	016		3/20/20	018			3/15/2	018	
Compound		(μg/L		(μg/l		(μg/L		(μg/L		(μg/L			μg/L				μg/		
	μg/L	Results	RL	Results	RL	Results	RL	Results	RL	Results	RL	Results	RL	Qual	MDL	Results	RL	Qual	MDL
1,1,1,2-Tetrachlorothane	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	<5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
1,1,1-Trichloroethane	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	1.3
1,1,2,2-Tetrachloroethane	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
1,1,2-Trichloroethane	1 -	< 1.0	1.0 5.0	< 1.0 < 5.0	1.0	< 1.0 < 5.0	1.0	< 1.0 < 5.0	1.0	< 1.0 < 5.0	1.0	< 2.5 < 5.0	2.5 5.0	U	0.25	< 1.0 < 5.0	1.0 5.0	U	1.3
1,1-Dichloroethane 1,1-Dichloroethene	5	< 1.0	1.0	< 1.0	5.0 1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	5.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
1,1-Dichloropropene	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
1,2,3-Trichlorobenzene		< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 10	10	U	0.25	< 1.0	1.0	U	1.3
1,2,3-Trichloropropane	0.04	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 2.5	2.5	U	0.25	< 0.25	0.25	U	1.3
1,2,4-Trichlorobenzene		< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 10	10	U	0.25	< 1.0	1.0	U	1.3
1,2,4-Trimethylbenzene	5	0.36	1.0	7.5	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	370	100	D	2.5	0.89	1.0	D	5.0
1,2-Dibromo-3-chloropropane	0.04	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.50	< 0.50	0.50	U	2.5
1,2-Dibromoethane		< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 2.5	2.5	U	0.25	< 0.25	0.25	U	1.3
1,2-Dichlorobenzene	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 4.7	4.7	U	0.25	< 1.0	1.0	U	1.3
1,2-Dichloroethane	0.6	< 0.60	0.60	< 0.60	0.60	< 0.60	0.60	< 0.60	0.60	< 0.6	0.6	< 5.0	5.0	U	0.50	< 0.60	0.60	U	2.5
1,2-Dichloropropane	0.94	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.5	2.5	U	0.25	< 1.0	1.0	U	1.3
1,3,5-Trimethylbenzene	5	< 1.0	1.0	4.4 < 1.0	1.0	< 1.0 < 1.0	1.0	< 1.0 < 1.0	1.0	< 2.0	2.0	170 < 3.0	10 3.0	- U	0.25	0.77	1.0	- U	1.3
1,3-Dichlorobenzene 1,3-Dichloropropane	-	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 3.0	5.0	U	0.25	< 1.0	1.0	U	1.3
1,3-Dichloropropane 1.4-Dichlorobenzene	5 5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
1,4-Dioxane) 	-	-	-	-	-	-	-	-	-		<1000	1,000	U	500	-	-	<u> </u>	+
2,2-Dichloropropane	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
2-Chlorotoluene	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
2-Hexanone (Methyl Butyl Ketone)		< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 5.0	5.0	< 25	25	U	2.5	< 2.5	2.5	U	13
2-Isopropyltoluene	5	< 1.0	1.0	1.1	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	1	0.25	1.7	1.0	J	1.3
4-Chlorotoluene	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
4-Methyl-2-Pentanone		< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 5.0	5.0	< 25	25	U	2.5	< 2.5	2.5	U	13
Acetone	50	4.1	5.0	7	5.0	2.9	5.0	6.4	5.0	8.8	10	< 50	50	U	2.5	< 5.0	5.0	S	13
Acrolein		< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	<25	25	U	2.5	< 5.0	5.0	U	13
Acrylonitrile	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	<25	25	U	2.5	< 5.0	5.0	U	13
Benzene Bromobenzene	1 -	0.28	0.70	19 < 1.0	1.0	< 0.70	0.70	< 0.70	0.70	< 0.7	2.0	6.8 < 5.0	7.0 5.0	D U	2.5 0.25	< 0.70	0.70	- U	1.3
Bromochloromethane	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
Bromodichloromethane	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 10	10	U	0.25	< 1.0	1.0	U	1.3
Bromoform		< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 10	10	< 50	50	U	0.25	< 5.0	5.0	U	1.3
Bromomethane	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	1.3
Carbon Disulfide	60	0.3	1.0	0.32	1.0	< 1.0	1.0	0.25	1.0	< 2.0	2.0	< 10	10	U	0.25	< 1.0	1.0	U	1.3
Carbon tetrachloride	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	J	0.25	< 1.0	1.0	U	1.3
Chlorobenzene	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	1.3
Chloroethane	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	1.3
Chloroform	7	< 5.0	5.0	< 5.0	5.0	0.51	5.0	< 5.0	5.0	< 5.0	5.0	< 7.0	7.0	U	0.25	< 5.0	5.0	U	1.3
Chloromethane	60	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	1.3
cis-1,2-Dichloroethene	5	6	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
cis-1,3-Dichloropropene Dibromochloromethane		< 0.40	0.40	< 0.40	1.0	< 0.40	0.40	< 0.40	0.40	< 0.4	2.0	< 2.5 < 10	2.5	U	0.25	< 0.40	1.0	U	1.3
Dibromomethane	-	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
Dichlorodifluoromethane	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
Ethylbenzene	5	< 1.0	1.0	7.1	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	900	100	D	13	2.3	1.0	D	5.0
Hexachlorobutadiene	0.5	< 0.50	0.50	< 0.50	0.50	< 0.50	0.50	< 0.50	0.50	< 0.5	0.5	< 2.0	2.0	U	0.20	< 0.50	0.50	U	1.0
Isopropylbenzene	5	< 1.0	1.0	35	10	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	98	10	-	0.25	15	1.0	-	1.3
m&p-Xylenes	5	< 1.0	1.0	19	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	1,800	100	D	2.5	4.2	1.0	D	5.0
Methyl Ethyl Ketone (2-Butanone)	50	< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 5.0	5.0	< 25	25	U	2.5	< 2.5	2.5	U	13
Methyl t-butyl ether (MTBE)	10	8.1	1.0	12	1.0	1.5	1.0	< 1.0	1.0	14	2.0	< 10	10	J	0.25	0.99	1.0	U	1.3
Methylene chloride	5	< 3.0	3.0	< 3.0	3.0	< 3.0	3.0	< 3.0	3.0	< 5.0	5.0	< 10	10	U	1.0	< 3.0	3.0	U	5.0
Naphthalene	10	< 1.0	1.0	3.9	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	55	10	D	10	< 1.0	1.0	-	5.0
n-Butylbenzene	5	< 1.0	1.0	51	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	6.3 180	10	- D	0.25 2.5	4.4	1.0 5.0	-	1.3
n-Propylbenzene o-Xylene	5	< 1.0	1.0	4.7	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	130	10	D	2.5	0.46	1.0	D	5.0
p-Isopropyltoluene	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	3	2.0	< 5.0	5.0	-	0.25	< 1.0	1.0	J	1.3
sec-Butylbenzene	5	< 1.0	1.0	3.1	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	9.8	10	-	0.25	7.4	1.0	-	1.3
Styrene	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
tert-Butylbenzene	5	< 1.0	1.0	0.27	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	J	0.25	< 1.0	1.0	U	1.3
Tetrachloroethene	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
Tetrahydrofuran (THF)		< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 10	10	< 50	50	U	2.5	< 5.0	5.0	-	13
Toluene	5	< 1.0	1.0	6.4	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	91	10	-	0.25	< 1.0	1.0	-	1.3
trans-1,2-Dichloroethene	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	1.3
trans-1,3-Dichloropropene	0.4	< 0.40	0.40	< 0.40	0.40	< 0.40	0.40	< 0.40	0.40	< 0.4	0.4	< 2.5	2.5	U	0.25	< 0.40	0.40	U	1.3
trans-1,4-dichloro-2-butene	5	< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 5.0	5.0	< 25	25	U	2.5	< 2.5	2.5	U	13
Trichloroethene	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
Trichlorofluoromethane	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
Trichlorotrifluoroethane		< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 5.0	5.0	U	0.25	< 1.0	1.0	U	1.3
Vinyl Chloride	2	0.81	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0	< 2.5	2.5	U	0.25	< 1.0	1.0	U	1.3

- Notes:
 RL- Reporting Limit
 U- The compound was anlayzed for but not detected at or above the MDL.
 J- The value is estimated.
 N- The concentration is based on the response fo the nearest internal.
 S- This compound is a solvent that is used in the laboratory.
 D- The reported concentration is the result of a diluted analysis.
 Bold/highlighted- indicated exceedance of the NYSDEC Groundwater Standard

										RIR Re	esults -	March:	2018							_	
	NYSDEC Groundwater Quality Standards		MW:	3			MW	4			MW	5			MW	16		Du	ıplicate	e (MW5	i)
Compound	quanty standards		3/15/20	018			3/20/2	018			3/15/2	018			3/20/2	018			3/15/2	2018	
	μg/L	Results	μg/L RL	Qual	MDL	Results	μg/L RL	Oual	MDL	Results	μg/l RL	Oual	MDL	Results	μg/l RL	Oual	MDL	Results	μg/ RL	/L Qual	MDL
1,1,1,2-Tetrachlorothane	5	< 1.0	1.0	U	5.0	<1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	<5.0	5.0	U	0.25	< 1.0	1.0	U	0.25
1,1,1-Trichloroethane	5	< 5.0 < 1.0	5.0	U	5.0	< 5.0 < 1.0	5.0	U	0.25	< 5.0 < 1.0	5.0	U	0.25	< 5.0 < 1.0	5.0	U	0.25	< 5.0 < 1.0	5.0	U	0.25
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5 1	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,1-Dichloroethane	5	< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	J	0.25
1,1-Dichloroethene	5	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,1-Dichloropropene		< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,2,3-Trichlorobenzene	0.04	< 1.0	1.0 0.25	U	5.0	< 1.0 < 0.25	1.0 0.25	U	0.25	< 1.0 < 0.25	1.0 0.25	U	0.25	< 1.0	1.0 0.25	U	0.25	< 1.0 < 0.25	1.0 0.25	U	0.25
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	0.04	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,2,4-Trimethylbenzene	5	< 1.0	1.0	D	13	0.29	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	1 -	0.25
1,2-Dibromo-3-chloropropane	0.04	< 0.50	0.50	U	10	< 0.50	0.50	U	0.50	< 0.50	0.50	U	0.50	< 0.50	0.50	U	0.50	< 0.50	0.50	U	0.50
1,2-Dibromoethane	_	< 0.25	0.25	U	5.0	< 0.25	0.25	U	0.25	< 0.25	0.25	U	0.25	< 0.25	0.25	U	0.25	< 0.25	0.25	U	0.25
1,2-Dichlorophano	5 0.6	< 1.0	0.60	U	5.0	< 0.60	1.0 0.60	U	0.25	< 1.0 < 0.60	1.0 0.60	U	0.50	< 1.0	0.60	U	0.25	< 1.0 < 0.60	0.60	U	0.25
1,2-Dichloroethane 1,2-Dichloropropane	0.94	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,3,5-Trimethylbenzene	5	< 1.0	1.0	-	5.0	< 1.0	1.0	J	0.25	< 1.0	1.0	J	0.25	< 1.0	1.0	J	0.25	< 1.0	1.0	U	0.25
1,3-Dichlorobenzene		< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
1,3-Dichloropropane	5	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0 < 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0 < 1.0	1.0	U	0.25
1,4-Dichlorobenzene 1,4-Dioxane	5	< 1.0	1.0	-	5.0	< 1.0	1.0	U	0.25	< 1.U	1.0	-	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	-	0.25
2,2-Dichloropropane	5	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
2-Chlorotoluene	5	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
2-Hexanone (Methyl Butyl Ketone)		< 2.5	2.5	U	50	< 2.5	2.5	U	2.5	< 2.5	2.5	U	2.5	< 2.5	2.5	U	2.5	< 2.5	2.5	U	2.5
2-Isopropyltoluene	5	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0 < 1.0	1.0	U	0.25	< 1.0 < 1.0	1.0	U	0.25
4-Chlorotoluene 4-Methyl-2-Pentanone	5	< 2.5	2.5	U	50	< 2.5	2.5	-	2.5	< 2.5	2.5	-	2.5	< 2.5	2.5	-	2.5	< 2.5	2.5	U	2.5
Acetone	50	< 5.0	5.0	U	50	< 5.0	5.0	DS	13	< 5.0	5.0	DS	13	< 5.0	5.0	DS	13	< 5.0	5.0	JS	2.5
Acrolein		< 5.0	5.0	U	50	<5.0	5.0	U	2.5	< 5.0	5.0	U	2.5	<5.0	5.0	U	2.5	< 5.0	5.0	U	2.5
Acrylonitrile	5	< 5.0	5.0	U	50	<5.0	5.0	U	2.5	< 5.0	5.0	U	2.5	<5.0	5.0	U	2.5	< 5.0	5.0	U	2.5
Benzene	5	< 0.70	0.70 1.0	- U	5.0	< 0.70	0.70	- U	0.25	< 0.70 < 1.0	1.0	- U	0.25	< 0.70	1.0	- U	0.25	< 0.70 < 1.0	1.0	- U	0.25
Bromobenzene Bromochloromethane	5	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Bromodichloromethane		1.4	1.0	U	5.0	0.6	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Bromoform		< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25
Bromomethane	5 60	< 5.0 < 1.0	5.0	U	5.0	< 5.0 < 1.0	5.0	U	0.25	< 5.0 < 1.0	5.0 1.0	U	0.25	< 5.0 < 1.0	5.0 1.0	U	0.25	< 5.0 < 1.0	5.0	U	0.25
Carbon Disulfide Carbon tetrachloride	5	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Chlorobenzene	5	< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25
Chloroethane	5	< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25
Chloroform	7	16 < 5.0	5.0	U	5.0	9.2 < 5.0	5.0	U	0.25	< 5.0 < 5.0	5.0	U	0.25	< 5.0 < 5.0	5.0	U	0.25	< 5.0 < 5.0	5.0	U	0.25
Chloromethane cis-1,2-Dichloroethene	60 5	< 1.0	1.0	U	5.0	< 1.0	5.0	J	0.25	< 1.0	1.0	J	0.25	< 1.0	5.0 1.0	J	0.25	< 1.0	1.0	-	0.25
cis-1,3-Dichloropropene	-	< 0.40	0.40	U	5.0	< 0.40	0.40	U	0.25	< 0.40	0.40	U	0.25	< 0.40	0.40	U	0.25	< 0.40	0.40	U	0.25
Dibromochloromethane		< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Dibromomethane	5	< 1.0	1.0	U	5.0	< 1.0 < 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0 < 1.0	1.0	U	0.25
Dichlorodifluoromethane Ethylbograpa	5 5	< 1.0	1.0	-	5.0	< 1.0	1.0	U	0.25	< 1.0 < 1.0	1.0	U	0.25	< 1.0 < 1.0	1.0	U	0.25	< 1.0	1.0	-	0.25
Ethylbenzene Hexachlorobutadiene	0.5	< 0.50	0.50	U	4.0	< 0.50	0.50	U	0.20	< 0.50	0.50	U	0.20	< 0.50	0.50	U	0.20	< 0.50	0.50	U	0.20
Isopropylbenzene	5	< 1.0	1.0	-	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
m&p-Xylenes	5	< 1.0	1.0	- U	5.0	< 1.0	1.0	J	0.25	< 1.0	1.0	J	0.25	< 1.0	1.0	J	0.25	< 1.0	1.0	- U	0.25 2.5
Methyl Ethyl Ketone (2-Butanone) Methyl t-butyl ether (MTBE)	50 10	< 2.5 < 1.0	2.5	U	5.0	< 2.5	2.5	ı.	2.5 0.25	< 2.5 0.52	1.0	- J	2.5 0.25	< 2.5	1.0	J	2.5 0.25	< 2.5 0.51	2.5	U	2.5 0.25
Methylene chloride	5	< 3.0	3.0	U	20	< 3.0	3.0	U	1.0	< 3.0	3.0	U	1.0	< 3.0	3.0	U	1.0	< 3.0	3.0	U	1.0
Naphthalene	10	< 1.0	1.0	-	20	< 1.0	1.0	U	1.0	< 1.0	1.0	U	1.0	< 1.0	1.0	U	1.0	< 1.0	1.0	U	1.0
n-Butylbenzene	5	< 1.0	1.0	-	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
n-Propylbenzene	5 5	< 1.0	1.0	-	5.0	< 1.0 < 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0 < 1.0	1.0	U	0.25	< 1.0 < 1.0	1.0	U -	0.25
o-Xylene p-Isopropyltoluene	3	< 1.0	1.0		5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
sec-Butylbenzene	5	< 1.0	1.0	-	5.0	< 1.0	1.0	J	0.25	< 1.0	1.0	J	0.25	< 1.0	1.0	J	0.25	< 1.0	1.0	U	0.25
Styrene	5	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
tert-Butylbenzene	5	< 1.0 0.82	1.0	U -	5.0	< 1.0 < 1.0	1.0	U	0.25	< 1.0 < 1.0	1.0	U	0.25	< 1.0 < 1.0	1.0	U	0.25	< 1.0 < 1.0	1.0	U	0.25
Tetrachloroethene Tetrahydrofuran (THF)	5	0.82 < 5.0	5.0	U	5.0	< 5.0	5.0	U	2.5	< 1.0	5.0	U	2.5	< 5.0	5.0	U	2.5	< 5.0	5.0	U	2.5
Toluene	5	< 1.0	1.0	Ť-	5.0	< 1.0	1.0	J	0.25	< 1.0	1.0	J	0.25	< 1.0	1.0	J	0.25	< 1.0	1.0	J	0.25
trans-1,2-Dichloroethene	5	< 5.0	5.0	U	5.0	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	U	0.25	< 5.0	5.0	J	0.25
trans-1,3-Dichloropropene	0.4	< 0.40	0.40	U	5.0	< 0.40	0.40	U	0.25	< 0.40	0.40	U	0.25	< 0.40	0.40	U	0.25	< 0.40	0.40	U	0.25
trans-1,4-dichloro-2-butene	5	< 2.5 < 1.0	2.5	U	5.0	< 2.5	2.5	U	2.5 0.25	< 2.5 < 1.0	2.5	U	2.5 0.25	< 2.5 < 1.0	2.5	U	2.5 0.25	< 2.5 < 1.0	2.5	U	2.5 0.25
Trichloroethene Trichlorofluoromethane	5 5	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Trichlorotrifluoroethane	Ŭ	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25
Vinyl Chloride	2	< 1.0	1.0	U	5.0	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25	< 1.0	1.0	U	0.25

- Notes:
 RL- Reporting Limit
 U- The compound was aniayzed for but not detected at or above the MDL.
 J- The value is estimated.
 N- The concentration is based on the response fo the nearest internal.
 S- This compound is a solvent that is used in the laboratory.
 D- The reported concentration is the result of a diluted analysis.

 Boldhighlighted-Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 8 Groundwater Analytical Results Semi-Volatile Organic Compounds

								RIR F	Results	- March 20	18						
	NYSDEC Groundwater		MW	1			MW	2			MW:	3			MW	4	
Compound	Quality Standards		3/20/20	018			3/15/2	018			3/15/20	018			3/20/2	018	
	μg/L		μg/L				μg/L				μg/L				μg/L		
		Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL
1,2,4,5-Tetrachlorobenzene		< 5.2	5.2	U	1.8	<0.53	0.53	U	1.8	<0.47	0.47	U	9.3	<0.50	0.50	U	38
1,2,4-Trichlorobenzene		< 5.2 < 4.7	5.2 4.7	U	1.5	< 5.3 < 1.1	5.3 1.1	U	1.5	< 4.7	4.7 0.94	U	7.9 7.4	< 110	110	U	33
1,2-Dichlorobenzene 1,2-Diphenylhydrazine		< 5.2	5.2	U	1.4	< 5.3	5.3	U	1.6	< 4.7	4.7	U	8.6	< 110	110	U	35
1,3-Dichlorobenzene	3	< 3.0	3.0	U	1.5	< 1.1	1.1	U	1.5	< 0.94	0.94	U	7.8	< 32	32	U	32
1,4-Dichlorobenzene	Ů	< 5.0	5.0	U	1.5	< 1.1	1.1	U	1.5	< 0.94	0.94	U	7.8	< 32	32	U	32
2,4,5-Trichlorophenol	1	< 2.8	2.8	U	2.7	< 1.0	1.0	U	2.7	< 0.94	0.94	U	14	< 59	59	U	59
2,4,6-Trichlorophenol	1	< 1.6	1.6	U	1.6	< 1.0	1.0	U	1.6	< 0.94	0.94	U	8.4	< 35	35	U	35
2,4-Dichlorophenol		< 1.8	1.8	U	1.8	< 1.0	1.0	U	1.8	< 0.94	0.94	U	9.3	< 38	38	U	38
2,4-Dimethylphenol	5	8.5 < 3.6	5.2 3.6	- U	1.2 3.5	< 1.0	1.0	- U	1.2 3.5	< 0.94	0.94	U	6.5 18	< 27 < 76	27 76	U	27 76
2,4-Dinitrophenol 2,4-Dinitrotoluene	5	< 5.0	5.0	U	2.0	< 5.0	5.0	U	2.0	< 4.7	4.7	U	10	< 43	43	U	43
2,6-Dinitrotoluene	5	< 5.0	5.0	U	1.6	< 5.0	5.0	U	1.6	< 4.7	4.7	U	8.3	< 34	34	U	34
2-Chloronaphthalene	10	< 5.2	5.2	U	1.4	< 5.3	5.3	U	1.4	< 4.7	4.7	U	7.5	< 31	31	U	31
2-Chlorophenol	1	< 1.5	1.5	U	1.4	< 1.0	1.0	U	1.4	< 0.94	0.94	U	7.5	< 31	31	U	31
2-Methylnaphthalene		1.8	5.2	J	1.5	< 5.3	5.3	J	1.5	< 4.7	4.7	J	7.8	< 50	50	U	32
2-Methylphenol (o-cresol)	1 -	< 2.4	2.4	U	2.4	< 1.0	1.0	U	2.4	< 0.94	0.94	U	12	< 51	51	U	51
2-Nitrophonal	5 1	< 5.2 < 3.3	5.2	U	5.1	< 5.0 < 1.0	5.0 1.0	U	5.1 3.2	< 4.7	4.7 0.94	U	27 17	< 110 < 69	110 69	U	110 69
2-Nitrophenol 3&4-Methylphenol (m&p-cresol)	1	< 5.2	5.2	U	2.0	< 1.0	1.0	U	2.0	< 0.94	0.94	U	10	< 110	110	U	43
3,3'-Dichlorobenzidine	5	< 5.0	5.0	U	2.4	< 5.0	5.0	U	2.4	< 4.7	4.7	U	12	< 51	51	U	51
3-Nitroaniline	5	< 11	11	U	11	< 5.0	5.0	U	11	< 4.7	4.7	U	57	< 240	240	U	240
4,6-Dinitro-2-methylphenol	1	< 5.5	5.5	U	5.4	< 1.0	1.0	U	5.4	< 0.94	0.94	U	28	< 120	120	U	120
4-Bromophenyl phenyl ether		< 5.2	5.2	U	1.5	< 5.3	5.3	U	1.5	< 4.7	4.7	U	7.7	< 110	110	U	32
4-Chloro-3-methylphenol	1	< 1.8	1.8	U	1.8	< 1.0	1.0	U	1.8	< 0.94	0.94	U	9.3	< 38	38	U	38
4-Chloroaniline 4-Chlorophenyl phenyl ether	5	< 5.0 < 5.2	5.0	U	2.3	< 3.7 < 5.3	3.7 5.3	U	2.3	< 3.3	3.3 4.7	U	12 8.8	< 50 < 110	50 110	U	50 36
4-Cnloropnenyi pnenyi etner 4-Nitroaniline	5	< 5.2	5.0	U	1.7	< 5.0	5.0	U	1.7	< 4.7	4.7	U	8.8	< 36	36	U	36
4-Nitrophenol	3	< 2.3	2.3	U	2.3	< 1.0	1.0	U	2.3	< 0.94	0.94	U	12	< 49	49	U	49
Acenaphthene	20	< 5.2	5.2	U	1.5	< 5.3	5.3	U	1.5	< 4.7	4.7	U	8.0	< 33	33	U	33
Acenaphthylene		< 5.2	5.2	U	1.4	<0.11	0.11	U	1.4	<0.099	0.09	U	7.4	<0.10	0.10	U	30
Acetophenone		< 5.2	5.2	U	1.6	< 5.3	5.3	U	1.6	< 4.7	4.7	U	8.2	< 110	110	U	34
Aniline	5	< 15 < 5.2	15 5.2	U	15	< 3.7	3.7	U	15	< 3.3	3.3 4.7	U	79	< 320	320	U	320
Anthracene Benz(a)anthracene	50 0.002	< 1.7	1.7	U	1.6	< 5.3 0.08	5.3 0.02	U	1.6	0.08	0.02	U	8.6	< 50 0.16	50 0.02	U	35 36
Benzidine	5	< 5.0	5.0	U	2.9	<4.8	4.8	U	2.9	<4.2	4.2	U	15	< 64	64	U	64
Benzo(a)pyrene		< 1.7	1.7	U	1.6	0.07	0.02	U	1.6	0.08	0.02	U	8.6	0.16	0.02	U	35
Benzo(b)fluoranthene	0.002	< 1.8	1.8	U	1.7	0.07	0.02	U	1.7	0.1	0.02	U	9.0	0.15	0.02	U	37
Benzo(ghi)perylene		< 5.0	5.0	U	1.6	0.04	0.02	U	1.6	0.06	0.02	U	8.5	0.13	0.02	U	35
Benzo(k)fluoranthene	0.002	< 1.7	1.7	U	1.7	0.07	0.02	U	1.7	0.09	0.02	U	8.7	0.14	0.02	U	36
Benzoic acid Benzyl butyl phthalate	50	< 26 < 5.2	26 5.2	U	1.3	< 27 < 5.3	<27 5.3	U	1.3	< 23	23 4.7	U	53 6.8	360 < 50	220 50	- U	220 28
Bis(2-chloroethoxy)methane	5	< 5.0	5.0	U	1.4	< 5.0	5.0	U	1.4	< 4.7	4.7	U	7.3	< 30	30	U	30
Bis(2-chloroethyl)ether	1	< 1.4	1.4	U	1.4	< 1.0	1.0	U	1.4	< 0.94	0.94	U	7.1	< 29	29	U	29
Bis(2-chloroisopropyl)ether		< 5.2	5.2	U	1.4	< 5.3	5.3	U	1.4	< 4.7	4.7	U	7.3	< 110	110	U	30
Bis(2-ethylhexyl)phthalate	5	< 5.0	5.0	U	1.4	<1.1	1.1	U	1.4	<0.94	0.94	U	7.6	<1.0	1.0	U	31
Carbazole		< 26	26 1.7	U	3.8	<5.3	5.3 0.02	U	3.8	<4.7	4.7 0.02	U	20 8.8	< 540	540 0.02	U	82 36
Chrysene Dibenz(a,h)anthracene	0.002	< 5.2	5.2	U	1.7	0.07 <0.02	0.02	U	1.7	0.09	0.02	U	8.5	0.16	0.02	U	35
Dibenzofuran		< 5.0	5.0	U	1.5	< 5.0	5.0	U	1.5	< 4.7	4.7	U	7.7	< 32	32	U	32
Diethyl phthalate	50	< 5.2	5.2	U	1.6	< 5.3	5.3	U	1.6	5.5	4.7	U	8.3	< 50	50	U	34
Dimethylphthalate	50	< 5.2	5.2	U	1.6	< 5.3	5.3	U	1.6	< 4.7	4.7	U	8.2	< 50	50	U	34
Di-n-butylphthalate	50	< 5.2	5.2	U	1.3	< 5.3	5.3	U	1.3	< 4.7	4.7	U	7.0	< 50	50	U	29
Di-n-octylphthalate	50	< 5.2	5.2	U	1.3	< 5.3	5.3	U	1.3	< 4.7	4.7	U	6.8	< 50 < 50	50 50	U	28
Fluoranthene Fluorene	50 50	< 5.2 < 5.2	5.2	U	1.6	< 5.3 < 5.3	5.3 5.3	U	1.6	< 4.7	4.7	U	8.5 8.7	< 50	50	U	35 36
Hexachlorobenzene	0.04	< 1.5	1.5	U	1.5	< 0.02	0.02	U	1.5	< 0.02	0.02	U	7.7	<0.02	0.02	U	32
Hexachlorobutadiene	0.5	< 1.9	1.9	U	1.8	< 0.43	0.43	U	1.8	< 0.38	0.38	U	9.5	<0.40	0.40	U	39
Hexachlorocyclopentadiene	5	< 5.0	5.0	U	1.5	< 5.0	5.0	U	1.5	<4.7	4.7	U	8.1	< 33	33	U	33
Hexachloroethane	5	< 5.0	5.0	U	1.5	< 0.53	0.53	U	1.5	< 0.47	0.47	U	7.9	<0.50	0.50	U	32
Indeno(1,2,3-cd)pyrene	0.002	< 1.7	1.7	U	1.7	0.04	0.02	U	1.7	0.05	0.02	U	8.7	0.12	0.02	U	36
Isophorone Naphthalene	50	< 5.2 38	5.2 5.2	U	1.4	< 5.3 < 5.0	5.3 5.0	U -	1.4	< 4.7	4.7	U -	7.4 7.6	< 50 < 31	50 31	U	30 31
Napntnaiene Nitrobenzene	10 0.4	< 1.8	1.8	U	1.4	<0.11	0.11	U	1.4	<0.09	0.09	U	9.2	<0.10	0.10	U	38
N-Nitrosodimethylamine	VT	< 5.2	5.2	U	1.4	<0.11	0.11	U	1.4	<0.09	0.09	U	7.4	<0.10	0.10	U	30
N-Nitrosodi-n-propylamine		< 5.2	5.2	U	1.6	< 5.3	5.3	U	1.6	< 4.7	4.7	U	8.5	< 110	110	U	35
N-Nitrosodiphenylamine	50	< 5.2	5.2	U	1.9	< 5.3	5.3	U	1.9	< 4.7	4.7	U	10	< 50	50	U	42
Pentachloronitrobenzene		< 5.2	5.2	U	1.9	<0.11	0.11	U	1.9	<0.09	0.09	U	9.8	<0.10	0.10	U	40
Pentachlorophenol	1 50	< 1.9 < 5.2	1.9	U	1.9	<0.11	0.11	U	1.9	<0.09	0.09	U	9.9 7.5	<0.10	0.10	U	41
Phenanthrene Phonol	50 50	< 5.2	5.2 1.6	U	1.4	< 1.0	0.11	U	1.4	<0.09	0.09	U	7.5 8.4	0.19 < 35	0.10	U	31 35
Phenol Pyrene	50	< 5.2	5.2	U	1.7	< 5.3	5.3	U	1.7	< 4.7	4.7	U	9.1	< 50	50	U	37
Pyridine	50	< 5.2	5.2	U	1.2	< 11	11	U	1.2	< 9.4	9.4	U	6.5	< 50	50	U	27

Notes:

- Notes:

 RL- Reporting Limit

 U- The compound was anlayzed for but not detected at or above the MDL.

 J- The value is estimated.

 N- The concentration is based on the response fo the nearest internal.

 S- This compound is a solvent that is used in the laboratory.

 D- The reported concentration is the result of a diluted analysis.

 Bold/highlighted-Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 8 Groundwater Analytical Results Semi-Volatile Organic Compounds

						RIR Re	sults - I	March 2	2018				
	NYSDEC Groundwater		MW	5			MW	6		Du	plicate	(MW5)	
Compound	Quality Standards		3/15/20				3/20/2				3/15/20		
	μg/L		3/15/20 μg/L	J10			3/20/20 μg/L	010			3/15/20 μg/L	J10	
	P-9	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL
1,2,4,5-Tetrachlorobenzene		<0.47	0.47	U	0.50	<0.5	0.51	U	35	<0.47	0.47	U	0.50
1,2,4-Trichlorobenzene		< 4.7	4.7	U	1.5	< 5.1	5.0	U	30	< 4.7	4.7	U	1.5
1,2-Dichlorobenzene		< 0.94	0.94	U	1.0	< 1.0	1.0	U	28	< 0.94	0.94	U	1.0
1,2-Diphenylhydrazine		< 4.7	4.7 0.94	U	1.6	< 5.1	5.1	U	33	< 4.7	4.7 0.94	U	1.6
1,3-Dichlorobenzene 1,4-Dichlorobenzene	3	< 0.94	0.94	U	1.0	< 1.0	1.0	U	30	< 0.94	0.94	U	1.0
2,4,5-Trichlorophenol	1	< 0.94	0.94	U	1.0	< 1.0	1.0	U	55	< 0.94	0.94	U	1.0
2,4,6-Trichlorophenol	1	< 0.94	0.94	U	1.0	< 1.0	1.0	U	32	< 0.94	0.94	U	1.0
2,4-Dichlorophenol		< 0.94	0.94	U	1.0	< 1.0	1.0	U	35	< 0.94	0.94	U	1.0
2,4-Dimethylphenol		< 0.94	0.94	U	1.0	< 1.0	1.0	U	25	< 0.94	0.94	U	1.0
2,4-Dinitrophenol	5	< 0.94	0.94	U	1.0	< 1.0	1.0	U	70	< 0.94	0.94	U	1.0
2,4-Dinitrotoluene	5	< 4.7	4.7	U	2.0	< 5.0	5.0	U	39	< 4.7	4.7	U	2.0
2,6-Dinitrotoluene	5	< 4.7	4.7	U	1.6	< 5.0	5.0	U	32	< 4.7	4.7	U	1.6
2-Chloronaphthalene	10	< 4.7	4.7 0.94	U	1.4	< 5.1 < 1.0	5.1	U	28 28	< 4.7	4.7 0.94	U	1.4
2-Chlorophenol	1	< 4.7	4.7	U	1.5	< 5.1	5.1	U	30	< 4.7	4.7	U	1.5
2-Methylnaphthalene 2-Methylphenol (o-cresol)	1	< 0.94	0.94	U	1.0	< 1.0	1.0	U	47	< 0.94	0.94	U	1.0
2-Nitroaniline	5	< 4.7	4.7	U	2.0	< 5.0	5.0	U	100	< 4.7	4.7	U	2.0
2-Nitrophenol	1	< 0.94	0.94	U	1.0	< 1.0	1.0	U	63	< 0.94	0.94	U	1.0
3&4-Methylphenol (m&p-cresol)		< 0.94	0.94	U	1.0	< 1.0	1.0	-	39	< 0.94	0.94	U	1.0
3,3'-Dichlorobenzidine	5	< 4.7	4.7	U	2.4	< 5.0	5.0	U	47	< 4.7	4.7	U	2.4
3-Nitroaniline	5	< 4.7	4.7	U	2.0	< 5.0	5.0	U	220	< 4.7	4.7	U	2.0
4,6-Dinitro-2-methylphenol	1	< 0.94	0.94	U	1.0	< 1.0	1.0	U	110	< 0.94	0.94	U	1.0
4-Bromophenyl phenyl ether		< 4.7	4.7	U	1.5	< 5.1	5.1	U	29	< 4.7	4.7	U	1.5
4-Chloro-3-methylphenol	1 5	< 0.94	0.94	U	1.0	< 1.0	1.0	U	35 47	< 0.94	0.94	U	1.0
4-Chloroaniline 4-Chlorophenyl phenyl ether	5	< 4.7	4.7	U	1.7	< 5.1	5.1	U	34	< 4.7	4.7	U	1.7
4-Nitroaniline	5	< 4.7	4.7	U	1.7	< 5.0	5.0	U	33	< 4.7	4.7	U	1.7
4-Nitrophenol	,	< 0.94	0.94	U	1.0	< 1.0	1.0	U	45	< 0.94	0.94	U	1.0
Acenaphthene	20	< 4.7	4.7	U	1.5	< 5.1	5.1	U	30	< 4.7	4.7	U	1.5
Acenaphthylene		< 0.47	0.47	U	0.10	<0.10	0.10	U	28	<0.47	0.47	U	0.10
Acetophenone		< 4.7	4.7	U	1.6	< 5.1	5.1	U	31	< 4.7	4.7	U	1.6
Aniline	5	< 3.3	3.3	U	5.0	< 3.6	3.6	U	300	< 3.3	3.3	U	5.0
Anthracene	50	< 4.7	4.7	U	1.6	< 5.1	5.1	U	33	< 4.7	4.7	U	1.6
Benz(a)anthracene	0.002	<0.02	0.02	U	0.02	<0.02	0.02	U	34	<0.02	0.02	U	0.02
Benzidine	5	< 0.02	4.2 0.02	U	2.9 0.02	< 4.6	4.6 0.02	U	59 33	<4.2 0.02	4.2 0.02	U	2.9 0.02
Benzo(a)pyrene Benzo(b)fluoranthene	0.002	0.02	0.02	U	0.02	0.02	0.02	U	34	0.02	0.02	U	0.02
Benzo(ghi)perylene	0.002	< 0.02	0.02	U	0.02	0.02	0.02	U	32	< 0.02	0.02	U	0.02
Benzo(k)fluoranthene	0.002	< 0.02	0.02	U	0.02	<0.02	0.02	U	33	0.02	0.02	U	0.02
Benzoic acid		< 23	23	U	10	< 26	26	D	2000	< 23	23	U	10
Benzyl butyl phthalate	50	< 4.7	4.7	U	1.3	< 5.1	5.0	U	26	< 4.7	4.7	U	1.3
Bis(2-chloroethoxy)methane	5	< 4.7	4.7	U	1.4	< 5.0	5.0	U	28	< 4.7	4.7	U	1.4
Bis(2-chloroethyl)ether	1	< 0.94	0.94	U	1.0	< 1.0	1.0	U	27	< 0.94	0.94	U	1.0
Bis(2-chloroisopropyl)ether		< 4.7	4.7	U	1.4	< 5.1	5.1	U	28	< 4.7	4.7	U	1.4
Bis(2-ethylhexyl)phthalate	5	<0.94	0.94	U	1.0	<1.0	1.0	U	29	<0.94	0.94	U	1.0
Carbazole		<4.7	4.7 0.02	U	3.8 0.02	<5.1 <0.02	5.1	U	76 34	<4.7	4.7 0.02	U	3.8 0.02
Chrysene Dibenz(a,h)anthracene	0.002	<0.02	0.02	U	0.02	<0.02	0.02	U	32	<0.02	0.02	U	0.02
Dibenzofuran		< 4.7	4.7	U	1.5	< 5.0	5.0	U	29	< 4.7	4.7	U	1.5
Diethyl phthalate	50	< 4.7	4.7	U	1.6	< 5.1	5.1	U	32	< 4.7	4.7	U	1.6
Dimethylphthalate	50	< 4.7	4.7	U	1.6	< 5.1	5.1	U	31	< 4.7	4.7	U	1.6
Di-n-butylphthalate	50	< 4.7	4.7	U	1.3	< 5.1	5.1	U	27	< 4.7	4.7	U	1.3
Di-n-octylphthalate	50	< 4.7	4.7	U	1.3	< 5.1	5.1	U	26	< 4.7	4.7	U	1.3
Fluoranthene	50	< 4.7	4.7	U	1.6	< 5.1	5.1	U	32	< 4.7	4.7	U	1.6
Fluorene	50	< 4.7	4.7	U	1.7	< 5.1	5.1	U	33	< 4.7	4.7	U	1.7
Hexachlorobenzene	0.04	< 0.02	0.02	U	0.02	<0.02	0.02	U	29	< 0.02	0.02	U	0.02
Hexachlorobutadiene	0.5	< 0.38	0.38 4.7	U	0.40	<0.41	5.0	U	36 31	< 0.38	0.38 4.7	U	0.40 1.5
Hexachlorocyclopentadiene	5 5	< 0.47	0.47	U	0.50	<0.5	0.50	U	31	< 0.47	0.47	U	0.50
Hexachloroethane Indeno(1,2,3-cd)pyrene	0.002	< 0.47	0.02	U	0.02	<0.02	0.02	U	33	< 0.47	0.47	U	0.02
Isophorone	50	< 4.7	4.7	U	1.4	<5.1	5.1	U	28	< 4.7	4.7	U	1.4
Naphthalene	10	< 4.7	4.7	U	1.4	<5.0	5.0	-	29	< 4.7	4.7	U	1.4
Nitrobenzene	0.4	< 0.09	0.09	U	0.10	<0.10	0.10	U	35	< 0.09	0.09	U	0.10
N-Nitrosodimethylamine		< 0.09	0.09	U	0.10	<0.10	0.10	U	28	< 0.09	0.09	U	0.10
N-Nitrosodi-n-propylamine		< 4.7	4.7	U	1.6	<5.1	5.1	U	32	< 4.7	4.7	U	1.6
N-Nitrosodiphenylamine	50	< 4.7	4.7	U	1.9	<5.1	5.1	U	38	< 4.7	4.7	U	1.9
Pentachloronitrobenzene		< 0.09	0.09	U	0.10	<0.10	0.10	U	37	< 0.09	0.09	U	0.10
Pentachlorophenol	1 50	< 0.09	0.09	U	0.80	<0.10	0.10	U	38 29	< 0.09	0.09	U	0.80
Phenanthrene Phanal	50	< 0.09	0.09	U	1.0	<1.0	1.0	U	32	< 0.09	0.09	U	1.0
Phenol Pyrene	50 50	< 4.7	4.7	U	1.7	<5.1	5.1	U	34	< 4.7	4.7	U	1.7
Pyridine	50	< 9.4	9.4	U	1.2	<10	10	U	25	< 9.4	9.4	U	1.2
			U.7	, i	1.4				~~	10.7	0.7		1.4

Notes:

- Notes:

 RL- Reporting Limit

 U- The compound was anlayzed for but not detected at or above the MDL.

 J- The value is estimated.

 N- The concentration is based on the response fo the nearest internal.

 S- This compound is a solvent that is used in the laboratory.

 D- The reported concentration is the result of a diluted analysis.

 Bold/highlighted-Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 9 Groundwater Analytical Results Pesticides and PCBs

									RIR I	Results	- March 20	18						
		NYSDEC Groundwater Quality Standards		MW	1			MW2	2			MW	3			MW4	ı	
	Compound	Quality Standards		3/20/20	018			3/15/20	18			3/15/20	18			3/20/20	18	
		μg/L	Results	μg/L RL	Qual	MDL	Results	μg/L RL	Qual	MDL	Results	μg/L RL	Qual	MDL	Results	μg/L RL	Qual	MDL
	PCB-1016	0.09	< 0.052	0.052	U	0.050	< 0.051	0.051	U	0.050	< 0.047	0.047	U	0.055	< 0.049	0.049	U	0.050
	PCB-1221	0.09	< 0.052	0.052	U	0.050	< 0.051	0.051	U	0.050	< 0.047	0.047	U	0.055	< 0.049	0.049	U	0.050
	PCB-1232	0.09	< 0.052	0.052	U	0.050	< 0.051	0.051	U	0.050	< 0.047	0.047	U	0.055	< 0.049	0.049	U	0.050
	PCB-1242	0.09	< 0.052	0.052	U	0.050	< 0.051	0.051	U	0.050	< 0.047	0.047	U	0.055	< 0.049	0.049	U	0.050
PCBs	PCB-1248	0.09	< 0.052	0.052	U	0.050	< 0.051	0.051	U	0.050	< 0.047	0.047	U	0.055	< 0.049	0.049	U	0.050
•	PCB-1254	0.09	< 0.052	0.052	U	0.050	< 0.051	0.051	U	0.050	< 0.047	0.047	U	0.055	< 0.049	0.049	U	0.050
	PCB-1260	0.09	< 0.052	0.052	U	0.050	< 0.051	0.051	U	0.050	< 0.047	0.047	U	0.055	< 0.049	0.049	U	0.050
	PCB-1262	0.09	< 0.052	0.052	U	0.050	< 0.051	0.051	U	0.050	< 0.047	0.047	U	0.055	< 0.049	0.049	U	0.050
	PCB-1268	0.09	< 0.052	0.052	U	0.050	< 0.051	0.051	U	0.050	< 0.047	0.047	U	0.055	< 0.049	0.049	U	0.050
	4,4-DDD	0.3	< 0.005	0.005	U	0.025	< 0.005	0.005	U	0.010	< 0.005	0.005	U	0.011	< 0.005	0.005	U	0.010
	4,4-DDE	0.2	< 0.005	0.005	U	0.025	< 0.005	0.005	U	0.010	< 0.005	0.005	U	0.011	< 0.005	0.005	U	0.010
	4,4-DDT	0.11	< 0.005	0.005	U	0.025	< 0.005	0.005	U	0.010	< 0.005	0.005	U	0.011	< 0.005	0.005	U	0.010
	a-BHC	0.94	< 0.005	0.005	U	0.025	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.010	< 0.005	0.005	U	0.005
	a-Chlordane		< 0.010	0.010	U	0.10	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.011	< 0.015	0.015	U	0.010
	Alachlor		< 0.078	0.078	U	0.75	< 0.077	0.077	U	0.075	< 0.071	0.071	U	0.082	< 0.073	0.073	U	0.075
	Aldrin		< 0.002	0.002	U	0.015	< 0.002	0.002	U	0.002	< 0.001	0.001	U	0.002	< 0.005	0.005	U	0.010
	b-BHC	0.04	< 0.005	0.005	U	0.050	< 0.005	0.005	U	0.040	< 0.005	0.005	U	0.030	< 0.005	0.005	U	0.005
	Chlordane	0.05	< 0.050	0.050	U	0.50	< 0.050	0.050	U	0.050	< 0.047	0.047	U	0.055	< 0.049	0.049	U	0.050
,	d-BHC	0.04	< 0.010	0.010	U	0.025	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.006	< 0.005	0.005	U	0.005
Pesticides	Dieldrin	0.004	< 0.002	0.002	U	0.015	< 0.002	0.002	U	0.002	< 0.001	0.001	U	0.002	< 0.002	0.002	U	0.002
stic	Endosulfan I		< 0.010	0.010	U	0.10	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.011	< 0.010	0.010	U	0.010
a	Endosulfan II		< 0.010	0.010	U	0.10	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.011	< 0.015	0.015	U	0.010
	Endosulfan Sulfate		< 0.010	0.010	U	0.10	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.011	< 0.015	0.015	U	0.010
	Endrin		< 0.007	0.007	U	0.050	< 0.003	0.003	U	0.010	< 0.010	0.010	U	0.006	< 0.010	0.010	U	0.010
	Endrin aldehyde	5	< 0.010	0.010	U	0.10	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.011	< 0.010	0.010	U	0.010
	Endrin ketone		< 0.010	0.010	U	0.10	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.011	< 0.010	0.010	U	0.010
	gamma-BHC	0.05			U				U			0.005	U		< 0.005		U	0.005
	g-Chlordane		< 0.010	0.010	U	0.10	< 0.010	0.010	U	0.010	< 0.010	0.010	U	0.011	< 0.010	0.010	U	0.010
	Heptachlor	0.04	< 0.005	0.005	U	0.050	< 0.003	0.003	U	0.010	< 0.010	0.010	U	0.006	< 0.010	0.010	U	0.010
	Heptachlor epoxide	0.03	< 0.005	0.005	U	1.0	< 0.003	0.003	U	0.010	< 0.010	0.010	U	0.006	< 0.015	0.015	U	0.010
	Methoxychlor	35	< 0.10	0.10	U	2.0	< 0.10	0.10	U	0.10	< 0.095	0.095	U	0.11	< 0.097	0.097	U	0.10
	Toxaphene		< 0.21	0.21	U	2.0	< 0.20	0.20	U	0.20	< 0.19	0.19	U	0.22	< 0.19	0.19	U	0.20

- Notes:
 RL- Reporting Limit
 U- The compound was anlayzed for but not detected at or above the MDL.
 J- The value is estimated.
 N- The concentration is based on the response fo the nearest internal.
 S- This compound is a solvent that is used in the laboratory.
 D- The reported concentration is the result of a diluted analysis.
 Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 9 Groundwater Analytical Results Pesticides and PCBs

	r						RIR R	esults - N	larch 201	8				
		NYSDEC Groundwater Quality Standards		MW	5			MW6	6		Duj	olicate	(MW5)	
	Compound	Quality Standards		3/15/20	18			3/20/20	18			3/15/20	18	
		μg/L		μg/L				μg/L				μg/L		
			< 0.047	RL 0.047	Qual	MDL	< 0.090	RL 0.090	Qual	MDL 0.050	< 0.047	RL 0.047	Qual	MDL
	PCB-1016	0.09	< 0.047	0.047	U	0.052	< 0.090	0.090	U	0.050	< 0.047	0.047	U	0.050
	PCB-1221	0.09	< 0.047	0.047	U	0.052	< 0.090	0.090	U	0.050	< 0.047	0.047	U	0.050
	PCB-1232	0.09	< 0.047	0.047	U	0.052	< 0.090	0.090	U	0.050	< 0.047	0.047	U	0.050
PCBs	PCB-1242	0.09	< 0.047	0.047	U	0.052	< 0.090	0.090	U	0.050	< 0.047	0.047	U	0.050
2	PCB-1248	0.09	< 0.047	0.047	U	0.052	< 0.090	0.090	U	0.050	< 0.047	0.047	U	0.050
	PCB-1254	0.09	< 0.047	0.047	U	0.052	< 0.090	0.090	U	0.050	< 0.047	0.047	U	0.050
	PCB-1260	0.09	< 0.047	0.047	U	0.052	< 0.090	0.090	U	0.050	< 0.047	0.047	U	0.050
	PCB-1262 PCB-1268	0.09	< 0.047	0.047	U	0.052	< 0.090	0.090	U	0.050	< 0.047	0.047	U	0.050
		1 1 1	< 0.005	0.005	U	0.002	< 0.010	0.010	U	0.025	< 0.005	0.005	U	0.010
	4,4-DDD	0.3	< 0.005	0.005	U	0.010	< 0.005	0.005	U	0.025	< 0.005	0.005	U	0.010
	4,4-DDE	0.2	< 0.005	0.005	U	0.010	< 0.010	0.010	U	0.025	< 0.005	0.005	IJ	0.010
	4,4-DDT	0.11	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.025	< 0.005	0.005	U	0.005
	a-BHC a-Chlordane	0.94	< 0.009	0.009	U	0.010	< 0.010	0.010	U	0.10	< 0.009	0.009	U	0.010
	Alachlor		< 0.070	0.070	U	0.077	< 0.073	0.073	U	0.050	< 0.070	0.070	U	0.075
	Aldrin		< 0.001	0.001	U	0.002	< 0.002	0.002	U	0.020	< 0.001	0.001	U	0.002
	b-BHC	0.04	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.025	< 0.005	0.005	U	0.040
	Chlordane	0.05	< 0.047	0.047	U	0.052	< 0.049	0.049	U	0.50	< 0.047	0.047	U	0.050
	d-BHC	0.04	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.025	< 0.005	0.005	U	0.005
es	Dieldrin	0.004	< 0.001	0.001	U	0.002	< 0.003	0.003	U	0.015	< 0.001	0.001	U	0.002
Pesticides	Endosulfan I	3,000	< 0.009	0.009	U	0.010	< 0.010	0.010	U	0.10	< 0.009	0.009	U	0.010
Pes	Endosulfan II		< 0.009	0.009	U	0.010	< 0.010	0.010	U	0.050	< 0.009	0.009	U	0.010
	Endosulfan Sulfate		< 0.009	0.009	U	0.010	< 0.010	0.010	U	0.10	< 0.009	0.009	U	0.010
	Endrin		< 0.009	0.009	U	0.005	< 0.010	0.010	U	0.050	< 0.009	0.009	U	0.010
	Endrin aldehyde	5	< 0.009	0.009	U	0.010	< 0.010	0.010	U	0.20	< 0.009	0.009	U	0.010
	Endrin ketone		< 0.009	0.009	U	0.010	< 0.010	0.010	U	0.10	< 0.009	0.009	U	0.010
	gamma-BHC	0.05	< 0.005	0.005	U	0.005	< 0.005	0.005	U	0.050	< 0.005	0.005	U	0.005
	g-Chlordane		< 0.009	0.009	U	0.010	< 0.010	0.010	U	0.10	< 0.009	0.009	U	0.010
	Heptachlor	0.04	< 0.009	0.009	U	0.005	< 0.010	0.010	U	0.050	< 0.009	0.009	U	0.010
	Heptachlor epoxide	0.03	< 0.009	0.009	U	0.005	< 0.010	0.010	U	0.050	< 0.009	0.009	U	0.010
	Methoxychlor	35	< 0.094	0.094	U	0.10	< 0.098	0.098	U	1.0	< 0.094	0.094	U	0.10
	Toxaphene		< 0.19	0.19	U	0.21	< 0.20	0.20	U	2.0	< 0.19	0.19	U	0.20

- Notes:
 RL- Reporting Limit
 U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
- S- This compound is a solvent that is used in the laboratory.

D- The reported concentration is the result of a diluted analysis.

Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 10 Groundwater Analytical Results Total Metals

								RIR	Results	- March 2018							
	NYSDEC Groundwater Quality Standards		MW1	ı			MW2	2			MW3	3			MW4	1	
Compound	Quality Standards		3/20/20	18			3/15/20	18			3/15/20	18			3/20/20	18	
	mg/L		mg/L				mg/L				mg/L				mg/L		
		Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL
Aluminum	NS	14.9	0.010	-	0.005	4.24	0.010	-	0.005	26.5	0.010	-	0.005	12.5	0.010	-	0.050
Antimony	0.003	< 0.003	0.003	U	0.002	<0.003	0.004	U	0.002	<0.003	0.003	U	0.002	0.003	0.003	U	0.002
Arsenic	0.025	< 0.004	0.004	-	0.004	0.005	0.004	U	0.004	0.005	0.004	U	0.004	0.006	0.004	-	0.004
Barium	1	0.21	0.010	-	0.001	0.184	0.010	-	0.001	0.357	0.010	-	0.001	0.208	0.010	-	0.001
Beryllium	0.003	< 0.001	0.001	-	0.001	< 0.001	0.001	U	0.001	0.001	0.001	U	0.001	< 0.001	0.001	-	0.001
Cadmium	0.005	0.001	0.004	В	0.0005	< 0.004	0.004	В	0.0005	0.001	0.010	В	0.0005	< 0.004	0.004	В	0.0005
Calcium	NS	137	0.010	-	0.01	108	0.010	-	0.01	24.9	0.001	-	0.01	48.4	0.010	-	0.01
Chromium	0.05	0.035	0.001	-	0.001	0.008	0.001	-	0.001	0.061	0.001	-	0.001	0.022	0.001	-	0.001
Cobalt	NS	0.017	0.005	-	0.001	0.003	0.005	В	0.001	0.012	0.005	-	0.001	0.01	0.005	-	0.001
Copper	0.2	0.057	0.005	-	0.001	0.014	0.005	-	0.001	0.102	0.005	-	0.001	0.597	0.005	-	0.001
Iron	0.5	47.4	0.01	-	0.01	27.3	0.01	-	0.01	23	0.01	-	0.01	20	0.01	-	0.10
Lead	0.025	0.051	0.002	-	0.001	0.02	0.002	U	0.001	0.044	0.002	-	0.001	0.577	0.002	-	0.001
Magnesium	35	44.3	0.010	N	0.01	15.3	0.010	N	0.01	9.31	0.010	N	0.01	7.24	0.010	N	0.01
Manganese	0.3	5.55	0.050	-	0.010	0.978	0.005	-	0.010	0.411	0.005	-	0.010	1.39	0.005	-	0.010
Mercury	0.0007	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	0.0002	0.0002	U	0.00015
Nickel	0.1	0.033	0.004	-	0.001	0.008	0.004	-	0.001	0.034	0.004	-	0.001	0.016	0.004	-	0.001
Potassium	NS	15.6	1.0	-	0.01	11.6	0.1	-	0.01	9.6	0.1	-	0.01	9.2	1.0	-	0.01
Selenium	0.01	< 0.010	0.010	U	0.001	< 0.010	0.010	U	0.001	< 0.010	0.010	U	0.001	< 0.010	0.010	U	0.001
Silver	0.05	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001
Sodium	2	71.5	1.0	-	0.10	80.4	1.0	-	0.10	31.6	0.10	-	0.10	77.2	1.0	-	0.10
Thallium	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005
Vanadium	NS	0.025	0.010	-	0.001	0.011	0.010	-	0.001	0.049	0.010	-	0.001	0.025	0.010	-	0.001
Zinc	2	0.091	0.010	-	0.0011	0.034	0.010	-	0.0011	0.063	0.010	-	0.0011	0.135	0.010	-	0.0011

- Notes:
 RL- Reporting Limit
 U- The compound was anlayzed for but not detected at or above the MDL.

 The value is estimated.
- J- The value is estimated.

 N- The concentration is based on the response fo the nearest internal.

 S- This compound is a solvent that is used in the laboratory.

 D- The reported concentration is the result of a diluted analysis.

 Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 10 **Groundwater Analytical Results** Total Metals

						RIR R	esults - M	larch 20	18				
Compound	NYSDEC Groundwater Quality Standards		MW5				MW6			Du	plicate 3/15/20)18	
	mg/L	Results	mg/L RL	Qual	MDL	Results	mg/L RL	Qual	MDL	Results	mg/L RL	Oual	MDL
Aluminum	NS	0.284	0.010	-	0.005	6.78	0.010	-	0.005	0.354	0.010	-	0.005
Antimony	0.003	<0.003	<0.003	U	0.002	<0.003	0.003	U	0.002	<0.003	0.003	U	0.002
Arsenic	0.025	0.004	0.004	U	0.004	0.009	0.004	U	0.004	0.004	0.004	-	0.004
Barium	1	0.362	0.010	-	0.001	0.247	0.010	-	0.001	0.362	0.010	-	0.001
Beryllium	0.003	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001
Cadmium	0.005	< 0.004	0.004	В	0.0005	0.001	0.004	1	0.0005	< 0.004	0.004	В	0.0005
Calcium	NS	161	0.10	-	0.01	129	0.010	-	0.10	158	0.10	-	0.01
Chromium	0.05	0.003	0.001	-	0.001	0.016	0.001	1	0.001	0.004	0.001	\supset	0.001
Cobalt	NS	< 0.005	0.005	В	0.001	0.005	0.005	-	0.001	< 0.005	0.005	-	0.001
Copper	0.2	0.002	0.005	В	0.001	0.108	0.005	U	0.001	0.002	0.005	J	0.001
Iron	0.5	42.8	0.01	-	0.01	35	0.01	1	0.10	40.8	0.01	1	0.01
Lead	0.025	0.012	0.002	-	0.001	0.633	0.002	-	0.001	0.014	0.002	-	0.001
Magnesium	35	25.7	0.010	N	0.01	12.9	0.010	N	0.10	25.3	0.010	1	0.01
Manganese	0.3	1.35	0.005	-	0.010	0.557	0.005	-	0.10	1.34	0.005	-	0.010
Mercury	0.0007	< 0.0002	0.0002	U	0.00015	0.0006	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015
Nickel	0.1	< 0.004	0.004	В	0.001	0.02	0.004	1	0.001	0.001	0.004	В	0.001
Potassium	NS	16	0.1	-	0.01	6.5	1.0	1	0.01	17.5	0.1	1	0.01
Selenium	0.01	< 0.010	0.010	U	0.001	< 0.010	0.010	UN	0.001	< 0.010	0.010	UN	0.001
Silver	0.05	< 0.005	0.005	U	0.001	< 0.005	0.005	В	0.001	< 0.005	0.005	U	0.001
Sodium	2	129	10	-	0.10	97	1.0	-	0.10	126	10	-	0.10
Thallium	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005	< 0.0005	0.0005	U	0.0005
Vanadium	NS	< 0.010	0.010	В	0.001	0.058	0.010	-	0.001	< 0.010	0.010	U	0.001
Zinc	2	0.008	0.010	-	0.0011	0.234	0.010	-	0.0011	0.009	0.010	-	0.0011

Notes:

- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
 S- This compound is a solvent that is used in the laboratory.
 D- The reported concentration is the result of a diluted analysis.
 Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 11 Groundwater Analytical Results Dissolved Metals

								RIR	Results -	- March 2018							
Compound	NYSDEC Groundwater Quality Standards		MW1 3/20/20 mg/L				MW2 3/15/20 mg/L				MW3 3/15/20 mg/L	18			MW4 3/20/20 mg/L		
	, and the second	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL	Results	RL	Qual	MDL
Aluminum	NS	0.062	0.011	U	0.005	0.058	0.011	U	0.005	0.022	0.011	U	0.005	0.03	0.011	U	0.005
Antimony	0.003	< 0.003	0.003	U	0.003	<0.0011	0.0011	U	0.003	< 0.003	0.003	U	0.003	< 0.003	0.003	U	0.003
Arsenic	0.025	< 0.004	0.004	U	0.003	0.002	0.003	U	0.003	< 0.003	0.003	U	0.003	< 0.004	0.004	U	0.003
Barium	1	0.096	0.011	-	0.001	0.104	0.011	-	0.001	0.035	0.011	-	0.001	0.024	0.011	-	0.001
Beryllium	0.003	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001
Cadmium	0.005	< 0.004	0.004	U	0.0005	< 0.004	0.004	U	0.0005	< 0.004	0.004	U	0.0005	< 0.004	0.004	U	0.0005
Calcium	NS	117	0.01	-	0.01	106	0.01	-	0.01	21.3	0.01	-	0.01	27.2	0.01	-	0.01
Chromium	0.05	0.002	0.001	U	0.001	< 0.001	0.001	U	0.001	0.001	0.001	U	0.001	0.007	0.001	U	0.001
Cobalt	NS	0.004	0.005	В	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	В	0.001	< 0.005	0.005	-	0.001
Copper	0.2	0.001	0.005	В	0.001	0.002	0.005	U	0.001	0.002	0.005	В	0.001	0.006	0.005	U	0.001
Iron	0.5	13.4	0.01	-	0.01	0.65	0.01	-	0.01	< 0.01	0.01	U	0.01	0.09	0.01	-	0.01
Lead	0.025	0.003	0.002	U	0.001	0.003	0.002	-	0.001	< 0.002	0.002	-	0.001	< 0.002	0.002	В	0.001
Magnesium	35	37.6	0.01	-	0.01	14.4	0.01	-	0.01	2.42	0.01	-	0.01	2.86	0.01	-	0.01
Manganese	0.3	5.63	0.053	-	0.011	0.881	0.005	-	0.011	0.021	0.005	-	0.011	0.901	0.005	-	0.011
Mercury	0.0007	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015
Nickel	0.1	0.006	0.004	В	0.001	0.001	0.004	В	0.001	< 0.004	0.004	В	0.001	0.004	0.004	-	0.001
Potassium	NS	11.7	0.1	-	0.01	10.2	0.1	-	0.01	4.2	0.1	-	0.01	4.9	0.1	-	0.01
Selenium	0.01	<0.002	0.002	U	0.002	<0.003	0.003	U	0.002	< 0.003	0.003	U	0.002	< 0.0002	0.0002	U	0.002
Silver	0.05	<0.005	0005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.0002	0.0002	U	0.001
Sodium	2	71.1	1.1	-	0.11	80.5	1.1	-	0.11	35.1	0.11	-	0.11	76.3	1.1	-	0.11
Thallium	0.0005	< 0.0003	0.0003	U	0.0005	<0.0003	0.0003	U	0.0005	<0.0003	0.0003	U	0.0005	< 0.0003	0.0003	U	0.0005
Vanadium	NS	< 0.011	0.011	U	0.001	0.001	0.011	U	0.001	<0.0003	0.0003	U	0.001	< 0.011	0.011	U	0.001
Zinc	2	0.006	0.011	В	0.0012	< 0.011	0.011	U	0.0012	< 0.011	0.011	U	0.0012	0.002	0.011	В	0.0012

Notes:

RL- Reporting Limit

- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.

N- The value is estimated.
N- The concentration is based on the response fo the nearest internal.
S- This compound is a solvent that is used in the laboratory.
D- The reported concentration is the result of a diluted analysis.
Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

TABLE 11 **Groundwater Analytical Results** Dissolved Metals

						RIR R	esults - M	larch 20	18				
Compound	NYSDEC Groundwater Quality Standards		MW5				MW6			Du	plicate 3/15/20)18	
	mg/L	Results	mg/L RL	Qual	MDL	Results	mg/L RL	Qual	MDL	Results	mg/L RL	Oual	MDL
Aluminum	NS	0.062	0.011	U	0.005	0.057	0.011	- Quai	0.005	0.066	0.011	U	0.005
Antimony	0.003	<0.0011	0.0011	U	0.003	< 0.0003	0.0003	U	0.003	<0.0011	0.0011	U	0.003
Arsenic	0.025	0.002	0.003	U	0.003	< 0.004	0.004	-	0.003	0.002	0.003	U	0.003
Barium	1	0.221	0.011	-	0.001	0.102	0.011	-	0.001	0.227	0.011	-	0.001
Beryllium	0.003	< 0.001	0.001	U	0.001	< 0.001	0.001	J	0.001	< 0.001	0.001	J	0.001
Cadmium	0.005	< 0.004	0.004	U	0.0005	< 0.004	0.004	-	0.0005	< 0.004	0.004	В	0.0005
Calcium	NS	148	0.01	-	0.01	109	0.01	-	0.11	148	0.01	-	0.01
Chromium	0.05	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001	< 0.001	0.001	U	0.001
Cobalt	NS	< 0.005	0.005	U	0.001	< 0.005	0.005	-	0.001	< 0.005	0.005	-	0.001
Copper	0.2	0.002	0.005	U	0.001	< 0.005	0.005	U	0.001	0.001	0.005	U	0.001
Iron	0.5	6.19	0.01	-	0.01	1.44	0.01	1	0.11	8.99	0.01	1	0.01
Lead	0.025	0.001	0.002	U	0.001	< 0.002	0.002	1	0.001	0.002	0.002	1	0.001
Magnesium	35	25.7	0.01	-	0.01	10.7	0.01	1	0.11	25.5	0.01	1	0.01
Manganese	0.3	1.31	0.005	-	0.011	0.429	0.005	-	0.11	1.29	0.005	-	0.011
Mercury	0.0007	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015	< 0.0002	0.0002	U	0.00015
Nickel	0.1	< 0.004	0.004	U	0.001	0.002	0.004	U	0.001	< 0.004	0.004	J	0.001
Potassium	NS	16.9	0.1	-	0.01	5.7	0.1	1	0.01	17.1	0.1	1	0.01
Selenium	0.01	<0.003	0.003	U	0.002	0.002	0.002	U	0.002	< 0.003	0.003	U	0.002
Silver	0.05	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001	< 0.005	0.005	U	0.001
Sodium	2	121	11	-	0.11	97.8	1.1	-	0.11	117	11	-	0.11
Thallium	0.0005	<0.0005	0.0005	U	0.0005	< 0.0003	0.0003	U	0.0005	<0.0003	0.0003	U	0.0005
Vanadium	NS	< 0.011	0.011	U	0.001	< 0.011	0.011	В	0.001	< 0.011	0.011	U	0.001
Zinc	2	0.001	0.011	U	0.0012	0.001	0.011	-	0.0012	< 0.011	0.011	В	0.0012

Notes:

- RL- Reporting Limit
- U- The compound was anlayzed for but not detected at or above the MDL.
- J- The value is estimated.
- N- The concentration is based on the response fo the nearest internal.
 S- This compound is a solvent that is used in the laboratory.
 D- The reported concentration is the result of a diluted analysis.
 Bold/highlighted- Indicated exceedance of the NYSDEC Groundwater Standard

Table 12 Ground Water Analytical Results PFAS

Compound	MW 3/20/20 ng/L	018	MW/ 3/20/20 ng/L	018	MW 3/20/20 ng/L	018
	Results	RL	Results	RL	Results	RL
Perfluorobutanoic acid	15.9	4.07	11.4	3.9	15.7	5.0
Perfluoropentanoic acid	11.7	4.07	16.9	3.9	29.3	5.0
Perfluorobutanesulfonic acid	9.11	4.07	4.16	3.9	7.15	5.0
Perfluorohexanoic acid	13.9	4.07	20.4	3.9	21.0	1.3
Perfluoroheptanoic acid	14.4	4.07	13.8	3.9	10.7	5.0
Perfluorohexanesulfonic acid	9.29	4.07	ND	3.9	ND	5.0
6:2 Fluorotelomer sulfonate	ND	4.07	ND	3.9	ND	5.0
Perfluorooctanoic acid	51.2	4.07	32.1	3.9	12.8	5.0
Perfluoroheptanesulfonic acid	ND	4.07	ND	3.9	ND	1.3
Perfluorooctanessulfonic acid	52.6	4.07	62.1	3.9	23.4	5.0
Perfluorononanoic acid	ND	4.07	8.13	3.9	ND	5.0
Perfluorodecanoic acid	ND	4.07	4.31	3.9	ND	2.5
8:2 Fluorotelomer sulfonate	ND	4.07	ND	3.9	ND	1.3
Perfluoroctanesulfonamide	ND	4.07	ND	3.9	ND	4.7
N-metyl perfluorooctanesulfonamidoacetic acid	ND	4.07	ND	3.9	ND	2.5
Perfluorodecanesulfonic acid	ND	4.07	ND	3.9	ND	1.3
Perfluoroundecanoic acid	ND	4.07	ND	3.9	ND	5.0
N-ethyl perfluorooctanesulfonamideoacetic acid	ND	4.07	ND	3.9	ND	3.0
Perfluorododecanoic acid	ND	4.07	ND	3.9	ND	5.0
Perfluorotridecanoic acid	ND	4.07	ND	3.9	ND	500
Perfluorotetradecanoic acid	ND	4.07	ND	3.9	ND	5.0

Notes:

ND - Not Detected

RL- Reporting Limit

									RIR	Results	- March 20	118						
				SG	1			SG	2			SG	3			SG	4	
COMPOUNDS	NYSDOH Maximum Sub-	NYSDOH Soil Outdoor		3/15/2	018			3/15/2	018			3/15/20	018			3/15/2	018	
	Slab Value (µg/m³) (0)	Background Levels (μg/m³) ^(b)	Result	(µg/m	Qual	MDL	Result	(µg/m	(Qual	MDL	Result	(µg/m	3) Qual	MDL	Result	(µg/m	(Qual	MDL
1,1,1,2-Tetrachloroethane	(pgm)	(1111)	< 1.00	1.00	Uuai	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,1,1-Trichloroethane	100	<2.0 - 2.8	< 1,00	1,00	U	1,00	< 1.00	1,00	U	1,00	< 1,00	1,00	-	1,00	< 1.00	1,00	U	1,00
1,1,2,2-Tetrachloroethane		<1.5	< 1.00	1,00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1,00	U	1.00	< 1.00	1,00	U	1,00
1,1,2-Trichloroethane		<1.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,1-Dichloroethane		<1.0	< 1.00	1,00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1,00	U	1.00	< 1.00	1,00	U	1,00
1,1-Dichloroethene 1,2,4-Trichlorobenzene		<1.0 NA	2.08	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,2,4-Trimethylbenzene		<1.0	3.28	1,00	-	1.00	< 1.00	1,00	U	1.00	< 1.00	1,00	-	1.00	< 1.00	1,00	-	1.00
1,2-Dibromoethane		<1.5	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,2-Dichlorobenzene		<2.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,2-Dichloroethane		<1.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1,00
1,2-Dichloropropane 1,2-Dichlorotetrafluoroethane			< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,3,5-Trimethylbenzene		<1.0	1.16	1,00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1,00	U	1.00	< 1.00	1.00	U	1.00
1,3-Butadiene		NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,3-Dichlorobenzene		<2.0	2.45	1,00	U	1,00	< 1.00	1,00	U	1,00	< 1,00	1,00	U	1,00	< 1.00	1,00	U	1.00
1,4-Dichlorobenzene		NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
1,4-Dioxane			< 1.00	1,00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U -	1.00	< 1.00	1.00	U	1.00
2-Hexanone 4-Ethyltoluene		NA NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
4-Isopropyltoluene			< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
4-Methyl-2-pentanone			1.52	1,00	U	1.00	< 1.00	1,00	U	1,00	< 1.00	1,00	U	1.00	< 1.00	1,00	D	99.9
Acetone		NA	710	15.0	D	9.99	620	15.0	-	1.00	636	15.0	-	1.00	539	15.0	D	99.9
Acrylonitrile		.10 17	< 1.00 2.01	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U -	1.00	< 1.00 27.9	1.00	U	1.00
Benzene Benzyl Chloride		<1.6 - 4.7 NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Bromodichloromethane		<5.0	< 1.00	1,00	U	1,00	< 1.00	1,00	U	1,00	< 1.00	1,00	U	1,00	< 1.00	1,00	U	1,00
Bromoform		<1.0	< 1.00	1,00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1,00	U	1,00
Bromomethane		<1.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Carbon Disulfide	_	NA .	1.15 0.53	1,00	- U	1.00	< 1,00 0,43	1,00	U _	1,00	2.07 0.62	1,00	U	1.00	65 0.48	1,00	- U	1,00 0.25
Carbon Tetrachloride Chlorobenzene	5	<3.1 <2.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Chloroethane		NA	< 1.00	1.00	U	1.00	< 1.00	1,00	U	1.00	< 1.00	1,00	U	1.00	< 1.00	1.00	U	1,00
Chloroform		<2.4	< 1.00	1.00	-	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Chloromethane		<1.0 - 1.4	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	1.26	1.00	U	1.00	1.42	1.00	U	1.00
cis-1,2-Dichloroethene		<1.0	< 0.20	1.00	U	1.00	< 0.20	1.00	U	1.00	< 0.20	1.00	U	1.00	< 0.20	1.00	U	1,00
cis-1,3-Dichloropropene Cyclohexane		NA NA	1.63	1.00	-	1.00	2.43	1.00	U	1.00	1.71	1.00	U	1.00	413	15.0	D	100
Dibromochloromethane		<5.0	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1,00
Dichlorodifluromethane		NA	2.97	1.00	-	1.00	2.33	1.00	-	1.00	2.76	1.00	-	1.00	2.87	1.00	-	1.00
Ethanol			115	1,00	-	1,00	63.1	1,00	-	1,00	58.4	1,00	-	1.00	1,080	1,00	Е	1.00
Ethyl Acetate		NA	2,32	1.00	U -	1.00	2,51	1.00	U	1.00	2	1.00	U -	1.00	< 1.00	1.00	U	1.00
Ethylbenzene		<4.3 NA	3.81	1,00	-	1.00	< 1.00 1.65	1,00	-	1.00	< 1.00 1.54	1,00	-	1.00	1.3 25.7	1.00	- D	99.9
Heptane Hexachlorobutadiene		NA NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Hexane		<1.5	4.44	1.00	S	1.00	11.8	1.00	S	1.00	3.01	1.00	S	1.00	100	1.00	DS	100
Isopropylalcohol		NA	25.3	1,00	-	1,00	24.1	1,00	U	1.00	26.5	1,00	U	1.00	7.81	1,00		1.00
Isopropylbenzene			< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	-	1.00
Xylene (m&p)		<4.3	11 33	1.00	-	1.00	3.92 16.8	1.00	U	1.00	3.39 14.1	1.00	_ D	1.00 9.99	3.64 15.3	1.00	- D	1.00
Methyl Ethyl Ketone MTBE		NA	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	262	15.0	U	1.00
Methylene Chloride		<3.4	< 3.00	3,00	U	1.00	< 3,00	3,00	S	1.00	< 3,00	3,00	U	1.00	< 3,00	3,00	U	1,00
n-Butylbenzene			< 1.00	1.00	U	1.00	< 1.00	1,00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1,00
Xylene (o)		<4.3	4.95	1.00	-	1.00	1.07	1.00	U	1.00	1.09	1.00	-	1.00	1.14	1.00	-	1.00
Propylene sec Butylbenzene		NA NA	20.5 < 1.00	1,00	- U	1.00	28.9 < 1.00	1.00	U	1.00	15 < 1.00	1.00	U	1.00	73.8 < 1.00	15,0	D U	99.9
sec-Butylbenzene Styrene		<1.0	2.47	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00
Tetrach l oroethene	30	1.0	1.17	0,25	-	0,25	1.71	0,25	-	0,25	< 0.25	0,25	-	0,25	0.26	0,25	-	0,25
Tetrahydrofuran		NA	23,5	1.00	U	1.00	1.4	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1,00
Toluene		1.0 - 6.1	21.1	1.00	-	1.00	11	1.00	-	1.00	5.54	1.00	-	1.00	10.5	1.00	-	1.00
trans-1,2-Dichloroethene		NA NA	< 1.00	1,00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	- U	1.00
trans-1,3-Dichloropropene Trichloroethene	2	NA <1.7	< 0.20	0.20	U	0.25	< 0.20	0.20	U	0.25	< 0.20	0.20	-	0.25	< 0.20	0.20	-	0.25
Trichlorofluoromethane	2	NA	1.43	1.00	-	1.00	16.3	1.00	-	1.00	1.33	1.00	-	1.00	1.45	1.00	U	1.00
Trichlorotrifluoroethane			< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	< 1.00	1.00	U	1.00	1.17	1.00	U	1.00
Vinyl Chloride		<1.0	< 0,20	0,20	U	0,25	< 0.20	0,20	U	0,25	< 0.20	0,20	U	0,25	< 0,20	0,20	-	0,25
ВТЕХ				41.9				15.9				11.1				44.4		
Total VOCs				1001	. 6			809.	45			777.4	12			2633	-7	

- Notes:

 NA No guidance value or standard available

 (a) Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006. New York State Department of Health.

 (b) NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, February 2005, Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor values)

 U- The compound was anlayzed for but not detected at or above the MDL.

 J- The value is estimated.

 N- The concentration is based on the response fo the nearest internal.

 S- This compound is a solvent that is used in the laboratory.

 D- The reported concentration is the result of a diluted analysis.

