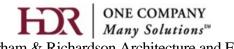
Hunts Point Food Distribution Center E OU-3 Extension & Viele Avenue Extension

Site Investigation Report Bronx, New York


Final

Prepared for:

110 William Street, New York, New York 10038

Prepared by:

Henningson, Durham & Richardson Architecture and Engineering, P.C. One Blue Hill Plaza - 12th Floor, Pearl River, New York 10965

TABLE OF CONTENTS

<u>ION NO</u> .	<u>PAGE NO.</u>
Introduction	1
Purpose	
History	
Phase II Site Investgation Work	2
Soil Investigation	2
Groundwater Investigation	5
Sampling Results	6
Soil Investigation	6
<u> </u>	
Conclusion and Recommendations	
	Introduction Purpose History Phase II Site Investgation Work Soil Investigation Groundwater Investigation Sampling Results Soil Investigation Groundwater Investigation

LIST OF FIGURES

Figure 1: Site Location Figure 2: Site Plan

Figure 3: Historic Structures

Figure 4: Site Aerial Photograph

Figure 5: Site Features, Boring and Test Pit Locations

Figure 6: Cross Section A-A'

LIST OF TABLES

Table 1: VOCs Detected in Soil

Table 2: SVOCs, Metals and PCBs Detected in Soil

Table 3: VOCs, SVOCs, Metals and PCBs Detected in Groundwater

LIST OF PHOTOGRAPHS

Photograph 1: Geophysical Survey

Photograph 2: Abandoned Concrete Foundation Slab

Photograph 3: Test Pit (along west edge of concrete slab)

Photograph 4: Drilling Boring B18

Photograph 5: Large Debris Pile

LIST OF APPENDICES

Appendix A: Historic Photographs

Appendix B: E OU-3 Extension & Viele Avenue Extension Investigation Area Survey

Appendix C: Boring Logs Appendix D: Test Pit Logs

Appendix E: Laboratory Data Packages

1.0 INTRODUCTION

1.1 Purpose

Henningson, Durham & Richardson Architecture and Engineering P.C. in association with HDR Engineering, Inc. (HDR), has prepared this Site Investigation Report (SIR) at the request of the New York City Economic Development Corporation (NYCEDC) for the parcel known as the Site E OU-3 Extension and Viele Avenue Extension (Site) (refer to Figure 1) located within the Hunts Point Food Distribution Center (HPFDC) in the Bronx, New York. The Site is identified as part of Block 2781, Lot 500; Block 2775, Lot 279; and Block 2778, Lot 100 and encompasses approximately 102,000 square feet or 2.34 acres. The Site is bounded on the north by a New York State Department of Environmental Conservation (NYSDEC) Voluntary Cleanup Program (VCP) parcel known as Site E OU-3; on the south by NYSDEC VCP Site A OU-2, a parking lot serving the new Fulton Fish Market and the Meat Market lease hold; to the east by NYSDEC VCP Site E OU-2; and to the west by Halleck Street (refer to Figure 2). The property is currently owned by the City of New York and managed by the NYCEDC.

Between March 10 and March 19, 2010, HDR completed a geophysical investigation and a subsurface Site Investigation (SI) on the Site E OU-3 Extension and Viele Avenue Extension. The SI was completed to assess, to the extent feasible within the existing scope and budget, contamination that may exist due to historic use of the Site. In addition to identifying areas potentially impacted by historic use, the investigation also evaluated general fill conditions and Site groundwater. This information is intended to assist NYCEDC in future planning and determinations of Site end use, necessary for redevelopment.

1.2 History

The SI was based on historic information and aerial photographs (see Appendix A) showing that the area was formerly occupied by a Manufactured Gas Plant (MGP). The MGP site was operated by Consolidated Edison Company of New York, Inc. (Con Edison) from 1926 to approximately 1960. The land was subsequently sold to the City of New York. The facility occupied 206.4 acres, bounded on the north by East Bay Avenue, on the east by the Bronx River, on the south by the East River, and on the west by Halleck Street. Plant operations included the manufacturing, storage, and distribution of coal gas.

At the peak of gas production, the plant consisted of approximately 46 structures (refer to Figure 3). Other than buildings, the main structural units included a 15-million cubic foot waterless gas holder, a 1-million cubic foot relief holder, a 2-million gallon fresh water storage tank, and two 1-million gallon oil storage tanks. The facility stopped production in the early 1960s. Review of historical maps and aerial photographs show that all of the major above ground structures were demolished by 1966 with the exception of the 15-million cubic foot waterless gas holder. By 1975, the waterless gas holder had been demolished and the former MGP site was undergoing redevelopment.