TABLE 13 Soil Gas Analytical Results Volatile Organic Compounds

1.4. 1.2. 1.2. 1.2. 1.2. 1.2. 1.2. 1.2.										RIR	Results	- March 20	18						\Box
Composition			INCOROLLO TO ALL		SGS	5			SG6	;			SG	7			SG	:	
1. 1. 1. 1. 1. 1. 1. 1.	COMPOUNDS	NYSDOH Maximum Sub-	NYSDOH Soil Outdoor		3/15/20	018			3/15/20	018			3/15/2	018			3/15/2	018	
15.1									$\overline{}$										
1.5.1. Foreigneemens 1.0. 1.1. 1.	4.4.4.0 Tetraphiesesthere	(μg/m³) ^{νογ}	(μg/m²) ^{νογ}		_						_		_				•	_	_
.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		100	<20-28	 	_				_				-		-		-		-
1.1. Professersemment		100		-	_		-		_		-		_		-		_		-
1.50-bit contendemen				< 1.00	1.00	U	9.98	< 1.00	1.00	U	18.5	< 1.00	1.00	U	30.0	< 1.00	1.00	U	30.0
1.3.4. Templementeres	1,1-Dichloroethane		<1.0	< 1.00	1.00	U	9,99	< 1.00	1.00	U	18.5	< 1.00	1.00	U	30.0	< 1.00	1,00	U	30.0
13.4-71 membrosome 1.1.2	1,1-Dichloroethene		<1.0	 	_				_		-		-		\vdash				-
1-2	1,2,4-Trichlorobenzene		NA		_				\vdash		-		_		-			_	-
1.43-Dictionements 1.43-1.25-1.25-1.25-1.25-1.25-1.25-1.25-1.25				-	_				_		_		_		\vdash				-
1.500 1.50				 	_				_		-				\vdash				-
1.500-fromozone 1.500-from	·			₩	_		-		_		-		_		-		_	_	-
1.3. Demonstrationare in the control of the control			<1.0	-							_		_		-				
1.3. A. Tomogrammen				< 1.00	1.00	U	9.99	< 1.00	1.00	U	18,5	< 1.00	1,00	U	30.0	< 1.00	1,00	U	30.0
1.4. 1.4.	1,3,5-Trimethylbenzene		<1.0	< 1.00	1.00	\supset	10.0	< 1.00	1.00	\supset	18.5	1.57	1.00	U	30.0	< 1.00	1.00	U	30.0
Main	1,3-Butadiene		NA	< 1.00	1.00	U	9.99	< 1.00	1.00		18.5		1.00	U	30.1	< 1.00	1.00	U	-
Marie Mari	1,3-Dichlorobenzene		<2.0	I					_				_		-		_		-
Part			NA NA	-									_		\vdash				-
Actividance N. 1.0				₩	_				_				_		_		_		-
			NA	 	_				_		_		_		-		_		-
According	•		INA	 	_				-		-		_		\vdash				-
Max				-	_	U			-	U	-		_		-		_	U	-
State Stat	· ·		NA	7,190	75.0	U	9.99	3,580	75.0	U	18.5	242	5.01	U	29.9	205	5.01	U	29.9
Mary 1-10	Acrylonitrile			< 1.00	1.00	⊃	10.0	< 1.00	1.00	⊃	18.5	< 1.00	1.00	U	29.9	< 1.00	1.00	U	29.9
Second S	Benzene		<1.6 - 4.7	7,18	1.00	-	9.99	1,23	1,00	-	18.5	< 1.00	1.00	-	30.0	< 1.00	1,00	U	30.0
Second 1-10	Benzyl Chloride		NA	 	_				_		-				\vdash				-
Carbon Dissistance	Bromodichloromethane			₩	_		-		_				_		-		_	_	-
Carbon Dissidie NA 8.5 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0				₩							_		_		-		_		
Carbon International Series				 							-		_		\vdash				-
Chlorosebane		5		₩	_				_				_		-		_		-
Chlorestame		<u> </u>		< 1.00	1.00	U	9.98	< 1.00	1.00	U	18.5	< 1.00	1.00	U	30.0	< 1.00	1.00	U	30.0
Chip Chip Chip Chip Chip Chip Chip Chip				< 1.00	1.00	U	10.0	< 1.00	1.00	U	18,5	< 1.00	1.00	U	30.1	< 1.00	1.00	U	30.1
	Chloroform		<2.4	< 1.00	1.00	U	10.0	< 1.00	1.00	U	18.5	1.72	1.00	U	30.0	< 1.00	1.00	U	30.0
Section Sect	Chloromethane		<1.0 - 1.4	₩	_	_			_				-				_		-
NA				 					_		_		_		-		_		-
Dissimonchiforomethane				 	_				-		-		_		\vdash				-
Dichlorodiffuromethane NA 2.43 1.09				-	_				-		-		_		-		_	_	-
Ethyl Acetate 101 102 102 103 10				 							-		_		-				-
Ethyl Acestace			IVA	∦ ———	_	U	10.0		1,00	_	-			U	29.9			-	29.9
Helptane			NA	2,82	1.00	U	10.0	< 1.00	1.00	U	18.5	< 1.00	1.00	U	30.0	3,53	1.00	U	30.0
NA	Ethylbenzene		<4.3	< 1.00	1.00	-	9.98	< 1.00	1.00	-	18.5	8.29	1.00	U	30.0	< 1.00	1.00	U	30.0
Methyane	Heptane		NA	-	_		-		_		-		_		-		_	_	-
Sepremain Sepr			NA	-									_		-				
Seption Sept				₩	_	_			_		-		_		\vdash		_	_	-
Xylene (m\$p)			NA NA		_						_		_		-		_		-
Methyl Ethone 197 749 0 749 100 749 100 145 147 100 0 0 0 145 147 100 0 0 0 150 1	* * * * * * * * * * * * * * * * * * * *		<4.3	-							-		_		\vdash				
MTBE NA				-	_	D			-	-	-		_	-	30.1		_	-	30.1
n-Butylbenzene			NA	< 1.00	1.00	U	10.0	< 1.00	1.00	U	18.5	< 1.00	1.00	_	30.0	< 1.00	1.00	D	150
Xylene (o)	Methylene Chloride		<3.4	₩	_								_		-		_	_	-
Propylene NA 157 75.0 D 75.0 14.6 1.00 - 18.6 45.6 1.00 U 29.9 3.32 1.00 U 29.9 sec-Butylbenzene 1.00 U 9.88 <1.00				₩							_		_		-				
Second				-	-				-		-			-	-				-
Styrene			NA NA	₩	_				_		-	_	_		-		_		-
Tetrachloreethene 100			<1 N	-	_				_		_		_		\vdash	_			-
Tetrahydrofuran NA 2.73 1.00 U 9.99 1.43 1.00 U 18.5 24.3 1.00 U 9.00 1.00 U 9.99 1.43 1.00 U 18.5 24.3 1.00 U 9.00 4.00 1.00 U 9.90 1.43 1.00 U 18.5 24.3 1.00 U 9.00 4.44 1.00 U 18.5 17.3 1.00 U 30.0 4.29 1.00 1.0 2.0 trans-1,2-Dichloroethene NA < 1.00	•	100	`1.0	₩	_	-			_		1		-		-		_		
Toluene 1,0-6,1 6.52 1,00 - 10,0 4.44 1,00 U 18,5 17,3 1,00 U 30,0 4.29 1,00 - 30,0 trans-1,2-Dichloroptene NA <1,00			NA	₩——	1.00	U		1.43	1.00	U	18.5		_	U	-		_	U	-
NA < 1.00 1.00 0 9.88 1.00 1.00 0 18.5 1.00 1.00 0 3.00 1.0				6.52	1.00	-	10.0	4.44	1.00	U	18.5	17.3	1.00	U	30.0	4.29	1.00	-	30.0
Trichloroethene 5				 			-				-		_		-		_		
Trichlorofturomethane NA 1.16 1.00 1.	trans-1,3-Dichloropropene		NA	 	_	U				U	-		-		\vdash				_
Trichlorotrifluoreethane < 1.00		5		₩	_	-			-	-	-		_		-		_		-
Vinyl Chloride <1.0			NA NA	₩	_				_		-		_		-				
BTEX 18.36 10.55 50.02 8.9			×1.0	-	_				_		-				-		_	_	-
			````	3,60				3,60			02	3,40			.,01	3,5.0			
	Total VOCs														$\neg$				$\neg$

- Notes:

  NA No guidance value or standard available
  (a) Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006. New York State Department of Health.
  (b) NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, February 2005, Summary of Background Levels for Selected Compounds (NYSDOH Database, Outdoor values)

  U- The compound was analyzed for but not detected at or above the MDL.

  J- The value is estimated.
  N- The concentration is based on the response for the nearest internal.
  S- This compound is a solvent that is used in the laboratory.
  D- The reported concentration is the result of a diluted analysis.

# TABLE 14 Parameters Detected Above Soil Standards

								Phase II Resu	lts - May 201	16					I				
			F	11		32	В3		34		35	В6	B	10	179	SB1		17SB2	
COMPOUND	Range in Exceedances	Frequency of Detection																	
			(0-2') 5/26/2016	(4-5') 5/26/2016	(0-2') 5/26/2016	(1-3') 5/26/2016	(3-5') 5/26/2016	(0-2') 5/26/2016	(3-5') 5/26/2016	(0-2') 5/26/2016	(5-7') 5/26/2016	(1-3') 5/26/2016	(0-2') 5/26/2016	(6-8') 5/26/2016	(5-7') 2/26/2018	(12.5-15) 2/26/2018	(2-4') 2/26/2018	(5-7') 2/26/2018	(12.5-15') 2/26/2018
Sample Results in ug/kg																			
1,2,4-Trimethylbenzene	53000-1400000	5	-	4,000	-	3,900	-	-	-	6,300	-	-	-	-	-	-	1,400,000	-	-
1,3,5-Trimethylbenzene	18000-520000	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	520,000	-	-
Acetone	56-440	12	-	360	-	-	440	68	-	-	62	-	-	-	-	-	-	82	-
Benzene	190-860	4	-	480	-	860	430	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	11000-34000	3	-	-	-	11,000	-	-	-	-	-	-	-	-	-	-	34,000	-	-
m&p-Xylenes	390-930000	8	-	3,000	-	8,000	1800	-	-	1,300	-	-	-	-	740	-	930,000	-	-
Methyl Ethyl Ketone (2-Butanone)	340	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	89,000	3	-	-	-	46,000	-	-	-	13,000	-	-	-	-	-	-	210,000	-	-
n-Propylbenzene	8200-25000	3	-	-	-	9,100	-	-	-	-	-	-	-	-	-	-	25,000	-	-
o-Xylene	480-23000	6	-	480	-	870	630	-	-	1,300	-	-	-	-	-	-	4,900	-	-
sec-Butylbenzene	12,000	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12,000	-	-
Toluene	790-13000	5	-	1,200	-	7,500	790	-	-	-	-	-	-	-	-	-	1,800	-	-
Sample Results in ug/kg																			
Benz(a)anthracene	1100-38000	5	-	8,800	-	-	-	-	-	38,000	3,600	-	-	-	-	-	-	-	-
Benzo(a)pyrene	1800-6100	4	-	6,100	-	-	-	-	-	3,700	2,900	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	1300-5300	4	-	5,300	-	-	-	-	-	3,600	2,700	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	1200-6200	4	-	6,200	-	-	-	-	-	3,400	2,500	-	-	-	-	-	-	-	-
Chrysene	1000-40000	6	-	8,300	-	1000	-	-	-	40,000	3,500	-	-	-	-	-	-	-	-
Dibenz(a,h)anthracene	5,400	1	-	-	-	-	-	-	-	5,400	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	540-24000	6	-	3,300	-	-	-	-	-	24,000	1,600	-	-	-	-	-	-	-	-
Naphthalene	2200-63000	2	-	-	-	2,200	-	-	-	-	-	-	-	-	-	-	63,000	-	-
Sample Results in ug/kg																			
4,4' -DDD	20	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4,4' -DDE	11	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11	-	-
4,4' -DDT	8.1-15	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15	-	-
Sample Results in ug/kg																			
PCB-1254	210	1	210	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCB-1260	110	1	-	-	-	-	-	-	-	-	-	110	-	-	-	-	-	-	-
Sample Results in mg/kg  Barium	371-691	2				_					_			-			_		
Chromium	34.8-86.9	8	34.8	-	-	-	-	-	-	-	-	-	-	-	-	-	49.5	-	-
	50.3-238	8	34.8				-	-	-				-				238		-
Copper		-		-	- 404	-	-	103		-	-			-		-		-	-
Lead	103-700	11	700	-	104	-	<u> </u>		-	-	-	210	111	-	-	-	394	•	-
Mercury	0.19-0.91	6	0.25	-	-	-	<u> </u>	-	-	-	-	0.19	-	-	-	-	0.56	-	-
Nickel	32-71.5	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	71.5	-	
Zinc	128-305	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	247	-	-

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

# TABLE 14 Parameters Detected Above Soil Standards

								RIR Results	February an	d March 2018	3									
			175	SB3	178	SB4	178	SB5	178	8B6		17SB7		17SB8	178	B9	178	B10	Duplicate 1	Duplicate 2
COMPOUND	Range in Exceedances	Frequency of Detection	(5-7')	(12.5-15')	(5-7')	(12.5-15')	(2-4')	(5-7')	(0-2')	(4-6')	(2-4')	(5-7')	(12.5-15')	(3-5')	(2-4')	(5-7')	(2-4')	(5-7')	(12.5-15')	(12.5-15')
			2/26/2018	2/26/2018	2/26/2018	2/26/2018	2/26/2018	2/26/2018	3/1/2018	3/1/2018	2/26/2018	2/26/2018	2/26/2018	11/14/2016	2/26/2018	2/26/2018	2/26/2018	2/26/2018	2/26/2018	2/26/2016
Sample Results in ug/kg																				
1,2,4-Trimethylbenzene	53000-1400000	5	-	-	-	-	-	-	-	-	-	-	-	-	53,000	-	-	-	-	
1,3,5-Trimethylbenzene	18000-520000	2	-	-	-	-	-	-	-	-	-	-	-	-	18,000	-	-	-	-	-
Acetone	56-440	12	350	77	120	-	56	210	67	-	-	-	-	-	-	110	-	990	-	-
Benzene	190-860	4	-	-	-	-	-	-	-	-	-	-	-	-	190	-	-	-	-	-
Ethylbenzene	11000-34000	3	-	-	-	-	-	-	-		-	-	-	-	14,000	-	-	-	-	-
m&p-Xylenes	390-930000	8	-	-	-	-	-	-	-	-	-	-	-	-	62,000	-	-	-	390	-
Methyl Ethyl Ketone (2-Butanone)	340	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	340	-	-
Naphthalene	89,000	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
n-Propylbenzene	8200-25000	3	-	-	-	-	-	-	-	-	-	-	-	-	8,200	-	-	-	-	-
o-Xylene	480-23000	6	-	-	-	-	-	-	-	-	-	-		-	23,000	-	-	-	-	-
sec-Butylbenzene	12,000	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	790-13000	5	-	-	-	-	-	-	-	-	-	-	-	-	13,000	-	-	-	-	-
Sample Results in ug/kg																				
Benz(a)anthracene	1100-38000	5	-	-	-	-	-	-	-		-	-	2,200	-	-	-	-	1,100	-	-
Benzo(a)pyrene	1800-6100	4	-	-	-	-	-	-	-		-	-	1,800	-		-	-	-	-	-
Benzo(b)fluoranthene	1300-5300	4	-	-	-	-	-	-	-	-	-	-	1,300	-	-	-	-	-	-	-
Benzo(k)fluoranthene	1200-6200	4	-	-	-	-	-	-	-	-	-	-	1,200	-	-	-	-	-	-	- 1
Chrysene	1000-40000	6	-	-	-	-	-	-	-	-	-	-	2,700	-	-	-	-	1,000	-	-
Dibenz(a,h)anthracene	5,400	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	540-24000	6	-	-	-	-	630	-	-	-	-	-	940	-	-	-	540	-	-	-
Naphthalene	2200-63000	2	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Sample Results in ug/kg																				
4,4' -DDD	20	1	-	-	-	-	20	-	-	-	-	-	-	-	-	-	-	-	-	-
4,4' -DDE	11	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4,4' -DDT	8.1-15	3	-	-	-	-	-	-	-	-	-	-	-	-	9.5	-	8.1	-	-	-
Sample Results in ug/kg																				
PCB-1254	210	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	· .
PCB-1260	110	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sample Results in mg/kg	074.004									604										074
Barium	371-691	2	-	-	-	-	-	-	-	691	-	-	-	-		-	-	-	<u> </u>	371
Chromium	34.8-86.9	8	-	37.7	-	-	35.4	-	42.5	86.9	36.2	-	-	-	-	-	-	-	-	52
Copper	50.3-238	8	-	56	-	-	102	-	-	55	50.3	-	-	-	55.1	-	116	-	-	60.5
Lead	103-700	11	-	-	-	-	598	-	230	-	-	-	141	-	270	-	177	-	-	
Mercury	0.19-0.91	6	-	-	-	-	0.91	-	0.23	-	-	-	0.3	-	0.23	-	-	-	-	-
Nickel	32-71.5	6	-	32	-	-	36.8		36	40.9	-	-	-	-	-	-	-	-	-	36.9
Zinc	128-305	6	-	-	-	-	305	-	150	-	-	-	128	-	227	-	137	-	-	-

Bold/highlighted- Indicated exceedance of the NYSDEC UUSCO Guidance Value Bold/highlighted- Indicated exceedance of the NYSDEC RRSCO Guidance Value

TABLE 15
Parameters Detected Above Ambient Groundwater Standards

				Phase	II Results - M	ay 2016				RIF	R Results - Ma	arch 2018		
Compound	Pango of Evenodances	Frequency of Detection	GW1	GW2	GW3	GW4	GW5	MW1	MW2	MW3	MW4	MW5	MW6	GW Duplicate
Compound	Range of Exceedances	Frequency of Detection	5/26/2016	5/26/2016	5/26/2016	5/26/2016	5/26/2016	3/20/2018	3/15/2018	3/15/2018	3/20/2018	3/15/2018	3/20/2018	3/15/2018
Sample Results in ug/L														
1,2,4-Trimethylbenzene	7.5-370	2	-	7.5	-	-	-	370	-	-	-	-	-	-
1,3,5-Trimethylbenzene	170	1	-	-	-	-	-	170	-	-	-	-	-	-
Benzene	6.8-19	2	-	19	-	-	-	6.8	-	-	-	-	-	-
Chloroform	9.2-16	2	-	-	-	-	-	-	-	16	9.2	-	-	-
cis-1,2-Dichloroethene	6	1	6	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	900	1	-	7.1	-	-	-	900	-	-	-	-	-	-
Isopropylbenzene	15-98	2	-	35	-	-	-	98	15	-	-	-	-	-
m&p-Xylenes	1800	1	-	19	-	-	-	1,800		-	-	-	-	-
Methyl t-butyl ether (MTBE)	12-14	2	-	12	-	-	14	-	-	-	-	-	-	-
Naphthalene	55	1	-	-	-	-	-	55	-	-	-	-	-	-
n-Butylbenzene	6.3	1	-	-	-	-	-	6.3	-	-	-	-	-	-
n-Propylbenzene	40-180	2	-	51	-	-	-	180	40	-	-	-	-	-
o-Xylene	130	1	-	-	-	-	-	130	-	-	-	-	-	-
sec-Butylbenzene	7.4-9.8	2	-	-	-	-	-	9.8	7.4	-	-	-	-	-
Toluene	91	1	-	6.4	-	-	-	91	-	-	-	-	-	-
Sample Results in ug/L														
Benz(a)anthracene	0.08-0.16	3	-	-	-	-	-	-	0.08	0.08	0.16	-	-	-
Benzo(b)fluoranthene	0.02-0.15	6	-	-	-	-	-	-	0.07	0.1	0.15	0.02	0.02	0.02
Benzo(k)fluoranthene	0.02-0.14	4	-	-	-	-	-	-	0.07	0.09	0.14	-	-	0.02
Chrysene	0.07-0.16	3	-	-	-	-	-	-	0.07	0.09	0.16	-	-	-
Indeno(1,2,3-cd)pyrene	0.04-0.12	3	-	-	-	-	-	-	0.04	0.05	0.12	-	-	-
Naphthalene	38	1	-	-	-	-	-	-	-	-	-	-	-	-
Sample Results in mg/L														
Chromium (total)	0.061	1	-	-	-	-	-	-	-	0.061	-	-	-	-
Copper (total)	0.597	1	-	-	-	-	-	-	-	-	0.597	-	-	-
Iron (total)	20-47.4	7	-	-	-	-	-	47.4	27.3	23	20	42.8	35	40.8
Lead (total)	0.044-0.633	4	-	-	-	-	-	0.051	-	0.044	0.577	-	0.633	-
Magnesium (total)	44.3-44.3	1	-	-	-	-	-	44.3	-	-	-	-	-	-
Manganese (total)	0.411-5.55	7	-	-	-	-	-	5.55	0.978	0.411	1.39	1.35	0.557	1.34
Sodium (total)	31.6-129	7	-	-	-	-	-	71.5	80.4	31.6	77.2	129	97	126
Sample Results in mg/L														
Iron (dissolved)	0.65-13.4	5	-	-	-	-	-	13.4	0.65	-	-	6.19	1.44	8.99
Magnesium (dissolved)	37.6	1	-	-	-	-	-	37.6	-	-	-	-	-	-
Manganese (dissolved)	0.429-5.63	6	-	-	-	-	-	5.63	0.881	-	0.901	1.31	0.429	1.29
Sodium (dissolved)	35.1-121	7	-	-	-	-	-	71.1	80.5	35.1	76.3	121	97.8	117

Notes

Bold/highlighted-Indicated exceedance of the NYSDEC Groundwater Standard

# **FIGURES**



USGS Flushing, NY Quadrangle 1995, Contour Interval = 10 feet



Phone 631. 924 .2870 Former Boyle Auto Wreckers Site 1346 Blondell Avenue, Bronx NY















			Figure No.	Site Name:	Former Boyle Auto Wreckers Site
BC	Phone Fax	631.504.6000 631.924.2870	8	Site Address:	1346 Blondell Avenue, Bronx NY
Environmental Bus	iness Con	sultants		Drawing Title:	Soil Gas Detections



BC

Environmental Business Consultants

1808 Middle Country Road. Ridge. NY 11961

Phone: 631.504.6000 Fax: 631.924.2780 Former Boyle Auto Wreckers Site 1346 Blondell Avenue, Bronx, NY

FIGURE 9

Cross-Section A-A'

# <u>APPENDIX – A</u> <u>Previous Reports</u>

# 1346 Blondell Avenue

# **BRONX, NEW YORK**

# **Subsurface (Phase II) Investigation**

**AKRF Project Number: 10735** 

# Prepared for:

# **Storage Deluxe**

50 Main Street, Suite 812 White Plains, New York 10606

Prepared by:



440 Park Avenue South, 7th Floor New York, New York 10016 212-696-0670

# TABLE OF CONTENTS

1.0	Introduction	1
2.0	Site Description and History	2
3.0	Topography and Hydrogeology	2
4.0	Field Activities	2
4.1	Soil Borings	2
4.2	Field Observations and Analytical Results	3
5.0	Laboratory Analytical Results	3
5.1	Soil Analytical Results	
5.2	Groundwater Analytical Results	5
6.0	Conclusions and Recommendations	

# **TABLES**

- Table 1 Summary of Detected Volatile Organic Compounds (VOCs) in Soil
- Table 2 Summary of Detected Semivolatile Organic Compounds (SVOCs) in Soil
- Table 3 Summary of Detected Metals in Soil
- Table 4 Summary of Detected Volatile Organic Compounds (SVOCs) in Groundwater
- Table 5 Summary of Detected Semivolatile Organic Compounds (VOCs) in Groundwater
- Table 6 Summary of Detected Total Metals in Groundwater
- Table 7 Summary of Detected Dissolved Metals in Groundwater

## **FIGURES**

Figure 1 - Site Location Map

Figure 2 - Site Plan

# **APPENDICES**

Appendix A - Soil Boring Logs

Appendix B - Soil Analytical Data Sheets

#### 1.0 INTRODUCTION

AKRF, Inc. (AKRF) conducted a subsurface (Phase II) investigation at the 1346 Blondell Avenue site in the Bronx, New York. The scope of the Phase II study included the advancement of eight soil borings and the collection of soil and groundwater samples for laboratory analysis. A site location map is provided as Figure 1.

The scope of the Phase II study was based on the results of a Phase I Environmental Site Assessment (ESA) conducted for the subject property by AKRF, dated February 2006. The assessment revealed the following environmental conditions in connection with the property:

- The subject property was listed twice on the closed status New York State Department of Environmental Protection (NYSDEC) spills database. On October 8, 1997, an unknown quantity of gasoline and waste oil was reported spilled onto the ground surface. The listing reported that spills from vehicles were a regular occurrence at the site and that tires were burned on a daily basis. This spill was closed in March 1998. A spill was reported on December 8, 1997 in which an unknown material and quantity was spilled at the property. The spill was closed in July 2003. According to John Mercorella, a representative of the property owner, an oil and gasoline spill had occurred in the northeastern portion of the site several years ago. Based on the details provided, this spill may be associated with the database listed on-site spill reported in October 1997, though this could not be positively confirmed. The surface pavement at the site was observed to be in poor condition and a portion of the site was surfaced with gravel. Surficial oil staining was observed by AKRF on visible exterior portions of the paved and gravel surfaces. These reported spills or releases from vehicles could have affected subsurface soil and groundwater.
- A 275-gallon storage tank was located in the basement of the northernmost dwelling at the site. Based on observations made during the site visit by AKRF, this tank may be a used oil tank operated by the south-adjacent motorcycle repair shop. A 275-gallon used oil aboveground storage tank was listed on the New York State Department of Environmental Conservation (NYSDEC) Petroleum Bulk Storage (PBS) database for Boyle Auto Wreckers, Inc., a previous tenant of the 1346 Blondell Avenue property. It is possible that this listing represents the 275-gallon aboveground storage tank located in the basement of the residential dwelling. However, AKRF did not have access to the motorcycle repair shop building. Other petroleum storage tanks may be present inside this structure that could be related to the PBS listing for the subject site. In addition, a violation for an unregistered waste oil tank at the site was issued by the NYSDEC, as noted in the December 1997 spill listing for the site.
- The study site was labeled as an "Auto Junk Yard" on historic Sanborn maps from 1977 to 1996. Historic operations as a junk yard may have affected the subsurface soil and/or groundwater at the property.
- Historical land use maps, the regulatory database search, and results of the site reconnaissance indicated that the surrounding area has a long history of auto-related, manufacturing and light industrial operations. Such land use included the presence of historic gasoline filling stations directly across Ponton Avenue to the north and across Blondell Avenue to the southwest. Several fuel oil spills were noted in the NY SPILLS database in the area surrounding the subject site. Known and potential releases from these sites may have affected the local groundwater quality.

AKRF's Phase II study was conducted on June 21, 2006. The study was intended to determine whether the subject property had been affected by current or former on- or off-site operations. This report describes methods and results of the Phase II investigation conducted by AKRF.

#### 2.0 SITE DESCRIPTION AND HISTORY

The project site consisted of a 45,000-square foot property including a commercial parking lot, a two-story motorcycle repair shop building, and two residential dwellings along the western side of the property. The property was situated at an elevation approximately 10 feet lower than Blondell Avenue. An entrance ramp to the site was present on the northwestern corner of the property from Blondell Avenue. The site was primarily paved with asphalt; however, the ground surface in northwestern portion of the site, including the entrance ramp, appeared to be covered with gravel, and a rectangular concrete-paved area was located in the southeastern corner. The asphalt pavement was significantly deteriorated and the concrete pavement was significantly cracked and weathered. Several patches of oil staining were observed throughout the visible exterior ground surface of the property.

Historic Sanborn fire insurance maps indicated that the study site historically comprised vacant lots, residential dwellings, and an auto repair shop building. The site was also identified as an auto junk yard from 1977 to 1996. The history of the surrounding area included filling stations and auto repair shops. Rail yards were historically present north-northeast of the subject property.

#### 3.0 TOPOGRAPHY AND HYDROGEOLOGY

The surface topography at the study site is generally level, though the general slope of the surrounding area is to the east and south. Based on reports compiled by the U.S. Geological Survey (USGS Topographic Map – Flushing Quadrangle), the property lies at an elevation of approximately 10 feet, based on the National Geodetic Vertical Datum of 1929 (an approximation of mean sea level). Surficial materials were observed to comprise sand and silt with fine gravel and contained some brick, concrete, wood, glass, and ash (i.e., urban fill).

During AKRF's Phase II investigation, groundwater was encountered at a depth of approximately six feet below surface grade. Based on topography, groundwater most likely flows in a south-southeasterly direction towards Westchester Creek, located approximately 800 feet south-southeast of the study site. However, actual groundwater flow at the site can be affected by many factors, including current and past pumping of groundwater; past filling activities; underground utilities and other subsurface openings or obstructions such as basements, subway lines or underground parking garages; bedrock geology; and other factors beyond the scope of this study. Groundwater in the Bronx is not used as a source of potable water.

#### 4.0 FIELD ACTIVITIES

#### 4.1 Soil Borings

On June 21, 2006, Zebra Environmental of Lynbrook, New York advanced eight soil borings at the subject property, as shown on Figure 2. The soil borings were advanced using a truckmounted Geoprobe® direct push probe (DPP) unit. Soil samples were collected using four-foot long, two-inch diameter, macrocore piston rod samplers fitted with acetate liners. The soil borings were advanced to depths ranging from 8 to 12 feet below grade. Soil boring logs are provided in Appendix A.

Each sample was split lengthwise and logged by AKRF field personnel. Logging consisted of: describing the soil according to the modified Burmister Classification System; describing any evidence of contamination (e.g., staining, sheens, odors); and screening the soil for organic

vapors using a photoionization detector (PID) in one-foot intervals. One soil sample from each soil boring was selected for laboratory analysis based on PID response and visual indications of contamination (if any). Groundwater samples were collected from five of the eight soil boring locations. Groundwater samples were collected from temporary PVC well points installed in the soil borings. No permanent monitoring wells were installed.

Soil and groundwater samples designated for laboratory analysis were collected using dedicated sampling equipment, placed into laboratory-supplied containers and a chilled cooler, and submitted via courier to Alpha Analytical Laboratories located in Westborough, Massachusetts, a New York State Department of Health-certified laboratory. The samples were analyzed for volatile organics compounds (VOCs) by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and priority pollutant (PP) metals. The groundwater analysis for metals was conducted on both unfiltered and filtered samples (i.e., total and dissolved metals analyses, respectively).

One trip blank accompanied the sample shipment for quality assurance/quality control (QA/QC) purposes, which was analyzed for VOCs by EPA Method 8260 only. No additional QA/QC samples were collected.

#### **4.2** Field Observations and Analytical Results

Soil encountered during this investigation comprised sand and silt with fine gravel. Some brick, concrete, wood, glass, and ash were present in the soil, indicating that the soil was predominantly composed of urban fill. Groundwater was encountered at a depth of approximately six feet below surface grade.

Recovered soil at each boring was transferred from the sampler into sealable plastic bags. The headspace of each sample was screened for volatile organic compounds (VOCs) by placing the probe of a Model 580B photoionization detector (PID) inside the plastic bags. Headspace readings ranged from not detected (ND) in the majority of the soil screened to 1,232 parts per million (ppm) in soil sample S-6 (1'-3'). Petroleum-like odors were detected in soil borings S-1, S-2, S-3, S-4, and S-7. Some black staining was observed on the soil sample collected from soil boring S-3. Results of the field screening activities are provided in the soil boring logs in Appendix A.

#### 5.0 LABORATORY ANALYTICAL RESULTS

#### 5.1 Soil Analytical Results

Eight (8) discrete soil samples, one from each boring, were collected for laboratory analysis as part of this investigation. Soil sample analytical results were compared to the Recommended Soil Cleanup Objectives (RSCO) outlined in the New York State Department of Environmental Conservation (NYSDEC) Technical and Administrative Guidance Memorandum (TAGM) 4046. Results of the soil metals analyses were also compared to established eastern United States background levels for soil in urban areas, as published in TAGM 4046. Soil descriptions, observations, and photoionization detector (PID) readings were recorded on the soil boring logs provided in Appendix A. The laboratory analytical data sheets are included in Appendix B.

#### Volatile Organic Compounds (VOCs)

A summary of the soil analytical results for volatile organic compounds (VOCs) is presented in Table 1. VOCs were detected in five of the eight soil samples analyzed, primarily at

concentrations below the TAGM RSCOs. The VOC analytical results for soil sample S-2 (2'-4') indicated significant concentrations of compounds typically related to gasoline contamination, including benzene, ethylbenzene, toluene, and xylenes (BTEX), as well as naphthalene and several benzene-related compounds. Seven of these compounds were detected above the TAGM RSCOs. Methyl tert butyl ether (MTBE), a former gasoline additive, was detected in soil sample S-2 (2'-4') at a concentration of 32 parts per billion (ppb), below the TAGM RSCO of 120 ppb. During soil screening activities, soil for this sample was noted to exhibit a petroleum-like odor and a headspace PID reading of 1,232 ppb. These results suggest that a release of gasoline has significantly affected the soil in this area.

Several VOCs typical of gasoline contamination were detected in soil samples S-3 (4'-6') and S-4 (2'-4'), but at lower concentrations than those observed for soil sample S-2 (2'-4'). VOCs exceeding TAGM guidelines were detected in S-4 (2'-4'), including acetone and 1,2,4-trimethylbenzene. A petroleum-like odor was noted for both soil samples and the PID readings during soil screening were 90 ppb and 28 ppb, respectively. Black staining was observed on the soil sample collected from soil boring S-3. The analytical and field screening results suggest that releases of gasoline in these areas have affected soil.

Acetone was detected in samples S-5 (5'-7') and S-8 (4'-6') and 2-butanone was detected in sample S-5 (5'-7') at concentrations below TAGM RSCOs. No other VOCs were detected in these two samples.

#### Semivolatile Organic Compounds (SVOCs)

A summary of soil analytical results for semivolatile organic compounds (SVOCs) is presented in Table 2. SVOCs were detected in all eight soil samples analyzed, primarily at concentrations below the TAGM RSCOs. Compound concentrations exceeding TAGM guidance values were detected in five of the samples and included benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenzo(a,h)anthracene. Many of the SVOCs detected, including those that exceeded the TAGM criteria, were polycyclic aromatic hydrocarbons (PAHs), compounds typically associated with petroleum use as well as those often detected in urban fill material in New York City.

Based on the history of the site, the elevated levels of SVOCs may be related to past and current use of petroleum. However, based on the overburden observed on-site, which included fill materials with ash, the detected SVOC levels may be attributable. At least in part, to the urban fill.

#### Metals

Soil analytical results for metals are presented in Table 3. Several metals concentrations detected were either above the TAGM RSCOs or the established eastern United States background levels. Metals concentrations exceeding both of these criteria included cadmium, copper, lead, mercury, and zinc.

In particular, mercury was detected in soil sample S-7 (6'-8') at a concentration of 1.9 parts per million (ppm), above the TAGM RSCO of 0.1 ppm and the eastern U.S. background range of 0.001 to 0.2 ppm. Lead was detected in soil samples S-4 (2'-4') and S-7 (6'-8') at concentrations of 2,400 ppm and 1,100 ppm, respectively. These lead levels are above the eastern United States background levels and, based on the detected concentrations, may exceed the threshold for characterization as hazardous waste under Title 40 of the Code of Federal Regulations when reanalyzed for Toxicity Characteristic Leaching Procedure (TCLP), an analysis for the characterization of waste designated for disposal.

Based on the type and distribution of the identified metals concentrations, the metals detections, including the elevated mercury and lead levels, may be attributable to the urban fill at the site and not necessarily to environmental contamination from historic on-site operations. However, the elevated lead levels may be related to the past use and release of leaded gasoline or lead-containing batteries.

#### 5.2 Groundwater Analytical Results

#### Volatile Organic Compounds (VOCs)

Groundwater samples were collected from five of the eight soil borings for laboratory analysis as part of this investigation. Groundwater sample analytical results were compared to the NYSDEC Class GA Ambient Water Quality Standards (drinking water standards), although groundwater is not a source of potable water in the Bronx. Groundwater analytical results for VOCs are presented in Table 4.

Several VOCs were detected in groundwater samples S-2 and S-4. VOCs exceeding the Class GA standards included benzene, toluene, ethylbenzene, MTBE, xylenes, n-butylbenzene, secbutylbenzene, isopropylbenzene, naphthalene, n-propylbenzene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene. The detected compounds are typically associated with gasoline.

Chloroform was detected in sample S-6 at a concentration of 0.78 ppb, below the Class GA standard of 7 ppb. Methyl tert butyl ether (MTBE) was detected is sample S-8 at a concentration of 3.7 ppb, below the Class GA standard of 10 ppb. MTBE was also detected in sample S-3 at a concentration of 41 ppb, above the Class GA standard. No other VOCs were detected in samples S-6 and S-8. The only other VOC detected in sample S-3 was acetone, at a concentration below the Class GA standard.

The results of the analyses for VOCs suggest potential gasoline contamination to groundwater in samples S-2, S-3, and S-4. Similar compounds were detected in the soil samples from these soil boring locations, which were generally located on the northern portion of the subject site. This is the area where Mr. Mercorella, the representative for the property owner, indicated that an oil and gasoline spill had occurred several years ago. To a lesser extent, potential gasoline contamination was detected in groundwater sample S-8 (i.e., MTBE below the drinking water standard).

#### Semivolatile Organic Compounds (SVOCs)

A summary of the groundwater analytical results for SVOCs is presented in Table 5. Several SVOCs were detected in all five groundwater samples analyzed, primarily at concentrations below the Class GA standards. Only naphthalene in groundwater sample S-4 was detected above Class GA standards, at a concentration of 15 ppb (the Class GA standard for MTBE is 10 ppb). Detected SVOCs, particularly naphthalene and naphthalene-related compounds, are likely associated with petroleum-related contamination.

#### Metals

Groundwater analytical results for total and dissolved metals are presented in Tables 6 and 7, respectively. Total and dissolved metals were detected in all of the groundwater samples analyzed. Total metals exceeding the Class GA standards included arsenic, barium, cadmium, chromium, copper, lead, mercury and nickel and sodium. In the dissolved metals analysis, chromium was detected in sample S-6 at a concentration of 0.01 parts per million (ppm), below the class GA standard of 0.05. No other dissolved metals were detected in the samples. The predominance of total metals identified in the groundwater sample analysis implies that the

metals detections are likely due to the suspended sediments in the collected sample and not indicative of contamination from former on-site operations.

#### 6.0 CONCLUSIONS AND RECOMMENDATIONS

Eight (8) discrete soil samples and five (5) groundwater samples were collected from eight soil borings for laboratory analysis. Soil encountered during this investigation comprised sand and silt with fine gravel. Some brick, concrete, wood, glass, and ash were present in the soil, indicating that the overburden comprised urban fill. Groundwater was encountered at a depth of approximately six feet below surface grade.

Laboratory analytical results indicated that volatile organic compounds (VOCs) were detected in soil samples S-2, S-3, and S-4 that are typically associated with gasoline, including benzene, ethylbenzene, toluene, and xylenes (BTEX), as well as naphthalene and several benzene-related compounds. The laboratory results and the field screening results, which included the detection of petroleum-like odors and elevated photoionization detector (PID) readings, suggest that releases of gasoline and/or other petroleum products in these areas have affected soil and groundwater.

The results of the analyses for VOCs and SVOCs in groundwater suggest potential gasoline contamination to groundwater in samples collected from borings S-2, S-3, S-4, and to a lesser extent in S-8, where only methyl tert butyl ether (MTBE) was detected. The concentration of gasoline-related contaminants on the northern portion of the site may suggest that contaminated groundwater could have migrated on-site from the historic gasoline station properties to the north identified by AKRF's Phase I ESA dated February 2006. Specifically, one of these historic sites was identified directly across Ponton Avenue from the subject site. These historic gasoline station properties were located in a presumed upgradient groundwater flow direction. However, similar compounds and petroleum-like odors and elevated PID readings were detected in the soil samples from these soil boring locations indicating that reported and/or unreported on-site petroleum spills may have been the main source of the groundwater impact. These detections were noted in the general area where Mr. Mercorella, a representative of the property owner, indicated that an oil and gasoline spill had occurred several years ago. In addition, the site has a history of petroleum use related to automotive and motorcycle repair operations. The New York State Department of Environmental Conservation (NYSDEC) spill listings for the site note the repeated discharge of gasoline and oil to the ground surface.

The detected concentrations of metals in the soil, including those above the TAGM guidelines and established eastern U.S. background levels, may be attributable to the urban fill at the site and not necessarily to environmental contamination from historic on-site operations. However, the elevated lead levels may be related to the past use and release of leaded gasoline or lead-containing batteries. Based on the results, elevated levels of lead may exceed the threshold for characterization as hazardous waste under Title 40 of the Code of Federal Regulations when reanalyzed for Toxicity Characteristic Leaching Procedure (TCLP), an analysis for the characterization of waste for disposal. Such soil may require management as hazardous waste if excavated as part of site development activities.

Metals exceeding the Class GA standards were detected in all eight of the unfiltered (total metals) groundwater samples analyzed. However, only one metal, chromium, was detected in one groundwater sample (S-6) in the metals analyses of the filtered samples (dissolved metals), at a concentration below the Class GA standard. The fact that significantly more metals were detected in the unfiltered samples is likely due to the suspended sediments in the collected sample and not to contamination from former onsite operations.

Soil excavated as part of any future site development activities at the site should be managed in accordance with all applicable regulations. Soil intended for off-site disposal should be tested in accordance with the requirements of the receiving facility. Transportation of material leaving the site for

off-site disposal should be in accordance with federal, state and local requirements covering licensing of haulers and trucks, placarding, truck routes, and manifesting, etc.

If dewatering is necessary for construction and development purposes, groundwater may require treatment as part of the dewatering handling and discharge process. Prior to initiating any dewatering activities, a groundwater sample should be analyzed to insure it meets the New York City Department of Environmental Protection (NYCDEP) criteria for effluent to municipal sewers, should these be the selected course of action for development.



### **Key to Symbols and Terms**

1	Recommended Soil Clean-up Objectives listed in
	NYSDEC TAGM #4046.
2	Listed in NYSDEC TAGM #4046.
3	Average background levels in metropolitan or suburban areas
	or near highways typically range from 200-500 ppm.
4	NYSDEC Division of Water Technical and Operational
	Guidance Series (1.1.1) Ambient Water Quality Standards
	and Guidance Values for Class GA groundwater.
*	No established background level given.
**	Standards for total phenolic compounds indicate that the
	sum of total phenolic compounds must be <1.
ND	Not Detected.
NS	No guidance value or standard exists.
NYSDEC	New York State Department of Environmental Conservation.
ppb	Parts per billion.
ppm	Parts per million.
RSCOs	Recommended Soil Cleanup Objectives.
SB	Site Background.
TAGM	Technical and Administrative Guidance Memorandum.

#### TABLE 1 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SOIL 1346 BLONDELL AVENUE BRONX, NEW YORK

Client ID	NYSDEC	S-1 (1-3')	S-2 (2-4')	S-3 (4-6')	S-4 (2-4')	S-5 (5-7')	S-6 (1-3')	S-7 (6-8')	S-8 (4-6')
Lab Sample ID	<b>TAGM 4046</b>	L0608842-01	L0608842-02	L0608842-03	L0608842-04	L0608842-05	L0608842-06	L0608842-07	L0608842-08
Date Sampled	RSCO ¹	21-Jun-06							
Units	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Compound	(I-1/								""
Methylene chloride	100	ND							
1,1-Dichloroethane	200	ND							
Chloroform	300	ND							
Carbon tetrachloride	600	ND							
1,2-Dichloropropane	NS	ND							
Dibromochloromethane	NS	ND							
1,1,2-Trichloroethane	NS	ND							
Tetrachloroethene	1,400	ND							
Chlorobenzene	1,700	ND							
Trichlorofluoromethane	6,000	ND							
1,2-Dichloroethane	100	ND							
1,1,1-Trichloroethane	800	ND							
Bromodichloromethane	NS	ND							
trans-1,3-Dichloropropene	NS	ND							
cis-1,3-Dichloropropene	NS	ND							
1,1-Dichloropropene	NS	ND							
Bromoform	NS	ND							
1,1,2,2-Tetrachloroethane	600	ND							
Benzene	60	ND	250	ND	33	ND	ND	ND	ND
Toluene	1,500	ND	250	ND	5	ND	ND	ND	ND
Ethylbenzene	5,500	ND	6,200	4.8	270	ND	ND	ND	ND
Chloromethane	NS	ND							
Bromomethane	NS	ND							
Vinyl chloride	200	ND							
Chloroethane	1,900	ND							
1,1-Dichloroethene	400	ND							
trans-1,2-Dichloroethene	300	ND							
Trichloroethene	700	ND							
1,2-Dichlorobenzene	7,900	ND							
1,3-Dichlorobenzene	1,600	ND							
1,4-Dichlorobenzene	8,500	ND							
Methyl tert butyl ether	120	ND	32	ND	ND	ND	ND	ND	ND
p/m-Xylene	2,000	ND	48,000	29	180	ND	ND	ND	ND
o-Xylene	600	ND	130	30	14	ND	ND	ND	ND
cis-1,2-Dichloroethene	NS	ND							
Dibromomethane	NS	ND							
1,4-Dichlorobutane	NS	ND							
lodomethane	NS	ND							

#### TABLE 1 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SOIL 1346 BLONDELL AVENUE BRONX, NEW YORK

Client ID	NYSDEC	S-1 (1-3')	S-2 (2-4')	S-3 (4-6')	S-4 (2-4')	S-5 (5-7')	S-6 (1-3')	S-7 (6-8')	S-8 (4-6')
Lab Sample ID	TAGM 4046	L0608842-01	L0608842-02	L0608842-03	L0608842-04	L0608842-05	L0608842-06	L0608842-07	L0608842-08
Date Sampled	RSCO ¹	21-Jun-06							
Units	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Compound									
1,2,3-Trichloropropane	400	ND							
Styrene	NS	ND	12	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	NS	ND							
Acetone	200	ND	150	83	260	170	ND	ND	100
Carbon disulfide	2,700	ND							
2-Butanone	300	ND	ND	ND	ND	36	ND	ND	ND
Vinyl acetate	NS	ND							
4-Methyl-2-pentanone	1,000	ND							
2-Hexanone	NS	ND							
Ethyl methacrylate	NS	ND							
Acrolein	NS	ND							
Acrylonitrile	NS	ND							
Bromochloromethane	NS	ND							
Tetrahydrofuran	NS	ND							
2,2-Dichloropropane	NS	ND							
1,2-Dibromoethane	NS	ND							
1,3-Dichloropropane	300	ND							
1,1,1,2-Tetrachloroethane	NS	ND							
Bromobenzene	NS	ND							
n-Butylbenzene	10,000	ND	ND	160	79	ND	ND	ND	ND
sec-Butylbenzene	10,000	ND	510	32	25	ND	ND	ND	ND
tert-Butylbenzene	10,000	ND							
o-Chlorotoluene	NS	ND							
p-Chlorotoluene	NS	ND							
1,2-Dibromo-3-chloropropane	NS	ND							
Hexachlorobutadiene	NS	ND							
Isopropylbenzene	2,300	ND	1,600	29	79	ND	ND	ND	ND
p-Isopropyltoluene	10,000	ND	360	14	13	ND	ND	ND	ND
Naphthalene	13,000	ND	17,000	37	160	ND	ND	ND	ND
n-Propylbenzene	3,700	ND	5,300	83	140	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NS	ND							
1,2,4-Trichlorobenzene	3,400	ND							
1,3,5-Trimethylbenzene	3,300	ND	19,000	290	580	ND	ND	ND	ND
1,2,4-Trimethylbenzene	10,000	ND	55,000	760	12,000	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	NS	ND							
Ethyl ether	NS	ND							

#### TABLE 2 SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS IN SOIL 1346 BLONDELL AVENUE BRONX, NEW YORK

Client ID	NYSDEC	S-1 (1-3')	S-2 (2-4')	S-3 (4-6')	S-4 (2-4')	S-5 (5-7')	S-6 (1-3')	S-7 (6-8')	S-8 (4-6')
Lab Sample ID	<b>TAGM 4046</b>	L0608842-01	L0608842-02	L0608842-03	L0608842-04	L0608842-05	L0608842-06	L0608842-07	L0608842-08
Date Sampled	RSCO ¹	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06
Units	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Compound	W-17	,	W1 /	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W1 /	W 1 /	W 1 /	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	W 1 /
Acenaphthene	50,000	ND	ND	ND	ND	ND	ND	ND	ND
Benzidine	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	3,400	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	410	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	NS	ND	ND	ND	ND	ND	ND	ND	ND
1-Chloronaphthalene	NS	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	NS	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	7,900	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	1,600	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	8,500	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	NS	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	NS	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	1,000	ND	ND	ND	ND	ND	ND	ND	ND
Azobenzene	NS	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50,000	8,100	1,800	90	2,300	ND	1,200	32	1,200
4-Chlorophenyl phenyl ether	NS	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	NS	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	NS	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	NS	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	NS	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	NS	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	NS	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	4,400	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	13,000	ND	3,800	100	370	ND	ND	ND	ND
Nitrobenzene	200	ND	ND	ND	ND	ND	ND	ND	ND
NDPA/DPA	NS	ND	ND	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	50,000	ND	ND	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate	50,000	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	8,100	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate	50,000	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	7,100	ND	ND	ND	ND	ND	ND	ND	ND
Dimethyl phthalate	2,000	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	224	3,400	710	40	1,000	35	590	ND	610
Benzo(a)pyrene	61	2,700	740	30	920	46	500	ND	620
Benzo(b)fluoranthene	1,100	3,300	890	32	1,200	29	340	ND	440
Benzo(k)fluoranthene	1,100	2,800	790	46	840	ND	620	ND	820
Chrysene	400	3,600	820	50	1,100	36	600	ND	680
Acenaphthylene	41,000	410	210	ND	190	ND	ND	ND	180

#### TABLE 2 SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS IN SOIL 1346 BLONDELL AVENUE BRONX, NEW YORK

Client ID	NYSDEC	S-1 (1-3')	S-2 (2-4')	S-3 (4-6')	S-4 (2-4')	S-5 (5-7')	S-6 (1-3')	S-7 (6-8')	S-8 (4-6')
Lab Sample ID	<b>TAGM 4046</b>	L0608842-01	L0608842-02	L0608842-03	L0608842-04	L0608842-05	L0608842-06	L0608842-07	L0608842-08
Date Sampled	RSCO ¹	21-Jun-06							
Units	(dqq)	(ppb)							
Compound	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				,				,
Anthracene	50,000	1,100	330	15	310	ND	98	ND	130
Benzo(ghi)perylene	50,000	2,500	660	27	580	51	280	ND	510
Fluorene	50,000	380	280	16	100	ND	ND	ND	ND
Phenanthrene	50,000	4,400	1,300	75	940	ND	310	ND	390
Dibenzo(a,h)anthracene	14	480	170	ND	160	29	73	ND	130
Indeno(1,2,3-cd)Pyrene	3,200	2,000	590	21	590	25	270	ND	440
Pyrene	50,000	6,400	1,500	93	1,700	ND	1,000	33	910
Benzo(e)Pyrene	NS	2,400	620	31	700	69	360	ND	480
Biphenyl	NS	ND							
Perylene	NS	880	250	16	230	ND	120	ND	160
Aniline	100	ND							
4-Chloroaniline	220	ND							
1-Methylnaphthalene	NS	ND	950	200	160	ND	ND	ND	ND
2-Nitroaniline	430	ND							
3-Nitroaniline	500	ND							
4-Nitroaniline	NS	ND							
Dibenzofuran	6,200	ND							
a,a-Dimethylphenethylamine	NS	ND							
Hexachloropropene	NS	ND							
Nitrosodi-n-butylamine	NS	ND							
2-Methylnaphthalene	36,400	ND	1,600	170	180	ND	ND	ND	ND
1,2,4,5-Tetrachlorobenzene	NS	ND							
Pentachlorobenzene	NS	ND							
a-Naphthylamine	NS	ND							
b-Naphthylamine	NS	ND							
Phenacetin	NS	ND							
Dimethoate	NS	ND							
4-Aminobiphenyl	NS	ND							
Pentachloronitrobenzene	NS	ND							
Isodrin	NS	ND							
p-Dimethylaminoazobenzene	NS	ND							
Chlorobenzilate	NS	ND							
3-Methylcholanthrene	NS	ND							
Ethyl Methanesulfonate	NS	ND							
Acetophenone	NS	ND							
Nitrosodipiperidine	NS	ND							
7,12-Dimethylbenz(a)anthracene	NS	ND							
n-Nitrosodimethylamine	NS	ND							
2,4,6-Trichlorophenol	NS	ND							

#### TABLE 2 SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS IN SOIL 1346 BLONDELL AVENUE BRONX, NEW YORK

Client ID	NYSDEC	S-1 (1-3')	S-2 (2-4')	S-3 (4-6')	S-4 (2-4')	S-5 (5-7')	S-6 (1-3')	S-7 (6-8')	S-8 (4-6')
Lab Sample ID	<b>TAGM 4046</b>	L0608842-01	L0608842-02	L0608842-03	L0608842-04	L0608842-05	L0608842-06	L0608842-07	L0608842-08
Date Sampled	RSCO ¹	21-Jun-06							
Units	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Compound									
p-Chloro-m-cresol	NS	ND							
2-Chlorophenol	800	ND							
2,4-Dichlorophenol	400	ND							
2,4-Dimethylphenol	NS	ND							
2-Nitrophenol	330	ND							
4-Nitrophenol	100	ND							
2,4-Dinitrophenol	200	ND							
4,6-Dinitro-o-cresol	NS	ND							
Pentachlorophenol	1,000	ND							
Phenol	30	ND							
2-Methylphenol	100	ND							
3-Methylphenol/4-Methylphenol	NS	ND							
2,4,5-Trichlorophenol	100	ND							
2,6-Dichlorophenol	NS	ND							
Benzoic Acid	2,700	ND							
Benzyl Alcohol	NS	ND							
Carbazole	NS	ND							
Pyridine	NS	ND							
2-Picoline	NS	ND							
Pronamide	NS	ND							
Methyl methanesulfonate	NS	ND							
2,6-Dimethylnaphthalene	NS	ND	300	97	ND	ND	ND	ND	ND
1-Methylphenanthrene	NS	560	230	54	170	ND	69	ND	85

# TABLE 3 SUMMARY OF METAL COMPOUNDS IN SOIL 1346 BLONDELL AVENUE BRONX, NEW YORK

Client ID Lab Sample ID	NYSDEC TAGM 4046	Eastern US	S-1 (1-3') L0608842-01	S-2 (2-4') L0608842-02	S-3 (4-6') L0608842-03	S-4 (2-4') L0608842-04	S-5 (5-7') L0608842-05	S-6 (1-3') L0608842-06	S-7 (6-8') L0608842-07	S-8 (4-6') L0608842-08
Date Sampled Units	RSCO ¹ (ppm)	Background ² (ppm)	21-Jun-06 (ppm)							
Compound										
Antimony	SB	*	ND							
Arsenic	7.5 or SB	3 - 12	1	2.5	9.2	10	3.1	ND	8	4.6
Beryllium	0.16 or SB	0 - 1.75	0.38	0.38	0.24	0.28	0.4	0.24	ND	0.26
Cadmium	1 or SB	0.1 - 1	ND	ND	ND	0.87	ND	ND	2.6	ND
Chromium	10 or SB	1.5 - 40	26	24	16	17	26	15	26	15
Copper	25 or SB	1 - 50	28	45	13	83	26	37	61	24
Lead	SB	200-500 ³	18	240	9	2,400	150	3.6	1,100	88
Mercury	0.1	0.001 - 0.2	ND	0.29	ND	0.35	0.16	ND	1.9	0.11
Nickel	13 or SB	0.5 - 25	18	17	16	11	14	10	11	8.8
Selenium	2 or SB	0.1 - 3.9	ND	ND	ND	1.4	ND	ND	1.2	ND
Silver	SB	*	ND							
Thallium	SB	*	ND							
Zinc	20 or SB	9 - 50	34	570	450	430	160	25	1,900	93

# TABLE 4 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER 1346 BLONDELL AVENUE BRONX, NEW YORK

Client ID	NYSDEC Class GA	S-2	S-3	S-4	S-6	S-8	TRIP BLANK
Lab Sample ID	Ambient Water	L0608842-12	L0608842-09	L0608842-14	L0608842-10	L0608842-11	L0608842-13
Date Sampled	Quality Standards ⁴	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06	15-Jun-06
Units	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Compound							
Methylene chloride	5	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	0.78	ND	ND
Carbon tetrachloride	5	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	1	ND	ND	ND	ND	ND	ND
Dibromochloromethane	50	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	5	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NS	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.4	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.4	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	0.4	ND	ND	ND	ND	ND	ND
Bromoform	NS	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND
Benzene	1	76	ND	4.5	ND	ND	ND
Toluene	5	120	ND	2.2	ND	ND	ND
Ethylbenzene	5	14	ND	16	ND	ND	ND
Chloromethane	NS	ND	ND	ND	ND	ND	ND
Bromomethane	5	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	ND	ND	ND	ND	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND
Methyl tert butyl ether	10	14	41	3	ND	3.7	ND
p/m-Xylene	5	430	ND	64	ND	ND	ND
o-Xylene	5	38	ND	5.7	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND
Dibromomethane	5	ND	ND	ND	ND	ND	ND
1,4-Dichlorobutane	NS	ND	ND	ND	ND	ND	ND
Iodomethane	NS	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0.04	ND	ND	ND	ND	ND	ND

### TABLE 4 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER 1346 BLONDELL AVENUE BRONX, NEW YORK

Client ID	NYSDEC Class GA	S-2	S-3	S-4	S-6	S-8	TRIP BLANK
Lab Sample ID	Ambient Water	L0608842-12	L0608842-09	L0608842-14	L0608842-10	L0608842-11	L0608842-13
Date Sampled	Quality Standards ⁴	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06	15-Jun-06
Units	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Compound							
Styrene	5	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	ND	ND	ND	ND	ND	ND
Acetone	50	13	6.9	11	ND	ND	ND
Carbon disulfide	50	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND
Vinyl acetate	NS	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	NS	ND	ND	ND	ND	ND	ND
2-Hexanone	NS	ND	ND	ND	ND	ND	ND
Ethyl methacrylate	NS	ND	ND	ND	ND	ND	ND
Acrolein	5	ND	ND	ND	ND	ND	ND
Acrylonitrile	5	ND	ND	ND	ND	ND	ND
Bromochloromethane	5	ND	ND	ND	ND	ND	ND
Tetrahydrofuran	NS	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	5	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	NS	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	5	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND
Bromobenzene	5	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	6	ND	2.6	ND	ND	ND
sec-Butylbenzene	5	6.8	ND	1.1	ND	ND	ND
tert-Butylbenzene	5	ND	ND	ND	ND	ND	ND
o-Chlorotoluene	5	ND	ND	ND	ND	ND	ND
p-Chlorotoluene	5	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	0.04	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	87	ND	3.4	ND	ND	ND
p-Isopropyltoluene	5	1.4	ND	1	ND	ND	ND
Naphthalene	10	16	ND	27	ND	ND	ND
n-Propylbenzene	5	140	ND	5.6	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	15	ND	50	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	140	ND	ND	ND
trans-1,4-Dichloro-2-butene	5	ND	ND	ND	ND	ND	ND
Ethyl ether	NS	ND	ND	ND	ND	ND	ND

### TABLE 5 SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS IN GROUNDWATER 1346 BLONDELL AVENUE BRONX, NEW YORK

Client ID	NYSDEC Class GA	S-2	S-3	S-4	S-6	S-8
Lab Sample ID	Ambient Water	L0608842-12	L0608842-09	L0608842-14	L0608842-10	L0608842-11
Date Sampled	Quality Standards ⁴	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06
Units	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Compound	(FF**)	(1-1)	(1-1)	(1-1)	(1-1-1-7	(1-1)
Acenaphthene	20	ND	ND	ND	ND	ND
Benzidine	5	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND
Hexachlorobenzene	0.04	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	1	ND	ND	ND	ND	ND
1-Chloronaphthalene	NS	ND	ND	ND	ND	ND
2-Chloronaphthalene	NS	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	5	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	5	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	5	ND	ND	ND	ND	ND
Azobenzene	5	ND	ND	ND	ND	ND
Fluoranthene	50	0.49	ND	ND	0.26	0.29
4-Chlorophenyl phenyl ether	NS	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	NS	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	NS	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	5	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	5	ND	ND	ND	ND	ND
Hexachloroethane	5	ND	ND	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	ND
Naphthalene	10	6.5	ND	15	ND	ND
Nitrobenzene	0.4	ND	ND	ND	ND	ND
NDPA/DPA	NS	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine	NS	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	ND	ND
Butyl benzyl phthalate	50	ND	ND	ND	ND	ND
Di-n-butylphthalate	50	ND	ND	ND	ND	ND
Di-n-octylphthalate	50	ND	ND	ND	ND	ND
Diethyl phthalate	50	ND	ND	ND	ND	ND
Dimethyl phthalate	50	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND
Benzo(a)pyrene	0.002(ND)	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND
Acenaphthylene	20	ND	ND	ND	ND	ND

### TABLE 5 SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS IN GROUNDWATER 1346 BLONDELL AVENUE BRONX, NEW YORK

Client ID	NYSDEC Class GA	S-2	S-3	S-4	S-6	S-8
Lab Sample ID	Ambient Water	L0608842-12	L0608842-09	L0608842-14	L0608842-10	L0608842-11
Date Sampled	Quality Standards ⁴	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06
Units	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Compound	(	( - /	(1-1)	(1-1)	(66.0)	(1-1)
Anthracene	50	ND	ND	ND	ND	ND
Benzo(ghi)perylene	5	ND	ND	ND	ND	ND
Fluorene	50	ND	ND	ND	ND	ND
Phenanthrene	50	0.69	ND	0.25	0.34	0.21
Dibenzo(a,h)anthracene	50	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)Pyrene	0.002	ND	ND	ND	ND	ND
Pyrene	50	0.29	ND	ND	0.27	0.28
Benzo(e)Pyrene	NS	ND	ND	ND	ND	ND
Biphenyl	5	ND	ND	ND	ND	ND
Perylene	NS	ND	ND	ND	ND	ND
Aniline	5	ND	ND	ND	ND	ND
4-Chloroaniline	5	ND	ND	ND	ND	ND
1-Methylnaphthalene	NS	2.4	0.33	6.2	ND	ND
2-Nitroaniline	5	ND	ND	ND	ND	ND
3-Nitroaniline	5	ND	ND	ND	ND	ND
4-Nitroaniline	5	ND	ND	ND	ND	ND
Dibenzofuran	5	ND	ND	ND	ND	ND
a,a-Dimethylphenethylamine	5	ND	ND	ND	ND	ND
Hexachloropropene	5	ND	ND	ND	ND	ND
Nitrosodi-n-butylamine	NS	ND	ND	ND	ND	ND
2-Methylnaphthalene	50	2.3	0.24	9.4	ND	ND
1,2,4,5-Tetrachlorobenzene	5	ND	ND	ND	ND	ND
Pentachlorobenzene	5	ND	ND	ND	ND	ND
a-Naphthylamine	NS	ND	ND	ND	ND	ND
b-Naphthylamine	NS	ND	ND	ND	ND	ND
Phenacetin	NS	ND	ND	ND	ND	ND
Dimethoate	NS	ND	ND	ND	ND	ND
4-Aminobiphenyl	5	ND	ND	ND	ND	ND
Pentachloronitrobenzene	5	ND	ND	ND	ND	ND
Isodrin	5	ND	ND	ND	ND	ND
p-Dimethylaminoazobenzene	NS	ND	ND	ND	ND	ND
Chlorobenzilate	NS	ND	ND	ND	ND	ND
3-Methylcholanthrene	NS	ND	ND	ND	ND	ND
Ethyl Methanesulfonate	NS	ND	ND	ND	ND	ND
Acetophenone	NS	ND	ND	ND	ND	ND
Nitrosodipiperidine	NS	ND	ND	ND	ND	ND
7,12-Dimethylbenz(a)anthracene	NS	ND	ND	ND	ND	ND
n-Nitrosodimethylamine	NS	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	NS	ND	ND	ND	ND	ND

### TABLE 5 SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS IN GROUNDWATER 1346 BLONDELL AVENUE BRONX, NEW YORK

Client ID	NYSDEC Class GA	S-2	S-3	S-4	S-6	S-8
Lab Sample ID	Ambient Water	L0608842-12	L0608842-09	L0608842-14	L0608842-10	L0608842-11
Date Sampled	Quality Standards⁴	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06	21-Jun-06
Units .	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Compound						
p-Chloro-m-cresol	NS	ND	ND	ND	ND	ND
2-Chlorophenol	50	ND	ND	ND	ND	ND
2,4-Dichlorophenol	5	ND	ND	ND	ND	ND
2,4-Dimethylphenol	1**	ND	ND	ND	ND	ND
2-Nitrophenol	5	ND	ND	ND	ND	ND
4-Nitrophenol	5	ND	ND	ND	ND	ND
2,4-Dinitrophenol	5	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol	NS	ND	ND	ND	ND	ND
Pentachlorophenol	1	ND	ND	ND	ND	ND
Phenol	1	ND	ND	ND	ND	ND
2-Methylphenol	5	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	50	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	1	ND	ND	ND	ND	ND
2,6-Dichlorophenol	1**	ND	ND	ND	ND	ND
Benzoic Acid	NS	ND	ND	ND	ND	ND
Benzyl Alcohol	NS	ND	ND	ND	ND	ND
Carbazole	NS	ND	ND	ND	ND	ND
Pyridine	NS	ND	ND	ND	ND	ND
2-Picoline	NS	ND	ND	ND	ND	ND
Pronamide	NS	ND	ND	ND	ND	ND
Methyl methanesulfonate	NS	ND	ND	ND	ND	ND
2,6-Dimethylnaphthalene	NS	0.26	ND	0.7	ND	ND
1-Methylphenanthrene	NS	ND	ND	ND	ND	ND

# TABLE 6 SUMMARY OF TOTAL METAL COMPOUNDS IN GROUNDWATER 1346 BLONDELL AVENUE BRONX, NEW YORK

Client ID Lab Sample ID	NYSDEC Class GA Ambient Water	S-3 L0608842-09	S-6 L0608842-10	S-8 L0608842-11	S-2 L0608842-12	S-4 L0608842-14
Date Sampled Units	Quality Standards ⁴ (ppm)	21-Jun-06 (ppm)	21-Jun-06 (ppm)	21-Jun-06 (ppm)	21-Jun-06 (ppm)	21-Jun-06 (ppm)
Compound						
Antimony, Total	0.003	ND	ND	ND	ND	ND
Arsenic, Total	0.025	0.081	0.011	0.135	0.01	0.347
Beryllium, Total	NS	0.021	0.012	0.014	ND	0.078
Cadmium, Total	0.005	0.018	0.013	0.113	ND	0.086
Chromium, Total	0.05	0.68	0.65	1	0.17	3.5
Copper, Total	0.2	1.5	2.8	7.8	0.21	8.5
Lead, Total	0.025	1.98	0.339	40.2	0.106	40.1
Mercury, Total	0.0007	0.0052	0.0009	0.058	ND	0.0276
Nickel, Total	0.1	0.609	0.513	0.653	0.145	4.03
Selenium, Total	0.01	ND	ND	ND	ND	ND
Silver, Total	0.05	ND	ND	0.008	ND	ND
Thallium, Total	NS	ND	ND	ND	ND	ND
Zinc, Total	NS	4.1	1.6	38	0.25	14

# TABLE 7 SUMMARY OF DISSOLVED METAL COMPOUNDS IN GROUNDWATER 1346 BLONDELL AVENUE BRONX, NEW YORK

Client ID Lab Sample ID Date Sampled Units	NYSDEC Class GA Ambient Water Quality Standards ⁴ (ppm)	S-3 L0608842-09 21-Jun-06 (ppm)	S-6 L0608842-10 21-Jun-06 (ppm)	S-8 L0608842-11 21-Jun-06 (ppm)	S-2 L0608842-12 21-Jun-06 (ppm)	S-4 L0608842-14 21-Jun-06 (ppm)
Compound						
Antimony, Dissolved	0.003	ND	ND	ND	ND	ND
Arsenic, Dissolved	0.025	ND	ND	ND	ND	ND
Beryllium, Dissolved	NS	ND	ND	ND	ND	ND
Cadmium, Dissolved	0.005	ND	ND	ND	ND	ND
Chromium, Dissolved	0.05	ND	0.01	ND	ND	ND
Copper, Dissolved	0.2	ND	ND	ND	ND	ND
Lead, Dissolved	0.025	ND	ND	ND	ND	ND
Mercury, Dissolved	0.0007	ND	ND	ND	ND	ND
Nickel, Dissolved	0.1	ND	ND	ND	ND	ND
Selenium, Dissolved	0.01	ND	ND	ND	ND	ND
Silver, Dissolved	0.05	ND	ND	ND	ND	ND
Thallium, Dissolved	NS	ND	ND	ND	ND	ND
Zinc, Dissolved	NS	ND	ND	ND	ND	ND





SCALE IN FEET

0' 1000' 2000' 4000'

SCALE: 1"=2000'



SOURCE:

USGS TOPOGRAPHIC MAP - FLUSHING, N.Y. QUADRANGLE - DATED 1969, PHOTOREVISED 1979

1346 Blondell Avenue Bronx, New York

PROJECT SITE LOCATION

### AKRF, Inc.

Environmental Consultants
440 Park Avenue South, New York, N.Y. 10016

01.25.06

PROJECT No. 10735

FIGURE No.

1

2002 AKRF, Inc. Environmental Consultants M:AKRF Project Fles/10735 - 1346 Blondell Ave Bronx - Storage DebuselFgures|F1 Site Location.pub



### APPENDIX A SOIL BORING LOGS

AI	<b>KR</b>	F, I	nc.		lell Avenue, Bronx, New York	Boring No. Sheet 1	<b>S-1</b>
Environmental Consultants 440 Park Avenue South, New York, NY 10016				Drilling Method: Sampling Method: Driller: Weather: Sampler:	Direct Push Probe Macrocore Zebra Sunny/ 85 degrees AKRF/ Jessica Leber	Drilling Start Time: 8:40 Date: 6/21/06	Finish Time: 9:00 Date: 6/21/06
Depth (feet)	Recovery (Inches)	Sample Location	PID Reading (ppm)	Surface Conditi	on:		
1 2 3 4	24"	S-1 (1-3') 8:50 AM	ND	Middle 15": Dark Slight petroleum	AVEL and black SAND. brown SAND and fine fine GR like odor (Dry) (FILL). brown SAND and fine GRAVE		
5 6 7 8	36"		ND 0.9	Bottom 28": Brov	ne GRAVEL, some Sand, little vn and grey organic SILT, little or - possibly organic. Wet at 6' 8' below grade	Sand, trace fine	
Notes:		ND - Not Dete	ected	-8-			

ΔΙ	AKRF, Inc.			1346 Blond	ell Avenue, Bronx, New York	Boring No.	S-2			
	717	L' 9 III	110.	AKRF	Project Number : 10735	Sheet 1	of 1			
	_			Drilling Method:	Direct Push Probe	Drilling	_			
Enviro	onment	al Consu	ultants	Sampling Method:	Macrocore	Start	Finish			
				Driller :	Zebra	<b>Time:</b> 11:15	Time: 12:00			
440 Par	k Avenue Sou	th, New York, N	Y 10016	Weather:	Sunny/ 85 degrees	Date: 6/21/06	Date: 6/21/06			
1101 ui	K / Werlac 30a	itti, rvew Tork, rv	1 10010	Sampler:	AKRF/ Jessica Leber					
Depth (feet)	Recovery (Inches)	Sample Location	PID Reading (ppm)	Surface Condition	on: Concrete					
			ND	Top 2" - STONE						
1		5	⋝	⋝	Σ	ND	Middle 8": CONCRETE			
2	36"	S-2 (2'-4') 1:30 AM	1,232							
3		2.1.	1,202		SAND and fine GRAVEL, little					
			50	(FILL). Strong sr	narp-sweet odor, slight petroleu	m-like or solver	nt-like.			
4										
5			250		e to coarse SAND and fine GRA ong sharp-sweet odor, slight pe					
6	38"	S-2 (Water) 11:45 AM	10	Bottom 32": Brow (Wet)	n SILT, trace Clay, fine Gravel	Slight petroleu	ım-like odor.			
7 8		\$ #		End of boring at	12' below grade					
Notes:		ND - Not Dete	ected	<u> </u>						

<b>A</b> 1	Z D	F, I	nc	1346 Blon	dell Avenue, Bronx, New York	Boring No.	S-3		
A	71/	L' 9 L	IIC.	AKR	F Project Number : 10735	Sheet 1	of 1		
				Drilling Method:	Direct Push Probe	Drilling			
Envir	Environmental Consultants			Sampling Method:	Macrocore	Start	Finish		
				Driller :	Zebra	Time: 8:00	Time: 8:30		
440 Pa	440 Park Avenue South, New York, NY 10016			Weather:	Sunny/ 85 degrees	Date: 6/21/06	Date: 6/21/06		
				Sampler:	AKRF/ Jessica Leber				
Depth (feet)	Recovery (Inches)	Sample Location	PID Reading (ppm)	Surface Condit	ion: Asphalt				
1			63.9	Top 4": Asphalt	slag				
2	38"				ck SAND and fine GRAVEL, litt troleum-like odor. (Dry)	tle Concrete,			
3			34.5						
4									
5			90.0	· ·	ine to coarse SAND and fine G n-like odor. (Dry)	RAVEL, trace C	oncrete.		
6	42"	S-3 (4'-6') 8:20 AM	1.9		ck and dark brown SILT (some ne Sand, Clay, fine Gravel. Slic				
7		, 		below grade.	io cana, ciay, into cravon cing	gnt pouloidam ou	on wordt o		
8									
9			0.9	Top 40": Dark bi significant odor.	rown SILT, little Clay, trace fine (Wet)	e Gravel. Slight s	staining; no		
10	48"		ND	Bottom 8": Light	brown SILT, some Sand, fine	Gravel. (Wet)			
11				End of boring at	12' below grade				
12									
Notes:		ND - Not Dete	ected						

ΛI	<b>(P</b> )	F, I	nc	1346 Blond	ell Avenue, Bronx, New York	Boring No.	S-4	
		L' 9 1	116.	AKRF	Project Number : 10735	Sheet 1	of 1	
				Drilling Method:	Direct Push Probe	Drilling		
Enviro	Environmental Consultants			Sampling Method:	Macrocore	Start	Finish	
				Driller :	Zebra	Time: 9:00	Time: 9:30	
440 Park Avenue South, New York, NY 10016			Y 10016	Weather:	Sunny/ 85 degrees	Date: 6/21/06	Date: 6/21/06	
1101 di	440 Falk Avenue South, New Tork, NT 10010			Sampler:	AKRF/ Jessica Leber			
Depth (feet)	Recovery (Inches)	Sample Location	PID Reading (ppm)	Surface Condition				
1			11.6	Top 12": Brown a Concrete. (Dry) (	and white fine to coarse SAND FILL)	and fine GRAVI	EL, trace	
2	36"	S-4 (2'4') 9:10 AM	28	Bottom 24": Black fine to coarse SAND and fine GRAVEL, little Concrete, Brid and Ash. Petroleum-like odor. (FILL)				
3								
4				- or or				
5			ND	like odor. (FILL)	ND and fine GRAVEL, little Co	ncrete, Brick, A	sh. Petroleum-	
6	48"	S-4 (Water) 9:20 AM	0.9	Middle 32": Dark below grade	brown and grey organic SILT,	some Clay. No	odor. Wet at 6'	
7		င ဂ		Ĭ				
			ND	Bottom 8": Brown	fine to medium SAND, some	fine Gravel (We	t)	
8					·			
9								
10	48"		ND	Brown SAND, so	me fine Gravel. No odor. (Wet)	)		
11				End of boring at	12' below grade			
12		ND Not Dots	ostad					
Notes:		ND - Not Dete	ected					

ΛL	Z D I	F, I	nc	1346 Blond	lell Avenue, Bronx, New York	Boring No.	S-5
AI	71/	L' 🤊 🎩 J	IIC.	AKRI	Project Number : 10735	Sheet 1	of 1
			_	Drilling Method:	Direct Push Probe	Drilling	
Enviro	onment	al Consi	ıltants	Sampling Method:	Macrocore	Start	Finish
				Driller :	Zebra	Time: 9:30	Time: 10:00
440 Par	k Avenue Sou	th, New York, N	Y 10016	Weather:	Sunny/ 85 degrees	Date: 6/21/06	Date: 6/21/06
770 i di	K Avenue 300	iii, New Tork, N	1 10010	Sampler:	AKRF/ Jessica Leber		
Depth (feet)	Recovery (Inches)	Sample Location	PID Reading (ppm)	Surface Conditi	on:		
1 2 3 4	24"		ND	Concrete, Rock,	k and dark brown fine to coars Glass, trace Wood. No odor. (I	Ory) (FILL)	,
5 6	36"	S-5 (5'-7') 9:40 AM	ND ND	Concrete, Rock,	d dark brown fine to coarse SA Glass, trace Wood. No odor. (I m fine GRAVEL, some Sand, tr	Ory) (FILL)	
7 8	30	S. (5'- 9:40	ND	(Wet) Bottom 18": Brov End of boring at	vn SILT, little Clay, fine Gravel. 8' below grade	No odor. (Wet)	
Notes:	<u> </u>	ND - Not Dete	ected	-			

AF	AKRF, Inc.				ell Avenue, Bronx, New York Project Number : 10735	Boring No.	<b>S-6</b> of 1
		_		Drilling Method:	Direct Push Probe	Sheet 1 Drilling	of 1
Envir	onmont	al Consu	ıltantc	Sampling Method:	Macrocore	Start	Finish
LIIVII	OHIHEHI	ai Const	illarits	Driller :	Zebra	Time: 11:00	Time: 11:15
				Weather:	Sunny/ 85 degrees	Date: 6/21/06	Date: 6/21/06
440 Par	rk Avenue Sou	th, New York, N	Y 10016	Sampler:	AKRF/ Jessica Leber		
Depth (feet)	Recovery (Inches)	Sample Location	PID Reading (ppm)	Surface Condition: Concrete			
1 2 3 4	24"	S-6 (1-3') 11:00 AM	ND	Top 8": CONCRE	TE n SAND, some fine Gravel, littl	e Silt. No odor.	(Dry)
5 6 7 8	48"	S-6 (Water) 11:15 AM	ND	SAND, some fine	Gravel (micaceous rock). Rocl	at 2" (Dry)	
9	2"		ND	Top 2": SILT (We End of boring at 9	t) Refusal below 9' on rock or c 9' below grade	bstruction.	
Notes:		ND - Not Dete	ected				

ΛI	Z D I	F, I	nc	1346 Blond	ell Avenue, Bronx, New York	Boring No.	S-7	
	71/	L' 9 III		AKRF	Project Number : 10735	Sheet 1	of 1	
				Drilling Method:	Direct Push Probe	Drilling		
Enviro	onment	al Consu	ultants	Sampling Method:	Sampling Method: Macrocore Start Finish			
				Driller :	Zebra	Time: 10:25	Time: 10:50	
440 Parl	k Avenue Sou	th, New York, N	Y 10016	Weather:	Sunny/ 85 degrees	Date: 6/21/06	Date: 6/21/06	
1101 an	K7Wondo ood	an, recor Tork, re	1 10010	Sampler:	AKRF/ Jessica Leber			
Depth (feet)	Recovery (Inches)	Sample Location	PID Reading (ppm)	Surface Condition	·			
				Top 2": ASPHAL	Т			
1								
_				Middle 8": CONC	RETE			
2	22"		ND					
3				Bottom 12": Brow	n SAND and fine GRAVEL, litt	ile Concrete, Bri	ck. (FILL) (Dry)	
4								
_			ND	Top 12": Dry fince	e to coarse SAND and fine GR	AVEL. No odor.		
5								
6	36"	S-7 (6'-8') 10:45 AM	24	Bottom 24": Brown SAND, some Silt, fine Gravel. Petroleum-like odor. (Wet)				
7		; (6 10:4		End of boring at 8	3' below grade			
Notes:		ND - Not Dete	ected	<u> </u>				

AL	<b>7D</b> 1	r T	no	1346 Blond	ell Avenue, Bronx, New York	Boring No.	S-8	
	71/	F, II	IIC.	AKRF	Project Number : 10735	Sheet 1	of 1	
				Drilling Method:	Direct Push Probe	Drilling		
<b>I</b> Enviro	Environmental Consultants		Sampling Method:	Macrocore	Start	Finish		
				Driller :	Zebra	Time: 10:00	Time: 10:25	
440 Par	k Avonuo Sou	th, New York, N	V 10016	Weather:	Sunny/ 85 degrees	Date: 6/21/06	Date: 6/21/06	
440 Pai	k Avenue 30u	itti, ivew fork, iv	1 10010	Sampler:	AKRF/ Jessica Leber			
Depth (feet)	Recovery (Inches)	Sample Location	PID Reading (ppm)	Surface Condition				
				Top 8": CONCRE	TE			
1				D // 00" D				
					n and white SAND and fine GF	RAVEL, little Co	oncrete, Crushed	
2	30"		ND	Rock. No odor. ([				
3		ł						
4								
		_		Top 12": Brown a	nd white fine to coarse SAND a	and fine GRAV	EL. little Concrete	
5		S-8 (4'-6') 10:00 AM		and Crushed Roo			,	
		S-8 (4'-6') 0:00 AI			( ),			
6	40"	7	ND	Middle 6": CONC	RETE			
	40"	_	ND					
7		S-8 /ater) 10 AN		Dottom 10": Drou	m and black SILT and SAND a	omo fina Crav	al Na adar (Mat)	
		S-8 (Water) 10:10 AM		DULLUIII 10 . BIOW	n and black SILT and SAND, s	ome ime Gravi	ei. ivo odor. (vvet)	
8		7 =						
				Top 12": Brown S	SAND and fine GRAVEL, trace	Brick. (FILL)		
9								
				Middle 18": Dark	brown SILT, some SAND, trace	e fine Gravel. (	Moist)	
10	36"		ND			`	,	
	30		שוו	Bottom 6": PEAT	. No odor. (Moist)			
11					,			
12								
Notes:		ND - Not Dete	ected					



Main Office 77 Arkay Drive, Suite G Hauppauge, New York 11788 T (631) 462-5866 • F (631) 462-5877 NYC Office 15 Ocean Avenue, 2nd Floor Brooklyn, New York 11225 T (718) 636-0800 • F (718) 636-0900

www.hydrotechenvironmental.com

### Phase II Environmental Site Assessment Report

1346 Blondell Avenue Bronx, NY



**Prepared For:** 

Exact Capital Group 477 Madison Avenue New York, New York 10022

December 24, 2015

Hydro Tech Job No. 150311

## Phase II Environmental Site Assessment Report

1346 Blondell Avenue Bronx, New York

December 24, 2015

Hydro Tech Environmental, Corp. appreciates the opportunity to work for Exact Capital Group at the property located at 1346 Blondell Avenue in Bronx, New York.

Should you require any additional information or have any comments regarding the contents of this report, please feel free to contact our office at your convenience.

We declare that, to the best of my professional knowledge and belief, Hydro Tech personnel meet the definition of an environmental professional as defined in §312.10 of 40 C.F.R. Part 312, and we have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. We have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 C.F.R. Part 312.

Very Truly Yours,

Hydro Tech Environmental, Corp.

Ruijie Xu

Project Engineer

Adriana Zapata

Assistant Project Manager

Mark E. Robbins, C.P.G., C.E.I.

Principal

Carlos Quinonez Vice President

### TABLE OF CONTENTS PAGE

1.0 Executive Summary	1
1.0 Executive Summary	2
2.1 Introduction	2
2.2 Site Description	2
2.3 Geology & Hydrology	
2.4 Objective & Project Goals	
3.0 Phase II Environmental Site Assessment	4
3.1 Introduction	
3.2 Fieldwork	4
Soil Probes	4
Groundwater Probes	4
3.3 Laboratory Analyticals	5
4.0 Analytical Results	6
4.1 Soil Results	6
4.2 Groundwater Results	6
5.0 Discussion Of Results	
5.1 Soil Quality	7
5.2 Groundwater Quality	7
6.0 Conclusions	
7.0 Recommendations	
8.0 References	10
9.0 Exclusions & Disclaimers	11

### **Figures**

1. Site & Sampling Plan

### **Tables**

- 1. VOCs, SVOCs and Metals in Soil
- 2. VOCs, SVOCs and Metals in Groundwater

### Appendices

- A. Previous Investigations (text only)
- B. Photographs
- C. Soil Probe Logs
- D. Laboratory Reports

#### 1.0 EXECUTIVE SUMMARY

Hydro Tech Environmental, Corp. has performed a Phase II Environmental Site Assessment (Phase II ESA) at the property located at 1346 Blondell Avenue (Block 4133, Lot 12 and northern portion of Lot 8 and Block 4134, Lots 1, 2, 4, 62, 63 and 70), in the Westchester Square Section of Bronx, New York. This Phase II ESA was conducted on behalf of Exact Capital Group in response to the findings of prior Phase I and Phase II Environmental Site Assessment.

The Phase II ESA consisted of the performance of the installation and sampling of a series of soil probes and groundwater probes. A Hydro Tech geologist screened all soil samples in the field for organic vapors utilizing a Photoionization Detector. Select soil and groundwater samples were analyzed at a Statecertified laboratory for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and TAL Metals.

The results of the Phase II ESA are contained in this report. Petroleum related VOCs were detected in soil samples beneath the northern portion of the Site at concentrations exceeding their respective Unrestricted SCOs. SVOCs characterized as PAHs and metals most likely related to urban fill materials were detected in soil throughout the Site at concentrations greater than their respective regulatory standards. Based upon the findings of the investigation, the impact appears to be the residual affect from a closed spill incident.

No VOCs or SVOCs were identified in the groundwater at concentrations exceeding their respective GQS. Three dissolved metals including magnesium, manganese and sodium were identified in the groundwater at concentrations exceeding their respective GQS.

No effort has been made to perform any investigation beyond what is included in this report. The observations included herein summarize the results of the environmental activities up to the date of the fieldwork and the date of this report.

The following sections provide the details and specific information pertaining to the various components of the Phase II ESA.

#### 2.0 INTRODUCTION & SCOPE OF WORK

#### 2.1 Introduction

Hydro Tech Environmental, Corp. (Hydro Tech) has been retained by Exact Capital Group (the "Client") to perform a Phase II Environmental Site Assessment (Phase II ESA) of the property located at 1346 Blondell Avenue in the Westchester Square Section of Bronx, New York. This property will hereafter be referred to as the "Site".

#### 2.2 Site Description

The Site is an irregular shaped parcel with a total area of 48,290 square feet bounded by Ponton Avenue to the north, Blondell Avenue to the west and Fink Avenue to the south in the Westchester Square section of Bronx, New York. The Site is consisted of Block 4133, Lot 12 and northern portion of Lot 8 and Block 4134, Lots 1, 2, 4, 62, 63 and 70. Lot 1 is partially developed with a 2-story vacant residential building in the western portion and an asphalt yard in the eastern portion with a total area of 2,250-square feet. Lot 2 is partially developed with a 2-story auto repair formerly operated by Caveman Cycles in the western portion and a concrete yard surrounded by wire net fence in the eastern portion with a total area of 4,500-square feet. Lot 4 is partially developed with a 2-story vacant residential in the southwestern portion. The remaining portion of Lot 4 along with Lots 8, 12, 62, 63 and 70 are utilized as parking lot and auto junk yard that are primarily paved with asphalt except that the ramp in northwestern portion of Lot 4 is covered with gravel and Lots 12 and 62 are covered with concrete. The main access to the Site is via Blondell Avenue to the west and Fink Avenue to the south.

The vicinity of the Site consists of commercial properties. The topography of the Site is generally level and approximately 10 feet lower than Blondell Avenue. The topography of the area surrounding the Site is declined toward the east and south. **Figure 1** provides a Site Plan.

### 2.3 Geology & Hydrology

The Site is located in eastern portion of Bronx, New York. The elevation of the Subject Property is approximately 10 feet above mean sea level (USGS 7.5-Minute Brooklyn, New York Quadrangle, 2013).

The vicinity of the Subject Property is characterized by metamorphosed sequence of bedrock known as the Manhattan Prong of the Hartland Formation. The Hartland Formation was formed during the late Cambrian to early Ordovician period and consists of undivided pelitic schist with gneiss and amphibolite. The formation is frequently cross cut by transverse and parallel faults. The area is then overlain by Pleistocene-aged glacial till deposits.

The depth to water in the vicinity of the Subject Property is approximately 6 feet. The regional groundwater flow direction in the vicinity of the Site is presumed to be toward the south-southeast in the direction of Westchester Creek.

### 2.4 Objective & Project Goals

The objective of this Phase II ESA was to update the findings identified in a July 2006 Subsurface (Phase II) Investigation by AKRF, Inc. Specifically, these findings, as taken directly from the 2006 report, include:

- The presence of gasoline and/or other petroleum compounds in the soil beneath the northern portion of the Site such as m&p-Xylene (0.85 mg/Kg) could be related to either the onsite historic spills or the historic use of northern adjacent property as filling station;
- The presence of metals in soils throughout the Site, which are related to the presence of urban fill materials;
- The presence of trace amount of dissolved chromium in one groundwater sample.
- The presence of two closed NYSDEC spill incidents: #9708308 and #9710270

**Appendix A** provides the text portion of the Subsurface Investigation report.

All related portions of the fieldwork were performed, at a minimum, in accordance with acceptable industry standards. These acceptable industry standards include, but are not limited to, the ASTM Standard Guide

Phase II Environmental Site Assessment Report 1346 Blondell Avenue Bronx, New York December 24, 2015 Hydro Tech Job #150311 Page 3

for Phase II Environmental Site Assessments (E 1903-11), the New York State Department of Environmental Conservation (NYSDEC) Bureau of Spill Prevention & Response Sampling Guidelines and Protocols, March 1991 and the DER-10 Technical Guidance for Site Investigation and Remediation, May 2010.

#### 3.0 PHASE II ENVIRONMENTAL SITE ASSESSMENT

#### 3.1 Introduction

The investigation was accomplished through the performance of installation and sampling of six (6) soil probes and three (3) groundwater probes. Hydro Tech conducted the field portion of the investigation on December 17, 2015.

Prior to the performance of the fieldwork, an NYC One-Call Public Utility mark-out was requested. Confirmation number 153501442 was issued to the mark-out. **Appendix B** contains photographs of the fieldwork.

#### 3.2 Fieldwork

#### Soil Probes

The soil probes were designated SP-1 through SP-6. The locations of SP-1 through SP-6 are consistent with the locations of soil borings designated as S-1, S-2, S-4, S-6, S-7 and S-8 installed by AKRF, Inc. during July 2006. SP-1, SP-2 were installed in the northern portion of the property. SP-3 and SP-4 were installed in the central portion of the property and SP-5 and SP-6 were installed in the southern portion of the property. **Figure 1** provides all sampling locations.

All soil probes were installed with Hydro Tech's fleet of Geoprobe® units. These units install soil probes utilizing direct-push technology. Soil samples were collected utilizing a four-foot long Macro core sampler fitted with dedicated acetate liners. Each sampler was installed with  $1\frac{1}{2}$ -inch diameter drill rods.

SP-1, SP-2, SP-4 and SP-6 were installed to 12 feet below the grade and SP-3 and SP-5 were installed to 8 feet below the grade. All the soil probes were continuously sampled at consecutive 2-foot intervals. A Hydro Tech geologist performed infield characterization and screening of each soil sample utilizing the Unified Soil Classification System and a Photo Ionization Detector (PID). Urban fill materials including bricks, asphalt and concrete was identified during the investigation in shallow soil (to 2 feet in depth). The general soil type beneath the layer of fill materials consists of medium to fine grained sand with pebbles and gravels. Light petroleum odor and minor staining were identified in SP-2 between 4-10 feet and in SP-4 between 2-8 feet. No visual/olfactory evidence of petroleum or vapors were noted in any of the other soil samples. No detectable (<0.1 ppm) organic vapors were noted in any of the soil sample. **Appendix** C provides soil probe logs.

Based upon the in-field screening results, 1 soil sample from each probe was selected for confirmatory laboratory analysis. The samples selected include the zero to 2 foot samples from SP-3 and SP-6, the 2 to 4 foot sample from SP-4, the 4 to 6 foot sample from SP-1, the 6 to 8 foot sample from SP-5 and the 8 to 10 foot sample from SP-2. Each soil sample was placed into 2 pre-cleaned 8-ounce jars and 1 Terracore Set and properly labeled.

#### Groundwater Probes

Following the collection of soil samples, probes SP-2, SP-4 and SP-8 were converted into groundwater probes and were assigned the coordinating "GP" sampling designations GP-1, GP-2 and GP-3. Prior **Figure 1** provides the locations of the groundwater probes.

All groundwater probes were installed with Hydro Tech's fleet of Geoprobe® units. These units install groundwater probes utilizing direct-push technology. Each groundwater probe consisted of a 4-foot long screen with a slot size of 0.020 inches. The screen was placed so that it bisected the water table, which was encountered between 6 to 8 feet below grade.

Groundwater samples were obtained utilizing an inertial pump consisting of a stainless steel check valve and ball. The inertial pump was fitted with dedicated polyethylene tubing, which allowed the groundwater to be brought up to the ground surface for collection. Each groundwater sample was then placed into 3 precleaned 40-milliliter (mL) vials preserved with hydrochloric acid (HCl), 1 pre-cleaned 250-ml plastic bottle preserved with nitric acid (HNO₃) and 2 pre-cleaned 1-liter (L) ambers and appropriately labeled

Phase II Environmental Site Assessment Report 1346 Blondell Avenue Bronx, New York December 24, 2015 Hydro Tech Job #150311 Page 5

### 3.3 Laboratory Analyticals

All soil and groundwater samples were transmitted under proper chain of custody procedures to a State-certified laboratory. The soil samples were analyzed for volatile organic compounds (VOCs) in accordance with EPA 8260, semi-VOCs in accordance with EPA Method 8270BN and metals in accordance with EPA Method TAL Metals. Laboratory reports are provided as **Appendix D**.

#### 4.0 ANALYTICAL RESULTS

#### 4.1 Soil Results

**Table 1** provides the results for the VOCs via EPA Method 8260 of the soil samples from SP-1 through SP-6. **Table 1** also provides a comparison to the Unrestricted Use, Restricted Residential Use, Residential Use and Commercial Use Soil Cleanup Objectives (SCOs) from 6 NYCRR Part 375. The concentrations reported in **Table 1** are in milligrams per kilogram (mg/kg).

As **Table 1** indicates, acetone was detected at a concentration of 0.13 mg/kg in SP-4, which exceeds its Unrestricted SCO. Petroleum related VOC m-&p-xylene was detected in SP-4 and SP-2 with the concentrations exceeding its Unrestricted SCO. No other VOCs were detected in any of the soil samples exceeding their respective method detection limits (MDLs).

As **Table 1** also indicates total SVOC concentrations range from 3.07 mg/kg in SP-6 to 259.8 mg/kg in SP-5. Individual SVOCs were detected in SP-3 and SP-5 at concentrations exceeding their respective Restricted Residential SCOs. These SVOCs consist of benzo(a)anthracene (max. 19 mg/kg), benzo(a)pyrene (max. 20 mg/kg), benzo(b)fluoranthene (max. 18 mg/kg), benzo(k)fluoranthene (max. 15 mg/kg), chrysene (max. 20 mg/kg), dibenzo(a,h)anthracene (2.9 mg/kg) and indeno (1,2,3-cd) pyrene (max. 14 mg/kg). Among these detections, the concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene and indeno (1,2,3-cd) pyrene also exceed their respective SCOs for Commercial Use. SVOCs were also detected in shallow samples of SP-4 and SP-6 at concentrations below their respective Unrestricted SCOs. No other SVOCs were detected in any of the other soil samples at concentrations exceeding their MDLs.

As **Table 1** further indicates metals including cadmium, copper, lead, nickel and zinc were commonly detected throughout the Site at concentrations exceeding their respective Unrestricted SCOs with the exception of SP-1. Among these detections, cadmium (max. 6.92 mg/kg), lead (max. 516 mg/kg) and zinc (max. 4,910 mg/kg) were detected in SP-3, SP-4 and SP-5 at concentrations exceeding their respective Restricted Residential/Residential SCOs. In SP-5, arsenic (34.8 mg/kg), copper (max. 616 mg/kg), lead (1,730 mg/kg) were detected at concentrations exceeding their respective SCOs for Commercial Use. No other metals were detected at concentrations exceeding their respective Unrestricted SCOs.

### 4.2 Groundwater Results

**Table 2** provides the EPA Method 8260, EPA Method 8270BN and TAL Metals results of the groundwater samples from GP-1 through GP-3. **Table 2** also provides a comparison to 6 NYCRR Part 703.5 Class Groundwater Quality Standards (GQS). The concentrations reported in **Table 2** are in micrograms per liter (ug/L).

As **Table 2** indicates, individual VOCs including chloroform (1.3 ug/L) and methyl t-butyl ether (MTBE) 2.2 ug/L) were detected in the groundwater samples from GP-2 and GP-3, respectively at concentrations less than their respective GQS. No other VOCs were detected in any of the groundwater samples at concentrations exceeding their respective their respective method detection limits (MDLs.)

As **Table 2** also indicates, no SVOCs were detected in any of the groundwater samples at concentrations exceeding their respective MDLs.

As **Table 2** further indicates, undissolved metals including arsenic, barium, beryllium, cadmium, chromium, copper, lead, magnesium, manganese, nickel and sodium were detected in all groundwater samples at concentrations exceeding their respective GQS. Among these, dissolved metals including magnesium (max. 48,900 ug/L), manganese (max. 9,830 ug/L) and sodium (max. 302,000 ug/L) are detected at concentrations exceeding their respective GQS. No other detected dissolved metals were detected at concentrations exceeding their respective GQS.

December 24, 2015 Hydro Tech Job #150311 Page 7

#### 5.0 DISCUSSION OF RESULTS

### 5.1 Soil Quality

Petroleum related VOC, m-&p-xylene was detected at concentrations exceeding its Unrestricted SCO in soils beneath the northern portion of the Site, which is evidenced by the results of SP-2 and SP-4 and also by the petroleum-like odor detected during the soil sampling. This is consistent with the finding from previous Subsurface Investigation. No other VOCs were detected in any other soil samples as evidenced by the analytical results of SP-1, SP-3, SP-5 and SP-6. This is also evidenced by the absence of visual/olfactory and detectable levels of organic vapors of organic constituents identified during the field screening of soil samples from these borings.

The presence of acetone in several samples is likely the result of laboratory contamination and is not reflective of actual site conditions.

SVOCs were detected in the soil to a depth of 8 feet in the south and southeastern portions of the Site at concentrations exceeding Restricted Residential SCOs and Commercial SCOs, as evidenced by the analytical results of soil samples from SP-3 through SP-5. These SVOCs consisted benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene and indeno (1,2,3-cd) pyrene, which could be specifically characterized as Polycyclic Aromatic Hydrocarbons (PAHs).

Metals including arsenic, cadmium, copper, lead, nickel and zinc were commonly detected in all depth of the soil beneath the entire Site exceeding their respective Restricted Residential SCOs and Commercial SCOs as evidenced by the results of SP-2 through SP-6. The presence of PAHs and metals could be likely related to the presence of urban fill materials beneath the Site at various depths as also evidenced by the soil probe logs.

The results identified in this report also correlate with the findings from the Phase II ESA performed by AKRF during July 2006 which also identified BTEX compounds associated with gasoline contamination in the location of Hydro Techs boring locations at SP-2 and SP-4 which are in the locations of AKRF previously installed boring locations of S-2 and S-4. Based upon the findings of this investigation, it appears that the impacts identified during this investigation are the residual effects from the closed spill incidents. A detail summary of the findings from the Phase II investigation from AKRF can be found in **Appendix A**.

#### 5.2 Groundwater Quality

The results of the groundwater sampling indicate no organic compounds including VOCs or SVOCs, were detected at concentrations in exceedance of their GQS standards. This is evidenced by the analytical results of groundwater samples from GP-1 through GP-3. Three dissolved metals, magnesium, manganese and sodium were detected in GP-1 through GP-3 at concentrations exceeding their respective GQS.

#### **6.0 CONCLUSIONS**

Based upon the findings of the investigation, the following conclusions are provided:

- Petroleum related VOCs were detected in soil samples beneath the northern portion of the Site at
  concentrations exceeding their respective Unrestricted SCOs and a petroleum odor was also
  detected in these samples during soil screening;
- SVOCs characterized as PAHs and metals most likely related to urban fill materials were detected in soil throughout the Site at concentrations greater than their respective regulatory standards.
- No VOCs or SVOCs were identified in the groundwater above their respective GQS.
- Three dissolved metals including magnesium, manganese and sodium were identified in the groundwater at concentrations exceeding their respective GQS.
- The impacts identified during this investigation appear to the effects of the closed NYSDEC spill incident.

### 7.0 RECOMMENDATIONS

Based upon the conclusions put forth in this report, the following recommendations are provided:

• If any soil is to be disturbed, proper screening techniques should be implemented and any soil generated for disposal should be managed in accordance with respective regulations.

#### 8.0 REFERENCES

- AKRF Phase I Environmental Site Assessment (ESA) February, 2006.
- AKRF Subsurface (Phase II) Investigation (July, 2006): AKRF Project Number: 10735
- American Society for Testing Materials. (2011). Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process, ASTM E1901-11. West Coshohocken. doi:10.1520/E1903-11
- Cadmus, D., Hodgen, R., Gatto, L. M., & Puffer, J. H. (n.d.). *Geochemical traverse across Cameron's Line, Borough Hall Park, Bronx, New York.* Newark, New Jersey: Geology Department, Rutgers University.
- AKRF, Inc. (2015). Subsurface (Phase II) Investigation: 1346 Blondell Avenue. Bronx, New York.
- New York State Department of Environmental Conservation. (2010). *CP-51 / Soil Cleanup Guidance*. Retrieved from http://www.dec.ny.gov/docs/remediation_hudson_pdf/cpsoil.pdf
- New York State Department of Environmental Protection. (n.d.). Various correspondences.
- Sanders, J. E. (n.d.). Drainage History of the New York City Region. Geology Department, Hofstra University.
- United States Geological Survey. (2010). Long Island Depth to Water Viewer. Retrieved from http://ny.water.usgs.gov/maps/li-dtw10/
- Walton, W. C. (1991). Principals of Groundwater Engineering. Chelsea, Michigan: Lewis Publishers, Inc.

December 24, 2015 Hydro Tech Job #150311 Page 11

#### 9.0 EXCLUSIONS & DISCLAIMERS

The observations described in this report were made under the conditions stated therein. The conclusions presented in the report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by the Client.

In preparing this report, Hydro Tech Environmental, Corp. may have relied on certain information provided by state and local officials and other parties referenced therein, and on information contained in the files of state and/or local agencies available to Hydro Tech Environmental, Corp. at the time of the subject property assessment. Although there may have been some degree of overlap in the information provided by these various sources, Hydro Tech Environmental, Corp. did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this subject property assessment.

Observations were made of the subject property and of structures on the Subject Property as indicated within the report. Where access to portions of the subject property or to structures on the subject property was unavailable or limited, Hydro Tech Environmental, Corp. renders no opinion as to the presence of non-hazardous or hazardous materials, or to the presence of indirect evidence relating to a non-hazardous or hazardous materials, in that portion of the subject property or structure. In addition, Hydro Tech Environmental, Corp. renders no opinion as to the presence of hazardous materials, or the presence of indirect evidence relating to hazardous materials, where direct observation of the interior walls, floors, or ceiling of a structure on a subject property was obstructed by objects or coverings on or over these surfaces.

Hydro Tech Environmental, Corp. did not perform testing or analyses to determine the presence or concentration of asbestos at the subject property or in the environment of the subject property under the scope of the services performed.

The conclusions and recommendations contained in this report are based in part, where noted, upon the data obtained from a limited number of soil samples obtained from widely spaced subsurface explorations. The nature and extent of variations between these explorations may not become evident until further exploration. If variations or other latent conditions then appear evident, it will be necessary to reevaluate the conclusions and recommendations of this report.

Any water level reading made in test pits, borings, and/or observation wells were made at the times and under the conditions stated in the report. However, it must be noted that fluctuations in the level of groundwater may occur due to variations in rainfall and other factors different from those prevailing at the time measurements were made.

Except as noted within the text of the report, no qualitative laboratory testing was performed as part of the subject property assessment. Where an outside laboratory has conducted such analyses, Hydro Tech Environmental, Corp. has relied upon the data provided, and has not conducted an independent evaluation of the reliability of the data.

The conclusions and recommendations contained in this report are based in part, where noted, upon various types of chemical data and are contingent upon their validity. The data have been reviewed and interpretations were made in the report. As indicated within the report, some of the data may be preliminary "screening" level data, and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, the data should be reviewed, and the conclusions and recommendations presented herein modified accordingly.

Chemical analyses have been performed for specific constituents during the course of this subject property assessment, as described in the text. However, it should be noted that additional chemical constituents not searched for during the current study might be present in soil and/or groundwater at the subject property.

Any GPR survey described above was performed in accordance with good commercial and customary practice and generally accepted protocols within the consulting industry. Hydro Tech Environmental, Corp. does not accept responsibility for survey limitations due to inherent technological limitations or site specific conditions, however, made appropriate effort to identify and notify the client of such limitations and conditions. In particular, please note that the survey described above does not represent a full utility clearance survey, and does not relieve any party of applicable legal obligations to notify a utility one-call service prior to excavating or drilling.



ENVIRONMENTAL BUSINESS CONSULTANTS

631.504.6000 631. 924 .2870

Figure No.

REDEVELOPMENT PROJECT

Site Address: 1346 BLONDELL AVENUE BRONX

Drawing Title: SOIL BORING LOCATIONS

# Table 1 Soil Analytical Results Volatile Organic Compounds and Semi-Volatile Organic Compounds

	Lab Sample Id Collection Date Client Id Matrix						BN43 5/26/2 B1 (4-5 Soli	016 FT)	5/26/2 5/26/2 B2 (1-3 Soli	016 3 FT)	BN430 5/26/20 B3 (3-5 Solid	016 FT)	5/26/2 B4 (3-5 Solid	016 FT)	5/26/2 5/26/2 B5 (0-2 Soli	016 2 FT)	BN430 5/26/2 B5 (5-7 Solid	016 FT)	5/26/20 5/26/20 B10 (6-8 Solid	1016 8 FT)
Project Id : 1346 BLONDELL AVE BRONX	CAS	Units	NY-GWP	NY-Res.	NY-ResRestrict	NY-UnRestricted	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Miscellaneous/Inorganics Percent Solid	PHNX - PCTSOLID	%					86		92		87		86		95		84		81	
Valatiles By SM/9360C																				
Volatiles By SW8260C 1.1.1-Trichloroethane	71-55-6	ug/Kg	680	100,000	100,000	680	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
1,1,2,2-Tetrachloroethane	79-34-5	ug/Kg ug/Kg	000	100,000	100,000	000	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
1,1,2-Trichloroethane	79-00-5	ug/Kg					< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
1,1-Dichloroethane	75-34-3	ug/Kg	270	19,000	26,000	270	< 270	270	< 220	220	< 270	270	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
1,1-Dichloroethene	75-35-4	ug/Kg	330	100,000	100,000	330	< 330	330	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
1,1-Dichloropropene	563-58-6 97-61-6	ug/Kg					< 350	350 350	< 220	220 220	< 330	330	< 4.8	4.8	< 200 < 200	200	< 5.9	5.9	< 4.2	4.2 4.2
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	87-61-6 96-18-4	ug/Kg ug/Kg					< 350 < 350	350	< 220 < 220	220	< 330 < 330	330 330	< 4.8 < 4.8	4.8 4.8	< 200	200 200	< 5.9 < 5.9	5.9 5.9	< 4.2 < 4.2	4.2
1,2,4-Trichlorobenzene	120-82-1	ug/Kg					< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
1,2,4-Trimethylbenzene	95-63-6	ug/Kg	3,600	47,000	52,000	3,600	4,000	350	3,900	220	720	330	230	320	6,300	200	1.8	5.9	< 4.2	4.2
1,2-Dibromo-3-chloropropane	96-12-8	ug/Kg					< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
1,2-Dibromoethane	106-93-4	ug/Kg		400.000	400.000	4.400	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
1,2-Dichlorobenzene 1,2-Dichloroethane	95-50-1 107-06-2	ug/Kg ug/Kg	1,100 20	100,000 2,300	100,000 3,100	1,100 20	< 350 < 35	350 35	< 220 < 22	220 22	< 330 < 33	330 33	< 4.8 < 4.8	4.8 4.8	< 200 < 20	200 20	< 5.9 < 5.9	5.9 5.9	< 4.2 < 4.2	4.2 4.2
1,2-Dichloropropane	78-87-5	ug/Kg	20	2,300	3,100	20	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
1,3,5-Trimethylbenzene	108-67-8	ug/Kg	8,400	47,000	52,000	8,400	2,000	350	740	220	350	330	47	320	2,600	200	1.2	5.9	< 4.2	4.2
1,3-Dichlorobenzene	541-73-1	ug/Kg	2,400	17,000	49,000	2,400	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
1,3-Dichloropropane	142-28-9	ug/Kg	4 000		40.000	4.000	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
1,4-Dichlorobenzene 1,4-dioxane	106-46-7 123-91-1	ug/Kg ug/kg	1,800 100	9,800 9,800	13,000 13,000	1,800 100	< 350 < 7100	350 7,100	< 220 < 4400	220 4,400	< 330 < 6500	330 6.500	< 4.8 < 95	4.8 95	< 200 < 4000	200 4,000	< 5.9 < 100	5.9 100	< 4.2 < 84	4.2 84
2,2-Dichloropropane	594-20-7	ug/Kg	200	3,000	15,500	100	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
2-Chlorotoluene	95-49-8	ug/Kg					< 350	350	< 220	220	110	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
2-Hexanone	591-78-6	ug/Kg					< 1800	1,800	< 1100	1,100		1,600	< 24	24	< 1000	1,000	< 29	29	< 21	21
2-Isopropyltoluene	527-84-4	ug/Kg					58	350	1,500	220	< 330	330	0.96	4.8	120	200	0.92	5.9	< 4.2	4.2
4-Chlorotoluene	106-43-4 108-10-1	ug/Kg					< 350 < 1800	350 1,800	< 220 < 1100	220 1,100	49 < 1600	330 1,600	< 4.8 < 24	4.8 24	< 200 < 1000	200 1,000	< 5.9 < 29	5.9 29	< 4.2 < 21	4.2 21
4-Methyl-2-pentanone Acetone	67-64-1	ug/Kg ug/Kg	50	100,000	100,000	50	360	3,500	< 220	220	440	3,200	68	48	< 200	200	62	50	40	42
Benzene	71-43-2	ug/Kg	60	2,900	4,800	60	480	350	860	220	430	330	< 4.8	4.8	21	60	< 5.9	5.9	< 4.2	4.2
Bromobenzene	108-86-1	ug/Kg					< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
Bromochloromethane	74-97-5	ug/Kg					< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
Bromodichloromethane	75-27-4 75-25-2	ug/Kg					< 350	350 350	< 220	220 220	< 330	330	< 4.8	4.8	< 200 < 200	200 200	< 5.9	5.9	< 4.2	4.2 4.2
Bromoform Bromomethane	74-83-9	ug/Kg ug/Kg					< 350 < 350	350	< 220 < 220	220	< 330 < 330	330 330	< 4.8 < 4.8	4.8 4.8	< 200	200	< 5.9 < 5.9	5.9 5.9	< 4.2 < 4.2	4.2
Carbon Disulfide	75-15-0	ug/Kg					< 350	350	< 220	220	< 330	330	3.5	4.8	< 200	200	1.7	5.9	1.5	4.2
Carbon tetrachloride	56-23-5	ug/Kg	760	1,400	2,400	760	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
Chlorobenzene	108-90-7	ug/Kg	1,100	100,000	100,000	1,100	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
Chloroethane	75-00-3	ug/Kg					< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
Chloroform Chloromethane	67-66-3 74-87-3	ug/Kg ug/Kg	370	10,000	49,000	370	< 350 < 350	350 350	< 220 < 220	220 220	< 330 < 330	330 330	< 4.8 < 4.8	4.8 4.8	< 200 < 200	200 200	< 5.9 < 5.9	5.9 5.9	< 4.2 < 4.2	4.2 4.2
cis-1,2-Dichloroethene	156-59-2	ug/Kg	250	59,000	100,000	250	< 250	250	< 220	220	< 250	250	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
cis-1,3-Dichloropropene	10061-01-5	ug/Kg		,			< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
Dibromochloromethane	124-48-1	ug/Kg					< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
Dibromomethane	74-95-3	ug/Kg					< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
Dichlorodifluoromethane Ethylhograpa	75-71-8 100-41-4	ug/Kg	1 000	30,000	41,000	1 000	< 350 510	350 350	< 220	220 4.400	< 330 230	330 330	< 4.8 < 4.8	4.8 4.8	< 200 350	200 200	< 5.9 < 5.9	5.9 5.9	< 4.2 < 4.2	4.2 4.2
Ethylbenzene Hexachlorobutadiene	87-68-3	ug/Kg ug/Kg	1,000	30,000	41,000	1,000	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
Isopropylbenzene	98-82-8	ug/Kg					110	350	2,800	220	53	330	40	320	270	200	< 5.9	5.9	< 4.2	4.2
m&p-Xylene	179601-23-1	ug/Kg					3,000	350	8,000	220	1,800	330	91	320	1,300	200	< 5.9	5.9	< 4.2	4.2
Methyl Ethyl Ketone	78-93-3	ug/Kg	120	100,000	100,000	120	< 350	350	< 220	220	< 330	330	< 29	29	< 200	200	15	35	8.4	25
Methyl t-butyl ether (MTBE) Methylene chloride	1634-04-4 75-09-2	ug/Kg ug/Kg	930 50	62,000 51,000	100,000 100,000	930 50	< 710 < 350	710 350	280 < 22	440 22	< 650 < 330	650 330	< 9.5 < 4.8	9.5 4.8	130 < 200	400 200	9.7 < 5.9	12 5.9	< 8.4 < 4.2	8.4 4.2
Naphthalene	91-20-3	ug/Kg	30	31,000	100,000	30	910	350	46,000	4,400	1,300	330	< 4.8	4.8	13,000	4,000	140	360	< 4.2	4.2
n-Butylbenzene	104-51-8	ug/Kg	12,000	100,000	100,000	12,000	210	350	7,400	4,400	60	330	96	320	880	200	< 5.9	5.9	< 4.2	4.2
n-Propylbenzene	103-65-1	ug/Kg	3,900	100,000	100,000	3,900	380	350	9,100	4,400	140	330	180	320	830	200	< 5.9	5.9	< 4.2	4.2
o-Xylene	95-47-6	ug/Kg					480	350	870	220	630	330	< 4.8	4.8	1,300	200	< 5.9	5.9	< 4.2	4.2
p-Isopropyltoluene sec-Butylbenzene	99-87-6 135-98-8	ug/Kg ug/Kg	11,000	100,000	100,000	11,000	140 88	350 350	450 2,700	220 220	86 38	330 330	< 4.8 79	4.8 320	440 600	200 200	320 < 5.9	300 5.9	< 4.2 < 4.2	4.2 4.2
Styrene	100-42-5	ug/Kg	11,000	100,000	100,000	11,000	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
tert-Butylbenzene	98-06-6	ug/Kg	5,900	100,000	100,000	5,900	< 350	350	130	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	0.53	4.2
Tetrachloroethene	127-18-4	ug/Kg	1,300	5,500	19,000	1,300	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
Tetrahydrofuran (THF) Toluene	109-99-9 108-88-3	ug/Kg ug/Kg	700	100,000	100,000	700	< 710 1,200	710 350	< 440 7,500	440 4,400	< 650 <b>790</b>	650 330	< 9.5 1.1	9.5 4.8	< 400 260	400 200	< 12 < 5.9	12 5.9	< 8.4 < 4.2	8.4 4.2
trans-1,2-Dichloroethene	156-60-5	ug/Kg ug/Kg	190	100,000	100,000	190	< 190	190	< 190	4,400 190	< 190	190	< 4.8	4.8	< 190	190	< 5.9	5.9	< 4.2	4.2
trans-1,3-Dichloropropene	10061-02-6	ug/Kg		-,-00	,		< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
trans-1,4-dichloro-2-butene	110-57-6	ug/Kg					< 710	710	< 440	440	< 650	650	< 9.5	9.5	< 400	400	< 12	12	< 8.4	8.4
Trichloroethene	79-01-6	ug/Kg	470	10,000	21,000	470	< 350	350	< 220	220	< 330	330	< 4.8	4.8	< 200	200	< 5.9	5.9	< 4.2	4.2
Trichlorofluoromethane Trichlorotrifluoroethane	75-69-4 76-13-1	ug/Kg					< 350	350 350	< 220	220 220	< 330 < 330	330 330	< 4.8 < 4.8	4.8	< 200 < 200	200	< 5.9	5.9	< 4.2 < 4.2	4.2 4.2
Vinyl chloride	76-13-1 75-01-4	ug/Kg ug/Kg	20	210	900	20	< 350 < 35	350 35	< 220 < 22	220	< 330	330	< 4.8 < 4.8	4.8 4.8	< 200	200 20	< 5.9 < 5.9	5.9 5.9	< 4.2 < 4.2	4.2
1,1,1,2-Tetrachloroethane	630-20-6	ug/Kg	20	210	300	20	< 1400	1,400	< 880	880		1,300	< 4.8	4.8	< 800	800	< 24	24	< 17	17
Acrolein	107-02-8	ug/Kg					< 1400	1,400	< 880	880		1,300	< 19	19	< 800	800	< 24	24	< 17	17
Acrylonitrile	107-13-1	ug/Kg					< 1400	1,400	< 880	880		1,300	< 9.5	9.5	< 800	800	< 24	24	< 17	17
Tert-butyl alcohol	75-65-0	ug/Kg					< 7100	7,100	< 4400	4,400	< 6500	6,500	< 95	95	< 4000	4,000	120	120	< 84	84
Semivolatiles By SW8270D	92 22 0	ua/Va	08 000	100,000	100.000	20.000	2,500	2 700	< 2500	2,500	- 260	260	< 270	270	15 000	2,400	600	270	< 280	280
Acenaphthene Acenaphthylene	83-32-9 208-96-8	ug/Kg ug/Kg	98,000 107,000	100,000	100,000 100,000	20,000 100,000	< 2700	2,700 2,700	< 2500	2,500	< 260 < 260	260 260	< 270	270 270	15,000 < 2400	2,400	190	270	< 280	280
Anthracene	120-12-7	ug/Kg	1,000,000	100,000	100,000	100,000	5,900	2,700	< 2500	2,500	150	260	< 270	270	19,000	2,400	2,000	270	< 280	280
Benz(a)anthracene	56-55-3	ug/Kg	1,000	1,000	1,000	1,000	8,800	2,700	< 1000	1,000	270	260	240	270	38,000	2,400	3,600	270	< 280	280
Benzo(a)pyrene	50-32-8	ug/Kg	22,000	1,000	1,000	1,000	6,100	2,700	< 1000	1,000	210	260	230	270	37,000	2,400	2,900	270	< 280	280
Benzo(b)fluoranthene	205-99-2	ug/Kg	1,700	1,000	1,000	1,000	5,300	2,700	< 1000	1,000	310	260	250	270	36,000	2,400	2,700	270	< 280	280
Benzo(ghi)perylene	191-24-2	ug/Kg	1,000,000		100,000	100,000	2,800 6,200	2,700 2,700	< 2500 < 1000	2,500 1,000	190 220	260 260	230 190	270 270	21,000 34,000	2,400 2,400	1,200 2,500	270 270	< 280 < 280	280 280
Benzo(k)fluoranthene Chrysene	207-08-9 218-01-9	ug/Kg ug/Kg	1,700 1,000	1,000 1,000	3,900 3,900	800 1,000	8,300	2,700	1,000	1,000	370	260	280	270	40,000	2,400	3,500	270	< 280	280
Dibenz(a,h)anthracene	53-70-3	ug/Kg ug/Kg	1,000,000		3,900	330	< 2700	2,700	< 1000	1,000	< 260	260	< 270	270	5,400	2,400	260	270	< 280	280
Fluoranthene	206-44-0	ug/Kg	1,000,000		100,000	100,000	21,000	2,700	1,800	2,500	810	260	540	270	85,000	#####	7,900	270	< 280	280
Fluorene	86-73-7	ug/Kg	386,000	100,000	100,000	30,000	4,100	2,700	1,700	2,500	150	260	< 270	270	12,000	2,400	1,100	270	< 280	280
Indeno(1,2,3-cd)pyrene	193-39-5	ug/Kg	8,200	500	500	500	3,300	2,700	< 1000	1,000	190	260	240	270	24,000	2,400	1,600	270	140	280
Naphthalene Phenanthrene	91-20-3 85-01-8	ug/Kg ug/Kg	12,000 1,000,000	100,000 100,000	100,000 100,000	12,000 100,000	1,500 22,000	2,700 2,700	3,700	2,500 2,500	360 640	260 260	< 270 250	270 270	5,900 88,000	2,400 #####	290 6,400	270 270	< 280 < 280	280 280
Pyrene	85-01-8 129-00-0	ug/Kg ug/Kg	1,000,000		100,000	100,000	17,000		2,500	2,500	880	260	480	270		#####	6,400	270	< 280	280
,	00 0	-01.0	-,0,000	,000	,000	,000	2.,000	_,. 00	_,500	_,500	230	-50	.50	_, _	. 2,000		2, 100			

Result Detected

Result Exceeds Criteria

Table 2 Soil Analytical Results Total Metals, PCBs Pesticides

Project Id : 1346 BLONDELL AVE BRON	v						BN43 5/26/2 B1 (0 Sol	2016 )-2)	BN43 5/26/2 B2 (0 Soli	2016 -2)	BN43 5/26/2 B4 (0 Soli	2016 )-2)	BN43 5/26/ B6 (1 Sol	2016 3)	BN43 5/26/2 B10 ( Sol	2016 0-2)
Project Id . 1340 BLONDLLE AVE BROW	CAS	Units	NY-GWP	NY-Res.	NY-ResRestrict	NY-UnRestricted	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Miscellaneous/Inorganics																
Percent Solid	PHNX - PCTSOLID	%					87		93		93		91		93	
Metals, Total																
Arsenic	7440-38-2	mg/Kg	16	16	16	13	6.7	0.8	4.5	0.7	3.6	0.7	5.8	0.7	4.4	0.7
Barium	7440-39-3	mg/Kg	820	350	400	350	268	0.8	77.1	0.7	96.9	0.7	159	0.7	92.5	0.7
Cadmium	7440-43-9	mg/Kg	7.5	2.5	4.3	2.5	2.3	0.39	1.19	0.34	0.74	0.36	0.87	0.33	0.97	0.35
Chromium	7440-47-3	mg/Kg				30	34.8	0.39	22.1	0.34	22.3	0.36	23	0.33	23.1	0.35
Lead	7439-92-1	mg/Kg	450	400	400	63	700	7.8	104	0.7	103	0.7	210	6.5	111	0.7
Mercury	7439-97-6	mg/Kg	0.73	0.81	0.81	0.18	0.25	0.03	0.05	0.03	0.06	0.03	0.19	0.03	0.09	0.03
Selenium	7782-49-2	mg/Kg	4	36	180	3.9	< 1.6	1.6	< 1.4	1.4	< 1.4	1.4	< 1.3	1.3	< 1.4	1.4
Silver	7440-22-4	mg/Kg	8.3	36	180	2	< 0.39	0.39	< 0.34	0.34	< 0.36	0.36	< 0.33	0.33	< 0.35	0.35
PCBs By SW8082A																
PCB-1016	12674-11-2	ug/Kg		1,000		100	< 75	75	< 70	70	< 71	71	< 72	72	< 71	71
PCB-1221	11104-28-2	ug/Kg		1,000		100	< 75	75	< 70	70	< 71	71	< 72	72	< 71	71
PCB-1232	11141-16-5	ug/Kg		1,000		100	< 75	75	< 70	70	< 71	71	< 72	72	< 71	71
PCB-1242	53469-21-9	ug/Kg		1,000		100	< 75	75	< 70	70	< 71	71	< 72	72	< 71	71
PCB-1248	12672-29-6	ug/Kg		1,000		100	< 75	75	< 70	70	< 71	71	< 72	72	< 71	71
PCB-1254	11097-69-1	ug/Kg		1,000		100	210	75	< 70	70	< 71	71	< 72	72	< 71	71
PCB-1260	11096-82-5	ug/Kg		1,000		100	< 75	75	< 70	70	< 71	71	110	72	< 71	71
PCB-1262	37324-23-5	ug/Kg					< 75	75	< 70	70	< 71	71	< 72	72	< 71	71
PCB-1268	11100-14-4	ug/Kg					< 75	75	< 70	70	< 71	71	< 72	72	< 71	71
Pesticides - Soil By SW8081B																
4,4' -DDD	72-54-8	ug/Kg	14,000	2,600	13,000	3.3	< 2.3	2.3	< 2.8	2.8	< 2.1	2.1	< 3.0	3.0	< 21	21
4,4' -DDE	72-55-9	ug/Kg	17,000	1,800	8,900	3.3	< 4.0	4.0	< 2.1	2.1	< 2.1	2.1	< 5.0	5.0	< 21	21
4,4' -DDT	50-29-3	ug/Kg	136,000	1,700	7,900	3.3	< 15	15	< 2.1	2.1	< 3.0	3.0	< 10	10	< 21	21
a-BHC	319-84-6	ug/Kg	20	97	480	20	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 18	18
a-Chlordane	5103-71-9	ug/Kg	2,900	910	4,200	94	< 3.8	3.8	< 3.5	3.5	< 5.0	5.0	< 3.6	3.6	< 36	36
Aldrin	309-00-2	ug/Kg	190	19	97	5	< 3.8	3.8	< 3.5	3.5	< 3.5	3.5	< 3.6	3.6	< 18	18
b-BHC	319-85-7	ug/Kg	90	72	360	36	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 18	18
Chlordane	57-74-9	ug/Kg					< 38	38	< 35	35	< 200	200	< 36	36	< 360	360
d-BHC	319-86-8	ug/Kg	250	100,000	100,000	40	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 18	18
Dieldrin	60-57-1	ug/Kg	100	39	200	5	< 5.0	5.0	< 3.5	3.5	< 3.5	3.5	< 3.6	3.6	< 11	11
Endosulfan I	959-98-8	ug/Kg	102,000	4,800	24,000	2,400	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 71	71 71
Endosulfan II	33213-65-9 1031-07-8	ug/Kg	102,000	4,800	24,000	2,400	< 7.5	7.5 7.5	< 7.0 < 7.0	7.0 7.0	< 7.1 < 7.1	7.1 7.1	< 7.2 < 7.2	7.2 7.2	< 71 < 71	71 71
Endosulfan sulfate Endrin	72-20-8	ug/Kg ug/Kg	1,000,000 60	4,800 2,200	24,000 11,000	2,400 14	< 7.5 < 7.5	7.5 7.5	< 7.0 < 7.0	7.0	< 7.1 < 7.1	7.1	< 7.2 < 7.2	7.2	< 36	36
Endrin aldehyde	7421-93-4	ug/Kg ug/Kg	00	2,200	11,000	14	< 10	10	< 15	15	< 7.1	7.1	< 7.2	7.2	< 71	71
Endrin alderryde Endrin ketone	53494-70-5	ug/Kg ug/Kg					< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 71	71
g-BHC	58-89-9	ug/Kg	100	280	1,300	100	< 1.5	1.5	< 1.4	1.4	< 1.4	1.4	< 1.4	1.4	< 14	14
g-Chlordane	5103-74-2	ug/Kg	200		2,000	100	< 3.8	3.8	< 10	10	< 10	10	< 3.6	3.6	< 36	36
Heptachlor	76-44-8	ug/Kg	380	420	2,100	42	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 36	36
Heptachlor epoxide	1024-57-3	ug/Kg			,	· <del>-</del>	< 7.5	7.5	< 7.0	7.0	< 7.1	7.1	< 7.2	7.2	< 71	71
Methoxychlor	72-43-5	ug/Kg					< 38	38	< 35	35	< 35	35	< 36	36	< 360	360
Toxaphene	8001-35-2	ug/Kg					< 150	150	< 140	140	< 140	140	< 140	140	< 1400	1,400

Result Detected
Result Exceeds Criteria

Table 3 Groundwater Analytical Results Volatile Organic Compounds

					BN43 5/26/2 GW Ground	2016 1	BN430 5/26/2 GW Ground \	016 2	BN43 5/26/2 GW Ground	2016 ' 3	BN43 5/26/2 GW Ground	2016 4	BN430 5/26/2 GW Ground	2016
Project Id: 1346 BLONDELL AVE BRONX	CAS	Units	TAGM-GW	TOGS-WQ/GA	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Volatiles By SW8260C														
1,1,1,2-Tetrachloroethane	630-20-6	ug/L		5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,1,1-Trichloroethane	71-55-6	ug/L	5	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
1,1,2,2-Tetrachloroethane	79-34-5	ug/L	5	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,1,2-Trichloroethane	79-00-5	ug/L		1	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0
1,1-Dichloroethane	75-34-3	ug/L	5	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
1,1-Dichloroethene	75-35-4 563-58-6	ug/L	5	5 5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0 1.0	< 2.0 < 2.0	2.0 2.0
1,1-Dichloropropene 1,2,3-Trichlorobenzene	87-61-6	ug/L ug/L		5	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0	< 2.0	2.0
1,2,3-Trichloropenzene	96-18-4	ug/L ug/L	5	0.04	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,2,4-Trichlorobenzene	120-82-1	ug/L	3	0.04	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,2,4-Trimethylbenzene	95-63-6	ug/L		5	0.36	1.0	7.5	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,2-Dibromo-3-chloropropane	96-12-8	ug/L		0.04	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,2-Dibromoethane	106-93-4	ug/L		0.0006	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,2-Dichlorobenzene	95-50-1	ug/L	4.7		< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,2-Dichloroethane	107-06-2	ug/L	5	0.6	< 0.60	0.60	< 0.60	0.60	< 0.60	0.60	< 0.60	0.60	< 0.6	0.6
1,2-Dichloropropane	78-87-5	ug/L		1	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0
1,3,5-Trimethylbenzene	108-67-8	ug/L		5	< 1.0	1.0	4.4	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,3-Dichlorobenzene	541-73-1	ug/L	5	3	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,3-Dichloropropane	142-28-9	ug/L	5	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
1,4-Dichlorobenzene 2,2-Dichloropropane	106-46-7 594-20-7	ug/L	5	5	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0	< 2.0 < 2.0	2.0 2.0
2-Chlorotoluene	95-49-8	ug/L ug/L		5	< 1.0	1.0	< 1.0 < 1.0	1.0	< 1.0	1.0	< 1.0	1.0 1.0	< 2.0	2.0
2-Hexanone	591-78-6	ug/L ug/L		50	< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 5.0	5.0
2-Isopropyltoluene	527-84-4	ug/L		5	< 1.0	1.0	1.1	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
4-Chlorotoluene	106-43-4	ug/L		5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
4-Methyl-2-pentanone	108-10-1	ug/L	50		< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 5.0	5.0
Acetone	67-64-1	ug/L	50	50	4.1	5.0	7	5.0	2.9	5.0	6.4	5.0	8.8	10
Acrolein	107-02-8	ug/L		5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
Acrylonitrile	107-13-1	ug/L		5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
Benzene	71-43-2	ug/L	0.7	1	0.28	0.70	19	0.70	< 0.70	0.70	< 0.70	0.70	< 0.7	0.7
Bromobenzene	108-86-1	ug/L		5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Bromochloromethane Bromodichloromethane	74-97-5 75-27-4	ug/L		5 50	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 2.0 < 2.0	2.0 2.0
Bromoform	75-27-4 75-25-2	ug/L ug/L		50	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 10	10
Bromomethane	74-83-9	ug/L		5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
Carbon Disulfide	75-15-0	ug/L	50	-	0.3	1.0	0.32	1.0	< 1.0	1.0	0.25	1.0	< 2.0	2.0
Carbon tetrachloride	56-23-5	ug/L	5	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Chlorobenzene	108-90-7	ug/L	5	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
Chloroethane	75-00-3	ug/L	50	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
Chloroform	67-66-3	ug/L	7	7	< 5.0	5.0	< 5.0	5.0	0.51	5.0	< 5.0	5.0	< 5.0	5.0
Chloromethane	74-87-3	ug/L		5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
cis-1,2-Dichloroethene	156-59-2	ug/L		5	6	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
cis-1,3-Dichloropropene Dibromochloromethane	10061-01-5 124-48-1	ug/L	EO	0.4 50	< 0.40	0.40	< 0.40	0.40	< 0.40	0.40	< 0.40	0.40	< 0.4	0.4
Dibromomethane	74-95-3	ug/L ug/L	50	5	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 2.0 < 2.0	2.0 2.0
Dichlorodifluoromethane	75-71-8	ug/L		5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Ethylbenzene	100-41-4	ug/L	5	5	< 1.0	1.0	7.1	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Hexachlorobutadiene	87-68-3	ug/L		0.5	< 0.50	0.50	< 0.50	0.50	< 0.50	0.50	< 0.50	0.50	< 0.5	0.5
Isopropylbenzene	98-82-8	ug/L		5	< 1.0	1.0	35	10	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
m&p-Xylene	179601-23-1	ug/L			< 1.0	1.0	19	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Methyl ethyl ketone	78-93-3	ug/L	50	50	< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 5.0	5.0
Methyl t-butyl ether (MTBE)	1634-04-4	ug/L			8.1	1.0	12	1.0	1.5	1.0	< 1.0	1.0	14	2.0
Methylene chloride	75-09-2	ug/L	5	5	< 3.0	3.0	< 3.0	3.0	< 3.0	3.0	< 3.0	3.0	< 5.0	5.0
Naphthalene n-Butylbenzene	91-20-3 104-51-8	ug/L ug/L	5	10 5	< 1.0 < 1.0	1.0 1.0	3.9 2	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 2.0 < 2.0	2.0 2.0
n-Propylbenzene	103-65-1	ug/L ug/L		5	< 1.0	1.0	51	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
o-Xylene	95-47-6	ug/L	5	5	< 1.0	1.0	4.7	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
p-lsopropyltoluene	99-87-6	ug/L		5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	3	2.0
sec-Butylbenzene	135-98-8	ug/L		5	< 1.0	1.0	3.1	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Styrene	100-42-5	ug/L		5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
tert-Butylbenzene	98-06-6	ug/L		5	< 1.0	1.0	0.27	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Tetrachloroethene	127-18-4	ug/L	5	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Tetrahydrofuran (THF)	109-99-9	ug/L		50	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 10	10
Toluene	108-88-3	ug/L	5	5	< 1.0	1.0	6.4	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
trans-1,2-Dichloroethene	156-60-5	ug/L	5	5	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	5.0
trans-1,3-Dichloropropene	10061-02-6	ug/L		0.4	< 0.40	0.40	< 0.40	0.40	< 0.40	0.40	< 0.40	0.40	< 0.4	0.4
trans-1,4-dichloro-2-butene Trichloroethene	110-57-6 79-01-6	ug/L	5	5 5	< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 2.5	2.5	< 5.0	5.0
Trichlorofluoromethane	75-69-4	ug/L ug/L	э	5 5	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 1.0 < 1.0	1.0 1.0	< 2.0 < 2.0	2.0 2.0
Trichlorotrifluoroethane	76-13-1	ug/L ug/L	5	5	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
Vinyl chloride	75-01-4	ug/L	2	2	0.81	1.0	< 1.0	1.0	< 1.0	1.0	< 1.0	1.0	< 2.0	2.0
	'	O/ =	=	=										

Result Detected
Result Exceeds Criteria

# APPENDIX - B Soil Boring Logs



				17SB	1 Borii	ng Log							
Location: 35' off	of the No	orthe	eastern ı	property bou			Depth t	o Water	Site Elevation Datum				
				boundary	,			n grade.)					
Site Name: ECI160			Address				Date	DTW	Ground Elevation				
			1346 Blo	ondell Avenu	ie, Bron	<							
							Groun	dwater					
Drilling Company:				Method:			de	pth					
								•					
C2 Environmental				Geoprobe 6	3712DT	T 5' Well Specifications							
Date Started:				Date Comp									
2/26/2018				2/26/2018					None				
Completion Depth:				Geologist									
15 feet BSG					y Balad	)							
17SB1	DEPTH			SAMPLES									
	(ft belov		Reco-	Blow			SOIL	DESCRIF	PTION				
(NTS)	grade)	)	very	per	PID								
			(in.)	6 in.	(ppm)								
	0	$\dashv$											
		$\exists$											
	to	$\exists$											
		4	14		0.0	14" - As	sphalt wi	th dry bro	wn sandy silt				
	<b>-</b> 5	$\dashv$											
	- 3	+											
	-	$\dashv$											
	– to	-	10		800.0	0 10" - Wet brown/black sandy clay with rock							
		$\neg$							, ,				
	10	$\Box$				*Retained	d Soil Sam	ple 17SB1(	(5-7)				
	L	$\dashv$				47" \							
	– to	$\dashv$	40		2.6		et gray o	ciay sand with	nahhlas				
	-	$\dashv$	40		2.0	25 - 11	et gray s	sand with	pennies				
	15	$\neg$				*Retained	d soil sam	ole 17SB1(	12.5-15') and Soil Duplicate				
		$\Box$											
	L	_											
	_	_											
	F	=											
	F	+											
	F	ヿ											
		$\exists$											
	Ļ	$\Box$											
	L	4			igwdown								
	F	$\dashv$											
	H	$\dashv$											
	F	$\dashv$											
	<u> </u>	J											
	<u>[</u>	I				·							
	L	$\perp$											
	ļ.	$\dashv$											
	F	$\dashv$			1								
<u> </u>					1								



### ENVIRONMENTAL BUSINESS CONSULTANTS

17SB2 Boring Log

			1/58	2 Borii	ng Log					
Location: 25'	off Northwaste	ern prope	rty boundar	y, 70' off	of the	Depth 1	to Water	Site Elevation Datum		
Nort	theastern prop	ndary			(ft. fron	n grade.)				
Site Name: ECI	Northeastern property boundary ne: ECI1601 Address: 1346 Blondell Avenue, Bronx						DTW	Ground Elevation		
		1346 Blo	ondell Aven	ue, Bron	X					
						Groun	ndwater			
Drilling Compan	V:		Method:			de	pth			
	<b>,</b>						- F			
C2 Environment	· al		Cooprobo	6742DT			5'	Wall Charifications		
C2 Environment Date Started:	.aı		Geoprobe				<u> </u>	Well Specifications		
			Date Comp	pietea:			Nama			
2/26/2018	41	2/26/2018						None		
Completion Dep	ın:		Geologist	ny Dalad	_					
15 feet BSG			•	ny Balad	U					
17SB2	DEPTH		SAMPLES	5						
	,	ft below Reco- Blow				SOIL	DESCRI	PTION		
(NTS)	grade)	very	per	PID						
		(in.)	6 in.	(ppm)						
	0 -									
	- F ° -	1		0.0	7" - Dry	hlack s	ilt and roo	rk		
	to -	1		0.0	5" - Coi		iit and rot	SIX.		
	- F " -	21		2.5		ncrete/si	ilt miv			
		'		800.0		t black s				
	<b>├</b> 5	1		000.0		d Soil San	(2-4)			
					7.010.770	(- ')				
	-	1			1" - Dry					
	- to -	28		0.0	1" - Dry gray sand 25" - Wet dark gray silty clay 2" - Wet light gray silty clay *Retained Soil Sample 17SB2(5-7)					
	-	<b>1</b> − ~		0.0						
	10	1								
	-					,				
		1			28" - W	et grav s	sand and	silt		
	- to -	32		0.5-2			sand and			
	_	1								
	15				*Retaine	d soil sam	ple17SB2(1	12.5-15')		
		4								
	<b>-</b>	4								
	<u> </u>	4								
	-	4								
	-									
	-	1								
	_	1								
	_									
	L _									
	L _									
		4								
	-	1								
	F -	1								
		1								



			17SB	3 Borii	ng Log						
Location: 60' off Northwastern property boundary, 60' off of the Northeastern property boundary  Site Name: ECI1601 Address: 1346 Blondell Avenue, Bronx							to Water	Site Elevation Datum			
Northe	astern prop	erty bour	ndary			(ft. from	n grade.)				
						Date	DTW	Ground Elevation			
		1346 Bld	ondell Avenu	ie. Bron	x						
				,		Groun	dwater				
Drilling Company			Method:			4					
Drilling Company:			ivietriod.			ue	pth				
C2 Environmental			Geoprobe 6			,	5'	Well Specifications			
Date Started:			Date Comp	leted:							
2/26/2018			2/26/2018					None			
Completion Depth:			Geologist								
15 feet BSG			Tor	ny Balad	0						
17SB3	DEPTH		SAMPLES	;			· · · · · · · · · · · · · · · · · · ·				
	(ft below	Reco-	Blow			SOIL	DESCRIP	PTION			
(NTS)	grade)	very	per								
(1110)	giado	(in.)	6 in.	(ppm)							
		()	0	(PP111)							
	0										
					20" - As	sphalt bl	ack sand	mix			
	to				15" - C	oncrete					
		50		0.0	10" - As	sphalt/ta	r				
					5" - Dry	gray sa	nd				
	5										
	L _										
	- to -							k			
	L	29		0.0	1" - Dry gray silt with rock 20" - Wet dark gray clay 8 - Wet light gray clay						
	L _				8 - Wet light gray clay						
	10				8 - Wet light gray clay *Retained Soil Sample 17SB3(5-7)						
	L _										
	– to –	J			20" - W	et browr	n silty clay	/			
	L _	50		0.0	22" - W	et browr	n sand wi	th pebbles			
	L —						It with sto				
Ш	15				*Retaine	d soil sam _l	ple 17SB3(	12.5-15')			
	L _										
	L _										
	L _										
	<b>⊢</b> –	4									
	⊢ –										
	F -										
	F -										
	<b>⊢</b> –	4									
	⊢ –	4									
	⊢ –		-								
	<b>⊢</b> –										
	<b>⊢</b> –										
	F -	1									
	<b>-</b>	1									
	<b>-</b>	1									
<u> </u>											



### ENVIRONMENTAL BUSINESS CONSULTANTS

17SB4 Boring Log

			1/58	34 Borii	ng Log						
Location: 120' o	ff Northwas	tern prop	erty bounda	ry, 50' of	f of the	Depth t	o Water	Site Elevation Datum			
North	eastern prop	erty bou	ndary		(ft. from	n grade.)					
Site Name: ECI16	01	Address	3:			Date	DTW	Ground Elevation			
		1346 Blo	ondell Aven	ue, Bron	X						
						Groun	dwater				
Drilling Company:			Method:			-	pth				
9							F				
C2 Environmental			Geoprobe	6712DT		۱ .	5'	Wall Specifications			
Date Started:			Date Com			<u> </u>	5	Well Specifications			
2/26/2018				pieteu.				None			
Completion Depth		2/26/2018 Geologist						None			
15 feet BSG	•	Geologist Tony Balado									
17SB4	DEPTH	1	SAMPLES		<u> </u>						
17304		Door		) 		eou i	DESCRIF	OTION			
(NITC)	(ft below	Reco-						TION			
(NTS)	grade)	very	per								
		(in.)	6 in.	(ppm)							
	- o -	1									
	_				5" - Ası	phalt					
	to	1			6" - Co	ncrete					
		30		0.0	7" - Mo	ist black	silt				
		]			12" -Mo	oist brow	n clay wit	h brick			
	5 _										
	L _	_									
	- to -				17" - W	et dark o	gray clay				
	<u> </u>	30		0.0	17" - Wet dark gray clay 13" - Wet dark brown silty clay *Retained Soil Sample 17SB4(5-7)						
	10 -	1									
	F '0 -				Netairie	*Retained Soil Sample 17SB4(5-7)					
		1									
	– to –	30		0.0	30" - W	et browr	n/black sa	and with pebbles			
	F -	† **		0.0	00 11	OL DIOWI	i, bidok oc	and wan pobblee			
	15				*Retaine	d soil sam	ole 17SB4(	12.5-15') and Soil Duplicate 2			
	_	_									
	<b>-</b>	1									
	<u> </u>	1									
	_	_									
	_	_									
	<b>-</b>	4									
	-	_									
	-										
	_										
		]									
		]									
	<u> </u>										



### ENVIRONMENTAL BUSINESS CONSULTANTS

17SB5 Boring Log

			1/58	5 Born	ng Log							
			erty bounda	ry, 70' of	f of the		o Water	Site Elevation Datum				
	eastern prop	perty boui	ndary				grade.)					
Site Name: ECI16	01	Address	s:			Date	DTW	Ground Elevation				
		1346 Blo	ondell Aven	ue, Bron	X							
						Groun	dwater					
Drilling Company:		<u> </u>	Method:			de	pth					
C2 Environmental			Geoprobe	6712DT			5'	Well Specifications				
Date Started:						`	,	Won opcomoducino				
2/26/2018		Date Completed:						None				
Completion Depth:												
15 feet BSG												
17SB5	DEPTH	H SAMPLES										
11020	(ft below						DESCRIF	PTION				
(NTS)	grade)	v Reco- Blow										
()	9.000)		(in.)   per   PID   (ppm)									
	[ 0 <u></u>				411 4							
	<u> </u>	4			1" - Ası							
	to _	E0		0.0		ry brown	silt					
	<b>-</b>	50		0.0	5" - Co 10" - As							
	- ₅ -						black silt					
	F ~ -	1										
	<b>-</b>											
	- to -	30		0.0								
	10				*Retained Soil Sample 17SB5(5-7)							
	L _	4										
	– to –	40			4011 14	, , ,						
	<u> </u>	10		0.0	10" - VV	et brown	sand					
	15	+										
	- ''  -											
	-	1										
	_	1										
	_	1										
	_											
		4										
	_	4										
	-	4										
	<b>-</b>			_								
	<b>-</b>	-										
	_	1										
	-	1										
		1										
				,								
	<u> </u>	4										
	<b>-</b>	1										
	<b>1</b>	1	1		Ī							



			17SB	6 Borii	ng Log					
Location: 9' from	garage e	ntrance, 9	' from northy	vest wall	of	Depth 1	to Water	Site Elevation Datum		
garage	•					(ft. fron	n grade.)			
Site Name: ECI16	01	Address	3:			Date	DTW	Ground Elevation		
		1346 BI	ondell Avenu	ie, Bron	X					
						Groun	dwater			
Drilling Company:		•	Method:			de	pth			
C2 Environmental			Geoprobe 6	6712DT			5'	Well Specifications		
Date Started:			Date Comp							
3/1/2018			3/1/2018					None		
Completion Depth:			Geologist							
6 feet BSG				mas Ga	llo					
17SB6	DEPTH		SAMPLES	;						
	(ft below		Blow			SOIL	DESCRIF	PTION		
(NTS)	grade)	very	per	PID						
		(in.)	6 in.	(ppm)						
	0									
	to					wn silty				
	-	17		0.0	8" - Dai	mp brow	n silty cla	У		
	- 4									
					*Retaine	*Retained Soil Sample 17SB6(0-2')				
	– to –	18		0.0	18" - W	et browi	n silty san	d with rock		
	6				18" - Wet brown silty sand with rock  *Retained Soil Sample 17SB6(4-6')					
	<u> </u>									
		_			Refusa	l at 8'				
	-									
	_									
		_								
	_									
	-									
	[									
	-									
	<u> </u>									
	-									
		<b>_</b>								
	<u> </u>	_								
	F -	-								
	<b>-</b>			1						



			17SB	7 Borii	ng Log						
Location: 14' off the property boundary bordering lot 10, 12' off of the building to the West.							to Water	Site Elevation Datum			
the bu	uilding to the	e West.				(ft. fron	n grade.)				
Site Name: ECI16	301	Address	3:			Date	DTW	Ground Elevation			
		1346 Bl	ondell Avenu	ue, Bron	X						
						Grour	dwater				
Drilling Company:			Method:			de	pth				
C2 Environmental			Geoprobe (	6712DT			5'	Well Specifications			
Date Started:			Date Comp	oleted:			N				
2/26/2018			2/26/2018					None			
Completion Depth	1:		Geologist	<b>.</b>							
15 feet BSG	T = ===::	1		ny Balad	0						
17SB7	DEPTH		SAMPLES	5		0011	DECODI	STION			
(NITC)	(ft below		Blow	DID		SOIL	DESCRI	TION			
(NTS)	grade)	grade) very per PID (in.) 6 in. (ppm)									
	_	(111.)	0 111.	(ррпі)							
	0										
					400 14		,				
	- to -	30		0.0			n/gray sai				
		- 30		0.0	20 - VV	et brown	n sand wi	ın cıay			
	5 -				*Retaine	d Soil San	nple 17SB7	(2-4)			
						med Soil Sample 17SB7(2-4)					
	- to -				20" - W	20" - Wet brown sandy clay 15" - Wet black/brown sand *Retained Soil Sample 17SB7(5-7)					
		35		0.0	15" - W						
	10				*Retaine						
	<u> </u>				00" \		. /				
	– to –	35		0.0	20" - VV 15" - St		n/dark bro	own sand			
	-	- "		0.0	10 - 01	OHC					
	15				*Retaine	d soil sam	ple 17SB7(	12.5-15')			
	_										
	[ _										
	<u> </u>										
		1									
		4									
	<b>-</b>										
	<b>+</b> -										



			17SB	8 Borii	ng Log					
Location: 40' off	17SB8 Boring Log 0' off of the property boundary bordering lot 63, 90' off ne property boundary bordering lot 14						to Water			
						(ft. fron	n grade.)			
Site Name: ECI16	01	Address	s:			Date	DTW	Ground Elevation		
		1346 Bl	ondell Aveni	ue, Bron	X					
						Grour	dwater			
Drilling Company:			Method:			de	pth			
C2 Environmental			Geoprobe				5'	Well Specifications		
Date Started:			Date Comp	oleted:						
2/26/2018			2/26/2018			ļ		None		
Completion Depth:	:		Geologist	D. d. d						
10 feet BSG	LDEDTU	1		ny Balad	0					
17SB8	DEPTH	Dana	SAMPLES	<u> </u>		COII	DECODIE	OTION		
/NTC)	(ft below grade)	Reco-	Blow	PID		SOIL	DESCRIF	TION		
(NTS)	grade)	very (in.)	per 6 in.	(ppm)						
		(111.)	0 111.	(ppiii)						
	0 _									
	<u>-</u> -	4			411 104					
	to –	26		0.0	4" - VV6	et asphal	τ			
	-	<b>-</b>		0.0			brown as	phalt and silt mix		
	5					i y Diaoi	D. 0 W. 1 40	priore aria one mix		
	- to -			04.0	00" \		. //-     :			
		20		64.0	20" - Wet brown/black silty sand mix with					
	10				*Retaine	*Retained Soil Sample 17SB8(5-7)				
	<u> </u>				Refusa	l at 11'				
	-	1								
	_									
	<b>-</b>	-								
	F -									
	-	1								
	_	1								
		4								
	_	-								
	-	1								
	[ _			1						
	<u> </u>	-								
	F -	1								
	<b>F</b> -	1								
			]	1						



		17SB	9 Boriı	ng Log						
Location: 26' off of the property boundary bordering lot 63, 70' off							Site Elevation Datum			
the property boundary bordering lot 14 Site Name: ECI1601 Address:										
01						DTW	Ground Elevation			
1346 Blondell Avenue, Bronx										
					Groundwater					
Drilling Company:			Method:			pth				
				5' Well Specifications						
· · · · · · · · · · · · · · · · · · ·					None					
				1		None				
			y Balad	0						
					<u> </u>	<u> </u>				
(ft below	Reco-	Blow					SOIL DESCRIPTION			
grade)	very	per	PID							
	(in.)	6 in.	(ppm)							
0 _	1									
			0.0							
to _	44									
<u> </u>	41									
5 -	1		0.0				(2-4)			
– to –	44		0.0	4411 \						
<u> </u>	111		0.0	11" - VV	I" - Wet gray silty clay					
10				*Retained Soil Sample 17SB9(5-7)						
<u> </u>	}			Refusa	at 11'					
_	]									
<u> </u>										
F -										
<u> </u>	-									
F =										
F -	1									
	]									
<u> </u>										
-  -	1									
├ <u>-</u>	1									
[										
<b>⊢</b> −	1									
h -	†									
t -	]									
	]									
F -	1									
	DEPTH (ft below grade)  - 0 - to	DEPTH (ft below grade) very (in.)  to 41  to 41  to 41  11	of the property boundary bordering lot 14 Of Address:  1346 Blondell Avenue  Method:  Geoprobe 6 Date Comp 2/26/2018  Geologist Tor  OFFIT SAMPLES (in.) 6 in.  - 0 41 - 5 41 - 5 41	of the property boundary bordering lot 63 perty boundary bordering lot 14 on 14 on 14 on 14 on 14 on 15 on 1	DEPTH   SAMPLES   Geologist   Tony Balado   Tony Balado   Tony Balado   DEPTH   (ft below grade)   Very per	of the property boundary bordering lot 63, 70' off perty boundary bordering lot 14 (ft. from Date of 1346 Blondell Avenue, Bronx (ft. ft. from Date of 1346 Blondell Avenue, Bronx (ft. ft. from Date of 1346 Blondell Avenue, Bronx (ft. ft. from Date of 1346 Blondell Avenue, Bronx (ft. ft. from Date of 1346 Blondell Avenue, Bronx (ft. ft. from Date of 1346 Blondell Avenue, Bronx (ft. ft. from Date of 1346 Blondell Avenue, Bronx (ft. ft. from Date of 1346 Blondell Avenue, Bronx (ft. ft. from Date of 1346 Blondell Avenue, Bronx (ft. ft. ft. from Date of 1346 Blondell Avenue, Bronx (ft. ft. ft. ft. ft. ft. ft. ft. ft. ft.	of the property boundary bordering lot 63, 70' off perty boundary bordering lot 14  In the property boundary bordering lot 14  In the property boundary bordering lot 14  In the property boundary bordering lot 63, 70' off perty boundary bordering lot 14  In the property boundary bordering lot 63, 70' off perty bate (ft. from grade.)  In the property boundary bordering lot 63, 70' off perty bate (ft. from grade.)  In the property boundary bordering lot 63, 70' off perty perd (ft. from grade.)  In the property boundary bordering lot 63, 70' off perty bate (ft. from grade.)  In the property boundary bordering lot 63, 70' off perty bate (ft. from grade.)  In the property boundary bordering lot 63, 70' off perty bate (ft. from grade.)  In the property boundary bordering lot 63, 70' off perty bate (ft. from grade.)  In the property boundary bordering lot 63, 70' off perty bate (ft. from grade.)  In the property boundary bordering lot 63, 70' off perty bate (ft. from grade.)  In the property boundary bate (ft. from grade.)  In the property boundary bate (ft. from grade.)  In the property bate (ft. from grade.)			



			17SB1	10 Bori	ng Log				
Location: 100' off of the property boundary bordering lot 63, 18' off the property boundary bordering lot 14						Depth to Water Site Elevation Datum (ft. from grade.)			
						Oranga Flanatian			
Site Name: ECI16	Address				Date	DTW	Ground Elevation		
		1346 Blo	ondell Avenu	ie, Bron	X	_			
		T		Groundwater					
Drilling Company:			Method:			de	pth		
C2 Environmental			Geoprobe 6712DT				5'	Well Specifications	
Date Started:			Date Completed:						
2/26/2018			2/26/2018					None	
Completion Depth:			Geologist						
15 feet BSG	_	_		ny Balad	0				
17SB10	DEPTH		SAMPLES						
(). <del></del> >	(ft below	Reco-	Blow			SOIL DESCRIPTION			
(NTS)	grade)	very	per	PID					
		(in.)	6 in.	(ppm)					
	0 _	<u> </u>							
	to	]					vn black s	silty sand	
		29		0.0	10" - Co	oncrete			
	- ₅ -				*Dotoino	d Cail Can	ania 17001	0/2 1) and Dan for MS/MSD	
	} ° −		<u> </u>		Retained	u Soli Sali	ipie 17361	0(2-4) and Ran for MS/MSD	
	<b>-</b>	1			7" - We	t aray s	and with o	rlav	
	- to -	11		0.0	7" - Wet gray sand with clay 6" - Wet black gray sandy clay				
	_					·	,	,	
	10				*Retained Soil Sample 17SB10(5-7)				
	_				4011 141				
	- to -	29		0.0	19" - Wet dark gray clay			مما	
	-	29		0.0	10" - Wet brown/black sand			ind	
	15								
	L _								
	<u> </u>	1	-						
	-								
	_								
	_								
	<b>⊢</b> –	1							
	<b>-</b>	4							
	F –	4							
	<b>-</b>	1							
	L –								
		]							
	L –	4							
	F -	4							
	F -	<del> </del>	<del> </del>						
		1	<u> </u>						

# <u>APPENDIX – C</u> Monitoring Well Completion Reports

**CONSTRUCTION LOG** 

MW1



ENVIRONMENTAL BUSINESS CONSULTANTS

Monitoring Well No.: MW1

Project: 1346 Blondell Ave. Bronx, NY

Depth to Groundwater: 5.21 ft. Date: 3/16/2018

Installation Depth: 12 ft bg

Survey Point Elevation: 3.07 ft.

<u>Installation Date:</u> 2/26/2018

<u>Drilling Contractor:</u> C2

<u>Installation Method:</u> Hollow Geoprobe Rods

Water Removed During Development:

<u>Hydrogeologist:</u> Anthony Balado

ENVIRONMENTAL BUSINESS CONSULTANTS

# **CONSTRUCTION LOG**

### MW2



1346 Blondell Ave. Bronx, NY

Date: 3/16/2018

Hollow Geoprobe Rods

**CONSTRUCTION LOG** 

MW3



ENVIRONMENTAL BUSINESS CONSULTANTS

Monitoring Well No.: MW3

Project: 1346 Blondell Ave. Bronx, NY

Depth to Groundwater: 3.53 Ft. Date: 3/16/2018

<u>Installation Depth:</u> 12 ft bg

Survey Point Elevation: 2.62 Ft.

Installation Date: 3/1/2018

<u>Drilling Contractor:</u> C2

<u>Installation Method:</u> Hollow Geoprobe Rods

Water Removed During Development:

<u>Hydrogeologist:</u> Thomas Gallo

**CONSTRUCTION LOG** 

MW4



ENVIRONMENTAL BUSINESS CONSULTANTS

Monitoring Well No.: MW4

Project: 1346 Blondell Ave. Bronx, NY

Depth to Groundwater: 3.30 Ft. Date: 3/16/2018

<u>Installation Depth:</u> 12 ft bg

Survey Point Elevation: 4.54 ft.

<u>Installation Date:</u> 2/26/2018

<u>Drilling Contractor:</u> C2

<u>Installation Method:</u> Hollow Geoprobe Rods

Water Removed During Development:

<u>Hydrogeologist:</u> Anthony Balado

**CONSTRUCTION LOG** 

MW5



ENVIRONMENTAL BUSINESS CONSULTANTS

Monitoring Well No.: MW5

Project: 1346 Blondell Ave. Bronx, NY

Depth to Groundwater: 5.01 Ft. Date: 3/16/2018

<u>Installation Depth:</u> 12 ft bg

Survey Point Elevation: 3.44 ft.

<u>Installation Date:</u> 2/26/2018

<u>Drilling Contractor:</u> C2

<u>Installation Method:</u> Hollow Geoprobe Rods

Water Removed During Development:

<u>Hydrogeologist:</u> Anthony Balado

# **GROUNDWATER MONITORING WELL** ENVIRONMENTAL BUSINESS CONSULTANTS

## **CONSTRUCTION LOG**

### MW6



# APPENDIX - D Groundwater Sampling Logs



ENVIRONMENTAL BUSINESS CONSULTANTS

Well I.D.: MWI

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume: x3 € 0,68

400ml/min.

Flow Rate:

Date:

3/20/2018

Equipment:

Peristaltic Pump, Horiba

12:58	12:53	12:48	12:43	12:38	12:33	12:30 400ml/mm	Time P
+						400 m 1/aum	ump Rate
3.4	8.6	2,2	1.6	-	0.4	0	Pump Rate Gal. Removed pH
6.51	6.50	6.49	6,46	6.42	6.35	6.30	рН
1,33	1.32	1,33	1.34	1.36	1.50	1.62	Cond. (mS/cm) Temp. (deg. C) DO (mg/L) ORP (mV
11.3)	11.31	11.31	11,61	10.82	8,78	8,65	Temp. (deg. C)
0,0	0.0	0,0	0.0	0.0	0.34	1.00	DO (mg/L)
38	39	Ch	49	66	106	118	ORP (mV)
37.3	89.4	266	814	608	266	+003	Turbidity (NTU) TDS
0.853	0.849	948.0	0.854	0.878	0,961	0.978	TDS
callected Sample	clear	light petrol oclar	light burbtelity	0.878 light 6rown/turbid	promy/sed truping	0.978 brawn/red turbit	Comments



# **GROUNDWATER PURGE / SAMPLE LOGS**

1346 Blondell Avenue Bronx NY

Well I.D.: MWD ENVIRONMENTAL BUSINESS CONSULTANTS

Well Depth (from TOC):  $\frac{12}{5_{\theta} 49}$ Static Water Level (from TOC):  $\frac{5_{\theta} 49}{6.51}$ Height of Water in Well:  $\frac{6.51}{0.65}$ 

Equipment:

Peristaltic Pump, Horiba

Date:

3/16/2018

400ml/min.

Flow Rate:

Time	Pump Rate	Pump Rate Gal. Removed pH	рН	Cond. (mS/cm) Temp. (deg. C) DO (mg/L)	Temp. (deg. C)	DO (mg/L)	ORP (mV)	Turbidity (NTU) TDS	TDS	Comments
17:00	400m1/m.m	0	6,43	0,864	9.03	1,23	-24	800	0.550	tubil, petrol odors
17:03	_	h.0	6.38	0.863	9.19	0.72	-50		635,0	light turbiding
80:17		-	6.44	0,863	9.21	0,71	-61	0,88	6.55.0	
17:13		1.6	14.9	198°0	4,24	0,70	-65	4.89	0.553	clear, petrol adar
17:18		2.2	6.46	0.866	16.9	0.69	-77	42,9	0.554	cleur, petrol odar
56:41	<	2.8	6.43	0,867	9,20	0.67	-74	23.5	0.555	clear, petrol ador
										collected Sample
										200

# **GROUNDWATER PURGE / SAMPLE LOGS**

1346 Blondell Avenue Bronx NY

Date:

3/16/2018

Equipment:

Peristaltic Pump, Horiba

Well I.D .: MW3 ENVIRONMENTAL BUSINESS CONSULTANTS

5.4.9 4.4.7 8.88

Gallons of Water per Well Volume:

Height of Water in Well:

Static Water Level (from TOC):

Well Depth (from TOC):

400ml/min.

Flow Rate:

		15:50	15:45	15:40	15:35	15:30	t(:31	MiSI	16:21	Time
		6							Goons/min	Pump Rate
		W	2.5	4	1.5	0.9	0.6	0.3	0	Pump Rate Gal. Removed pH
		6.58	6.60	6-61	6.46	6.8	6.98	25-1	7.31	рН
		862.0	0.239	852.0	0.135	0.239	10.24H		491.0	Cond. (mS/cm) Temp. (deg. C) DO (mg/L) ORP (mV)
		5.61	5.60	5.63	5.56	5.50	5.58	5.6	5.73	Temp. (deg. C)
		3.91	3.92	3.98	4.06	4.09	4.15	4.19	24.11	DO (mg/L)
		46	46	47	44	z	15	4	-35	ORP (mV)
		44	4	109	141	412	417	888	0.0	Turbidity (NTU) TDS
		0.154	D-184	0.158	8810	0.155	27.13	0.189	0.185	
		dear hallected say	deur	clear	clear	clear	0.157 clear	clear	Turbid	Comments



Well I.D.: MWH

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume: 

\$\frac{8}{4}76

Date: 3/16/2018

Equipment: Peristaltic Pump, Horiba

Flow Rate										
Time	Pump Rate	Gal. Removed	рH	Cond. (mS/cm)	Temp. (deg. C)	DO (mg/L)	ORP (mV)	Turbidity (NTU) TDS		Comments
11:37	400 ml/mm	0	6.99	185,0	8.09	282	23	8004	6.371	brown / burbid
11:40	-	6.4	6.87	0.615	8.04	0.0	30	625	0.403	0.403 brown/burbid
11: YS		-	6.91	0.592	8.92	0.0	29	104	0.378	
14:50		1.6	6.92	0,554	9.12	0.0	20	दा६	0.353	1196+ turbidity
11:55		ورو	6.91	845.0	9.25	0.0	15	h'88	0.351	clear
12:∞		න න	6.89	0.550	9,23	0.0	12	45,3	0.353	elear
50:05	e	3.4	68.0	0,554	9.25	0.0	10	26,2	0.349	collected sample
The second second					The state of the s		THE PERSON NAMED IN COLUMN NAM		Contract of the last	



ENVIRONMENTAL BUSINESS CONSULTANTS

Well I.D.: MW5

Static Water Level (from TOC): Well Depth (from TOC):

Gallons of Water per Well Volume:

Height of Water in Well:

4:0

Date:

3/16/2018

Equipment:

Peristaltic Pump, Horiba

Flow Rate:		400ml/min.								
Time	Pump Rate	Pump Rate Gal. Removed pH	рН	Cond. (mS/cm)	Cond. (mS/cm) Temp. (deg. C) DO (mg/L)	DO (mg/L)	ORP (mV)	Turbidity (NTU) TDS		Comments
00:41	mm /m 0031	0.0	6.63	in	9.52	4.85	-42	0.0	0	Turbid.
14:03	- 1	0.3	6.53	52%	9.64	3.85	h4-	429	884.0	- 6
90:41		0.6	15.9	517	9,63	5.17	786	275	494.0	clear
14:09		R.	6.48	hail	4.7	2.81	13-	75.6	894.0	clear
11:41		2:1	4.3	421	14.7	2.29	-110	19.1	0.794	clear
blihi		1	6-62	mi	9.69	2.02	-111	8-8	0.795	clear
परः भा	W	2.5	6.60	his	9.69	2.01	1111	8.0	0.795	clear/collected
							344			



ENVIRONMENTAL BUSINESS CONSULTANTS

Well I.D.: MWG

Equipment:

Peristaltic Pump, Horiba

Date:

3/16/2018

Well Depth (from TOC):

Static Water Level (from TOC):

Height of Water in Well:

Gallons of Water per Well Volume: v3v 0.82

400ml/min.

Flow Rate:

-			100	1 1	11:08	11:03	16:58	10:53	84:01	10:45	Time
-	· C.		- M	4	•				-	400 mlm	Pump Rate
					8.c	4.4	1.6	_	0,4	0	Pump Rate Gal. Removed pH
-					6.93	6.95	6.99	7,04	<b>1</b>	8,06	
					1.07	1.07	1,07	1.07	1.03	1.00	Cond. (mS/cm) Temp. (deg. C) DO (mg/L)
					7.59	7.58	7.58	7.68	17,99	8,75	Temp. (deg. C)
				1	0,0	0.0	0,0	0.0	2.9	1.97	DO (mg/L)
The real Property lies in which the real Property lies in the Prop					-64	-62	-57	84-	-27	w w	ORP (mV)
					16.9	17.1	13.0	16.9	255	800	Turbidity (NTU) TDS
				*	0,687	0.689	0.686	0,683	0.666	0.643	TDS
					0,687 collected sample	0.189 clear	0.686 clear	0,683 cless	0.666 light turbidity	light surbidity	Comments

Note 400 ml = 0.11 gallons

### APPENDIX - E Soil Vapor Sampling Logs

### received in good working condition and agree to the terms and conditions as listed on the back of this document: ANALYSES attest that all media released by Phoenix Environmental Laboratories, Inc. have been TO-15 X × X ゝ × × > oę GISKey FO-14 NY EZ EDD (ASP), NY Enhanced (ASP B) Grab (G) Composite (C) MATRIX Page Soil Gas × メ × メ × ゞ d × Ambient/Indoor Air 团 Project Name: 1346 Blondell Avenue Branx NY Pressure at End ("Hg) Canister 9 Equis 囫 15 7-7 S h-<u>ه</u> 5 **NJ Deliverables** Start (" Hg) ASP CAT B Pressure at Canister -30 -38 Email: File 14:58 | 3-15.18 | -30 -30 13.15.18 -39 15:00 14:59 3-15-18 -29 12:00 14:00 3-15-18 -29 8 Data Delivery: State where samples collected: _ Phone #: ☐ Fax #: _ 12:09 14:09 3-15-18 Sample Start Date 14.28 3-6-18 12:53 14:52 3-15-18 14:15 3-K-B P.O. # Requested Deliverable: RCP 17.17 Excel 🗵 14:35 PDF E Data Format: Sampling End Time □ ₩Cb 14:31 Sampling Start Time 84:01 13:39 12:36 12:15 Time: CHAIN OF CUSTODY RECORD Setting (mL/min) Flow Controller $\frac{1}{2}$ email: greg@phoenixlabs.com 43 AIR ANALYSES 98bh 19/19 Regulator 4993 ₹885 4044 5693 **5394** 5030 4985 8385 4499 Requested Criteria ID# 800-827-5426 Canister Pressure Pressure Regula Size (L.) (" Hg) (" Hg) ID THIS SECTION FOR LAB USE ONLY Quote Number: Date: Canister 5 コー ナ $\bigcirc$ $\bigcirc$ 1 Thomas Gello Outgoing Canister ģ (A) ە ق SPECIAL INSTRUCTIONS, OC REQUIREMENTS, REGULATORY INFORMATION: ((0)(6, 0) 9HP. Canister ID# Sampled by: Accepted by 14887 19332 13634 09551 33347 Invoice to: 19932 382 21357 19859 25% Client Sample ID aid Not Use 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Telephone: 860.645.1102 • Fax: 860.645.0823 Did Not Use **S**62 9 2 8 563 865 S64 SG . 760 STROET Relinquished by D012 2017 CULN 20170 Phoenix ID # 00170 Customer: Report to: Address:

### <u>APPENDIX - F</u> Laboratory Reports (On Disk)



Monday, April 23, 2018

Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Project ID: 1346 BLONDELL AVE BRONX NY

Sample ID#s: CA06781 - CA06783

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

**Laboratory Director** 

NELAC - #NY11301

CT Lab Registration #PH-0618
MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003

NY Lab Registration #11301 PA Lab Registration #68-03530

RI Lab Registration #63

**UT Lab Registration #CT00007** 

VT Lab Registration #VT11301



587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823



### NY ANALYTICAL SERVICES PROTOCOL DATA PACKAGE

Client: Environmental Business Consultants
Project: 1346 BLONDELL AVE BRONX NY
Laboratory Project: GCA06781



587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823



### **NY Analytical Services Protocol Format**

April 23, 2018 SDG I.D.: GCA06781

**Environmental Business Consultants 1346 BLONDELL AVE BRONX NY** 

### **Methodology Summary**

537

DETERMINATION OF SELECTED PERFLUORINATED ALKYL ACIDS IN DRINKING WATER BY SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY (LC/MS/MS)

Version 1.1 September 20009

### **Sample Id Cross Reference**

Client Id	Lab Id	Matrix
MW1	CA06781	GROUND WATER
MW4	CA06782	GROUND WATER
MW6	CA06783	GROUND WATER



587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823



### **NY Analytical Services Protocol Format**

April 23, 2018 SDG I.D.: GCA06781

**Environmental Business Consultants 1346 BLONDELL AVE BRONX NY** 

### **Laboratory Chronicle**

The samples in this delivery group were received at 4.1°C.

		Collection	Prep	<b>Analysis</b>		<b>Hold Time</b>
Sample	Analysis	Date	Date	Date	Analyst	Met
CA06781	PFAS	03/20/18	04/12/18	04/12/18	*	Υ
CA06782	PFAS	03/20/18	04/12/18	04/12/18	*	Y
CA06783	PFAS	03/20/18	04/12/18	04/12/18	*	Υ



587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823



### **SDG Comments**

April 23, 2018

SDG I.D.: GCA06781

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus raw data.

Version 2: Complete report with raw data.

Sample CA06781 was received past hold time for PFAS (E537).

Sample CA06782 was received past hold time for PFAS (E537).

Sample CA06783 was received past hold time for PFAS (E537).





587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823



### **Analysis Report**

April 23, 2018

FOR: Attn: Mr. Charles B. Sosik, P.G.

**Environmental Business Consultants** 

1808 Middle Country Rd Ridge NY 11961-2406

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	<b>GROUND WATER</b>	Collected by:	TG	03/20/18	13:00
Location Code:	EBC	Received by:	SW	03/22/18	15:23
Rush Request:	72 Hour	Analyzed by:	see "Ry" helow		

P.O.#:

Laboratory Data

SDG ID: GCA06781

Phoenix ID: CA06781

Project ID: 1346 BLONDELL AVE BRONX NY

Client ID: MW1

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

PFAS Completed * ISO25101 C

C = This parameter is subcontracted.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

### Comments:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 23, 2018

Reviewed and Released by: Jon Carlson, Project Manager

^{*}See attached





587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823



### **Analysis Report**

April 23, 2018

FOR: Attn: Mr. Charles B. Sosik, P.G.

**Environmental Business Consultants** 

1808 Middle Country Rd Ridge NY 11961-2406

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	GROUND WATER	Collected by:	TG	03/20/18	12:05
Location Code:	EBC	Received by:	SW	03/22/18	15:23
Buch Boguest	72 Hour	Analyzed by:	and "Dy" balayy		

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data
SDG ID: GCA06781
Phoenix ID: CA06782

Project ID: 1346 BLONDELL AVE BRONX NY

Client ID: MW4

P.O.#:

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

PFAS Completed 04/12/18 * ISO25101 C

C = This parameter is subcontracted.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

### Comments:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 23, 2018

Reviewed and Released by: Jon Carlson, Project Manager

^{*}See attached





587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823



### **Analysis Report**

April 23, 2018

FOR: Attn: Mr. Charles B. Sosik, P.G.

**Environmental Business Consultants** 

1808 Middle Country Rd Ridge NY 11961-2406

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	<b>GROUND WATER</b>	Collected by:	TG	03/20/18	11:08
Location Code:	EBC	Received by:	SW	03/22/18	15:23
Rush Request:	72 Hour	Analyzed by:	see "Ry" helow		

Laboratory Data

SDG ID: GCA06781

Phoenix ID: CA06783

Project ID: 1346 BLONDELL AVE BRONX NY

Client ID: MW6

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

PFAS Completed 04/12/18 * ISO25101 C

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

### Comments:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 23, 2018

Reviewed and Released by: Jon Carlson, Project Manager

C = This parameter is subcontracted.

^{*}See attached

Monday, April 23, 2018 Criteria: NY: GW

### Sample Criteria Exceedances Report GCA06781 - EBC

State: NY

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***



587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

### NY # 11301

### **NY Temperature Narration**

**April 23, 2018** 

**SDG I.D.: GCA06781** 

The samples in this delivery group were received at 4.1  $^{\circ}$ C. (Note acceptance criteria for relevant matrices is above freezing up to 6  $^{\circ}$ C)

				Ž	NY/NJ CHAIN OF	F CUSTODY RECORD	RECORD		Temma 1 to C Pa / of
JHd				587 East	Middle Turnpike	7. East Middle Turnnike. P.O. Box 370. Manchester. CT 06040	ster CT 06040		t Options:
Environme	Environmental Laboratories,	Inc.		Em	Email: info@phoenixlabs.com Client Services (8	info@phoenixlabs.com Fax (860) 649 Client Services (860) 645-8726	Fax (860) 645-0823 645-8726		631-504-6000 F, le
Customer:	Environmental Business Consultants	Consulta	ıts		_ Project:			NY Proj	Project P.O.
Address:	1808 Middle Country Road	pad			- Report to:	•	Environmental Business Consultants		This section MUST be
	, , ,					•	ousiness consulants		completed with Bottle Quantities.
Sampler's	Client Sample - Information - Identification	- Identifica		2.20-18	Analysis				3/20
Matrix Code: DW=Drinking Water RW=Raw Water SE OIL=Oil B=Bulk L.	Matrix Code:  Date: Date	urface Water	WW=Waste	Water	Rednest				A TOO TOO
PHOENIX USE ONLY SAMPLE #	Customer Sample Identification	Sample	Date Sampled	Time				10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 8 10 8 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10
18L0)	MWI	B	3-30-18	13:00					
CS12782	MMY	GW)	3-00-18		Я				
S8110	MWG	30	3-30-PS	11:08	*				
,									
			į						
Relinguished by:	Accerted	_		Date	- L	P. Turnaround:			Data Format
NO OT	100				2)_16				•
The state of the s		40	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ر ار	Y		☐ Non-Res. Criteria	NY375 Unrestricted	<u> </u>
120		     		)  -		S Days	]	Use Soil	
Comments, Special	Comments, Special Requirements or Regulations	:s				10 Days	☐ GW Criteria	☐ NY375 Residential Soil	ential 🙍 EQuIS
व्ये रे	Refer to email sent to Sarah	sent	to Sark		on PFAS 1154	* SURCHARGE APPLIES	W.	☐ Restricted/Residential ☐ Commercial ☐ Industrial	
						State whe	State where samples were collected:	λγ ;pa	Data Package ☐ NJ Reduced Deliv.* ☑ NY Enhanced (ASP B)*
									[

-GCA 06781

1346 Blondell Avenue Bronx

### **Groundwater Sampling for Emerging Contaminants**

February 2018

<u>Issue:</u> NYSDEC has committed to analyzing representative groundwater samples at remediation sites for emerging contaminants (1,4-dioxane and PFAS) as described in the below guidance.

Implementation

NYSDEC project managers will be contacting site owners to schedule sampling for these chemicals. Only groundwater sampling is required. The number of samples required will be similar to the number of samples where "full TAL/TCL sampling" would typically be required in a remedial investigation. If sampling is not feasible (e.g., the site no longer has any monitoring wells in place), sampling may be waived on a site-specific basis after first considering potential sources of these chemicals and whether there are water supplies nearby.

Upon a new site being brought into any program (i.e., SSF, BCP), PFAS and 1,4-dioxane will be incorporated into the investigation of groundwater as part of the standard "full TAL/TCL" sampling. Until an SCO is established for PFAS, soil samples do not need to be analyzed for PFAS unless groundwater contamination is detected. Separate guidance will be developed to address sites where emerging contaminants are found in the groundwater. The analysis currently performed for SVOCs in soil is adequate for evaluation of 1,4-dioxane, which already has an established SCO.

Analysis and Reporting

Labs should provide a full category B deliverable, and a DUSR should be prepared by a data validator.

The work plan should explicitly describe analysis and reporting requirements.

<u>PFAS sample analysis</u>: Samples should be analyzed by an environmental laboratory certified by ELAP to use EPA method 537 or ISO 25101. ELAP does not currently offer certification for PFAS analysis of non-drinking water samples (including groundwater, soil and sediment), so there is no requirement to use an ELAP certified method. The preferred method is the modified EPA Method 537. Labs have been able to achieve reporting limits for PFOA and PFOS of 2 ng/l (part per trillion). If labs are not able to achieve similar reporting limits, the NYSDEC project manager will make case-by-case decisions as to whether the analysis can meet the needs for the specific site.

<u>PFAS sample reporting:</u> DER has developed a PFAS target analyte list (below) with the intent of achieving reporting consistency between labs for commonly reportable analytes. It is expected that reported results for PFAS will include, at a minimum, all the compounds listed. This list may be updated in the future as new information is learned and as labs develop new capabilities. If lab and/or matrix specific issues are encountered for any particular compounds, the NYSDEC project manager will make case-by-case decisions as to whether particular analytes may be temporarily or permanently discontinued from analysis for each site. Any technical lab issues should be brought to the attention of a NYSDEC chemist.

Some sampling using this full PFAS target analyte list is needed to understand the nature of contamination. It may also be critical to differentiate PFAS compounds associated with a site from other sources of these chemicals. Like routine refinements to parameter lists based on investigative findings, the full PFAS target analyte list may not be needed for all sampling intended to define the extent of

### GCA 06781

contamination. Project managers may approve a shorter analyte list (e.g., just the UCMR3 list) for some reporting on a case by case basis.

 $\underline{1.4\text{-Dioxane Analysis}}$  and Reporting: The method detection limit (MDL) for 1,4-dioxane should be no higher than 0.28 µg/l (ppb). ELAP offers certification for both EPA Methods 8260 and 8270. In order to get the appropriate detection limits, the lab would need to run either of these methods in "selective ion monitoring" (SIM) mode. DER is advising PMS to use 8270, since this method provides a more robust extraction procedure, uses a larger sample volume, and is less vulnerable to interference from chlorinated solvents (we acknowledge that 8260 has been shown to have a higher recovery in some studies).

### **Full PFAS Target Analyte List**

Group	Chemical Name	Abbreviation	CAS Number
-	Perfluorobutanesulfonic acid	PFBS	375-73-5
	Perfluorohexanesulfonic acid	PFHxS	355-46-4
Perfluoroalkyl sulfonates	Perfluoroheptanesulfonic acid	PFHpS	375-92-8
difficial	Perfluorooctanessulfonic acid	PFOS	1763-23-1
-	Perfluorodecanesulfonic acid	PFDS	335-77-3
	Perfluorobutanoic acid	PFBA	375-22-4
	Perfluoropentanoic acid	PFPeA	2706-90-3
	Perfluorohexanoic acid	PFHxA	307-24-4
	Perfluoroheptanoic acid	PFHpA	375-85-9
Doublesonolled	Perfluorooctanoic acid	PFOA	335-67-1
Perfluoroalkyl carboxylates	Perfluorononanoic acid	PFNA	375-95-1
	Perfluorodecanoic acid	PFDA	335-76-2
	Perfluoroundecanoic acid	PFUA/PFUdA	2058-94-8
	Perfluorododecanoic acid	PFDoA	307-55-1
	Perfluorotridecanoic acid	PFTriA/PFTrDA	72629-94-8
	Perfluorotetradecanoic acid	PFTA/PFTeDA	376-06-7
Fluorinated Telomer	6:2 Fluorotelomer sulfonate	6:2 FTS	27619-97-2
Sulfonates	8:2 Fluorotelomer sulfonate	8:2 FTS	39108-34-4
Perfluorooctane- sulfonamides	Perfluroroctanesulfonamide	FOSA	754-91-6
Perfluorooctane-	N-methyl perfluorooctanesulfonamidoacetic acid	N-MeFOSAA	2355-31-9
sulfonamidoacetic acids	N-ethyl perfluorooctanesulfonamidoacetic acid	N-EtFOSAA	2991-50-6

Bold entries depict the 6 original UCMR3 chemicals

GCA 06781

### Collection of Groundwater Samples for Perfluorooctanoic Acid (PFOA) and Perfluorinated Compounds (PFCs) from Monitoring Wells Sample Protocol

Samples collected using this protocol are intended to be analyzed for perfluorooctanoic acid (PFOA) and other perfluorinated compounds by Modified (Low Level) Test Method 537.

The procedure used must be consistent with the NYSDEC March 1991 Sampling Guidelines and Protocols <a href="http://www.dec.ny.gov/docs/remediation-hudson-pdf/sgpsect5.pdf">http://www.dec.ny.gov/docs/remediation-hudson-pdf/sgpsect5.pdf</a> with the following materials limitations.

At this time acceptable materials for sampling include: stainless steel, high density polyethylene (HDPE), PVC, silicone, acetate and polypropylene. Equipment blanks should be generated at least daily. Additional materials may be acceptable if preapproved by NYSDEC. Requests to use alternate equipment should include clean equipment blanks. NOTE: Grunfos pumps and bladder pumps are known to contain PFC materials (e.g. TeflonTM washers for Grunfos pumps and LDPE bladders for bladder pumps). All sampling equipment components and sample containers should not come in contact with aluminum foil, low density polyethylene (LDPE), glass or polytetrafluoroethylene (PTFE, TeflonTM) materials including sample bottle cap liners with a PTFE layer. Standard two step decontamination using detergent and clean water rinse will be performed for equipment that does come in contact with PFC materials. Clothing that contains PTFE material (including GORE-TEX®) or that have been waterproofed with PFC materials must be avoided. Many food and drink packaging materials and "plumbers thread seal tape" contain PFCs.

All clothing worn by sampling personnel must have been laundered multiple times. The sampler must wear nitrile gloves while filling and sealing the sample bottles.

Pre-cleaned sample bottles with closures, coolers, ice, sample labels and a chain of custody form will be provided by the laboratory.

- 1. Fill two pre-cleaned 500 mL HDPE or polypropylene bottle with the sample.
- 2. Cap the bottles with an acceptable cap and liner closure system.
- 3. Label the sample bottles.
- 4. Fill out the chain of custody.
- 5. Place in a cooler maintained at 4 ± 2° Celsius.

Collect one equipment blank for every sample batch, not to exceed 20 samples.

Collect one field duplicate for every sample batch, not to exceed 20 samples.

Collect one matrix spike / matrix spike duplicate (MS/MSD) for every sample batch, not to exceed 20 samples.

Request appropriate data deliverable (Category A or B) and an electronic data deliverable.

PFC Groundwater Samples from Monitoring Wells Sample Protocol Revision 1.2 June 29, 2016



April 17, 2018

### Vista Work Order No. 1800562

Ms. Bobbi Aloisa Phoenix Environmental Labs 587 East Middle Turnpike Manchester, CT 06040

Dear Ms. Aloisa,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on March 27, 2018. This sample set was analyzed on a standard turn-around time, under your Project Name 'Env. Business Consultants'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Calva Jacke



Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 1800562 Page 1 of 20

### Vista Work Order No. 1800562 Case Narrative

### **Sample Condition on Receipt:**

Three groundwater samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The sample IDs listed on the COC did not match the IDs on the sample container labels. The Sample IDs on the COC were used to identify these samples.

### **Analytical Notes:**

### ISO Method 25101

The samples were extracted and analyzed for a selected list of PFAS using ISO Method 25101.

Samples "CA-06781", "CA-06782" and "CA-06783" contained particulate and were centrifuged prior to extraction.

### **Holding Times**

The samples were extracted and analyzed within the method hold times.

### **Quality Control**

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above 1/2 the LOQ. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

Work Order 1800562 Page 2 of 20

### TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	16
Certifications	17
Sample Receipt.	18

Work Order 1800562 Page 3 of 20

### **Sample Inventory Report**

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1800562-01	CA-06781	20-Mar-18 13:00	27-Mar-18 09:39	HDPE Bottle, 250 mL
1800562-02	CA-06782	20-Mar-18 12:05	27-Mar-18 09:39	HDPE Bottle, 250 mL
1800562-03	CA-06783	20-Mar-18 11:08	27-Mar-18 09:39	HDPE Bottle, 250 mL

Vista Project: 1800562 Client Project: Env. Business Consultants

Work Order 1800562 Page 4 of 20

### ANALYTICAL RESULTS

Work Order 1800562 Page 5 of 20



Client Data Name: Phoenix Project: Env. Bu Analyte PFBA PFBA PFBA PFBS PFHXA PFHXA PFHXA PFHXA PFHXA PFHXS 6:2 FTS PFOA PFOA PFOA PFOA PFOA PFOA PFOA PFOA	Phoenix Environmental Labs Env. Business Consultants	Matrix:  Conc. (ng/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	Aqueous	aborat ab Sam	ita B8C0190-BLK1	-BLK1	Column:	BEH C18	
	usiness Consultants	Matrix:  Conc. (ng/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	Aqueous	ab San		-BLK1	Column:	BEH C18	
	usiness Consultants	Conc. (ng/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N					Column	DEII C10	
Analyte PFBA PFPeA PFPeA PFHXA PFHXA PFHXA PFHYS 6:2 FTS PFOA PFOA PFOA PFOA PFOA PFOA PFOA PFOA		Conc. (ng/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N							
PFBA PFPeA PFBS PFHXA PFHpA PFHxS 6:2 FTS PFOA PFHpS PFOS PFOS		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		RL Qualifiers	iers Batch	Extracted	Samp Size	Analyzed D	Dilution
PFPeA PFBS PFHxA PFHxA PFHxS 6:2 FTS PFOA PFHpS PFOS PFOS		9999999999		4.00	B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:44	1
PFBS PFHXA PFHPA PFHPA 6:2 FTS PFOA PFHpS PFOS PFOS		999999999		4.00	B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:44	-
PFHxA PFHpA PFHxS 6:2 FTS PFOA PFHpS PFOS PFOS		99999999		4.00	B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	_
PFHpA PFHxS 6:2 FTS PFOA PFHpS PFOS PFOS		9999999		4.00	B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:44	-
PFHxS 6:2 FTS PFOA PFHpS PFOS		999999		4.00	B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:44	-
6:2 FTS PFOA PFHpS PFOS PFOS		99999		4.00	B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	1
PFOA PFHpS PFOS PFOS		9999		4.00	B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	-
PFHpS PFOS PENA		999		4.00	B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:44	-
PFOS		O S		4.00	B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	1
DEMA		N ON		4.00	B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	1
LINIT				4.00	B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	-
PFDA		QN		4.00	B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	-
8:2 FTS		ND		4.00	B8C0190		$0.250\mathrm{L}$	12-Apr-18 20:44	1
PFOSA		ND		4.00	B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	1
MeFOSAA		ND		4.00	B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	-
PFDS		ND		4.00	B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	1
PFUnA		N Q		4.00	B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	-
EtFOSAA		QN		4.00	B8C0190		0.250 L	12-Apr-18 20:44	_
PFDoA		ON		4.00	B8C0190		$0.250\mathrm{L}$	12-Apr-18 20:44	-
PFTrDA		QN		4.00	B8C0190		0.250 L	12-Apr-18 20:44	-
PFTeDA		ND		4.00	ш	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	1
Labeled Standards	Type	% Recovery	Limits	Qualifiers	ers Batch	Extracted	Samp Size	Analyzed D	Dilution
13C3-PFBA	IS	6.7.6	60 - 130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	1
13C3-PFPeA	SI	97.7	60 - 150		B8C0190		$0.250\mathrm{L}$	12-Apr-18 20:44	-
13C3-PFBS	SI	107	60 - 150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	_
13C2-PFHxA	SI	94.5	70 - 130		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:44	_
13C4-PFHpA	SI	102	60 - 150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	-
1802-PFHxS	SI	105	60 - 150		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:44	_
13C2-PFOA	SI	89.3	60 - 150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	1
13C8-PFOS	SI	117	60 - 150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	-
13C5-PFNA	SI	6.06	50 - 150		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:44	-
13C2-PFDA	SI	75.4	60 - 130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	_
13C8-PFOSA	SI	56.0	20 - 150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	_
d3-MeFOSAA	SI	2.69	50 - 150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	-
13C2-PFUnA	SI	66.4	60 - 130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:44	1

Work Order 1800562



Sample ID: M	Sample ID: Method Blank							Modified ISO25101	025101
Client Data Name: Project:	Phoenix Environmental Labs Env. Business Consultants	Matrix:	Aqueous	Laboratory Data Lab Sample:	B8C0190-BLK1	BLK1	Column:	BEH C18	
Labeled Standards	rds Type	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Qualifiers Batch Extracted Samp Size Analyzed Dilution	Dilution
d5-EtFOSAA	SI	9.69	50 - 150		B8C0190	30-Mar-18	0.250 L	B8C0190 30-Mar-18 0.250 L 12-Apr-18 20:44	1
13C2-PFDoA	IS	64.0	30 - 130		B8C0190	30-Mar-18	0.250 L	B8C0190 30-Mar-18 0.250 L 12-Apr-18 20:44	-
13C2-PFTeDA	IS	6.89	20 - 150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	B8C0190 30-Mar-18 0.250 L 12-Apr-18 20:44	-
	RI - Renortino limit	ω1-IOI-IO1	1 CL-UCL - Lower control limit - unner control limit	When rec	ported, PFHxS, P	PFOA and PFOS	include both line	When reported. PFHxS. PFOA and PFOS include both linear and branched isomers.	
	mm Simiodoxi = axi		de come de per come en come						

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. LCL-UCL- Lower control limit - upper control limit Results reported to RL.



											,
Sample ID: OPR										Modified ISO25101	025101
Client Data					Labe	Laboratory Data					
Name: Phoenix Environmental Labs Project: Env. Business Consultants	mental Labs onsultants	Matrix:	Aqueous		Lab	Lab Sample:	B8C0190 <b>-</b> BS1	BS1	Column:	ВЕН С18	
Analyte		Amt Found (ng/L)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		36.7	40.0	61.6	70-130		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	1
PFPeA		37.1	40.0	95.6	70-130		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	1
PFBS		34.5	40.0	86.2	70-130		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	1
PFHxA		35.5	40.0	8.88	70-130		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	_
PFHpA		36.6	40.0	91.4	70-130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	_
PFHxS		38.5	40.0	96.1	70-130		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	_
6:2 FTS		39.4	40.0	98.4	60-130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	
PFOA		37.4	40.0	93.5	70-130		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	1
PFHpS		38.5	40.0	96.4	60-130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	_
PFOS		44.5	40.0	1111	70-130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	1
PFNA		36.2	40.0	90.4	70-130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	1
PFDA		39.1	40.0	8.76	70-130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	-
8:2 FTS		38.1	40.0	95.2	60-130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	_
PFOSA		36.0	40.0	90.1	70-130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	_
MeFOSAA		38.1	40.0	95.3	70-130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	П
PFDS		35.7	40.0	89.1	60-130		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	_
PFUnA		33.9	40.0	84.9	70-130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	_
EtFOSAA		39.7	40.0	99.2	70-130		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	_
PFDoA		36.1	40.0	90.2	70-130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	_
PFTrDA		32.6	40.0	81.6	60-130		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	_
PFTeDA		37.6	40.0	94.1	70-130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	1
Labeled Standards		Type		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA		SI		101	60- 130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	1
13C3-PFPeA		IS		0.66	60-150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	1
13C3-PFBS		SI		110	60- 150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	-
13C2-PFHxA		IS		100	70- 130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	_
13C4-PFHpA		SI		100	60- 150		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	-
18O2-PFHxS		IS		100	60-150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	1
13C2-PFOA		SI		95.1	60- 150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	1
13C8-PFOS		IS		83.1	60-150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	-
13C5-PFNA		SI		89.2	50- 150		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	-
13C2-PFDA		IS		76.3	60- 130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	12-Apr-18 20:33	-
13C8-PFOSA		SI		63.3	20- 150		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	-
d3-MeFOSAA		SI		76.2	50- 150		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	1
13C2-PFUnA		SI		82.4	60- 130		B8C0190	30-Mar-18	0.250 L	12-Apr-18 20:33	_



Sample ID: OPR	OPR									Modified ISO25101	025101
Client Data					Labe	Laboratory Data					
Name: Project:	Phoenix Environmental Labs Env. Business Consultants	Matrix:	Aqueous		Lab	Lab Sample:	B8C0190-BS1	BS1	Column:	BEH C18	
Labeled Standards	ırds	Type	o ·	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	% Rec Limits Qualifiers Batch Extracted Samp Size Analyzed Dilution	Dilution
d5-EtFOSAA		SI		80.2	50- 150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	B8C0190 30-Mar-18 0.250 L 12-Apr-18 20:33	1
13C2-PFDoA		IS		80.7	30-130		B8C0190	30-Mar-18	$0.250\mathrm{L}$	B8C0190 30-Mar-18 0.250 L 12-Apr-18 20:33	_
13C2-PFTeDA		IS		92.0 20- 150	20- 150		B8C0190	30-Mar-18	$0.250\mathrm{L}$	B8C0190 30-Mar-18 0.250 L 12-Apr-18 20:33	1



Sample ID: CA-06781	A-06781							Modified ISO25101	25101
Client Data				Laboratory Data	ta				
Name: Project:	Phoenix Environmental Labs Env. Business Consultants	Matrix: Date Collected:	Groundwater 20-Mar-18 13:00	Lab Sample: Date Received:	1800562-01 27-Mar-18 09:39	)1 3 09:39	Column:	BEH C18	
		į					į		
Analyte		Conc. (ng/L)		RL Qualifiers	ers Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		15.9		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	_
PFPeA		11.7		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	-
PFBS		9.11		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	_
PFHxA		13.9		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	_
PFHpA		14.4		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	-
PFHxS		9.29		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	_
6:2 FTS		N		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	_
PFOA		51.2		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	-
PFHpS		N ON		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	_
PFOS		52.6		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	-
PFNA		N		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	_
PFDA		NO		4.07	B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	_
8:2 FTS		N ON		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	_
PFOSA		ND		4.07	B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	_
MeFOSAA		N		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	_
PFDS		N ON		4.07	B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	-
PFUnA		N ON		4.07	B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	-
EtFOSAA		ND		4.07	B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	1
PFDoA		ND		4.07	B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	-
PFTrDA		N		4.07	B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	-
PFTeDA		ND		4.07	B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	1
Labeled Standards	ds Type	% Recovery	Limits	Qualifiers	ers Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	SI	103	60 - 130		B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	1
13C3-PFPeA	SI	9.76	60 - 150		B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	-
13C3-PFBS	SI	100	60 - 150		B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	_
13C2-PFHxA	IS	100	70 - 130		B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	-
13C4-PFHpA	IS	100	60 - 150		B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	1
18O2-PFHxS	SI	106	60 - 150		B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	
13C2-PFOA	SI	92.6	60 - 150		B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	-
13C8-PFOS	IS	88.9	60 - 150		B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	_
13C5-PFNA	IS	96.4	50 - 150		B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	1
13C2-PFDA	IS	88.8	60 - 130		B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	-
13C8-PFOSA	SI	81.9	20 - 150		B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	-
d3-MeFOSAA	SI	86.3	50 - 150		B8C0190	30-Mar-18	$0.246\mathrm{L}$	12-Apr-18 20:56	1
13C2-PFUnA	SI	84.3	60 - 130		B8C0190	30-Mar-18	0.246 L	12-Apr-18 20:56	-
									-



Sample ID: CA-06781	CA-06781							Modified ISO25101	025101
Client Data				Laboratory Data					
Name:	Phoenix Environmental Labs	Matrix:	Groundwater	Lab Sample:	1800562-01	1	Column:	BEH C18	
Project:	Env. Business Consultants	Date Collected:	Date Collected: 20-Mar-18 13:00	Date Received:	27-Mar-18 09:39	09:39			
Labeled Standards	Type	% Recovery	Limits	Oualifiers	Batch	Extracted	Samp Size	Oualifiers Batch Extracted Samp Size Analyzed Dilution	Dilution
d5-EtFOSAA	SI	92.7	50 - 150	,	B8C0190	30-Mar-18	0.246 L	B8C0190 30-Mar-18 0.246 L 12-Apr-18 20:56	-
13C2-PFDoA	IS	82.3	30 - 130		B8C0190	30-Mar-18	0.246 L	B8C0190 30-Mar-18 0.246 L 12-Apr-18 20:56	-
13C2-PFTeDA	IS	82.9	20 - 150		B8C0190	30-Mar-18	0.246 L	B8C0190 30-Mar-18 0.246 L 12-Apr-18 20:56	_
	RL - Reporting limit	LCL-UCL- Lower co	LCL-UCL- Lower control limit - upper control limit	When rep	ported, PFHxS, P	When reported, PFHxS, PFOA and PFOS include bot	include both line	When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.	S.

When reported, PFHxx, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. LCL-UCL- Lower control limit - upper control limit Results reported to RL.



								,	
Sample ID: CA-06782	A-06782							Modified ISO25101	10152
Client Data				Laboratory Data	ta				
Name: Project:	Phoenix Environmental Labs Env. Business Consultants	Matrix: Date Collected:	Groundwater 20-Mar-18 12:05	Lab Sample: Date Received:	1800562-02 27-Mar-18 09:39	)2 3 09:39	Column:	BEH C18	
Analyte		Conc. (ng/L)		ŘL Qualifiers	ers Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		11.4		3.90	B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	1
PFPeA		16.9		3.90	B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	1
PFBS		4.16		3.90	B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	_
PFHxA		20.4		3.90	B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	-
PFHpA		13.8		3.90	B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	-
PFHxS		ND		3.90	B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	-
6:2 FTS		ND QN		3.90	B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	_
PFOA		32.1		3.90	B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	-
PFHpS		QN.		3.90	B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	
PFOS		62.1		3.90	B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	-
PFNA		8.13		3.90	B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	_
PFDA		4.31		3.90	B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	_
8:2 FTS		QZ		3.90	B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	
PFOSA		ND		3.90	B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	_
MeFOSAA		ND		3.90	B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	_
PFDS		QZ		3.90	B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	-
PFUnA		<u>Q</u> Z		3.90	B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	1
EtFOSAA		ND		3.90	B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	1
PFDoA		ON ON O		3.90	B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	-
PFTrDA		QZ		3.90	B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	-
PFTeDA		ND		3.90	B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	1
Labeled Standards	rds Type	% Recovery	Limits	Qualifiers	ers Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	SI	97.1	60 - 130		B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	
13C3-PFPeA	SI	8.96	60 - 150		B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	_
13C3-PFBS	SI	113	60 - 150		B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	-
13C2-PFHxA	IS	0.86	70 - 130		B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	1
13C4-PFHpA	IS	104	60 - 150		B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	1
18O2-PFHxS	IS	104	60 - 150		B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	1
13C2-PFOA	SI	93.0	60 - 150		B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	1
13C8-PFOS	SI	92.1	60 - 150		B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	-
13C5-PFNA	SI	93.4	50 - 150		B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	1
13C2-PFDA	SI	82.2	60 - 130		B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	1
13C8-PFOSA	SI	89.7	20 - 150		B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	1
d3-MeFOSAA	SI	87.3	50 - 150		B8C0190	30-Mar-18	0.256 L	12-Apr-18 21:07	_
13C2-PFUnA	SI	79.9	60 - 130		B8C0190	30-Mar-18	$0.256\mathrm{L}$	12-Apr-18 21:07	-
									-



Sample ID: CA-06782	ZA-06782							Modified ISO25101	25101
Client Data Name: Project:	Phoenix Environmental Labs Env. Business Consultants	Matrix: Date Collected:	Matrix: Groundwater Date Collected: 20-Mar-18 12:05	Laboratory Data Lab Sample: Date Received:	1800562-02 27-Mar-18 09:39	2 09:39	Column:	ВЕН С18	
Labeled Standards	ırds Type	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Qualifiers Batch Extracted Samp Size Analyzed Dilution	Dilution
d5-EtFOSAA	SI	95.1	50 - 150		B8C0190	30-Mar-18	0.256 L	B8C0190 30-Mar-18 0.256 L 12-Apr-18 21:07	1
13C2-PFDoA	IS	89.7	30 - 130		B8C0190	30-Mar-18	0.256 L	B8C0190 30-Mar-18 0.256 L 12-Apr-18 21:07	-
13C2-PFTeDA	SI	95.7	20 - 150		B8C0190	30-Mar-18	0.256 L	B8C0190 30-Mar-18 0.256 L 12-Apr-18 21:07	1
	RL - Reporting limit	LCL-UCL- Lower α	LCL-UCL- Lower control limit - upper control limit	When rep	When reported, PFHxS, PFOA and PFOS include bot	FOA and PFOS	include both line	When reported, PFHxS, PFOA and PFOS include both linear and branched isomers	

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. LCL-UCL- Lower control limit - upper control limit Results reported to RL.

Work Order 1800562



Client Data Name: Project:				Laboratory Data					
Project:	Phoenix Environmental Labs	Matrix:	Groundwater	Lab Sample:	.a 1800562-03	03	Column:	BEH C18	
	Env. Business Consultants	Date Collected:	20-Mar-18 11:08	Date Received:	27-Mar-18 09:39	8 09:39			
Analyte		Conc. (ng/L)		RL Qualifiers	ers Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		15.7		3.90	B8C0190	30-Mar-18	0.257 L	12-Apr-18 21:19	1
PFPeA		29.3		3.90	B8C0190	30-Mar-18	0.257 L	12-Apr-18 21:19	-
PFBS		7.15		3.90	B8C0190	30-Mar-18	0.257 L	12-Apr-18 21:19	_
PFHxA		21.0		3.90	B8C0190	30-Mar-18	0.257 L	12-Apr-18 21:19	-
PFHpA		10.7		3.90	B8C0190	30-Mar-18	0.257 L	12-Apr-18 21:19	-
PFHxS		QN		3.90	B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	1
6:2 FTS		ON ON O		3.90	B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	1
PFOA		12.8		3.90	B8C0190	30-Mar-18	0.257 L	12-Apr-18 21:19	-
PFHpS		<u>Q</u>		3.90	B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	1
PFOS		23.4		3.90	B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	-
PFNA		QN.		3.90	B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	-
PFDA		ON ON		3.90	B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	1
8:2 FTS		<u>Q</u>		3.90	B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	1
PFOSA		ND		3.90	B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	_
MeFOSAA		ON ON O		3.90	B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	-
PFDS		QN		3.90	B8C0190	30-Mar-18	0.257 L	12-Apr-18 21:19	-
PFUnA		<u>Q</u>		3.90	B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	-
EtFOSAA		ND		3.90	B8C0190	30-Mar-18	0.257 L	12-Apr-18 21:19	_
PFDoA		ND		3.90	B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	-
PFTrDA		NO ON		3.90	B8C0190	30-Mar-18	0.257 L	12-Apr-18 21:19	_
PFTeDA		ND		3.90	B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	1
Labeled Standards	rds Type	% Recovery	Limits	Qualifiers	rs Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	99.4	60 - 130		B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	_
13C3-PFPeA	IS	90.1	60 - 150		B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	1
13C3-PFBS	SI	101	60 - 150		B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	-
13C2-PFHxA	SI	7.76	70 - 130		B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	_
13C4-PFHpA	SI	99.4	60 - 150		B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	-
18O2-PFHxS	SI	91.6	60 - 150		B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	-
13C2-PFOA	SI	87.5	60 - 150		B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	-
13C8-PFOS	SI	97.0	60 - 150		B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	-
13C5-PFNA	SI	95.1	50 - 150		B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	1
13C2-PFDA	SI	7.77	60 - 130		B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	_
13C8-PFOSA	SI	68.2	20 - 150		B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	1
d3-MeFOSAA	SI	81.2	50 - 150		B8C0190	30-Mar-18	$0.257\mathrm{L}$	12-Apr-18 21:19	-
13C2-PFUnA	SI	82.3	60 - 130		B8C0190	30-Mar-18	0.257 L	12-Apr-18 21:19	_



Sample ID: CA-06783	CA-06783							Modified ISO25101	025101
Client Data Name: Project:	Phoenix Environmental Labs Env. Business Consultants	Matrix: Date Collected:	Matrix: Groundwater Date Collected: 20-Mar-18 11:08	Laboratory Data Lab Sample: Date Received:	1800562-03 27-Mar-18 09:39	.3 09:39	Column:	BEH C18	
Labeled Standards	ırds Type	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Qualifiers Batch Extracted Samp Size Analyzed Dilution	Dilution
d5-EtFOSAA	SI	0.68	50 - 150		B8C0190	30-Mar-18	0.257 L	B8C0190 30-Mar-18 0.257 L 12-Apr-18 21:19	1
13C2-PFDoA	SI	82.9	30 - 130		B8C0190	30-Mar-18	0.257 L	B8C0190 30-Mar-18 0.257L 12-Apr-18 21:19	-
13C2-PFTeDA	IS	92.3	20 - 150		B8C0190	30-Mar-18	0.257 L	B8C0190 30-Mar-18 0.257 L 12-Apr-18 21:19	-
	RL - Reporting limit	LCL-UCL-Lower o	LCL-UCL- Lower control limit - upper control limit	When rep	oorted, PFHxS, P	When reported, PFHxS, PFOA and PFOS include bot	include both line	When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.	Š.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes. LCL-UCL- Lower control limit - upper control limit Results reported to RL.

Work Order 1800562

# DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
E	The associated compound concentration exceeded the calibration range of the instrument.
Н	Recovery and/or RPD was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ.
M	Estimated Maximum Possible Concentration. (CA Region 2 projects only)
*	See Cover Letter
Conc.	Concentration
NA	Not applicable
ND	Not Detected
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1800562 Page 16 of 20

# **CERTIFICATIONS**

Accrediting y	

request.

Work Order 1800562 Page 17 of 20

Vista Analytical Laboratory	CHAIN OF CUSTODY		For Laboratory Use Only Temp: 0,2 °C Nork Order #: 00 Storage ID: 0,2 °C Storage ID: 0,2 °C Storage Secured: Yes ⊠ No □
Project ID: Env. Business Consultant Po#		Sampler: (name)	TAT Standard: X 21 days (check one): Rush (surcharge may apply) 11 days Snecify:
Invoice to: Name Company SOFT E. MICHALE	587 E. middle Trol Po Box 370	Harringster Ct	Marthester Ct 06040 860-645-1102 860-645-0833
Relinquished by (printed name and signature)	Date Time 3-20-18 9:40	Received by (printed name and signature)	Date Time 03/27/18 09414
Relinquished by (printed hame and signature)	Date Time	Received by (printed name and signature)	Date Time

SHIP TO: Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762		Method of Shipment:	Add Analysis(es) Requested	AG S both	(Ano Mo
ATTN: FON EV HILLE	6/3-0106	Tracking No.:		3	
Sample ID Date	Time	Location/Sample Description	Allowood All	Mojes	AFON PEOS DE LOS
00	3.13.80		×		See attacho
CA06783 11	80:11		2 2 3 3		16 16
Special Instructions/Comments: ASD P	BB	1ta package	30	SEND	Name: Triphi Aloiso Company: Process Env Lab
				AND RESULTS TO:	3 4
Container Types: P= HDPE, PJ= HDPE Jar O = Other.		Bottle Preservati TZ = Trizma:	Bottle Preservation Type: T = Thiosulfate, TZ = Trizma:	Matrix Types: AQ = Aq SL = Sludge, SO = Soil,	Matrix Types: AQ = Aqueous, DW = Drinking Water, EF = Effluent, PP = Pulp/Paper, SD = Sediment, SL = Sludge, SO = Soil, WW = Wastewater, B = Blood/Serum, O = Other:

Page: 1 of 1 Page 18 of 20



# Sample Log-in Checklist

Vista Work Orde	r#:1800 5	562			1	ГАТ	std		_
Samples	Date/Time		Initials:		Locat	ion:	WR-2		
Arrival:	03/27/18	939	WNS	O. L. Krister	Shelf	Rack:	Na		
	Date/Time	a F TT	Initials:		Locat	ion:	WR-2		
Logged In:	03/27/18	057	IUNS		Shelf	Rack:	£-2		
Delivered By: (	FedEx	PS On Ti	rac GSO	DHI	-   [	Hand Deliver	52 m	Oth	er
Preservation:	Ice	(B	lue Ice		Dry	Ice		Nor	те
Temp °C: 0,3	(uncorrected	Time: ()	743		Thorn	aomot	er ID:	ID 1	
Temp °C: 0.7	(corrected)	Probe us	sed: Yes□	NoⅨ	mem	iomet	er iD.	IIX-4	
					mmm		VE0.	NO	NIA
Adamata Sarah	a Valuras Dass		norqued 1-250	11111111	00000		YES /	NO	NA
Adequate Sample Volume Received? PRENDE 1-250ml per sample.  Holding Time Acceptable?									
Shipping Container(s) Intact?							1		
									1
Shipping Custody Seals Intact? Shipping Documentation Present?							<b>V</b>		
Shipping Documentation Present?  Airbill Trk # 8\16 7253 \1740							1		
							<b>√</b>		
Sample Container Intact?  Sample Custody Seals Intact?									1
Sample Custody Seals Intact?  Chain of Custody / Sample Documentation Present?							1		
COC Anomaly/Sa							1		
If Chlorinated or				oconya	tion?				1
Preservation Doc		Na ₂ S ₂ O ₃	Trizma		None		Yes	No	(NA)
Shipping Contain		Vista	Client	1	etain	Re	turn	Disp	
	1	Viola		1	o tum		turr		
Comments: Salling	ole label	example.	COC ID						
06	781		ca-06781						
00	782		Ca - 06782						
•	83		ca-06783						

ID.: LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1

# Chain of Custody Anomaly/Sample Acceptance Form



Phoenix Environmental Labs Bobbi Aloisa

bobbi@phoenixlabs.com

Workorder Number: 1800562

Date Received: 27-Mar-18 09:39

Documented by/date: MSparks/27-Mar-18

Please review the following information and complete the Client Authorization section. To comply with NELAC regulations, we must receive authorization before proceeding with sample analysis.

Thank you,

Martha Maier mmaier@vista-analytical.com 916-673-1520

X

Sample IDs on Chain of Custody do not match Sample Container Labels

Chain of Custody ID	Container Label ID
CA-06781	06781
CA-06782	06782
CA-06783	06783

oceed with Analysis: (YES) NO	Si	ignature and Date	skakus	h 64/03/2018
ient Comments/Instructions Both	IO'S 0	are stay	with	ajent

# APPENDIX - G DUSR

# DATA USABILITY SUMMARY REPORT (DUSR) SEMI-VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GCA06816

**Client:** Environmental Business Consultants

**Date:** 05/31/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

### **Summary:**

- 1. Data validation was performed on the data for three (3) water samples for Semi-volatiles by SW-846 Method 8270D [full scan and Selected Ion Monitoring (SIM)] in accordance with the NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 3/20/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 3/22/2018 for analysis.
- 3. USEPA Region-II SOP HW-35A, Revision 0, June 2015, Semivolatile Data Validation, SOM02.2 was used in evaluating the Semi-volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).



# **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
MW1	CA06816	3/20/18	SVO	Water	
MW4	CA06817	3/20/18	SVO	Water	
MW6	CA06818	3/20/18	SVO	Water	

# **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

# **Holding Times:**

1. All water samples were extracted within 7 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

# **GC/MS Tuning:**

1. All DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

# **Initial Calibration:**

- 1. Initial calibration curve analyzed on 03/26/2018 (CHEM25)-SIM Scan exhibited acceptable %RSDs and average RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications were required.
- 2. Initial calibration curve analyzed on 03/14/2018 (CHEM27)-Full Scan exhibited acceptable %RSDs and average RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications were required.

# **Continuing Calibration Verification (CCV):**

1. CCV analyzed on 03/27/2018 @ 09:23 (CHEM27)-Full scan exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A with the following exception(s):



Compound	%D
2-Nitroaniline	26.2

Client Sample ID	Laboratory	Compound	Action
	Sample ID		
MW1	CA06816	2-Nitroaniline	UJ
MW4	CA06817	2-Nitroaniline	UJ
MW6	CA06818	2-Nitroaniline	UJ

2. CCV analyzed on 03/27/2018 @ 20:22 (CHEM27)-Full scan exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A with the following exception(s):

Compound	%D
Hexachlorocyclopentadiene	76.4
2,4-Dinitrophenol	80.0
4,6-Dinitro-2-methylphenol	70.7

Client Sample ID	Laboratory	Compound	Action
	Sample ID		
MW1	CA06816	Hexachlorocyclopentadiene, 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol	UJ
MW4	CA06817	Hexachlorocyclopentadiene, 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol	UJ
MW6	CA06818	Hexachlorocyclopentadiene, 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol	UJ

- 3. CCV analyzed on 03/26/2018 @ 14:27 (CHEM25)-SIM scan exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications were required.
- 4. CCV analyzed on 03/27/2018 @ 01:33 (CHEM25)-SIM scan exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications were required.

# **Surrogates:**

1. All surrogate %REC values were within the QC acceptance limits for the SIM scan with the following exception(s):

Client Sample ID	D Surrogate		Compound	Action
MW 6	2,4,6-Tribromophenol (SIM)	112	Hexachlorobenzene	None
			Pentachlorophenol	



Client Sample ID	Surrogate	%REC	Compound	Action
			Pentachloronitrobenzene	
			Phenanthrene	

2. All surrogate %REC values were within the QC acceptance limits for the full scan. No qualifications were required.

# **Internal Standard (IS) Area Performance:**

1. All samples exhibited acceptable area count for all six internal standards. No qualifications were required.

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (CA06816 BLANK)-full Scan associated with the water samples extracted on 3/22/2018 and analyzed on 3/26/2018 was free of contamination. No qualifications were required.
- 2. Method Blank (CA06816 BLANK)-SIM Scan associated with the water samples extracted on 3/22/2018 and analyzed on 3/27/2018 was free of contamination. No qualifications were required.

# <u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Batch ID: CA06816 were analyzed on 03/26-37/2018. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample	Action
		Affected	
Pyridine	23/25/A	MW1, MW4, MW6	UJ
2-Nitroaniline	151/141/A	MW1, MW4, MW6	None
Naphthalene	0/15/NC	MW1	J
_		MW4, MW6	UJ

A=Acceptable NC=Not calculated

#### **Field Duplicate:**

1. A field duplicate was not collected and submitted with this SDG.



# Matrix Spike (MS)/Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were not performed on sample from this SDG.

# **Target Compound Identification:**

- 1. All Relative Retention Times (RRTs) of the reported compounds were within  $\pm$  0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

# **Compound Quantitation and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. Manual Calculation:

$$Cx = (Ax)(IS)(VE)(DF)$$
  
(Ais)(RRF)(Volume injected,  $\mu$ L)(V)

Cx = concentration of analyte as ug/L

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

VE= final volume of concentrated extract

Sample: CA06816 LCS

2-Chlorophenol

Initial Volume: 1000ml Final volume: 1ml Volume injected: 1µl Dilution Factor: 1

Concentration (
$$\mu$$
g/L) =  $378009 \times 40 \times 1$ ml  $\times 1 \times 1000$  = 26.00 $\mu$ g/L = 26.00 $\mu$ g/L

	Laboratory	Validation	
Compound	(µg/L)	$(\mu g/L)$	%D
2-Chlorophenol	26.00	26.00	0.0



# **Comments:**

- 1. Semivolatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GCA06816.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GCA06816.



# DATA USABILITY SUMMARY REPORT (DUSR) VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GCA06816

**Client:** Environmental Business Consultants

**Date:** 05/31/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

### **Summary:**

- 1. Data validation was performed on the data for three (3) water samples and one (1) trip blank analyzed for Volatiles by SW-846 Method 8260C in accordance to NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 3/20/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 03/22/2018 for analysis.
- 3. USEPA Region-II SOP HW-34A, Revision 0, July 2015, Trace Volatile Data Validation, SOM02.2 was used in evaluating the VOCs data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).