Between 1966 and 1975, the western portion of the Site was developed as Viele Avenue (refer to Figure 4). Viele Avenue has been demapped but the Site E OU-3 Extension and Viele Avenue Extension still contain multiple utilities including a drainage easement (refer to Figure 2) leading to a combined sewer overflow (CSO) located on the southern edge of the Hunts Point Peninsula. Between 1975 and 1984, concrete foundations were installed along the eastern boundary of the Site. The foundations were intended for the development and relocation of a fish market that was operating in lower Manhattan. The relocation plans were never realized and in 2005 the Fulton Fish Market was relocated to a parcel in the southern end of the Hunts Point peninsula. Several of the foundations were used by the Nebraskaland development as an expansion of the current Meat Market Cooperative. The remaining slabs are unused.

2.0 PHASE II SITE INVESTGATION WORK

HDR designed the Phase II investigative scope to incorporate a geophysical survey, soil probing, test pitting and groundwater testing to assess potential impacts from the former MGP and Site fill materials. Both soil and groundwater samples were collected for laboratory analyses.

HDR subcontracted Diversified Geophysics of New Hyde Park, New York to complete a geophysical survey and Aquifer Drilling and Testing (ADT) of New Hyde Park, New York to advance 20 soil borings and four test pits, including installation of six temporary groundwater sampling points (refer to Figure 5).

2.1 Soil Investigation

On March 10, 2010, HDR commenced field activities with the location of Site utilities by Diversified Geophysics. Each borehole location was cleared for drilling using electromagnetic and ground penetrating radar instruments, including the borings installed through the abandoned foundation slab. Diversified Geophysics also attempted to confirm the location of utilities shown on the Viele Avenue Investigation Area Survey (see Appendix B).

On March 16, 2010, ADT mobilized a Geoprobe[®] 6610 track mounted direct-push rig to advance 20 soil borings (B-1 through B-20). Samples were collected continuously in dedicated acetate liners from the ground surface to the depth of a native clay confining layer, approximately 20 feet below grade or refusal, whichever was encountered first.

Upon collection, each sample was field screened by a geologist for organic vapors using a properly calibrated [100 parts per million (ppm) of isobutylene] photo-ionization detector (PID). A combustible gas indicator (CGI) was used to screen subsurface soils for methane and hydrogen sulfide (H_2S) gas. Detailed logs where then prepared for each sample and included: material type, composition, color, grain size and distribution, water content, and visual or olfactory evidence of contamination, as well as any other distinctive characteristics. The completed logs are included as Appendix C. Soil samples submitted for laboratory analysis were selected based upon visual or olfactory evidence of impacts and/or elevated readings noted on field instruments. In areas where no

evidence of potential impact was noted, a sample was retained from directly above the water table.

Sample locations were distributed across the Site to provide information for future planning and design efforts for the entire Site. The Site is divided by a fence into two sections: the former Viele Avenue and the eastern portion which is vegetated and partially covered by an abandoned concrete foundation slab.

Seven borings (B-1 through B-7) and four test pits (TP-1 through TP-4) were advanced in the eastern vegetated portion of the Site. Borings B-1, B-2, B-3, B-6 and B-7 were advanced through vegetation and debris located at the surface. In the areas of borings B-4 and B-5, the concrete slab had to be cored prior to advancing the borings. In general, the soils encountered consisted of fill materials underlain by a native clay or sandy gravels and then native clay. The fill material consisted mostly of compacted silt, containing some sand and fine gravels, and traces of brick, wood, ash, coal dust, concrete, glass, metal, plastic and styrofoam materials. Fill materials had a slight odor, believed to be from the decomposing wood, ash and coal dust found in the sample. A PID reading of 14.6 ppm was observed in boring B-5 at a depth of 7 to 8 feet. A sample was retained from this depth for laboratory analysis. This was the only boring in this portion of the Site where a reading above background was noted. The sandy gravel contained no debris and was found across the middle portion of the project area beneath the fill materials. The native clay unit contained plant and seashell fragments. All of the borings in the vegetated portion of the Site were terminated in the clay layer. Figure 6 shows a cross section of the Site.

In addition to the borings, four test pits were advanced in the area surrounding the concrete foundations on March 15, 2010. A detailed log was prepared for each test pit and included: material type, composition, color, grain size and distribution, and visual or olfactory evidence of contamination, as well as any other distinctive characteristics. The test pit logs are included in this report as Appendix D. Each test pit was advanced to a depth of approximately 10 feet. The materials encountered in each test pit were very similar. The surface materials consisted of either topsoil or metal and rubber tire debris. The topsoil or debris was underlain by fill described as a yellow to brown coarse to fine sand, underlain by a brown very fine sand and silt layer. Groundwater was encountered at 4 to 5 feet below the surface, roughly two feet below the concrete pad. While advancing the test pits along the foundation slabs an odor similar to coal tar was noted. There was, however, no sign in the excavation of any source of the contamination, nor were any readings recorded on the meters above background. An inspection of the groundwater in the excavation did not reveal any sheen or other sign of impact from MGP material. Small isolated pockets of MGP material have been identified on other development sites within Hunts Point and it is believed that this may be the case in this area. An example of this was the very small sign of coal tar noted at 7ft in boring B-11, on a layer of concrete (this boring is discussed in detail below). Once completed, the test pits were backfilled with the excavated materials from the same location.