# **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
MW1	CA06816	3/20/18	VOA	Water	
MW4	CA06817	3/20/18	VOA	Water	
MW6	CA06818	3/20/18	VOA	Water	
Trip Blank	CA06819	3/20/18	VOA	Water	Trip Blank

# **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

# **Holding Times:**

1. All water samples were analyzed within 14 days from sample collection. No qualifications were required.

# **GC/MS Tuning:**

1. All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

#### **Initial Calibration:**

1. Initial calibration curve analyzed on 3/22/2018 (Chem02) exhibited acceptable %RSDs and average RRF values for compounds listed in Table 2 in SOP HW-34A. No qualifications were required.

# **Continuing Calibration Verification (CCV):**

- 1. Opening CCV analyzed on 03/22/2018 @ 16:41 (CHEM02) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-34A. No qualifications are required.
- 2. Closing CCV analyzed on 03/23/2018 @ 03:16 (CHEM02) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-34A. No qualifications are required.



3. Opening CCV analyzed on 03/23/2018 @ 07:18 (CHEM02) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-34A with the following exception(s):

Compound	%D
Dibromochloromethane	-22.6
1,2-Dibromoethane	-20.2

<b>Client Sample ID</b>	Laboratory	Compound	Action
	Sample ID		
MW4	CA06817	Dibromochloromethane, 1,2-Dibromoethane	UJ
MW6	CA06818	Dibromochloromethane, 1,2-Dibromoethane	UJ
Trip Blank	CA06819	Dibromochloromethane, 1,2-Dibromoethane	UJ

4. Closing CCV analyzed on 03/23/2018 @ 17:15 (CHEM02) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-34A. No qualifications are required.

# **Surrogates:**

1. All surrogates %RECs values for all water samples were within the laboratory control limits. No qualifications were required.

#### **Internal Standard (IS) Area Performance:**

1. All samples exhibited acceptable area count for all four internal standards within the QC limits. No qualifications were required.

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (BLANK CA06815) was analyzed on 3/22/2018 was free of contamination with the exception of 1,2,3-Trichlorobenzene (0.30 ug/L). Results for 1,2,3-trichlorobenzene were non-detect. No qualifications were required.
- 2. Method Blank (BLANK CA06732) was analyzed on 3/23/2018 was free of contamination. No qualifications were required.
- 3. Trip Blank (BLANK CA06819) was analyzed on 3/22/2018 was free of contamination. No qualifications were required.



# <u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Batch ID: CA06732 were analyzed on 3/23/2018. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample Affected	Action
Acrylonitrile	132/A/A	MW1, MW1 DL	None
2-Hexanone	132/A/A	MW1, MW1 DL	None

A=Acceptable

2. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Batch ID: CA06815 were analyzed on 3/22/2018. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

### **Field Duplicate:**

1. A field duplicate was not collected and submitted with this SDG.

# Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were not performed on sample from this SDG.

# **Target Compound Identification:**

- 1. All Relative Retention Times (RRTs) of the reported compounds were within  $\pm$  0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

# **Compound Quantitation and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range. No qualifications were required.
- 2. Manual Calculation:

 $Cx = \frac{(Ax)(IS)(DF)}{(Ais)(RRF)(V)}$ 

 $Cx = concentration of analyte as \mu g/L$ 



Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

MW 4 (CA06817)

Chloroform

Sample Volume= 25ml

Volume purged=25ml

DF = 1

Concentration (
$$\mu$$
g/L)=

$$\frac{329474 \times 25 \times 10 \times 1}{379973 \times 0.944 \times 25}$$
 = 9.18µg/L

	Laboratory Validation		
Compound	(µg/L)	$(\mu g/L)$	%D
Chloroform	9.2	9.2	0.0

# **Comments:**

- 1. Volatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GCA06816.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GCA06816.



# DATA USABILITY SUMMARY REPORT (DUSR) POLYCHLORINATED BIPHENYLIS (PCBs)

USEPA Region II –Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GCA06816

**Client:** Environmental Business Consultants

**Date:** 06/01/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

# **Summary:**

- 1. Data validation was performed on the data for three (3) water samples analyzed for PCBs by SW-846 Method 8082A in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 03/20/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 03/22/2018 for analysis.
- 3. USEPA Region-II SOP HW-37A, Revision 0, June 2015, PCB Data Validation, SOM02.2 was used in evaluating the PCBs data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes.



# **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
MW1	CA06816	3/20/18	PCBs	Water	
MW4	CA06817	3/20/18	PCBs	Water	
MW6	CA06818	3/20/18	PCBs	Water	

# **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

# **Holding Times:**

1. All water samples were extracted within 7 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

# **Initial Calibration:**

1. Initial calibration curve analyzed on 3/08/2018 (ECD24) exhibited acceptable %RSD (≤20.0%) on both columns. No qualifications were required.

# **Continuing Calibration Verification (CCV):**

1. CCVs analyzed on 03/23/2018 exhibited acceptable average %Ds for reported compounds. No qualifications were required.

## **Surrogates:**

1. All surrogates %RECs values for all water samples were within the laboratory control limits. No qualifications were required.

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (CA06816 BL) associated with the water samples extracted on 3/22/2018 and analyzed on 3/23/2018 was free of contamination. No qualifications were required.



# **Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):**

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with ID: CA06816 were analyzed on 3/23/2018. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

# **Field Duplicate:**

1. A field duplicate was not collected and submitted with this SDG.

# Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were not performed on sample from this SDG.

# **Compound Quantitation, Compound Identification and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. Manual Calculation:

CA06816 LCS

Aroclor-1016

On Column concentration (B)= 484.2ng Sample Volume= 1000ml

DF= 1 Vi= 5ml

Concentration (
$$\mu$$
g/L) =  $\frac{484.2 \text{ng x 5ml x 1}}{1000}$  = 2.421 $\mu$ g/L

	Laboratory	Validation	
Compound	(µg/L)	$(\mu g/L)$	%D
Aroclor-1016	2.42	2.42	0.0



# **Comments:**

- 1. PCBs data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GCA06816.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GCA06816.



# DATA USABILITY SUMMARY REPORT (DUSR) PESTICIDES

USEPA Region II –Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GCA06816

**Client:** Environmental Business Consultants

**Date:** 06/01/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for three (3) water samples analyzed for Pesticides by SW-846 Method 8081B in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 3/20/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 3/22/2018 for analysis.
- 3. USEPA Region-II SOP HW-36A, Revision 0, June 2015, Pesticide Data Validation, SOM02.2 was used in evaluating the Pesticides data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).



# **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
MW1	CA06816	3/20/18	Pesticides	Water	
MW4	CA06817	3/20/18	Pesticides	Water	
MW6	CA06818	3/20/18	Pesticides	Water	

# **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

# **Holding Times:**

1. All water samples were extracted within 7 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

# **GC/ECD Instrument Performance Check:**

1. 4,4'-DDT and Endrin breakdown exhibited acceptable results (±20%). No qualifications were required.

# **Initial Calibration:**

- 1. Initial calibration curve analyzed on 3/19/2018 (ECD10) exhibited acceptable %RSD on both columns. No qualifications are required.
  - All sample results were reported from Column B. No qualifications were required.
- 2. Initial calibration curve analyzed on 3/14/2018 (ECD4) exhibited acceptable %RSD on both columns. No qualifications are required.
  - All sample results were reported from Column A. No qualifications were required.

# **Continuing Calibration Verification (CCV):**

1. The CCV analyzed on 03/23/2018 exhibited acceptable %Ds (≤20.0%) for reported compounds from column B with the exception of methoxychlor (22%).



The non-detect results for methoxychlor were qualified as estimated (UJ) in samples MW1 and MW4.

2. The CCV analyzed on 03/26/2018 exhibited acceptable %Ds (≤20.0%) for reported compounds from column A. No qualifications were required.

# **Surrogates:**

1. All surrogates %RECs values for all water samples and associated QC were within the laboratory control limits. No qualifications were required.

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (CA06816) associated with the water samples extracted on 3/22/2018 and analyzed on 03/23/2018 was free of contamination. No qualifications were required.

# **Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):**

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with ID: CA06816 were analyzed on 03/23/2018. All %RECs and RPDs were within the laboratory control limits with the exception of dieldrin (24.0% RPD), and 4,4'-DDE (20.3% RPD). Results for dieldrin and 4,4'-DDE were non-detect in the field samples. No qualifications were required.

# **Field Duplicate:**

1. A field duplicate was not collected and submitted with this SDG.

# Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were not performed on sample from this SDG.

# **Compound Quantitation, Compound Identification and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. Manual Calculation:

CA04713 LCS

Alpha-BHC

On Column concentration (B)= 44.1846ng



Concentration (
$$\mu$$
g/L) =  $\frac{44.1846ng \times 1ml}{1000}$  = 0.044 $\mu$ g/L

	Laboratory	Validation	
Compound	(µg/L)	$(\mu g/L)$	%D
Alpha-BHC	0.044	0.044	0.0

# **Comments:**

- 1. Pesticides data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GCA06816.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GCA06816.



# DATA USABILITY SUMMARY REPORT (DUSR) TRACE METALS

USEPA Region II –Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GCA06816

**Client:** Environmental Business Consultants

**Date:** 06/01/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

### **Summary:**

- 1. Data validation was performed on the data for three (3) water samples (total and dissolved) analyzed for the following analyses:
  - 1.1 Trace Metals-ICP-AES by SW-846 Method 6010C.
  - 1.2 Total thallium, antimony, and selenium by SW-846 Method 6020.
  - 1.3 Dissolved thallium, antimony and selenium by Method E200.8.
  - 1.3 Mercury by SW-846 Method 7470A.
- 2. The samples were collected on 3/20/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 3/22/2018 for analysis.
- 3. The USEPA Region-II SOP No. HW-2a, Revision 15, December 2012, Validation of ICP-AES was used in evaluating the Trace Metals data and USEPA Region-II SOP No. HW-2c, Revision 15, December 2012, Validation of Mercury and Cyanide was used in evaluating the mercury data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).



# **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
MW 1	CA06816	3/20/18	ICP, MS, GFAA and CVAA	Water	
MW 4	CA06817	3/20/18	ICP, MS, GFAA and CVAA	Water	
MW 6	CA06818	3/20/18	ICP, MS, GFAA and CVAA	Water	

# **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

# **Holding Times**:

- 1. All water samples were analyzed within the 6 months holding times for Metals analyses by ICP-AES, MS, and GFAA. No qualifications were required.
- 2. All water samples were digested and analyzed within the 28 days holding times for Mercury analysis. No qualifications were required.

# **Initial and Continuing Calibration Verification (ICV and CCV):**

#### **Metals:**

1. All %RECs in the ICV and CCVs were within QC limits (90-110%). No qualifications were required.

#### **Mercury:**

- 1. All correlation coefficient for Mercury calibration curve analyzed were  $\geq$ 0.995. No qualifications were required.
- 2. All ICVs and CCVs %REC values were within the QC limits (80-115%). No qualifications were required.



# **CRQL Check Standard (CRI):**

1. All CRI (dissolved) analyzed on 3/26-27/2018 %RECs were within the control limits (70-130%) with the following exception(s):

Analyte	Date	Initial	Final	Sample Affected	Action
	Analyzed	%R	%R		
Calcium	3/26/2018:	181.7	-	None	None
	14:40				
	3/27/2018:	201.8	A	None	None
	8:40/12:34				
Sodium	3/26/2018:	156.1	162.9	MW 4, MW 1, MW 6	J
	14:40/20:10				
Potassium	3/27/2018:	A	35.6	None	None
	13:36/17:41				

2. All CRI (total) analyzed on 3/26-27/2018 %RECs were within the control limits (70-130%) with the following exception(s):

Analyte	Date	Initial	Final	Sample Affected	Action
	Analyzed	%R	%R		
Sodium	3/26-27/2018:	162.9	249.8	MW 1, MW 4, MW 6	J
	20:10/0:51				
	3/27/2018:	52.7	210.0		
	8:40/12:34				
Potassium	3/26-27/2018:	391.6	-	None	None
	20:10/0:51				

# **ICP Interference Check Sample:**

1. All %REC values were within the QC limits (80-120%) for ICSA and ICSAB. No qualifications were required.

# Blanks (Method Blank, ICB and CCB):

# **ICP-AES, MS, and GFAA:**

1. Method Blank-Water (CA06817 BLK) (dissolved) (ICP) digested on 03/22/2018 contained sodium (460 ug/L). Results for sodium were greater than 10x the blank concentration. No qualifications were required.



- 2. Method Blank-Water (CA06668 BLK) (total) (ICP) digested on 03/23/2018 contained sodium (160 ug/L). Results for sodium were greater than 10x the blank concentration. No qualifications were required.
- 3. Method Blank-Water (CA06426 BLK) (total) (MS) digested on 03/22/2018 was free of contamination. No qualifications were required.
- 4. Method Blank-Water (CA06496 BLK) (dissolved) (MS) digested on 03/22/2018 was free of contamination. No qualifications were required.
- 5. ICBs and CCBs (dissolved) analyzed on 3/23, 24, 26, 27, & 28/2018.

Element	Concentration	CRQL*	Sample Affected	Action
	(ug/L)	(ug/L)		
Sodium	422	100	None	None
	278	100	MW 4, MW 1, MW 6	None
	337	100	None	None
Aluminum	12	10	None	None
	6	10	None	None
Calcium	22	10	None	None
	3	10	MW 1, MW6	None
Iron	14	10	None	None
Arsenic	1	3	MW 1, MW6	None
Magnesium	10	10	MW 1, MW6	None

- *= If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.
- 6. ICBs and CCBs (total) analyzed on 3/23, 24, & 26/2018.

Element	Concentration (ug/L)	CRQL* (ug/L)	Sample Affected	Action
Sodium	293	100	None	None
	225	100	None	None
Lead	2	2	None	None
	1	2	MW 1, MW 4, MW 6	None
	2	2	None	None
Calcium	46	10	None	None
Copper	1	5	None	None
	1	5	None	None
Magnesium	53	10	None	None



*= If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.

### **Mercury:**

- 1. All ICB and CCBs were free of contamination. No qualifications were required.
- 2. Method Blank-Water (CA06817 BLK) (dissolved) digested on 03/26/2018 was free of contamination. No qualifications were required.
- 3. Method Blank-Water (CA06816 BLK) (total) digested on 03/23/2018 was free of contamination. No qualifications were required.

### Field Blank (FB) and Equipment Blank (EB):

1. Field Blanks were not submitted with this SDG.

# Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

# **ICP-AES, MS, GFAA and CVAA:**

1. Laboratory Control Sample (dissolved and total) was analyzed on 3/20-22/2018. All %RECs were within the laboratory control limits. No qualifications were required.

# **Field Duplicate:**

1. A field duplicate was not collected and submitted with this SDG.

# Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

# **ICP-AES, GFAA and CVAA:**

- 1. Matrix Spike (MS) was performed on sample MW4 (CA06817) for all dissolved analyses. All %Rs were within the laboratory control limits. No qualifications were required.
- 2. Matrix Spike (MS) was performed on sample MW1 (CA06816) for mercury. All %Rs were within the laboratory control limits. No qualifications were required.



# **Sample Duplicate:**

# **ICP-AES, MS, GFAA and CVAA:**

1. Laboratory Duplicate was performed on sample MW 4 (CA06817) for dissolved mercury and ICP. All RPDs were within the laboratory control limits with the following exception(s):

Compound	RPD	Action
Iron	22.0	J

2. Laboratory Duplicate was performed on sample MW5 (CA04713) for mercury. All RPDs were within the laboratory control limits. No qualifications were required.

# **ICP-AES and MS Serial Dilution**:

1. ICP serial dilution was performed on sample MW4 (CA06817) (dissolved). For all results for which the concentration in the original sample is  $\geq 50x$  the Method Detection Limits (MDL), the serial dilution analysis (a five-fold dilution) was within the acceptable limit (%D  $\pm$  10%) with the following exception(s):

Compound	%D	Action
Potassium	22.0	J

# **Verification of Instrumental Parameters:**

- 1. The following Forms were present in the data package:
  - 1.1 Method Detection Limits, Form- X.
  - 1.2 ICP-AES Interelement Correction Factors, Form -XIA and Form-XIB.
  - 1.3 ICP-AES Linear Ranges, Form XII.

# **Compound Quantitation and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. Manual calculation:

Sample: MW1 (CA06816)

Barium (Total)

DF: 1



0.2096 mg/L was reported on the raw data and the laboratory reported 0.210 mg/L on Form-I.

# **Comments:**

- 1. Trace Metals data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GCA06816.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GCA06816.





# 1346 BLONDELL AVENUE BRONX, NY DATA SUMMARY TABLE AQUEOUS

**SDG: GCA06816** 

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
Campio manio	20.0.12	Method	Date	Factor	7			40.0	-11_
MW 1 20180320	CA06816	E200.8	3/20/2018	1	Thallium (Dissolved)		mg/L	U	0.0003
MW 1 20180320	CA06816	E200.8	3/20/2018	1	Antimony (Dissolved)-LDL		mg/L	U	0.0003
MW 1 20180320	CA06816	E200.8	3/20/2018	1	Selenium (Dissolved)-LDL		mg/L	U	0.002
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Aluminum (Dissolved)	0.062	mg/L		0.011
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Iron, (Dissolved)	13.4	mg/L		0.01
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Lead (Dissolved)	0.003	mg/L		0.002
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Magnesium (Dissolved)	37.6	mg/L		0.01
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Nickel, (Dissolved)	0.006	mg/L		0.004
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Potassium (Dissolved)	11.7	mg/L		0.1
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Silver (Dissolved)		mg/L	U	0.005
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Arsenic, (Dissolved)		mg/L	U	0.004
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Barium (Dissolved)	0.096	mg/L		0.011
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Beryllium (Dissolved)		mg/L	U	0.001
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Cadmium (Dissolved)		mg/L	U	0.004
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Chromium (Dissolved)	0.002	mg/L		0.001
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Cobalt, (Dissolved)	0.004	mg/L	J	0.005
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Copper, (Dissolved)	0.001	mg/L	J	0.005
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Vanadium, (Dissolved)		mg/L	U	0.011
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Zinc, (Dissolved)	0.006	mg/L	J	0.011
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Calcium (Dissolved)	117	mg/L		0.01
MW 1 20180320	CA06816	SW6010	3/20/2018	10	Manganese, (Dissolved)	5.63	mg/L		0.053
MW 1_20180320	CA06816	SW6010	3/20/2018	10	Sodium (Dissolved)	71.1	mg/L	J	1.1
MW 1 20180320	CA06816	SW6010	3/20/2018	1	Aluminum	14.9	mg/L		0.010
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Iron	47.4	mg/L		0.01
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Lead	0.051	mg/L		0.002
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Magnesium	44.3	mg/L		0.010
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Nickel	0.033	mg/L		0.004
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Silver		mg/L	U	0.005
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Arsenic - LDL		mg/L	U	0.004
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Barium	0.210	mg/L		0.010
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Beryllium		mg/L	U	0.001
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Cadmium	0.001	mg/L	J	0.004
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Chromium	0.035	mg/L		0.001
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Cobalt	0.017	mg/L		0.005
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Copper	0.057	mg/L		0.005
MW 1_20180320		SW6010	3/20/2018	1	Vanadium	0.025	mg/L		0.010
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Zinc	0.091	mg/L		0.010
MW 1_20180320	CA06816	SW6010	3/20/2018	1	Calcium	137	mg/L		0.010



# 1346 BLONDELL AVENUE BRONX, NY DATA SUMMARY TABLE AQUEOUS

**SDG: GCA06816** 

Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
oumpro rumo		Method	Date	Factor	7	- TOO GITE		Qualifor	
MW 1 20180320	CA06816	SW6010	3/20/2018	10	Manganese	5.55	mg/L		0.050
MW 1 20180320	CA06816	SW6010	3/20/2018	10	Potassium	15.6	mg/L		1.0
MW 1 20180320	CA06816	SW6010	3/20/2018	10	Sodium	71.5	mg/L	J	1.0
MW 1 20180320	CA06816	SW6020	3/20/2018	5	Thallium		mg/L	U	0.0005
MW 1_20180320	CA06816	SW6020	3/20/2018	5	Antimony		mg/L	U	0.003
MW 1_20180320	CA06816	SW6020	3/20/2018	5	Selenium		mg/L	U	0.010
MW 1_20180320	CA06816	SW7470	3/20/2018	1	Mercury		mg/L	U	0.0002
MW 1_20180320	CA06816	SW7470	3/20/2018	1	Mercury (Dissolved)		mg/L	U	0.0002
MW 1_20180320	CA06816	SW8081	3/20/2018	1	Heptachlor epoxide		ug/L	U	0.005
MW 1_20180320	CA06816	SW8081	3/20/2018	1	Endosulfan Sulfate		ug/L	U	0.010
MW 1_20180320	CA06816	SW8081	3/20/2018	1	Alachlor		ug/L	U	0.078
MW 1_20180320	CA06816	SW8081	3/20/2018	1	Aldrin		ug/L	U	0.002
MW 1_20180320	CA06816	SW8081	3/20/2018	1	a-BHC		ug/L	U	0.005
MW 1_20180320	CA06816	SW8081	3/20/2018	1	b-BHC		ug/L	U	0.005
MW 1_20180320	CA06816	SW8081	3/20/2018	1	d-BHC		ug/L	U	0.010
MW 1 20180320	CA06816	SW8081	3/20/2018	1	Endosulfan II		ug/L	U	0.010
MW 1_20180320	CA06816	SW8081	3/20/2018	1	4,4' -DDT		ug/L	U	0.005
MW 1_20180320	CA06816	SW8081	3/20/2018	1	a-chlordane		ug/L	U	0.010
MW 1_20180320	CA06816	SW8081	3/20/2018	1	g-chlordane		ug/L	U	0.010
MW 1_20180320	CA06816	SW8081	3/20/2018	1	Endrin ketone		ug/L	U	0.010
MW 1_20180320	CA06816	SW8081	3/20/2018	1	Chlordane		ug/L	U	0.050
MW 1_20180320	CA06816	SW8081	3/20/2018	1	g-BHC (Lindane)		ug/L	U	0.010
MW 1_20180320	CA06816	SW8081	3/20/2018	1	Dieldrin		ug/L	U	0.002
MW 1_20180320	CA06816	SW8081	3/20/2018	1	Endrin		ug/L	U	0.007
MW 1_20180320	CA06816	SW8081	3/20/2018	1	Methoxychlor		ug/L	UJ	0.10
MW 1_20180320	CA06816	SW8081	3/20/2018	1	4,4' -DDD		ug/L	U	0.005
MW 1_20180320	CA06816	SW8081	3/20/2018	1	4,4' -DDE		ug/L	U	0.005
MW 1_20180320	CA06816	SW8081	3/20/2018	1	Endrin Aldehyde		ug/L	U	0.010
MW 1_20180320	CA06816	SW8081	3/20/2018	1	Heptachlor		ug/L	U	0.005
MW 1_20180320	CA06816	SW8081	3/20/2018	1	Toxaphene		ug/L	U	0.21
MW 1_20180320	CA06816	SW8081	3/20/2018	1	Endosulfan I		ug/L	U	0.010
MW 1_20180320	CA06816	SW8082	3/20/2018	1	PCB-1260		ug/L	U	0.052
MW 1_20180320	CA06816	SW8082	3/20/2018	1	PCB-1254		ug/L	U	0.052
MW 1_20180320	CA06816	SW8082	3/20/2018	1	PCB-1268		ug/L	U	0.052
MW 1_20180320		SW8082	3/20/2018	1	PCB-1221		ug/L	U	0.052
MW 1_20180320	CA06816	SW8082	3/20/2018	1	PCB-1232		ug/L	U	0.052
MW 1_20180320		SW8082	3/20/2018	1	PCB-1248		ug/L	U	0.052
MW 1_20180320	CA06816	SW8082	3/20/2018	1	PCB-1016		ug/L	U	0.052



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
Campio Hamo		Method	Date	Factor	7	Troount .		Qualifor	
MW 1 20180320	CA06816	SW8082	3/20/2018	1	PCB-1262		ug/L	U	0.052
MW 1 20180320	CA06816	SW8082	3/20/2018	1	PCB-1242		ug/L	U	0.052
MW 1 20180320	CA06816	SW8260	3/20/2018	100	Ethylbenzene	900	ug/L	_	100
MW 1 20180320	CA06816	SW8260	3/20/2018	100	m&p-Xylene	1800	ug/L		100
MW 1 20180320	CA06816	SW8260	3/20/2018	100	1,2,4-Trimethylbenzene	370	ug/L		100
MW 1 20180320	CA06816	SW8260	3/20/2018	10	Styrene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	cis-1,3-Dichloropropene		ug/L	U	2.5
MW 1_20180320	CA06816	SW8260	3/20/2018	10	trans-1,3-Dichloropropene		ug/L	U	2.5
MW 1_20180320	CA06816	SW8260	3/20/2018	10	n-Propylbenzene	180	ug/L		10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	n-Butylbenzene	6.3	ug/L	J	10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	4-Chlorotoluene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,4-Dichlorobenzene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,2-Dibromoethane		ug/L	U	2.5
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Acrolein		ug/L	U	25
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,2-Dichloroethane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Acrylonitrile		ug/L	U	25
MW 1_20180320	CA06816	SW8260	3/20/2018	10	4-Methyl-2-pentanone		ug/L	U	25
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,3,5-Trimethylbenzene	170	ug/L		10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Bromobenzene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Toluene	91	ug/L		10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Chlorobenzene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Tetrahydrofuran (THF)		ug/L	U	50
MW 1_20180320	CA06816	SW8260	3/20/2018	10	trans-1,4-dichloro-2-butene		ug/L	U	25
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,2,4-Trichlorobenzene		ug/L	U	10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,4-dioxane		ug/L	U	1000
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Dibromochloromethane		ug/L	U	10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Tetrachloroethene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	sec-Butylbenzene	9.8	ug/L	J	10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,3-Dichloropropane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	cis-1,2-Dichloroethene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	trans-1,2-Dichloroethene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Methyl t-butyl ether (MTBE)		ug/L	U	10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	2-Isopropyltoluene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,3-Dichlorobenzene		ug/L	U	3.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Carbon tetrachloride		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,1-Dichloropropene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	2-Hexanone		ug/L	U	25
MW 1_20180320	CA06816	SW8260	3/20/2018	10	2,2-Dichloropropane		ug/L	U	5.0



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
Campio Hamo		Method	Date	Factor	7	Hoodin	<b>O</b>	- Caramio	
MW 1 20180320	CA06816	SW8260	3/20/2018	10	1,1,1,2-Tetrachloroethane		ug/L	U	5.0
MW 1 20180320	CA06816	SW8260	3/20/2018	10	Acetone		ug/L	U	50
MW 1 20180320	CA06816	SW8260	3/20/2018	10	Chloroform		ug/L	U	7.0
MW 1 20180320	CA06816	SW8260	3/20/2018	10	Benzene	6.8	ug/L	J	7.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,1,1-Trichloroethane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Bromomethane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Chloromethane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Dibromomethane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Bromochloromethane		ug/L	U	5.0
MW 1 20180320	CA06816	SW8260	3/20/2018	10	Chloroethane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Vinyl chloride		ug/L	U	2.5
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Methylene chloride		ug/L	U	10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Carbon Disulfide		ug/L	U	10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Bromoform		ug/L	U	50
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Bromodichloromethane		ug/L	U	10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,1-Dichloroethane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,1-Dichloroethene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Tert-butyl alcohol		ug/L	U	500
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Trichlorofluoromethane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Dichlorodifluoromethane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Trichlorotrifluoroethane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,2-Dichloropropane		ug/L	U	2.5
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Methyl ethyl ketone		ug/L	U	25
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,1,2-Trichloroethane		ug/L	U	2.5
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Trichloroethene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,1,2,2-Tetrachloroethane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,2,3-Trichlorobenzene		ug/L	U	10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Hexachlorobutadiene		ug/L	U	2.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Naphthalene	55	ug/L		10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	o-Xylene	130	ug/L		10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	2-Chlorotoluene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,2-Dichlorobenzene		ug/L	U	4.7
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,2-Dibromo-3-chloropropane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	1,2,3-Trichloropropane		ug/L	U	2.5
MW 1_20180320	CA06816	SW8260	3/20/2018	10	tert-Butylbenzene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8260	3/20/2018	10	Isopropylbenzene	98	ug/L		10
MW 1_20180320	CA06816	SW8260	3/20/2018	10	p-Isopropyltoluene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8270	3/20/2018	1	4-Nitroaniline		ug/L	U	5.0



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
Campio Hamo		Method	Date	Factor	7 many to	Hoodin		Qualifor	
MW 1 20180320	CA06816	SW8270	3/20/2018	1	4-Nitrophenol		ug/L	U	2.3
MW 1 20180320	CA06816	SW8270	3/20/2018	1	4-Bromophenyl phenyl ether		ug/L	U	5.2
MW 1 20180320	CA06816	SW8270	3/20/2018	1	2,4-Dimethylphenol	8.5	ug/L	-	5.2
MW 1 20180320	CA06816	SW8270	3/20/2018	1	1,4-Dichlorobenzene		ug/L	U	5.0
MW 1 20180320	CA06816	SW8270	3/20/2018	1	4-Chloroaniline		ug/L	U	5.0
MW 1 20180320	CA06816	SW8270	3/20/2018	1	Phenol		ug/L	U	1.6
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Pyridine		ug/L	UJ	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Bis(2-chloroethyl)ether		ug/L	U	1.4
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Bis(2-chloroethoxy)methane		ug/L	U	5.0
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Bis(2-ethylhexyl)phthalate		ug/L	U	5.0
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Di-n-octylphthalate		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Hexachlorobenzene		ug/L	U	1.5
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Anthracene		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	1,2,4-Trichlorobenzene		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	2,4-Dichlorophenol		ug/L	U	1.8
MW 1_20180320	CA06816	SW8270	3/20/2018	1	2,4-Dinitrotoluene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8270	3/20/2018	1	1,2-Diphenylhydrazine		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Pyrene		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Dimethylphthalate		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Dibenzofuran		ug/L	U	5.0
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Benzo(ghi)perylene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Indeno(1,2,3-cd)pyrene		ug/L	U	1.7
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Benzo(b)fluoranthene		ug/L	U	1.8
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Fluoranthene		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Benzo(k)fluoranthene		ug/L	U	1.7
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Acenaphthylene		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Chrysene		ug/L	U	1.7
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Bis(2-chloroisopropyl)ether		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Benzo(a)pyrene		ug/L	U	1.7
MW 1_20180320	CA06816	SW8270	3/20/2018	1	2,4-Dinitrophenol		ug/L	UJ	3.6
MW 1_20180320	CA06816	SW8270	3/20/2018	1	4,6-Dinitro-2-methylphenol		ug/L	UJ	5.5
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Dibenz(a,h)anthracene		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	1,3-Dichlorobenzene		ug/L	U	3.0
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Benz(a)anthracene		ug/L	U	1.7
MW 1_20180320	CA06816	SW8270	3/20/2018	1	4-Chloro-3-methylphenol		ug/L	U	1.8
MW 1_20180320	CA06816	SW8270	3/20/2018	1	2,6-Dinitrotoluene		ug/L	U	5.0
MW 1_20180320	CA06816	SW8270	3/20/2018	1	N-Nitrosodi-n-propylamine		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Aniline		ug/L	U	15



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	<b>,</b>	11000		40.0	- 11_
MW 1 20180320	CA06816	SW8270	3/20/2018	1	N-Nitrosodimethylamine		ug/L	U	5.2
MW 1 20180320	CA06816	SW8270	3/20/2018	1	Benzoic acid		ug/L	U	26
MW 1 20180320	CA06816	SW8270	3/20/2018	1	Hexachloroethane		ug/L	U	5.0
MW 1 20180320	CA06816	SW8270	3/20/2018	1	4-Chlorophenyl phenyl ether		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Hexachlorocyclopentadiene		ug/L	UJ	5.0
MW 1 20180320	CA06816	SW8270	3/20/2018	1	Isophorone		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Pentachloronitrobenzene		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Acenaphthene		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Diethyl phthalate		ug/L	U	5.2
MW 1 20180320	CA06816	SW8270	3/20/2018	1	Di-n-butylphthalate		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Phenanthrene		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Benzyl butyl phthalate		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	N-Nitrosodiphenylamine		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Fluorene		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Carbazole		ug/L	U	26
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Hexachlorobutadiene		ug/L	U	1.9
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Pentachlorophenol		ug/L	U	1.9
MW 1_20180320	CA06816	SW8270	3/20/2018	1	2,4,6-Trichlorophenol		ug/L	U	1.6
MW 1_20180320	CA06816	SW8270	3/20/2018	1	2-Nitroaniline		ug/L	UJ	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	2-Nitrophenol		ug/L	U	3.3
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Naphthalene	38	ug/L	J	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	2-Methylnaphthalene	1.8	ug/L	J	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	2-Chloronaphthalene		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	3,3'-Dichlorobenzidine		ug/L	U	5.0
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Benzidine		ug/L	U	5.0
MW 1_20180320	CA06816	SW8270	3/20/2018	1	2-Methylphenol (o-cresol)		ug/L	U	2.4
MW 1_20180320	CA06816	SW8270	3/20/2018	1	1,2-Dichlorobenzene		ug/L	U	4.7
MW 1_20180320	CA06816	SW8270	3/20/2018	1	2-Chlorophenol		ug/L	U	1.5
MW 1_20180320	CA06816	SW8270	3/20/2018	1	1,2,4,5-Tetrachlorobenzene		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	2,4,5-Trichlorophenol		ug/L	U	2.8
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Acetophenone		ug/L	U	5.2
MW 1_20180320	CA06816	SW8270	3/20/2018	1	Nitrobenzene		ug/L	U	1.8
MW 1_20180320	CA06816	SW8270	3/20/2018	1	3-Nitroaniline		ug/L	U	11
MW 1_20180320	CA06816	SW8270	3/20/2018	1	3&4-Methylphenol (m&p-cresol)		ug/L	U	5.2
MW 4_20180320	CA06817	E200.8	3/20/2018	1	Thallium (Dissolved)		mg/L	U	0.0003
MW 4_20180320	CA06817	E200.8	3/20/2018	1	Antimony (Dissolved)-LDL		mg/L	U	0.0003
MW 4_20180320	CA06817	E200.8	3/20/2018	1	Selenium (Dissolved)-LDL		mg/L	U	0.002
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Aluminum (Dissolved)	0.030	mg/L		0.011



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	,				
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Iron, (Dissolved)	0.09	mg/L	J	0.01
MW 4 20180320	CA06817	SW6010	3/20/2018	1	Lead (Dissolved)		mg/L	U	0.002
MW 4 20180320	CA06817	SW6010	3/20/2018	1	Manganese, (Dissolved)	0.901	mg/L		0.005
MW 4 20180320	CA06817	SW6010	3/20/2018	1	Nickel, (Dissolved)	0.004	mg/L	J	0.004
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Potassium (Dissolved)	4.9	mg/L	J	0.1
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Silver (Dissolved)		mg/L	U	0.005
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Arsenic, (Dissolved)		mg/L	U	0.004
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Barium (Dissolved)	0.024	mg/L		0.011
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Beryllium (Dissolved)		mg/L	U	0.001
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Cadmium (Dissolved)		mg/L	U	0.004
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Chromium (Dissolved)	0.007	mg/L		0.001
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Cobalt, (Dissolved)		mg/L	U	0.005
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Copper, (Dissolved)	0.006	mg/L		0.005
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Vanadium, (Dissolved)		mg/L	U	0.011
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Zinc, (Dissolved)	0.002	mg/L	J	0.011
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Calcium (Dissolved)	27.2	mg/L		0.01
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Magnesium (Dissolved)	2.86	mg/L		0.01
MW 4_20180320	CA06817	SW6010	3/20/2018	10	Sodium (Dissolved)	76.3	mg/L	J	1.1
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Aluminum	12.5	mg/L		0.010
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Iron	20.0	mg/L		0.01
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Lead	0.577	mg/L		0.002
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Magnesium	7.24	mg/L		0.010
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Manganese	1.39	mg/L		0.005
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Nickel	0.016	mg/L		0.004
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Silver		mg/L	U	0.005
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Arsenic - LDL	0.006	mg/L		0.004
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Barium	0.208	mg/L		0.010
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Beryllium		mg/L	U	0.001
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Cadmium		mg/L	U	0.004
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Chromium	0.022	mg/L		0.001
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Cobalt	0.010	mg/L		0.005
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Copper	0.597	mg/L		0.005
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Vanadium	0.025	mg/L		0.010
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Zinc	0.135	mg/L		0.010
MW 4_20180320	CA06817	SW6010	3/20/2018	1	Calcium	48.4	mg/L		0.010
MW 4_20180320	CA06817	SW6010	3/20/2018	10	Potassium	9.2	mg/L		1.0
MW 4_20180320	CA06817	SW6010	3/20/2018	10	Sodium	77.2	mg/L	J	1.0
MW 4_20180320	CA06817	SW6020	3/20/2018	5	Thallium		mg/L	U	0.0005



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
Campio Hamo		Method	Date	Factor	7 illuly 10	Troount	<b>O</b>	Qualifor	
MW 4 20180320	CA06817	SW6020	3/20/2018	5	Antimony		mg/L	U	0.003
MW 4 20180320	CA06817	SW6020	3/20/2018	5	Selenium		mg/L	U	0.010
MW 4 20180320	CA06817	SW7470	3/20/2018	1	Mercury	0.0002	mg/L	-	0.0002
MW 4 20180320	CA06817	SW7470	3/20/2018	1	Mercury (Dissolved)		mg/L	U	0.0002
MW 4 20180320	CA06817	SW8081	3/20/2018	1	Heptachlor epoxide		ug/L	U	0.015
MW 4 20180320	CA06817	SW8081	3/20/2018	1	Endosulfan Sulfate		ug/L	U	0.015
MW 4_20180320	CA06817	SW8081	3/20/2018	1	Alachlor		ug/L	U	0.073
MW 4_20180320	CA06817	SW8081	3/20/2018	1	Aldrin		ug/L	U	0.005
MW 4_20180320	CA06817	SW8081	3/20/2018	1	a-BHC		ug/L	U	0.005
MW 4_20180320	CA06817	SW8081	3/20/2018	1	b-BHC		ug/L	U	0.005
MW 4_20180320	CA06817	SW8081	3/20/2018	1	d-BHC		ug/L	U	0.005
MW 4_20180320	CA06817	SW8081	3/20/2018	1	Endosulfan II		ug/L	U	0.015
MW 4_20180320	CA06817	SW8081	3/20/2018	1	4,4' -DDT		ug/L	U	0.005
MW 4_20180320	CA06817	SW8081	3/20/2018	1	a-chlordane		ug/L	U	0.015
MW 4_20180320	CA06817	SW8081	3/20/2018	1	g-chlordane		ug/L	U	0.010
MW 4_20180320	CA06817	SW8081	3/20/2018	1	Endrin ketone		ug/L	U	0.010
MW 4_20180320	CA06817	SW8081	3/20/2018	1	Chlordane		ug/L	U	0.049
MW 4_20180320	CA06817	SW8081	3/20/2018	1	g-BHC (Lindane)		ug/L	U	0.005
MW 4_20180320	CA06817	SW8081	3/20/2018	1	Dieldrin		ug/L	U	0.002
MW 4_20180320	CA06817	SW8081	3/20/2018	1	Endrin		ug/L	U	0.010
MW 4_20180320	CA06817	SW8081	3/20/2018	1	Methoxychlor		ug/L	UJ	0.097
MW 4_20180320	CA06817	SW8081	3/20/2018	1	4,4' -DDD		ug/L	U	0.005
MW 4_20180320	CA06817	SW8081	3/20/2018	1	4,4' -DDE		ug/L	U	0.005
MW 4_20180320	CA06817	SW8081	3/20/2018	1	Endrin Aldehyde		ug/L	U	0.010
MW 4_20180320	CA06817	SW8081	3/20/2018	1	Heptachlor		ug/L	U	0.010
MW 4_20180320	CA06817	SW8081	3/20/2018	1	Toxaphene		ug/L	U	0.19
MW 4_20180320	CA06817	SW8081	3/20/2018	1	Endosulfan I		ug/L	U	0.010
MW 4_20180320	CA06817	SW8082	3/20/2018	1	PCB-1260		ug/L	U	0.049
MW 4_20180320	CA06817	SW8082	3/20/2018	1	PCB-1254		ug/L	U	0.049
MW 4_20180320	CA06817	SW8082	3/20/2018	1	PCB-1268		ug/L	U	0.049
MW 4_20180320	CA06817	SW8082	3/20/2018	1	PCB-1221		ug/L	U	0.049
MW 4_20180320	CA06817	SW8082	3/20/2018	1	PCB-1232		ug/L	U	0.049
MW 4_20180320	CA06817	SW8082	3/20/2018	1	PCB-1248		ug/L	U	0.049
MW 4_20180320	CA06817	SW8082	3/20/2018	1	PCB-1016		ug/L	U	0.049
MW 4_20180320	CA06817	SW8082	3/20/2018	1	PCB-1262		ug/L	U	0.049
MW 4_20180320	CA06817	SW8082	3/20/2018	1	PCB-1242		ug/L	U	0.049
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Ethylbenzene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Styrene		ug/L	U	1.0



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
Campio Hamo		Method	Date	Factor	7 many to	Trootin.		Qualifor	112
MW 4 20180320	CA06817	SW8260	3/20/2018	1	cis-1,3-Dichloropropene		ug/L	U	0.40
MW 4 20180320	CA06817	SW8260	3/20/2018	1	trans-1,3-Dichloropropene		ug/L	U	0.40
MW 4 20180320	CA06817	SW8260	3/20/2018	1	n-Propylbenzene		ug/L	U	1.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	n-Butylbenzene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	4-Chlorotoluene		ug/L	U	1.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	1,4-Dichlorobenzene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,2-Dibromoethane		ug/L	UJ	0.25
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Acrolein		ug/L	U	5.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,2-Dichloroethane		ug/L	U	0.60
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Acrylonitrile		ug/L	U	5.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	4-Methyl-2-pentanone		ug/L	U	2.5
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,3,5-Trimethylbenzene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Bromobenzene		ug/L	U	1.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Toluene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Chlorobenzene		ug/L	U	5.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Tetrahydrofuran (THF)		ug/L	U	5.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,2,4-Trichlorobenzene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,4-dioxane		ug/L	U	100
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Dibromochloromethane		ug/L	UJ	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Tetrachloroethene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	sec-Butylbenzene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,3-Dichloropropane		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	cis-1,2-Dichloroethene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	trans-1,2-Dichloroethene		ug/L	U	5.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Methyl t-butyl ether (MTBE)		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	m&p-Xylene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	2-Isopropyltoluene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Carbon tetrachloride		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,1-Dichloropropene	1	ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	2-Hexanone	1	ug/L	U	2.5
MW 4_20180320	CA06817	SW8260	3/20/2018	1	2,2-Dichloropropane	1	ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,1,1,2-Tetrachloroethane		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Acetone	1	ug/L	U	5.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Chloroform	9.2	ug/L		5.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Benzene	1	ug/L	U	0.70
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,1,1-Trichloroethane		ug/L	U	5.0



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	<b>,</b>	11000			
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Bromomethane		ug/L	U	5.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Chloromethane		ug/L	U	5.0
MW 4 20180320		SW8260	3/20/2018	1	Dibromomethane		ug/L	U	1.0
MW 4 20180320		SW8260	3/20/2018	1	Bromochloromethane		ug/L	U	1.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Chloroethane		ug/L	U	5.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Vinyl chloride		ug/L	U	1.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Methylene chloride		ug/L	U	3.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Carbon Disulfide		ug/L	U	1.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Bromoform		ug/L	U	5.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Bromodichloromethane	0.60	ug/L	J	1.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	1,1-Dichloroethane		ug/L	U	5.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,1-Dichloroethene		ug/L	U	1.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Tert-butyl alcohol		ug/L	U	50
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Trichlorofluoromethane		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Dichlorodifluoromethane		ug/L	U	1.0
MW 4 20180320	CA06817	SW8260	3/20/2018	1	Trichlorotrifluoroethane		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,2-Dichloropropane		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Methyl ethyl ketone		ug/L	U	2.5
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,1,2-Trichloroethane		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Trichloroethene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,2,3-Trichlorobenzene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Hexachlorobutadiene		ug/L	U	0.50
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Naphthalene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	o-Xylene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	2-Chlorotoluene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,2,4-Trimethylbenzene	0.29	ug/L	J	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,2-Dibromo-3-chloropropane		ug/L	U	0.50
MW 4_20180320	CA06817	SW8260	3/20/2018	1	1,2,3-Trichloropropane		ug/L	U	0.25
MW 4_20180320	CA06817	SW8260	3/20/2018	1	tert-Butylbenzene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	Isopropylbenzene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8260	3/20/2018	1	p-Isopropyltoluene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	4-Nitroaniline		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	4-Nitrophenol		ug/L	U	1.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	4-Bromophenyl phenyl ether		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	2,4-Dimethylphenol		ug/L	U	1.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	1,4-Dichlorobenzene		ug/L	U	1.0



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	•				
MW 4 20180320	CA06817	SW8270	3/20/2018	1	4-Chloroaniline		ug/L	U	3.5
MW 4 20180320	CA06817	SW8270	3/20/2018	1	Phenol		ug/L	U	1.0
MW 4 20180320	CA06817	SW8270	3/20/2018	1	Pyridine		ug/L	UJ	10
MW 4 20180320	CA06817	SW8270	3/20/2018	1	Bis(2-chloroethyl)ether		ug/L	U	1.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Bis(2-chloroethoxy)methane		ug/L	U	5.0
MW 4 20180320	CA06817	SW8270	3/20/2018	1	Di-n-octylphthalate		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Anthracene		ug/L	U	5.0
MW 4 20180320	CA06817	SW8270	3/20/2018	1	1,2,4-Trichlorobenzene		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	2,4-Dichlorophenol		ug/L	U	1.0
MW 4 20180320	CA06817	SW8270	3/20/2018	1	2,4-Dinitrotoluene		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	1,2-Diphenylhydrazine		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Pyrene		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Dimethylphthalate		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Dibenzofuran		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Fluoranthene		ug/L	U	5.0
MW 4 20180320	CA06817	SW8270	3/20/2018	1	Bis(2-chloroisopropyl)ether		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	2,4-Dinitrophenol		ug/L	UJ	1.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	4,6-Dinitro-2-methylphenol		ug/L	UJ	1.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	4-Chloro-3-methylphenol		ug/L	U	1.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	2,6-Dinitrotoluene		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	N-Nitrosodi-n-propylamine		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Aniline		ug/L	U	3.5
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Benzoic acid		ug/L	U	25
MW 4_20180320	CA06817	SW8270	3/20/2018	1	4-Chlorophenyl phenyl ether		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Hexachlorocyclopentadiene		ug/L	UJ	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Isophorone		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Acenaphthene		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Diethyl phthalate		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Di-n-butylphthalate		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Benzyl butyl phthalate		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	N-Nitrosodiphenylamine		ug/L	U	5.0
MW 4_20180320	CA06817		3/20/2018	1	Fluorene		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Carbazole		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	2,4,6-Trichlorophenol		ug/L	U	1.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	2-Nitroaniline		ug/L	UJ	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	2-Nitrophenol		ug/L	U	1.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Naphthalene		ug/L	UJ	5.0



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
Campio Hamo		Method	Date	Factor	7 many to	- Noount	• · · · · ·	- Cuaiiioi	
MW 4 20180320	CA06817	SW8270	3/20/2018	1	2-Methylnaphthalene		ug/L	U	5.0
MW 4 20180320	CA06817	SW8270	3/20/2018	1	2-Chloronaphthalene	1	ug/L	Ü	5.0
MW 4 20180320	CA06817	SW8270	3/20/2018	1	3,3'-Dichlorobenzidine		ug/L	U	5.0
MW 4 20180320	CA06817	SW8270	3/20/2018	1	Benzidine		ug/L	U	4.5
MW 4 20180320	CA06817	SW8270	3/20/2018	1	2-Methylphenol (o-cresol)		ug/L	U	1.0
MW 4 20180320	CA06817	SW8270	3/20/2018	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	2-Chlorophenol		ug/L	U	1.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	2,4,5-Trichlorophenol		ug/L	U	1.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	Acetophenone		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	3-Nitroaniline		ug/L	U	5.0
MW 4_20180320	CA06817	SW8270	3/20/2018	1	3&4-Methylphenol (m&p-cresol)		ug/L	U	1.0
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Bis(2-ethylhexyl)phthalate		ug/L	U	1.0
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Hexachlorobenzene		ug/L	U	0.02
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Benzo(ghi)perylene	0.13	ug/L		0.02
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Indeno(1,2,3-cd)pyrene	0.12	ug/L		0.02
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Benzo(b)fluoranthene	0.15	ug/L		0.02
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Benzo(k)fluoranthene	0.14	ug/L		0.02
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Acenaphthylene		ug/L	U	0.10
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Chrysene	0.16	ug/L		0.02
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Benzo(a)pyrene	0.16	ug/L		0.02
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Dibenz(a,h)anthracene	0.04	ug/L		0.02
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Benz(a)anthracene	0.16	ug/L		0.02
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	N-Nitrosodimethylamine		ug/L	U	0.10
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Hexachloroethane		ug/L	U	0.50
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Pentachloronitrobenzene		ug/L	U	0.10
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Phenanthrene	0.19	ug/L		0.10
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Hexachlorobutadiene		ug/L	U	0.40
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Pentachlorophenol		ug/L	U	0.10
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	1,2,4,5-Tetrachlorobenzene		ug/L	U	0.50
MW 4_20180320	CA06817	SW8270C-SIM	3/20/2018	1	Nitrobenzene		ug/L	U	0.10
MW 6_20180320	CA06818	E200.8	3/20/2018	1	Thallium (Dissolved)		mg/L	U	0.0003
MW 6_20180320	CA06818	E200.8	3/20/2018	1	Antimony (Dissolved)-LDL		mg/L	U	0.0003
MW 6_20180320	CA06818	E200.8	3/20/2018	1	Selenium (Dissolved)-LDL		mg/L	U	0.002
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Aluminum (Dissolved)	0.057	mg/L		0.011
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Iron, (Dissolved)	1.44	mg/L		0.01
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Lead (Dissolved)		mg/L	U	0.002
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Magnesium (Dissolved)	10.7	mg/L		0.01
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Manganese, (Dissolved)	0.429	mg/L		0.005



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
oumpio mamo		Method	Date	Factor	7 manyee	- toount	<b>O</b>	Qualifor	
MW 6 20180320	CA06818	SW6010	3/20/2018	1	Nickel, (Dissolved)	0.002	mg/L	J	0.004
MW 6 20180320	CA06818	SW6010	3/20/2018	1	Potassium (Dissolved)	5.7	mg/L		0.1
MW 6 20180320	CA06818	SW6010	3/20/2018	1	Silver (Dissolved)		mg/L	U	0.005
MW 6 20180320	CA06818	SW6010	3/20/2018	1	Arsenic, (Dissolved)		mg/L	U	0.004
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Barium (Dissolved)	0.102	mg/L		0.011
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Beryllium (Dissolved)		mg/L	U	0.001
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Cadmium (Dissolved)		mg/L	U	0.004
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Chromium (Dissolved)		mg/L	U	0.001
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Cobalt, (Dissolved)		mg/L	U	0.005
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Copper, (Dissolved)		mg/L	U	0.005
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Vanadium, (Dissolved)		mg/L	U	0.011
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Zinc, (Dissolved)	0.001	mg/L	J	0.011
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Calcium (Dissolved)	109	mg/L		0.01
MW 6_20180320	CA06818	SW6010	3/20/2018	10	Sodium (Dissolved)	97.8	mg/L	J	1.1
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Aluminum	6.78	mg/L		0.010
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Iron	35.0	mg/L		0.01
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Lead	0.633	mg/L		0.002
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Magnesium	12.9	mg/L		0.010
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Manganese	0.557	mg/L		0.005
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Nickel	0.020	mg/L		0.004
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Silver		mg/L	U	0.005
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Arsenic - LDL	0.009	mg/L		0.004
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Barium	0.247	mg/L		0.010
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Beryllium		mg/L	U	0.001
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Cadmium	0.001	mg/L	J	0.004
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Chromium	0.016	mg/L		0.001
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Cobalt	0.005	mg/L		0.005
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Copper	0.108	mg/L		0.005
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Vanadium	0.058	mg/L		0.010
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Zinc	0.234	mg/L		0.010
MW 6_20180320	CA06818	SW6010	3/20/2018	1	Calcium	129	mg/L		0.010
MW 6_20180320	CA06818	SW6010	3/20/2018	10	Potassium	6.5	mg/L		1.0
MW 6_20180320	CA06818	SW6010	3/20/2018	10	Sodium	97.0	mg/L	J	1.0
MW 6_20180320	CA06818	SW6020	3/20/2018	5	Thallium		mg/L	U	0.0005
MW 6_20180320	CA06818	SW6020	3/20/2018	5	Antimony		mg/L	U	0.003
MW 6_20180320	CA06818	SW6020	3/20/2018	5	Selenium		mg/L	U	0.010
MW 6_20180320	CA06818	SW7470	3/20/2018	1	Mercury	0.0006			0.0002
MW 6_20180320	CA06818	SW7470	3/20/2018	1	Mercury (Dissolved)		mg/L	U	0.0002



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
Gumpio mumo		Method	Date	Factor	7 <b></b>	11000		40.0	
MW 6 20180320	CA06818	SW8081	3/20/2018	1	Heptachlor epoxide		ug/L	U	0.010
MW 6 20180320	CA06818	SW8081	3/20/2018	1	Endosulfan Sulfate		ug/L	U	0.010
MW 6 20180320	CA06818	SW8081	3/20/2018	1	Alachlor		ug/L	U	0.073
MW 6 20180320	CA06818	SW8081	3/20/2018	1	Aldrin		ug/L	U	0.002
MW 6_20180320	CA06818	SW8081	3/20/2018	1	a-BHC		ug/L	U	0.005
MW 6 20180320	CA06818	SW8081	3/20/2018	1	b-BHC		ug/L	U	0.005
MW 6_20180320	CA06818	SW8081	3/20/2018	1	d-BHC		ug/L	U	0.005
MW 6_20180320	CA06818	SW8081	3/20/2018	1	Endosulfan II		ug/L	U	0.010
MW 6_20180320	CA06818	SW8081	3/20/2018	1	4,4' -DDT		ug/L	U	0.010
MW 6 20180320	CA06818	SW8081	3/20/2018	1	a-chlordane		ug/L	U	0.010
MW 6_20180320	CA06818	SW8081	3/20/2018	1	g-chlordane		ug/L	U	0.010
MW 6_20180320	CA06818	SW8081	3/20/2018	1	Endrin ketone		ug/L	U	0.010
MW 6_20180320	CA06818	SW8081	3/20/2018	1	Chlordane		ug/L	U	0.049
MW 6_20180320	CA06818	SW8081	3/20/2018	1	g-BHC (Lindane)		ug/L	U	0.005
MW 6_20180320	CA06818	SW8081	3/20/2018	1	Dieldrin		ug/L	U	0.003
MW 6_20180320	CA06818	SW8081	3/20/2018	1	Endrin		ug/L	U	0.010
MW 6_20180320	CA06818	SW8081	3/20/2018	1	Methoxychlor		ug/L	U	0.098
MW 6_20180320	CA06818	SW8081	3/20/2018	1	4,4' -DDD		ug/L	U	0.010
MW 6_20180320	CA06818	SW8081	3/20/2018	1	4,4' -DDE		ug/L	U	0.005
MW 6_20180320	CA06818	SW8081	3/20/2018	1	Endrin Aldehyde		ug/L	U	0.010
MW 6_20180320	CA06818	SW8081	3/20/2018	1	Heptachlor		ug/L	U	0.010
MW 6_20180320	CA06818	SW8081	3/20/2018	1	Toxaphene		ug/L	U	0.20
MW 6_20180320	CA06818	SW8081	3/20/2018	1	Endosulfan I		ug/L	U	0.010
MW 6_20180320	CA06818	SW8082	3/20/2018	1	PCB-1260		ug/L	U	0.090
MW 6_20180320	CA06818	SW8082	3/20/2018	1	PCB-1254		ug/L	U	0.090
MW 6_20180320	CA06818	SW8082	3/20/2018	1	PCB-1268		ug/L	U	0.090
MW 6_20180320	CA06818	SW8082	3/20/2018	1	PCB-1221		ug/L	U	0.090
MW 6_20180320	CA06818	SW8082	3/20/2018	1	PCB-1232		ug/L	U	0.090
MW 6_20180320	CA06818	SW8082	3/20/2018	1	PCB-1248		ug/L	U	0.090
MW 6_20180320	CA06818	SW8082	3/20/2018	1	PCB-1016		ug/L	U	0.090
MW 6_20180320	CA06818	SW8082	3/20/2018	1	PCB-1262		ug/L	U	0.090
MW 6_20180320	CA06818	SW8082	3/20/2018	1	PCB-1242		ug/L	U	0.090
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Ethylbenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Styrene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	cis-1,3-Dichloropropene		ug/L	U	0.40
MW 6_20180320	CA06818	SW8260	3/20/2018	1	trans-1,3-Dichloropropene		ug/L	U	0.40
MW 6_20180320	CA06818	SW8260	3/20/2018	1	n-Propylbenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	n-Butylbenzene		ug/L	U	1.0



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
oumpro riamo		Method	Date	Factor	7	- Tooun		Qualifor	
MW 6 20180320	CA06818	SW8260	3/20/2018	1	4-Chlorotoluene		ug/L	U	1.0
MW 6 20180320	CA06818	SW8260	3/20/2018	1	1,4-Dichlorobenzene		ug/L	U	1.0
MW 6 20180320	CA06818	SW8260	3/20/2018	1	1,2-Dibromoethane		ug/L	UJ	0.25
MW 6 20180320	CA06818	SW8260	3/20/2018	1	Acrolein		ug/L	U	5.0
MW 6 20180320	CA06818	SW8260	3/20/2018	1	1,2-Dichloroethane		ug/L	U	0.60
MW 6 20180320	CA06818	SW8260	3/20/2018	1	Acrylonitrile		ug/L	U	5.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	4-Methyl-2-pentanone		ug/L	U	2.5
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,3,5-Trimethylbenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Bromobenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Toluene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Chlorobenzene		ug/L	U	5.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Tetrahydrofuran (THF)		ug/L	U	5.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,2,4-Trichlorobenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,4-dioxane		ug/L	U	100
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Dibromochloromethane		ug/L	UJ	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Tetrachloroethene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	sec-Butylbenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,3-Dichloropropane		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	cis-1,2-Dichloroethene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	trans-1,2-Dichloroethene		ug/L	U	5.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Methyl t-butyl ether (MTBE)		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	m&p-Xylene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	2-Isopropyltoluene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Carbon tetrachloride		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,1-Dichloropropene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	2-Hexanone		ug/L	U	2.5
MW 6_20180320	CA06818	SW8260	3/20/2018	1	2,2-Dichloropropane		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,1,1,2-Tetrachloroethane		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Acetone		ug/L	U	5.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Chloroform		ug/L	U	5.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Benzene		ug/L	U	0.70
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,1,1-Trichloroethane		ug/L	U	5.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Bromomethane		ug/L	U	5.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Chloromethane		ug/L	U	5.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Dibromomethane		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Bromochloromethane		ug/L	U	1.0



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
C		Method	Date	Factor	<b>,</b>	111111111111111111111111111111111111111			
MW 6 20180320	CA06818	SW8260	3/20/2018	1	Chloroethane		ug/L	U	5.0
MW 6 20180320	CA06818	SW8260	3/20/2018	1	Vinyl chloride		ug/L	U	1.0
MW 6 20180320		SW8260	3/20/2018	1	Methylene chloride		ug/L	U	3.0
MW 6 20180320		SW8260	3/20/2018	1	Carbon Disulfide		ug/L	U	1.0
MW 6 20180320		SW8260	3/20/2018	1	Bromoform		ug/L	U	5.0
MW 6 20180320	CA06818	SW8260	3/20/2018	1	Bromodichloromethane		ug/L	U	1.0
MW 6 20180320	CA06818	SW8260	3/20/2018	1	1,1-Dichloroethane		ug/L	U	5.0
MW 6 20180320	CA06818	SW8260	3/20/2018	1	1,1-Dichloroethene		ug/L	U	1.0
MW 6 20180320	CA06818	SW8260	3/20/2018	1	Tert-butyl alcohol		ug/L	U	50
MW 6 20180320	CA06818	SW8260	3/20/2018	1	Trichlorofluoromethane		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Dichlorodifluoromethane		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Trichlorotrifluoroethane		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,2-Dichloropropane		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Methyl ethyl ketone		ug/L	U	2.5
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,1,2-Trichloroethane		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Trichloroethene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,2,3-Trichlorobenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Hexachlorobutadiene		ug/L	U	0.50
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Naphthalene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	o-Xylene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	2-Chlorotoluene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,2,4-Trimethylbenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,2-Dibromo-3-chloropropane		ug/L	U	0.50
MW 6_20180320	CA06818	SW8260	3/20/2018	1	1,2,3-Trichloropropane		ug/L	U	0.25
MW 6_20180320	CA06818	SW8260	3/20/2018	1	tert-Butylbenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	Isopropylbenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8260	3/20/2018	1	p-Isopropyltoluene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	4-Nitroaniline		ug/L	U	5.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	4-Nitrophenol		ug/L	U	1.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	4-Bromophenyl phenyl ether		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	2,4-Dimethylphenol		ug/L	U	1.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	1,4-Dichlorobenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	4-Chloroaniline		ug/L	U	3.6
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Phenol		ug/L	U	1.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Pyridine		ug/L	UJ	10
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Bis(2-chloroethyl)ether		ug/L	U	1.0



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
oumpio mamo		Method	Date	Factor	a.y.c	- Nooull		- Caramio	
MW 6 20180320	CA06818	SW8270	3/20/2018	1	Bis(2-chloroethoxy)methane		ug/L	U	5.0
MW 6 20180320	CA06818	SW8270	3/20/2018	1	Di-n-octylphthalate		ug/L	U	5.1
MW 6 20180320	CA06818	SW8270	3/20/2018	1	Anthracene		ug/L	U	5.1
MW 6 20180320	CA06818	SW8270	3/20/2018	1	1,2,4-Trichlorobenzene		ug/L	U	5.1
MW 6 20180320	CA06818	SW8270	3/20/2018	1	2,4-Dichlorophenol		ug/L	U	1.0
MW 6 20180320	CA06818	SW8270	3/20/2018	1	2,4-Dinitrotoluene		ug/L	U	5.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	1,2-Diphenylhydrazine		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Pyrene		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Dimethylphthalate		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Dibenzofuran		ug/L	U	5.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Fluoranthene		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Bis(2-chloroisopropyl)ether		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	2,4-Dinitrophenol		ug/L	UJ	1.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	4,6-Dinitro-2-methylphenol		ug/L	UJ	1.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	4-Chloro-3-methylphenol		ug/L	U	1.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	2,6-Dinitrotoluene		ug/L	U	5.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	N-Nitrosodi-n-propylamine		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Aniline		ug/L	U	3.6
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Benzoic acid		ug/L	U	26
MW 6_20180320	CA06818	SW8270	3/20/2018	1	4-Chlorophenyl phenyl ether		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Hexachlorocyclopentadiene		ug/L	UJ	5.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Isophorone		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Acenaphthene		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Diethyl phthalate		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Di-n-butylphthalate		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Benzyl butyl phthalate		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	N-Nitrosodiphenylamine		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Fluorene		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Carbazole		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	2,4,6-Trichlorophenol		ug/L	U	1.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	2-Nitroaniline		ug/L	UJ	5.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	2-Nitrophenol		ug/L	U	1.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Naphthalene		ug/L	UJ	5.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	2-Methylnaphthalene		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	2-Chloronaphthalene		ug/L	U	5.1
MW 6_20180320	CA06818	SW8270	3/20/2018	1	3,3'-Dichlorobenzidine		ug/L	U	5.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Benzidine		ug/L	U	4.6



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
oumpio mamo		Method	Date	Factor	7 many 10	rtoount		Qualifor	
MW 6 20180320	CA06818	SW8270	3/20/2018	1	2-Methylphenol (o-cresol)		ug/L	U	1.0
MW 6 20180320	CA06818	SW8270	3/20/2018	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW 6 20180320	CA06818	SW8270	3/20/2018	1	2-Chlorophenol		ug/L	U	1.0
MW 6 20180320	CA06818	SW8270	3/20/2018	1	2,4,5-Trichlorophenol		ug/L	U	1.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	Acetophenone		ug/L	U	5.1
MW 6 20180320	CA06818	SW8270	3/20/2018	1	3-Nitroaniline		ug/L	U	5.0
MW 6_20180320	CA06818	SW8270	3/20/2018	1	3&4-Methylphenol (m&p-cresol)		ug/L	U	1.0
MW 6 20180320	CA06818	SW8270C-SIM	3/20/2018	1	Bis(2-ethylhexyl)phthalate		ug/L	U	1.0
MW 6_20180320	CA06818	SW8270C-SIM	3/20/2018	1	Hexachlorobenzene		ug/L	U	0.02
MW 6 20180320	CA06818	SW8270C-SIM	3/20/2018	1	Benzo(ghi)perylene	0.02	ug/L		0.02
MW 6_20180320	CA06818	SW8270C-SIM	3/20/2018	1	Indeno(1,2,3-cd)pyrene		ug/L	U	0.02
MW 6 20180320	CA06818	SW8270C-SIM	3/20/2018	1	Benzo(b)fluoranthene	0.02	ug/L		0.02
MW 6_20180320	CA06818	SW8270C-SIM	3/20/2018	1	Benzo(k)fluoranthene		ug/L	U	0.02
MW 6 20180320	CA06818	SW8270C-SIM	3/20/2018	1	Acenaphthylene		ug/L	U	0.10
MW 6 20180320	CA06818	SW8270C-SIM	3/20/2018	1	Chrysene		ug/L	U	0.02
MW 6 20180320	CA06818	SW8270C-SIM	3/20/2018	1	Benzo(a)pyrene		ug/L	U	0.02
MW 6_20180320	CA06818	SW8270C-SIM	3/20/2018	1	Dibenz(a,h)anthracene		ug/L	U	0.02
MW 6_20180320	CA06818	SW8270C-SIM	3/20/2018	1	Benz(a)anthracene		ug/L	U	0.02
MW 6_20180320	CA06818	SW8270C-SIM	3/20/2018	1	N-Nitrosodimethylamine		ug/L	U	0.10
MW 6_20180320	CA06818	SW8270C-SIM	3/20/2018	1	Hexachloroethane		ug/L	U	0.51
MW 6_20180320	CA06818	SW8270C-SIM	3/20/2018	1	Pentachloronitrobenzene		ug/L	U	0.10
MW 6_20180320	CA06818	SW8270C-SIM	3/20/2018	1	Phenanthrene		ug/L	U	0.10
MW 6_20180320	CA06818	SW8270C-SIM	3/20/2018	1	Hexachlorobutadiene		ug/L	U	0.41
MW 6_20180320	CA06818	SW8270C-SIM	3/20/2018	1	Pentachlorophenol		ug/L	U	0.10
MW 6_20180320	CA06818	SW8270C-SIM	3/20/2018	1	1,2,4,5-Tetrachlorobenzene		ug/L	U	0.51
MW 6_20180320	CA06818	SW8270C-SIM	3/20/2018	1	Nitrobenzene		ug/L	U	0.10
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Ethylbenzene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Styrene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	cis-1,3-Dichloropropene		ug/L	U	0.40
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	trans-1,3-Dichloropropene		ug/L	U	0.40
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	n-Propylbenzene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	n-Butylbenzene		ug/L	U	1.0
CA06819-TB_20180320	CA06819		3/20/2018	1	4-Chlorotoluene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	1,4-Dichlorobenzene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	1,2-Dibromoethane		ug/L	UJ	0.25
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Acrolein		ug/L	U	5.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	1,2-Dichloroethane		ug/L	U	0.60
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Acrylonitrile		ug/L	U	5.0



Sample Name	Lab ID	Analytical	Sample	Dilution	Analyte	Result	Unit	Qualifier	RL
Campio Hamo		Method	Date	Factor	7	Troount		Qualifor	
CA06819-TB 20180320	CA06819	SW8260	3/20/2018	1	4-Methyl-2-pentanone		ug/L	U	2.5
CA06819-TB 20180320		SW8260	3/20/2018	1	1,3,5-Trimethylbenzene		ug/L	U	1.0
CA06819-TB 20180320		SW8260	3/20/2018	1	Bromobenzene		ug/L	Ü	1.0
CA06819-TB 20180320		SW8260	3/20/2018	1	Toluene		ug/L	U	1.0
CA06819-TB 20180320	CA06819	SW8260	3/20/2018	1	Chlorobenzene		ug/L	U	5.0
CA06819-TB 20180320	CA06819	SW8260	3/20/2018	1	Tetrahydrofuran (THF)		ug/L	U	5.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	1,2,4-Trichlorobenzene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	1,4-dioxane		ug/L	U	100
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Dibromochloromethane		ug/L	UJ	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Tetrachloroethene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	sec-Butylbenzene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	1,3-Dichloropropane		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	cis-1,2-Dichloroethene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	trans-1,2-Dichloroethene		ug/L	U	5.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Methyl t-butyl ether (MTBE)		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	m&p-Xylene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	2-Isopropyltoluene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	1,3-Dichlorobenzene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Carbon tetrachloride		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	1,1-Dichloropropene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	2-Hexanone		ug/L	U	2.5
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	2,2-Dichloropropane		ug/L	U	1.0
CA06819-TB 20180320	CA06819	SW8260	3/20/2018	1	1,1,1,2-Tetrachloroethane		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Acetone		ug/L	U	5.0
CA06819-TB 20180320	CA06819	SW8260	3/20/2018	1	Chloroform		ug/L	U	5.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Benzene		ug/L	U	0.70
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	1,1,1-Trichloroethane		ug/L	U	5.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Bromomethane		ug/L	U	5.0
CA06819-TB 20180320	CA06819	SW8260	3/20/2018	1	Chloromethane		ug/L	U	5.0
CA06819-TB_20180320		SW8260	3/20/2018	1	Dibromomethane		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Bromochloromethane		ug/L	U	1.0
CA06819-TB_20180320	CA06819		3/20/2018	1	Chloroethane		ug/L	U	5.0
CA06819-TB_20180320		SW8260	3/20/2018	1	Vinyl chloride		ug/L	U	1.0
CA06819-TB 20180320		SW8260	3/20/2018	1	Methylene chloride		ug/L	U	3.0
CA06819-TB 20180320		SW8260	3/20/2018	1	Carbon Disulfide		ug/L	U	1.0
CA06819-TB_20180320		SW8260	3/20/2018	1	Bromoform		ug/L	U	5.0
CA06819-TB_20180320		SW8260	3/20/2018	1	Bromodichloromethane		ug/L	U	1.0



Sample Name	Lab ID	Analytical Method	Sample Date	Dilution Factor	•		Unit	Qualifier	RL
CA06819-TB 20180320	CA06819	SW8260	3/20/2018	1	1,1-Dichloroethane		ug/L	U	5.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	1.1-Dichloroethene		ug/L	U	1.0
CA06819-TB_20180320		SW8260	3/20/2018	1	Tert-butyl alcohol		_	U	50
CA06819-TB 20180320	CA06819	SW8260	3/20/2018	1	Trichlorofluoromethane		ug/L	U	1.0
CA06819-TB_20180320 CA06819-TB 20180320	CA06819	SW8260	3/20/2018	1	Dichlorodifluoromethane		ug/L	U	1.0
CA06819-TB 20180320		SW8260	3/20/2018	1	Trichlorotrifluoroethane		ug/L	U	1.0
_			3/20/2018	1			ug/L		1.0
CA06819-TB_20180320	CA06819	SW8260		1	1,2-Dichloropropane		ug/L	U	
CA06819-TB_20180320		SW8260	3/20/2018	1	Methyl ethyl ketone		ug/L	U	2.5
CA06819-TB_20180320	CA06819	SW8260	3/20/2018		1,1,2-Trichloroethane		ug/L	U	1.0
CA06819-TB_20180320		SW8260	3/20/2018	1	Trichloroethene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	1,2,3-Trichlorobenzene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Hexachlorobutadiene		ug/L	U	0.50
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Naphthalene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	o-Xylene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	2-Chlorotoluene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	1,2-Dichlorobenzene		ug/L	U	1.0
CA06819-TB 20180320	CA06819	SW8260	3/20/2018	1	1,2,4-Trimethylbenzene		ug/L	U	1.0
CA06819-TB 20180320	CA06819	SW8260	3/20/2018	1	1,2-Dibromo-3-chloropropane		ug/L	U	0.50
 CA06819-TB 20180320	CA06819	SW8260	3/20/2018	1	1,2,3-Trichloropropane		ug/L	U	0.25
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	tert-Butylbenzene		ug/L	U	1.0
CA06819-TB_20180320	CA06819	SW8260	3/20/2018	1	Isopropylbenzene		ug/L	U	1.0
CA06819-TB_20180320		SW8260	3/20/2018	1	p-Isopropyltoluene		ug/L	U	1.0

## DATA USABILITY SUMMARY REPORT (DUSR) PERFLUORINATED ALKYL ACIDS (PFAS)

USEPA Region II -Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GCA06781

**Client:** Environmental Business Consultants

**Date:** 06/05/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for three (3) water samples analyzed for PFAS by ISO 25101.
- 2. The samples were collected on 03/20/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc. (Phoenix), Manchester, CT on 03/22/2018 for analysis. Phoenix Environmental Laboratories, Inc. subcontracted the work to Vista Analytical Laboratory (VAL), El Dorado Hills, CA and was received on 3/27/2018 for analysis.
- 3. International Standard ISO 25101-2009(E), First edition, 01 March 2009, Water quality Determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) Method for unfiltered samples using solid phase extraction and liquid chromatography/mas spectrometry was used in evaluating the PFAS data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes.



#### Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
MW1	CA06781	3/20/18	PFAS	Water	
MW4	CA06782	3/20/18	PFAS	Water	
MW6	CA06783	3/20/18	PFAS	Water	

#### **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with condition of samples, analytical problems or special circumstances affecting the quality of the data. VAL received the sample bottles with IDs not matching the COC. The IDs on the samples bottles were missing "CA" in the beginning of the sample ID. No qualifications were required.

# **Holding Times:**

1. All water samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

#### **Initial Calibration and Continuing Calibration Verification (CCV):**

1. The laboratory noted in their narrative that the initial calibration and continuing calibration verifications met the method acceptance criteria. This could not be confirmed because this data was not included in the laboratory report. No actions were taken.

#### Method Blank (MB) and Equipment Blank (EB),:

- 1. Method Blank (B8C0190 BL) associated with the water samples extracted on 3/30/2018 and analyzed on 4/12/2018 was free of contamination. No qualifications were required.
- 2. An equipment blank was not collected and submitted with this SDG.

## **Ongoing Precision and Recovery (OPR):**

1. ORP sample associated with ID: B8C0190 were analyzed on 04/12/2018. All %RECs were within the laboratory control. No qualifications were required.



## **Field Duplicate:**

1. A field duplicate was not collected and submitted with this SDG.

# **Compound Quantitation, Compound Identification and Reported Detection Limits:**

1. All sample results were reported within the linear calibration range.

## **Comments:**

- 1. Validation qualifiers (if required) were entered into the EDD for SDG: GCA06781.
- 2. Summary of the qualified data is listed in the Data Summary Table for SDG: GCA06781.





		Analytical	Analysis	Dilution					
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	RL
MW1	CA-06781	25101 2009	4/12/2018	1	Perfluorobutanoic Acid (PFBA)	15.9	ng/l		4.07
MW1	CA-06781	25101 2009	4/12/2018	1	Perfluoropentanoic Acid (PFPeA)	11.7	ng/l		4.07
MW1	CA-06781	25101 2009	4/12/2018	1	Perfluorobutanesulfonic acid (PFBS)	9.11	ng/l		4.07
MW1	CA-06781	25101 2009	4/12/2018	1	Perfluorohexanoic acid (PFHxA)	13.9	ng/l		4.07
MW1	CA-06781		4/12/2018	1	Perfluoroheptanoic acid (PFHpA)	14.4	ng/l		4.07
MW1	CA-06781	25101_2009	4/12/2018	1	Perfluorohexanesulfonic acid (PFHxS)	9.29	ng/l		4.07
MW1	CA-06781	25101_2009	4/12/2018	1	13C2-6:2 Fluorotelomer sulfonate (6:2 FTS)		ng/l	U	4.07
MW1	CA-06781	25101_2009	4/12/2018	1	Perfluorooctanoic acid (PFOA)	51.2	ng/l		4.07
MW1	CA-06781	25101_2009	4/12/2018	1	Perfluoroheptane Sulfonate (PFHPS)		ng/l	U	4.07
MW1	CA-06781	25101_2009	4/12/2018	1	Perfluorooctanesulfonic acid (PFOS)	52.6	ng/l		4.07
MW1	CA-06781	25101_2009	4/12/2018	1	Perfluorononanoic acid (PFNA)		ng/l	U	4.07
MW1	CA-06781	25101_2009	4/12/2018	1	Perfluorodecanoic acid (PFDA)		ng/l	U	4.07
MW1	CA-06781	25101_2009	4/12/2018	1	13C2-8:2 Fluorotelomer sulfonate (8:2 FTS)		ng/l	U	4.07
MW1	CA-06781	25101_2009	4/12/2018	1	Perfluorooctane Sulfonamide (FOSA)		ng/l	U	4.07
MW1	CA-06781	25101_2009	4/12/2018	1	2-(N-methyl perfluorooctanesulfonamido) acetic acid (MeFOSAA)		ng/l	U	4.07
MW1	CA-06781	25101_2009	4/12/2018	1	Perfluorodecane Sulfonic Acid (PFDS)		ng/l	U	4.07
MW1	CA-06781	25101_2009	4/12/2018	1	Perfluoroundecanoic Acid (PFUnA)		ng/l	U	4.07
MW1	CA-06781	25101_2009	4/12/2018	1	N-Ethyl-N-((heptadecafluorooctyl)sulphonyl) glycine (EtFOSAA)		ng/l	U	4.07
MW1	CA-06781	25101_2009	4/12/2018	1	Perfluorododecanoic acid (PFDoA)		ng/l	U	4.07
MW1	CA-06781	25101_2009	4/12/2018	1	Perfluorotridecanoic Acid (PFTriA)		ng/l	U	4.07
MW1	CA-06781	25101_2009	4/12/2018	1	Perfluorotetradecanoic acid (PFTA)		ng/l	U	4.07
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluorobutanoic Acid (PFBA)	11.4	ng/l		3.90
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluoropentanoic Acid (PFPeA)	16.9	ng/l		3.90
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluorobutanesulfonic acid (PFBS)	4.16	ng/l		3.90
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluorohexanoic acid (PFHxA)	20.4	ng/l		3.90
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluoroheptanoic acid (PFHpA)	13.8	ng/l		3.90
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluorohexanesulfonic acid (PFHxS)		ng/l	U	3.90
MW4	CA-06782	25101_2009	4/12/2018	1	13C2-6:2 Fluorotelomer sulfonate (6:2 FTS)		ng/l	U	3.90
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluorooctanoic acid (PFOA)	32.1	ng/l		3.90
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluoroheptane Sulfonate (PFHPS)		ng/l	U	3.90
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluorooctanesulfonic acid (PFOS)	62.1	ng/l		3.90
MW4	CA-06782	<u>25101_2009</u>	4/12/2018	1	Perfluorononanoic acid (PFNA)	8.13	ng/l		3.90
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluorodecanoic acid (PFDA)	4.31	ng/l		3.90
MW4	CA-06782	25101_2009	4/12/2018	1	13C2-8:2 Fluorotelomer sulfonate (8:2 FTS)		ng/l	U	3.90
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluorooctane Sulfonamide (FOSA)		ng/l	U	3.90
MW4	CA-06782	25101_2009	4/12/2018	1	2-(N-methyl perfluorooctanesulfonamido) acetic acid (MeFOSAA)		ng/l	U	3.90
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluorodecane Sulfonic Acid (PFDS)		ng/l	U	3.90



		Analytical	Analysis	Dilution					
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	RL
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluoroundecanoic Acid (PFUnA)		ng/l	U	3.90
MW4	CA-06782	25101_2009	4/12/2018	1	N-Ethyl-N-((heptadecafluorooctyl)sulphonyl) glycine (EtFOSAA)		ng/l	U	3.90
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluorododecanoic acid (PFDoA)		ng/l	U	3.90
MW4	CA-06782	25101_2009	4/12/2018		Perfluorotridecanoic Acid (PFTriA)		ng/l	U	3.90
MW4	CA-06782	25101_2009	4/12/2018	1	Perfluorotetradecanoic acid (PFTA)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluorobutanoic Acid (PFBA)	15.7	ng/l		3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluoropentanoic Acid (PFPeA)	29.3	ng/l		3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluorobutanesulfonic acid (PFBS)	7.15	ng/l		3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluorohexanoic acid (PFHxA)	21.0	ng/l		3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluoroheptanoic acid (PFHpA)	10.7	ng/l		3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluorohexanesulfonic acid (PFHxS)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	13C2-6:2 Fluorotelomer sulfonate (6:2 FTS)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluorooctanoic acid (PFOA)	12.8	ng/l		3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluoroheptane Sulfonate (PFHPS)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluorooctanesulfonic acid (PFOS)	23.4	ng/l		3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluorononanoic acid (PFNA)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluorodecanoic acid (PFDA)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	13C2-8:2 Fluorotelomer sulfonate (8:2 FTS)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluorooctane Sulfonamide (FOSA)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	2-(N-methyl perfluorooctanesulfonamido) acetic acid (MeFOSAA)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluorodecane Sulfonic Acid (PFDS)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluoroundecanoic Acid (PFUnA)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	N-Ethyl-N-((heptadecafluorooctyl)sulphonyl) glycine (EtFOSAA)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluorododecanoic acid (PFDoA)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluorotridecanoic Acid (PFTriA)		ng/l	U	3.90
MW6	CA-06783	25101_2009	4/12/2018	1	Perfluorotetradecanoic acid (PFTA)		ng/l	U	3.90

## DATA USABILITY SUMMARY REPORT (DUSR) SEMI-VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GCA04711

**Client:** Environmental Business Consultants

**Date:** 05/29/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for four (4) water samples for Semi-volatiles by SW-846 Method 8270D [full scan and Selected Ion Monitoring (SIM)] in accordance with the NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 3/15/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 3/19/2018 for analysis.
- 3. USEPA Region-II SOP HW-35A, Revision 0, June 2015, Semivolatile Data Validation, SOM02.2 was used in evaluating the Semi-volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).



#### **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
MW2	CA04711	3/15/18	SVO	Water	
MW3	CA04712	3/15/18	SVO	Water	
MW5	CA04713	3/15/18	SVO	Water	
GW DUPLICATE	CA04714	3/15/18	SVO	Water	Field duplicate to Sample MW5

#### **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

## **Holding Times:**

1. All water samples were extracted within 7 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

#### **GC/MS Tuning:**

1. All DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

#### **Initial Calibration:**

1. Initial calibration curve analyzed on 03/08/2018 (CHEM04)-SIM Scan exhibited acceptable %RSDs and average RRF values for compounds listed in Table 2 in SOP HW-33A with the following exception(s):

Compound	%D
Chrysene	23.6

Client Sample ID	Laboratory Sample ID	Compound	Action
MW2	CA04711	Chrysene	J
MW3	CA04712	Chrysene	J
MW5	CA04713	Chrysene	UJ
GW	CA04714	Chrysene	UJ
DUPLICATE			



2. Initial calibration curve analyzed on 03/14/2018 (CHEM27)-Full Scan exhibited acceptable %RSDs and average RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications were required.

#### **Continuing Calibration Verification (CCV):**

- 1. CCV analyzed on 03/22/2018 @ 09:13 (CHEM27)-Full scan exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications were required.
- 2. CCV analyzed on 03/22/2018 @ 19:10 (CHEM27)-Full scan exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications were required.
- 3. CCV analyzed on 03/21/2018 @ 14:02 (CHEM04)-SIM scan exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications were required.
- 4. CCV analyzed on 03/21/2018 @ 23:26 (CHEM04)-SIM scan exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications were required.

## **Surrogates:**

1. All surrogate %REC values were within the QC acceptance limits for the SIM scan with the following exception(s):

Client Sample ID	Surrogate	%REC	Compound	Action
MW3	2,4,6-Tribromophenol (SIM)	111	Hexachlorobenzene	None
			Pentachlorophenol	
			Pentachloronitrobenzene	
			Phenanthrene	

2. All surrogate %REC values were within the QC acceptance limits for the full scan. No qualifications were required.

#### **Internal Standard (IS) Area Performance:**

1. All samples exhibited acceptable area count for all six internal standards. No qualifications were required.



# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (CA04713 BLANK)-full Scan associated with the water samples extracted on 3/19/2018 and analyzed on 3/22/2018 was free of contamination. No qualifications were required.
- 2. Method Blank (CA04713 BLANK)-SIM Scan associated with the water samples extracted on 3/19/2018 and analyzed on 3/21/2018 was free of contamination. No qualifications were required.

#### <u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Batch ID: CA04713 were analyzed on 03/21/2018. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample	Action
		Affected	
Hexachlorobutadiene (SIM)	56/59/A	MW2, MW3, MW5, DUPLICATE	UJ
1,3-Dichlorobenzene	61/68/A	MW2, MW3, MW5, DUPLICATE	UJ
Naphthalene	69/54/A	MW2, MW3, MW5, DUPLICATE	UJ

A=Acceptable

#### **Field Duplicate:**

1. Sample GW DUPLICATE (CA04714) was collected as a field duplicate of sample MW5 (CA04713). All RPDs were < 30% with the following exception(s):

Field Sample	Analyte	Result (µg/L)	Field Duplicate	Result (µg/L)	RPD	Qualifier
MW5	Benzo(b)fluoranthene	0.02	GW DUPLICATE	0.02	0	None
MW5	Benzo(k)fluoranthene	ND	GW DUPLICATE	0.02	NC	UJ/J
MW5	Benzo(a)pyrene	ND	GW DUPLICATE	0.02	NC	UJ/J



#### Matrix Spike (MS)/Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were performed on sample MW5 (CA04713). All %RECs/RPDs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample Affected	Action
Hexachlorobutadiene (SIM)	53/53/A	MW5	UJ
1,3-Dichlorobenzene	53/56/A	MW5	UJ
Naphthalene	69/68/A	MW5	UJ
2,4-Dinitrotoluene	100/99/A	MW5	None
3,3'-Dichlorobenzidine	20/11/58.1	MW5	UJ

A= Acceptable

## **Target Compound Identification:**

- 1. All Relative Retention Times (RRTs) of the reported compounds were within  $\pm$  0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

#### **Compound Quantitation and Reported Detection Limits:**

1. All sample results were reported within the linear calibration range.

2. Manual Calculation:

$$Cx = (Ax)(IS)(VE)(DF)$$
  
(Ais)(RRF)(Volume injected,  $\mu$ L)(V)

Cx = concentration of analyte as ug/L

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

VE= final volume of concentrated extract

Sample: CA04713 LCS

2-Chlorophenol



Initial Volume: 1000ml Final volume: 1ml Volume injected: 1µl Dilution Factor: 1

Concentration (
$$\mu$$
g/L) =  $483282 \times 40 \times 1$ ml x 1 x 1000 = 31.41 $\mu$ g/L = 521501 x 1.180 x 1 x 1000ml

	Laboratory	Validation	
Compound	(µg/L)	$(\mu g/L)$	%D
2-Chlorophenol	31.41	31.41	0.0

## **Comments:**

- 1. Semivolatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GCA04711.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GCA04711.



## DATA USABILITY SUMMARY REPORT (DUSR) VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GCA04711

**Client:** Environmental Business Consultants

**Date:** 05/30/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for four (4) water samples and one (1) trip blank analyzed for Volatiles by SW-846 Method 8260C in accordance to NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 3/15/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 03/19/2018 for analysis.
- 3. USEPA Region-II SOP HW-34A, Revision 0, July 2015, Trace Volatile Data Validation, SOM02.2 was used in evaluating the VOCs data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).



#### **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
MW2	CA04711	3/15/18	VOA	Water	
MW3	CA04712	3/15/18	VOA	Water	
MW5	CA04713	3/15/18	VOA	Water	
GW DUPLICATE	CA04714	3/15/18	VOA	Water	Field duplicate to Sample MW5
Trip Blank	CA04715	3/15/18	VOA	Water	Trip Blank

# **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

## **Holding Times:**

1. All water samples were analyzed within 14 days from sample collection. No qualifications were required.

## **GC/MS Tuning:**

1. All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

#### **Initial Calibration:**

1. Initial calibration curve analyzed on 3/16/2018 (Chem02) exhibited acceptable %RSDs and average RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications were required.

#### **Continuing Calibration Verification (CCV):**

1. Opening CCV analyzed on 03/19/2018 @ 17:20 (CHEM02) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications are required.



- 2. Closing CCV analyzed on 03/20/2018 @ 03:12 (CHEM02) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications are required.
- 3. Opening CCV analyzed on 03/20/2018 @ 08:15 (CHEM02) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications are required.
- 4. Closing CCV analyzed on 03/20/2018 @ 17:46 (CHEM02) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications are required.

#### **Surrogates:**

1. All surrogates %RECs values for all water samples and associated QC were within the laboratory control limits. No qualifications were required.

## **Internal Standard (IS) Area Performance:**

1. All samples exhibited acceptable area count for all four internal standards within the QC limits. No qualifications were required.

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (BLANK CA04713) was analyzed on 3/19/2018 was free of contamination with the exception of 1,2,3-Trichlorobenzene (0.38 ug/L). Results for 1,2,3-trichlorobenzene were non-detect. No qualifications were required.
- 2. Method Blank (BLANK CA04830) was analyzed on 3/20/2018 was free of contamination. No qualifications were required.
- 3. Trip Blank (BLANK CA04715) was analyzed on 3/19/2018 was free of contamination. No qualifications were required.

#### **Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):**

- 1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Batch ID: CA04713 were analyzed on 3/19/2018. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.
- 2. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Batch ID: CA04830 were analyzed on 3/20/2018. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.



#### **Field Duplicate:**

1. Sample GW DUPLICATE (BV79814) was collected as a field duplicate of sample MW5 (CA04713). All RPDs were < 30%. No qualifications were required.

Field Sample	Analyte	Analytical Method	Result	Units	Field Duplicate	Result	Units	RPD	Qualifier
MW5	Methyl t-butyl ether (MTBE)	SW-846 8260	0.51	μg/L	GW Duplicate	0.52	μg/L	1.5	None

#### Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS) was performed on sample MW5 (CA04713). All %RECs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Action
Bromomethane	69/A/A	UJ
1,2,3-Trichlorobenzene	65/A/A	UJ

A= Acceptable

## **Target Compound Identification:**

- 1. All Relative Retention Times (RRTs) of the reported compounds were within  $\pm$  0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

## **Compound Quantitation and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range. No qualifications were required.
- 2. Manual Calculation:
- $Cx = \frac{(Ax)(IS)(DF)}{(Ais)(RRF)(V)}$

 $Cx = concentration of analyte as \mu g/L$ 

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.



MW5 (CA04713)

Methyl t-butyl ether (MTBE) Sample Volume= 25ml Volume purged=25ml

DF = 1

Concentration ( $\mu$ g/L)=  $\frac{12955 \times 25 \times 10 \times 1}{420134 \times 0.597 \times 25}$  = 0.52 $\mu$ g/L

	Laboratory	Validation	
Compound	(µg/L)	$(\mu g/L)$	%D
MTBE	0.52	0.52	0.0

## **Comments:**

- 1. Volatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GCA04711.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GCA04711.



## DATA USABILITY SUMMARY REPORT (DUSR) POLYCHLORINATED BIPHENYLIS (PCBs)

USEPA Region II –Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GCA04711

**Client:** Environmental Business Consultants

**Date:** 05/30/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for four (4) water samples analyzed for PCBs by SW-846 Method 8082A in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 03/15/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 03/19/2018 for analysis.
- 3. USEPA Region-II SOP HW-37A, Revision 0, June 2015, PCB Data Validation, SOM02.2 was used in evaluating the PCBs data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes.



#### Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
MW2	CA04711	3/15/18	PCBs	Water	
MW3	CA04712	3/15/18	PCBs	Water	
MW5	CA04713	3/15/18	PCBs	Water	
GW DUPLICATE	CA04714	3/15/18	PCBs	Water	Field duplicate to Sample
					MW5

## **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

## **Holding Times:**

1. All water samples were extracted within 7 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

#### **Initial Calibration:**

1. Initial calibration curve analyzed on 3/01/2018 (ECD5) exhibited acceptable %RSD (≤20.0%) on both columns. No qualifications were required.

#### **Continuing Calibration Verification (CCV):**

1. All CCVs analyzed on 03/20-21/2018 exhibited acceptable average %Ds for all reported compounds. No qualifications were required.

#### **Surrogates:**

1. All surrogates %RECs values for all water samples were within the laboratory control limits. No qualifications were required.



# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (CA04713 BL) associated with the water samples extracted on 3/19/2018 and analyzed on 3/20/2018 was free of contamination. No qualifications were required.

#### Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with ID: CA04713 were analyzed on 3/20/2018. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

#### Field Duplicate:

1. Sample GW DUPLICATE (CA04714) was collected as a field duplicate of sample MW5 (CA04713). Both samples were non-detect. No qualifications were required.

#### Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS) was performed on sample MW5 (CA04713). All %RECs were within the laboratory control limits. No qualifications were required.

#### **Compound Quantitation, Compound Identification and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. Manual Calculation:

CA04713 LCS

Aroclor-1016

On Column concentration (B)= 484.68ng Sample Volume= 1000ml

DF= 1 Vi= 5ml

Concentration (
$$\mu$$
g/L) =  $\frac{484.68 \text{ng x 5ml x 1}}{1000}$  = 2.42 $\mu$ g/L

	Laboratory	Validation	
Compound	(µg/L)	(µg/L)	%D
Aroclor-1016	2.42	2.42	0.0



#### **Comments:**

- 1. PCBs data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GCA04711.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GCA04711.



# DATA USABILITY SUMMARY REPORT (DUSR) PESTICIDES

USEPA Region II –Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GCA04711

**Client:** Environmental Business Consultants

**Date:** 05/30/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for four (4) water samples analyzed for Pesticides by SW-846 Method 8081B in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 3/15/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 3/19/2018 for analysis.
- 3. USEPA Region-II SOP HW-36A, Revision 0, June 2015, Pesticide Data Validation, SOM02.2 was used in evaluating the Pesticides data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).



#### **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
MW2	CA04711	3/15/18	Pesticides	Water	
MW3	CA04712	3/15/18	Pesticides	Water	
MW5	CA04713	3/15/18	Pesticides	Water	
GW DUPLICATE	CA04714	3/15/18	Pesticides	Water	Field duplicate to Sample MW5

#### **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

#### **Holding Times:**

1. All water samples were extracted within 7 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

#### **GC/ECD Instrument Performance Check:**

1. 4,4'-DDT and Endrin breakdown exhibited acceptable results (±20%). No qualifications were required.

#### **Initial Calibration:**

- 1. Initial calibration curve analyzed on 3/19/2018 (ECD10) exhibited acceptable %RSD on both columns. No qualifications are required.
  - All sample results were reported from Column A. No qualifications were required.
- 2. Initial calibration curve analyzed on 3/14/2018 (ECD4) exhibited acceptable %RSD on both columns. No qualifications are required.
  - All sample results were reported from Column A. No qualifications were required.



#### **Continuing Calibration Verification (CCV):**

1. The CCV analyzed on 03/20-21/2018 exhibited acceptable %Ds (≤20.0%) for reported compounds from column A with the exception of endrin aldehyde (22%).

The non-detect results for endrin aldehyde were qualified as estimated (UJ) in samples MW2 and MW3.

#### **Surrogates:**

1. All surrogates %RECs values for all water samples and associated QC were within the laboratory control limits. No qualifications were required.

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (CA04713) associated with the water samples extracted on 3/19/2018 and analyzed on 03/21/2018 was free of contamination. No qualifications were required.

#### **Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):**

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with ID: CA04713 were analyzed on 03/20/2018. All %RECs and RPDs were within the laboratory control limits with the exception of beta-BHC (22.2% RPD), heptachlor (22.7% RPD), and 4,4'-DDD (21.0% RPD). Results for beta-BHC, heptachlor, and 4,4'-DDD were non-detect in the field samples. No qualifications were required.

#### **Field Duplicate:**

1. Sample GW DUPLICATE (BV79814) was collected as a field duplicate of sample MW5 (CA04713). Both samples were non-detect. No qualifications were required.

#### Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/Matrix Spike Duplicate (MSD) were performed on sample MW5 (CA04713). All %RECs/RPDs were within the laboratory control limits. No qualifications were required.

#### **Compound Quantitation, Compound Identification and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. Manual Calculation:

CA04713 LCS



### Alpha-BHC

On Column concentration (B)= 46.0481ng Sample Volume= 1000ml DF = 1

$$\begin{array}{c} Concentration~(\mu g/L) = & \underline{46.0481ng~x~1ml} = 0.046\mu g/L \\ & 1000 \end{array}$$

	Laboratory	Validation	
Compound	(µg/L)	(µg/L)	%D
Alpha-BHC	0.046	0.046	0.0

#### **Comments:**

- 1. Pesticides data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GCA04711.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GCA04711.



## DATA USABILITY SUMMARY REPORT (DUSR) TRACE METALS

USEPA Region II –Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GCA04711

**Client:** Environmental Business Consultants

**Date:** 05/30/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for four (4) water samples (total and dissolved) analyzed for the following analyses:
  - 1.1 Trace Metals-ICP-AES by SW-846 Method 6010C.
  - 1.2 Total thallium, antimony, and selenium by SW-846 Method 6020.
  - 1.3 Dissolved thallium, antimony and selenium by Method E200.8.
  - 1.3 Mercury by SW-846 Method 7470A.
- 2. The samples were collected on 3/15/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 3/19/2018 for analysis.
- 3. The USEPA Region-II SOP No. HW-2a, Revision 15, December 2012, Validation of ICP-AES was used in evaluating the Trace Metals data and USEPA Region-II SOP No. HW-2c, Revision 15, December 2012, Validation of Mercury and Cyanide was used in evaluating the mercury data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).



#### Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
MW2	CA04711	3/15/18	ICP, MS, GFAA and CVAA	Water	
MW3	CA04712	3/15/18	ICP, MS, GFAA and CVAA	Water	
MW5	CA04713	3/15/18	ICP, MS, GFAA and CVAA	Water	
GW DUPLICATE	CA04714	3/15/18	ICP, MS, GFAA and CVAA	Water	Field duplicate
					to Sample MW5

#### **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

#### **Holding Times:**

- 1. All water samples were analyzed within the 6 months holding times for Metals analyses by ICP-AES, MS, and GFAA. No qualifications were required.
- 2. All water samples were digested and analyzed within the 28 days holding times for Mercury analysis. No qualifications were required.

#### **Initial and Continuing Calibration Verification (ICV and CCV):**

#### **Metals:**

1. All %RECs in the ICV and CCVs were within QC limits (90-110%) with the exception of sodium (total) (115.2%). Sodium (total) results were not associated with this CCV. No qualifications were required.

#### **Mercury:**

- 1. All correlation coefficient for Mercury calibration curve analyzed were  $\geq$ 0.995. No qualifications were required.
- 2. All ICVs and CCVs %REC values were within the QC limits (80-115%). No qualifications were required.



#### **CRQL Check Standard (CRI):**

- 1. All CRI (dissolved) analyzed on 3/21-22/2018 %RECs were within the control limits (70-130%). No qualifications were required.
- 2. All CRI (total) analyzed on 3/21-22/2018 %RECs were within the control limits (70-130%). No qualifications were required.

#### **ICP Interference Check Sample:**

1. All %REC values were within the QC limits (80-120%) for ICSA and ICSAB. No qualifications were required.

#### Blanks (Method Blank, ICB and CCB):

#### **ICP-AES, MS, and GFAA:**

- 1. Method Blank-Water (CA04713 BLK) (dissolved) (furnace) digested on 03/19/2018 was free of contamination. No qualifications were required.
- 2. Method Blank-Water (CA04713 BLK) (dissolved) (ICP) digested on 03/19/2018 was free of contamination. No qualifications were required.
- 3. Method Blank-Water (CA04713 BLK) (total) (ICP) digested on 03/19/2018 was free of contamination. No qualifications were required.
- 4. Method Blank-Water (CA04713 BLK) (total) (MS) digested on 03/19/2018 was free of contamination. No qualifications were required.
- 5. Method Blank-Water (CA04713 BLK) (dissolved) (MS) digested on 03/19/2018 was free of contamination. No qualifications were required.
- 6. ICBs and CCBs (dissolved) analyzed on 3/20-22/2018.



Element	Concentration	CRQL*	Sample Affected	Action
	(ug/L)	(ug/L)		
Sodium	81	100	MW3, MW2, MW5	None
	98	100	GW Duplicate	None
Vanadium	2	10	None	None
	1	10	MW2, MW3	U
			GW Duplicate	None
	2	10	None	None
Copper	1	5	MW2, MW3, GW Duplicate	U
	1	5	None	None
Antimony	0.1	0.3	MW5, MW2, MW3, GW Duplicate	None
	0.1	0.3	None	None

^{*=} If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.

7. ICBs and CCBs (total) analyzed on 3/20-22/2018.

Element	Concentration	CRQL*	Sample Affected	Action
	(ug/L)	(ug/L)		
Sodium	81	100	MW2, MW3, MW5	None
	98	100	GW Duplicate	None
	272	100	None	None
Vanadium	2	10	None	None
	1	10	None	None
	2	10	MW5	None
Calcium	6	10	MW2, MW3	None
Copper	1	5	None	None
	1	5	MW5	U
Antimony	0.1	0.3	MW5, MW2, MW3, GW Duplicate	None
	0.1	0.3	None	None

^{*=} If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.

#### **Mercury:**

1. All ICB and CCBs were free of contamination. No qualifications were required.



- 2. Method Blank-Water (CA04713 BLK) (dissolved) digested on 03/20/2018 was free of contamination. No qualifications were required.
- 3. Method Blank-Water (CA04713 BLK) (total) digested on 03/20/2018 was free of contamination. No qualifications were required.

#### Field Blank (FB) and Equipment Blank (EB):

1. Field Blanks were not submitted with this SDG.

#### **Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):**

#### **ICP-AES, MS, GFAA and CVAA:**

1. Laboratory Control Sample (dissolved and total) was analyzed on 3/20-22/2018. All %RECs were within the laboratory control limits. No qualifications were required.

#### **Field Duplicate:**

1. Sample GW DUPLICATE (CA04714) was collected as a field duplicate of sample MW5 (CA04713). Copper and zinc were detected in the field sample but were non-detect in the field duplicate sample. RPDs were ≤35% (or difference <PQL) for the dissolved analyses with the following exception(s):

Field Sample	Analyte	Analytical Method	Result (mg/L)	Field Duplicate	Result (mg/L)	RPD (or Difference)	Qualifier
				GW			
MW5	Aluminum	SW8466010B	0.062	DUPLICATE	0.066	6.3	None
MW5	Arsenic	SW8466010B	0.002	GW DUPLICATE	0.002	(0.0)	None
MW5	Barium	SW8466010B	0.221	GW DUPLICATE	0.227	2.7	None
MW5	Calcium	SW8466010B	148	GW DUPLICATE	148	0	None
MW5	Copper	SW8466010B	0.002	GW DUPLICATE	ND	NC	J/UJ
MW5	Iron	SW8466010B	6.19	GW DUPLICATE	8.99	36.9	J
MW5	Lead	SW8466010B	0.001	GW DUPLICATE	0.002	66.7	J
MW5	Magnesium	SW8466010B	25.7	GW DUPLICATE	25.5	0.8	None
MW5	Manganese	SW8466010B	1.31	GW DUPLICATE	1.29	1.5	None
MW5	Potassium	SW8466010B	16.9	GW DUPLICATE	17.1	1.2	None
MW5	Sodium	SW8466010B	121	GW DUPLICATE	117	3.4	None
MW5	Zinc	SW8466010B	0.001	GW DUPLICATE	ND	NC	J/UJ



2. Sample GW DUPLICATE (CA04714) was collected as a field duplicate of sample MW5 (CA04713). RPDs were ≤35% (or difference <PQL) for the total analyses. Copper and nickel were detected in the field duplicate sample but were non-detect in the field sample.

								RPD (or	
Field Sample	Analyte	Analytical Method	Result	Units	Field Duplicate	Result	Units	Difference)	Qualifier
					GW				
MW5	Aluminum	SW8466010B	0.284	mg/L	DUPLICATE	0.354	mg/L	21.9	None
					GW				
MW5	Arsenic	SW8466010B	0.004	mg/L	DUPLICATE	0.004	mg/L	(0.0)	None
2000	ъ.	GWIO 4 CCO 1 OP	0.262		GW	0.262	/*		
MW5	Barium	SW8466010B	0.362	mg/L	DUPLICATE	0.362	mg/L	0	None
M3375	G-1-i	CW/94CC010D	161	/T	GW DUPLICATE	150	/Т	1.0	NI
MW5	Calcium	SW8466010B	161	mg/L	GW	158	mg/L	1.9	None
MW5	Chromium	SW8466010B	0.003	mg/L	DUPLICATE	0.004	mg/L	(0.001)	None
IVIVVJ	Cinomium	3 W 0400010B	0.003	mg/L	GW	0.004	IIIg/L	(0.001)	None
MW5	Copper	SW8466010B	ND	mg/L	DUPLICATE	0.002	mg/L	NC	UJ/J
111113	Соррег	5 11 0 1000 10 B	T\D	mg/L	GW	0.002	mg/L	110	C3/3
MW5	Iron	SW8466010B	42.8	mg/L	DUPLICATE	40.8	mg/L	4.8	None
					GW		Ŭ		
MW5	Lead	SW8466010B	0.012	mg/L	DUPLICATE	0.014	mg/L	15.4	None
					GW				
MW5	Magnesium	SW8466010B	25.7	mg/L	DUPLICATE	25.3	mg/L	1.6	None
					GW				
MW5	Manganese	SW8466010B	1.35	mg/L	DUPLICATE	1.34	mg/L	0.7	None
				_	GW		_		
MW5	Nickel	SW8466010B	ND	mg/L	DUPLICATE	0.001	mg/L	NC	UJ/J
		Q1110.1.c.co.1.0.D	4.50		GW		~	0.0	
MW5	Potassium	SW8466010B	16.0	mg/L	DUPLICATE	17.5	mg/L	9.0	None
MW5	Codina	CW/0466010D	120	m a /I	GW	126	ma/I	2.4	None
MW5	Sodium	SW8466010B	129	mg/L	DUPLICATE	126	mg/L	2.4	None
MW5	Zinc	SW8466010B	0.008	ma/I	GW DUPLICATE	0.009	ma/I	(0.001)	None
MW5	Zinc	SW8466010B	0.008	mg/L	DUPLICATE	0.009	mg/L	(0.001)	None

#### Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

#### **ICP-AES, GFAA and CVAA:**

- 1. Matrix Spike (MS) was performed on sample MW5 (CA04713) for all dissolved analyses. All %Rs were within the laboratory control limits. No qualifications were required.
- 2. Matrix Spike (MS) was performed on sample MW5 (CA04713) for all total analyses. All %Rs were within the laboratory control limits. No qualifications were required.



#### **Sample Duplicate:**

#### **ICP-AES, MS, GFAA and CVAA:**

- 1. Laboratory Duplicate was performed on sample MW5 (CA04713) for all dissolved analyses. All RPDs were within the laboratory control limits. No qualifications were required.
- 2. Laboratory Duplicate was performed on sample MW5 (CA04713) for all total analyses. All RPDs were within the laboratory control limits. No qualifications were required.

#### **ICP-AES and MS Serial Dilution**:

1. ICP serial dilution was performed on sample MW5 (CA04713) (dissolved). For all results for which the concentration in the original sample is  $\geq 50x$  the Method Detection Limits (MDL), the serial dilution analysis (a five-fold dilution) was within the acceptable limit (%D  $\pm$  10%) with the following exception(s):

Compound	%D	Action
Potassium	11.8	J

2. ICP serial dilution was performed on sample MW5 (CA04713) (total). For all results for which the concentration in the original sample is  $\geq 50x$  the Method Detection Limits (MDL), the serial dilution analysis (a five-fold dilution) was within the acceptable limit (%D  $\pm$  10%) with the following exception(s):

Compound	%D	Action
Aluminum	22.5	J

#### **Verification of Instrumental Parameters:**

- 1. The following Forms were present in the data package:
  - 1.1 Method Detection Limits, Form- X.
  - 1.2 ICP-AES Interelement Correction Factors, Form -XIA and Form-XIB.
  - 1.3 ICP-AES Linear Ranges, Form XII.

#### **Compound Quantitation and Reported Detection Limits:**

1. All sample results were reported within the linear calibration range.



2. Manual calculation:

Sample: MW2 (CA04711)

Barium (Total)

DF: 1

0.1837mg/L was reported on the raw data and the laboratory reported 0.184mg/L on Form-I.

#### **Comments:**

- 1. Trace Metals data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GCA04711.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GCA04711.





Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	•				
MW2_20180315	CA04711	E200.8	3/15/2018	1	Antimony (Dissolved)-LDL		mg/L	U	0.0011
MW2_20180315	CA04711	SW6010	3/15/2018	1	Aluminum	4.24	mg/L		0.010
MW2_20180315	CA04711	SW6020	3/15/2018	5	Antimony		mg/L	U	0.003
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Chrysene	0.07	ug/L	J	0.02
MW2_20180315	CA04711	E200.8	3/15/2018	1	Thallium (Dissolved)		mg/L	U	0.0003
MW2_20180315	CA04711	SW6010	3/15/2018	1	Copper, (Dissolved)	0.002	mg/L	U	0.005
MW2_20180315	CA04711	E200.8	3/15/2018	1	Selenium (Dissolved)-LDL		mg/L	U	0.003
MW2_20180315	CA04711	SW6010	3/15/2018	1	Aluminum (Dissolved)	0.058	mg/L		0.011
MW2_20180315	CA04711	SW6010	3/15/2018	1	Iron, (Dissolved)	0.65	mg/L		0.01
MW2_20180315	CA04711	SW6010	3/15/2018	1	Lead (Dissolved)	0.003	mg/L		0.002
MW2_20180315	CA04711	SW6010	3/15/2018	1	Magnesium (Dissolved)	14.4	mg/L		0.01
MW2_20180315	CA04711	SW6010	3/15/2018	1	Manganese, (Dissolved)	0.881	mg/L		0.005
MW2_20180315	CA04711	SW6010	3/15/2018	1	Nickel, (Dissolved)	0.001	mg/L	J	0.004
MW2_20180315	CA04711	SW6010	3/15/2018	1	Potassium (Dissolved)	10.2	mg/L		0.1
MW2_20180315	CA04711	SW6010	3/15/2018	1	Silver (Dissolved)		mg/L	U	0.005
MW2_20180315	CA04711	SW6010	3/15/2018	1	Arsenic, (Dissolved)	0.002	mg/L	J	0.003
MW2_20180315	CA04711	SW6010	3/15/2018	1	Barium (Dissolved)	0.104	mg/L		0.011
MW2_20180315	CA04711	SW6010	3/15/2018	1	Beryllium (Dissolved)		mg/L	U	0.001
MW2_20180315	CA04711	SW6010	3/15/2018	1	Cadmium (Dissolved)		mg/L	U	0.004
MW2_20180315	CA04711	SW6010	3/15/2018	1	Chromium (Dissolved)		mg/L	U	0.001
MW2_20180315	CA04711	SW6010	3/15/2018	1	Cobalt, (Dissolved)		mg/L	U	0.005
MW2_20180315	CA04711	SW6010	3/15/2018	1	Zinc, (Dissolved)		mg/L	U	0.011
MW2_20180315	CA04711	SW6010	3/15/2018	1	Calcium (Dissolved)	106	mg/L		0.01
MW2_20180315	CA04711	SW6010	3/15/2018	1	Iron	27.3	mg/L		0.01
MW2_20180315	CA04711	SW6010	3/15/2018	1	Lead	0.020	mg/L		0.002
MW2_20180315	CA04711	SW6010	3/15/2018	1	Magnesium	15.3	mg/L		0.010
MW2_20180315	CA04711	SW6010	3/15/2018	1	Manganese	0.978	mg/L		0.005
MW2_20180315	CA04711	SW6010	3/15/2018	1	Nickel	0.008	mg/L		0.004
MW2_20180315	CA04711	SW6010	3/15/2018	1	Potassium	11.6	mg/L		0.1
MW2_20180315	CA04711	SW6010	3/15/2018	1	Silver		mg/L	U	0.005
MW2_20180315	CA04711	SW6010	3/15/2018	1	Arsenic - LDL	0.005	mg/L		0.004
MW2_20180315	CA04711	SW6010	3/15/2018	1	Barium	0.184	mg/L		0.010
	CA04711	SW6010	3/15/2018	1	Beryllium		mg/L	U	0.001
		SW6010	3/15/2018	1	Cadmium		mg/L	U	0.004
	CA04711	SW6010	3/15/2018	1	Chromium	0.008	mg/L		0.001
	CA04711	SW6010	3/15/2018	1	Cobalt	0.003	mg/L	J	0.005
	CA04711	SW6010	3/15/2018	1	Calcium	108	mg/L		0.010
	CA04711	SW6010	3/15/2018	1	Zinc	0.034	mg/L		0.010



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	•				
MW2 20180315	CA04711	SW6020	3/15/2018	5	Thallium		mg/L	U	0.0005
MW2 20180315	CA04711	SW6020	3/15/2018	5	Selenium		mg/L	U	0.010
MW2 20180315	CA04711	SW7470	3/15/2018	1	Mercury		mg/L	U	0.0002
MW2 20180315	CA04711	SW7470	3/15/2018	1	Mercury (Dissolved)		mg/L	U	0.0002
MW2 20180315	CA04711	SW8081	3/15/2018	1	Heptachlor epoxide		ug/L	U	0.003
MW2 20180315	CA04711	SW8081	3/15/2018	1	Endosulfan Sulfate		ug/L	U	0.010
MW2_20180315	CA04711	SW8081	3/15/2018	1	Alachlor		ug/L	U	0.077
MW2_20180315	CA04711	SW8081	3/15/2018	1	Aldrin		ug/L	U	0.002
MW2_20180315	CA04711	SW8081	3/15/2018	1	a-BHC		ug/L	U	0.005
MW2_20180315	CA04711	SW8081	3/15/2018	1	b-BHC		ug/L	U	0.005
MW2_20180315	CA04711	SW8081	3/15/2018	1	d-BHC		ug/L	U	0.005
MW2_20180315	CA04711	SW8081	3/15/2018	1	Endosulfan II		ug/L	U	0.010
MW2_20180315	CA04711	SW8081	3/15/2018	1	4,4' -DDT		ug/L	U	0.005
MW2_20180315	CA04711	SW8081	3/15/2018	1	a-chlordane		ug/L	U	0.010
MW2_20180315	CA04711	SW8081	3/15/2018	1	g-chlordane		ug/L	U	0.010
MW2_20180315	CA04711	SW8081	3/15/2018	1	Endrin ketone		ug/L	U	0.010
MW2_20180315	CA04711	SW8081	3/15/2018	1	Chlordane		ug/L	U	0.050
MW2_20180315	CA04711	SW8081	3/15/2018	1	g-BHC (Lindane)		ug/L	U	0.005
MW2_20180315	CA04711	SW8081	3/15/2018	1	Dieldrin		ug/L	U	0.002
MW2_20180315	CA04711	SW8081	3/15/2018	1	Endrin		ug/L	U	0.003
MW2_20180315	CA04711	SW8081	3/15/2018	1	Methoxychlor		ug/L	U	0.10
MW2_20180315	CA04711	SW8081	3/15/2018	1	4,4' -DDD		ug/L	U	0.005
MW2_20180315	CA04711	SW8081	3/15/2018	1	4,4' -DDE		ug/L	U	0.005
MW2_20180315	CA04711	SW8081	3/15/2018	1	Endrin Aldehyde		ug/L	UJ	0.010
MW2_20180315	CA04711	SW8081	3/15/2018	1	Heptachlor		ug/L	U	0.003
MW2_20180315	CA04711	SW8081	3/15/2018	1	Toxaphene		ug/L	U	0.20
MW2_20180315	CA04711	SW8081	3/15/2018	1	Endosulfan I		ug/L	U	0.010
MW2_20180315	CA04711	SW8082	3/15/2018	1	PCB-1260		ug/L	U	0.051
MW2_20180315	CA04711	SW8082	3/15/2018	1	PCB-1254		ug/L	U	0.051
MW2_20180315	CA04711	SW8082	3/15/2018	1	PCB-1268		ug/L	U	0.051
MW2_20180315	CA04711	SW8082	3/15/2018	1	PCB-1221		ug/L	U	0.051
MW2_20180315	CA04711	SW8082	3/15/2018	1	PCB-1232		ug/L	U	0.051
MW2_20180315	CA04711	SW8082	3/15/2018	1	PCB-1248		ug/L	U	0.051
MW2_20180315	CA04711	SW8082	3/15/2018	1	PCB-1016		ug/L	U	0.051
MW2_20180315	CA04711	SW8082	3/15/2018	1	PCB-1262		ug/L	U	0.051
MW2_20180315	CA04711	SW8082	3/15/2018	1	PCB-1242		ug/L	U	0.051
MW2_20180315	CA04711	SW8260	3/15/2018	1	Ethylbenzene	2.3	ug/L		1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Styrene		ug/L	U	1.0



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
Campio Hamo		Method	Date	Factor	7 many 10			40.0	
MW2 20180315	CA04711	SW8260	3/15/2018	1	cis-1,3-Dichloropropene		ug/L	U	0.40
MW2_20180315	CA04711	SW8260	3/15/2018	1	trans-1,3-Dichloropropene		ug/L	U	0.40
	CA04711	SW8260	3/15/2018	1	n-Butylbenzene	4.4	ug/L		1.0
MW2 20180315	CA04711	SW8260	3/15/2018	1	4-Chlorotoluene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,4-Dichlorobenzene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,2-Dibromoethane		ug/L	U	0.25
MW2_20180315	CA04711	SW8260	3/15/2018	1	Acrolein		ug/L	U	5.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,2-Dichloroethane		ug/L	U	0.60
MW2_20180315	CA04711	SW8260	3/15/2018	1	Acrylonitrile		ug/L	U	5.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	4-Methyl-2-pentanone		ug/L	U	2.5
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,3,5-Trimethylbenzene	0.77	ug/L	J	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Bromobenzene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Toluene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Chlorobenzene		ug/L	U	5.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Tetrahydrofuran (THF)		ug/L	U	5.0
MW2 20180315	CA04711	SW8260	3/15/2018	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
	CA04711	SW8260	3/15/2018	1	1,2,4-Trichlorobenzene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Dibromochloromethane		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Tetrachloroethene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	sec-Butylbenzene	7.4	ug/L		1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,3-Dichloropropane		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	cis-1,2-Dichloroethene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	trans-1,2-Dichloroethene		ug/L	U	5.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Methyl t-butyl ether (MTBE)	0.99	ug/L	J	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	m&p-Xylene	4.2	ug/L		1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	2-Isopropyltoluene	1.7	ug/L		1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Carbon tetrachloride		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,1-Dichloropropene		ug/L	U	1.0
	CA04711	SW8260	3/15/2018	1	2-Hexanone		ug/L	U	2.5
	CA04711	SW8260	3/15/2018	1	2,2-Dichloropropane		ug/L	U	1.0
	CA04711	SW8260	3/15/2018	1	1,1,1,2-Tetrachloroethane		ug/L	U	1.0
	CA04711	SW8260	3/15/2018	1	Acetone		ug/L	U	5.0
	CA04711	SW8260	3/15/2018	1	Chloroform		ug/L	U	5.0
	CA04711		3/15/2018	1	Benzene		ug/L	U	0.70
	CA04711	SW8260	3/15/2018	1	1,1,1-Trichloroethane		ug/L	U	5.0
		SW8260	3/15/2018	1	Bromomethane		ug/L	U	5.0
	CA04711	SW8260	3/15/2018	1	Chloromethane		ug/L	U	5.0



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	·				
MW2_20180315	CA04711	SW8260	3/15/2018	1	Dibromomethane		ug/L	U	1.0
MW2 20180315	CA04711	SW8260	3/15/2018	1	Bromochloromethane		ug/L	U	1.0
	CA04711	SW8260	3/15/2018	1	Chloroethane		ug/L	U	5.0
MW2 20180315	CA04711	SW8260	3/15/2018	1	Vinyl chloride		ug/L	U	1.0
	CA04711	SW8260	3/15/2018	1	Methylene chloride		ug/L	U	3.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Carbon Disulfide		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Bromoform		ug/L	U	5.0
MW2 20180315	CA04711	SW8260	3/15/2018	1	Bromodichloromethane		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,1-Dichloroethane		ug/L	U	5.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,1-Dichloroethene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Trichlorofluoromethane		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Dichlorodifluoromethane		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Trichlorotrifluoroethane		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,2-Dichloropropane		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Methyl ethyl ketone		ug/L	U	2.5
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,1,2-Trichloroethane		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Trichloroethene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,2,3-Trichlorobenzene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Hexachlorobutadiene		ug/L	U	0.50
MW2_20180315	CA04711	SW8260	3/15/2018	1	Naphthalene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	o-Xylene	0.46	ug/L	J	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	2-Chlorotoluene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,2,4-Trimethylbenzene	0.89	ug/L	J	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,2-Dibromo-3-chloropropane		ug/L	U	0.50
MW2_20180315	CA04711	SW8260	3/15/2018	1	1,2,3-Trichloropropane		ug/L	U	0.25
MW2_20180315	CA04711	SW8260	3/15/2018	1	tert-Butylbenzene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	Isopropylbenzene	15	ug/L		1.0
MW2_20180315	CA04711	SW8260	3/15/2018	1	p-Isopropyltoluene		ug/L	U	1.0
MW2_20180315	CA04711	SW8260	3/15/2018	5	n-Propylbenzene	40	ug/L		5.0
MW2_20180315	CA04711	SW8270	3/15/2018	1	4-Nitroaniline		ug/L	U	5.0
MW2_20180315	CA04711	SW8270	3/15/2018	1	4-Nitrophenol		ug/L	U	1.0
MW2_20180315	CA04711	SW8270	3/15/2018	1	4-Bromophenyl phenyl ether		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	2,4-Dimethylphenol		ug/L	U	1.0
MW2_20180315	CA04711	SW8270	3/15/2018	1	1,4-Dichlorobenzene		ug/L	U	1.1
MW2_20180315	CA04711	SW8270	3/15/2018	1	4-Chloroaniline		ug/L	U	3.7
MW2_20180315	CA04711	SW8270	3/15/2018	1	Phenol		ug/L	U	1.0



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	,				
MW2 20180315	CA04711	SW8270	3/15/2018	1	Pyridine		ug/L	U	11
MW2 20180315	CA04711	SW8270	3/15/2018	1	Bis(2-chloroethyl)ether		ug/L	U	1.0
MW2 20180315	CA04711	SW8270	3/15/2018	1	Bis(2-chloroethoxy)methane		ug/L	U	5.0
MW2 20180315	CA04711	SW8270	3/15/2018	1	Di-n-octylphthalate		ug/L	U	5.3
MW2 20180315	CA04711	SW8270	3/15/2018	1	Anthracene		ug/L	U	5.3
MW2 20180315	CA04711	SW8270	3/15/2018	1	1,2,4-Trichlorobenzene		ug/L	U	5.3
	CA04711	SW8270	3/15/2018	1	2,4-Dichlorophenol		ug/L	U	1.0
MW2_20180315	CA04711	SW8270	3/15/2018	1	2,4-Dinitrotoluene		ug/L	U	5.0
	CA04711	SW8270	3/15/2018	1	1,2-Diphenylhydrazine		ug/L	U	5.3
MW2 20180315	CA04711	SW8270	3/15/2018	1	Pyrene		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	Dimethylphthalate		ug/L	U	5.3
	CA04711	SW8270	3/15/2018	1	Dibenzofuran		ug/L	U	5.0
MW2_20180315	CA04711	SW8270	3/15/2018	1	Fluoranthene		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	Bis(2-chloroisopropyl)ether		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	2,4-Dinitrophenol		ug/L	U	1.0
MW2_20180315	CA04711	SW8270	3/15/2018	1	4,6-Dinitro-2-methylphenol		ug/L	U	1.0
MW2_20180315	CA04711	SW8270	3/15/2018	1	1,3-Dichlorobenzene		ug/L	UJ	1.1
MW2_20180315	CA04711	SW8270	3/15/2018	1	4-Chloro-3-methylphenol		ug/L	U	1.0
MW2_20180315	CA04711	SW8270	3/15/2018	1	2,6-Dinitrotoluene		ug/L	U	5.0
MW2_20180315	CA04711	SW8270	3/15/2018	1	N-Nitrosodi-n-propylamine		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	Aniline		ug/L	U	3.7
MW2_20180315	CA04711	SW8270	3/15/2018	1	Benzoic acid		ug/L	U	27
MW2_20180315	CA04711	SW8270	3/15/2018	1	4-Chlorophenyl phenyl ether		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	Hexachlorocyclopentadiene		ug/L	U	5.0
MW2_20180315	CA04711	SW8270	3/15/2018	1	Isophorone		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	Acenaphthene		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	Diethyl phthalate		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	Di-n-butylphthalate		ug/L	U	5.3
	CA04711	SW8270	3/15/2018	1	Benzyl butyl phthalate		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	N-Nitrosodiphenylamine		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	Fluorene		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	Carbazole		ug/L	U	5.3
	CA04711	SW8270	3/15/2018	1	2,4,6-Trichlorophenol		ug/L	U	1.0
MW2_20180315	CA04711	SW8270	3/15/2018	1	2-Nitroaniline		ug/L	U	5.0
	CA04711	SW8270	3/15/2018	1	2-Nitrophenol		ug/L	U	1.0
MW2_20180315	CA04711	SW8270	3/15/2018	1	Naphthalene		ug/L	UJ	5.0
	CA04711	SW8270	3/15/2018	1	2-Methylnaphthalene		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	2-Chloronaphthalene		ug/L	U	5.3



SDG	GCA0471	1
opu.	UCAVT/1	1

Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	,				
MW2 20180315	CA04711	SW8270	3/15/2018	1	3,3'-Dichlorobenzidine		ug/L	U	5.0
MW2 20180315	CA04711	SW8270	3/15/2018	1	Benzidine		ug/L	U	4.8
MW2 20180315	CA04711	SW8270	3/15/2018	1	2-Methylphenol (o-cresol)		ug/L	U	1.0
MW2 20180315	CA04711	SW8270	3/15/2018	1	1,2-Dichlorobenzene		ug/L	U	1.1
MW2 20180315	CA04711	SW8270	3/15/2018	1	2-Chlorophenol		ug/L	U	1.0
MW2 20180315	CA04711	SW8270	3/15/2018	1	2,4,5-Trichlorophenol		ug/L	U	1.0
	CA04711	SW8270	3/15/2018	1	Acetophenone		ug/L	U	5.3
MW2_20180315	CA04711	SW8270	3/15/2018	1	3-Nitroaniline		ug/L	U	5.0
	CA04711	SW8270	3/15/2018	1	3&4-Methylphenol (m&p-cresol)		ug/L	U	1.1
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Bis(2-ethylhexyl)phthalate		ug/L	U	1.1
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Hexachlorobenzene		ug/L	U	0.02
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Benzo(ghi)perylene	0.04	ug/L		0.02
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Indeno(1,2,3-cd)pyrene	0.04	ug/L		0.02
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Benzo(b)fluoranthene	0.07	ug/L		0.02
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Benzo(k)fluoranthene	0.07	ug/L		0.02
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Acenaphthylene		ug/L	U	0.11
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Benzo(a)pyrene	0.07	ug/L		0.02
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Dibenz(a,h)anthracene		ug/L	U	0.02
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Benz(a)anthracene	0.08	ug/L		0.02
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	N-Nitrosodimethylamine		ug/L	U	0.11
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Hexachloroethane		ug/L	U	0.53
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Pentachloronitrobenzene		ug/L	U	0.11
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Phenanthrene		ug/L	U	0.11
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Hexachlorobutadiene		ug/L	UJ	0.43
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Pentachlorophenol		ug/L	U	0.11
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	1,2,4,5-Tetrachlorobenzene		ug/L	U	0.53
MW2_20180315	CA04711	SW8270C-SIM	3/15/2018	1	Nitrobenzene		ug/L	U	0.11
MW2_20180315	CA04711	SW6010	3/15/2018	10	Sodium (Dissolved)	80.5	mg/L		1.1
MW2_20180315	CA04711	SW6010	3/15/2018	1	Copper	0.014	mg/L		0.005
MW2_20180315	CA04711	SW6010	3/15/2018	10	Sodium	80.4	mg/L		1.0
MW2_20180315	CA04711	SW6010	3/15/2018	1	Vanadium, (Dissolved)	0.001	mg/L	U	0.011
MW2_20180315	CA04711	SW6010	3/15/2018	1	Vanadium	0.011	mg/L		0.010
MW3_20180315	CA04712	E200.8	3/15/2018	10	Antimony (Dissolved)-LDL	1	mg/L	U	0.003
MW3_20180315	CA04712	SW6010	3/15/2018	1	Aluminum	26.5	mg/L		0.010
MW3_20180315	CA04712	SW6020	3/15/2018	5	Antimony	1	mg/L	U	0.003
MW3_20180315	CA04712	SW6010	3/15/2018	1	Copper, (Dissolved)	0.002	mg/L	U	0.005
MW3_20180315	CA04712	SW6010	3/15/2018	1	Calcium	24.9	mg/L		0.010
MW3_20180315	CA04712	SW8270C-SIM	3/15/2018	1	Chrysene	0.09	ug/L	J	0.02



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	,				
MW3_20180315	CA04712	E200.8	3/15/2018	1	Thallium (Dissolved)		mg/L	U	0.0003
MW3_20180315	CA04712	E200.8	3/15/2018	1	Selenium (Dissolved)-LDL		mg/L	U	0.003
MW3_20180315	CA04712	SW6010	3/15/2018	1	Aluminum (Dissolved)	0.022	mg/L		0.011
MW3_20180315	CA04712	SW6010	3/15/2018	1	Iron, (Dissolved)		mg/L	U	0.01
MW3_20180315	CA04712	SW6010	3/15/2018	1	Lead (Dissolved)		mg/L	U	0.002
MW3_20180315	CA04712	SW6010	3/15/2018	1	Magnesium (Dissolved)	2.42	mg/L		0.01
MW3_20180315	CA04712	SW6010	3/15/2018	1	Manganese, (Dissolved)	0.021	mg/L		0.005
MW3_20180315	CA04712	SW6010	3/15/2018	1	Nickel, (Dissolved)		mg/L	U	0.004
	CA04712	SW6010	3/15/2018	1	Potassium (Dissolved)	4.2	mg/L		0.1
MW3 20180315	CA04712	SW6010	3/15/2018	1	Silver (Dissolved)		mg/L	U	0.005
MW3_20180315	CA04712	SW6010	3/15/2018	1	Sodium (Dissolved)	35.1	mg/L		0.11
MW3_20180315	CA04712	SW6010	3/15/2018	1	Arsenic, (Dissolved)		mg/L	U	0.003
	CA04712	SW6010	3/15/2018	1	Barium (Dissolved)	0.035	mg/L		0.011
MW3 20180315	CA04712	SW6010	3/15/2018	1	Beryllium (Dissolved)		mg/L	U	0.001
	CA04712	SW6010	3/15/2018	1	Cadmium (Dissolved)		mg/L	U	0.004
MW3 20180315	CA04712	SW6010	3/15/2018	1	Chromium (Dissolved)	0.001	mg/L		0.001
MW3 20180315	CA04712	SW6010	3/15/2018	1	Cobalt, (Dissolved)		mg/L	U	0.005
MW3 20180315	CA04712	SW6010	3/15/2018	1	Zinc, (Dissolved)		mg/L	U	0.011
MW3 20180315	CA04712	SW6010	3/15/2018	1	Calcium (Dissolved)	21.3	mg/L		0.01
MW3 20180315	CA04712	SW6010	3/15/2018	1	Iron	23.0	mg/L		0.01
MW3 20180315	CA04712	SW6010	3/15/2018	1	Lead	0.044	mg/L		0.002
MW3 20180315	CA04712	SW6010	3/15/2018	1	Magnesium	9.31	mg/L		0.010
	CA04712	SW6010	3/15/2018	1	Manganese	0.411	mg/L		0.005
MW3 20180315	CA04712	SW6010	3/15/2018	1	Nickel	0.034	mg/L		0.004
	CA04712	SW6010	3/15/2018	1	Potassium	9.6	mg/L		0.1
MW3 20180315	CA04712	SW6010	3/15/2018	1	Silver		mg/L	U	0.005
	CA04712	SW6010	3/15/2018	1	Arsenic - LDL	0.005	mg/L		0.004
MW3 20180315	CA04712	SW6010	3/15/2018	1	Barium	0.357	mg/L		0.010
MW3 20180315	CA04712	SW6010	3/15/2018	1	Beryllium	0.001	mg/L		0.001
MW3 20180315	CA04712	SW6010	3/15/2018	1	Cadmium	0.001	mg/L	J	0.004
	CA04712	SW6010	3/15/2018	1	Chromium	0.061	mg/L		0.001
	CA04712	SW6010	3/15/2018	1	Cobalt	0.012			0.005
MW3_20180315	CA04712		3/15/2018	1	Copper	0.102			0.005
	CA04712		3/15/2018	1	Zinc		mg/L		0.010
MW3_20180315	CA04712		3/15/2018	5	Thallium		mg/L	U	0.0005
MW3 20180315	CA04712		3/15/2018	1	Sodium	31.6	mg/L		0.10
MW3_20180315	CA04712		3/15/2018	5	Selenium		mg/L	U	0.010
MW3 20180315	CA04712		3/15/2018	1	Mercury		mg/L	U	0.0002



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	,	1122		-	
MW3 20180315	CA04712	SW7470	3/15/2018	1	Mercury (Dissolved)		mg/L	U	0.0002
MW3 20180315	CA04712	SW8081	3/15/2018	1	Heptachlor epoxide		ug/L	U	0.010
MW3 20180315		SW8081	3/15/2018	1	Endosulfan Sulfate		ug/L	U	0.010
MW3 20180315	CA04712	SW8081	3/15/2018	1	Alachlor		ug/L	U	0.071
MW3 20180315	CA04712	SW8081	3/15/2018	1	Aldrin		ug/L	U	0.001
MW3 20180315	CA04712	SW8081	3/15/2018	1	a-BHC		ug/L	U	0.005
 MW3_20180315	CA04712	SW8081	3/15/2018	1	b-BHC		ug/L	U	0.005
MW3_20180315	CA04712	SW8081	3/15/2018	1	d-BHC		ug/L	U	0.005
MW3_20180315	CA04712	SW8081	3/15/2018	1	Endosulfan II		ug/L	U	0.010
MW3_20180315	CA04712	SW8081	3/15/2018	1	4,4' -DDT		ug/L	U	0.005
MW3_20180315	CA04712	SW8081	3/15/2018	1	a-chlordane		ug/L	U	0.010
MW3_20180315	CA04712	SW8081	3/15/2018	1	g-chlordane		ug/L	U	0.010
MW3_20180315	CA04712	SW8081	3/15/2018	1	Endrin ketone		ug/L	U	0.010
MW3_20180315	CA04712	SW8081	3/15/2018	1	Chlordane		ug/L	U	0.047
MW3_20180315	CA04712	SW8081	3/15/2018	1	g-BHC (Lindane)		ug/L	U	0.005
MW3_20180315	CA04712	SW8081	3/15/2018	1	Dieldrin		ug/L	U	0.001
MW3_20180315	CA04712	SW8081	3/15/2018	1	Endrin		ug/L	U	0.010
MW3_20180315	CA04712	SW8081	3/15/2018	1	Methoxychlor		ug/L	U	0.095
MW3_20180315	CA04712	SW8081	3/15/2018	1	4,4' -DDD		ug/L	U	0.005
MW3_20180315	CA04712	SW8081	3/15/2018	1	4,4' -DDE		ug/L	U	0.005
MW3_20180315	CA04712	SW8081	3/15/2018	1	Endrin Aldehyde		ug/L	UJ	0.010
MW3_20180315	CA04712	SW8081	3/15/2018	1	Heptachlor		ug/L	U	0.010
MW3_20180315	CA04712	SW8081	3/15/2018	1	Toxaphene		ug/L	U	0.19
MW3_20180315	CA04712	SW8081	3/15/2018	1	Endosulfan I		ug/L	U	0.010
MW3_20180315	CA04712	SW8082	3/15/2018	1	PCB-1260		ug/L	U	0.047
MW3_20180315	CA04712	SW8082	3/15/2018	1	PCB-1254		ug/L	U	0.047
MW3_20180315	CA04712	SW8082	3/15/2018	1	PCB-1268		ug/L	U	0.047
MW3_20180315	CA04712	SW8082	3/15/2018	1	PCB-1221		ug/L	U	0.047
MW3_20180315	CA04712	SW8082	3/15/2018	1	PCB-1232		ug/L	U	0.047
MW3_20180315	CA04712	SW8082	3/15/2018	1	PCB-1248		ug/L	U	0.047
MW3_20180315	CA04712	SW8082	3/15/2018	1	PCB-1016		ug/L	U	0.047
MW3_20180315	CA04712	SW8082	3/15/2018	1	PCB-1262		ug/L	U	0.047
MW3_20180315	CA04712	SW8082	3/15/2018	1	PCB-1242		ug/L	U	0.047
MW3_20180315	CA04712		3/15/2018	1	Ethylbenzene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Styrene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	cis-1,3-Dichloropropene		ug/L	U	0.40
MW3_20180315	CA04712	SW8260	3/15/2018	1	trans-1,3-Dichloropropene		ug/L	U	0.40
MW3_20180315	CA04712	SW8260	3/15/2018	1	n-Propylbenzene		ug/L	U	1.0



Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
MW3_20180315	CA04712	SW8260	3/15/2018	1	n-Butylbenzene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	4-Chlorotoluene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,4-Dichlorobenzene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,2-Dibromoethane		ug/L	U	0.25
MW3_20180315	CA04712	SW8260	3/15/2018	1	Acrolein		ug/L	U	5.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,2-Dichloroethane		ug/L	U	0.60
MW3_20180315	CA04712	SW8260	3/15/2018	1	Acrylonitrile		ug/L	U	5.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	4-Methyl-2-pentanone		ug/L	U	2.5
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,3,5-Trimethylbenzene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Bromobenzene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Toluene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Chlorobenzene		ug/L	U	5.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Tetrahydrofuran (THF)		ug/L	U	5.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,2,4-Trichlorobenzene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Dibromochloromethane		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Tetrachloroethene	0.82	ug/L	J	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	sec-Butylbenzene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,3-Dichloropropane		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	cis-1,2-Dichloroethene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	trans-1,2-Dichloroethene		ug/L	U	5.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Methyl t-butyl ether (MTBE)		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	m&p-Xylene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	2-Isopropyltoluene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Carbon tetrachloride		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,1-Dichloropropene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	2-Hexanone		ug/L	U	2.5
MW3_20180315	CA04712	SW8260	3/15/2018	1	2,2-Dichloropropane		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,1,1,2-Tetrachloroethane		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Acetone		ug/L	U	5.0
MW3_20180315	CA04712		3/15/2018	1	Chloroform	16	ug/L		5.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Benzene		ug/L	U	0.70
	CA04712	SW8260	3/15/2018	1	1,1,1-Trichloroethane		ug/L	U	5.0
	CA04712		3/15/2018	1	Bromomethane		ug/L	U	5.0
	CA04712	SW8260	3/15/2018	1	Chloromethane		ug/L	U	5.0
MW3_20180315	CA04712		3/15/2018	1	Dibromomethane		ug/L	U	1.0
	CA04712		3/15/2018	1	Bromochloromethane		ug/L	U	1.0



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
-		Method	Date	Factor					
MW3 20180315	CA04712	SW8260	3/15/2018	1	Chloroethane		ug/L	U	5.0
MW3 20180315	CA04712	SW8260	3/15/2018	1	Vinyl chloride		ug/L	U	1.0
MW3 20180315	CA04712	SW8260	3/15/2018	1	Methylene chloride		ug/L	U	3.0
MW3 20180315	CA04712	SW8260	3/15/2018	1	Carbon Disulfide		ug/L	U	1.0
MW3 20180315	CA04712	SW8260	3/15/2018	1	Bromoform		ug/L	U	5.0
MW3 20180315	CA04712	SW8260	3/15/2018	1	Bromodichloromethane	1.4	ug/L		1.0
	CA04712	SW8260	3/15/2018	1	1,1-Dichloroethane		ug/L	U	5.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,1-Dichloroethene		ug/L	U	1.0
	CA04712	SW8260	3/15/2018	1	Trichlorofluoromethane		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Dichlorodifluoromethane		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Trichlorotrifluoroethane		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,2-Dichloropropane		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Methyl ethyl ketone		ug/L	U	2.5
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,1,2-Trichloroethane		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Trichloroethene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,2,3-Trichlorobenzene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Hexachlorobutadiene		ug/L	U	0.50
MW3_20180315	CA04712	SW8260	3/15/2018	1	Naphthalene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	o-Xylene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	2-Chlorotoluene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,2,4-Trimethylbenzene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,2-Dibromo-3-chloropropane		ug/L	U	0.50
MW3_20180315	CA04712	SW8260	3/15/2018	1	1,2,3-Trichloropropane		ug/L	U	0.25
MW3_20180315	CA04712	SW8260	3/15/2018	1	tert-Butylbenzene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	Isopropylbenzene		ug/L	U	1.0
MW3_20180315	CA04712	SW8260	3/15/2018	1	p-Isopropyltoluene		ug/L	U	1.0
MW3_20180315	CA04712	SW8270	3/15/2018	1	4-Nitroaniline		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	4-Nitrophenol		ug/L	U	0.94
MW3_20180315	CA04712	SW8270	3/15/2018	1	4-Bromophenyl phenyl ether		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	2,4-Dimethylphenol		ug/L	U	0.94
MW3_20180315	CA04712	SW8270	3/15/2018	1	1,4-Dichlorobenzene		ug/L	U	0.94
MW3_20180315	CA04712	SW8270	3/15/2018	1	4-Chloroaniline		ug/L	U	3.3
MW3_20180315	CA04712	SW8270	3/15/2018	1	Phenol		ug/L	U	0.94
MW3_20180315	CA04712	SW8270	3/15/2018	1	Pyridine		ug/L	U	9.4
MW3_20180315	CA04712	SW8270	3/15/2018	1	Bis(2-chloroethyl)ether		ug/L	U	0.94
MW3_20180315	CA04712	SW8270	3/15/2018	1	Bis(2-chloroethoxy)methane		ug/L	U	4.7



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	,				
MW3 20180315	CA04712	SW8270	3/15/2018	1	Di-n-octylphthalate		ug/L	U	4.7
MW3 20180315	CA04712	SW8270	3/15/2018	1	Anthracene		ug/L	U	4.7
MW3 20180315	CA04712	SW8270	3/15/2018	1	1,2,4-Trichlorobenzene		ug/L	U	4.7
MW3 20180315	CA04712	SW8270	3/15/2018	1	2,4-Dichlorophenol		ug/L	U	0.94
MW3 20180315	CA04712	SW8270	3/15/2018	1	2,4-Dinitrotoluene		ug/L	U	4.7
MW3 20180315	CA04712	SW8270	3/15/2018	1	1,2-Diphenylhydrazine		ug/L	U	4.7
 MW3_20180315	CA04712	SW8270	3/15/2018	1	Pyrene		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	Dimethylphthalate		ug/L	U	4.7
 MW3_20180315	CA04712	SW8270	3/15/2018	1	Dibenzofuran		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	Fluoranthene		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	Bis(2-chloroisopropyl)ether		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	2,4-Dinitrophenol		ug/L	U	0.94
MW3_20180315	CA04712	SW8270	3/15/2018	1	4,6-Dinitro-2-methylphenol		ug/L	U	0.94
MW3_20180315	CA04712	SW8270	3/15/2018	1	1,3-Dichlorobenzene		ug/L	UJ	0.94
MW3_20180315	CA04712	SW8270	3/15/2018	1	4-Chloro-3-methylphenol		ug/L	U	0.94
MW3_20180315	CA04712	SW8270	3/15/2018	1	2,6-Dinitrotoluene		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	N-Nitrosodi-n-propylamine		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	Aniline		ug/L	U	3.3
MW3_20180315	CA04712	SW8270	3/15/2018	1	Benzoic acid		ug/L	U	23
MW3_20180315	CA04712	SW8270	3/15/2018	1	4-Chlorophenyl phenyl ether		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	Hexachlorocyclopentadiene		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	Isophorone		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	Acenaphthene		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	Diethyl phthalate	5.5	ug/L		4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	Di-n-butylphthalate		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	Benzyl butyl phthalate		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	N-Nitrosodiphenylamine		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	Fluorene		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	Carbazole		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	2,4,6-Trichlorophenol		ug/L	U	0.94
MW3_20180315	CA04712	SW8270	3/15/2018	1	2-Nitroaniline		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	2-Nitrophenol		ug/L	U	0.94
MW3_20180315	CA04712	SW8270	3/15/2018	1	Naphthalene		ug/L	UJ	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	2-Methylnaphthalene		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	2-Chloronaphthalene		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	3,3'-Dichlorobenzidine		ug/L	U	4.7
MW3_20180315	CA04712	SW8270	3/15/2018	1	Benzidine		ug/L	U	4.2
MW3_20180315	CA04712	SW8270	3/15/2018	1	2-Methylphenol (o-cresol)		ug/L	U	0.94



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	,				
MW3 20180315	CA04712	SW8270	3/15/2018	1	1,2-Dichlorobenzene		ug/L	U	0.94
MW3 20180315	CA04712	SW8270	3/15/2018	1	2-Chlorophenol		ug/L	U	0.94
MW3 20180315	CA04712		3/15/2018	1	2,4,5-Trichlorophenol		ug/L	U	0.94
MW3 20180315	CA04712	SW8270	3/15/2018	1	Acetophenone		ug/L	U	4.7
MW3 20180315	CA04712	SW8270	3/15/2018	1	3-Nitroaniline		ug/L	U	4.7
MW3 20180315	CA04712		3/15/2018	1	3&4-Methylphenol (m&p-cresol)		ug/L	U	0.94
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Bis(2-ethylhexyl)phthalate		ug/L	U	0.94
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Hexachlorobenzene		ug/L	U	0.02
MW3 20180315		SW8270C-SIM	3/15/2018	1	Benzo(ghi)perylene	0.06	ug/L		0.02
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Indeno(1,2,3-cd)pyrene	0.05	ug/L		0.02
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Benzo(b)fluoranthene	0.10	ug/L		0.02
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Benzo(k)fluoranthene	0.09	ug/L		0.02
MW3 20180315		SW8270C-SIM	3/15/2018	1	Acenaphthylene		ug/L	U	0.09
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Benzo(a)pyrene	0.08	ug/L		0.02
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Dibenz(a,h)anthracene	0.02	ug/L		0.02
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Benz(a)anthracene	0.08	ug/L		0.02
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	N-Nitrosodimethylamine		ug/L	U	0.09
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Hexachloroethane		ug/L	U	0.47
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Pentachloronitrobenzene		ug/L	U	0.09
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Phenanthrene		ug/L	U	0.09
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Hexachlorobutadiene		ug/L	UJ	0.38
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Pentachlorophenol		ug/L	U	0.09
	CA04712	SW8270C-SIM	3/15/2018	1	1,2,4,5-Tetrachlorobenzene		ug/L	U	0.47
MW3 20180315	CA04712	SW8270C-SIM	3/15/2018	1	Nitrobenzene		ug/L	U	0.09
	CA04712	SW6010	3/15/2018	1	Vanadium, (Dissolved)	0.002	mg/L	U	0.011
MW3_20180315	CA04712	SW6010	3/15/2018	1	Vanadium	0.049	mg/L		0.010
MW5_20180315	CA04713	SW6010	3/15/2018	1	Aluminum	0.284	mg/L	J	0.010
MW5_20180315	CA04713	SW6010	3/15/2018	1	Aluminum (Dissolved)	0.062	mg/L		0.011
MW5_20180315	CA04713	SW6020	3/15/2018	5	Antimony		mg/L	U	0.003
MW5_20180315	CA04713	SW6010	3/15/2018	1	Arsenic - LDL	0.004	mg/L	J	0.004
MW5_20180315	CA04713	E200.8	3/15/2018	1	Antimony (Dissolved)-LDL		mg/L	U	0.0011
MW5_20180315	CA04713	SW6010	3/15/2018	1	Barium	0.362	mg/L		0.010
	CA04713		3/15/2018	1	Beryllium		mg/L	U	0.001
	CA04713	SW6010	3/15/2018	1	Arsenic, (Dissolved)	0.002		J	0.003
	CA04713	SW6010	3/15/2018	1	Cadmium		mg/L	U	0.004
MW5 20180315	CA04713		3/15/2018	10	Calcium	161	mg/L		0.10
MW5_20180315	CA04713		3/15/2018	1	Barium (Dissolved)	0.221	mg/L		0.011
MW5 20180315	CA04713		3/15/2018	1	Chromium	0.003			0.001



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	,				
MW5 20180315	CA04713	SW6010	3/15/2018	1	Cobalt		mg/L	U	0.005
MW5 20180315	CA04713	SW6010	3/15/2018	1	Beryllium (Dissolved)		mg/L	U	0.001
MW5_20180315	CA04713	SW6010	3/15/2018	1	Copper	0.002	mg/L	UJ	0.005
MW5_20180315	CA04713	SW6010	3/15/2018	1	Iron	42.8	mg/L		0.01
MW5_20180315	CA04713	SW6010	3/15/2018	1	Cadmium (Dissolved)		mg/L	U	0.004
MW5_20180315	CA04713	SW6010	3/15/2018	1	Lead	0.012	mg/L		0.002
MW5_20180315	CA04713	SW6010	3/15/2018	1	Magnesium	25.7	mg/L		0.010
MW5_20180315	CA04713	SW6010	3/15/2018	1	Calcium (Dissolved)	148	mg/L		0.01
MW5_20180315	CA04713	SW6010	3/15/2018	1	Manganese	1.35	mg/L		0.005
MW5_20180315	CA04713	SW7470	3/15/2018	1	Mercury		mg/L	U	0.0002
MW5_20180315	CA04713	SW6010	3/15/2018	1	Chromium (Dissolved)		mg/L	U	0.001
MW5_20180315	CA04713	SW6010	3/15/2018	1	Nickel		mg/L	UJ	0.004
MW5_20180315	CA04713	SW6010	3/15/2018	1	Potassium	16.0	mg/L		0.1
MW5_20180315	CA04713	SW6010	3/15/2018	1	Cobalt, (Dissolved)		mg/L	U	0.005
MW5_20180315	CA04713	SW6020	3/15/2018	5	Selenium		mg/L	U	0.010
MW5_20180315	CA04713	SW6010	3/15/2018	1	Silver		mg/L	U	0.005
MW5_20180315	CA04713	SW6010	3/15/2018	1	Copper, (Dissolved)	0.002	mg/L	J	0.005
MW5_20180315	CA04713	SW6010	3/15/2018	100	Sodium	129	mg/L		10
MW5_20180315	CA04713	SW6020	3/15/2018	5	Thallium		mg/L	U	0.0005
MW5_20180315	CA04713	SW6010	3/15/2018	1	Iron, (Dissolved)	6.19	mg/L	J	0.01
MW5_20180315	CA04713	SW6010	3/15/2018	1	Vanadium		mg/L	U	0.010
MW5_20180315	CA04713	SW6010	3/15/2018	1	Zinc	0.008	mg/L	J	0.010
MW5_20180315	CA04713	SW6010	3/15/2018	1	Lead (Dissolved)	0.001	mg/L	J	0.002
MW5_20180315	CA04713	SW6010	3/15/2018	1	Magnesium (Dissolved)	25.7	mg/L		0.01
MW5_20180315	CA04713	SW8270C-SIM	3/15/2018	1	Chrysene		ug/L	UJ	0.02
MW5_20180315	CA04713	SW6010	3/15/2018	1	Manganese, (Dissolved)	1.31	mg/L		0.005
MW5_20180315	CA04713	SW7470	3/15/2018	1	Mercury (Dissolved)		mg/L	U	0.0002
MW5_20180315	CA04713	SW6010	3/15/2018	1	Nickel, (Dissolved)		mg/L	U	0.004
MW5_20180315	CA04713	SW6010	3/15/2018	1	Potassium (Dissolved)	16.9	mg/L	J	0.1
MW5 20180315	CA04713	E200.8	3/15/2018	1	Selenium (Dissolved)-LDL		mg/L	U	0.003
	CA04713	SW6010	3/15/2018	1	Silver (Dissolved)		mg/L	U	0.005
	CA04713	SW6010	3/15/2018	100	Sodium (Dissolved)	121	mg/L		11
	CA04713		3/15/2018	1	Thallium (Dissolved)		mg/L	U	0.0005
	CA04713	SW6010	3/15/2018	1	Vanadium, (Dissolved)		mg/L	U	0.011
	CA04713	SW6010	3/15/2018	1	Zinc, (Dissolved)	0.001	mg/L	J	0.011
	CA04713		3/15/2018	1	Heptachlor epoxide		ug/L	U	0.009
	CA04713		3/15/2018	1	Endosulfan Sulfate		ug/L	U	0.009
	CA04713	SW8081	3/15/2018	1	Alachlor		ug/L	U	0.070



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor		1122		-	
MW5 20180315	CA04713	SW8081	3/15/2018	1	Aldrin		ug/L	U	0.001
MW5 20180315	CA04713	SW8081	3/15/2018	1	a-BHC		ug/L	U	0.005
MW5_20180315	CA04713	SW8081	3/15/2018	1	b-BHC		ug/L	U	0.005
MW5_20180315	CA04713	SW8081	3/15/2018	1	d-BHC		ug/L	U	0.005
MW5_20180315	CA04713	SW8081	3/15/2018	1	Endosulfan II		ug/L	U	0.009
MW5_20180315	CA04713	SW8081	3/15/2018	1	4,4' -DDT		ug/L	U	0.005
MW5_20180315	CA04713	SW8081	3/15/2018	1	a-chlordane		ug/L	U	0.009
MW5_20180315	CA04713	SW8081	3/15/2018	1	g-chlordane		ug/L	U	0.009
MW5_20180315	CA04713	SW8081	3/15/2018	1	Endrin ketone		ug/L	U	0.009
MW5_20180315	CA04713	SW8081	3/15/2018	1	Chlordane		ug/L	U	0.047
MW5_20180315	CA04713	SW8081	3/15/2018	1	g-BHC (Lindane)		ug/L	U	0.005
MW5_20180315	CA04713	SW8081	3/15/2018	1	Dieldrin		ug/L	U	0.001
MW5_20180315	CA04713	SW8081	3/15/2018	1	Endrin		ug/L	U	0.009
MW5_20180315	CA04713	SW8081	3/15/2018	1	Methoxychlor		ug/L	U	0.094
MW5_20180315	CA04713	SW8081	3/15/2018	1	4,4' -DDD		ug/L	U	0.005
MW5_20180315	CA04713	SW8081	3/15/2018	1	4,4' -DDE		ug/L	U	0.005
MW5_20180315	CA04713	SW8081	3/15/2018	1	Endrin Aldehyde		ug/L	U	0.009
MW5_20180315	CA04713	SW8081	3/15/2018	1	Heptachlor		ug/L	U	0.009
MW5_20180315	CA04713	SW8081	3/15/2018	1	Toxaphene		ug/L	U	0.19
MW5_20180315	CA04713	SW8081	3/15/2018	1	Endosulfan I		ug/L	U	0.009
MW5_20180315	CA04713	SW8082	3/15/2018	1	PCB-1260		ug/L	U	0.047
MW5_20180315	CA04713	SW8082	3/15/2018	1	PCB-1254		ug/L	U	0.047
MW5_20180315	CA04713	SW8082	3/15/2018	1	PCB-1268		ug/L	U	0.047
MW5_20180315	CA04713	SW8082	3/15/2018	1	PCB-1221		ug/L	U	0.047
MW5_20180315	CA04713	SW8082	3/15/2018	1	PCB-1232		ug/L	U	0.047
MW5_20180315	CA04713	SW8082	3/15/2018	1	PCB-1248		ug/L	U	0.047
	CA04713	SW8082	3/15/2018	1	PCB-1016		ug/L	U	0.047
	CA04713	SW8082	3/15/2018	1	PCB-1262		ug/L	U	0.047
	CA04713	SW8082	3/15/2018	1	PCB-1242		ug/L	U	0.047
	CA04713	SW8260	3/15/2018	1	Ethylbenzene		ug/L	U	1.0
	CA04713	SW8260	3/15/2018	1	Styrene		ug/L	U	1.0
	CA04713	SW8260	3/15/2018	1	cis-1,3-Dichloropropene		ug/L	U	0.40
	CA04713		3/15/2018	1	trans-1,3-Dichloropropene		ug/L	U	0.40
	CA04713	SW8260	3/15/2018	1	n-Propylbenzene		ug/L	U	1.0
	CA04713		3/15/2018	1	n-Butylbenzene		ug/L	U	1.0
	CA04713		3/15/2018	1	4-Chlorotoluene		ug/L	U	1.0
	CA04713		3/15/2018	1	1,4-Dichlorobenzene		ug/L	U	1.0
	CA04713	SW8260	3/15/2018	1	1,2-Dibromoethane		ug/L	U	0.25



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	,				
MW5 20180315	CA04713	SW8260	3/15/2018	1	Acrolein		ug/L	U	5.0
MW5 20180315	CA04713	SW8260	3/15/2018	1	1,2-Dichloroethane		ug/L	U	0.60
MW5_20180315	CA04713	SW8260	3/15/2018	1	Acrylonitrile		ug/L	U	5.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	4-Methyl-2-pentanone		ug/L	U	2.5
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,3,5-Trimethylbenzene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Bromobenzene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Toluene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Chlorobenzene		ug/L	U	5.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Tetrahydrofuran (THF)		ug/L	U	5.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,2,4-Trichlorobenzene		ug/L	UJ	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Dibromochloromethane		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Tetrachloroethene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	sec-Butylbenzene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,3-Dichloropropane		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	cis-1,2-Dichloroethene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	trans-1,2-Dichloroethene		ug/L	U	5.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Methyl t-butyl ether (MTBE)	0.52	ug/L	J	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	m&p-Xylene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	2-Isopropyltoluene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,3-Dichlorobenzene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Carbon tetrachloride		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,1-Dichloropropene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	2-Hexanone		ug/L	U	2.5
MW5_20180315	CA04713	SW8260	3/15/2018	1	2,2-Dichloropropane		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,1,1,2-Tetrachloroethane		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Acetone		ug/L	U	5.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Chloroform		ug/L	U	5.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Benzene		ug/L	U	0.70
	CA04713	SW8260	3/15/2018	1	1,1,1-Trichloroethane		ug/L	U	5.0
	CA04713	SW8260	3/15/2018	1	Bromomethane		ug/L	UJ	5.0
	CA04713	SW8260	3/15/2018	1	Chloromethane		ug/L	U	5.0
	CA04713	SW8260	3/15/2018	1	Dibromomethane		ug/L	U	1.0
	CA04713	SW8260	3/15/2018	1	Bromochloromethane		ug/L	U	1.0
	CA04713	SW8260	3/15/2018	1	Chloroethane		ug/L	U	5.0
 MW5_20180315	CA04713	SW8260	3/15/2018	1	Vinyl chloride		ug/L	U	1.0
	CA04713		3/15/2018	1	Methylene chloride		ug/L	U	3.0
	CA04713	SW8260	3/15/2018	1	Carbon Disulfide		ug/L	U	1.0



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor					
MW5 20180315	CA04713	SW8260	3/15/2018	1	Bromoform		ug/L	U	5.0
MW5 20180315	CA04713	SW8260	3/15/2018	1	Bromodichloromethane		ug/L	U	1.0
MW5 20180315	CA04713	SW8260	3/15/2018	1	1,1-Dichloroethane		ug/L	U	5.0
MW5 20180315	CA04713	SW8260	3/15/2018	1	1,1-Dichloroethene		ug/L	U	1.0
MW5 20180315	CA04713	SW8260	3/15/2018	1	Trichlorofluoromethane		ug/L	U	1.0
MW5 20180315	CA04713	SW8260	3/15/2018	1	Dichlorodifluoromethane		ug/L	U	1.0
	CA04713	SW8260	3/15/2018	1	Trichlorotrifluoroethane		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,2-Dichloropropane		ug/L	U	1.0
	CA04713	SW8260	3/15/2018	1	Methyl ethyl ketone		ug/L	U	2.5
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,1,2-Trichloroethane		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Trichloroethene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,2,3-Trichlorobenzene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Hexachlorobutadiene		ug/L	U	0.50
MW5_20180315	CA04713	SW8260	3/15/2018	1	Naphthalene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	o-Xylene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	2-Chlorotoluene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,2-Dichlorobenzene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,2,4-Trimethylbenzene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,2-Dibromo-3-chloropropane		ug/L	U	0.50
MW5_20180315	CA04713	SW8260	3/15/2018	1	1,2,3-Trichloropropane		ug/L	U	0.25
MW5_20180315	CA04713	SW8260	3/15/2018	1	tert-Butylbenzene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	Isopropylbenzene		ug/L	U	1.0
MW5_20180315	CA04713	SW8260	3/15/2018	1	p-Isopropyltoluene		ug/L	U	1.0
MW5_20180315	CA04713	SW8270	3/15/2018	1	4-Nitroaniline		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	4-Nitrophenol		ug/L	U	0.94
MW5_20180315	CA04713	SW8270	3/15/2018	1	4-Bromophenyl phenyl ether		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	2,4-Dimethylphenol		ug/L	U	0.94
MW5_20180315	CA04713	SW8270	3/15/2018	1	1,4-Dichlorobenzene		ug/L	U	0.94
MW5_20180315	CA04713	SW8270	3/15/2018	1	4-Chloroaniline		ug/L	U	3.3
MW5_20180315	CA04713	SW8270	3/15/2018	1	Phenol		ug/L	U	0.94
MW5_20180315	CA04713	SW8270	3/15/2018	1	Pyridine		ug/L	U	9.4
MW5_20180315	CA04713	SW8270	3/15/2018	1	Bis(2-chloroethyl)ether		ug/L	U	0.94
MW5_20180315	CA04713	SW8270	3/15/2018	1	Bis(2-chloroethoxy)methane		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Di-n-octylphthalate		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Anthracene		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	1,2,4-Trichlorobenzene		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	2,4-Dichlorophenol		ug/L	U	0.94



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	, <b>,</b>	111111111111111111111111111111111111111			
MW5_20180315	CA04713	SW8270	3/15/2018	1	2,4-Dinitrotoluene		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	1,2-Diphenylhydrazine		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Pyrene		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Dimethylphthalate		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Dibenzofuran		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Fluoranthene		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Bis(2-chloroisopropyl)ether		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	2,4-Dinitrophenol		ug/L	U	0.94
MW5_20180315	CA04713	SW8270	3/15/2018	1	4,6-Dinitro-2-methylphenol		ug/L	U	0.94
MW5_20180315	CA04713	SW8270	3/15/2018	1	1,3-Dichlorobenzene		ug/L	UJ	0.94
MW5_20180315	CA04713	SW8270	3/15/2018	1	4-Chloro-3-methylphenol		ug/L	U	0.94
MW5_20180315	CA04713	SW8270	3/15/2018	1	2,6-Dinitrotoluene		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	N-Nitrosodi-n-propylamine		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Aniline		ug/L	U	3.3
MW5_20180315	CA04713	SW8270	3/15/2018	1	Benzoic acid		ug/L	U	23
MW5_20180315	CA04713	SW8270	3/15/2018	1	4-Chlorophenyl phenyl ether		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Hexachlorocyclopentadiene		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Isophorone		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Acenaphthene		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Diethyl phthalate		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Di-n-butylphthalate		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Benzyl butyl phthalate		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	N-Nitrosodiphenylamine		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Fluorene		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	Carbazole		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	2,4,6-Trichlorophenol		ug/L	U	0.94
MW5_20180315	CA04713	SW8270	3/15/2018	1	2-Nitroaniline		ug/L	U	4.7
MW5_20180315	CA04713	SW8270	3/15/2018	1	2-Nitrophenol		ug/L	U	0.94
MW5_20180315	CA04713	SW8270	3/15/2018	1	Naphthalene		ug/L	UJ	4.7
	CA04713	SW8270	3/15/2018	1	2-Methylnaphthalene		ug/L	U	4.7
	CA04713	SW8270	3/15/2018	1	2-Chloronaphthalene		ug/L	U	4.7
	CA04713	SW8270	3/15/2018	1	3,3'-Dichlorobenzidine		ug/L	UJ	4.7
	CA04713	SW8270	3/15/2018	1	Benzidine		ug/L	U	4.2
	CA04713	SW8270	3/15/2018	1	2-Methylphenol (o-cresol)		ug/L	U	0.94
	CA04713		3/15/2018	1	1,2-Dichlorobenzene		ug/L	U	0.94
	CA04713		3/15/2018	1	2-Chlorophenol		ug/L	U	0.94
	CA04713	SW8270	3/15/2018	1	2,4,5-Trichlorophenol		ug/L	U	0.94
	CA04713	SW8270	3/15/2018	1	Acetophenone		ug/L	U	4.7



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor					
MW5 20180315	CA04713	SW8270	3/15/2018	1	3-Nitroaniline		ug/L	U	4.7
MW5 20180315	CA04713		3/15/2018	1	3&4-Methylphenol (m&p-cresol)		ug/L	U	0.94
MW5 20180315		SW8270C-SIM	3/15/2018	1	Bis(2-ethylhexyl)phthalate		ug/L	U	0.94
MW5 20180315	CA04713		3/15/2018	1	Hexachlorobenzene		ug/L	U	0.02
MW5 20180315		SW8270C-SIM	3/15/2018	1	Benzo(ghi)perylene		ug/L	U	0.02
MW5 20180315	CA04713	SW8270C-SIM	3/15/2018	1	Indeno(1,2,3-cd)pyrene		ug/L	U	0.02
MW5 20180315	CA04713	SW8270C-SIM	3/15/2018	1	Benzo(b)fluoranthene	0.02	ug/L		0.02
MW5 20180315	CA04713	SW8270C-SIM	3/15/2018	1	Benzo(k)fluoranthene		ug/L	U	0.02
MW5 20180315	CA04713	SW8270C-SIM	3/15/2018	1	Acenaphthylene		ug/L	U	0.09
	CA04713	SW8270C-SIM	3/15/2018	1	Benzo(a)pyrene		ug/L	U	0.02
MW5 20180315	CA04713	SW8270C-SIM	3/15/2018	1	Dibenz(a,h)anthracene		ug/L	U	0.02
	CA04713	SW8270C-SIM	3/15/2018	1	Benz(a)anthracene		ug/L	U	0.02
MW5 20180315		SW8270C-SIM	3/15/2018	1	N-Nitrosodimethylamine		ug/L	U	0.09
	CA04713	SW8270C-SIM	3/15/2018	1	Hexachloroethane		ug/L	U	0.47
MW5 20180315	CA04713	SW8270C-SIM	3/15/2018	1	Pentachloronitrobenzene		ug/L	U	0.09
MW5 20180315	CA04713	SW8270C-SIM	3/15/2018	1	Phenanthrene		ug/L	U	0.09
MW5 20180315	CA04713		3/15/2018	1	Hexachlorobutadiene		ug/L	UJ	0.38
	CA04713	SW8270C-SIM	3/15/2018	1	Pentachlorophenol		ug/L	U	0.09
MW5 20180315	CA04713	SW8270C-SIM	3/15/2018	1	1,2,4,5-Tetrachlorobenzene		ug/L	U	0.47
 MW5	CA04713	SW8270C-SIM	3/15/2018	1	Nitrobenzene		ug/L	U	0.09
GW DUPLICATE 20180315	CA04714	SW6010	3/15/2018	1	Aluminum (Dissolved)	0.066	mg/L		0.011
GW DUPLICATE 20180315	CA04714	E200.8	3/15/2018	1	Antimony (Dissolved)-LDL		mg/L	U	0.0011
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Arsenic, (Dissolved)	0.002	mg/L	J	0.003
GW DUPLICATE 20180315	CA04714	SW6010	3/15/2018	1	Barium (Dissolved)	0.227	mg/L		0.011
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Beryllium (Dissolved)		mg/L	U	0.001
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Cadmium (Dissolved)		mg/L	U	0.004
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Calcium (Dissolved)	148	mg/L		0.01
GW DUPLICATE 20180315	CA04714	SW6010	3/15/2018	1	Chromium (Dissolved)		mg/L	U	0.001
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Cobalt, (Dissolved)		mg/L	U	0.005
GW DUPLICATE 20180315	CA04714	SW6010	3/15/2018	1	Copper, (Dissolved)	0.001	mg/L	UJ	0.005
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	Heptachlor epoxide		ug/L	U	0.009
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	Endosulfan Sulfate		ug/L	U	0.009
GW DUPLICATE_20180315	CA04714		3/15/2018	1	Alachlor		ug/L	U	0.070
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	Aldrin		ug/L	U	0.001
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	a-BHC		ug/L	U	0.005
GW DUPLICATE_20180315	CA04714		3/15/2018	1	b-BHC		ug/L	U	0.005
GW DUPLICATE_20180315	CA04714		3/15/2018	1	d-BHC		ug/L	U	0.005
GW DUPLICATE 20180315	CA04714		3/15/2018	1	Endosulfan II		ug/L	U	0.009



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
·		Method	Date	Factor	ŕ				
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	4,4' -DDT		ug/L	U	0.005
GW DUPLICATE 20180315	CA04714	SW8081	3/15/2018	1	a-chlordane		ug/L	U	0.009
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	g-chlordane		ug/L	U	0.009
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	Endrin ketone		ug/L	U	0.009
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	Chlordane		ug/L	U	0.047
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	g-BHC (Lindane)		ug/L	U	0.005
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	Dieldrin		ug/L	U	0.001
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	Endrin		ug/L	U	0.009
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	Methoxychlor		ug/L	U	0.094
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	4,4' -DDD		ug/L	U	0.005
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	4,4' -DDE		ug/L	U	0.005
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	Endrin Aldehyde		ug/L	U	0.009
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	Heptachlor		ug/L	U	0.009
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	Toxaphene		ug/L	U	0.19
GW DUPLICATE_20180315	CA04714	SW8081	3/15/2018	1	Endosulfan I		ug/L	U	0.009
GW DUPLICATE_20180315	CA04714	SW8082	3/15/2018	1	PCB-1260		ug/L	U	0.047
GW DUPLICATE_20180315	CA04714	SW8082	3/15/2018	1	PCB-1254		ug/L	U	0.047
GW DUPLICATE_20180315	CA04714	SW8082	3/15/2018	1	PCB-1268		ug/L	U	0.047
GW DUPLICATE_20180315	CA04714	SW8082	3/15/2018	1	PCB-1221		ug/L	U	0.047
GW DUPLICATE_20180315	CA04714	SW8082	3/15/2018	1	PCB-1232		ug/L	U	0.047
GW DUPLICATE_20180315	CA04714	SW8082	3/15/2018	1	PCB-1248		ug/L	U	0.047
GW DUPLICATE_20180315	CA04714	SW8082	3/15/2018	1	PCB-1016		ug/L	U	0.047
GW DUPLICATE_20180315	CA04714	SW8082	3/15/2018	1	PCB-1262		ug/L	U	0.047
GW DUPLICATE_20180315	CA04714	SW8082	3/15/2018	1	PCB-1242		ug/L	U	0.047
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Ethylbenzene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Styrene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	cis-1,3-Dichloropropene		ug/L	U	0.40
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	trans-1,3-Dichloropropene		ug/L	U	0.40
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	n-Propylbenzene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	n-Butylbenzene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	4-Chlorotoluene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,4-Dichlorobenzene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,2-Dibromoethane		ug/L	U	0.25
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Acrolein		ug/L	U	5.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,2-Dichloroethane		ug/L	U	0.60
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Acrylonitrile		ug/L	U	5.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	4-Methyl-2-pentanone		ug/L	U	2.5
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,3,5-Trimethylbenzene		ug/L	U	1.0



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
Sum <b>p</b> io riumo		Method	Date	Factor	7	11000		40.0	- 11_
GW DUPLICATE 20180315	CA04714	SW8260	3/15/2018	1	Bromobenzene		ug/L	U	1.0
GW DUPLICATE 20180315	CA04714		3/15/2018	1	Toluene		ug/L	U	1.0
GW DUPLICATE 20180315	CA04714	SW8260	3/15/2018	1	Chlorobenzene		ug/L	U	5.0
GW DUPLICATE 20180315	CA04714	SW8260	3/15/2018	1	Tetrahydrofuran (THF)		ug/L	U	5.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
GW DUPLICATE 20180315	CA04714	SW8260	3/15/2018	1	1,2,4-Trichlorobenzene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Dibromochloromethane		ug/L	U	1.0
GW DUPLICATE 20180315	CA04714	SW8260	3/15/2018	1	Tetrachloroethene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	sec-Butylbenzene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,3-Dichloropropane		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	cis-1,2-Dichloroethene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	trans-1,2-Dichloroethene		ug/L	U	5.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Methyl t-butyl ether (MTBE)	0.51	ug/L	J	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	m&p-Xylene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	2-Isopropyltoluene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,3-Dichlorobenzene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Carbon tetrachloride		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,1-Dichloropropene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	2-Hexanone		ug/L	U	2.5
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	2,2-Dichloropropane		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,1,1,2-Tetrachloroethane		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Acetone		ug/L	U	5.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Chloroform		ug/L	U	5.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Benzene		ug/L	U	0.70
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,1,1-Trichloroethane		ug/L	U	5.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Bromomethane		ug/L	U	5.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Chloromethane		ug/L	U	5.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Dibromomethane		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Bromochloromethane		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Chloroethane		ug/L	U	5.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Vinyl chloride		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Methylene chloride		ug/L	U	3.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Carbon Disulfide		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Bromoform		ug/L	U	5.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Bromodichloromethane		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,1-Dichloroethane		ug/L	U	5.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,1-Dichloroethene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Trichlorofluoromethane		ug/L	U	1.0



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
Gampio Ramo	Lub ID	Method	Date	Factor	7 inalyto	Rooun	0	Qualifor	
GW DUPLICATE 20180315	CA04714	SW8260	3/15/2018	1	Dichlorodifluoromethane		ug/L	U	1.0
GW DUPLICATE 20180315	CA04714		3/15/2018	1	Trichlorotrifluoroethane		ug/L	U	1.0
GW DUPLICATE 20180315	CA04714		3/15/2018	1	1,2-Dichloropropane		ug/L	U	1.0
GW DUPLICATE 20180315	CA04714		3/15/2018	1	Methyl ethyl ketone		ug/L	U	2.5
GW DUPLICATE 20180315	CA04714		3/15/2018	1	1,1,2-Trichloroethane		ug/L	U	1.0
GW DUPLICATE 20180315	CA04714	SW8260	3/15/2018	1	Trichloroethene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
GW DUPLICATE 20180315	CA04714	SW8260	3/15/2018	1	1,2,3-Trichlorobenzene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	Hexachlorobutadiene		ug/L	U	0.50
GW DUPLICATE 20180315	CA04714	SW8260	3/15/2018	1	Naphthalene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	o-Xylene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	2-Chlorotoluene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,2-Dichlorobenzene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,2,4-Trimethylbenzene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	1,2-Dibromo-3-chloropropane		ug/L	U	0.50
GW DUPLICATE 20180315	CA04714	SW8260	3/15/2018	1	1,2,3-Trichloropropane		ug/L	U	0.25
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	tert-Butylbenzene		ug/L	U	1.0
GW DUPLICATE 20180315	CA04714	SW8260	3/15/2018	1	Isopropylbenzene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8260	3/15/2018	1	p-Isopropyltoluene		ug/L	U	1.0
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	4-Nitroaniline		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	4-Nitrophenol		ug/L	U	0.94
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	4-Bromophenyl phenyl ether		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	2,4-Dimethylphenol		ug/L	U	0.94
GW DUPLICATE 20180315	CA04714	SW8270	3/15/2018	1	1,4-Dichlorobenzene		ug/L	U	0.94
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	4-Chloroaniline		ug/L	U	3.3
GW DUPLICATE 20180315	CA04714	SW8270	3/15/2018	1	Phenol		ug/L	U	0.94
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Pyridine		ug/L	U	9.4
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Bis(2-chloroethyl)ether		ug/L	U	0.94
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Bis(2-chloroethoxy)methane		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Di-n-octylphthalate		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Anthracene		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	1,2,4-Trichlorobenzene		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	2,4-Dichlorophenol		ug/L	U	0.94
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	2,4-Dinitrotoluene		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714		3/15/2018	1	1,2-Diphenylhydrazine		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Pyrene		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714		3/15/2018	1	Dimethylphthalate		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Dibenzofuran		ug/L	U	4.7



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
Sum <b>p</b> ro riumo		Method	Date	Factor	7	11000		40.0	112
GW DUPLICATE 20180315	CA04714	SW8270	3/15/2018	1	Fluoranthene		ug/L	U	4.7
GW DUPLICATE 20180315	CA04714	SW8270	3/15/2018	1	Bis(2-chloroisopropyl)ether		ug/L	U	4.7
GW DUPLICATE 20180315	CA04714	SW8270	3/15/2018	1	2,4-Dinitrophenol		ug/L	U	0.94
GW DUPLICATE 20180315	CA04714	SW8270	3/15/2018	1	4,6-Dinitro-2-methylphenol		ug/L	U	0.94
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	1,3-Dichlorobenzene		ug/L	UJ	0.94
GW DUPLICATE 20180315	CA04714	SW8270	3/15/2018	1	4-Chloro-3-methylphenol		ug/L	U	0.94
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	2,6-Dinitrotoluene		ug/L	U	4.7
GW DUPLICATE 20180315	CA04714	SW8270	3/15/2018	1	N-Nitrosodi-n-propylamine		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Aniline		ug/L	U	3.3
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Benzoic acid		ug/L	U	23
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	4-Chlorophenyl phenyl ether		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Hexachlorocyclopentadiene		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Isophorone		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Acenaphthene		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Diethyl phthalate		ug/L	U	4.7
GW DUPLICATE 20180315	CA04714	SW8270	3/15/2018	1	Di-n-butylphthalate		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Benzyl butyl phthalate		ug/L	U	4.7
GW DUPLICATE 20180315	CA04714	SW8270	3/15/2018	1	N-Nitrosodiphenylamine		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Fluorene		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Carbazole		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	2,4,6-Trichlorophenol		ug/L	U	0.94
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	2-Nitroaniline		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	2-Nitrophenol		ug/L	U	0.94
GW DUPLICATE 20180315	CA04714	SW8270	3/15/2018	1	Naphthalene		ug/L	UJ	4.7
GW DUPLICATE 20180315	CA04714	SW8270	3/15/2018	1	2-Methylnaphthalene		ug/L	U	4.7
GW DUPLICATE 20180315	CA04714	SW8270	3/15/2018	1	2-Chloronaphthalene		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	3,3'-Dichlorobenzidine		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Benzidine		ug/L	U	4.2
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	2-Methylphenol (o-cresol)		ug/L	U	0.94
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	1,2-Dichlorobenzene		ug/L	U	0.94
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	2-Chlorophenol		ug/L	U	0.94
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	2,4,5-Trichlorophenol	1	ug/L	U	0.94
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	Acetophenone		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	3-Nitroaniline		ug/L	U	4.7
GW DUPLICATE_20180315	CA04714	SW8270	3/15/2018	1	3&4-Methylphenol (m&p-cresol)		ug/L	U	0.94
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	Bis(2-ethylhexyl)phthalate		ug/L	U	0.94
GW DUPLICATE_20180315		SW8270C-SIM	3/15/2018	1	Hexachlorobenzene		ug/L	U	0.02
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	Benzo(ghi)perylene	1	ug/L	U	0.02



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
Campio riamo		Method	Date	Factor	7 <b></b>	The same		40.0	- 1 -
GW DUPLICATE 20180315	CA04714	SW8270C-SIM	3/15/2018	1	Indeno(1,2,3-cd)pyrene		ug/L	U	0.02
GW DUPLICATE 20180315	CA04714	SW8270C-SIM	3/15/2018	1	Benzo(b)fluoranthene	0.02	ug/L		0.02
GW DUPLICATE 20180315	CA04714	SW8270C-SIM	3/15/2018	1	Benzo(k)fluoranthene	0.02	ug/L		0.02
GW DUPLICATE 20180315	CA04714	SW8270C-SIM	3/15/2018	1	Acenaphthylene		ug/L	U	0.09
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	Benzo(a)pyrene	0.02	ug/L		0.02
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	Dibenz(a,h)anthracene		ug/L	U	0.02
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	Benz(a)anthracene		ug/L	U	0.02
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	N-Nitrosodimethylamine		ug/L	U	0.09
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	Hexachloroethane		ug/L	U	0.47
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	Pentachloronitrobenzene		ug/L	U	0.09
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	Phenanthrene		ug/L	U	0.09
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	Hexachlorobutadiene		ug/L	UJ	0.38
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	Pentachlorophenol		ug/L	U	0.09
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	1,2,4,5-Tetrachlorobenzene		ug/L	U	0.47
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	Nitrobenzene		ug/L	U	0.09
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Iron, (Dissolved)	8.99	mg/L	J	0.01
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Aluminum	0.354	mg/L		0.010
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Lead (Dissolved)	0.002	mg/L	J	0.002
GW DUPLICATE_20180315	CA04714	SW6020	3/15/2018	5	Antimony		mg/L	U	0.003
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Arsenic - LDL	0.004	mg/L	J	0.004
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Magnesium (Dissolved)	25.5	mg/L		0.01
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Barium	0.362	mg/L		0.010
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Beryllium		mg/L	U	0.001
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Manganese, (Dissolved)	1.29	mg/L		0.005
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Cadmium		mg/L	U	0.004
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	10	Calcium	158	mg/L		0.10
GW DUPLICATE_20180315	CA04714	SW7470	3/15/2018	1	Mercury (Dissolved)		mg/L	U	0.0002
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Chromium	0.004	mg/L		0.001
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Cobalt		mg/L	U	0.005
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Nickel, (Dissolved)		mg/L	U	0.004
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Copper	0.002	mg/L	J	0.005
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Iron	40.8	mg/L		0.01
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Potassium (Dissolved)	17.1	mg/L		0.1
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Lead	0.014	mg/L		0.002
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Magnesium	25.3	mg/L		0.010
GW DUPLICATE_20180315	CA04714	E200.8	3/15/2018	1	Selenium (Dissolved)-LDL		mg/L	U	0.003
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Manganese	1.34	mg/L		0.005
GW DUPLICATE_20180315	CA04714	SW7470	3/15/2018	1	Mercury		mg/L	U	0.0002



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
Campio mamo		Method	Date	Factor	7	THOUGH.		- Cuamio	
GW DUPLICATE 20180315	CA04714	SW6010	3/15/2018	1	Silver (Dissolved)		mg/L	U	0.005
GW DUPLICATE 20180315	CA04714		3/15/2018	1	Nickel	0.001	mg/L	J	0.004
GW DUPLICATE 20180315	CA04714	SW6010	3/15/2018	1	Potassium	17.5	mg/L		0.1
GW DUPLICATE 20180315	CA04714		3/15/2018	100	Sodium (Dissolved)	117	mg/L		11
GW DUPLICATE 20180315	CA04714		3/15/2018	5	Selenium		mg/L	U	0.010
GW DUPLICATE 20180315	CA04714	SW6010	3/15/2018	1	Silver		mg/L	U	0.005
GW DUPLICATE_20180315	CA04714	E200.8	3/15/2018	1	Thallium (Dissolved)		mg/L	U	0.0003
GW DUPLICATE 20180315	CA04714	SW6010	3/15/2018	100	Sodium	126	mg/L		10
GW DUPLICATE_20180315	CA04714	SW6020	3/15/2018	5	Thallium		mg/L	U	0.0005
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Vanadium, (Dissolved)		mg/L	U	0.011
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Vanadium		mg/L	U	0.010
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Zinc	0.009	mg/L	J	0.010
GW DUPLICATE_20180315	CA04714	SW6010	3/15/2018	1	Zinc, (Dissolved)		mg/L	UJ	0.011
GW DUPLICATE_20180315	CA04714	SW8270C-SIM	3/15/2018	1	Chrysene		ug/L	UJ	0.02
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Ethylbenzene		ug/L	U	1.0
CA04715-TB 20180315	CA04715	SW8260	3/15/2018	1	Styrene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	cis-1,3-Dichloropropene		ug/L	U	0.40
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	trans-1,3-Dichloropropene		ug/L	U	0.40
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	n-Propylbenzene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	n-Butylbenzene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	4-Chlorotoluene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,4-Dichlorobenzene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,2-Dibromoethane		ug/L	U	0.25
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Acrolein		ug/L	U	5.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,2-Dichloroethane		ug/L	U	0.60
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Acrylonitrile		ug/L	U	5.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	4-Methyl-2-pentanone		ug/L	U	2.5
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,3,5-Trimethylbenzene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Bromobenzene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Toluene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Chlorobenzene		ug/L	U	5.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Tetrahydrofuran (THF)		ug/L	U	5.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	trans-1,4-dichloro-2-butene		ug/L	U	2.5
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,2,4-Trichlorobenzene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Dibromochloromethane		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Tetrachloroethene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	sec-Butylbenzene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,3-Dichloropropane		ug/L	U	1.0



Sample Name	Lab ID	Analytical	Analysis	Dilution	Analyte	Result	Unit	Qualifier	RL
		Method	Date	Factor	1,35				
CA04715-TB 20180315	CA04715	SW8260	3/15/2018	1	cis-1,2-Dichloroethene		ug/L	U	1.0
CA04715-TB 20180315	CA04715	SW8260	3/15/2018	1	trans-1,2-Dichloroethene		ug/L	U	5.0
CA04715-TB 20180315	CA04715	SW8260	3/15/2018	1	Methyl t-butyl ether (MTBE)		ug/L	U	1.0
CA04715-TB 20180315	CA04715	SW8260	3/15/2018	1	m&p-Xylene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	2-Isopropyltoluene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,3-Dichlorobenzene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Carbon tetrachloride		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,1-Dichloropropene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	2-Hexanone		ug/L	U	2.5
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	2,2-Dichloropropane		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,1,1,2-Tetrachloroethane		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Acetone		ug/L	U	5.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Chloroform		ug/L	U	5.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Benzene		ug/L	U	0.70
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,1,1-Trichloroethane		ug/L	U	5.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Bromomethane		ug/L	U	5.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Chloromethane		ug/L	U	5.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Dibromomethane		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Bromochloromethane		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Chloroethane		ug/L	U	5.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Vinyl chloride		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Methylene chloride		ug/L	U	3.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Carbon Disulfide		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Bromoform		ug/L	U	5.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Bromodichloromethane		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,1-Dichloroethane		ug/L	U	5.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,1-Dichloroethene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Trichlorofluoromethane		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Dichlorodifluoromethane		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Trichlorotrifluoroethane		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,2-Dichloropropane		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Methyl ethyl ketone		ug/L	U	2.5
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,1,2-Trichloroethane		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Trichloroethene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,1,2,2-Tetrachloroethane		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,2,3-Trichlorobenzene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Hexachlorobutadiene		ug/L	U	0.50
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Naphthalene		ug/L	U	1.0



Sample Name	Lab ID	Analytical Method	Analysis Date	Dilution Factor	Analyte	Result	Unit	Qualifier	RL
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	o-Xylene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	2-Chlorotoluene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,2-Dichlorobenzene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,2,4-Trimethylbenzene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,2-Dibromo-3-chloropropane		ug/L	U	0.50
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	1,2,3-Trichloropropane		ug/L	U	0.25
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	tert-Butylbenzene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	Isopropylbenzene		ug/L	U	1.0
CA04715-TB_20180315	CA04715	SW8260	3/15/2018	1	p-Isopropyltoluene		ug/L	U	1.0

### 19DATA USABILITY SUMMARY REPORT (DUSR) VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GCA04700

**Client:** Environmental Business Consultants

**Date:** 05/23/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for eight (8) soil vapor samples analyzed for Volatiles by TO-15 in accordance to NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 03/15/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 03/19/2018 for analysis.
- 3. The USEPA Region-II SOP # HW-31, Revision 4, October 2006, Validating Air Samples Volatile Organic Analysis of Ambient Air in Canister by Method TO-15 was used in evaluating the Volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes.



#### **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
SG8	CA04700	03/15/18	VOA	Air	
SG3	CA04701	03/15/18	VOA	Air	
SG7	CA04702	03/15/18	VOA	Air	
SG5	CA04703	03/15/18	VOA	Air	
SG1	CA04704	03/15/18	VOA	Air	
SG4	CA04705	03/15/18	VOA	Air	
SG2	CA04706	03/15/18	VOA	Air	
SG6	CA04707	03/15/18	VOA	Air	

#### **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

### **Holding Times:**

1. All air samples were analyzed within the method holding time for air samples. No qualifications were required.

#### **GC/MS Tuning:**

1. All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

### **Initial Calibration (IC):**

1. Initial calibration (IC) curve analyzed on 03/20/2018 (Chem20) exhibited acceptable %RSDs ( $\leq 30.0\%$ ) for all compounds and average RRF values ( $\geq 0.050$ ) for all compounds with the exception of some compounds listed in section 15.5, Page 13 in SOP # HW-31, were  $\geq 0.01$ . No qualifications were required.



2. Initial calibration (IC) curve analyzed on 02/27/2018 (Chem24) exhibited acceptable %RSDs ( $\leq 30.0\%$ ) for all compounds and average RRF values ( $\geq 0.050$ ) for all compounds with the exception of some compounds listed in section 15.5, Page 13 in SOP # HW-31, were  $\geq 0.01$ . No qualifications were required.

#### **Continuing Calibration Verification (CCV):**

- 1. CCV analyzed on 03/21/2018 @ 10:15 (CHEM20) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.
- 2. CCV analyzed on 03/21/2018 @ 10:50 (CHEM20) exhibited acceptable %Ds (≤30.0%) for all compounds with the following exception(s):

Compound	% <b>D</b>
Trichlorotrifluoroethane	32.7

Results for trichlorotrifluoroethane were not reported from this run. No qualifications were required.

- 3. CCV analyzed on 03/21/2018 @ 21:13 (CHEM20) exhibited acceptable %Ds ( $\leq$ 30.0%) for all compounds. No qualifications were required.
- 4. CCV analyzed on 03/21/2018 @ 21:48 (CHEM20) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.
- 5. CCV analyzed on 03/22/2018 @ 19:13 (CHEM24) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.
- 6. CCV analyzed on 03/22/2018 @ 19:47 (CHEM24) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.
- 7. CCV analyzed on 03/23/2018 @ 07:16 (CHEM24) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.
- 8. CCV analyzed on 03/23/2018 @ 07:50 (CHEM24) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.

#### **Surrogates:**

1. 4-Bromofluorobenzene (BFB) surrogate spike recovered within the laboratory control limits. No qualifications were required.



#### **Internal Standard (IS) Area Performance:**

1. All samples exhibited acceptable area count for all three internal standards within the QC limits. No qualifications were required.

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB, Equipment Blank (EB) and Canister Certification:

- 1. Method Blank (BLANK CA05976) analyzed on 3/21/18 was free of contamination. No qualifications were required.
- 2. Method Blank (BLANK CA05977) analyzed on 3/20/18 was free of contamination. No qualifications were required.
- 3. Method Blank (BLANK CA07172) analyzed on 3/22/18 was free of contamination. No qualifications were required.
- 4. Canister Certification Check: No qualifications were required.

Laboratory Sample ID	Date Analyzed	Compound	Result (ppbv)	Certification Contamination Level (5x)* (ppbv)	Sample Affected	Canister ID #	Action
BLK 1207	02/24/18	All non-detect	-	-	-	-	None
BLK 1209	02/27/18	All non-detect	-	-	-	-	None

^{*=} If sample concentration less than the certification contamination level (CCL), then sample result qualified as non-detect (U). If sample concentration greater than the certification contamination level (CCL) or sample result was not detected, no qualifications/action required.

#### Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

1. Laboratory Control Sample (LCS CA05976) was analyzed on 3/21/2018. All %RECs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample Affected	Action
Acrylonitrile	68	SG8 DL, SG7 DL, SG3 DL, SG5 DL, SG1 DL,	None
		SG4 DL, SG2 DL, SG6 DL A	



- 2. Laboratory Control Sample (LCS CA05977) was analyzed on 03/20/2018. All %RECs were within the laboratory control limits. No qualifications are required.
- 3. Laboratory Control Sample (LCS CA07172) was analyzed on 03/22/2018. All %RECs were within the laboratory control limits. No qualifications are required.

#### **Field Duplicate:**

1. A field duplicate pair was not submitted with this SDG.

#### **Target Compound Identification:**

- 1. All Relative Retention Times (RRTs) of the reported compounds were within  $\pm$  0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

### **Compound Quantitation and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range with the exception of Ethanol in Samples SG1 (CA04704), SG4 (CA04705), SG5 (CA04703), and SG6 (CA04707). Result for ethanol in samples SG1, SG4, SG5, and SG6 were qualified as estimated (J).
- 2. Manual Calculation:

Concentration (
$$\mu g/m^3$$
) = Result (ppbv) x Molecular weight x DF 24.46

SG8 (CA04700)

Toluene Result (ppbv) = 1.14

Molecular Weight @ 25°C=92.14

DF = 1

Concentration ( $\mu g/m^3$ ) =  $1.14 \times 92.14 \times 1$  =  $4.29 \mu g/m^3$ 24.46



	Laboratory	Validation	
Compound	$(\mu g/m^3)$	$(\mu g/m^3)$	%D
Toluene	4.29	4.29	0.0

### **Comments:**

- 1. Volatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GCA04700.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GCA04700.





		Analytical		Dilution						
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG1_20180315	CA04704	TO15	3/19/2018	1	Ethylbenzene	2.87	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Styrene	2.47	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Benzyl chloride		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	cis-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	trans-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	n-Butylbenzene		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,4-Dichlorobenzene		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,2-Dibromoethane(EDB)		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,3-Butadiene		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,2-Dichloroethane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Acrylonitrile		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	4-Methyl-2-pentanone(MIBK)	1.52	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,3,5-Trimethylbenzene	1.16	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Toluene	21.1	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Chlorobenzene		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Tetrahydrofuran	23.5	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Hexane	4.44	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Cyclohexane	1.63	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Propylene	20.5	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,2,4-Trichlorobenzene	2.08	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,4-Dioxane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Dibromochloromethane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Tetrachloroethene	1.17	ug/m3		0.25	0.25
SG1_20180315	CA04704	TO15	3/19/2018	1	sec-Butylbenzene		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Ethyl acetate	2.32	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Heptane	3.81	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Cis-1,2-Dichloroethene		ug/m3	U	0.20	0.20
SG1_20180315	CA04704	TO15	3/19/2018	1	Trans-1,2-Dichloroethene		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Methyl tert-butyl ether(MTBE)		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	m,p-Xylene	11.0	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,3-Dichlorobenzene	2.45	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Carbon Tetrachloride	0.53	ug/m3		0.20	0.20
SG1_20180315	CA04704	TO15	3/19/2018	1	2-Hexanone(MBK)		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	4-Ethyltoluene		ug/m3	U	1.00	1.00



	1	Analytical		Dilution	1					
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG1_20180315	CA04704	TO15	3/19/2018	1	1,1,1,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Ethanol	115	ug/m3	J	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Isopropylalcohol	25.3	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Chloroform		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Benzene	2.01	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,1,1-Trichloroethane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Bromomethane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Chloromethane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Chloroethane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Vinyl Chloride		ug/m3	U	0.20	0.20
SG1_20180315	CA04704	TO15	3/19/2018	1	Methylene Chloride		ug/m3	U	3.00	3.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Carbon Disulfide	1.15	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Bromoform		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Bromodichloromethane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,1-Dichloroethane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,1-Dichloroethene		ug/m3	U	0.20	0.20
SG1_20180315	CA04704	TO15	3/19/2018	1	Trichlorofluoromethane	1.43	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Dichlorodifluoromethane	2.97	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Trichlorotrifluoroethane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,2-Dichlorotetrafluoroethane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,2-dichloropropane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Methyl Ethyl Ketone	33.0	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,1,2-Trichloroethane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Trichloroethene		ug/m3	U	0.20	0.20
SG1_20180315	CA04704	TO15	3/19/2018	1	1,1,2,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Hexachlorobutadiene		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	o-Xylene	4.95	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,2-Dichlorobenzene		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	1,2,4-Trimethylbenzene	3.28	ug/m3		1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	Isopropylbenzene		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	1	4-Isopropyltoluene		ug/m3	U	1.00	1.00
SG1_20180315	CA04704	TO15	3/19/2018	15	Acetone	710	ug/m3		15.0	15.0
SG2_20180315	CA04706	TO15	3/19/2018	1	Ethylbenzene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Styrene		ug/m3	U	1.00	1.00



		Analytical		Dilution						
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG2_20180315	CA04706	TO15	3/19/2018	1	Benzyl chloride		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	cis-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	trans-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	n-Butylbenzene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,4-Dichlorobenzene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,2-Dibromoethane(EDB)		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,3-Butadiene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,2-Dichloroethane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Acrylonitrile		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	4-Methyl-2-pentanone(MIBK)		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,3,5-Trimethylbenzene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Toluene	11.0	ug/m3		1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Chlorobenzene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Tetrahydrofuran	1.40	ug/m3		1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Hexane	11.8	ug/m3		1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Cyclohexane	2.43	ug/m3		1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Propylene	28.9	ug/m3		1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,2,4-Trichlorobenzene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,4-Dioxane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Dibromochloromethane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Tetrachloroethene	1.71	ug/m3		0.25	0.25
SG2_20180315	CA04706	TO15	3/19/2018	1	sec-Butylbenzene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Ethyl acetate	2.51	ug/m3		1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Heptane	1.65	ug/m3		1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Cis-1,2-Dichloroethene		ug/m3	U	0.20	0.20