The former Viele Avenue portion of the Site consists of asphalt paving with concrete sidewalks. Thirteen of the 20 borings were installed in this portion of the Site (B-8

through B-20). In general, the soils encountered were similar to those encountered in the vegetated portion of the Site. Fill materials were described as compacted silt, containing some sand and fine gravels, and traces of brick, wood, ash, coal dust, concrete, glass, metal, plastic and styrofoam materials. The gravel and clay were also similar to those described in the vegetated portion of the Site (refer to Figure 6). All of the borings in the Viele Avenue portion of the Site were terminated in clay; with the exception of B18 and B20 which were only advanced to ten feet and borings B-11 and B-19 which were terminated at seven feet below the surface due to refusal. A PID reading slightly above background, 4.6 ppm, was measured in boring B-16 in the 5 to 10 foot sample. A sample was retained for laboratory analysis from 8 to 9 feet. This was the only boring in this portion of the Site where a reading above background was measured.

While installing boring B-11, a small amount of coal tar, a byproduct of the MGP process, was observed on the sampler at a depth of 7 feet, where the boring met refusal. The boring was relocated approximately 5 feet to the west from the original location in an attempt to avoid the obstruction and collect a representative sample. There was no evidence of coal tar in the second location. HDR returned to this area during the final day of drilling to delineate any coal tar that may be present. Borings B-18, B-19 and B-20 were installed surrounding the original B-11 location. Borings B-18 and B-20 were advanced to a depth of 10 feet with no evidence of coal tar. Boring B-19 met refusal at 7 feet similar to the original B-11 location. A sample was collected for laboratory analyses from 6 to 7 feet in an attempt to characterize the fill materials directly above the obstruction, but no coal tar was observed.

A total of 11 soil samples were retained for laboratory analyses. All 11 samples were collected, transferred to the laboratory in laboratory-provided glassware and sent under Chain of Custody (COC) protocol to Mitkem Laboratories of Warwick, Rhode Island, a division Spectrum Analytical Inc. (Mitkem). Mitkem is a New York State Department of Health (NYSDOH)-certified laboratory. Mitkem analyzed the soil samples for the following parameters:

- Volatile Organic Compounds (VOCs) following the United States Environmental Protection Agency's (USEPA) Method 8260,
- Semi Volatile Organic Compounds (SVOCs) via USEPA Method 8270,
- Resource Conservation and Recovery Act (RCRA) metals plus mercury and cyanide (Cn) via USEPA Method 6010 plus 9010 (Cn),
- Polychlorinated Biphenyls (PCBs) via USEPA Method 8082, and
- Total Petroleum Hydrocarbon (TPH) via USEPA Method 8015.

After soil sampling was completed at each location, the boring was backfilled using excess cuttings and/or bentonite pellets. If borings were located in paved areas, the surface was replaced and restored with compatible materials.

2.2 Groundwater Investigation

Soil borings B-1, B-5, B-8, B-11, B-13 and B-16 were completed as temporary groundwater sampling points. The purpose of the monitoring points was to measure depth to groundwater, collect groundwater samples, and to obtain information on groundwater quality. Locations of the six points are shown on Figure 5.

Upon reaching the completion depth of each boring, the sampling point was installed. Each point consisted of a 15- to 20-foot long section of 1-inch diameter, slotted schedule 40 polyvinyl chloride (PVC) screen. The wells were distributed across the Site in order to characterize Site-wide groundwater quality. Additionally, monitoring points were installed in borings B-5 and B-16 where PID readings were observed above background. Once the monitoring point installation was complete, the temporary points were developed by evacuating groundwater through dedicated tubing using a peristaltic pump until a reduction in turbidity was observed. All samples were collected using a peristaltic pump through dedicated sample tubing. Due to the high silt content of the soils, it was noted that the groundwater samples collected from borings B-5, B-11 and B-13 had a high turbidity.

Groundwater samples were collected directly into laboratory-provided glassware and sent under COC protocol to Mitkem for analyses. Samples were analyzed for the following parameters:

- VOCs following the USEPA Method 8260,
- SVOCs via USEPA Method 8270,
- RCRA metals plus Cn via USEPA Method 6010 plus mercury and 9010 (Cn),
- PCBs via USEPA Method 8082, and
- TPH via USEPA Method 8015.