SG2_20180315	CA04706	TO15	3/19/2018	1	Trans-1,2-Dichloroethene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Methyl tert-butyl ether(MTBE)		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	m,p-Xylene	3.92	ug/m3		1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,3-Dichlorobenzene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Carbon Tetrachloride	0.43	ug/m3		0.20	0.20
SG2_20180315	CA04706	TO15	3/19/2018	1	2-Hexanone(MBK)		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	4-Ethyltoluene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,1,1,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Ethanol	63.1	ug/m3		1.00	1.00



		Analytical		Dilution						
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG2 20180315	CA04706	TO15	3/19/2018	1	Isopropylalcohol	24.1	ug/m3		1.00	1.00
SG2 20180315	CA04706	TO15	3/19/2018	1	Chloroform		ug/m3	U	1.00	1.00
SG2 20180315	CA04706	TO15	3/19/2018	1	Benzene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,1,1-Trichloroethane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Bromomethane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Chloromethane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Chloroethane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Vinyl Chloride		ug/m3	U	0.20	0.20
SG2_20180315	CA04706	TO15	3/19/2018	1	Methylene Chloride		ug/m3	U	3.00	3.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Carbon Disulfide		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Bromoform		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Bromodichloromethane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,1-Dichloroethane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,1-Dichloroethene		ug/m3	U	0.20	0.20
SG2_20180315	CA04706	TO15	3/19/2018	1	Trichlorofluoromethane	16.3	ug/m3		1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Dichlorodifluoromethane	2.33	ug/m3		1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Trichlorotrifluoroethane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,2-Dichlorotetrafluoroethane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,2-dichloropropane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Methyl Ethyl Ketone	16.8	ug/m3		1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,1,2-Trichloroethane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Trichloroethene		ug/m3	U	0.20	0.20
SG2_20180315	CA04706	TO15	3/19/2018	1	1,1,2,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Hexachlorobutadiene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	o-Xylene	1.07	ug/m3		1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,2-Dichlorobenzene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	1,2,4-Trimethylbenzene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	Isopropylbenzene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	1	4-Isopropyltoluene		ug/m3	U	1.00	1.00
SG2_20180315	CA04706	TO15	3/19/2018	15	Acetone	620	ug/m3		15.0	15.0
SG3_20180315	CA04701	TO15	3/19/2018	1	Ethylbenzene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Styrene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Benzyl chloride		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	cis-1,3-Dichloropropene		ug/m3	U	1.00	1.00



		Analytical		Dilution	l					
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG3_20180315	CA04701	TO15	3/19/2018	1	trans-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	n-Butylbenzene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,4-Dichlorobenzene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,2-Dibromoethane(EDB)		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,3-Butadiene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,2-Dichloroethane		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Acrylonitrile		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	4-Methyl-2-pentanone(MIBK)		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,3,5-Trimethylbenzene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Toluene	5.54	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Chlorobenzene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Tetrahydrofuran		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Hexane	3.01	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Cyclohexane	1.71	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Propylene	15.0	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,2,4-Trichlorobenzene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,4-Dioxane		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Dibromochloromethane		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Tetrachloroethene		ug/m3	U	0.25	0.25
SG3_20180315	CA04701	TO15	3/19/2018	1	sec-Butylbenzene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Ethyl acetate	2.00	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Heptane	1.54	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Cis-1,2-Dichloroethene		ug/m3	U	0.20	0.20
SG3_20180315	CA04701	TO15	3/19/2018	1	Trans-1,2-Dichloroethene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Methyl tert-butyl ether(MTBE)		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	m,p-Xylene	3.39	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,3-Dichlorobenzene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Carbon Tetrachloride	0.62	ug/m3		0.20	0.20
SG3_20180315	CA04701	TO15	3/19/2018	1	2-Hexanone(MBK)		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	4-Ethyltoluene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,1,1,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Ethanol	58.4	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Isopropylalcohol	26.5	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Chloroform		ug/m3	U	1.00	1.00



		Analytical		Dilution						
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG3 20180315	CA04701	TO15	3/19/2018	1	Benzene	1.10	ug/m3		1.00	1.00
SG3 20180315	CA04701	TO15	3/19/2018	1	1,1,1-Trichloroethane		ug/m3	U	1.00	1.00
SG3 20180315	CA04701	TO15	3/19/2018	1	Bromomethane		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Chloromethane	1.26	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Chloroethane		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Vinyl Chloride		ug/m3	U	0.20	0.20
SG3_20180315	CA04701	TO15	3/19/2018	1	Methylene Chloride		ug/m3	U	3.00	3.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Carbon Disulfide	2.07	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Bromoform		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Bromodichloromethane		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,1-Dichloroethane		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,1-Dichloroethene		ug/m3	U	0.20	0.20
SG3_20180315	CA04701	TO15	3/19/2018	1	Trichlorofluoromethane	1.33	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Dichlorodifluoromethane	2.76	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Trichlorotrifluoroethane		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,2-Dichlorotetrafluoroethane		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,2-dichloropropane		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Methyl Ethyl Ketone	14.1	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,1,2-Trichloroethane		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Trichloroethene		ug/m3	U	0.20	0.20
SG3_20180315	CA04701	TO15	3/19/2018	1	1,1,2,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Hexachlorobutadiene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	o-Xylene	1.09	ug/m3		1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,2-Dichlorobenzene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	1,2,4-Trimethylbenzene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	Isopropylbenzene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	1	4-Isopropyltoluene		ug/m3	U	1.00	1.00
SG3_20180315	CA04701	TO15	3/19/2018	15	Acetone	636	ug/m3		15.0	15.0
SG4_20180315	CA04705	TO15	3/19/2018	1	Ethylbenzene	1.30	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Styrene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Benzyl chloride		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	cis-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	trans-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	n-Butylbenzene		ug/m3	U	1.00	1.00



		Analytical		Dilution						
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG4_20180315	CA04705	TO15	3/19/2018	1	1,4-Dichlorobenzene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,2-Dibromoethane(EDB)		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,3-Butadiene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,2-Dichloroethane		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Acrylonitrile		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	4-Methyl-2-pentanone(MIBK)		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,3,5-Trimethylbenzene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Toluene	10.5	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Chlorobenzene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Tetrahydrofuran		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Hexane	100	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,2,4-Trichlorobenzene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,4-Dioxane		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Dibromochloromethane		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Tetrachloroethene	0.26	ug/m3		0.25	0.25
SG4_20180315	CA04705	TO15	3/19/2018	1	sec-Butylbenzene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Ethyl acetate		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Heptane	25.7	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Cis-1,2-Dichloroethene		ug/m3	U	0.20	0.20
SG4_20180315	CA04705	TO15	3/19/2018	1	Trans-1,2-Dichloroethene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	m,p-Xylene	3.64	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,3-Dichlorobenzene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Carbon Tetrachloride	0.48	ug/m3		0.20	0.20
SG4_20180315	CA04705	TO15	3/19/2018	1	2-Hexanone(MBK)		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	4-Ethyltoluene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,1,1,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Ethanol	1080	ug/m3	J	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Isopropylalcohol	7.81	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Chloroform		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Benzene	27.9	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,1,1-Trichloroethane		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Bromomethane		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Chloromethane	1.42	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Chloroethane		ug/m3	U	1.00	1.00



		Analytical		Dilution	l					
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG4_20180315	CA04705	TO15	3/19/2018	1	Vinyl Chloride		ug/m3	U	0.20	0.20
SG4_20180315	CA04705	TO15	3/19/2018	1	Methylene Chloride		ug/m3	U	3.00	3.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Carbon Disulfide	65.0	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Bromoform		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Bromodichloromethane		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,1-Dichloroethane		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,1-Dichloroethene		ug/m3	U	0.20	0.20
SG4_20180315	CA04705	TO15	3/19/2018	1	Trichlorofluoromethane	1.45	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Dichlorodifluoromethane	2.87	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Trichlorotrifluoroethane	1.17	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,2-Dichlorotetrafluoroethane		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,2-dichloropropane		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Methyl Ethyl Ketone	15.3	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,1,2-Trichloroethane		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Trichloroethene		ug/m3	U	0.20	0.20
SG4_20180315	CA04705	TO15	3/19/2018	1	1,1,2,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Hexachlorobutadiene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	o-Xylene	1.14	ug/m3		1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,2-Dichlorobenzene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	1,2,4-Trimethylbenzene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	Isopropylbenzene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	1	4-Isopropyltoluene		ug/m3	U	1.00	1.00
SG4_20180315	CA04705	TO15	3/19/2018	15	Cyclohexane	413	ug/m3		15.0	15.0
SG4_20180315	CA04705	TO15	3/19/2018	15	Propylene	73.8	ug/m3		15.0	15.0
SG4_20180315	CA04705	TO15	3/19/2018	15	Methyl tert-butyl ether(MTBE)	262	ug/m3		15.0	15.0
SG4_20180315	CA04705	TO15	3/19/2018	15	Acetone	539	ug/m3		15.0	15.0
SG5_20180315	CA04703	TO15	3/19/2018	1	Ethylbenzene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Styrene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Benzyl chloride		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	cis-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	trans-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	n-Butylbenzene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,4-Dichlorobenzene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,2-Dibromoethane(EDB)		ug/m3	U	1.00	1.00



		Analytical		Dilution						
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG5_20180315	CA04703	TO15	3/19/2018	1	1,3-Butadiene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,2-Dichloroethane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Acrylonitrile		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	4-Methyl-2-pentanone(MIBK)		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,3,5-Trimethylbenzene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Toluene	6.52	ug/m3		1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Chlorobenzene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Tetrahydrofuran	2.73	ug/m3		1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Hexane	23.8	ug/m3		1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Cyclohexane	15.8	ug/m3		1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,2,4-Trichlorobenzene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,4-Dioxane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Dibromochloromethane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Tetrachloroethene		ug/m3	U	0.25	0.25
SG5_20180315	CA04703	TO15	3/19/2018	1	sec-Butylbenzene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Ethyl acetate	2.82	ug/m3		1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Heptane	14.0	ug/m3		1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Cis-1,2-Dichloroethene	0.30	ug/m3		0.20	0.20
SG5_20180315	CA04703	TO15	3/19/2018	1	Trans-1,2-Dichloroethene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Methyl tert-butyl ether(MTBE)		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	m,p-Xylene	3.49	ug/m3		1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,3-Dichlorobenzene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Carbon Tetrachloride	0.30	ug/m3		0.20	0.20
SG5_20180315	CA04703	TO15	3/19/2018	1	2-Hexanone(MBK)		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	4-Ethyltoluene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,1,1,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Ethanol	101	ug/m3	J	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Isopropylalcohol	35.1	ug/m3		1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Chloroform		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Benzene	7.18	ug/m3		1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,1,1-Trichloroethane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Bromomethane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Chloromethane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Chloroethane		ug/m3	U	1.00	1.00



		Analytical		Dilution						
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG5 20180315	CA04703	TO15	3/19/2018	1	Vinyl Chloride		ug/m3	U	0.20	0.20
SG5 20180315	CA04703	TO15	3/19/2018	1	Methylene Chloride		ug/m3	U	3.00	3.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Carbon Disulfide	89.9	ug/m3		1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Bromoform		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Bromodichloromethane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,1-Dichloroethane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,1-Dichloroethene		ug/m3	U	0.20	0.20
SG5_20180315	CA04703	TO15	3/19/2018	1	Trichlorofluoromethane	1.16	ug/m3		1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Dichlorodifluoromethane	2.43	ug/m3		1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Trichlorotrifluoroethane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,2-Dichlorotetrafluoroethane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,2-dichloropropane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,1,2-Trichloroethane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Trichloroethene		ug/m3	U	0.20	0.20
SG5_20180315	CA04703	TO15	3/19/2018	1	1,1,2,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Hexachlorobutadiene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	o-Xylene	1.17	ug/m3		1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,2-Dichlorobenzene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	1,2,4-Trimethylbenzene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	Isopropylbenzene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	1	4-Isopropyltoluene		ug/m3	U	1.00	1.00
SG5_20180315	CA04703	TO15	3/19/2018	75	Propylene	157	ug/m3		75.0	75.0
SG5_20180315	CA04703	TO15	3/19/2018	75	Acetone	7190	ug/m3		75.0	75.0
SG5_20180315	CA04703	TO15	3/19/2018	75	Methyl Ethyl Ketone	197	ug/m3		74.9	74.9
SG6_20180315	CA04707	TO15	3/19/2018	1	Ethylbenzene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Styrene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Benzyl chloride		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	cis-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	trans-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	n-Butylbenzene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,4-Dichlorobenzene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,2-Dibromoethane(EDB)		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,3-Butadiene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,2-Dichloroethane		ug/m3	U	1.00	1.00



		Analytical		Dilution						
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG6 20180315	CA04707	TO15	3/19/2018	1	Acrylonitrile		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	4-Methyl-2-pentanone(MIBK)		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,3,5-Trimethylbenzene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Toluene	4.44	ug/m3		1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Chlorobenzene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Tetrahydrofuran	1.43	ug/m3		1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Hexane	1.54	ug/m3		1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Cyclohexane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Propylene	14.6	ug/m3		1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,2,4-Trichlorobenzene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,4-Dioxane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Dibromochloromethane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Tetrachloroethene	0.95	ug/m3		0.25	0.25
SG6_20180315	CA04707	TO15	3/19/2018	1	sec-Butylbenzene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Ethyl acetate		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Heptane	2.12	ug/m3		1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Cis-1,2-Dichloroethene		ug/m3	U	0.20	0.20
SG6_20180315	CA04707	TO15	3/19/2018	1	Trans-1,2-Dichloroethene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Methyl tert-butyl ether(MTBE)		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	m,p-Xylene	3.14	ug/m3		1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,3-Dichlorobenzene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Carbon Tetrachloride	0.41	ug/m3		0.20	0.20
SG6_20180315	CA04707	TO15	3/19/2018	1	2-Hexanone(MBK)	4.18	ug/m3		1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	4-Ethyltoluene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,1,1,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Ethanol	134	ug/m3	J	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Isopropylalcohol	51.8	ug/m3		1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Chloroform		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Benzene	1.23	ug/m3		1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,1,1-Trichloroethane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Bromomethane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Chloromethane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Chloroethane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Vinyl Chloride		ug/m3	U	0.20	0.20



		Analytical		Dilution						
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG6_20180315	CA04707	TO15	3/19/2018	1	Methylene Chloride		ug/m3	U	3.00	3.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Carbon Disulfide	9.9	ug/m3		1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Bromoform		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Bromodichloromethane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,1-Dichloroethane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,1-Dichloroethene		ug/m3	U	0.20	0.20
SG6_20180315	CA04707	TO15	3/19/2018	1	Trichlorofluoromethane	1.13	ug/m3		1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Dichlorodifluoromethane	2.62	ug/m3		1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Trichlorotrifluoroethane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,2-Dichlorotetrafluoroethane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,2-dichloropropane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,1,2-Trichloroethane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Trichloroethene		ug/m3	U	0.20	0.20
SG6_20180315	CA04707	TO15	3/19/2018	1	1,1,2,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Hexachlorobutadiene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	o-Xylene	1.74	ug/m3		1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,2-Dichlorobenzene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	1,2,4-Trimethylbenzene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	Isopropylbenzene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	1	4-Isopropyltoluene		ug/m3	U	1.00	1.00
SG6_20180315	CA04707	TO15	3/19/2018	15	Methyl Ethyl Ketone	162	ug/m3		15.0	15.0
SG6_20180315	CA04707	TO15	3/19/2018	75	Acetone	3580	ug/m3		75.0	75.0
SG7_20180315	CA04702	TO15	3/19/2018	1	Ethylbenzene	8.29	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Styrene	1.75	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Benzyl chloride		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	cis-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	trans-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	n-Butylbenzene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,4-Dichlorobenzene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,2-Dibromoethane(EDB)		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,3-Butadiene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,2-Dichloroethane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Acrylonitrile		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	4-Methyl-2-pentanone(MIBK)		ug/m3	U	1.00	1.00



		Analytical		Dilution						
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG7 20180315	CA04702	TO15	3/19/2018	1	1,3,5-Trimethylbenzene	1.57	ug/m3		1.00	1.00
SG7 20180315	CA04702	TO15	3/19/2018	1	Toluene	17.3	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Chlorobenzene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Tetrahydrofuran	24.3	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Propylene	45.6	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,2,4-Trichlorobenzene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,4-Dioxane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Dibromochloromethane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Tetrachloroethene	0.78	ug/m3		0.25	0.25
SG7_20180315	CA04702	TO15	3/19/2018	1	sec-Butylbenzene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Ethyl acetate		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Cis-1,2-Dichloroethene		ug/m3	U	0.20	0.20
SG7_20180315	CA04702	TO15	3/19/2018	1	Trans-1,2-Dichloroethene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Methyl tert-butyl ether(MTBE)		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	m,p-Xylene	16.4	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,3-Dichlorobenzene	1.13	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Carbon Tetrachloride	0.31	ug/m3		0.20	0.20
SG7_20180315	CA04702	TO15	3/19/2018	1	2-Hexanone(MBK)		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	4-Ethyltoluene	1.43	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,1,1,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Ethanol	36.3	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Isopropylalcohol	3.78	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Chloroform	1.72	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Benzene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,1,1-Trichloroethane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Bromomethane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Chloromethane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Chloroethane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Vinyl Chloride		ug/m3	U	0.20	0.20
SG7_20180315	CA04702	TO15	3/19/2018	1	Methylene Chloride		ug/m3	U	3.00	3.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Carbon Disulfide	17.5	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Bromoform		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Bromodichloromethane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,1-Dichloroethane		ug/m3	U	1.00	1.00



		Analytical		Dilution						
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG7_20180315	CA04702	TO15	3/19/2018	1	1,1-Dichloroethene		ug/m3	U	0.20	0.20
SG7_20180315	CA04702	TO15	3/19/2018	1	Trichlorofluoromethane	1.62	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Dichlorodifluoromethane	2.55	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Trichlorotrifluoroethane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,2-Dichlorotetrafluoroethane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,2-dichloropropane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Methyl Ethyl Ketone	14.7	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,1,2-Trichloroethane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Trichloroethene	0.38	ug/m3		0.20	0.20
SG7_20180315	CA04702	TO15	3/19/2018	1	1,1,2,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Hexachlorobutadiene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	o-Xylene	8.03	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,2-Dichlorobenzene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	1,2,4-Trimethylbenzene	3.17	ug/m3		1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	Isopropylbenzene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	1	4-Isopropyltoluene		ug/m3	U	1.00	1.00
SG7_20180315	CA04702	TO15	3/19/2018	5	Hexane	340	ug/m3		5.00	5.00
SG7_20180315	CA04702	TO15	3/19/2018	5	Cyclohexane	389	ug/m3		4.99	4.99
SG7_20180315	CA04702	TO15	3/19/2018	5	Heptane	496	ug/m3		5.00	5.00
SG7_20180315	CA04702	TO15	3/19/2018	5	Acetone	242	ug/m3		5.01	5.01
SG8_20180315	CA04700	TO15	3/19/2018	1	Ethylbenzene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Styrene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Benzyl chloride		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	cis-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	trans-1,3-Dichloropropene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	n-Butylbenzene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,4-Dichlorobenzene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,2-Dibromoethane(EDB)		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,3-Butadiene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,2-Dichloroethane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Acrylonitrile		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	4-Methyl-2-pentanone(MIBK)		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,3,5-Trimethylbenzene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Toluene	4.29	ug/m3		1.00	1.00



		Analytical		Dilution						
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG8 20180315	CA04700	TO15	3/19/2018	1	Chlorobenzene		ug/m3	U	1.00	1.00
SG8 20180315	CA04700	TO15	3/19/2018	1	Tetrahydrofuran	41.6	ug/m3		1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Hexane	1.18	ug/m3		1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Cyclohexane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Propylene	3.32	ug/m3		1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,2,4-Trichlorobenzene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,4-Dioxane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Dibromochloromethane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Tetrachloroethene	0.48	ug/m3		0.25	0.25
SG8_20180315	CA04700	TO15	3/19/2018	1	sec-Butylbenzene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Ethyl acetate	3.53	ug/m3		1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Heptane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Cis-1,2-Dichloroethene		ug/m3	U	0.20	0.20
SG8_20180315	CA04700	TO15	3/19/2018	1	Trans-1,2-Dichloroethene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Methyl tert-butyl ether(MTBE)		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	m,p-Xylene	3.20	ug/m3		1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,3-Dichlorobenzene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Carbon Tetrachloride	0.41	ug/m3		0.20	0.20
SG8_20180315	CA04700	TO15	3/19/2018	1	2-Hexanone(MBK)		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	4-Ethyltoluene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,1,1,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Ethanol	19.2	ug/m3		1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Isopropylalcohol	44.7	ug/m3		1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Chloroform		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Benzene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,1,1-Trichloroethane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Bromomethane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Chloromethane	1.20	ug/m3		1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Chloroethane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Vinyl Chloride		ug/m3	U	0.20	0.20
SG8_20180315	CA04700	TO15	3/19/2018	1	Methylene Chloride		ug/m3	U	3.00	3.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Carbon Disulfide		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Bromoform		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Bromodichloromethane		ug/m3	U	1.00	1.00



		Analytical		Dilution						
Sample Name	Lab ID	Method	Sample Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
SG8_20180315	CA04700	TO15	3/19/2018	1	1,1-Dichloroethane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,1-Dichloroethene		ug/m3	U	0.20	0.20
SG8_20180315	CA04700	TO15	3/19/2018	1	Trichlorofluoromethane	1.15	ug/m3		1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Dichlorodifluoromethane	2.43	ug/m3		1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Trichlorotrifluoroethane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,2-Dichlorotetrafluoroethane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,2-dichloropropane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Methyl Ethyl Ketone	45.7	ug/m3		1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,1,2-Trichloroethane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Trichloroethene		ug/m3	U	0.20	0.20
SG8_20180315	CA04700	TO15	3/19/2018	1	1,1,2,2-Tetrachloroethane		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Hexachlorobutadiene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	o-Xylene	1.41	ug/m3		1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,2-Dichlorobenzene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	1,2,4-Trimethylbenzene	3.33	ug/m3		1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	Isopropylbenzene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	1	4-Isopropyltoluene		ug/m3	U	1.00	1.00
SG8_20180315	CA04700	TO15	3/19/2018	5	Acetone	205	ug/m3		5.01	5.01

# DATA USABILITY SUMMARY REPORT (DUSR) VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GBZ97554

**Client:** Environmental Business Consultants

**Date:** 05/23/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for two (2) soil samples and two (2) trip blanks analyzed for Volatiles by SW-846 Method 8260C in accordance to NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 03/01/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 03/02/2018 for analysis.
- 3. USEPA Region-II SOP HW-33A, Revision 0, July 2015, SOM02.2, Low/Medium Volatile Data Validation documents were used in evaluating the Volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).



#### Samples:

The samples included in this review are listed below:

Client Sample ID Labora		Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
17SB6 (0-2 FT)	BZ97554	3/01/18	VOA	Soil	
17SB6 (4-6 FT)	BZ97555	3/01/18	VOA	Soil	
TRIP BLANK HL	BZ97556	3/01/18	VOA	Soil	Trip Blank
TRIP BLANK LL	BZ97557	3/01/18	VOA	Soil	Trip Blank

#### **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

### **Holding Times:**

1. All soil samples were analyzed within 14 days from sample collection. No qualifications were required.

#### **GC/MS Tuning:**

1. All the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

#### **Initial Calibration:**

1. Initial calibration curve analyzed on 3/04/2018 (Chem18) exhibited acceptable %RSDs and average RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications were required.

#### **Continuing Calibration Verification (CCV):**

- 1. Opening CCV analyzed on 03/06/2018 @ 07:52 (CHEM18) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications are required.
- 2. Closing CCV analyzed on 03/06/2018 @ 19:07 (CHEM18) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications are required.



#### **Surrogates:**

1. All surrogates %RECs values for all soil samples were within the laboratory control limits. No qualifications were required.

#### **Internal Standard (IS) Area Performance:**

1. All samples exhibited acceptable area count for all four internal standards within the QC limits. No qualifications were required.

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (BZ97554Blank) analyzed on 03/06/2018 was free of contamination. No qualifications were required.
- 2. Trip Blank Low (BZ97557) analyzed on 3/06/2018 contained tetrahydrofuran (13  $\mu$ g/Kg).
  - Results for tetrahydrofuran were qualified non-detect (U) in samples 17SB6 (0-2 FT) and 17SB6 (4-6 FT).
- 3. Trip Blank High (BZ97556) analyzed on 03/06/2018 was free of contamination. No qualifications were required.

#### **Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):**

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Sample ID: BZ97554 were analyzed on 03/06/2018. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

#### **Field Duplicate:**

1. A field duplicate was not collected and submitted with this SDG.

#### Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were performed on sample 17SB6 (0-2 FT) (BZ97554). All %RECs/RPDs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample Affected	Action
Bromoform	62/65/A	17SB6 (0-2 FT)	UJ

A= Acceptable



#### **Target Compound Identification:**

- 1. All Relative Retention Times (RRTs) of the reported compounds were within  $\pm$  0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

#### **Compound Quantitation and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range. No qualifications were required.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

$$Cx = \frac{(Ax)(IS)(DF)}{(Ais)(RRF)(V)(\%Solids)}$$

Cx = concentration of analyte as ug/kg

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF = 1

V= Volume for liquids in ml, weight for soils/solids in grams.

BZ97554 LCS

Carbon disulfide

Sample weight= 5.0g Volume purged=5.0ml DF = 1 %Solids=NA

Concentration (
$$\mu$$
g/kg) (dry) =  $\frac{385706 \times 50 \times 1 \times 5.0}{303044 \times 1.208 \times 5.0}$  =  $52.68 \mu$ g/kg

	Laboratory	Validation	
Compound	(µg/kg)	$(\mu g/kg)$	%D
Carbon disulfide	53	53	0.0



### **Comments:**

- 1. Volatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBZ97554.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBZ97554.



### DATA USABILITY SUMMARY REPORT (DUSR) SEMI-VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GBZ97554

**Client:** Environmental Business Consultants

**Date:** 05/28/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for two (2) soil samples analyzed for Semi-volatiles by SW-846 Method 8270D in accordance with the NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 03/01/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 03/02/2018 for analysis.
- 3. The USEPA Region-II SOP HW-35A, Revision 0, June 2015, Semi-volatile Data Validation was used in evaluating the Semi-volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).



### Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
17SB6 (0-2 FT)	BZ97554	3/01/18	SVO	Soil	
17SB6 (4-6 FT)	BZ97555	3/01/18	SVO	Soil	

### **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

### **Holding Times:**

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

### **GC/MS Tuning:**

1. All DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

#### **Initial Calibration:**

1. Initial calibration curve analyzed on 2/23/2018 (CHEM29) exhibited acceptable %RSDs and average RRF values for compounds listed in Table 2 in SOP HW-35A. No qualifications were required.

#### **Continuing Calibration Verification (CCV):**

- 1. Opening CCV analyzed on 03/02/2018 @ 22:04 (CHEM29) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-35A. No qualifications were required.
- Closing CCV analyzed on 03/03/2018 @ 02:09 (CHEM29) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-35A. No qualifications were required.



#### **Surrogates:**

1. Surrogate %REC values were within the QC acceptance limits. No qualifications were required.

### **Internal Standard (IS) Area Performance:**

1. Samples exhibited acceptable area count for all six internal standards. No qualifications were required.

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (BZ97559 BLANK) associated with the soil samples extracted on 03/05/2018 and analyzed on 03/05/2018 was free of contamination. No qualifications were required.

#### Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

1. Laboratory Control Sample associated with Batch ID: BZ97559 were analyzed on 3/05/2018. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample Affected	Action
Benzoic Acid	3/2/51.0	17SB6 (0-2 FT), 17SB6 (4-6 FT)	UJ
2,4-Dinitrophenol	8/0/NC	17SB6 (0-2 FT), 17SB6 (4-6 FT)	UJ
4,6-Dinitro-2-methylphenol	20/5/116.2	17SB6 (0-2 FT), 17SB6 (4-6 FT)	UJ
Pentachlorophenol	A/A/62.1	17SB6 (0-2 FT), 17SB6 (4-6 FT)	UJ

A= Acceptable

### Field Duplicate:

1. A field duplicate was not collected and submitted with this SDG.

#### Matrix Spike (MS)/Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were not performed on a sample from this SDG.

#### **Target Compound Identification:**

1. All Relative Retention Times (RRTs) of the reported compounds were within  $\pm$  0.06 RRT units of the standard (opening CCV).



- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

#### **Compound Quantitation and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

$$Cx = (Ax)(IS)(VE)(DF)$$
  
(Ais)(RRF)(Volume injected,  $\mu$ L)(V)(%Solids)

Cx = concentration of analyte as ug/kg

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

VE= final volume of concentrated extract

Sample: BZ97559 LCS

Pyridine

Sample weight= 15g Volume purged=1.0ml DF = 1 %Solids=NA

Concentration (
$$\mu$$
g/kg) (dry) =  $\underline{245949 \times 40 \times 1 \times 1000}$  = 1377.88 $\mu$ g/kg  $\underline{280161 \times 1.699 \times 15}$ 

	Laboratory	Validation	
Compound	(µg/kg)	$(\mu g/kg)$	%D
Pyridine	1378	1378	0.0



### **Comments:**

- 1. Semivolatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBZ97554.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBZ97554.



# DATA USABILITY SUMMARY REPORT (DUSR) POLYCHLORINATED BIPHENYLIS (PCBs)

USEPA Region II -Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GBZ97554

**Client:** Environmental Business Consultants

**Date:** 05/29/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for two (2) soil samples analyzed for PCBs by SW-846 Method 8082A in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 03/01/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 03/02/2018 for analysis.
- 3. USEPA Region-II SOP HW-37A, Revision 0, June 2015, PCB Data Validation, SOM02.2 was used in evaluating the PCBs data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes.



# **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
17SB6 (0-2 FT)	BZ97554	3/01/18	PCBs	Soil	
17SB6 (4-6 FT)	BZ97555	3/01/18	PCBs	Soil	

#### **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

#### **Holding Times:**

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

## **Initial Calibration:**

1. Initial calibration curve analyzed on 02/08/2018 (ECD3) exhibited acceptable %RSD (≤20.0%) on both columns. No qualifications were required.

#### **Continuing Calibration Verification (CCV):**

1. All CCVs analyzed on 03/05-06/2018 exhibited acceptable %Ds averages (≤15.0%) for reported compounds. No qualifications were required.

#### **Surrogates:**

1. All surrogates %RECs values for all soil samples and associated QC were within the laboratory control limits. No qualifications were required.

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (BZ97559 BL) associated with the soil samples extracted on 03/02/2018 and analyzed on 03/05/2018 was free of contamination. No qualifications were required.



# **Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):**

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with ID: BZ97559 were analyzed on 03/05/2018. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

# **Field Duplicate:**

1. A field duplicate was not collected and submitted with this SDG.

# Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were not performed on a sample from this SDG.

# **Compound Quantitation, Compound Identification and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

BZ97559 LCS

Aroclor-1016

On Column concentration (B)= 487.798ng Sample weight= 15.0g DF= 10 Vi= 5ml

%Solids= 100%

Concentration ( $\mu$ g/kg) (dry) =  $\frac{487.798$ ng x 5ml x10 = 1626.00 $\mu$ g/kg 15.0g

	Laboratory	Validation	
Compound	(µg/kg)	$(\mu g/kg)$	%D
Aroclor-1016	1630	1630	0.0

## **Comments:**

1. PCBs data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.



2	Walidation	molifier (	(if roo	mirad)	were entered int	o the	EDD	for CDC.	CP707554
<i>L</i> .	v anuanon c	juaiiiititis i	11 150	(uncu)	were emered in	o uic	עעבו	וטו אטט.	UDL9/334.

3	Summary	of the qualifi	ed data i	s listed in	the Data Summa	ary Table for	SDG: GBZ97554
J.	Summary	or the quality	ou uata i	s nsicu in	uic Data Summi	$\mathbf{n} \mathbf{v}$ radic rui	. DDG. UD <i>Li i iii</i> t



# DATA USABILITY SUMMARY REPORT (DUSR) PESTICIDES

USEPA Region II –Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GBZ97554

**Client:** Environmental Business Consultants

**Date:** 05/29/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

## **Summary:**

- 1. Data validation was performed on the data for two (2) soil samples analyzed for Pesticides by SW-846 Method 8081B in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 03/01/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 03/02/2018 for analysis.
- 3. USEPA Region-II SOP HW-36A, Revision 0, June 2015, Pesticide Data Validation, SOM02.2 was used in evaluating the pesticide data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes.



# **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
17SB6 (0-2 FT)	BZ97554	3/01/18	Pesticides	Soil	
17SB6 (4-6 FT)	BZ97555	3/01/18	Pesticides	Soil	

#### **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

# **Holding Times:**

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

# **GC/ECD Instrument Performance Check:**

1. 4,4'-DDT and Endrin breakdown exhibited acceptable results (±20%). No qualifications were required.

## **Initial Calibration:**

- 1. Initial calibration curve analyzed on 03/05/2018 (ECD10) exhibited acceptable %RSD on both columns. No qualifications were required.
- 2. Initial calibration curve analyzed on 03/05/2018 (ECD35) exhibited acceptable %RSD on both columns. No qualifications were required.

# **Continuing Calibration Verification (CCV):**

1. CCVs analyzed on 03/05- 06/2018 exhibited acceptable %Ds (≤20.0%) for all compounds that were reported. No qualifications were required.

# **Surrogates:**

1. All surrogates %RECs values for all soil samples were within the laboratory control limits. No qualifications were required.



# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

1. Method Blank (BZ97559 BL) associated with the soil samples extracted on 03/02/2018 and analyzed on 03/05/2018 was free of contamination. No qualifications were required.

# <u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

1. Laboratory Control Sample associated with ID: BZ97559 LCS was analyzed on 03/06/2018. All %RECs were within the laboratory control limits. No qualifications were required.

## **Field Duplicate:**

1. A field duplicate was not collected and submitted with this SDG.

## Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were not performed on a sample from this SDG.

# **Compound Quantitation, Compound Identification and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

BZ97559 LCS

Alpha-BHC

On Column concentration (A) = 30.7573ng Sample Weight= 15.0g DF = 2 Vi= 5ml %Solids= 100%

Concentration (
$$\mu g/kg$$
)(dry) =  $\frac{30.7573 \text{ng x 5ml x 2}}{15.0 \text{g}} = 22.505 \mu g/kg$ 



	Laboratory	Validation	
Compound	(µg/kg)	(µg/kg)	%D
Alpha-BHC	20.5	20.5	0.0

# **Comments:**

- 1. Pesticides data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBZ97554.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBZ97554.



# DATA USABILITY SUMMARY REPORT (DUSR) TRACE METALS

USEPA Region II –Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GBZ97554

**Client:** Environmental Business Consultants

**Date:** 05/29/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for two (2) soil samples analyzed for the following analyses:
  - 1.1 Trace Metals-ICP-AES by SW-846 Method 6010C.
  - 1.2 Mercury by SW-846 Method 7471A.
- 2. The samples were collected on 03/01/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 3/02/2018 for analysis.
- 3. USEPA Region-II SOP No. HW-2a, Revision 0, July 2015, ICP-AES Data Validation was used in evaluating the metals data and USEPA Region-II SOP No. HW-3c, Revision 0, July 2016, Mercury and Cyanide Data Validation was used to in evaluating the mercury data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).



# Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
17SB6 (0-2 FT)	BZ97554	3/01/18	ICP and CVAA	Soil	
17SB6 (4-6 FT)	BZ97555	3/01/18	ICP and CVAA	Soil	

## **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

# **Holding Times:**

- 1. All soil samples were analyzed within the 6 months holding times for Trace Metals analysis by ICP-AES. No qualifications were required.
- 2. All soil samples were digested and analyzed within the 28 days holding times for Mercury analysis. No qualifications were required.

# **Initial and Continuing Calibration Verification (ICV and CCV):**

#### **ICP-AES:**

1. All %RECs in the ICV and CCVs were within QC limits (90-110%). No qualifications were required.

#### **Mercury:**

- All correlation coefficient for Mercury calibration curve analyzed were  $\geq$ 0.995. No qualifications were required.
- 2. All ICVs and CCVs %REC values were within the QC limits (80-120%). No qualifications were required.

# **CRQL Check Standard (CRI):**

1. All CRI analyzed %RECs were within the control limits (70-130%) with the following exception(s):



Analyte	Date	Initial	Final	Sample Affected	Action
	Analyzed	%R	%R		
Aluminum	3/05/2018:	A	150.7	17SB6 (0-2 FT), 17SB6 (4-6 FT)	J+
	09:53				
Calcium	3/05/2018:	A	145.4	17SB6 (0-2 FT),	J
	09:53			17SB6 (4-6 FT)	J+
Iron	3/05/2018:	A	345.4	17SB6 (0-2 FT), 17SB6 (4-6 FT)	J+
	09:53				
Lead	3/05/2018:	A	1250	17SB6 (0-2 FT), 17SB6 (4-6 FT)	J+
	09:53				
Zinc	3/05/2018:	A	636.1	17SB6 (0-2 FT), 17SB6 (4-6 FT)	J+
	09:53				

## **ICP-AES Interference Check Sample:**

1. All %REC values were within the QC limits (80-120%) for ICSA and ICSAB. No qualifications were required.

# **Blanks (Method Blank, ICB and CCB):**

## **ICP-AES:**

- 1. Method Blank-Soil (BZ97554BLK) digested on 03/02/2018 was free of contamination. No qualifications were required.
- 2. All ICB and CCBs contained the following:

Element	Concentration (µg/L)	CRQL* (µg/L)	Sample Affected	Action
Antimony	62	50	17SB6 (0-2 FT)	None
·	69	50	17SB6 (4-6 FT)	None
	53	50	None	None
Aluminum	14	50	None	None
Lead	13	10	None	None
Sodium	105	100	None	None
Zinc	42	10	None	None

^{*=} If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.



#### **Mercury:**

- 1. All ICB and CCBs were free of contamination. No qualifications were required.
- 2. Method Blank (BZ97533BLK) digested on 03/05/2018 was free of contamination. No qualifications were required.

## Field Blank (FB) and Equipment Blank (EB):

1. Field Blanks were not submitted with this SDG.

# <u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

## **ICP-AES and Mercury:**

1. Laboratory Control Sample %RECs were within the laboratory control limits (75-125%). No qualifications were required.

## **Field Duplicate:**

1. A field duplicate was not collected and submitted with this SDG.

# Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

# **ICP-AES and Mercury:**

1. Matrix Spike (MS) was performed on sample 17SB6 (0-2 FT) (BZ97554). All %RECs were within the laboratory control limits with the following exception(s):

Compound	%R/Post %R	Sample Affected	Action
Sodium	>130/A	17SB6 (0-2 FT)	J

A= Acceptable



# **Sample Duplicate:**

## **ICP-AES and Mercury:**

1. Laboratory Duplicate was performed on sample 17SB6 (0-2 FT) (BZ97554) for ICP-AES. All RPDs were within the laboratory control limits with the following exception(s):

Compound	RPD	Sample Affected	Action
Calcium	88.7	17SB6 (0-2 FT)	J

# **ICP-AES Serial Dilution**:

1. ICP serial dilution was not performed on a sample from this SDG Laboratory Duplicate was performed on sample 17SB6 (0-2 FT) (BZ97554) for ICP-AES. All RPDs were within the laboratory control limits with the following exception(s):

Compound	RPD	Sample Affected	Action
Barium	11.2	17SB6 (0-2 FT)	J
Sodium	16.7	17SB6 (0-2 FT)	J

# **Verification of Instrumental Parameters:**

- 1. The following Forms were present in the data package:
  - 1.1 Method Detection Limits, Form- X.
  - 1.2 ICP-AES Interelement Correction Factors, Form -XIA and Form-XIB.
  - 1.3 ICP-AES Linear Ranges, Form XII.

# **Compound Quantitation and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual calculation:

Sample: 17SB6 (0-2 FT) (BZ97554)

Arsenic



# Concentration (mg/Kg) (dry wt.)= $\underline{C} \times \underline{V} \times \underline{DF} \times 1\underline{L} \times 1000\underline{g} \times 1\underline{mg}$ $\underline{W} \times \underline{S} \times 1000\underline{ml} \times 1\underline{kg} \times 1000\underline{ug}$

V= 50ml W= 0.70g %Solids =86.0 DF=1.0

Concentration (mg/Kg) (dry wt.)=  $61\underline{.66ug/L} \times 50 \times 1.0 \times 1L \times 1000g \times 1mg = 5.121 \text{ mg/kg}$ 0.70 x 0.86 x 1000ml x 1 kg x 1000ug

	Laboratory	Validation	
Compound	(mg/kg)	(mg/kg)	%D
Arsenic	5.12	5.12	0.0

# **Comments:**

- 1. Trace Metals data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBZ97554.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBZ97554.





		Analytical	Sample	Dilution	ı					
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
17SB6 (0-2 FT)	BZ97554	E160.3	3/1/2018	1	SOLIDS, PERCENT	86	%			
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	10	Aluminum	18300	mg/Kg	J+	8.3	42
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Barium	196	mg/Kg	J	0.42	0.8
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	10	Magnesium	6990	mg/Kg		42	42
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	10	Potassium	7220	mg/Kg		32	83
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Calcium	4820	mg/Kg	J	3.8	4.2
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	10	Manganese	408	mg/Kg		3.8	3.8
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Nickel	36.0	mg/Kg		0.42	0.42
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Silver		mg/Kg	U	0.42	0.42
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Thallium		mg/Kg	U	1.7	1.7
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Antimony		mg/Kg	U	2.1	2.1
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Arsenic	5.12	mg/Kg		0.83	0.83
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	10	Iron	36400	mg/Kg	J+	42	42
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Beryllium	0.55	mg/Kg		0.17	0.33
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Cadmium		mg/Kg	U	0.42	0.42
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Chromium	42.5	mg/Kg		0.42	0.42
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Cobalt	19.0	mg/Kg		0.42	0.42
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Copper	32.8	mg/Kg		0.42	0.42
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Vanadium	57.1	mg/Kg		0.42	0.42
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Selenium		mg/Kg	U	1.4	1.7
17SB6 (0-2 FT)	BZ97554	SW7471	3/1/2018	1	Mercury	0.23	mg/Kg		0.09	0.15
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	Heptachlor epoxide		ug/Kg	U	7.7	7.7
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	Endosulfan sulfate		ug/Kg	U	7.7	7.7
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	Aldrin		ug/Kg	U	3.9	3.9
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	a-BHC		ug/Kg	U	7.7	7.7
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	b-BHC		ug/Kg	U	7.7	7.7
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	d-BHC		ug/Kg	U	7.7	7.7
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	Endosulfan II		ug/Kg	U	7.7	7.7
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	4,4' -DDT		ug/Kg	U	2.3	2.3
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	a-Chlordane		ug/Kg	U	3.9	3.9
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	g-Chlordane		ug/Kg	U	3.9	3.9
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	Endrin ketone		ug/Kg	U	7.7	7.7
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	Chlordane		ug/Kg	U	39	39
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	g-BHC		ug/Kg	U	1.5	1.5



		Analytical	Sample	Dilution	ı					
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	Dieldrin		ug/Kg	U	3.9	3.9
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	Endrin		ug/Kg	U	7.7	7.7
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	Methoxychlor		ug/Kg	U	39	39
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	4,4' -DDD		ug/Kg	U	2.3	2.3
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	4,4' -DDE		ug/Kg	U	2.3	2.3
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	Endrin aldehyde		ug/Kg	U	7.7	7.7
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	Heptachlor		ug/Kg	U	7.7	7.7
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	Toxaphene		ug/Kg	U	150	150
17SB6 (0-2 FT)	BZ97554	SW8081	3/1/2018	2	Endosulfan I		ug/Kg	U	7.7	7.7
17SB6 (0-2 FT)	BZ97554	SW8082	3/1/2018	2	PCB-1260		ug/Kg	U	77	77
17SB6 (0-2 FT)	BZ97554	SW8082	3/1/2018	2	PCB-1254		ug/Kg	U	77	77
17SB6 (0-2 FT)	BZ97554	SW8082	3/1/2018	2	PCB-1268		ug/Kg	U	77	77
17SB6 (0-2 FT)	BZ97554	SW8082	3/1/2018	2	PCB-1221		ug/Kg	U	77	77
17SB6 (0-2 FT)	BZ97554	SW8082	3/1/2018	2	PCB-1232		ug/Kg	U	77	77
17SB6 (0-2 FT)	BZ97554	SW8082	3/1/2018	2	PCB-1248		ug/Kg	U	77	77
17SB6 (0-2 FT)	BZ97554	SW8082	3/1/2018	2	PCB-1016		ug/Kg	U	77	77
17SB6 (0-2 FT)	BZ97554	SW8082	3/1/2018	2	PCB-1262		ug/Kg	U	77	77
17SB6 (0-2 FT)	BZ97554	SW8082	3/1/2018	2	PCB-1242		ug/Kg	U	77	77
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Ethylbenzene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Styrene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	cis-1,3-Dichloropropene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	trans-1,3-Dichloropropene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	n-Propylbenzene		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	n-Butylbenzene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	4-Chlorotoluene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,4-Dichlorobenzene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,2-Dibromoethane		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Acrolein		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,2-Dichloroethane		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Acrylonitrile		ug/Kg	U	0.71	28
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	4-Methyl-2-pentanone		ug/Kg	U	7.1	35
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Bromobenzene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Toluene		ug/Kg	U	0.71	7.1



		Analytical	Sample	Dilution	I					
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Chlorobenzene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Tetrahydrofuran (THF)	9.7	ug/Kg	U	3.5	14
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	trans-1,4-dichloro-2-butene		ug/Kg	U	3.5	14
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,2,4-Trichlorobenzene		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,4-dioxane		ug/Kg	U	57	100
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Dibromochloromethane		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Tetrachloroethene	15	ug/Kg		1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	sec-Butylbenzene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,3-Dichloropropane		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	cis-1,2-Dichloroethene	1.4	ug/Kg	J	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	trans-1,2-Dichloroethene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	1.4	14
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	m&p-Xylene		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	2-Isopropyltoluene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,3-Dichlorobenzene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Carbon tetrachloride		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,1-Dichloropropene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	2-Hexanone		ug/Kg	U	7.1	35
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	2,2-Dichloropropane		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	1.4	28
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Acetone	67	ug/Kg		7.1	35
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Chloroform		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Benzene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,1,1-Trichloroethane		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Bromomethane		ug/Kg	U	2.8	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Chloromethane		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Dibromomethane		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Bromochloromethane		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Chloroethane		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Vinyl chloride		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Methylene chloride		ug/Kg	U	7.1	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Carbon Disulfide		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Bromoform		ug/Kg	UJ	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Bromodichloromethane		ug/Kg	U	1.4	7.1



		Analytical	Sample	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,1-Dichloroethane		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,1-Dichloroethene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Tert-butyl alcohol		ug/Kg	U	28	140
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Trichlorofluoromethane		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Dichlorodifluoromethane		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Trichlorotrifluoroethane		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,2-Dichloropropane		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Methyl Ethyl Ketone	8.2	ug/Kg	J	7.1	43
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,1,2-Trichloroethane		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,2,3-Trichlorobenzene		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Hexachlorobutadiene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Naphthalene		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	o-Xylene		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	2-Chlorotoluene		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,2-Dichlorobenzene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.4	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	1,2,3-Trichloropropane		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	tert-Butylbenzene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	Isopropylbenzene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	1	p-Isopropyltoluene		ug/Kg	U	0.71	7.1
17SB6 (0-2 FT)	BZ97554	SW8260	3/1/2018	50	Trichloroethene	48	ug/Kg	J	35	350
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	4-Nitroaniline		ug/Kg	U	130	380
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	4-Nitrophenol		ug/Kg	U	170	380
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	2,4-Dimethylphenol		ug/Kg	U	93	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	1,4-Dichlorobenzene		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	4-Chloroaniline		ug/Kg	U	180	300
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Phenol		ug/Kg	U	120	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Pyridine		ug/Kg	U	92	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Bis(2-chloroethyl)ether		ug/Kg	U	100	190
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Bis(2-chloroethoxy)methane		ug/Kg	U	100	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Bis(2-ethylhexyl)phthalate	110	ug/Kg	J	110	260



		Analytical	Sample	Dilution	l .					
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Di-n-octylphthalate		ug/Kg	U	97	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Hexachlorobenzene		ug/Kg	U	110	190
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Anthracene		ug/Kg	U	120	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	1,2,4-Trichlorobenzene		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	2,4-Dichlorophenol		ug/Kg	U	130	190
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	2,4-Dinitrotoluene		ug/Kg	U	150	190
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	1,2-Diphenylhydrazine		ug/Kg	U	120	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Pyrene	310	ug/Kg		130	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Dimethylphthalate		ug/Kg	U	120	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Dibenzofuran		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Benzo(ghi)perylene	220	ug/Kg	J	120	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Indeno(1,2,3-cd)pyrene	220	ug/Kg	J	120	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Benzo(b)fluoranthene	270	ug/Kg		130	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Fluoranthene	250	ug/Kg	J	120	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Benzo(k)fluoranthene	280	ug/Kg		120	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Acenaphthylene		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Chrysene	280	ug/Kg		130	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	100	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Benzo(a)pyrene	300	ug/Kg		120	190
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	2,4-Dinitrophenol		ug/Kg	UJ	260	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	260	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Dibenz(a,h)anthracene		ug/Kg	U	120	190
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	1,3-Dichlorobenzene		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Benz(a)anthracene	240	ug/Kg	J	130	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	4-Chloro-3-methylphenol		ug/Kg	U	130	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	2,6-Dinitrotoluene		ug/Kg	U	120	190
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	190
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Aniline		ug/Kg	U	300	300
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	N-Nitrosodimethylamine		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Benzoic acid		ug/Kg	UJ	750	1900
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Hexachloroethane		ug/Kg	U	110	190
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Hexachlorocyclopentadiene		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Isophorone		ug/Kg	U	110	190



		Analytical	Sample	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Pentachloronitrobenzene		ug/Kg	U	140	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Acenaphthene		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Diethyl phthalate		ug/Kg	U	120	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Di-n-butylphthalate		ug/Kg	U	100	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Phenanthrene		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Benzyl butyl phthalate		ug/Kg	U	97	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	N-Nitrosodiphenylamine		ug/Kg	U	140	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Fluorene		ug/Kg	U	120	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Carbazole		ug/Kg	U	150	190
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Hexachlorobutadiene		ug/Kg	U	140	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Pentachlorophenol		ug/Kg	UJ	140	230
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	2,4,6-Trichlorophenol		ug/Kg	U	120	190
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	2-Nitroaniline		ug/Kg	U	260	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	2-Nitrophenol		ug/Kg	U	240	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Naphthalene		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	2-Methylnaphthalene		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	2-Chloronaphthalene		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	3,3'-Dichlorobenzidine		ug/Kg	U	180	190
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Benzidine		ug/Kg	U	220	380
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	2-Methylphenol (o-cresol)		ug/Kg	U	180	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	1,2-Dichlorobenzene		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	2-Chlorophenol		ug/Kg	U	110	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	U	130	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	2,4,5-Trichlorophenol		ug/Kg	U	210	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Acetophenone		ug/Kg	U	120	260
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	Nitrobenzene		ug/Kg	U	130	190
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	3-Nitroaniline		ug/Kg	U	750	380
17SB6 (0-2 FT)	BZ97554	SW8270	3/1/2018	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	U	150	260
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	10	Lead	230	mg/Kg	J+	4.2	8.3
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	1	Sodium	479	mg/Kg	J	3.6	8
17SB6 (0-2 FT)	BZ97554	SW6010	3/1/2018	10	Zinc	150	mg/Kg	J+	4.2	8.3
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	100	Aluminum	21100	mg/Kg	J+	68	340
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Calcium	6750	mg/Kg	J+	3.1	3.4
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	10	Iron		mg/Kg	J+	34	34



		Analytical	Sample	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
17SB6 (4-6 FT)	BZ97555	E160.3	3/1/2018	1	SOLIDS, PERCENT	88	%			
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	10	Magnesium	10300	mg/Kg		34	34
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	10	Manganese	488	mg/Kg		3.4	3.4
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	10	Potassium	7880	mg/Kg		27	68
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Lead	41.9	mg/Kg	J+	0.34	0.7
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Nickel	40.9	mg/Kg		0.34	0.34
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Silver		mg/Kg	U	0.34	0.34
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Sodium	707	mg/Kg		2.9	7
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Thallium		mg/Kg	U	1.4	1.4
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Antimony		mg/Kg	U	1.7	1.7
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Arsenic	1.18	mg/Kg		0.68	0.68
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Barium	691	mg/Kg		0.34	0.7
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Beryllium	0.70	mg/Kg		0.14	0.27
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Cadmium		mg/Kg	U	0.34	0.34
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Chromium	86.9	mg/Kg		0.34	0.34
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Cobalt	18.0	mg/Kg		0.34	0.34
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Copper	55.0	mg/Kg		0.34	0.34
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Vanadium	54.3	mg/Kg		0.34	0.34
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	1	Selenium		mg/Kg	U	1.2	1.4
17SB6 (4-6 FT)	BZ97555	SW6010	3/1/2018	10	Zinc	61.0	mg/Kg	J+	3.4	6.8
17SB6 (4-6 FT)	BZ97555	SW7471	3/1/2018	1	Mercury		mg/Kg	U	0.08	0.14
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	Heptachlor epoxide		ug/Kg	U	7.5	7.5
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	Endosulfan sulfate		ug/Kg	U	7.5	7.5
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	Aldrin		ug/Kg	U	3.7	3.7
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	a-BHC		ug/Kg	U	7.5	7.5
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	b-BHC		ug/Kg	U	7.5	7.5
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	d-BHC		ug/Kg	U	7.5	7.5
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	Endosulfan II		ug/Kg	U	7.5	7.5
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	4,4' -DDT		ug/Kg	U	2.2	2.2
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	a-Chlordane		ug/Kg	U	3.7	3.7
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	g-Chlordane		ug/Kg	U	3.7	3.7
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	Endrin ketone		ug/Kg	U	7.5	7.5
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	Chlordane		ug/Kg	U	37	37
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	g-BHC		ug/Kg	U	1.5	1.5



		Analytical	Sample	Dilution	l .					
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	Dieldrin		ug/Kg	U	3.7	3.7
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	Endrin		ug/Kg	U	7.5	7.5
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	Methoxychlor		ug/Kg	U	37	37
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	4,4' -DDD		ug/Kg	U	2.2	2.2
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	4,4' -DDE		ug/Kg	U	2.2	2.2
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	Endrin aldehyde		ug/Kg	U	7.5	7.5
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	Heptachlor		ug/Kg	U	7.5	7.5
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	Toxaphene		ug/Kg	U	150	150
17SB6 (4-6 FT)	BZ97555	SW8081	3/1/2018	2	Endosulfan I		ug/Kg	U	7.5	7.5
17SB6 (4-6 FT)	BZ97555	SW8082	3/1/2018	2	PCB-1260		ug/Kg	U	75	75
17SB6 (4-6 FT)	BZ97555	SW8082	3/1/2018	2	PCB-1254		ug/Kg	U	75	75
17SB6 (4-6 FT)	BZ97555	SW8082	3/1/2018	2	PCB-1268		ug/Kg	U	75	75
17SB6 (4-6 FT)	BZ97555	SW8082	3/1/2018	2	PCB-1221		ug/Kg	U	75	75
17SB6 (4-6 FT)	BZ97555	SW8082	3/1/2018	2	PCB-1232		ug/Kg	U	75	75
17SB6 (4-6 FT)	BZ97555	SW8082	3/1/2018	2	PCB-1248		ug/Kg	U	75	75
17SB6 (4-6 FT)	BZ97555	SW8082	3/1/2018	2	PCB-1016		ug/Kg	U	75	75
17SB6 (4-6 FT)	BZ97555	SW8082	3/1/2018	2	PCB-1262		ug/Kg	U	75	75
17SB6 (4-6 FT)	BZ97555	SW8082	3/1/2018	2	PCB-1242		ug/Kg	U	75	75
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Ethylbenzene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Styrene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	cis-1,3-Dichloropropene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	trans-1,3-Dichloropropene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	n-Propylbenzene		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	n-Butylbenzene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	4-Chlorotoluene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,4-Dichlorobenzene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,2-Dibromoethane		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Acrolein		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,2-Dichloroethane		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Acrylonitrile		ug/Kg	U	0.50	20
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	4-Methyl-2-pentanone		ug/Kg	U	5.0	25
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Bromobenzene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Toluene		ug/Kg	U	0.50	5.0



		Analytical	Sample	Dilution	l .					
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Chlorobenzene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Tetrahydrofuran (THF)	6.0	ug/Kg	U	2.5	10
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.5	10
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,2,4-Trichlorobenzene		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,4-dioxane		ug/Kg	U	40	75
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Dibromochloromethane		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Tetrachloroethene		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	sec-Butylbenzene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,3-Dichloropropane		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	cis-1,2-Dichloroethene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	trans-1,2-Dichloroethene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	1.0	10
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	m&p-Xylene		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	2-Isopropyltoluene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,3-Dichlorobenzene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Carbon tetrachloride		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,1-Dichloropropene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	2-Hexanone		ug/Kg	U	5.0	25
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	2,2-Dichloropropane		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	1.0	20
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Acetone	7.0	ug/Kg	J	5.0	25
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Chloroform	2.1	ug/Kg	J	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Benzene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,1,1-Trichloroethane		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Bromomethane		ug/Kg	U	2.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Chloromethane		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Dibromomethane		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Bromochloromethane		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Chloroethane		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Vinyl chloride		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Methylene chloride		ug/Kg	U	5.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Carbon Disulfide		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Bromoform		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Bromodichloromethane		ug/Kg	U	1.0	5.0



		Analytical	Sample	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,1-Dichloroethane		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,1-Dichloroethene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Tert-butyl alcohol		ug/Kg	U	20	100
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Trichlorofluoromethane		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Dichlorodifluoromethane		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Trichlorotrifluoroethane		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,2-Dichloropropane		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Methyl Ethyl Ketone		ug/Kg	U	5.0	30
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,1,2-Trichloroethane		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Trichloroethene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,2,3-Trichlorobenzene		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Hexachlorobutadiene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Naphthalene		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	o-Xylene		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	2-Chlorotoluene		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,2-Dichlorobenzene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.0	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	1,2,3-Trichloropropane		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	tert-Butylbenzene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	Isopropylbenzene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8260	3/1/2018	1	p-Isopropyltoluene		ug/Kg	U	0.50	5.0
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	4-Nitroaniline		ug/Kg	U	120	370
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	4-Nitrophenol		ug/Kg	U	170	370
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	4-Bromophenyl phenyl ether		ug/Kg	U	110	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	2,4-Dimethylphenol		ug/Kg	U	92	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	1,4-Dichlorobenzene		ug/Kg	U	110	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	4-Chloroaniline		ug/Kg	U	170	300
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Phenol		ug/Kg	U	120	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Pyridine		ug/Kg	U	92	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Bis(2-chloroethyl)ether		ug/Kg	U	100	190
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Bis(2-chloroethoxy)methane		ug/Kg	U	100	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Bis(2-ethylhexyl)phthalate		ug/Kg	U	110	260



		Analytical	Sample	Dilution	I					
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Di-n-octylphthalate		ug/Kg	U	96	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Hexachlorobenzene		ug/Kg	U	110	190
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Anthracene		ug/Kg	U	120	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	1,2,4-Trichlorobenzene		ug/Kg	U	110	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	2,4-Dichlorophenol		ug/Kg	U	130	190
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	2,4-Dinitrotoluene		ug/Kg	U	150	190
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	1,2-Diphenylhydrazine		ug/Kg	U	120	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Pyrene		ug/Kg	U	130	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Dimethylphthalate		ug/Kg	U	120	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Dibenzofuran		ug/Kg	U	110	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Benzo(ghi)perylene		ug/Kg	U	120	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Indeno(1,2,3-cd)pyrene		ug/Kg	U	120	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Benzo(b)fluoranthene		ug/Kg	U	130	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Fluoranthene		ug/Kg	U	120	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Benzo(k)fluoranthene		ug/Kg	U	120	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Acenaphthylene		ug/Kg	U	100	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Chrysene		ug/Kg	U	130	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Bis(2-chloroisopropyl)ether		ug/Kg	U	100	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Benzo(a)pyrene		ug/Kg	U	120	190
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	2,4-Dinitrophenol		ug/Kg	UJ	260	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	4,6-Dinitro-2-methylphenol		ug/Kg	UJ	260	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Dibenz(a,h)anthracene		ug/Kg	U	120	190
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	1,3-Dichlorobenzene		ug/Kg	U	110	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Benz(a)anthracene		ug/Kg	U	130	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	4-Chloro-3-methylphenol		ug/Kg	U	130	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	2,6-Dinitrotoluene		ug/Kg	U	120	190
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	N-Nitrosodi-n-propylamine		ug/Kg	U	120	190
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Aniline		ug/Kg	U	300	300
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	N-Nitrosodimethylamine		ug/Kg	U	100	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Benzoic acid		ug/Kg	UJ	740	1900
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Hexachloroethane		ug/Kg	U	110	190
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	4-Chlorophenyl phenyl ether		ug/Kg	U	130	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Hexachlorocyclopentadiene		ug/Kg	U	110	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Isophorone		ug/Kg	U	100	190



		Analytical	Sample	Dilution	<u> </u>					
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Pentachloronitrobenzene		ug/Kg	U	140	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Acenaphthene		ug/Kg	U	110	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Diethyl phthalate		ug/Kg	U	120	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1 Di-n-butylphthalate			ug/Kg	U	99	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Phenanthrene		ug/Kg	U	110	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Benzyl butyl phthalate		ug/Kg	U	96	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	N-Nitrosodiphenylamine		ug/Kg	U	140	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Fluorene		ug/Kg	U	120	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Carbazole		ug/Kg	U	150	190
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Hexachlorobutadiene		ug/Kg	U	130	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Pentachlorophenol		ug/Kg	UJ	140	220
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	2,4,6-Trichlorophenol		ug/Kg	U	120	190
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	2-Nitroaniline		ug/Kg	U	260	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	2-Nitrophenol		ug/Kg	U	240	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Naphthalene		ug/Kg	U	110	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	2-Methylnaphthalene		ug/Kg	U	110	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	2-Chloronaphthalene		ug/Kg	J	110	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	3,3'-Dichlorobenzidine		ug/Kg	J	180	190
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Benzidine		ug/Kg	J	220	370
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	2-Methylphenol (o-cresol)		ug/Kg	J	170	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	1,2-Dichlorobenzene		ug/Kg	U	100	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	2-Chlorophenol		ug/Kg	J	110	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	1,2,4,5-Tetrachlorobenzene		ug/Kg	J	130	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	2,4,5-Trichlorophenol		ug/Kg	J	200	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Acetophenone		ug/Kg	J	120	260
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	Nitrobenzene		ug/Kg	J	130	190
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	3-Nitroaniline		ug/Kg	U	740	370
17SB6 (4-6 FT)	BZ97555	SW8270	3/1/2018	1	3&4-Methylphenol (m&p-cresol)		ug/Kg	J	150	260
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Ethylbenzene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Styrene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	cis-1,3-Dichloropropene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	trans-1,3-Dichloropropene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	n-Propylbenzene		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	n-Butylbenzene		ug/Kg	U	25	250



		Analytical	Sample	Dilution	<u> </u>					
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	4-Chlorotoluene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,4-Dichlorobenzene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,2-Dibromoethane		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Acrolein		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,2-Dichloroethane		ug/Kg	U	25	25
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Acrylonitrile		ug/Kg	U	25	1000
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	4-Methyl-2-pentanone		ug/Kg	U	250	1300
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,3,5-Trimethylbenzene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Bromobenzene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Toluene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Chlorobenzene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Tetrahydrofuran (THF)		ug/Kg	U	130	500
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	trans-1,4-dichloro-2-butene		ug/Kg	U	130	500
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,2,4-Trichlorobenzene		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,4-dioxane		ug/Kg	U	2000	2000
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Dibromochloromethane		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Tetrachloroethene		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	sec-Butylbenzene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,3-Dichloropropane		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	cis-1,2-Dichloroethene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	trans-1,2-Dichloroethene		ug/Kg	U	25	190
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Methyl t-butyl ether (MTBE)		ug/Kg	U	50	500
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	m&p-Xylene		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	2-Isopropyltoluene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,3-Dichlorobenzene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Carbon tetrachloride		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,1-Dichloropropene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	2-Hexanone		ug/Kg	U	250	1300
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	2,2-Dichloropropane		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,1,1,2-Tetrachloroethane		ug/Kg	U	50	1000
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Acetone		ug/Kg	U	250	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Chloroform		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Benzene		ug/Kg	U	25	60
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,1,1-Trichloroethane		ug/Kg	U	25	250



		Analytical	Sample	Dilution	<u> </u>					
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Bromomethane		ug/Kg	U	100	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Chloromethane		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Dibromomethane		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Bromochloromethane		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Chloroethane		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Vinyl chloride		ug/Kg	U	25	25
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Methylene chloride		ug/Kg	U	250	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Carbon Disulfide		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Bromoform		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Bromodichloromethane		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,1-Dichloroethane		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,1-Dichloroethene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Tert-butyl alcohol		ug/Kg	U	1000	5000
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Trichlorofluoromethane		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Dichlorodifluoromethane		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Trichlorotrifluoroethane		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,2-Dichloropropane		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Methyl Ethyl Ketone		ug/Kg	U	250	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,1,2-Trichloroethane		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Trichloroethene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,1,2,2-Tetrachloroethane		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,2,3-Trichlorobenzene		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Hexachlorobutadiene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Naphthalene		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	o-Xylene		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	2-Chlorotoluene		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,2-Dichlorobenzene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,2,4-Trimethylbenzene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,2-Dibromo-3-chloropropane		ug/Kg	U	50	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	1,2,3-Trichloropropane		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	tert-Butylbenzene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	Isopropylbenzene		ug/Kg	U	25	250
BZ97556-TB	BZ97556	SW8260	3/1/2018	50	p-Isopropyltoluene		ug/Kg	U	25	250
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Ethylbenzene		ug/Kg	U	0.50	5.0



		Analytical	Sample	Dilution	<u> </u>					
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Styrene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	cis-1,3-Dichloropropene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	trans-1,3-Dichloropropene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	n-Propylbenzene		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	n-Butylbenzene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	4-Chlorotoluene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,4-Dichlorobenzene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,2-Dibromoethane		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Acrolein		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,2-Dichloroethane		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Acrylonitrile		ug/Kg	U	0.50	20
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	4-Methyl-2-pentanone		ug/Kg	U	5.0	25
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,3,5-Trimethylbenzene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Bromobenzene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Toluene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Chlorobenzene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Tetrahydrofuran (THF)	13	ug/Kg		2.5	10
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	trans-1,4-dichloro-2-butene		ug/Kg	U	2.5	10
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,2,4-Trichlorobenzene		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,4-dioxane		ug/Kg	U	40	75
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Dibromochloromethane		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Tetrachloroethene		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	sec-Butylbenzene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,3-Dichloropropane		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	cis-1,2-Dichloroethene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	trans-1,2-Dichloroethene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Methyl t-butyl ether (MTBE)		ug/Kg	U	1.0	10
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	m&p-Xylene		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	2-Isopropyltoluene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,3-Dichlorobenzene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Carbon tetrachloride		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,1-Dichloropropene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	2-Hexanone		ug/Kg	U	5.0	25
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	2,2-Dichloropropane		ug/Kg	U	0.50	5.0



		Analytical	Sample	Dilution						
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier	MDL	RL
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,1,1,2-Tetrachloroethane		ug/Kg	U	1.0	20
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Acetone		ug/Kg	U	5.0	25
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Chloroform		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Benzene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,1,1-Trichloroethane		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Bromomethane		ug/Kg	U	2.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Chloromethane		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Dibromomethane		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Bromochloromethane		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Chloroethane		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Vinyl chloride		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Methylene chloride		ug/Kg	U	5.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Carbon Disulfide		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Bromoform		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Bromodichloromethane		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,1-Dichloroethane		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,1-Dichloroethene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Tert-butyl alcohol		ug/Kg	U	20	100
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Trichlorofluoromethane		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Dichlorodifluoromethane		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Trichlorotrifluoroethane		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,2-Dichloropropane		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Methyl Ethyl Ketone		ug/Kg	U	5.0	30
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,1,2-Trichloroethane		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Trichloroethene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,1,2,2-Tetrachloroethane		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,2,3-Trichlorobenzene		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Hexachlorobutadiene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Naphthalene		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	o-Xylene		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	2-Chlorotoluene		ug/Kg	U	1.0	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,2-Dichlorobenzene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,2,4-Trimethylbenzene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,2-Dibromo-3-chloropropane		ug/Kg	U	1.0	5.0



Sample Name	Lab ID	Analytical Method	Sample Date	Dilution Factor	Analyte	Result	Unit	Qualifier	MDL	RL
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	1,2,3-Trichloropropane		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	tert-Butylbenzene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	Isopropylbenzene		ug/Kg	U	0.50	5.0
BZ97557-TB	BZ97557	SW8260	3/1/2018	1	p-Isopropyltoluene		ug/Kg	U	0.50	5.0

# DATA USABILITY SUMMARY REPORT (DUSR) VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GBZ95059

**Client:** Environmental Business Consultants

**Date:** 05/23/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for twenty-one (21) soil samples and two (2) trip blanks analyzed for Volatiles by SW-846 Method 8260C in accordance to NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 02/27/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 02/27/2018 for analysis.
- 3. USEPA Region-II SOP HW-33A, Revision 0, July 2015, SOM02.2, Low/Medium Volatile Data Validation documents were used in evaluating the Volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).



# **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
17SB3 (5-7)	BZ95059	2/27/18	VOA	Soil	
17SB3 (12.5-15)	BZ95060	2/27/18	VOA	Soil	
17SB2 (2-4)	BZ95061	2/27/18	VOA	Soil	
17SB2 (5-7)	BZ95062	2/27/18	VOA	Soil	
17SB2 (12.5-15)	BZ95063	2/27/18	VOA	Soil	
17SB1 (5-7)	BZ95064	2/27/18	VOA	Soil	
17SB1 (12.5-15)	BZ95065	2/27/18	VOA	Soil	
17SB5 (2-4)	BZ95066	2/27/18	VOA	Soil	
17SB5 (5-7)	BZ95067	2/27/18	VOA	Soil	
17SB4 (5-7)	BZ95068	2/27/18	VOA	Soil	
17SB4 (12.5-15)	BZ95069	2/27/18	VOA	Soil	
17SB10 (2-4)	BZ95070	2/27/18	VOA	Soil	
17SB10 (5-7)	BZ95071	2/27/18	VOA	Soil	
17SB9 (2-4)	BZ95072	2/27/18	VOA	Soil	
17SB9 (5-7)	BZ95073	2/27/18	VOA	Soil	
17SB8 (5-7)	BZ95074	2/27/18	VOA	Soil	
17SB7 (2-4)	BZ95075	2/27/18	VOA	Soil	
17SB7 (5-7)	BZ95076	2/27/18	VOA	Soil	
17SB7 (12.5-15)	BZ95077	2/27/18	VOA	Soil	
SOIL DUPLICATE	BZ95078	2/27/18	VOA	Soil	Field duplicate for Sample 17SB1 (12.5-15)
SOIL DUPLICATE 2	BZ95079	2/27/18	VOA	Soil	Field duplicate for Sample 17SB4 (12.5-15)
TRIP BLANK LL	BZ95080	2/27/18	VOA	Soil	Trip Blank
TRIP BLANK HL	BZ95081	2/27/18	VOA	Soil	Trip Blank

# **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

## **Holding Times:**

1. All soil samples were analyzed within 14 days from sample collection. No qualifications were required.



# **GC/MS Tuning:**

1. All the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

## **Initial Calibration:**

1. Initial calibration curve analyzed on 2/26/2018 (Chem03) exhibited acceptable %RSDs and average RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications were required.

## **Continuing Calibration Verification (CCV):**

- 1. Opening CCV analyzed on 03/01/2018 @ 08:46 (CHEM03) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications are required.
- 2. Opening CCV analyzed on 03/01/2018 @ 18:39 (CHEM03) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications are required.
- 3. Closing CCV analyzed on 03/02/2018 @ 06:02 (CHEM03) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications are required.
- 4. Opening CCV analyzed on 03/02/2018 @ 08:38 (CHEM03) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications are required.
- 5. Closing CCV analyzed on 03/02/2018 @ 19:43 (CHEM03) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-33A. No qualifications are required.

#### **Surrogates:**

1. All surrogates %RECs values for all soil samples were within the laboratory control limits. No qualifications were required.

## **Internal Standard (IS) Area Performance:**

1. All samples exhibited acceptable area count for all four internal standards within the QC limits with the following exception(s):



Client Sample ID	Laboratory Sample ID	IS	Compound	Action
	_	1 4	T 11 1 1 1 1 1	) T
17SB10 (2-4)	BZ95070	1,4-	Isopropylbenzene, 1,1,2,2-Tetrachloroethane,	None
LL		Dichlorobenzene-d4	Bromobenzene, 1,2,3-Trichloropropane,	
		(low)	n-Propylbenzene, 2-Chlorotoluene,	
			1,3,5-Trimethylbenezene,	
			trans-1,4-Dichloro-2-butene,	
			4-Chlorotoluene, tert-Butylbenzene,	
			1,2,4-Trimethylbenzene, sec-Butylbenzene,	
			1,3-Dichlorobenzene, p-Isopropyltoluene,	
			1,4-Dichlorobenzene, 2-Isopropyltoluene,	
			n-Butylbenzene, 1,2-Dichlorobenzene,	
			1,2-Dibromo-3-Chloropropane	
			1,2,4-Trichlorobenzene, Hexachlorobutadiene,	
			Naphthalene, 1,2,3-Trichlorobenzene	

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (BZ95066Blank) analyzed on 03/01/2018 was free of contamination. No qualifications were required.
- 2. Method Blank (BZ95070Blank) analyzed on 03/01/2018 was free of contamination. No qualifications were required.
- 3. Method Blank (BZ95078Blank) analyzed on 03/02/2018 was free of contamination. No qualifications were required.
- 4. Trip Blank Low (BZ95080) analyzed on 3/01/2018 contained acetone (11  $\mu$ g/Kg) and tetrahydrofuran (3.7  $\mu$ g/Kg). Results for acetone in the field samples were greater than the trip blank contamination; no qualifications were required.
  - Tetrahydrofuran in Sample 17SB7 (2-4) was qualified as non-detect (U).
- 5. Trip Blank High (BZ95081) analyzed on 03/01/2018 was free of contamination. No qualifications were required.

## **Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):**

1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Sample ID: BZ95066 were analyzed on 03/01/2018. All %RECs and RPDs were within the laboratory control limits with the following exception(s):



Compound	%R	Sample	Action
		Affected	
Acetone	68/68/A	Trip Blank HL, 17SB2(2-4), 17SB1(5-7)	UJ
		Trip Blank LL, 15SB3(5-7), 17SB3(12.5-15),	J
		17SB5(2-4) LL, 17SB5(5-7), 17SB4(5-7),	J
		17SB4(12.5-15),	J
		17SB1(12.5-15)HL, 17SB5(2-4) HL	None
Tert-butyl alcohol	A/135/A	Trip Blank LL, Trip Blank HL, 15SB3(5-7),	None
		17SB3(12.5-15), 17SB5(2-4) HL, 17SB5(2-4) LL,	
		17SB5(5-7), 17SB4(5-7), 17SB4(12.5-15),	
		17SB1(5-7),	
		17SB1(12.5-15)HL, 17SB2(2-4)	
1,4-Dioxane	A/136/A	Trip Blank LL, Trip Blank HL, 15SB3(5-7),	None
		17SB3(12.5-15), 17SB5(2-4) HL, 17SB5(2-4) LL,	
		17SB5(5-7), 17SB4(5-7), 17SB4(12.5-15),	
		17SB1(5-7),	
		17SB1(12.5-15)HL, 17SB2(2-4)	

A= Acceptable

2. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Sample ID: BZ95070 were analyzed on 03/01/2018. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample	Action
		Affected	
Acetone	A/68/A	17SB2(2-4)DL, 17SB7(12.5-15), 17SB9(2-4)	UJ
		17SB2(5-7), 17SB2(12.5-15), 17SB1(12.5-15)LL,	J
		17SB10(2-4)LL, 17SB10(5-7), 17SB9(5-7),	J
		17SB7(2-4), 17SB7(5-7),	J
		SOIL DUPLICATE 2	J
		17SB10(2-4)HL	None

A= Acceptable

3. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with Sample ID: BZ95078 were analyzed on 03/02/2018. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample Affected	Action
Acetone	A/69/A	17SB9(2-4)DL	UJ
		SOIL DUPLICATE LL	J
		SOIL DUPLICATE HL	None

A= Acceptable



## **Field Duplicate:**

1. Sample SOIL DUPLICATE (BZ95078) was collected as a field duplicate of sample 17SB1 (12.5-15) (BZ95065). Cymene was detected om the field sample but was non-detect in the field duplicate sample. Styrene and tetrahydrofuran were detected in the field duplicate sample but were non-detect in the field sample. RPDs were ≤50%.

Field Sample	Analyte	Result (µg/Kg)	Field Duplicate	Result (µg/Kg)	RPD	Qualifier
17SB1 (12.5-15)	1,2,4- Trimethylbenzene	120	SOIL DUPLICATE	87	31.9	None
17SB1 (12.5-15)	1,3,5- Trimethylbenzene	55	SOIL DUPLICATE	38	36.6	None
17SB1 (12.5-15)	Acetone	19	SOIL DUPLICATE	14	30.3	None
17SB1 (12.5-15)	Benzene	34	SOIL DUPLICATE	27	23.0	None
17SB1 (12.5-15)	Carbon Disulfide	1.3	SOIL DUPLICATE	1.1	16.7	None
17SB1 (12.5-15)	Cymene	0.63	SOIL DUPLICATE	ND	NC	J/UJ
17SB1 (12.5-15)	Ethylbenzene	300	SOIL DUPLICATE	280	16.4	None
17SB1 (12.5-15)	Isopropylbenzene	43	SOIL DUPLICATE	30	35.6	None
17SB1 (12.5-15)	M,p-Xylene	740	SOIL DUPLICATE	390	61.9	None
17SB1 (12.5-15)	Naphthalene	13	SOIL DUPLICATE	11	16.7	None
17SB1 (12.5-15)	n-Butylbenzene	3.4	SOIL DUPLICATE	2.3	38.6	None
17SB1 (12.5-15)	n-Propylbenzene	89	SOIL DUPLICATE	63	34.2	None
17SB1 (12.5-15)	O-Cymene	0.68	SOIL DUPLICATE	0.53	24.8	None
17SB1 (12.5-15)	O-Xylene	13	SOIL DUPLICATE	9.8	28.1	None
17SB1 (12.5-15)	Sec- Butylbenzene	4.2	SOIL DUPLICATE	2.8	40.0	None
17SB1 (12.5-15)	Styrene	ND	SOIL DUPLICATE	0.72	NC	UJ/J
17SB1 (12.5-15)	Tetrahydrofuran	ND	SOIL DUPLICATE	5.2	NC	UJ/J
17SB1 (12.5-15)	Toluene	29	SOIL DUPLICATE	22	27.5	None

2. Sample SOIL DUPLICATE 2 (BZ95079) was collected as a field duplicate of sample 17SB4 (12.5-15) (BZ95069). RPDs were ≤50% with the following exception(s):

Field Sample	Analyte	Result (µg/Kg)	Field Duplicate	Result (µg/Kg)	RPD	Qualifier
17SB4 (12.5-15)	Acetone	28	SOIL DUPLICATE 2	15	60.5	J
17SB4 (12.5-15)	Tetrahydrofuran	8.0	SOIL DUPLICATE 2	5.9	30.2	None

#### Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were performed on sample 17SB5 (2-4) (BZ95066). All %RECs/RPDs were within the laboratory control limits with the following exception(s):



Compound	%R	Sample	Action
		Affected	
Acetone	58/56/A	17SB5 (2-4)	J
Chloroethane	A/53/46.4	17SB5 (2-4)	UJ
Trichlorofluoromethane	A/25/110.7	17SB5 (2-4)	UJ
Acrolein	A/55/48.3	17SB5 (2-4)	UJ

A= Acceptable

2. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were performed on sample 17SB10 (2-4) (BZ95070). All %RECs/RPDs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample Affected	Action
Acrolein	53/49/A	17SB10 (2-4)	UJ
Acetone	60/63/A	17SB10 (2-4)	J

A= Acceptable

3. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were performed on sample SOIL DUPLICATE (BZ95078). All %RECs/RPDs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample Affected	Action
Bromomethane	60/68/A	SOIL DUPLICATE	UJ
Chloroethane	38/38/A	SOIL DUPLICATE	UJ
Trichlorofluoromethane	20/20/A	SOIL DUPLICATE	UJ
Acrolein	52/66/A	SOIL DUPLICATE	UJ
Acetone	55/50/A	SOIL DUPLICATE	J

A= Acceptable

## **Target Compound Identification:**

- 1. All Relative Retention Times (RRTs) of the reported compounds were within  $\pm$  0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.



## **Compound Quantitation and Reported Detection Limits:**

1. All sample results were reported within the linear calibration range with the exception of acetone in samples 17SB3 (5-7) and 17SB10 (5-7).

Results for acetone were qualified as estimated (J) in samples 17SB3 (5-7) and 17SB10 (5-7).

- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

$$Cx = \frac{(Ax)(IS)(DF)}{(Ais)(RRF)(V)(\%Solids)}$$

Cx = concentration of analyte as ug/kg

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

#### BZ95066 LCS

#### Carbon disulfide

Sample weight= 5.0g Volume purged=5.0ml DF = 1 %Solids=NA

Concentration (
$$\mu$$
g/kg) (dry) =  $364519 \times 50 \times 1 \times 5.0$  =  $49.746 \mu$ g/kg  $343371 \times 1.067 \times 5.0$ 

	Laboratory	Validation	
Compound	(µg/kg)	$(\mu g/kg)$	%D
Carbon disulfide	50	50	0.0



## **Comments:**

- 1. Volatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBZ95059.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBZ95059.



## DATA USABILITY SUMMARY REPORT (DUSR) SEMI-VOLATILE ORGANIC COMPOUNDS

USEPA Region II -Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GBZ95059

**Client:** Environmental Business Consultants

**Date:** 05/23/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for twenty-one (21) soil samples analyzed for Semi-volatiles by SW-846 Method 8270D in accordance with the NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 02/27/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 02/27/2018 for analysis.
- 3. The USEPA Region-II SOP HW-35A, Revision 0, June 2015, Semi-volatile Data Validation was used in evaluating the Semi-volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).



## Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
17SB3 (5-7)	BZ95059	2/27/18	SVO	Soil	
17SB3 (12.5-15)	BZ95060	2/27/18	SVO	Soil	
17SB2 (2-4)	BZ95061	2/27/18	SVO	Soil	
17SB2 (5-7)	BZ95062	2/27/18	SVO	Soil	
17SB2 (12.5-15)	BZ95063	2/27/18	SVO	Soil	
17SB1 (5-7)	BZ95064	2/27/18	SVO	Soil	
17SB1 (12.5-15)	BZ95065	2/27/18	SVO	Soil	
17SB5 (2-4)	BZ95066	2/27/18	SVO	Soil	
17SB5 (5-7)	BZ95067	2/27/18	SVO	Soil	
17SB4 (5-7)	BZ95068	2/27/18	SVO	Soil	
17SB4 (12.5-15)	BZ95069	2/27/18	SVO	Soil	
17SB10 (2-4)	BZ95070	2/27/18	SVO	Soil	
17SB10 (5-7)	BZ95071	2/27/18	SVO	Soil	
17SB9 (2-4)	BZ95072	2/27/18	SVO	Soil	
17SB9 (5-7)	BZ95073	2/27/18	SVO	Soil	
17SB8 (5-7)	BZ95074	2/27/18	SVO	Soil	
17SB7 (2-4)	BZ95075	2/27/18	SVO	Soil	
17SB7 (5-7)	BZ95076	2/27/18	SVO	Soil	
17SB7 (12.5-15)	BZ95077	2/27/18	SVO	Soil	
SOIL DUPLICATE	BZ95078	2/27/18	SVO	Soil	Field duplicate for Sample 17SB1 (12.5-15)
SOIL DUPLICATE 2	BZ95079	2/27/18	SVO	Soil	Field duplicate for Sample 17SB4 (12.5-15)

## **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

#### **Holding Times:**

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.



## **GC/MS Tuning:**

1. All DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

#### **Initial Calibration:**

- 1. Initial calibration curve analyzed on 2/06/2018 (CHEM05) exhibited acceptable %RSDs and average RRF values for compounds listed in Table 2 in SOP HW-35A. No qualifications were required.
- 2. Initial calibration curve analyzed on 2/23/2018 (CHEM05) exhibited acceptable %RSDs and average RRF values for compounds listed in Table 2 in SOP HW-35A. No qualifications were required.

#### **Continuing Calibration Verification (CCV):**

- 1. Opening CCV analyzed on 02/27/2018 @ 19:27 (CHEM05) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-35A. No qualifications were required.
- 3. Closing CCV analyzed on 02/28/2018 @ 05:54 (CHEM05) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-35A with the following exception(s):

Compound	%D
Hexachlorocyclopentadiene	63.6
2,4-Dinitrophenol	57.4

Client Sample ID	Laboratory	Compound	Action
	Sample ID		
17SB3 (5-7)	BZ95059	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB3 (12.5-15)	BZ95060	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB2 (2-4)	BZ95061	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB2 (5-7)	BZ95062	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB2 (12.5-15)	BZ95063	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB1 (5-7)	BZ95064	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB1 (12.5-15)	BZ95065	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB5 (2-4)	BZ95066	Hexachlorocyclopentadiene	$\mathbf{R}^{(1)}$
		2,4-Dinitrophenol	UJ
17SB5 (5-7)	BZ95067	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ



17SB4 (5-7)	BZ95068	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB4 (12.5-15)	BZ95069	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB10 (5-7)	BZ95071	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB9 (2-4)	BZ95072	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB9 (5-7)	BZ95073	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB8 (5-7)	BZ95074	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB7 (2-4)	BZ95075	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB7 (5-7)	BZ95076	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
17SB7 (12.5-15)	BZ95077	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
SOIL	BZ95078	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
DUPLICATE			
SOIL	BZ95079	Hexachlorocyclopentadiene, 2,4-Dinitrophenol	UJ
DUPLICATE 2			

- (1) This compound was qualified rejected due to zero LCS recovery (see LCS section for more discussion).
- 3. Opening CCV analyzed on 02/27/2018 @ 19:21 (CHEM29) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-35A. No qualifications were required.
- 4. Closing CCV analyzed on 02/28/2018 @ 03:56 (CHEM29) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-35A with the following exception(s):

Compound	%D
Hexachlorocyclopentadiene	94.4
2,4-Dinitrophenol	89.4
4,6-Dinitro-2-methylphenol	82.9

Client Sample ID	Laboratory Sample ID	Compound	Action
17SB10 (2-4)	BZ95070	Hexachlorocyclopentadiene, 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol	UJ

- 5. Opening CCV analyzed on 02/28/2018 @ 09:07 (CHEM29) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-35A. No qualifications were required.
- **6.** Closing CCV analyzed on 02/28/2018 @ 19:59 (CHEM29) exhibited acceptable %Ds and RRF values for compounds listed in Table 2 in SOP HW-35A. No qualifications were required.



#### **Surrogates:**

1. Surrogate %REC values were within the QC acceptance limits. No qualifications were required.

#### **Internal Standard (IS) Area Performance:**

1. Samples exhibited acceptable area count for all six internal standards. No qualifications were required.

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (BZ95066 BLANK) associated with the soil samples extracted on 02/27/2018 and analyzed on 02/27/2018 was free of contamination. No qualifications were required.
- 2. Method Blank (BZ95070 BLANK) associated with the soil samples extracted on 02/27/2018 and analyzed on 02/27/2018 was free of contamination. No qualifications were required.

#### <u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

1. Laboratory Control Sample associated with Batch ID: BZ95066 were analyzed on 2/27/2018. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample	Action
		Affected	
1,3-Dichlorobenzene	57/56/A	17SB5(2-4), 17SB3(5-7), 17SB3(12.5-15),	UJ
		17SB2(2-4), 17SB2(5-7), 17SB2(12.5-15),	
		17SB1(5-7), 17SB1(12.5-15), 17SB5(5-7),	
		17SB4(5-7), 17SB4(12.5-15), 17SB10(5-7),	
		17SB9(2-4), 17SB9(5-7), 17SB8(5-7), 17SB7(2-	
		4), 17SB7(5-7), 17SB7(12.5-15), SOIL	
		DUPLICATE, SOIL DUPLICATE 2	
1,4-Dichlorobenzene	58/57/A	17SB5(2-4), 17SB3(5-7), 17SB3(12.5-15),	UJ
		17SB2(2-4), 17SB2(5-7), 17SB2(12.5-15),	
		17SB1(5-7), 17SB1(12.5-15), 17SB5(5-7),	
		17SB4(5-7), 17SB4(12.5-15), 17SB10(5-7),	
		17SB9(2-4), 17SB9(5-7), 17SB8(5-7), 17SB7(2-	
		4), 17SB7(5-7), 17SB7(12.5-15), SOIL	
		DUPLICATE, SOIL DUPLICATE 2	
Benzoic Acid	2/2/A	17SB5(2-4), 17SB3(5-7), 17SB3(12.5-15),	UJ
		17SB2(2-4), 17SB2(5-7), 17SB2(12.5-15),	



Compound	%R/%R/RPD	Sample Affected	Action
		17SB1(5-7), 17SB1(12.5-15), 17SB5(5-7),	
		17SB4(5-7), 17SB4(12.5-15), 17SB10(5-7),	
		17SB9(2-4), 17SB9(5-7), 17SB8(5-7), 17SB7(2-	
		4), 17SB7(5-7), 17SB7(12.5-15), SOIL	
		DUPLICATE, SOIL DUPLICATE 2	
1,2,4-Trichlorobenzene	67/68/A	17SB5(2-4), 17SB3(5-7), 17SB3(12.5-15),	UJ
		17SB2(2-4), 17SB2(5-7), 17SB2(12.5-15),	
		17SB1(5-7), 17SB1(12.5-15), 17SB5(5-7),	
		17SB4(5-7), 17SB4(12.5-15), 17SB10(5-7),	
		17SB9(2-4), 17SB9(5-7), 17SB8(5-7), 17SB7(2-	
		4), 17SB7(5-7), 17SB7(12.5-15), SOIL	
		DUPLICATE, SOIL DUPLICATE 2	
Naphthalene	65/63/A	17SB5(2-4), 17SB7(12.5-15), 17SB9(2-4)	J
1		17SB3(5-7), 17SB3(12.5-15), 17SB2(2-4),	UJ
		17SB2(5-7), 17SB2(12.5-15), 17SB1(5-7),	UJ
		17SB1(12.5-15), 17SB5(5-7), 17SB4(5-7),	UJ
		17SB4(12.5-15), 17SB10(5-7), 17SB9(5-7),	UJ
		17SB8(5-7), 17SB7(2-4), 17SB7(5-7),	UJ
		SOIL DUPLICATE, SOIL DUPLICATE 2	UJ
Hexachlorobutadiene	66/67/A	17SB5(2-4), 17SB3(5-7), 17SB3(12.5-15),	UJ
		17SB2(2-4), 17SB2(5-7), 17SB2(12.5-15),	
		17SB1(5-7), 17SB1(12.5-15), 17SB5(5-7),	
		17SB4(5-7), 17SB4(12.5-15), 17SB10(5-7),	
		17SB9(2-4), 17SB9(5-7), 17SB8(5-7), 17SB7(2-	
		4), 17SB7(5-7), 17SB7(12.5-15), SOIL	
		DUPLICATE, SOIL DUPLICATE 2	
2,4-Dinitrophenol	4/9/70.9	17SB5(2-4), 17SB3(5-7), 17SB3(12.5-15),	UJ
, 1		17SB2(2-4), 17SB2(5-7), 17SB2(12.5-15),	
		17SB1(5-7), 17SB1(12.5-15), 17SB5(5-7),	
		17SB4(5-7), 17SB4(12.5-15), 17SB10(5-7),	
		17SB9(2-4), 17SB9(5-7), 17SB8(5-7), 17SB7(2-	
		4), 17SB7(5-7), 17SB7(12.5-15), SOIL	
		DUPLICATE, SOIL DUPLICATE 2	
4,6-Dinitro-2-methylphenol	14/22/44.4	17SB5(2-4), 17SB3(5-7), 17SB3(12.5-15),	UJ
, J r		17SB2(2-4), 17SB2(5-7), 17SB2(12.5-15),	
		17SB1(5-7), 17SB1(12.5-15), 17SB5(5-7),	
		17SB4(5-7), 17SB4(12.5-15), 17SB10(5-7),	
		17SB9(2-4), 17SB9(5-7), 17SB8(5-7), 17SB7(2-	
		4), 17SB7(5-7), 17SB7(12.5-15), SOIL	
		DUPLICATE, SOIL DUPLICATE 2	

A= Acceptable



2. Laboratory Control Sample associated with Batch ID: BZ95070 were analyzed on 2/27/2018. All %RECs and RPDs were within the laboratory control limits with the following exception(s):

Compound	%R/%R/RPD	Sample Affected	Action
1,3-Dichlorobenzene	60/60/A	17SB10(2-4)	UJ
1,4-Dichlorobenzene	62/62/A	17SB10(2-4)	UJ
Benzoic Acid	0/0/NA	17SB10(2-4)	UJ
1,2,4-Trichlorobenzene	68/68/A	17SB10(2-4)	UJ
Hexachlorobutadiene	67/68/A	17SB10(2-4)	UJ
2,4-Dinitrophenol	3/3/A	17SB10(2-4)	UJ
4,6-Dinitro-2-methylphenol	10/10/A	17SB10(2-4)	UJ

A= Acceptable

## Field Duplicate:

- 1. Sample SOIL DUPLICATE (BZ95078) was collected as a field duplicate of sample 17SB1 (12.5-15) (BZ95065). Both sample results were non-detect; no qualifications were required.
- 2. Sample SOIL DUPLICATE 2 (BZ95079) was collected as a field duplicate of sample 17SB4 (12.5-15) (BZ95069). Both sample results were non-detect; no qualifications were required.

#### Matrix Spike (MS)/Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were performed on sample 17SB5 (2-4) (BZ95066). All %RECs/RPDs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample	Action
		Affected	
1,3-Dichlorobenzene	58/57/A	17SB5 (2-4)	UJ
1,4-Dichlorobenzene	59/58/A	17SB5 (2-4)	UJ
Benzoic Acid	22/15/37.8	17SB5 (2-4)	UJ
1,2,4-Trichlorobenzene	67/66/A	17SB5 (2-4)	UJ
Naphthalene	63/61/A	17SB5 (2-4)	J
Hexachlorobutadiene	63/63/A	17SB5 (2-4)	UJ
Hexachlorocyclopentadiene	0/0/NA	17SB5 (2-4)	R
2,4-Dinitrophenol	A/19/73.3	17SB5 (2-4)	UJ
4,6-Dinitro-2-methylphenol	A/A/58.1	17SB5 (2-4)	UJ



Compound	%R	Sample Affected	Action
Benzidine	3/16/136.8	17SB5 (2-4)	UJ

A = Acceptable NA = Not applicable

2. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were performed on sample 17SB10 (2-4) (BZ95070). All %RECs/RPDs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample Affected	Action
1,3-Dichlorobenzene	52/50/A	17SB10 (2-4)	UJ
1,4-Dichlorobenzene	56/52/A	17SB10 (2-4)	UJ
Benzoic Acid	25/19/A	17SB10 (2-4)	UJ
1,2,4-Trichlorobenzene	57/54/A	17SB10 (2-4)	UJ
Hexachlorobutadiene	56/53/A	17SB10 (2-4)	UJ
Hexachlorocyclopentadiene	19/4/130.4	17SB10 (2-4)	UJ
2,4-Dinitrophenol	A/11/112.0	17SB10 (2-4)	UJ
4,6-Dinitro-2-methylphenol	A/18/108.9	17SB10 (2-4)	UJ
Pentachlorophenol	A/A/31.6	17SB10 (2-4)	UJ
Benzidine	0/0/A	17SB10 (2-4)	UJ
Benzyl butyl phthalate	27/28/0	17SB10 (2-4)	J
3,3'-dichlorobenzidine	17/18/A	17SB10 (2-4)	UJ
Benzo(ghi)perylene	A/A/29	17SB10 (2-4)	J

A = Acceptable NA = Not applicable

## **Target Compound Identification:**

- 1. All Relative Retention Times (RRTs) of the reported compounds were within  $\pm$  0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

## **Compound Quantitation and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:



$$Cx = (Ax)(IS)(VE)(DF)$$
  
(Ais)(RRF)(Volume injected,  $\mu$ L)(V)(%Solids)

Cx = concentration of analyte as ug/kg

Ax = Area of the characteristic ion for the compound to be measured, counts.

Ais = Area of the characteristic ion for the specific internal standard, counts.

IS = Concentration of the internal standard spiking mixture, ng

RRF= Mean relative response factor from the initial calibration.

DF = Dilution factor calculated. If no dilution is performed, DF= 1

V= Volume for liquids in ml, weight for soils/solids in grams.

VE= final volume of concentrated extract

Sample: BZ95066 LCS

Pyridine

Sample weight= 15g Volume purged=1.0ml DF = 1 %Solids=NA

Concentration (
$$\mu$$
g/kg) (dry) =  $\underline{244513 \times 40 \times 1 \times 1000}$  = 1346 $\mu$ g/kg  $\underline{324902 \times 1.491 \times 15}$ 

	Laboratory	Validation	
Compound	(µg/kg)	$(\mu g/kg)$	%D
Pyridine	1346	1346	0.0

## **Comments:**

- 1. Semivolatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBZ95059.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBZ95059.



## DATA USABILITY SUMMARY REPORT (DUSR) POLYCHLORINATED BIPHENYLIS (PCBs)

USEPA Region II -Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GBZ95059

**Client:** Environmental Business Consultants

**Date:** 05/25/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for twelve (12) soil samples analyzed for PCBs by SW-846 Method 8082A in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 2/27/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 02/27/2018 for analysis.
- 3. USEPA Region-II SOP HW-37A, Revision 0, June 2015, PCB Data Validation, SOM02.2 was used in evaluating the PCBs data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).



## **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
17SB3 (12.5-15)	BZ95060	2/27/18	PCBs	Soil	
17SB2 (2-4)	BZ95061	2/27/18	PCBs	Soil	
17SB2 (12.5-15)	BZ95063	2/27/18	PCBs	Soil	
17SB1 (12.5-15)	BZ95065	2/27/18	PCBs	Soil	
17SB5 (2-4)	BZ95066	2/27/18	PCBs	Soil	
17SB4 (12.5-15)	BZ95069	2/27/18	PCBs	Soil	
17SB10 (2-4)	BZ95070	2/27/18	PCBs	Soil	
17SB9 (2-4)	BZ95072	2/27/18	PCBs	Soil	
17SB7 (2-4)	BZ95075	2/27/18	PCBs	Soil	
17SB7 (12.5-15)	BZ95077	2/27/18	PCBs	Soil	
SOIL DUPLICATE	BZ95078	2/27/18	PCBs	Soil	Field duplicate for Sample 17SB1 (12.5-15)
SOIL DUPLICATE 2	BZ95079	2/27/18	PCBs	Soil	Field duplicate for Sample 17SB4 (12.5-15)

## **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

#### **Holding Times:**

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

## **Initial Calibration:**

- 1. Initial calibration curve analyzed on 02/08/2018 (ECD24) exhibited acceptable %RSD (≤20.0%) on both columns. No qualifications were required.
- 2. Initial calibration curve analyzed on 02/08/2018 (ECD3) exhibited acceptable %RSD (≤20.0%) on both columns. No qualifications were required.



#### **Continuing Calibration Verification (CCV):**

1. All CCVs analyzed on 02/28/2018 and 03/01/2018 exhibited acceptable %Ds averages (≤15.0%) for all compounds. No qualifications were required.

#### **Surrogates:**

1. All surrogates %RECs values for all soil samples and associated QC were within the laboratory control limits. No qualifications were required.

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (BZ95066 BL) associated with the soil samples extracted on 02/27/2018 and analyzed on 02/28/2018 was free of contamination. No qualifications were required.
- 2. Method Blank (BZ95070 BL) associated with the soil samples extracted on 02/27/2018 and analyzed on 02/28/2018 was free of contamination. No qualifications were required.

## <u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

- 1. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with ID: BZ95066 were analyzed on 02/28/2018. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.
- 2. Laboratory Control Sample and Laboratory Control Sample Duplicate associated with ID: BZ95070 were analyzed on 02/28/2018. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

#### **Field Duplicate:**

- 1. Sample SOIL DUPLICATE (BZ95078) was collected as a field duplicate of sample 17SB1 (12.5-15) (BZ95065). Both sample results were non-detect; no qualifications were required.
- 2. Sample SOIL DUPLICATE 2 (BZ95079) was collected as a field duplicate of sample 17SB4 (12.5-15) (BZ95069). Both sample results were non-detect; no qualifications were required.

#### Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were performed on sample 17SB5 (2-4) (BZ95066). All %RECs/RPDs were within the laboratory control limits. No qualifications were required.



2. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were performed on sample 17SB10 (2-4) (BZ95070). All %RECs/RPDs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample Affected	Action
Aroclor-1016	A/A/30.9	17SB10 (2-4)	UJ
Aroclor-1260	A/A/33.6	17SB10 (2-4)	UJ

## **Compound Quantitation, Compound Identification and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. % Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

BZ95066 LCS

Aroclor-1016

On Column concentration (B)= 461.215ng

Sample weight= 15.0g

DF= 10

Vi = 5ml

%Solids= 100%

Concentration (
$$\mu$$
g/kg) (dry) =  $\frac{461.215 \text{ng x 5ml x}10}{15.0 \text{g}} = 1537.4 \mu$ g/kg

	Laboratory	Validation	
Compound	(µg/kg)	$(\mu g/kg)$	%D
Aroclor-1016	1540	1540	0.0

#### **Comments:**

- 1. PCBs data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBZ95059.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBZ95059.



# DATA USABILITY SUMMARY REPORT (DUSR) PESTICIDES

USEPA Region II –Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GBZ95059

**Client:** Environmental Business Consultants

**Date:** 05/25/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for twelve (12) soil samples analyzed for Pesticides by SW-846 Method 8081B in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 02/27/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 02/27/2018 for analysis.
- 3. USEPA Region-II SOP HW-36A, Revision 0, June 2015, Pesticide Data Validation, SOM02.2 was used in evaluating the pesticide data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).



## **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
17SB3 (12.5-15)	BZ95060	2/27/18	Pesticides	Soil	
17SB2 (2-4)	BZ95061	2/27/18	Pesticides	Soil	
17SB2 (12.5-15)	BZ95063	2/27/18	Pesticides	Soil	
17SB1 (12.5-15)	BZ95065	2/27/18	Pesticides	Soil	
17SB5 (2-4)	BZ95066	2/27/18	Pesticides	Soil	
17SB4 (12.5-15)	BZ95069	2/27/18	Pesticides	Soil	
17SB10 (2-4)	BZ95070	2/27/18	Pesticides	Soil	
17SB9 (2-4)	BZ95072	2/27/18	Pesticides	Soil	
17SB7 (2-4)	BZ95075	2/27/18	Pesticides	Soil	
17SB7 (12.5-15)	BZ95077	2/27/18	Pesticides	Soil	
SOIL	BZ95078	2/27/18	Pesticides	Soil	Field duplicate for Sample
DUPLICATE					17SB1 (12.5-15)
SOIL	BZ95079	2/27/18	Pesticides	Soil	Field duplicate for Sample
DUPLICATE 2					17SB4 (12.5-15)

## **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

## **Holding Times:**

1. All soil samples were extracted within 14 days from sample collection and analyzed within 40 days following sample extraction. No qualifications were required.

## **GC/ECD Instrument Performance Check:**

1. 4,4'-DDT and Endrin breakdown exhibited acceptable results (±20%). No qualifications were required.

## **Initial Calibration:**

1. Initial calibration curve analyzed on 02/26/2018 (ECD10) exhibited acceptable %RSD on both columns. No qualifications were required.



2. Initial calibration curve analyzed on 02/26/2018 (ECD10) exhibited acceptable %RSD on both columns. No qualifications were required.

## **Continuing Calibration Verification (CCV):**

1. CCVs analyzed on 02/28/2018 and 3/01-02/2018 exhibited acceptable %Ds (≤20.0%) for all compounds that were reported. No qualifications were required.

#### **Surrogates:**

1. All surrogates %RECs values for all soil samples were within the laboratory control limits. No qualifications were required.

# Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (BZ95066 BL) associated with the soil samples extracted on 02/27/2018 and analyzed on 02/28/2018 was free of contamination. No qualifications were required.
- 2. Method Blank (BZ95070 BL) associated with the soil samples extracted on 02/27/2018 and analyzed on 02/28/2018 was free of contamination. No qualifications were required.

## Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

- 1. Laboratory Control Sample associated with ID: BZ95066 LCS was analyzed on 02/28/2018. All %RECs were within the laboratory control limits. No qualifications were required.
- 2. Laboratory Control Sample associated with ID: BZ95070 LCS was analyzed on 02/28/2018. All %RECs were within the laboratory control limits. No qualifications were required.

#### **Field Duplicate:**

- 1. Sample SOIL DUPLICATE (BZ95078) was collected as a field duplicate of sample 17SB1 (12.5-15) (BZ95065). Both sample results were non-detect; no qualifications were required.
- 2. Sample SOIL DUPLICATE 2 (BZ95079) was collected as a field duplicate of sample 17SB4 (12.5-15) (BZ95069). Both sample results were non-detect; no qualifications were required.



## Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

1. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were performed on sample 17SB5 (2-4) (BZ95066). All %RECs/RPDs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample Affected	Action
4,4'-DDD	A/A/41.9	17SB5 (2-4)	J

2. Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) were performed on sample 17SB10 (2-4) (BZ95070). All %RECs/RPDs were within the laboratory control limits. No qualifications were required.

## **Compound Quantitation, Compound Identification and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. %Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual Calculation:

BZ95066 LCS

Alpha-BHC

On Column concentration (A) = 33.9004ng

Sample Weight= 15.0g

DF = 2

Vi = 5ml

%Solids= 100%

Concentration (
$$\mu g/kg$$
)(dry) =  $\frac{33.9004 \text{ng x 5ml x 2}}{15.0g}$  = 22.6003 $\mu g/kg$ 

	Laboratory	Validation	
Compound	(µg/kg)	$(\mu g/kg)$	%D
Alpha-BHC	22.6	22.6	0.0



## **Comments:**

- 1. Pesticides data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBZ95059.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBZ95059.



# DATA USABILITY SUMMARY REPORT (DUSR) TRACE METALS

USEPA Region II –Data Validation

**Project Name:** 1346 Blondell Ave

**Location:** Bronx, New York

**Project Number:** 3020-038

**SDG** #: GBZ95059

**Client:** Environmental Business Consultants

**Date:** 05/25/2018

**Laboratory:** Phoenix Environmental Laboratories, Inc.

**Reviewer:** Sherri Pullar

#### **Summary:**

- 1. Data validation was performed on the data for twelve (12) soil samples analyzed for the following analyses:
  - 1.1 Trace Metals-ICP-AES by SW-846 Method 6010C.
  - 1.2 Mercury by SW-846 Method 7471A.
- 2. The samples were collected on 02/27/2018. The samples were submitted to Phoenix Environmental Laboratories, Inc., Manchester, CT on 2/27/2018 for analysis.
- 3. USEPA Region-II SOP No. HW-2a, Revision 0, July 2015, ICP-AES Data Validation was used in evaluating the metals data and USEPA Region-II SOP No. HW-3c, Revision 0, July 2016, Mercury and Cyanide Data Validation was used to in evaluating the mercury data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).



## **Samples:**

The samples included in this review are listed below:

Client Sample ID	Laboratory	Collection	Analysis	Matrix	Sample Status
	Sample ID	Date			
17SB3 (12.5-15)	BZ95060	2/27/18	ICP and CVAA	Soil	
17SB2 (2-4)	BZ95061	2/27/18	ICP and CVAA	Soil	
17SB2 (12.5-15)	BZ95063	2/27/18	ICP and CVAA	Soil	
17SB1 (12.5-15)	BZ95065	2/27/18	ICP and CVAA	Soil	
17SB5 (2-4)	BZ95066	2/27/18	ICP and CVAA	Soil	
17SB4 (12.5-15)	BZ95069	2/27/18	ICP and CVAA	Soil	
17SB10 (2-4)	BZ95070	2/27/18	ICP and CVAA	Soil	
17SB9 (2-4)	BZ95072	2/27/18	ICP and CVAA	Soil	
17SB7 (2-4)	BZ95075	2/27/18	ICP and CVAA	Soil	
17SB7 (12.5-15)	BZ95077	2/27/18	ICP and CVAA	Soil	
SOIL DUPLICATE	BZ95078	2/27/18	ICP and CVAA	Soil	Field duplicate for Sample
					17SB1 (12.5-15)
SOIL DUPLICATE	BZ95079	2/27/18	ICP and CVAA	Soil	Field duplicate for Sample
2					17SB4 (12.5-15)

## **Sample Conditions/Problems:**

1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.

## **Holding Times**:

- 1. All soil samples were analyzed within the 6 months holding times for Trace Metals analysis by ICP-AES. No qualifications were required.
- 2. All soil samples were digested and analyzed within the 28 days holding times for Mercury analysis. No qualifications were required.



## **Initial and Continuing Calibration Verification (ICV and CCV):**

#### **ICP-AES:**

1. All %RECs in the ICV and CCVs were within QC limits (90-110%). No qualifications were required.

#### **Mercury:**

- All correlation coefficient for Mercury calibration curve analyzed were  $\geq$ 0.995. No qualifications were required.
- 2. All ICVs and CCVs %REC values were within the QC limits (80-120%). No qualifications were required.

## **CRQL Check Standard (CRI):**

1. All CRI analyzed %RECs were within the control limits (70-130%) with the following exception(s):

Analyte	Date	Initial	Final	Sample Affected	Action
	Analyzed	%R	%R		
Iron	2/28/2018:	Α	169.4	17SB5 (2-4)	J
	10:01				
Calcium	2/28/2018:	138.6	-	17SB10 (2-4)	J
	13:23				
Iron	2/28/2018:	173.9	-	17SB10 (2-4)	J
	13:23				
Mercury	2/28/2018:	42.2	-	17SB3 (12.5-15), 17SB2 (12.5-15),	UJ
	8:24			17SB1 (12.5-15), 17SB4 (12.5-15), 17SB7 (2-4),	UJ
				SOIL DUPLICATE, SOIL DUPLICATE 2	UJ
				17SB2 (2-4), 17SB5 (2-4), 17SB10 (2-4),	J
				17SB9 (2-4), 17SB7 (12.5-15)	J

#### **ICP-AES Interference Check Sample:**

1. All %REC values were within the QC limits (80-120%) for ICSA and ICSAB. No qualifications were required.



## **Blanks (Method Blank, ICB and CCB):**

#### **ICP-AES:**

- 1. Method Blank-Soil (BZ95066BLK) digested on 02/27/2018 was free of contamination. No qualifications were required.
- 2. Method Blank-Soil (BZ95070BLK) digested on 02/27/2018 was free of contamination with the exception of sodium (10 mg/Kg). Sample results associated with this blank were greater than 10X the blank contamination. No qualifications were required.
- 3. All ICB and CCBs contained the following:

Element	Concentration	CRQL*	Sample Affected	Action
	(µg/L)	(µg/L)		
Antimony	51	50	None	None
	54	50	17SB5 (2-4), 17SB3 (12.5-15), 17SB2 (2-4)	None
	52	50	17SB2 (12.5-15), 17SB1 (12.5-15), 17SB4 (12.5-15),	None
			17SB9 (2-4), 17SB7 (2-4), 17SB7(12.5-15),	
			SOIL DUPLICATE, SOIL DUPLICATE 2	
	49	50	None	None
	48	50	None	None
	47	50	17SB10 (2-4)	None
	48	50	None	None
Aluminum	13	50	17SB5 (2-4)	None
Potassium	93	100	17SB5 (2-4), 17SB2 (2-4)	None
	85	100	17SB1 (12.5-15), 17SB9 (2-4),	None
			17SB7(12.5-15),	
	136	100	None	None
Sodium	152	100	None	None
	119	100	17SB10 (2-4)	None
	101	100	None	None
Lead	5	10	17SB5 (2-4), 17SB3 (12.5-15), 17SB2 (2-4)	None

^{*=} If sample concentration >MDL but < Reporting limit, then sample result qualified as non-detect (U). If sample concentration greater than CRQL but less than 10x the blank result, then qualify estimated (J). If sample concentration greater than 10x the blank results or sample was not detected then no qualifications or action is required.

#### **Mercury:**

1. All ICB and CCBs were free of contamination. No qualifications were required.



- 2. Method Blank (BZ95066BLK) digested on 02/28/2018 was free of contamination. No qualifications were required.
- 3. Method Blank (BZ95070BLK) digested on 02/28/2018 was free of contamination. No qualifications were required.
- 4. Method Blank (BZ94969BLK) digested on 02/28/2018 was free of contamination. No qualifications were required.

## Field Blank (FB) and Equipment Blank (EB):

1. Field Blanks were not submitted with this SDG.

## Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

## **ICP-AES and Mercury:**

1. Laboratory Control Sample %RECs were within the laboratory control limits (75-125%). No qualifications were required.

#### **Field Duplicate:**

1. Sample SOIL DUPLICATE (BZ95078) was collected as a field duplicate of sample 17SB1 (12.5-15) (BZ95065). All RPDs were ≤50% (or difference >2XCRDL) with the following exception(s):

Field Sample	Analyte	Result (mg/Kg)	Field Duplicate	Result (mg/Kg)	Difference	RPD	Qualifier
17SB1 (12.5-15)	Aluminum	6090	SOIL DUPLICATE	8890	NA	37.4	None
17SB1 (12.5-15)	Arsenic	0.70	SOIL DUPLICATE	1.08	0.4	NA	None
17SB1 (12.5-15)	Barium	56.1	SOIL DUPLICATE	105	NA	60.7	J
17SB1 (12.5-15)	Beryllium	0.24	SOIL DUPLICATE	0.31	0.1	NA	None
17SB1 (12.5-15)	Calcium	962	SOIL DUPLICATE	1080	NA	11.6	None
17SB1 (12.5-15)	Chromium	16.9	SOIL DUPLICATE	27.6	NA	48.1	None
17SB1 (12.5-15)	Cobalt	6.44	SOIL DUPLICATE	10.3	NA	46.1	None
17SB1 (12.5-15)	Copper	10.9	SOIL DUPLICATE	23.0	NA	71.4	J
17SB1 (12.5-15)	Iron	10100	SOIL DUPLICATE	15500	NA	42.2	None
17SB1 (12.5-15)	Lead	2.6	SOIL DUPLICATE	2.0	0.6	NA	None
17SB1 (12.5-15)	Magnesium	2650	SOIL DUPLICATE	4390	NA	49.4	None
17SB1 (12.5-15)	Manganese	104	SOIL DUPLICATE	177	NA	52.0	J
17SB1 (12.5-15)	Nickel	10.6	SOIL DUPLICATE	18.8	NA	55.8	J
17SB1 (12.5-15)	Potassium	2510	SOIL DUPLICATE	3760	NA	39.9	None



Field Sample	Analyte	Result (mg/Kg)	Field Duplicate	Result (mg/Kg)	Difference	RPD	Qualifier
17SB1 (12.5-15)	Sodium	295	SOIL DUPLICATE	193	NA	41.8	None
17SB1 (12.5-15)	Vanadium	20.9	SOIL DUPLICATE	29.3	NA	33.5	None
17SB1 (12.5-15)	Zinc	22.0	SOIL DUPLICATE	32.6	NA	38.8	None

2. Sample SOIL DUPLICATE 2 (BZ95079) was collected as a field duplicate of sample 17SB4 (12.5-15) (BZ95069). All RPDs were ≤50% (or difference >2XCRDL). Arsenic was detected in the field duplicate sample but was non-detect in the field sample.

Field Sample	Analyte	Result (mg/Kg)	Field Duplicate	Result (mg/Kg)	Difference	RPD	Qualifier
17SB4 (12.5-15)	Aluminum	25800	SOIL DUPLICATE 2	23300	NA	10.2	None
17SB4 (12.5-15)	Arsenic	ND	SOIL DUPLICATE 2	0.96	NC	NA	UJ/J
17SB4 (12.5-15)	Barium	404	SOIL DUPLICATE 2	371	NA	8.5	None
17SB4 (12.5-15)	Beryllium	0.53	SOIL DUPLICATE 2	0.53	0	NA	None
17SB4 (12.5-15)	Calcium	1880	SOIL DUPLICATE 2	1480	NA	23.8	None
17SB4 (12.5-15)	Chromium	47.5	SOIL DUPLICATE 2	52.0	NA	9.0	None
17SB4 (12.5-15)	Cobalt	23.4	SOIL DUPLICATE 2	21.2	NA	9.9	None
17SB4 (12.5-15)	Copper	61.9	SOIL DUPLICATE 2	60.5	NA	2.3	None
17SB4 (12.5-15)	Iron	44100	SOIL DUPLICATE 2	41900	NA	5.1	None
17SB4 (12.5-15)	Lead	4.8	SOIL DUPLICATE 2	4.6	NA	4.3	None
17SB4 (12.5-15)	Magnesium	11200	SOIL DUPLICATE 2	9910	NA	12.2	None
17SB4 (12.5-15)	Manganese	624	SOIL DUPLICATE 2	533	NA	15.7	None
17SB4 (12.5-15)	Nickel	38.6	SOIL DUPLICATE 2	36.9	NA	4.5	None
17SB4 (12.5-15)	Potassium	14500	SOIL DUPLICATE 2	12900	NA	11.7	None
17SB4 (12.5-15)	Sodium	362	SOIL DUPLICATE 2	415	NA	13.6	None
17SB4 (12.5-15)	Vanadium	67.1	SOIL DUPLICATE 2	68.8	NA	2.5	None
17SB4 (12.5-15)	Zinc	99.0	SOIL DUPLICATE 2	92.2	NA	7.1	None

## Matrix Spike (MS)/ Matrix Spike Duplicate (MSD):

## **ICP-AES and Mercury:**

1. Matrix Spike (MS) was performed on sample 17SB5 (2-4) (BZ95066). All %RECs were within the laboratory control limits with the following exception(s):



Compound	%R/Post %R	Sample	Action
_		Affected	
Barium	>130/A	17SB5 (2-4)	J+
Potassium	>130/72	17SB5 (2-4)	J+
Sodium	>130/226	17SB5 (2-4)	J

A= Acceptable

2. Matrix Spike (MS) was performed on sample 17SB10 (2-4) (BZ95070). All %RECs were within the laboratory control limits with the following exception(s):

Compound	%R	Sample Affected	Action
Sodium	>130/A	17SB10 (2-4)	J+

A= Acceptable

## **Sample Duplicate:**

## **ICP-AES and Mercury:**

1. Laboratory Duplicate was performed on sample 17SB5 (2-4) (BZ95066) for ICP-AES. All RPDs were within the laboratory control limits with the following exception(s):

Compound	RPD	Sample Affected	Action
Arsenic	38.8	17SB5 (2-4)	J
Iron	32.1	17SB5 (2-4)	J
Sodium	54.8	17SB5 (2-4)	J

2. Laboratory Duplicate was performed on sample 17SB10 (2-4) (BZ95070) for ICP-AES. All RPDs were within the laboratory control limits with the following exception(s):

Compound	RPD	Sample Affected	Action
Calcium	75.8	17SB10 (2-4)	J
Cobalt	36.3	17SB10 (2-4)	J
Magnesium	77.6	17SB10 (2-4)	J
Nickel	41.9	17SB10 (2-4)	J
Vanadium	38.3	17SB10 (2-4)	J



#### **ICP-AES Serial Dilution**:

1. ICP serial dilution was not performed on a sample from this SDG Laboratory Duplicate was performed on sample 17SB5 (2-4) (BZ95066) for ICP-AES. All RPDs were within the laboratory control limits with the following exception(s):

Compound	RPD	Sample Affected	Action
Sodium	55.7	17SB5 (2-4)	J

2. ICP serial dilution was not performed on a sample from this SDG Laboratory Duplicate was performed on sample 17SB10 (2-4) (BZ95070) for ICP-AES. All RPDs were within the laboratory control limits with the following exception(s):

Compound	RPD	Sample Affected	Action
Copper	11.2	17SB10 (2-4)	J

## **Verification of Instrumental Parameters:**

- 1. The following Forms were present in the data package:
  - Method Detection Limits, Form- X. 1.1
  - ICP-AES Interelement Correction Factors, Form -XIA and Form-XIB. 1.2
  - 1.3 ICP-AES Linear Ranges, Form XII.

#### **Compound Quantitation and Reported Detection Limits:**

- 1. All sample results were reported within the linear calibration range.
- 2. % Solids for all soil samples in this SDG were >50%. No qualifications were required.
- 3. Manual calculation:

Sample: 17SB3 (12.5-15) (BZ95060)

Arsenic

Concentration (mg/Kg) (dry wt.)= C x V x DF x 1Lx 1000gx 1mg W x S x 1000ml x 1 kg x 1000ug

V = 50mlW = 0.80g



# Concentration (mg/Kg) (dry wt.)= $\frac{10.66 \text{ug/L} \times 50 \times 1.0 \times 11 \times 1000 \text{gx 1mg}}{0.80 \times 0.88 \times 1000 \text{ml} \times 1 \text{ kg} \times 1000 \text{ug}} = 0.7572 \text{ mg/kg}$

	Laboratory	Validation	
Compound	(mg/kg)	(mg/kg)	%D
Arsenic	0.76	0.76	0.0

## **Comments:**

- 1. Trace Metals data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: GBZ95059.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: GBZ95059.





		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Acetone	350	ug/kg	J
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB3 (5-7)	BZ95059	E160.3	2/27/2018	1	Solids, Percent	75	%	
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Styrene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	N-Propylbenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	N-Butylbenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Acrolein		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Toluene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Sec-Butylbenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether	3.4	ug/kg	J
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	m,p-Xylene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Chloroform		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Benzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Carbon Disulfide	1.8	ug/kg	J
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)	48	ug/kg	
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Naphthalene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Cymene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Pyrene	310	ug/kg	
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene	210	ug/kg	J
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene	220	ug/kg	J
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Benzo(B)Fluoranthene	220	ug/kg	J
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Fluoranthene	350	ug/kg	
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Benzo(K)Fluoranthene	180	ug/kg	J
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Chrysene	240	ug/kg	J
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Benzo(A)Pyrene	200	ug/kg	J



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Benzo(A)Anthracene	210	ug/kg	J
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Phenanthrene	160	ug/kg	J
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Benzidine		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB3 (5-7)	BZ95059	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Tetrahydrofuran		ug/kg	U
17SB3 (5-7)	BZ95059	SW8260	2/27/2018	1	Tert-Butyl Alcohol	69	ug/kg	J
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	10	Aluminum	17800	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Antimony		mg/kg	U
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Arsenic	0.76	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Barium	284	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Beryllium	0.55	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Cadmium		mg/kg	U
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Calcium	957	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Chromium, Total	37.7	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Cobalt	15.4	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Copper	56.0	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	10	Iron	27500	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Lead	6.4	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	10	Magnesium	6050	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	10	Manganese	499	mg/kg	
17SB3 (12.5-15)	BZ95060	SW7471	2/27/2018	1	Mercury		mg/kg	UJ
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Nickel	32.0	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	10	Potassium	8020	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Selenium		mg/kg	U
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Silver		mg/kg	U
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Sodium	264	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Thallium		mg/kg	U
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Vanadium	48.6	mg/kg	
17SB3 (12.5-15)	BZ95060	SW6010	2/27/2018	1	Zinc	64.7	mg/kg	



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Acetone	77	ug/kg	J
17SB3 (12.5-15)	BZ95060	E160.3	2/27/2018	1	Solids, Percent	88	%	
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Heptachlor Epoxide		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Endosulfan Sulfate		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Aldrin		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Alpha Bhc (Alpha Hexachlorocyclohexane)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Beta Bhc (Beta Hexachlorocyclohexane)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Delta BHC (Delta Hexachlorocyclohexane)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Beta Endosulfan		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	P,P'-DDT		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	cis-Chlordane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	trans-Chlordane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Endrin Ketone		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Chlordane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Gamma Bhc (Lindane)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Dieldrin		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Endrin		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Methoxychlor		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	P,P'-DDD		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	P,P'-DDE		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Endrin Aldehyde		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Heptachlor		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Toxaphene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8081	2/27/2018	2	Alpha Endosulfan		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8082	2/27/2018	2	PCB-1260 (Aroclor 1260)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8082	2/27/2018	2	PCB-1254 (Aroclor 1254)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8082	2/27/2018	2	PCB-1268 (Aroclor 1268)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8082	2/27/2018	2	PCB-1221 (Aroclor 1221)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8082	2/27/2018	2	PCB-1232 (Aroclor 1232)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8082	2/27/2018	2	PCB-1248 (Aroclor 1248)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8082	2/27/2018	2	PCB-1016 (Aroclor 1016)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8082	2/27/2018	2	PCB-1262 (Aroclor 1262)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8082	2/27/2018	2	PCB-1242 (Aroclor 1242)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Styrene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	N-Propylbenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	N-Butylbenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Acrolein		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Toluene	0.62	ug/kg	J
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Sec-Butylbenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	m,p-Xylene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Chloroform	1.0	ug/kg	J
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Benzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Carbon Disulfide		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Naphthalene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Cymene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Pyrene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Benzo(B)Fluoranthene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Fluoranthene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Benzo(K)Fluoranthene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Chrysene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Benzo(A)Pyrene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Benzo(A)Anthracene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Phenanthrene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Tetrahydrofuran		ug/kg	U
17SB3 (12.5-15)	BZ95060	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	10	Aluminum	8940	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Antimony		mg/kg	U
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Arsenic	12.5	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Barium	189	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Beryllium	0.36	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Cadmium	1.70	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	10	Calcium	18200	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Chromium, Total	49.5	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Cobalt	17.1	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	10	Copper	238	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	10	Iron	61900	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	10	Lead	394	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	10	Magnesium	8480	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	10	Manganese	495	mg/kg	
17SB2 (2-4)	BZ95061	SW7471	2/27/2018	1	Mercury	0.56	mg/kg	J
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Nickel	71.5	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Potassium	2720	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Selenium		mg/kg	U
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Silver	1.48	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Sodium	407	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Thallium		mg/kg	U
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	1	Vanadium	89.6	mg/kg	
17SB2 (2-4)	BZ95061	SW6010	2/27/2018	10	Zinc	247	mg/kg	
17SB2 (2-4)	BZ95061	E160.3	2/27/2018	1	Solids, Percent	88	%	
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Heptachlor Epoxide		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Endosulfan Sulfate		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Aldrin		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Alpha Bhc (Alpha Hexachlorocyclohexane)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Beta Bhc (Beta Hexachlorocyclohexane)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Delta BHC (Delta Hexachlorocyclohexane)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Beta Endosulfan		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	P,P'-DDT	15	ug/kg	
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	cis-Chlordane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	trans-Chlordane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Endrin Ketone		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Chlordane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Gamma Bhc (Lindane)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Dieldrin		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Endrin		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Methoxychlor		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	P,P'-DDD		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	P,P'-DDE	11	ug/kg	
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Endrin Aldehyde		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Heptachlor		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Toxaphene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8081	2/27/2018	2	Alpha Endosulfan		ug/kg	U
17SB2 (2-4)	BZ95061	SW8082	2/27/2018	2	PCB-1260 (Aroclor 1260)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8082	2/27/2018	2	PCB-1254 (Aroclor 1254)	160	ug/kg	
17SB2 (2-4)	BZ95061	SW8082	2/27/2018	2	PCB-1268 (Aroclor 1268)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8082	2/27/2018	2	PCB-1221 (Aroclor 1221)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8082	2/27/2018	2	PCB-1232 (Aroclor 1232)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8082	2/27/2018	2	PCB-1248 (Aroclor 1248)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8082	2/27/2018	2	PCB-1016 (Aroclor 1016)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8082	2/27/2018	2	PCB-1262 (Aroclor 1262)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8082	2/27/2018	2	PCB-1242 (Aroclor 1242)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Ethylbenzene	34000	ug/kg	
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Styrene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Cis-1,3-Dichloropropene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Trans-1,3-Dichloropropene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	N-Propylbenzene	25000	ug/kg	
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	N-Butylbenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	4-Chlorotoluene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,4-Dichlorobenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Acrolein		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,2-Dichloroethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Acrylonitrile		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Bromobenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Toluene	1800	ug/kg	J
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Chlorobenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Tetrahydrofuran		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,2,4-Trichlorobenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Dibromochloromethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Tetrachloroethylene (PCE)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Sec-Butylbenzene	12000	ug/kg	
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,3-Dichloropropane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Cis-1,2-Dichloroethylene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Trans-1,2-Dichloroethene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Tert-Butyl Methyl Ether		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	O-Cymene (O-Isopropyltoluene)	7800	ug/kg	
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,3-Dichlorobenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Carbon Tetrachloride		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,1-Dichloropropene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	2-Hexanone		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	2,2-Dichloropropane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Chloroform		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Benzene	1500	ug/kg	J
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Bromomethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Chloromethane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Dibromomethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Bromochloromethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Chloroethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Vinyl Chloride		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Methylene Chloride		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Carbon Disulfide		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Bromoform		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Bromodichloromethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,1-Dichloroethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,1-Dichloroethene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Trichlorofluoromethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Dichlorodifluoromethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,2-Dichloropropane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,1,2-Trichloroethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Trichloroethylene (TCE)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,2,3-Trichlorobenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Hexachlorobutadiene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Naphthalene	210000	ug/kg	
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	O-Xylene (1,2-Dimethylbenzene)	4900	ug/kg	J
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	2-Chlorotoluene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,2-Dichlorobenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	1,2,3-Trichloropropane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	T-Butylbenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Isopropylbenzene (Cumene)	9700	ug/kg	
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Cymene	19000	ug/kg	
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	10000	1,3,5-Trimethylbenzene (Mesitylene)	520000	ug/kg	
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	10000	m,p-Xylene	930000	ug/kg	
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	10000	1,2,4-Trimethylbenzene	1400000	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate	4000	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Anthracene	630	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Pyrene	1600	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene	410	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene	440	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Benzo(B)Fluoranthene	610	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Fluoranthene	1500	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Benzo(K)Fluoranthene	440	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Acenaphthylene	420	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Chrysene	690	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Benzo(A)Pyrene	510	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Benzo(A)Anthracene	640	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Acenaphthene	690	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Phenanthrene	3100	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Fluorene	1600	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	20	Naphthalene	63000	ug/kg	
17SB2 (2-4)	BZ95061	SW8270	2/27/2018	20	2-Methylnaphthalene	63000	ug/kg	
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Acetone		ug/kg	UJ
17SB2 (2-4)	BZ95061	SW8260	2/27/2018	1000	Tert-Butyl Alcohol		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Acetone	82	ug/kg	J
17SB2 (5-7)	BZ95062	E160.3	2/27/2018	1	Solids, Percent	86	%	
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Ethylbenzene	17	ug/kg	
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Styrene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	N-Propylbenzene	140	ug/kg	
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	N-Butylbenzene	7.6	ug/kg	
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Acrolein		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)	2.4	ug/kg	J
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Toluene	0.61	ug/kg	J
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Sec-Butylbenzene	30	ug/kg	
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	m,p-Xylene	27	ug/kg	
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)	5.7	ug/kg	
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Chloroform		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Benzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Carbon Disulfide	1.8	ug/kg	J
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Naphthalene	2.8	ug/kg	J
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene	5.4	ug/kg	
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)	52	ug/kg	
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Cymene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Pyrene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Benzo(B)Fluoranthene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Fluoranthene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Benzo(K)Fluoranthene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Chrysene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Benzo(A)Pyrene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Benzo(A)Anthracene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Phenanthrene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB2 (5-7)	BZ95062	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB2 (5-7)	BZ95062	SW8260	2/27/2018	1	Tetrahydrofuran		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Acetone	38	ug/kg	J
17SB2 (12.5-15)	BZ95063	E160.3	2/27/2018	1	Solids, Percent	82	%	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	10	Aluminum	10700	mg/kg	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Antimony		mg/kg	U
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Arsenic		mg/kg	U
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Barium	99.9	mg/kg	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Beryllium	0.42	mg/kg	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Cadmium		mg/kg	U
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Calcium	1190	mg/kg	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Chromium, Total	25.3	mg/kg	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Cobalt	9.78	mg/kg	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Copper	26.0	mg/kg	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	10	Iron	16200	mg/kg	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Lead	2.0	mg/kg	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Magnesium	4850	mg/kg	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	10	Manganese	155	mg/kg	
17SB2 (12.5-15)	BZ95063	SW7471	2/27/2018	1	Mercury		mg/kg	UJ
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Nickel	22.1	mg/kg	



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	10	Potassium	4300	mg/kg	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Selenium		mg/kg	U
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Silver		mg/kg	U
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Sodium	298	mg/kg	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Thallium		mg/kg	U
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Vanadium	32.1	mg/kg	
17SB2 (12.5-15)	BZ95063	SW6010	2/27/2018	1	Zinc	41.3	mg/kg	
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Heptachlor Epoxide		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Endosulfan Sulfate		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Aldrin		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Alpha Bhc (Alpha Hexachlorocyclohexane)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Beta Bhc (Beta Hexachlorocyclohexane)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Delta BHC (Delta Hexachlorocyclohexane)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Beta Endosulfan		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	P,P'-DDT		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	cis-Chlordane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	trans-Chlordane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Endrin Ketone		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Chlordane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Gamma Bhc (Lindane)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Dieldrin		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Endrin		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Methoxychlor		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	P,P'-DDD		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	P,P'-DDE		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Endrin Aldehyde		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Heptachlor		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Toxaphene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8081	2/27/2018	2	Alpha Endosulfan		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8082	2/27/2018	2	PCB-1260 (Aroclor 1260)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8082	2/27/2018	2	PCB-1254 (Aroclor 1254)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8082	2/27/2018	2	PCB-1268 (Aroclor 1268)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8082	2/27/2018	2	PCB-1221 (Aroclor 1221)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8082	2/27/2018	2	PCB-1232 (Aroclor 1232)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (12.5-15)	BZ95063	SW8082	2/27/2018	2	PCB-1248 (Aroclor 1248)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8082	2/27/2018	2	PCB-1016 (Aroclor 1016)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8082	2/27/2018	2	PCB-1262 (Aroclor 1262)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8082	2/27/2018	2	PCB-1242 (Aroclor 1242)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Ethylbenzene	1.8	ug/kg	J
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Styrene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	N-Propylbenzene	47	ug/kg	
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	N-Butylbenzene	1.7	ug/kg	J
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Acrolein		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Toluene	2.0	ug/kg	J
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Sec-Butylbenzene	3.7	ug/kg	J
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	m,p-Xylene	2.1	ug/kg	J
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)	1.1	ug/kg	J
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Chloroform		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Benzene	3.3	ug/kg	J
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Carbon Disulfide		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Naphthalene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)	27	ug/kg	
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Cymene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Pyrene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Benzo(B)Fluoranthene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Fluoranthene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Benzo(K)Fluoranthene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Chrysene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Benzo(A)Pyrene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Benzo(A)Anthracene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Phenanthrene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB2 (12.5-15)	BZ95063	SW8260	2/27/2018	1	Tetrahydrofuran	12	ug/kg	J
17SB1 (5-7)	BZ95064	E160.3	2/27/2018	1	Solids, Percent	94	%	
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Ethylbenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Styrene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Cis-1,3-Dichloropropene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Trans-1,3-Dichloropropene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	N-Propylbenzene	1500	ug/kg	
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	N-Butylbenzene	760	ug/kg	
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	4-Chlorotoluene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,4-Dichlorobenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Acrolein		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,2-Dichloroethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Acrylonitrile		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Bromobenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Toluene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Chlorobenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Tetrahydrofuran		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,2,4-Trichlorobenzene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Dibromochloromethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Tetrachloroethylene (PCE)		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Sec-Butylbenzene	470	ug/kg	
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,3-Dichloropropane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Cis-1,2-Dichloroethylene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Trans-1,2-Dichloroethene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Tert-Butyl Methyl Ether		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	m,p-Xylene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	O-Cymene (O-Isopropyltoluene)	48	ug/kg	J
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,3-Dichlorobenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Carbon Tetrachloride		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,1-Dichloropropene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	2-Hexanone		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	2,2-Dichloropropane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Chloroform		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Benzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Bromomethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Chloromethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Dibromomethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Bromochloromethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Chloroethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Vinyl Chloride		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Methylene Chloride		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Carbon Disulfide		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Bromoform		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Bromodichloromethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,1-Dichloroethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,1-Dichloroethene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Trichlorofluoromethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Dichlorodifluoromethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,2-Dichloropropane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,1,2-Trichloroethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Trichloroethylene (TCE)		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,2,3-Trichlorobenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Hexachlorobutadiene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Naphthalene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	2-Chlorotoluene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,2-Dichlorobenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,2,4-Trimethylbenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	1,2,3-Trichloropropane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	T-Butylbenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Isopropylbenzene (Cumene)	230	ug/kg	
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Cymene	70	ug/kg	J
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Pyrene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Benzo(B)Fluoranthene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Fluoranthene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Benzo(K)Fluoranthene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Chrysene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Benzo(A)Pyrene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Benzo(A)Anthracene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Phenanthrene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB1 (5-7)	BZ95064	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Acetone		ug/kg	UJ
17SB1 (5-7)	BZ95064	SW8260	2/27/2018	50	Tert-Butyl Alcohol		ug/kg	U
17SB1 (12.5-15)	BZ95065	E160.3	2/27/2018	1	Solids, Percent	90	%	
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Heptachlor Epoxide		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Endosulfan Sulfate		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Aldrin		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Alpha Bhc (Alpha Hexachlorocyclohexane)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Beta Bhc (Beta Hexachlorocyclohexane)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Delta BHC (Delta Hexachlorocyclohexane)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Beta Endosulfan		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	P,P'-DDT		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	cis-Chlordane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	trans-Chlordane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Endrin Ketone		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Chlordane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Gamma Bhc (Lindane)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Dieldrin		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Endrin		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Methoxychlor		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	P,P'-DDD		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	P,P'-DDE		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Endrin Aldehyde		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Heptachlor		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Toxaphene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8081	2/27/2018	2	Alpha Endosulfan		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8082	2/27/2018	2	PCB-1260 (Aroclor 1260)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8082	2/27/2018	2	PCB-1254 (Aroclor 1254)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8082	2/27/2018	2	PCB-1268 (Aroclor 1268)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8082	2/27/2018	2	PCB-1221 (Aroclor 1221)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8082	2/27/2018	2	PCB-1232 (Aroclor 1232)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8082	2/27/2018	2	PCB-1248 (Aroclor 1248)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8082	2/27/2018	2	PCB-1016 (Aroclor 1016)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8082	2/27/2018	2	PCB-1262 (Aroclor 1262)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8082	2/27/2018	2	PCB-1242 (Aroclor 1242)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene	120	ug/kg	
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)	55	ug/kg	
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Styrene		ug/kg	UJ
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Benzene	34	ug/kg	
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Acrolein		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Carbon Disulfide	1.3	ug/kg	J
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Cymene	0.63	ug/kg	J
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Tetrahydrofuran		ug/kg	UJ
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	50	Ethylbenzene	330	ug/kg	
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)	43	ug/kg	
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Chloroform		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	50	m,p-Xylene	740	ug/kg	
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Naphthalene	13	ug/kg	
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Bromoform		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	N-Butylbenzene	3.4	ug/kg	J
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	N-Propylbenzene	89	ug/kg	
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)	0.68	ug/kg	J
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)	13	ug/kg	
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Sec-Butylbenzene	4.2	ug/kg	J
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Pyrene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Benzo(B)Fluoranthene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Fluoranthene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Benzo(K)Fluoranthene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Chrysene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Benzo(A)Pyrene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Benzo(A)Anthracene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Isophorone		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Phenanthrene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Acetone	19	ug/kg	J
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	10	Aluminum	6090	mg/kg	
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Antimony		mg/kg	U
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Arsenic	0.70	mg/kg	
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Barium	56.1	mg/kg	J



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Beryllium	0.24	mg/kg	J
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Cadmium		mg/kg	U
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Calcium	962	mg/kg	
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Chromium, Total	16.9	mg/kg	
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Cobalt	6.44	mg/kg	
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Copper	10.9	mg/kg	J
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	10	Iron	10100	mg/kg	
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Lead	2.6	mg/kg	
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Toluene	29	ug/kg	
17SB1 (12.5-15)	BZ95065	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Magnesium	2650	mg/kg	
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Manganese	104	mg/kg	J
17SB1 (12.5-15)	BZ95065	SW7471	2/27/2018	1	Mercury		mg/kg	UJ
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Nickel	10.6	mg/kg	J
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Potassium	2510	mg/kg	
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Selenium		mg/kg	U
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Silver		mg/kg	U
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Sodium	295	mg/kg	
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Thallium		mg/kg	U
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Vanadium	20.9	mg/kg	
17SB1 (12.5-15)	BZ95065	SW6010	2/27/2018	1	Zinc	22.0	mg/kg	
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Acetone	56	ug/kg	J
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	10	Aluminum	11700	mg/kg	
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Antimony		mg/kg	U
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Arsenic	9.78	mg/kg	J
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	10	Barium	275	mg/kg	J+
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Beryllium	0.45	mg/kg	
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Cadmium	2.17	mg/kg	
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	10	Calcium	19000	mg/kg	
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Chromium, Total	35.4	mg/kg	
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Cobalt	13.3	mg/kg	
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Copper	102	mg/kg	
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	10	Iron	37600	mg/kg	J



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	10	Lead	598	mg/kg	
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	10	Magnesium	8030	mg/kg	
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	10	Manganese	374	mg/kg	
17SB5 (2-4)	BZ95066	SW7471	2/27/2018	1	Mercury	0.91	mg/kg	J
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Nickel	36.8	mg/kg	
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Potassium	3470	mg/kg	J+
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Selenium		mg/kg	U
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Silver		mg/kg	U
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Sodium	447	mg/kg	J
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Thallium		mg/kg	U
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	1	Vanadium	88.9	mg/kg	
17SB5 (2-4)	BZ95066	SW6010	2/27/2018	10	Zinc	305	mg/kg	
17SB5 (2-4)	BZ95066	E160.3	2/27/2018	1	Solids, Percent	82	%	
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Heptachlor Epoxide		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Endosulfan Sulfate		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Aldrin		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Alpha Bhc (Alpha Hexachlorocyclohexane)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Beta Bhc (Beta Hexachlorocyclohexane)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Delta BHC (Delta Hexachlorocyclohexane)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Beta Endosulfan		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	P,P'-DDT		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	cis-Chlordane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	trans-Chlordane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Endrin Ketone		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Chlordane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Gamma Bhc (Lindane)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Dieldrin		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Endrin		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Methoxychlor		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	P,P'-DDD	20	ug/kg	J
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	P,P'-DDE		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Endrin Aldehyde		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Heptachlor		ug/kg	U
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Toxaphene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB5 (2-4)	BZ95066	SW8081	2/27/2018	2	Alpha Endosulfan		ug/kg	U
17SB5 (2-4)	BZ95066	SW8082	2/27/2018	2	PCB-1260 (Aroclor 1260)	240	ug/kg	
17SB5 (2-4)	BZ95066	SW8082	2/27/2018	2	PCB-1254 (Aroclor 1254)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8082	2/27/2018	2	PCB-1268 (Aroclor 1268)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8082	2/27/2018	2	PCB-1221 (Aroclor 1221)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8082	2/27/2018	2	PCB-1232 (Aroclor 1232)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8082	2/27/2018	2	PCB-1248 (Aroclor 1248)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8082	2/27/2018	2	PCB-1016 (Aroclor 1016)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8082	2/27/2018	2	PCB-1262 (Aroclor 1262)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8082	2/27/2018	2	PCB-1242 (Aroclor 1242)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	50	Toluene	47	ug/kg	J
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	50	m,p-Xylene	120	ug/kg	J
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	50	Benzene	63	ug/kg	J
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	50	Naphthalene	93	ug/kg	J
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	50	1,2,4-Trimethylbenzene	100	ug/kg	J
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Styrene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	N-Propylbenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	N-Butylbenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Acrolein		ug/kg	UJ
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Sec-Butylbenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Chloroform		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Chloroethane		ug/kg	UJ
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Carbon Disulfide		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	UJ
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Cymene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate	770	ug/kg	
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Anthracene	290	ug/kg	
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Pyrene	1300	ug/kg	
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene	560	ug/kg	
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene	630	ug/kg	



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Benzo(B)Fluoranthene	770	ug/kg	
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Fluoranthene	1400	ug/kg	
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Benzo(K)Fluoranthene	610	ug/kg	
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Acenaphthylene	120	ug/kg	J
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Chrysene	800	ug/kg	
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Benzo(A)Pyrene	710	ug/kg	
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene	170	ug/kg	J
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Benzo(A)Anthracene	750	ug/kg	
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	R
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Acenaphthene	150	ug/kg	J
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Phenanthrene	860	ug/kg	
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Fluorene	150	ug/kg	J
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Naphthalene	220	ug/kg	J
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2-Methylnaphthalene	130	ug/kg	J
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Benzidine		ug/kg	UJ
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB5 (2-4)	BZ95066	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Tetrahydrofuran	5.9	ug/kg	J
17SB5 (2-4)	BZ95066	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Acetone	210	ug/kg	J
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB5 (5-7)	BZ95067	E160.3	2/27/2018	1	Solids, Percent	78	%	
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Styrene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	N-Propylbenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	N-Butylbenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Acrolein		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Toluene	0.92	ug/kg	J
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Sec-Butylbenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether	3.6	ug/kg	J
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	m,p-Xylene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)	2.0	ug/kg	J
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Chloroform		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Benzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Carbon Disulfide		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Naphthalene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Cymene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U



		Analytical	Sample	Dilution	I			
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Pyrene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Benzo(B)Fluoranthene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Fluoranthene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Benzo(K)Fluoranthene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Chrysene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Benzo(A)Pyrene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Benzo(A)Anthracene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Phenanthrene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB5 (5-7)	BZ95067	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Tetrahydrofuran	7.4	ug/kg	J
17SB5 (5-7)	BZ95067	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Acetone	120	ug/kg	J
17SB4 (5-7)	BZ95068	E160.3	2/27/2018	1	Solids, Percent	79	%	
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Styrene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	N-Propylbenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	N-Butylbenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Acrolein		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Toluene	1.0	ug/kg	J
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Sec-Butylbenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	m,p-Xylene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Chloroform		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Benzene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Carbon Disulfide		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)	21	ug/kg	J
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Naphthalene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Cymene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Pyrene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Benzo(B)Fluoranthene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Fluoranthene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Benzo(K)Fluoranthene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Chrysene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Benzo(A)Pyrene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Benzo(A)Anthracene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Phenanthrene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB4 (5-7)	BZ95068	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Tetrahydrofuran	10	ug/kg	J
17SB4 (5-7)	BZ95068	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Acetone	28	ug/kg	J
17SB4 (12.5-15)	BZ95069	E160.3	2/27/2018	1	Solids, Percent	86	%	
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	100	Aluminum	25800	mg/kg	
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Antimony		mg/kg	U
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Arsenic		mg/kg	UJ
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Barium	404	mg/kg	
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Beryllium	0.53	mg/kg	
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Cadmium		mg/kg	U
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Calcium	1880	mg/kg	
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Chromium, Total	47.5	mg/kg	
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Cobalt	23.4	mg/kg	
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Copper	61.9	mg/kg	
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	10	Iron	44100	mg/kg	
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Lead	4.8	mg/kg	
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Heptachlor Epoxide		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Endosulfan Sulfate		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Aldrin		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Alpha Bhc (Alpha Hexachlorocyclohexane)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Beta Bhc (Beta Hexachlorocyclohexane)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Delta BHC (Delta Hexachlorocyclohexane)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Beta Endosulfan		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	P,P'-DDT		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	cis-Chlordane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	trans-Chlordane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Endrin Ketone		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Chlordane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Gamma Bhc (Lindane)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Dieldrin		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Endrin		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Methoxychlor		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	P,P'-DDD		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	P,P'-DDE		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Endrin Aldehyde		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Heptachlor		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Toxaphene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8081	2/27/2018	2	Alpha Endosulfan		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8082	2/27/2018	2	PCB-1260 (Aroclor 1260)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8082	2/27/2018	2	PCB-1254 (Aroclor 1254)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8082	2/27/2018	2	PCB-1268 (Aroclor 1268)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8082	2/27/2018	2	PCB-1221 (Aroclor 1221)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8082	2/27/2018	2	PCB-1232 (Aroclor 1232)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8082	2/27/2018	2	PCB-1248 (Aroclor 1248)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8082	2/27/2018	2	PCB-1016 (Aroclor 1016)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8082	2/27/2018	2	PCB-1262 (Aroclor 1262)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8082	2/27/2018	2	PCB-1242 (Aroclor 1242)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Styrene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	N-Propylbenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	N-Butylbenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Acrolein		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Toluene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Sec-Butylbenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	m,p-Xylene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Chloroform		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Benzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Carbon Disulfide		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Naphthalene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Cymene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Pyrene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Benzo(B)Fluoranthene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Fluoranthene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Benzo(K)Fluoranthene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Chrysene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Benzo(A)Pyrene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Benzo(A)Anthracene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Phenanthrene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Tetrahydrofuran	8.0	ug/kg	J
17SB4 (12.5-15)	BZ95069	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	10	Magnesium	11200	mg/kg	
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	10	Manganese	624	mg/kg	
17SB4 (12.5-15)	BZ95069	SW7471	2/27/2018	1	Mercury		mg/kg	UJ
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Nickel	38.6	mg/kg	
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	10	Potassium	14500	mg/kg	
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Selenium		mg/kg	U
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Silver		mg/kg	U
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Sodium	362	mg/kg	



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Thallium		mg/kg	U
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Vanadium	67.1	mg/kg	
17SB4 (12.5-15)	BZ95069	SW6010	2/27/2018	1	Zinc	99.0	mg/kg	
17SB10 (2-4)	BZ95070	E160.3	2/27/2018	1	Solids, Percent	90	%	
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Heptachlor Epoxide		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Endosulfan Sulfate		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Aldrin		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Alpha Bhc (Alpha Hexachlorocyclohexane)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Beta Bhc (Beta Hexachlorocyclohexane)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Delta BHC (Delta Hexachlorocyclohexane)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Beta Endosulfan		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	P,P'-DDT	8.1	ug/kg	
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	cis-Chlordane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	trans-Chlordane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Endrin Ketone		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Chlordane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Gamma Bhc (Lindane)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Dieldrin		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Endrin		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Methoxychlor		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	P,P'-DDD		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	P,P'-DDE		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Endrin Aldehyde		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Heptachlor		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Toxaphene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8081	2/27/2018	2	Alpha Endosulfan		ug/kg	U
17SB10 (2-4)	BZ95070	SW8082	2/27/2018	2	PCB-1260 (Aroclor 1260)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8082	2/27/2018	2	PCB-1254 (Aroclor 1254)	130	ug/kg	
17SB10 (2-4)	BZ95070	SW8082	2/27/2018	2	PCB-1268 (Aroclor 1268)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8082	2/27/2018	2	PCB-1221 (Aroclor 1221)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8082	2/27/2018	2	PCB-1232 (Aroclor 1232)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8082	2/27/2018	2	PCB-1248 (Aroclor 1248)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8082	2/27/2018	2	PCB-1016 (Aroclor 1016)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8082	2/27/2018	2	PCB-1262 (Aroclor 1262)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB10 (2-4)	BZ95070	SW8082	2/27/2018	2	PCB-1242 (Aroclor 1242)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	N-Propylbenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	N-Butylbenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	4-Chlorotoluene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	1,4-Dichlorobenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	Bromobenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	1,2,4-Trichlorobenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	Sec-Butylbenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	O-Cymene (O-Isopropyltoluene)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	1,3-Dichlorobenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	1,2,3-Trichlorobenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	Hexachlorobutadiene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	Naphthalene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	2-Chlorotoluene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	1,2-Dichlorobenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	1,2,4-Trimethylbenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	1,2,3-Trichloropropane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	T-Butylbenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	Isopropylbenzene (Cumene)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	50	Cymene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Styrene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Acrolein		ug/kg	UJ
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Toluene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	m,p-Xylene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Chloroform		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Benzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Carbon Disulfide		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)	5.4	ug/kg	J
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate	240	ug/kg	J
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Pyrene	460	ug/kg	
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene	530	ug/kg	J
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene	540	ug/kg	
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Benzo(B)Fluoranthene	470	ug/kg	
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Fluoranthene	450	ug/kg	
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Benzo(K)Fluoranthene	450	ug/kg	
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Acenaphthylene	140	ug/kg	J
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Chrysene	360	ug/kg	
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Benzo(A)Pyrene	560	ug/kg	İ



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene	200	ug/kg	
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Benzo(A)Anthracene	260	ug/kg	
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Phenanthrene	250	ug/kg	J
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Benzyl Butyl Phthalate	1000	ug/kg	J
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	UJ
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Naphthalene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	UJ
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Benzidine		ug/kg	UJ



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB10 (2-4)	BZ95070	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Acetone	34	ug/kg	J
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	10	Aluminum	9380	mg/kg	
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Antimony		mg/kg	U
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Arsenic	4.23	mg/kg	
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Barium	135	mg/kg	
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Beryllium	0.32	mg/kg	
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Cadmium	1.12	mg/kg	
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	10	Calcium	32900	mg/kg	J
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Chromium, Total	27.7	mg/kg	
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Cobalt	13.3	mg/kg	J
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Copper	116	mg/kg	J
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	10	Iron	35600	mg/kg	J
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	10	Lead	177	mg/kg	
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	10	Magnesium	15600	mg/kg	J
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	10	Manganese	362	mg/kg	
17SB10 (2-4)	BZ95070	SW7471	2/27/2018	1	Mercury	0.09	mg/kg	J
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Nickel	27.4	mg/kg	J
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	10	Potassium	5170	mg/kg	
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Selenium		mg/kg	U
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Silver		mg/kg	U
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Sodium	311	mg/kg	J+
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Thallium		mg/kg	U
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Vanadium	65.6	mg/kg	J
17SB10 (2-4)	BZ95070	SW6010	2/27/2018	1	Zinc	137	mg/kg	
17SB10 (2-4)	BZ95070	SW8260	2/27/2018	1	Tetrahydrofuran	3.2	ug/kg	J



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB10 (5-7)	BZ95071	E160.3	2/27/2018	1	Solids, Percent	39	%	
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Styrene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	N-Propylbenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	N-Butylbenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Acrolein		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Toluene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Sec-Butylbenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	m,p-Xylene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Chloroform		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Benzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Carbon Disulfide	13	ug/kg	J
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)	340	ug/kg	
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Naphthalene	41	ug/kg	
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene	3.1	ug/kg	J
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Cymene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Anthracene	360	ug/kg	J
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Pyrene	1500	ug/kg	
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene	390	ug/kg	J
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene	470	ug/kg	J
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Benzo(B)Fluoranthene	790	ug/kg	
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Fluoranthene	1900	ug/kg	
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Benzo(K)Fluoranthene	670	ug/kg	
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Chrysene	1000	ug/kg	
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Benzo(A)Pyrene	840	ug/kg	



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Benzo(A)Anthracene	1100	ug/kg	
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Phenanthrene	1300	ug/kg	
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Benzidine		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB10 (5-7)	BZ95071	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Acetone	990	ug/kg	J
17SB10 (5-7)	BZ95071	SW8260	2/27/2018	1	Tetrahydrofuran	8.6	ug/kg	J
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	10	Aluminum	4470	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Antimony		mg/kg	U
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Arsenic	4.69	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Barium	144	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Beryllium	0.32	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Cadmium	0.42	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	10	Calcium	15500	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Chromium, Total	13.5	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Cobalt	6.61	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Copper	55.1	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	10	Iron	9920	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	10	Lead	270	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	10	Magnesium	5910	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Manganese	122	mg/kg	
17SB9 (2-4)	BZ95072	SW7471	2/27/2018	1	Mercury	0.23	mg/kg	J
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Nickel	12.9	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Potassium	1400	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Selenium		mg/kg	U
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Silver		mg/kg	U
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Sodium	240	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Thallium		mg/kg	U
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	1	Vanadium	36.8	mg/kg	
17SB9 (2-4)	BZ95072	SW6010	2/27/2018	10	Zinc	227	mg/kg	



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB9 (2-4)	BZ95072	E160.3	2/27/2018	1	Solids, Percent	88	%	
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Heptachlor Epoxide		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Endosulfan Sulfate		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Aldrin		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Alpha Bhc (Alpha Hexachlorocyclohexane)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Beta Bhc (Beta Hexachlorocyclohexane)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Delta BHC (Delta Hexachlorocyclohexane)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Beta Endosulfan		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	P,P'-DDT	9.5	ug/kg	
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	cis-Chlordane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	trans-Chlordane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Endrin Ketone		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Chlordane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Gamma Bhc (Lindane)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Dieldrin		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Endrin		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Methoxychlor		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	P,P'-DDD		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	P,P'-DDE		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Endrin Aldehyde		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Heptachlor		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Toxaphene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8081	2/27/2018	2	Alpha Endosulfan		ug/kg	U
17SB9 (2-4)	BZ95072	SW8082	2/27/2018	2	PCB-1260 (Aroclor 1260)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8082	2/27/2018	2	PCB-1254 (Aroclor 1254)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8082	2/27/2018	2	PCB-1268 (Aroclor 1268)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8082	2/27/2018	2	PCB-1221 (Aroclor 1221)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8082	2/27/2018	2	PCB-1232 (Aroclor 1232)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8082	2/27/2018	2	PCB-1248 (Aroclor 1248)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8082	2/27/2018	2	PCB-1016 (Aroclor 1016)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8082	2/27/2018	2	PCB-1262 (Aroclor 1262)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8082	2/27/2018	2	PCB-1242 (Aroclor 1242)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Styrene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Cis-1,3-Dichloropropene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Trans-1,3-Dichloropropene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	4-Chlorotoluene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,4-Dichlorobenzene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Acrolein		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,2-Dichloroethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Acrylonitrile		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Bromobenzene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Chlorobenzene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Tetrahydrofuran		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,2,4-Trichlorobenzene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Dibromochloromethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Tetrachloroethylene (PCE)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Sec-Butylbenzene	840	ug/kg	
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,3-Dichloropropane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Cis-1,2-Dichloroethylene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Trans-1,2-Dichloroethene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Tert-Butyl Methyl Ether		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	O-Cymene (O-Isopropyltoluene)	210	ug/kg	J
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,3-Dichlorobenzene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Carbon Tetrachloride		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,1-Dichloropropene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	2-Hexanone		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	2,2-Dichloropropane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Acetone		ug/kg	UJ
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Chloroform		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Benzene	190	ug/kg	J
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Bromomethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Chloromethane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Dibromomethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Bromochloromethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Chloroethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Vinyl Chloride		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Methylene Chloride		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Carbon Disulfide		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Bromoform		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Bromodichloromethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,1-Dichloroethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,1-Dichloroethene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Tert-Butyl Alcohol		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Trichlorofluoromethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Dichlorodifluoromethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,2-Dichloropropane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,1,2-Trichloroethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Trichloroethylene (TCE)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,2,3-Trichlorobenzene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Hexachlorobutadiene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Naphthalene	3700	ug/kg	
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	2-Chlorotoluene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,2-Dichlorobenzene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	1,2,3-Trichloropropane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	T-Butylbenzene	39	ug/kg	J
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	50	Cymene	570	ug/kg	
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	500	Ethylbenzene	14000	ug/kg	
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	500	N-Propylbenzene	8200	ug/kg	
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	500	N-Butylbenzene	1900	ug/kg	1
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	500	1,3,5-Trimethylbenzene (Mesitylene)	18000	ug/kg	1
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	500	Toluene	13000	ug/kg	
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	500	m,p-Xylene	62000	ug/kg	



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	500	O-Xylene (1,2-Dimethylbenzene)	23000	ug/kg	
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	500	1,2,4-Trimethylbenzene	53000	ug/kg	
17SB9 (2-4)	BZ95072	SW8260	2/27/2018	500	Isopropylbenzene (Cumene)	3200	ug/kg	
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate	130	ug/kg	J
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Pyrene	360	ug/kg	
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene	140	ug/kg	J
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene	140	ug/kg	J
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Benzo(B)Fluoranthene	200	ug/kg	J
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Fluoranthene	430	ug/kg	
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Benzo(K)Fluoranthene	140	ug/kg	J
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Chrysene	310	ug/kg	
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Benzo(A)Pyrene	170	ug/kg	J
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Benzo(A)Anthracene	190	ug/kg	J
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Phenanthrene	350	ug/kg	
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Fluorene	140	ug/kg	J
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Naphthalene	970	ug/kg	J
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2-Methylnaphthalene	940	ug/kg	
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB9 (2-4)	BZ95072	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Acetone	110	ug/kg	J
17SB9 (5-7)	BZ95073	E160.3	2/27/2018	1	Solids, Percent	77	%	
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Styrene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	N-Propylbenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	N-Butylbenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Acrolein		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Toluene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Tetrahydrofuran	4.5	ug/kg	J
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Sec-Butylbenzene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	m,p-Xylene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Chloroform		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Benzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Carbon Disulfide		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)	28	ug/kg	J
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Naphthalene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8260	2/27/2018	1	Cymene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Pyrene	660	ug/kg	
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene	220	ug/kg	J
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene	270	ug/kg	J
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Benzo(B)Fluoranthene	310	ug/kg	
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Fluoranthene	700	ug/kg	
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Benzo(K)Fluoranthene	280	ug/kg	J
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Chrysene	360	ug/kg	
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Benzo(A)Pyrene	370	ug/kg	
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Benzo(A)Anthracene	360	ug/kg	
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Phenanthrene	510	ug/kg	
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Carbazole		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB9 (5-7)	BZ95073	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB8 (5-7)	BZ95074	E160.3	2/27/2018	1	Solids, Percent	96	%	
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Ethylbenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Styrene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Cis-1,3-Dichloropropene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Trans-1,3-Dichloropropene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	N-Propylbenzene	150	ug/kg	J
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	N-Butylbenzene	230	ug/kg	
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	4-Chlorotoluene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,4-Dichlorobenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Acrolein		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,2-Dichloroethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Acrylonitrile		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U



		Analytical	Sample	Dilution	I			
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Bromobenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Toluene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Chlorobenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Tetrahydrofuran		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,2,4-Trichlorobenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Dibromochloromethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Tetrachloroethylene (PCE)		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Sec-Butylbenzene	370	ug/kg	
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,3-Dichloropropane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Cis-1,2-Dichloroethylene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Trans-1,2-Dichloroethene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Tert-Butyl Methyl Ether		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	m,p-Xylene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	O-Cymene (O-Isopropyltoluene)	190	ug/kg	
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,3-Dichlorobenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Carbon Tetrachloride		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,1-Dichloropropene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	2-Hexanone		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	2,2-Dichloropropane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Acetone		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Chloroform		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Benzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Bromomethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Chloromethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Dibromomethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Bromochloromethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Chloroethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Vinyl Chloride		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Methylene Chloride		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Carbon Disulfide		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Bromoform		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Bromodichloromethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,1-Dichloroethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,1-Dichloroethene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Tert-Butyl Alcohol		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Trichlorofluoromethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Dichlorodifluoromethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,2-Dichloropropane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,1,2-Trichloroethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Trichloroethylene (TCE)		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,2,3-Trichlorobenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Hexachlorobutadiene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Naphthalene	160	ug/kg	J
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	2-Chlorotoluene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,2-Dichlorobenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,2,4-Trimethylbenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	1,2,3-Trichloropropane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	T-Butylbenzene	87	ug/kg	J
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Isopropylbenzene (Cumene)	88	ug/kg	J
17SB8 (5-7)	BZ95074	SW8260	2/27/2018	50	Cymene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Anthracene	140	ug/kg	J
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Pyrene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Benzo(B)Fluoranthene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Fluoranthene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Benzo(K)Fluoranthene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Chrysene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Benzo(A)Pyrene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Benzo(A)Anthracene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Acenaphthene	330	ug/kg	
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Phenanthrene	910	ug/kg	
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Fluorene	460	ug/kg	
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2-Methylnaphthalene	2200	ug/kg	
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB8 (5-7)	BZ95074	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Acetone	5.7	ug/kg	J
17SB7 (2-4)	BZ95075	E160.3	2/27/2018	1	Solids, Percent	84	%	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	10	Aluminum	11700	mg/kg	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Antimony		mg/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Arsenic		mg/kg	U
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Barium	162	mg/kg	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Beryllium	0.34	mg/kg	J
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Cadmium		mg/kg	U
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Calcium	1900	mg/kg	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Chromium, Total	36.2	mg/kg	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Cobalt	12.3	mg/kg	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Copper	50.3	mg/kg	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	10	Iron	21000	mg/kg	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Lead	4.0	mg/kg	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Magnesium	5720	mg/kg	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	10	Manganese	503	mg/kg	
17SB7 (2-4)	BZ95075	SW7471	2/27/2018	1	Mercury		mg/kg	UJ
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Nickel	22.5	mg/kg	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	10	Potassium	5930	mg/kg	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Selenium		mg/kg	U
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Silver		mg/kg	U
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Sodium	286	mg/kg	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Thallium		mg/kg	U
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Vanadium	40.1	mg/kg	
17SB7 (2-4)	BZ95075	SW6010	2/27/2018	1	Zinc	43.6	mg/kg	
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Heptachlor Epoxide		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Endosulfan Sulfate		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Aldrin		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Alpha Bhc (Alpha Hexachlorocyclohexane)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Beta Bhc (Beta Hexachlorocyclohexane)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Delta BHC (Delta Hexachlorocyclohexane)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Beta Endosulfan		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	P,P'-DDT		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	cis-Chlordane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	trans-Chlordane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Endrin Ketone		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Chlordane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Gamma Bhc (Lindane)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Dieldrin		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Endrin		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Methoxychlor		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	P,P'-DDD		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	P,P'-DDE		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Endrin Aldehyde		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Heptachlor		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Toxaphene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8081	2/27/2018	2	Alpha Endosulfan		ug/kg	U
17SB7 (2-4)	BZ95075	SW8082	2/27/2018	2	PCB-1260 (Aroclor 1260)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8082	2/27/2018	2	PCB-1254 (Aroclor 1254)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8082	2/27/2018	2	PCB-1268 (Aroclor 1268)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8082	2/27/2018	2	PCB-1221 (Aroclor 1221)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8082	2/27/2018	2	PCB-1232 (Aroclor 1232)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8082	2/27/2018	2	PCB-1248 (Aroclor 1248)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8082	2/27/2018	2	PCB-1016 (Aroclor 1016)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8082	2/27/2018	2	PCB-1262 (Aroclor 1262)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8082	2/27/2018	2	PCB-1242 (Aroclor 1242)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Styrene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	N-Propylbenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	N-Butylbenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Acrolein		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Toluene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Sec-Butylbenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	m,p-Xylene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Chloroform	3.7	ug/kg	J
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Benzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Carbon Disulfide		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Naphthalene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Cymene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Pyrene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Benzo(B)Fluoranthene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Fluoranthene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Benzo(K)Fluoranthene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Chrysene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Benzo(A)Pyrene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Benzo(A)Anthracene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Phenanthrene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB7 (2-4)	BZ95075	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB7 (2-4)	BZ95075	SW8260	2/27/2018	1	Tetrahydrofuran	2.5	ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Acetone	13	ug/kg	J
17SB7 (5-7)	BZ95076	E160.3	2/27/2018	1	Solids, Percent	80	%	
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Styrene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	N-Propylbenzene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	N-Butylbenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Acrolein		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Toluene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Sec-Butylbenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	m,p-Xylene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Chloroform	1.0	ug/kg	J
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Benzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Bromomethane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Carbon Disulfide		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Naphthalene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Cymene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U



		Analytical	Sample	Dilution	I			
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Anthracene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Pyrene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Benzo(B)Fluoranthene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Fluoranthene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Benzo(K)Fluoranthene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Chrysene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Benzo(A)Pyrene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Benzo(A)Anthracene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	C
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Phenanthrene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Fluorene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Carbazole		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Acetophenone		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB7 (5-7)	BZ95076	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB7 (5-7)	BZ95076	SW8260	2/27/2018	1	Tetrahydrofuran	6.2	ug/kg	J
17SB7 (12.5-15)	BZ95077	E160.3	2/27/2018	1	Solids, Percent	78	%	
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Heptachlor Epoxide		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Endosulfan Sulfate		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Aldrin		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Alpha Bhc (Alpha Hexachlorocyclohexane)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Beta Bhc (Beta Hexachlorocyclohexane)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Delta BHC (Delta Hexachlorocyclohexane)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Beta Endosulfan		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	P,P'-DDT		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	cis-Chlordane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	trans-Chlordane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Endrin Ketone		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Chlordane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Gamma Bhc (Lindane)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Dieldrin		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Endrin		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Methoxychlor		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	P,P'-DDD		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	P,P'-DDE		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Endrin Aldehyde		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Heptachlor		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Toxaphene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8081	2/27/2018	2	Alpha Endosulfan		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8082	2/27/2018	2	PCB-1260 (Aroclor 1260)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8082	2/27/2018	2	PCB-1254 (Aroclor 1254)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8082	2/27/2018	2	PCB-1268 (Aroclor 1268)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8082	2/27/2018	2	PCB-1221 (Aroclor 1221)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8082	2/27/2018	2	PCB-1232 (Aroclor 1232)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8082	2/27/2018	2	PCB-1248 (Aroclor 1248)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8082	2/27/2018	2	PCB-1016 (Aroclor 1016)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (12.5-15)	BZ95077	SW8082	2/27/2018	2	PCB-1262 (Aroclor 1262)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8082	2/27/2018	2	PCB-1242 (Aroclor 1242)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Styrene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	N-Propylbenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	N-Butylbenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Acrolein		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Toluene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Sec-Butylbenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	m,p-Xylene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Acetone		ug/kg	UJ
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Chloroform		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Benzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Carbon Disulfide		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Bromoform		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Naphthalene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Cymene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Phenol		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Pyridine		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Anthracene	820	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Pyrene	5300	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Dibenzofuran	600	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene	820	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene	940	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Benzo(B)Fluoranthene	1300	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Fluoranthene	4800	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Benzo(K)Fluoranthene	1200	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Acenaphthylene	120	ug/kg	J
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Chrysene	2700	ug/kg	



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Benzo(A)Pyrene	1800	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene	250	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Benzo(A)Anthracene	2200	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Aniline		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Isophorone		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Acenaphthene	880	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Phenanthrene	7400	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Fluorene	920	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Carbazole	410	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Naphthalene	1400	ug/kg	J
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2-Methylnaphthalene	740	ug/kg	
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Benzidine		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	10	Aluminum	18500	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Antimony		mg/kg	U
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Arsenic	5.43	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Barium	114	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Beryllium	0.68	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Cadmium		mg/kg	U
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Calcium	1770	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Chromium, Total	28.6	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Cobalt	10.2	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Copper	24.6	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	10	Iron	21300	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Lead	141	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Magnesium	3580	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	10	Manganese	407	mg/kg	
17SB7 (12.5-15)	BZ95077	SW7471	2/27/2018	1	Mercury	0.30	mg/kg	J
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Nickel	18.0	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Potassium	1130	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Selenium		mg/kg	U
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Silver		mg/kg	U
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Sodium	165	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Thallium		mg/kg	U
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Vanadium	40.5	mg/kg	
17SB7 (12.5-15)	BZ95077	SW6010	2/27/2018	1	Zinc	128	mg/kg	



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
17SB7 (12.5-15)	BZ95077	SW8260	2/27/2018	1	Tetrahydrofuran	4.7	ug/kg	J
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	10	Aluminum	8890	mg/kg	
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Antimony		mg/kg	U
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Arsenic	1.08	mg/kg	
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Barium	105	mg/kg	J
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Beryllium	0.31	mg/kg	
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Cadmium		mg/kg	U
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Calcium	1080	mg/kg	
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Chromium, Total	27.6	mg/kg	
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Cobalt	10.3	mg/kg	
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Copper	23.0	mg/kg	J
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	10	Iron	15500	mg/kg	
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Acetone	14	ug/kg	J
SOIL DUPLICATE	BZ95078	E160.3	2/27/2018	1	Solids, Percent	82	%	
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Lead	2.0	mg/kg	
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Magnesium	4390	mg/kg	
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	10	Manganese	177	mg/kg	J
SOIL DUPLICATE	BZ95078	SW7471	2/27/2018	1	Mercury		mg/kg	UJ
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Nickel	18.8	mg/kg	J
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	10	Potassium	3760	mg/kg	
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Selenium		mg/kg	U
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Silver		mg/kg	U
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Sodium	193	mg/kg	
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Thallium		mg/kg	U
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Vanadium	29.3	mg/kg	
SOIL DUPLICATE	BZ95078	SW6010	2/27/2018	1	Zinc	32.6	mg/kg	
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Heptachlor Epoxide		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Endosulfan Sulfate		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Aldrin		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Alpha Bhc (Alpha Hexachlorocyclohexane)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Beta Bhc (Beta Hexachlorocyclohexane)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Delta BHC (Delta Hexachlorocyclohexane)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Beta Endosulfan		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	P,P'-DDT		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	cis-Chlordane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	trans-Chlordane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Endrin Ketone		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Chlordane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Gamma Bhc (Lindane)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Dieldrin		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Endrin		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Methoxychlor		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	P,P'-DDD		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	P,P'-DDE		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Endrin Aldehyde		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Heptachlor		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Toxaphene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8081	2/27/2018	2	Alpha Endosulfan		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8082	2/27/2018	2	PCB-1260 (Aroclor 1260)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8082	2/27/2018	2	PCB-1254 (Aroclor 1254)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8082	2/27/2018	2	PCB-1268 (Aroclor 1268)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8082	2/27/2018	2	PCB-1221 (Aroclor 1221)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8082	2/27/2018	2	PCB-1232 (Aroclor 1232)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8082	2/27/2018	2	PCB-1248 (Aroclor 1248)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8082	2/27/2018	2	PCB-1016 (Aroclor 1016)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8082	2/27/2018	2	PCB-1262 (Aroclor 1262)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8082	2/27/2018	2	PCB-1242 (Aroclor 1242)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene	87	ug/kg	
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)	38	ug/kg	
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Acrolein		ug/kg	UJ
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Benzene	27	ug/kg	
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Carbon Disulfide	1.1	ug/kg	J
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	50	Ethylbenzene	280	ug/kg	
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)	30	ug/kg	
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	m,p-Xylene	390	ug/kg	
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Naphthalene	11	ug/kg	
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	N-Butylbenzene	2.3	ug/kg	J
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Chloroform		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	N-Propylbenzene	63	ug/kg	
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Bromomethane		ug/kg	UJ
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Chloroethane		ug/kg	UJ
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)	0.53	ug/kg	J
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Bromoform		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	UJ
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)	9.8	ug/kg	
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Sec-Butylbenzene	2.8	ug/kg	J
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Styrene	0.72	ug/kg	J
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Tetrahydrofuran	5.2	ug/kg	J
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Cymene		ug/kg	UJ
SOIL DUPLICATE	BZ95078	SW8260	2/27/2018	1	Toluene	22	ug/kg	
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Phenol		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Pyridine		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Anthracene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Pyrene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Benzo(B)Fluoranthene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Fluoranthene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Benzo(K)Fluoranthene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Chrysene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Benzo(A)Pyrene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Benzo(A)Anthracene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Aniline		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Isophorone		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Phenanthrene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Fluorene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Carbazole		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Benzidine		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
SOIL DUPLICATE	BZ95078	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	100	Aluminum	23300	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Antimony		mg/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Arsenic	0.96	mg/kg	J
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Barium	371	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Beryllium	0.53	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Cadmium		mg/kg	U
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Calcium	1480	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Chromium, Total	52.0	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Cobalt	21.2	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Copper	60.5	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	10	Iron	41900	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Acetone	15	ug/kg	J
SOIL DUPLICATE 2	BZ95079	E160.3	2/27/2018	1	Solids, Percent	89	%	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Lead	4.6	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	10	Magnesium	9910	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	10	Manganese	533	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW7471	2/27/2018	1	Mercury		mg/kg	UJ
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Nickel	36.9	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	10	Potassium	12900	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Selenium		mg/kg	U
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Silver		mg/kg	U
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Sodium	415	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Thallium		mg/kg	U
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Vanadium	68.8	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW6010	2/27/2018	1	Zinc	92.2	mg/kg	
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Heptachlor Epoxide		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Endosulfan Sulfate		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Aldrin		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Alpha Bhc (Alpha Hexachlorocyclohexane)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Beta Bhc (Beta Hexachlorocyclohexane)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Delta BHC (Delta Hexachlorocyclohexane)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Beta Endosulfan		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	P,P'-DDT		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	cis-Chlordane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	trans-Chlordane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Endrin Ketone		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Chlordane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Gamma Bhc (Lindane)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Dieldrin		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Endrin		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Methoxychlor		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	P,P'-DDD		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	P,P'-DDE		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Endrin Aldehyde		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Heptachlor		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Toxaphene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8081	2/27/2018	2	Alpha Endosulfan		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8082	2/27/2018	2	PCB-1260 (Aroclor 1260)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8082	2/27/2018	2	PCB-1254 (Aroclor 1254)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8082	2/27/2018	2	PCB-1268 (Aroclor 1268)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8082	2/27/2018	2	PCB-1221 (Aroclor 1221)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8082	2/27/2018	2	PCB-1232 (Aroclor 1232)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8082	2/27/2018	2	PCB-1248 (Aroclor 1248)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8082	2/27/2018	2	PCB-1016 (Aroclor 1016)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8082	2/27/2018	2	PCB-1262 (Aroclor 1262)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8082	2/27/2018	2	PCB-1242 (Aroclor 1242)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Styrene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	N-Propylbenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	N-Butylbenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Acrolein		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Bromobenzene	i	ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Toluene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Tetrahydrofuran	5.9	ug/kg	J
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Sec-Butylbenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	m,p-Xylene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Chloroform		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Benzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
	BZ95079	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Carbon Disulfide		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Bromoform		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Naphthalene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8260	2/27/2018	1	Cymene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	4-Nitroaniline		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	4-Nitrophenol		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	4-Bromophenyl Phenyl Ether		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2,4-Dimethylphenol		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	UJ
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	4-Chloroaniline		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Phenol		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Pyridine		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Bis(2-Chloroethoxy) Methane		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Bis(2-Ethylhexyl) Phthalate		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Di-N-Octylphthalate		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Hexachlorobenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Anthracene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	UJ
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2,4-Dichlorophenol		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2,4-Dinitrotoluene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	1,2-Diphenylhydrazine		ug/kg	U
	BZ95079	SW8270	2/27/2018	1	Pyrene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Dimethyl Phthalate		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Dibenzofuran		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Benzo(G,H,I)Perylene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Indeno(1,2,3-C,D)Pyrene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Benzo(B)Fluoranthene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Fluoranthene		ug/kg	U
	BZ95079	SW8270	2/27/2018	1	Benzo(K)Fluoranthene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Acenaphthylene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Chrysene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2,2-Oxybis(2-Chloropropane)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Benzo(A)Pyrene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2,4-Dinitrophenol		ug/kg	UJ
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	4,6-Dinitro-2-Methylphenol		ug/kg	UJ
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Dibenz(A,H)Anthracene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	UJ
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Benzo(A)Anthracene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	4-Chloro-3-Methylphenol		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2,6-Dinitrotoluene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	N-Nitrosodi-N-Propylamine		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Aniline		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	N-Nitrosodimethylamine		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Benzoic Acid		ug/kg	UJ
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Hexachloroethane		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	4-Chlorophenyl Phenyl Ether		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Hexachlorocyclopentadiene		ug/kg	UJ



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Isophorone		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Pentachloronitrobenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Acenaphthene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Diethyl Phthalate		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Di-N-Butyl Phthalate		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Phenanthrene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Benzyl Butyl Phthalate		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	N-Nitrosodiphenylamine		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Fluorene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Carbazole		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Hexachlorobutadiene		ug/kg	UJ
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Pentachlorophenol		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2,4,6-Trichlorophenol		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2-Nitroaniline		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2-Nitrophenol		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Naphthalene		ug/kg	UJ
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2-Methylnaphthalene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2-Chloronaphthalene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	3,3'-Dichlorobenzidine		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Benzidine		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2-Methylphenol (O-Cresol)		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2-Chlorophenol		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	1,2,4,5-Tetrachlorobenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	2,4,5-Trichlorophenol		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Acetophenone		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	Nitrobenzene		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	3-Nitroaniline		ug/kg	U
SOIL DUPLICATE 2	BZ95079	SW8270	2/27/2018	1	3- And 4- Methylphenol (Total)		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,4-Dioxane (P-Dioxane)		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Acetone	11	ug/kg	J
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Ethylbenzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Styrene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Cis-1,3-Dichloropropene		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Trans-1,3-Dichloropropene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	N-Propylbenzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	N-Butylbenzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	4-Chlorotoluene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,4-Dichlorobenzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Acrolein		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,2-Dichloroethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Acrylonitrile		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Bromobenzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Toluene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Chlorobenzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Trans-1,4-Dichloro-2-Butene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,2,4-Trichlorobenzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Dibromochloromethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Tetrachloroethylene (PCE)		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Sec-Butylbenzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,3-Dichloropropane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Cis-1,2-Dichloroethylene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Trans-1,2-Dichloroethene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Tert-Butyl Methyl Ether		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	m,p-Xylene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	O-Cymene (O-Isopropyltoluene)		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,3-Dichlorobenzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Carbon Tetrachloride		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,1-Dichloropropene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	2-Hexanone		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	2,2-Dichloropropane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,1,1,2-Tetrachloroethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Chloroform	ĺ	ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Benzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,1,1-Trichloroethane (TCA)		ug/kg	U



		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Bromomethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Chloromethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Dibromomethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Bromochloromethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Chloroethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Vinyl Chloride		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Methylene Chloride		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Carbon Disulfide		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Bromoform		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Bromodichloromethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,1-Dichloroethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,1-Dichloroethene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Trichlorofluoromethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Dichlorodifluoromethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,2-Dichloropropane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,1,2-Trichloroethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Trichloroethylene (TCE)		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,1,2,2-Tetrachloroethane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,2,3-Trichlorobenzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Hexachlorobutadiene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Naphthalene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	2-Chlorotoluene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,2-Dichlorobenzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,2,4-Trimethylbenzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,2-Dibromo-3-Chloropropane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	1,2,3-Trichloropropane		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	T-Butylbenzene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Isopropylbenzene (Cumene)		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Cymene		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Tert-Butyl Alcohol		ug/kg	U
BZ95080-TB	BZ95080	SW8260	2/27/2018	1	Tetrahydrofuran	3.7	ug/kg	J



	1	Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,4-Dioxane (P-Dioxane)		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Acetone		ug/kg	UJ
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Ethylbenzene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Styrene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Cis-1,3-Dichloropropene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Trans-1,3-Dichloropropene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	N-Propylbenzene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	N-Butylbenzene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	4-Chlorotoluene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,4-Dichlorobenzene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,2-Dibromoethane (Ethylene Dibromide)		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Acrolein		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,2-Dichloroethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Acrylonitrile		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,3,5-Trimethylbenzene (Mesitylene)		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Bromobenzene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Toluene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Chlorobenzene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Tetrahydrofuran		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Trans-1,4-Dichloro-2-Butene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,2,4-Trichlorobenzene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Dibromochloromethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Tetrachloroethylene (PCE)		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Sec-Butylbenzene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,3-Dichloropropane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Cis-1,2-Dichloroethylene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Trans-1,2-Dichloroethene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Tert-Butyl Methyl Ether		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	m,p-Xylene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	O-Cymene (O-Isopropyltoluene)		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,3-Dichlorobenzene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Carbon Tetrachloride		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,1-Dichloropropene		ug/kg	U



**SDG: GBZ95059** 

		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	2-Hexanone		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	2,2-Dichloropropane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,1,1,2-Tetrachloroethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Chloroform		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Benzene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,1,1-Trichloroethane (TCA)		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Bromomethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Chloromethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Dibromomethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Bromochloromethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Chloroethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Vinyl Chloride		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Methylene Chloride		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Carbon Disulfide		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Bromoform		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Bromodichloromethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,1-Dichloroethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,1-Dichloroethene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Tert-Butyl Alcohol		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Trichlorofluoromethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Dichlorodifluoromethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,1,2-Trichloro-1,2,2-Trifluoroethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,2-Dichloropropane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Methyl Ethyl Ketone (2-Butanone)		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,1,2-Trichloroethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Trichloroethylene (TCE)		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,1,2,2-Tetrachloroethane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,2,3-Trichlorobenzene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Hexachlorobutadiene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Naphthalene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	O-Xylene (1,2-Dimethylbenzene)		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	2-Chlorotoluene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,2-Dichlorobenzene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,2,4-Trimethylbenzene		ug/kg	U



**SDG: GBZ95059** 

		Analytical	Sample	Dilution				
Sample Name	Lab ID	Method	Date	Factor	Analyte	Result	Unit	Qualifier
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,2-Dibromo-3-Chloropropane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	1,2,3-Trichloropropane		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	T-Butylbenzene		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Isopropylbenzene (Cumene)		ug/kg	U
BZ95081-TB	BZ95081	SW8260	2/27/2018	50	Cymene		ug/kg	U



MDL	RL
6.0	30
48	90
0.60	6.0
0.60	6.0
0.60	6.0
0.60	6.0
1.2	6.0
0.60	6.0
0.60	6.0
0.60	6.0
0.60	6.0
1.2	6.0
0.60	6.0
0.60	24
6.0	30
0.60	6.0
0.60	6.0
0.60	6.0
0.60	6.0
3.0	12
1.2	6.0
1.2	6.0
1.2	6.0
0.60	6.0
1.2	6.0
0.60	6.0
0.60	6.0
1.2	12
1.2	6.0
0.60	6.0
0.60	6.0
1.2	6.0
0.60	6.0



	•
MDL	RL
6.0	30
0.60	6.0
1.2	24
0.60	6.0
0.60	6.0
0.60	6.0
2.4	6.0
1.2	6.0
1.2	6.0
0.60	6.0
0.60	6.0
0.60	6.0
6.0	6.0
1.2	6.0
1.2	6.0
1.2	6.0
1.2	6.0
0.60	6.0
1.2	6.0
0.60	6.0
0.60	6.0
1.2	6.0
6.0	36
1.2	6.0
0.60	6.0
1.2	6.0
1.2	6.0
0.60	6.0
1.2	6.0
1.2	6.0
1.2	6.0
0.60	6.0
0.60	6.0
1.2	6.0



MDL	RL
0.60	6.0
0.60	6.0
0.60	6.0
0.60	6.0
140	430
200	430
130	300
110	300
130	300
200	350
140	300
110	300
120	220
120	300
120	300
110	300
130	220
140	300
130	300
150	220
170	220
140	300
150	300
130	300
130	300
140	300
140	300
150	300
140	300
140	300
120	300
150	300
120	300
140	220



MDL	RL
300	300
87	260
140	220
130	300
150	300
150	300
140	220
140	220
350	350
120	300
870	2200
130	220
150	300
130	300
120	220
160	300
130	300
140	300
120	300
120	300
110	300
170	300
140	300
170	220
160	300
160	260
140	220
300	300
270	300
120	300
130	300
120	300
200	220
250	430



MDL	RL
200	300
120	300
120	300
150	300
240	300
140	300
150	220
870	430
170	300
3.0	12
24	120
7.1	36
1.8	1.8
0.71	0.71
0.36	0.7
0.14	0.28
0.36	0.36
3.3	3.6
0.36	0.36
0.36	0.36
0.36	0.36
36	36
0.36	0.7
36	36
3.6	3.6
0.02	0.03
0.36	0.36
28	71
1.2	1.4
0.36	0.36
3.1	7
1.4	1.4
0.36	0.36
0.36	0.7



MDL	RL
47	89
5.9	30
7.5	7.5
7.5	7.5
3.7	3.7
7.5	7.5
7.5	7.5
7.5	7.5
7.5	7.5
2.2	2.2
3.7	3.7
3.7	3.7
7.5	7.5
37	37
1.5	1.5
3.7	3.7
7.5 37	7.5 37 2.2
37	37
2.2	2.2
2.2	2.2
7.5	7.5 7.5
7.5	7.5
150	150
7.5	7.5
75	75
75	75
75	75
75	75
75	75
75	75
75	75
75	75
75	75



MDL	RL
0.59	5.9
0.59	5.9
0.59	5.9
0.59	5.9
1.2	5.9
0.59	5.9
0.59	5.9
0.59	5.9
0.59	5.9
1.2	5.9
0.59	5.9
0.59	24
5.9	30
0.59	5.9
0.59	5.9
0.59	5.9
0.59	5.9
3.0	12
1.2	5.9
1.2	5.9
1.2	5.9
0.59	5.9
1.2	5.9
0.59	5.9
0.59	5.9
1.2	12
1.2	5.9
0.59	5.9
0.59	5.9
1.2	5.9
0.59	5.9
5.9	30
0.59	5.9
1.2	24



MDL	RL
0.59	5.9
0.59	5.9
0.59	5.9
2.4	5.9
1.2	5.9
1.2	5.9
0.59	5.9
0.59	5.9
0.59	5.9
5.9	5.9
1.2	5.9
1.2	5.9
1.2	5.9
1.2	5.9
0.59	5.9
1.2	5.9
0.59	5.9
0.59	5.9
1.2	5.9
5.9	35
1.2	5.9
0.59	5.9
1.2	5.9
1.2	5.9
0.59	5.9
1.2	5.9
1.2	5.9
1.2	5.9
0.59	5.9
0.59	5.9
1.2	5.9
0.59	5.9
0.59	5.9
0.59	5.9



MDL	RL
0.59	5.9
120	370
170	370
110	260
92	260
110	260
170	300
120	260
91	260
100	180
100	260
110	260
95	260
110	180
120	260
110	260
130	180
150	180
120	260
130	260
110	260
110	260
120	260
120	260
130	260
120	260
120	260
100	260
120	260
100	260
120	180
260	260
74	220
120	180



MDL	RL
110	260
120	260
130	260
120	180
120	180
300	300
100	260
740	1800
110	180
120	260
110	260
100	180
140	260
110	260
120	260
98	260
110	260
95	260
140	260
120	260
150	180
130	260
140	220
120	180
260	260
230	260
110	260
110	260
100	260
170	180
220	370
170	260
100	260
100	260



MDL	RL
130	260
200	260
120	260
130	180
740	370
150	260
3.0	12
24	120
48000	48000
8.0	40
2.0	2.0
0.80	0.80
0.40	0.8
0.16	0.32
0.40	0.40
37	40
0.40	0.40
0.40	0.40
4.0	4.0
40	40
4.0	8.0
40	40
4.0	4.0
0.08	0.14
0.40	0.40
3.1	8
1.4	1.6
0.40	0.40
3.4	8
1.6	1.6
0.40	0.40
4.0	8.0
7.5	7.5



MDL	RL
7.5	7.5
3.7	3.7
7.5	7.5
7.5	7.5
7.5	7.5 7.5
7.5	7.5
2.2	2.2
3.7	3.7
3.7	3.7 7.5
7.5	7.5
37	37
1.5	1.5
3.7	3.7
3.7 7.5	3.7 7.5
37 2.2	37 2.2
2.2	2.2
3.7	3.7
3.7 7.5 7.5	3.7 7.5 7.5
7.5	7.5
150	150
7.5	7.5
75	75
75	75
75	75
75	75
75	75
75	75
75	75
75	75
75	75
600	6000
600	6000
600	6000
600	6000



MDL	RL
1200	6000
600	6000
600	6000
600	1800
600	6000
1200	6000
600	600
1200	12000
6000	30000
600	6000
600	6000
600	1100
3000	12000
3000	12000
1200	6000
1200	6000
1200	1300
600	6000
1200	6000
600	600
600	600
1200	1200
600	6000
600	2400
1200	1200
600	6000
6000	30000
600	6000
1200	24000
600	600
600	6000
600	680
2400	6000
1200	6000



MDL	RL
1200	6000
600	6000
600	6000
600	600
6000	6000
1200	6000
1200	6000
1200	6000
1200	1200
600	600
1200	6000
600	6000
600	6000
1200	6000
6000	6000
1200	6000
600	600
1200	6000
1200	6000
600	6000
1200	6000
1200	6000
1200	6000
600	1100
1200	6000
600	6000
600	5900
600	6000
600	6000
6000	60000
12000	60000
6000	60000
130	380
170	380



MDL	RL
110	260
93	260
110	260
170	300
120	260
92	260
100	190
100	260
110	260
97	260
110	190
120	260
110	260
130	190
150	190
120	260
130	260
120	260
110	260
120	260
120	260
130	260
120	260
120	260
110	260
130	260
100	260
120	190
260	260
75	230
120	190
110	260
130	260
130	260



MDL	RL
120	190
120	190
300	300
110	260
750	1900
110	190
130	260
110	260
110	190
140	260
110	260
120	260
100	260
110	260
97	260
140	260
120	260
150	190
140	260
140	230
120	190
260	260
240	260
110	260
180	190
220	380
180	260
110	260
110	260
130	260
210	260
120	260
130	190
750	380



MDL	RL
150	260
2200	5300
2200	5300
6000	6000
24000	120000
4.4	22
0.44	4.4
0.44	4.4
0.44	4.4
0.44	4.4
0.88	4.4
0.44	4.4
0.44	4.4
0.44	4.4
0.44	4.4
0.88	4.4
0.44	4.4
0.44	18
4.4	22
0.44	4.4
0.44	4.4
0.44	4.4
0.44	4.4
2.2	8.8
0.88	4.4
35	66
0.88	4.4
0.88	4.4
0.44	4.4
0.88	4.4
0.44	4.4
0.44	4.4
0.88	8.8



MDL	RL
0.88	4.4
0.44	4.4
0.44	4.4
0.88	4.4
0.44	4.4
4.4	22
0.44	4.4
0.88	18
0.44	4.4
0.44	4.4
0.44	4.4
1.8	4.4
0.88	4.4
0.88	4.4
0.44	4.4
0.44	4.4
0.44	4.4
4.4	4.4
0.88	4.4
0.88	4.4
0.88	4.4
0.88	4.4
0.44	4.4
18	88
0.88	4.4
0.44	4.4
0.44	4.4
0.88	4.4
4.4	27
0.88	4.4
0.44	4.4
0.88	4.4
0.88	4.4
0.44	4.4



MDL	RL
0.88	4.4
0.88	4.4
0.88	4.4
0.44	4.4
0.44	4.4
0.88	4.4
0.44	4.4
0.44	4.4
0.44	4.4
0.44	4.4
130	380
170	380
110	270
95	270
110	270
180	310
120	270
94	270
100	190
110	270
110	270
98	270
110	190
130	270
120	270
130	190
150	190
120	270
130	270
120	270
110	270
120	270
130	270
130	270



MDL	RL
120	270
130	270
110	270
130	270
110	270
120	190
270	270
76	230
120	190
110	270
130	270
130	270
120	190
120	190
310	310
110	270
760	1900
110	190
130	270
120	270
110	190
140	270
120	270
120	270
100	270
110	270
98	270
150	270
130	270
150	190
140	270
140	230
120	190
270	270



MDL	RL
240	270
110	270
110	270
110	270
180	190
220	380
180	270
110	270
110	270
130	270
210	270
120	270
130	190
760	380
150	270
2.2	8.8
6.0	30
7.4	37
1.9	1.9
0.74	0.74
0.37	0.7
0.15	0.30
0.37	0.37
3.4	3.7
0.37	0.37
0.37	0.37
0.37	0.37
37	37
0.37	0.7
3.7	3.7
3.7	3.7
0.02	0.03
0.37	0.37



MDL	RL
29	74
1.3	1.5
0.37	0.37
3.2	7
1.5	1.5
0.37	0.37
0.37	0.7
7.9	7.9
7.9	7.9
3.9	3.9
7.9	7.9
7.9	7.9
7.9	7.9
7.9	7.9
2.4	2.4
3.9	3.9
3.9	3.9
7.9	7.9
39	39
1.6	1.6
3.9	3.9
7.9	7.9
39	39
2.4	2.4
2.4	2.4
7.9	7.9
7.9	7.9
160	160
7.9	7.9
79	79
79	79
79	79
79	79
79	79



MDL	RL
79	79
79	79
79	79
79	79
0.60	6.0
0.60	6.0
0.60	6.0
0.60	6.0
1.2	6.0
0.60	6.0
0.60	6.0
0.60	6.0
0.60	6.0
1.2	6.0
0.60	6.0
0.60	24
6.0	30
0.60	6.0
0.60	6.0
0.60	6.0
0.60	6.0
3.0	12
1.2	6.0
48	91
1.2	6.0
1.2	6.0
0.60	6.0
1.2	6.0
0.60	6.0
0.60	6.0
1.2	12
1.2	6.0
0.60	6.0
0.60	6.0



MDL	RL
1.2	6.0
0.60	6.0
6.0	30
0.60	6.0
1.2	24
0.60	6.0
0.60	6.0
0.60	6.0
2.4	6.0
1.2	6.0
1.2	6.0
0.60	6.0
0.60	6.0
0.60	6.0
6.0	6.0
1.2	6.0
1.2	6.0
1.2	6.0
1.2	6.0
0.60	6.0
24	120
1.2	6.0
0.60	6.0
0.60	6.0
1.2	6.0
6.0	36
1.2	6.0
0.60	6.0
1.2	6.0
1.2	6.0
0.60	6.0
1.2	6.0
1.2	6.0
1.2	6.0



MDL	RL
0.60	6.0
0.60	6.0
1.2	6.0
0.60	6.0
0.60	6.0
0.60	6.0
0.60	6.0
130	400
180	400
120	280
100	280
120	280
190	320
130	280
99	280
110	200
110	280
120	280
100	280
120	200
130	280
120	280
140	200
160	200
130	280
140	280
130	280
120	280
130	280
130	280
140	280
130	280
130	280
110	280



MDL	RL
140	280
110	280
130	200
280	280
81	240
130	200
120	280
140	280
140	280
130	200
130	200
320	320
110	280
810	2000
120	200
140	280
120	280
110	200
150	280
120	280
130	280
110	280
120	280
100	280
160	280
130	280
160	200
150	280
150	240
130	200
280	280
260	280
120	280
120	280



MDL	RL
110	280
190	200
240	400
190	280
110	280
110	280
140	280
220	280
130	280
140	200
810	400
160	280
3.0	12
38	380
38	380
38	380
38	380
77	380
38	380
38	380
38	380
38	380
77	380
38	38
38	1500
380	1900
38	380
38	380
38	380
38	380
190	770
190	770
77	380



MDL	RL
3100	3100
77	380
77	380
38	380
77	380
38	250
38	190
77	770
77	380
38	380
38	380
77	380
38	380
380	1900
38	380
77	1500
38	370
38	60
38	380
150	380
77	380
77	380
38	380
38	380
38	38
380	380
77	380
77	380
77	380
77	270
38	330
77	380
38	380
38	380



MDL	RL
77	380
380	380
77	380
38	380
77	380
77	380
38	380
77	380
77	380
77	380
38	380
38	380
77	380
38	380
38	380
38	230
38	380
110	340
160	340
100	240
85	240
100	240
160	270
110	240
84	240
93	170
95	240
99	240
89	240
100	170
110	240
100	240
120	170
140	170



MDL	RL
110	240
120	240
110	240
100	240
110	240
110	240
120	240
110	240
110	240
96	240
120	240
95	240
110	170
240	240
69	210
110	170
100	240
120	240
120	240
110	170
110	170
270	270
97	240
690	1700
100	170
120	240
110	240
96	170
130	240
100	240
110	240
91	240
98	240
89	240



MDL	RL
130	240
110	240
140	170
120	240
130	210
110	170
240	240
220	240
99	240
100	240
98	240
160	170
200	340
160	240
97	240
98	240
120	240
190	240
110	240
120	170
690	340
140	240
380	380
1500	7700
7.3	7.3
7.3	7.3
3.7	3.7
7.3	7.3
7.3	7.3
7.3	7.3
7.3	7.3
2.2	2.2
3.7	3.7



-	_
MDL	RL
3.7	3.7
7.3	7.3
37	37
1.5	1.5
3.7	3.7
7.3	7.3
37	37
2.2	2.2
2.2	2.2
7.3	7.3
7.3	7.3
150	150
7.3	7.3
73	73
73	73
73	73
73	73
73	73
73	73
73	73
73	73
73	73
0.47	4.7
0.47	4.7
0.47	4.7
0.47	4.7
0.47	4.7
0.47	4.7
0.47	4.7
0.47	4.7
0.47	4.7
0.94	4.7
0.47	4.7
0.47	19



MDL	RL
4.7	24
0.94	4.7
0.47	4.7
0.47	4.7 4.7
0.47	4.7
2.4	9.4
2.4	9.4
0.94	4.7
0.94	4.7
0.94	4.7
30	300
0.94	4.7
0.47	4.7
0.47	4.7
0.94	9.4
0.47	4.7
0.47	4.7
0.94	4.7
0.47	4.7
4.7	24
0.47	4.7
0.94	19
0.47	4.7
59	300
0.47	4.7
1.9	4.7
0.94	4.7
0.94	4.7
0.47	4.7
0.47	4.7
0.47	4.7
4.7	4.7
0.94	4.7
0.94	4.7



MDL	RL
0.94	4.7
0.94	4.7
0.47	4.7
0.94	4.7
0.47	4.7
0.47	4.7
0.94	4.7
4.7	28
0.94	4.7
0.47	4.7
0.94	4.7
0.94	4.7
0.47	4.7
0.47	4.7
0.94	4.7
0.94	4.7
0.47	4.7
0.47	4.7
0.94	4.7
0.47	4.7
0.47	4.7
0.94	4.7
0.47	4.7
120	360
160	360
110	250
89	250
110	250
170	290
110	250
88	250
97	180
99	250
100	250



MDL	RL
92	250
100	180
120	250
110	250
130	180
140	180
120	250
120	250
110	250
100	250
120	250
120	250
120	250
120	250
120	250
100	250
120	250
100	250
120	180
250	250
72	220
120	180
110	250
120	250
130	250
110	180
120	180
290	290
100	250
720	1800
110	180
120	250
110	250
100	180



MDL	RL
130	250
110	250
110	250
95	250
100	250
92	250
140	250
120	250
140	180
130	250
140	220
110	180
250	250
230	250
100	250
110	250
100	250
170	180
210	360
170	250
100	250
100	250
130	250
200	250
110	250
130	180
720	360
140	250
38	71
4.7	24
6.9	35
1.7	1.7
0.69	0.69
0.35	0.7



MDL	RL
0.14	0.28
0.35	0.35
3.2	3.5
0.35	0.35
0.35	0.35
0.35	0.35
35	35
0.35	0.7
0.47	4.7
19	94
3.5	3.5
0.35	0.35
0.02	0.03
0.35	0.35
2.7	7
1.2	1.4
0.35	0.35
3.0	7
1.4	1.4
0.35	0.35
0.35	0.7
45	84
5.6	28
8.7	44
2.2	2.2
0.87	0.87
4.4	8.7
0.17	0.35
0.44	0.44
40	44
0.44	0.44
0.44	0.44
0.44	0.44
44	44



-	-
MDL	RL
4.4	8.7
44	44
4.4	4.4
0.09	0.15
0.44	0.44
3.4	9
1.5	1.7
0.44	0.44
3.3	8
1.7	1.7
0.44	0.44
4.4	8.7
7.9	7.9
7.9	7.9
3.9	3.9
7.9	7.9
10	10
7.9	7.9
7.9	7.9
2.4	2.4
3.9	3.9
5.0	5.0
7.9	7.9
39	39
1.6	1.6
3.9	3.9
7.9	7.9
39	39
3.3	3.3
3.3	3.3
7.9	7.9
7.9	7.9
160	160



MDL	RL
7.9	7.9
79	79
79	79
79	79
79	79
79	79
79	79
79	79
79	79
79	79
40	400
81	400
40	400
81	400
40	400
0.56	5.6
0.56	5.6
0.56	5.6
0.56	5.6
1.1	5.6
0.56	5.6
0.56	5.6
0.56	5.6
0.56	5.6
1.1	5.6
0.56	5.6
0.56	22
5.6	28
0.56	5.6
0.56	5.6
0.56	5.6
2.8	11
1.1	5.6
1.1	5.6



MDL	RL
1.1	5.6
0.56	5.6
1.1	5.6
0.56	5.6
0.56	5.6
1.1	11
0.56	5.6
0.56	5.6
1.1	5.6
0.56	5.6
5.6	28
0.56	5.6
1.1	22
0.56	5.6
0.56	5.6
2.2	5.6
1.1	5.6
1.1	5.6
0.56	5.6
0.56	5.6
0.56	5.6
5.6	5.6
1.1	5.6
1.1	5.6
1.1	5.6
1.1	5.6
0.56	5.6
1.1	5.6
0.56	5.6
0.56	5.6
1.1	5.6
5.6	34
1.1	5.6
0.56	5.6



MDL	RL
1.1	5.6
1.1	5.6
0.56	5.6
1.1	5.6
1.1	5.6
0.56	5.6
1.1	5.6
0.56	5.6
0.56	5.6
0.56	5.6
0.56	5.6
130	400
180	400
120	280
99	280
120	280
190	320
130	280
98	280
110	200
110	280
110	280
100	280
120	200
130	280
120	280
140	200
160	200
130	280
140	280
120	280
120	280
130	280
130	280



MDL	RL
140	280
130	280
130	280
110	280
130	280
110	280
130	200
280	280
80	240
130	200
120	280
130	280
140	280
130	200
130	200
320	320
110	280
800	2000
120	200
130	280
120	280
110	200
150	280
120	280
130	280
110	280
110	280
100	280
150	280
130	280
160	200
140	280
150	240
130	200



MDL	RL
280	280
250	280
110	280
120	280
110	280
190	200
230	400
190	280
110	280
110	280
140	280
220	280
120	280
140	200
800	400
160	280
2.8	11
22	110
8.7	43
69	100
0.87	8.7
0.87	8.7
0.87	8.7
0.87	8.7
1.7	8.7
0.87	8.7
0.87	8.7
0.87	8.7
0.87	8.7
1.7	8.7
0.87	8.7
0.87	35
8.7	43



MDL	RL
0.87	8.7
0.87	8.7
0.87	8.7
0.87	8.7
4.3	17
1.7	8.7
1.7	8.7
1.7	8.7
0.87	8.7
1.7	8.7
0.87	8.7
0.87	8.7
1.7	17
1.7	8.7
0.87	8.7
0.87	8.7
1.7	8.7
0.87	8.7
8.7	43
0.87	8.7
1.7	35
0.87	8.7
0.87	8.7
0.87	8.7
3.5	8.7
1.7	8.7
1.7	8.7
0.87	8.7
0.87	8.7
0.87	8.7
8.7	8.7
1.7	8.7
1.7	8.7
1.7	8.7



MDL	RL
1.7	8.7
0.87	8.7
1.7	8.7
0.87	8.7
0.87	8.7
1.7	8.7
8.7	52
1.7	8.7
0.87	8.7
1.7	8.7
1.7	8.7
0.87	8.7
1.7	8.7
1.7	8.7
1.7	8.7
0.87	8.7
0.87	8.7
1.7	8.7
0.87	8.7
0.87	8.7
0.87	8.7
0.87	8.7
140	420
190	420
120	290
100	290
120	290
190	330
130	290
100	290
110	210
110	290
120	290
110	290



MDL	RL
120	210
140	290
130	290
150	210
160	210
140	290
140	290
130	290
120	290
130	290
140	290
140	290
130	290
140	290
120	290
140	290
120	290
140	210
290	290
83	250
130	210
120	290
140	290
150	290
130	210
130	210
330	330
120	290
830	2100
120	210
140	290
130	290
120	210
150	290



MDL	RL
130	290
130	290
110	290
120	290
110	290
160	290
140	290
170	210
150	290
160	250
130	210
290	290
260	290
120	290
120	290
120	290
200	210
240	420
200	290
120	290
120	290
150	290
230	290
130	290
150	210
830	420
160	290
4.3	17
35	170
73	100
9.2	46
0.92	9.2
0.92	9.2



MDL	RL
0.92	9.2
0.92	9.2
1.8	9.2
0.92	9.2
0.92	9.2
0.92	9.2
0.92	9.2
1.8	9.2
0.92	9.2
0.92	37
9.2	46
0.92	9.2
0.92	9.2
0.92	9.2
0.92	9.2
4.6	18
1.8	9.2
1.8	9.2
1.8	9.2
0.92	9.2
1.8	9.2
0.92	9.2
0.92	9.2
1.8	18
1.8	9.2
0.92	9.2
0.92	9.2
1.8	9.2
0.92	9.2
9.2	46
0.92	9.2
1.8	37
0.92	9.2
0.92	9.2



MDL	RL
0.92	9.2
3.7	9.2
1.8	9.2
1.8	9.2
0.92	9.2
0.92	9.2
0.92	9.2
9.2	9.2
1.8	9.2
1.8	9.2
1.8	9.2
1.8	9.2
0.92	9.2
1.8	9.2
0.92	9.2
0.92	9.2
1.8	9.2
9.2	55
1.8	9.2
0.92	9.2
1.8	9.2
1.8	9.2
0.92	9.2
1.8	9.2
1.8	9.2
1.8	9.2
0.92	9.2
0.92	9.2
1.8	9.2
0.92	9.2
0.92	9.2
0.92	9.2
0.92	9.2
140	420



RL
420
290
290
290
330
290
290
210
290
290
290
210
290
290
210
210
290
290
290
290
290
290
290
290
290
290
290
290
210
290
250
210
290
290



MDL	RL
150	290
130	210
140	210
330	330
120	290
840	2100
130	210
140	290
130	290
120	210
160	290
130	290
130	290
110	290
120	290
110	290
160	290
140	290
170	210
150	290
160	250
130	210
290	290
270	290
120	290
120	290
120	290
200	210
250	420
200	290
120	290
120	290
150	290
230	290



MDL	RL
130	290
150	210
840	420
160	290
4.6	18
37	180
79	100
9.8	49
76	380
1.9	1.9
0.76	0.76
0.38	0.8
0.15	0.30
0.38	0.38
3.5	3.8
0.38	0.38
0.38	0.38
0.38	0.38
38	38
0.38	0.8
7.6	7.6
7.6	7.6
3.8	3.8
7.6	7.6
7.6	7.6
7.6	7.6
7.6	7.6
2.3	2.3
3.8	3.8
3.8	3.8
7.6	7.6
38	38
1.5	1.5



MDL	RL
3.8	3.8
7.6	7.6
38	38
2.3	2.3
2.3	2.3
7.6	7.6
7.6	7.6
150	150
7.6	7.6
76	76
76	76
76	76
76	76
76	76
76	76
76	76
76	76
76	76
0.98	9.8
0.98	9.8
0.98	9.8
0.98	9.8
2.0	9.8
0.98	9.8
0.98	9.8
0.98	9.8
0.98	9.8
2.0	9.8
0.98	9.8
0.98	39
9.8	49
0.98	9.8
0.98	9.8
0.98	9.8



MDL	RL
0.98	9.8
4.9	20
2.0	9.8
2.0	9.8
2.0	9.8
0.98	9.8
2.0	9.8
0.98	9.8
0.98	9.8
2.0	20
2.0	9.8
0.98	9.8
0.98	9.8
2.0	9.8
0.98	9.8
9.8	49
0.98	9.8
2.0	39
0.98	9.8
0.98	9.8
0.98	9.8
3.9	9.8
2.0	9.8
2.0	9.8
0.98	9.8
0.98	9.8
0.98	9.8
9.8	9.8
2.0	9.8
2.0	9.8
2.0	9.8
2.0	9.8
0.98	9.8
2.0	9.8



MDL	RL
0.98	9.8
0.98	9.8
2.0	9.8
9.8	59
2.0	9.8
0.98	9.8
2.0	9.8
2.0	9.8
0.98	9.8
2.0	9.8
2.0	9.8
2.0	9.8
0.98	9.8
0.98	9.8
2.0	9.8
0.98	9.8
0.98	9.8
0.98	9.8
0.98	9.8
130	390
170	390
110	270
96	270
110	270
180	310
120	270
95	270
100	190
110	270
110	270
100	270
110	190
130	270
120	270



MDL	RL
140	190
150	190
130	270
130	270
120	270
110	270
130	270
130	270
130	270
130	270
130	270
110	270
130	270
110	270
130	190
270	270
77	230
130	190
110	270
130	270
140	270
120	190
130	190
310	310
110	270
770	1900
120	190
130	270
120	270
110	190
140	270
120	270
120	270
100	270



MDL	RL
110	270
100	270
150	270
130	270
150	190
140	270
150	230
120	190
270	270
250	270
110	270
120	270
110	270
180	190
230	390
180	270
110	270
110	270
140	270
210	270
120	270
140	190
770	390
150	270
4.9	20
39	200
38	38
3.8	3.8
0.02	0.03
0.38	0.38
29	76
1.3	1.5
0.38	0.38
3.2	8



	1
MDL	RL
1.5	1.5
0.38	0.38
0.38	0.8
7.2 7.2	7.2 7.2
7.2	7.2
3.6	3.6
7.2	7.2
7.2	7.2
7.2	7.2
7.2 7.2 7.2 7.2 7.2	7.2 7.2 7.2 7.2
5.0	5.0
3.6	3.6
3.6 7.2	3.6 7.2
7.2	7.2
36	36
1.4	1.4
3.6 7.2	3.6 7.2
7.2	7.2
I 36	36
2.2	2.2
2.2	2.2
7.2	7.2
7.2	7.2
140	140
7.2	7.2
72	72
72	72
7.2 72 72 72 72 72	7.2 72 72 72 72 72 72
72	72
72	72
72	72
72	72
72	72



MDL	RL
72	72
70	350
35	350
35	350
35	350
35	350
35	350
180	700
70	350
35	350
35	350
35	350
70	350
70	350
35	350
70	350
70	350
35	350
35	350
70	350
35	350
35	350
35	350
35	350
0.51	5.1
0.51	5.1
0.51	5.1
0.51	5.1
0.51	5.1
1.0	5.1
0.51	5.1
0.51	20
5.1	26
0.51	5.1



MDL	RL
0.51	5.1
41	77
1.0	5.1
1.0	5.1
1.0	5.1
0.51	5.1
0.51	5.1
1.0	10
1.0	5.1
1.0	5.1
0.51	5.1
5.1	26
0.51	5.1
1.0	20
0.51	5.1
0.51	5.1
0.51	5.1
2.0	5.1
1.0	5.1
1.0	5.1
0.51	5.1
0.51	5.1
0.51	5.1
5.1	5.1
1.0	5.1
1.0	5.1
1.0	5.1
1.0	5.1
0.51	5.1
20	100
1.0	5.1
0.51	5.1
0.51	5.1
1.0	5.1



MDL	RL
5.1	31
1.0	5.1
0.51	5.1
1.0	5.1
120	360
160	360
110	250
89	250
110	250
170	290
120	250
89	250
97	180
100	250
100	250
93	250
110	180
120	250
110	250
130	180
140	180
120	250
120	250
110	250
110	250
120	250
120	250
120	250
120	250
120	250
100	250
120	250
100	250
120	180



MDL	RL
250	250
72	220
120	180
110	250
120	250
130	250
110	180
120	180
290	290
100	250
720	1800
110	180
120	250
110	250
100	180
130	250
110	250
110	250
96	250
100	250
93	250
140	250
120	250
140	180
130	250
140	220
120	180
250	250
230	250
100	250
110	250
100	250
170	180
210	360



MDL	RL
170	250
100	250
100	250
130	250
200	250
110	250
130	180
720	360
140	250
5.1	26
7.4	37
1.9	1.9
0.74	0.74
0.37	0.7
0.15	0.30
0.37	0.37
34	37
0.37	0.37
0.37	0.37
0.37	0.37
37	37
3.7	7.4
37	37
3.7	3.7
0.02	0.03
0.37	0.37
29	74
1.3	1.5
0.37	0.37
3.2	7
1.5	1.5
0.37	0.37
0.37	0.7
2.6	10



MDL	RL
1.6	16
1.6	16
1.6	16
1.6	16
3.1	16
1.6	16
1.6	16
1.6	16
1.6	16
3.1	16
1.6	16
1.6	63
16	78
1.6	16
1.6	16
1.6	16
1.6	16
7.8	31
3.1	16
100	100
3.1	16
3.1	16
1.6	16
3.1	16
1.6	16
1.6	16
3.1	31
3.1	16
1.6	16
1.6	16
3.1	16
1.6	16
16	78



MDL	RL
1.6	16
3.1	16
1.6	16
1.6	16
1.6	16
6.3	16
3.1	16
3.1	16
1.6	16
1.6	16
1.6	16
16	16
3.1	16
3.1	16
3.1	16
3.1	16
1.6	16
63	310
3.1	16
1.6	16
1.6	16
3.1	16
16	94
3.1	16
1.6	16
3.1	16
3.1	16
1.6	16
3.1	16
3.1	16
3.1	16
1.6	16
1.6	16
3.1	16



MDL	RL
1.6	16
1.6	16
1.6	16
1.6	16
280	840
380	840
250	590
210	590
250	590
390	670
270	330
210	590
230	420
230	590
240	590
220	590
250	330
280	590
250	590
300	420
330	420
270	590
290	590
260	590
250	330
270	590
280	500
290	590
270	590
280	590
240	590
280	590
230	590
270	420



MDL	RL
590	590
170	510
270	330
250	590
280	590
300	590
270	420
270	420
670	670
240	590
1700	4200
250	420
280	590
260	590
240	420
310	590
260	590
270	590
220	590
240	590
220	590
320	590
280	590
340	420
310	590
320	510
270	420
590	590
530	590
240	590
250	590
240	590
400	420
500	840



MDL	RL
320	320
240	590
240	590
300	590
460	590
260	590
300	420
1700	840
330	590
16	78
7.8	31
7.4	37
1.8	1.8
0.74	0.74
0.37	0.7
0.15	0.30
0.37	0.37
34	37
0.37	0.37
0.37	0.37
0.37	0.37
37	37
3.7	7.4
37	37
0.37	0.37
0.09	0.15
0.37	0.37
2.9	7
1.3	1.5
0.37	0.37
3.2	7
1.5	1.5
0.37	0.37
3.7	7.4



	-
MDL	RL
7.4	7.4
7.4	7.4
3.7	3.7
7.4	7.4
7.4	7.4
7.4	7.4
7.4	7.4
2.2	2.2
3.7	3.7
3.7	3.7
7.4	7.4
37	37
1.5	1.5
3.7	3.7
7.4	7.4
37	37
2.2	2.2
2.2	2.2
7.4	7.4
7.4	7.4
150	150
7.4	7.4
74	74
74	74
74	74
74	74
74	74
74	74
74	74
74	74
74	74
33	330
33	330



MDL	RL
33	330
33	330
33	330
33	330
67	330
33	33
33	1300
330	1700
33	330
33	330
170	670
170	670
67	330
2700	2700
67	330
67	330
33	330
67	330
33	250
33	190
67	670
33	330
33	330
67	330
33	330
330	1700
33	330
67	1300
330	330
33	330
33	330
33	330
130	330
67	330



	1
MDL	RL
67	330
33	330
33	330
33	33
330	330
67	330
67	330
67	330
67	270
33	330
1300	6700
67	330
33	330
33	330
67	330
330	330
67	330
33	330
67	330
67	330
33	330
67	330
67	330
33	330
67	330
33	330
33	330
33	330
330	3300
670	3300
330	1300
330	3300
330	3300
670	3300



-	
MDL	RL
670	3300
330	3300
330	2700
120	370
170	370
110	260
92	260
110	260
170	300
120	260
92	260
100	190
100	260
110	260
96	260
110	190
120	260
110	260
130	190
150	190
120	260
130	260
120	260
110	260
120	260
120	260
130	260
120	260
120	260
100	260
130	260
100	260
120	190
260	260



MDL	RL
75	220
120	190
110	260
130	260
130	260
120	190
120	190
300	300
110	260
750	1900
110	190
130	260
110	260
100	190
140	260
110	260
120	260
99	260
110	260
96	260
140	260
120	260
150	190
130	260
140	220
120	190
260	260
240	260
110	260
110	260
110	260
180	190
220	370
180	260



	-
MDL	RL
110	260
110	260
130	260
200	260
120	260
130	190
750	370
150	260
6.0	30
0.60	6.0
0.60	6.0
0.60	6.0
0.60	6.0
1.2	6.0
0.60	6.0
0.60	6.0
0.60	6.0
0.60	6.0
1.2	6.0
0.60	6.0
0.60	24
6.0	30
0.60	6.0
0.60	6.0
0.60	6.0
0.60	6.0
3.0	12
3.0	12
1.2	6.0
48	90
1.2	6.0
1.2	6.0
0.60	6.0



MDL	RL
1.2	6.0
0.60	6.0
0.60	6.0
1.2	12
1.2	6.0
0.60	6.0
0.60	6.0
1.2	6.0
0.60	6.0
6.0	30
0.60	6.0
1.2	24
0.60	6.0
0.60	6.0
0.60	6.0
2.4	6.0
1.2	6.0
1.2	6.0
0.60	6.0
0.60	6.0
0.60	6.0
6.0	6.0
1.2	6.0
1.2	6.0
1.2	6.0
1.2	6.0
0.60	6.0
24	120
1.2	6.0
0.60	6.0
0.60	6.0
1.2	6.0
6.0	36
1.2	6.0



MDL	RL
0.60	6.0
1.2	6.0
1.2	6.0
0.60	6.0
1.2	6.0
1.2	6.0
1.2	6.0
0.60	6.0
0.60	6.0
1.2	6.0
0.60	6.0
0.60	6.0
0.60	6.0
0.60	6.0
140	430
190	430
130	300
110	300
130	300
200	340
140	300
110	300
120	210
120	300
120	300
110	300
130	210
140	300
130	300
150	210
170	210
140	300
150	300
130	300



MDL	RL
130	300
140	300
140	300
150	300
140	300
140	300
120	300
140	300
120	300
140	210
300	300
86	260
140	210
130	300
140	300
150	300
140	210
140	210
340	340
120	300
860	2100
130	210
140	300
130	300
120	210
160	300
130	300
140	300
110	300
120	300
110	300
160	300
140	300
170	210



MDL	RL
160	300
160	260
140	210
300	300
270	300
120	300
130	300
120	300
200	210
250	430
200	300
120	300
120	300
150	300
240	300
130	300
150	210
860	430
170	300
19	190
19	190
19	190
19	190
38	190
19	190
19	190
19	190
19	190
38	190
19	20
19	760
190	950
19	190



MDL	RL
19	190
19	190
19	190
95	380
95	380
38	190
1500	1500
38	190
38	190
19	190
38	190
19	190
19	190
38	380
38	190
19	190
19	190
38	190
19	190
190	950
19	190
38	190
190	190
19	190
19	60
19	190
76	190
38	190
38	190
19	190
19	190
19	20
190	190
38	190



RL
190
190
190
190
3800
190
190
190
190
190
190
190
190
190
190
190
190
190
190
190
190
190
190
190
190
350
350
240
240
240
280
240
240
170



MDL	RL
95	240
100	240
89	240
100	170
110	240
100	240
120	170
140	170
110	240
120	240
110	240
100	240
110	240
110	240
120	240
110	240
110	240
97	240
120	240
96	240
110	170
240	240
69	210
110	170
100	240
120	240
120	240
110	170
110	170
280	280
98	240
690	1700
100	170
120	240



MDL	RL
110	240
97	170
130	240
110	240
110	240
92	240
99	240
89	240
130	240
110	240
140	170
130	240
130	210
110	170
240	240
220	240
100	240
100	240
98	240
160	170
200	350
160	240
98	240
98	240
120	240
190	240
110	240
120	170
690	350
140	240
4.5	22
-	
8.5	43
2.1	2.1



MDL	RL
0.85	0.85
0.43	0.9
0.17	0.34
0.43	0.43
3.9	4.3
0.43	0.43
0.43	0.43
0.43	0.43
43	43
0.43	0.9
4.3	4.3
4.3	4.3
0.02	0.03
0.43	0.43
33	85
1.4	1.7
0.43	0.43
3.7	9
1.7	1.7
0.43	0.43
0.43	0.9
7.9	7.9
7.9	7.9
4.0	4.0
7.9	7.9
7.9	7.9
7.9	7.9
7.9	7.9
2.4	2.4
4.0	4.0
4.0	4.0
7.9	7.9
40	40
1.6	1.6



RL
4.0
7.9
40
2.4
2.4
7.9
7.9
160
7.9
79
79
79
79
79
79
79
79
79
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
18
22
4.5
4.5
4.5



MDL	RL
0.45	4.5
2.2	8.9
0.89	4.5
36	67
0.89	4.5
0.89	4.5
0.45	4.5
0.89	4.5
0.45	4.5
0.45	4.5
0.89	8.9
0.89	4.5
0.45	4.5
0.45	4.5
0.89	4.5
0.45	4.5
4.5	22
0.45	4.5
0.89	18
0.45	4.5
0.45	4.5
0.45	4.5
1.8	4.5
0.89	4.5
0.89	4.5
0.45	4.5
0.45	4.5
0.45	4.5
4.5	4.5
0.89	4.5
0.89	4.5
0.89	4.5
0.89	4.5
0.45	4.5



MDL	RL
18	89
0.89	4.5
0.45	4.5
0.45	4.5
0.89	4.5
4.5	27
0.89	4.5
0.45	4.5
0.89	4.5
0.89	4.5
0.45	4.5
0.89	4.5
0.89	4.5
0.89	4.5
0.45	4.5
0.45	4.5
0.89	4.5
0.45	4.5
0.45	4.5
0.45	4.5
0.45	4.5
130	390
180	390
110	270
97	270
120	270
180	310
130	270
96	270
110	200
110	270
110	270
100	270
110	200



MDL	RL
130	270
120	270
140	200
150	200
130	270
130	270
120	270
110	270
130	270
130	270
130	270
130	270
130	270
110	270
130	270
110	270
130	200
270	270
78	230
130	200
120	270
130	270
140	270
120	200
130	200
310	310
110	270
780	2000
120	200
130	270
120	270
110	200
150	270
120	270



MDL	RL
120	270
100	270
110	270
100	270
150	270
130	270
160	200
140	270
150	230
130	200
270	270
250	270
110	270
120	270
110	270
180	200
230	390
180	270
110	270
110	270
140	270
210	270
120	270
140	200
780	390
150	270
2.2	8.9
6.1	31
0.61	6.1
0.61	6.1
0.61	6.1
0.61	6.1
1.2	6.1



MDL	RL
0.61	6.1
0.61	6.1
0.61	6.1
0.61	6.1
1.2	6.1
0.61	6.1
0.61	25
6.1	31
0.61	6.1
0.61	6.1
0.61	6.1
0.61	6.1
3.1	12
1.2	6.1
49	92
1.2	6.1
1.2	6.1
0.61	6.1
1.2	6.1
0.61	6.1
0.61	6.1
1.2	12
1.2	6.1
0.61	6.1
0.61	6.1
1.2	6.1
0.61	6.1
6.1	31
0.61	6.1
1.2	25
0.61	6.1
0.61	6.1
0.61	6.1
2.5	6.1



MDL	RL
1.2	6.1
1.2	6.1
0.61	6.1
0.61	6.1
0.61	6.1
6.1	6.1
1.2	6.1
1.2	6.1
1.2	6.1
1.2	6.1
0.61	6.1
25	120
1.2	6.1
0.61	6.1
0.61	6.1
1.2	6.1
6.1	37
1.2	6.1
0.61	6.1
1.2	6.1
1.2	6.1
0.61	6.1
1.2	6.1
1.2	6.1
1.2	6.1
0.61	6.1
0.61	6.1
1.2	6.1
0.61	6.1
0.61	6.1
0.61	6.1
0.61	6.1
140	410
180	410



MDL	RL
120	290
100	290
120	290
190	330
130	290
100	290
110	200
110	290
120	290
110	290
120	200
130	290
120	290
140	200
160	200
130	290
140	290
130	290
120	290
130	290
140	290
140	290
130	290
140	290
110	290
140	290
110	290
130	200
290	290
82	240
130	200
120	290
140	290
140	290



	ı
MDL	RL
130	200
130	200
330	330
120	290
820	2000
120	200
140	290
120	290
110	200
150	290
120	290
130	290
110	290
120	290
110	290
160	290
130	290
160	200
150	290
150	240
130	200
290	290
260	290
120	290
120	290
120	290
190	200
240	410
190	290
120	290
120	290
140	290
220	290
130	290



MDL	RL
140	200
820	410
160	290
3.1	12
8.4	8.4
8.4	8.4
4.2	4.2
8.4	8.4
8.4	8.4
8.4	8.4
8.4	8.4
2.5	2.5
4.2	4.2
4.2	4.2
8.4	8.4
42	42
1.7	1.7
4.2	4.2
8.4	8.4
42	42
2.5	2.5
2.5	2.5
8.4	8.4
8.4	8.4
170	170
8.4	8.4
84	84
84	84
84	84
84	84
84	84
84	84
84	84



MDL	RL
84	84
84	84
0.81	8.1
0.81	8.1
0.81	8.1
0.81	8.1
1.6	8.1
0.81	8.1
0.81	8.1
0.81	8.1
0.81	8.1
1.6	8.1
0.81	8.1
0.81	32
8.1	40
0.81	8.1
0.81	8.1
0.81	8.1
0.81	8.1
4.0	16
1.6	8.1
65	100
1.6	8.1
1.6	8.1
0.81	8.1
1.6	8.1
0.81	8.1
0.81	8.1
1.6	16
1.6	8.1
0.81	8.1
0.81	8.1
1.6	8.1
0.81	8.1



	-
MDL	RL
8.1	40
0.81	8.1
1.6	32
8.1	40
0.81	8.1
0.81	8.1
0.81	8.1
3.2	8.1
1.6	8.1
1.6	8.1
0.81	8.1
0.81	8.1
0.81	8.1
8.1	8.1
1.6	8.1
1.6	8.1
1.6	8.1
1.6	8.1
0.81	8.1
32	160
1.6	8.1
0.81	8.1
0.81	8.1
1.6	8.1
8.1	48
1.6	8.1
0.81	8.1
1.6	8.1
1.6	8.1
0.81	8.1
1.6	8.1
1.6	8.1
1.6	8.1
0.81	8.1



MDL	RL
0.81	8.1
1.6	8.1
0.81	8.1
0.81	8.1
0.81	8.1
0.81	8.1
140	420
190	420
120	300
110	300
130	300
200	340
140	300
100	300
110	210
120	300
120	300
110	300
120	210
140	300
130	300
150	210
170	210
140	300
150	300
130	300
120	300
140	300
140	300
140	300
140	300
140	300
120	300
140	300



MDL	RL
120	300
140	210
300	300
85	250
140	210
130	300
140	300
150	300
130	210
140	210
340	340
120	300
850	2100
130	210
140	300
130	300
120	210
160	300
130	300
130	300
110	300
120	300
110	300
160	300
140	300
170	210
150	300
160	250
140	210
300	300
270	300
120	300
130	300
120	300



MDL	RL
200	210
250	420
200	300
120	300
120	300
150	300
230	300
130	300
150	210
850	420
170	300
7.8	39
2.0	2.0
0.78	0.78
0.39	8.0
0.16	0.31
0.39	0.39
3.6	3.9
0.39	0.39
0.39	0.39
0.39	0.39
39	39
0.39	8.0
3.9	3.9
3.9	3.9
0.02	0.03
0.39	0.39
3.0	8
1.3	1.6
0.39	0.39
3.4	8
1.6	1.6
0.39	0.39
0.39	8.0



MDL	RL
4.0	16
7.4	37
1.9	1.9
0.74	0.74
0.37	0.7
0.15	0.30
0.37	0.37
3.4	3.7
0.37	0.37
0.37	0.37
0.37	0.37
37	37
5.2	26
0.37	0.7
3.7	3.7
3.7	3.7
0.02	0.03
0.37	0.37
29	74
1.3	1.5
0.37	0.37
3.2	7
1.5	1.5
0.37	0.37
0.37	0.7
8.0	8.0
8.0	8.0
4.0	4.0
8.0	8.0
8.0	8.0
8.0	8.0
8.0	8.0
2.4	2.4



MDL	RL
4.0	4.0
4.0	4.0
8.0	8.0
40	40
1.6	1.6
4.0	4.0
8.0	8.0
40	40
2.4	2.4
2.4	2.4
8.0	8.0
8.0	8.0
160	160
8.0	8.0
80	80
80	80
80	80
80	80
80	80
80	80
80	80
80	80
80	80
0.52	5.2
0.52	5.2
0.52	5.2
0.52	5.2
0.52	5.2
0.52	5.2
0.52	5.2
1.0	5.2
0.52	5.2
0.52	21
5.2	26



MDL	RL
0.52	5.2
0.52	5.2
1.0	5.2
0.52	5.2
33	270
2.6	10
1.0	5.2
42	79
1.0	5.2
1.0	5.2
0.52	5.2
1.0	5.2
0.52	5.2
0.52	5.2
1.0	10
1.0	5.2
1.0	5.2
0.52	5.2
1.0	5.2
0.52	5.2
5.2	26
0.52	5.2
1.0	21
0.52	5.2
0.52	5.2
1.0	5.2
0.52	5.2
2.1	5.2
1.0	5.2
1.0	5.2
0.52	5.2
0.52	5.2
0.52	5.2
5.2	5.2



MDL	RL
0.52	5.2
1.0	5.2
1.0	5.2
1.0	5.2
0.52	5.2
21	100
1.0	5.2
0.52	5.2
0.52	5.2
1.0	5.2
5.2	31
1.0	5.2
0.52	5.2
1.0	5.2
1.0	5.2
0.52	5.2
1.0	5.2
0.52	5.2
1.0	5.2
0.52	5.2
0.52	5.2
1.0	5.2
0.52	5.2
0.52	5.2
2.6	10
0.52	5.2
0.52	5.2
130	400
180	400
120	280
99	280
120	280
190	320
130	280



MDL	RL
99	280
110	200
110	280
120	280
100	280
120	200
130	280
120	280
140	200
160	200
130	280
140	280
120	280
120	280
130	280
130	280
140	280
130	280
130	280
110	280
130	280
110	280
130	200
280	280
80	240
130	200
120	280
130	280
140	280
130	200
130	200
320	320
110	280
800	2000



MDL	RL
120	200
130	280
120	280
110	200
150	280
120	280
130	280
110	280
110	280
100	280
150	280
130	280
160	200
150	280
150	240
130	200
280	280
250	280
120	280
120	280
110	280
190	200
240	400
190	280
110	280
110	280
140	280
220	280
130	280
140	200
800	400
160	280
72	360
1.8	1.8



MDL	RL
0.72	0.72
0.36	0.7
0.14	0.29
0.36	0.36
3.3	3.6
0.36	0.36
0.36	0.36
0.36	0.36
36	36
6.6	33
0.36	0.7
36	36
3.6	3.6
0.02	0.03
0.36	0.36
28	72
1.2	1.4
0.36	0.36
3.1	7
1.4	1.4
0.36	0.36
0.36	0.7
7.4	7.4
7.4	7.4
3.7	3.7
7.4	7.4
7.4	7.4
7.4	7.4
7.4	7.4
2.2	2.2
3.7	3.7
3.7	3.7
7.4	7.4



MDL	RL
37	37
1.5	1.5
3.7	3.7
7.4	7.4
37	37
2.2	2.2
2.2	2.2
7.4	7.4
7.4	7.4
150	150
7.4	7.4
74	74
74	74
74	74
74	74
74	74
74	74
74	74 74
74	74
74	74
0.66	6.6
0.66	6.6
0.66	6.6
0.66	6.6
1.3	6.6
0.66	6.6
0.66	6.6
0.66	6.6
0.66	6.6
1.3	6.6
0.66	6.6
0.66	27
6.6	33
0.66	6.6



-	1
MDL	RL
0.66	6.6
0.66	6.6
0.66	6.6
3.3	13
3.3 1.3	13
1.3	6.6
53	99
1.3	6.6
1.3	6.6
0.66	6.6
1.3	6.6
0.66	6.6
0.66	6.6
1.3	13
1.3	6.6
0.66	6.6
0.66	6.6
1.3	6.6
0.66	6.6
6.6	33
0.66	6.6
1.3	27
0.66	6.6
0.66	6.6
0.66	6.6
2.7	6.6
1.3 1.3	6.6
1.3	6.6
0.66	6.6
0.66	6.6
0.66	6.6
6.6	6.6
6.6 1.3 1.3	6.6
1.3	6.6



MDL	RL
1.3	6.6
1.3	6.6
0.66	6.6
27	130
1.3	6.6
0.66	6.6
0.66	6.6
1.3	6.6
6.6	40
1.3	6.6
0.66	6.6
1.3	6.6
1.3	6.6
0.66	6.6
1.3	6.6
1.3	6.6
1.3	6.6
0.66	6.6
0.66	6.6
1.3	6.6
0.66	6.6
0.66	6.6
0.66	6.6
0.66	6.6
120	370
170	370
110	260
92	260
110	260
170	300
120	260
91	260
100	190
100	260



MDL	RL
110	260
96	260
110	190
120	260
110	260
130	190
150	190
120	260
130	260
120	260
110	260
120	260
120	260
130	260
120	260
120	260
100	260
120	260
100	260
120	190
260	260
74	220
120	190
110	260
120	260
130	260
120	190
120	190
300	300
100	260
740	1900
110	190
120	260
110	260



MDL	RL
100	190
140	260
110	260
120	260
99	260
110	260
96	260
140	260
120	260
150	190
130	260
140	220
120	190
260	260
240	260
110	260
110	260
110	260
180	190
220	370
170	260
100	260
110	260
130	260
200	260
120	260
130	190
740	370
150	260
40	75
5.0	25
0.50	5.0
0.50	5.0
0.50	5.0



MDL	RL
0.50	5.0
1.0	5.0
0.50	5.0
0.50	5.0
0.50	5.0
0.50	5.0
1.0	5.0
0.50	5.0
0.50	20
5.0	25
0.50	5.0
0.50	5.0
0.50	5.0
0.50	5.0
2.5	10
1.0	5.0
1.0	5.0
1.0	5.0
0.50	5.0
1.0	5.0
0.50	5.0
0.50	5.0
1.0	10
1.0	5.0
0.50	5.0
0.50	5.0
1.0	5.0
0.50	5.0
5.0	25
0.50	5.0
1.0	20
0.50	5.0
0.50	5.0
0.50	5.0



	T .
MDL	RL
2.0	5.0
1.0	5.0
1.0	5.0
0.50	5.0
0.50	5.0
0.50	5.0
5.0	5.0
1.0	5.0
1.0	5.0
1.0	5.0
1.0	5.0
0.50	5.0
1.0	5.0
0.50	5.0
0.50	5.0
1.0	5.0
5.0	30
1.0	5.0
0.50	5.0
1.0	5.0
1.0	5.0
0.50	5.0
1.0	5.0
1.0	5.0
1.0	5.0
0.50	5.0
0.50	5.0
1.0	5.0
0.50	5.0
0.50	5.0
0.50	5.0
0.50	5.0
20	100
2.5	10



MDL	RL
2000	2000
250	250
25	250
25	250
25	250
25	250
50	250
25	250
25	250
25	250
25	250
50	250
25	25
25	1000
250	1300
25	250
25	250
25	250
25	250
130	500
130	500
50	250
50	250
50	250
25	250
50	250
25	250
25	190
50	500
50	250
25	250
25	250
50	250
25	250



	1
MDL	RL
250	1300
25	250
50	1000
25	250
25	60
25	250
100	250
50	250
50	250
25	250
25	250
25	25
250	250
50	250
50	250
50	250
50	250
25	250
1000	5000
50	250
25	250
25	250
50	250
250	250
50	250
25	250
50	250
50	250
25	250
50	250
50	250
50	250
25	250
25	250



MDL	RL
50	250
25	250
25	250
25	250
25	250