There were no odors or visual evidence of impact to groundwater noted during purging or sampling. Depth to groundwater varied across the Site and was measured between 4.5 and 10 feet below the existing ground surface. The clay horizon noted throughout the Site has also been observed throughout Hunts Point and is considered a confining layer. This condition of relatively shallow clay with a groundwater table that varies over a fairly wide range has been noted in other Hunts Point development sites. The clay may be a component in the fluctuating groundwater contours in the area. Much of the area in Hunts Point is paved, and it prevents movement of groundwater in a downward direction resulting in horizontal groundwater movement along the clay surface.

After groundwater sampling was completed at each location, the monitoring points were removed and the holes were backfilled using excess cuttings and/or bentonite pellets. If borings/temporary sampling points were located in paved areas, the surface was replaced and restored with compatible materials.

3.0 SAMPLING RESULTS

All detected compounds are summarized in Tables 1 through 3 in the attached tables section of this report. A copy of the full laboratory data packages is included as Appendix E.

3.1 Soil Investigation

All soil sample results were compared to the NYSDEC 6 NYCRR Subpart 375-6 Restricted Use Soil Clean-up Objectives, December 14, 2006 (SCOs) for Restricted Residential and Commercial properties.

None of the VOC compounds detected exceeded the Restricted Residential or Commercial SCOs. All of the compounds detected were at least an order of magnitude below the SCOs, including sample B-19, which was collected above the obstruction where coal tar was noted in the adjacent boring.

SVOCs were detected above either the Restricted Residential or Commercial SCOs in 8 of the 11 samples collected (B-1, B-3, B-5, B-7, B-12, B-16, B-17 and B-19). The sample analysis revealed several SVOCs, primarily poly-aromatic hydrocarbons (PAHs) compounds, at concentrations of the same or one order of magnitude above the SCOs. TPH ranged from 16 to 11,000 ppm and was above detection limits in all 11 samples.

PCBs were detected in four of the samples collected (B-1, B-3, B-7 and B-19). All detected concentrations were at least one order of magnitude below the Restricted Residential and Commercial SCOs.

Metals detected were primarily below the SCOs with the following exceptions: Arsenic, in samples B-3 and B-19, was detected above the SCOs and both of the exceedances were within the same order of magnitude as the SCOs; the barium concentration slightly exceeded the SCOs in sample B-17; lead concentrations exceeded the Restricted Residential SCOs in samples B-12 and B-17, however, the concentrations were below the Commercial SCOs; and mercury concentrations exceeded the Restricted Residential SCO but were below the Commercial SCOs in samples B-3 and B-19.

3.2 Groundwater Investigation

All groundwater sample results were compared to the June 1998 Division of Water Technical & Operational Guidance Series (1.1.1): Ambient Water Quality Standards & Guidance Values and Groundwater Effluent limitations for a GA water body (TOGS). A summary of the compounds detected is provided in Table 3.

Analytical results of the six groundwater samples collected showed VOC concentrations above the standards in five of the samples collected. There were no VOCs detected above the standard in sample B-13. Concentrations exceeding the standards were

typically the same or one order of magnitude above the standard, with the exception of naphthalene in boring B-5, which was two orders of magnitude above the standard. Other compounds detected with concentrations above the standards included 1,2,4-trimethylbenzene, 1,3,5 trimethlybenzene, n-propylbenzene, benzene, ethylbenzene, and xylenes.

SVOC concentrations were reported above the standards in three of the six of the samples collected (B-1, B-3, and B-5). Samples B-1 and B-3 contained benzo[a]anthracene at concentrations that are four orders of magnitude above the standard. Benzo[b]fluoranthene was also detected at concentrations that are four orders of magnitude above the standard in sample B-1. All other compounds detected above the standard were from sample B-5. Concentrations of SVOCs in sample B-5 were primarily the same or one order of magnitude above the standard with the exception of PAHs (benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, and chrysene) which were all five orders of magnitude above the standard. TPH concentrations were below the detection limits in two of the samples (B-8 and B-16). Where detected, TPH concentrations ranged from 790 to 4300 ppm.

There were no PCBs detected in any of the six samples. Metals concentrations exceeded the standard in all six samples. Detected metals concentrations were primarily the same or one order of magnitude above the standard with the exception of the lead in boring B-1, which was detected two orders of magnitude above the standard.

4.0 CONCLUSION AND RECOMMENDATIONS

In order to assess potential impacts to the subsurface from historic site features and to assess subsurface soil conditions, 20 soil borings including six temporary groundwater sampling points were advanced on the E OU-3 Extension and Viele Avenue Extension Site. The entire horizon from grade to 20 ft was sampled and inspected while advancing the borings and test pits. Borings and test pits were also physically inspected for visible signs of MGP impacts and waste. Additionally, 11 soil samples, and 6 groundwater samples were collected from the borings.

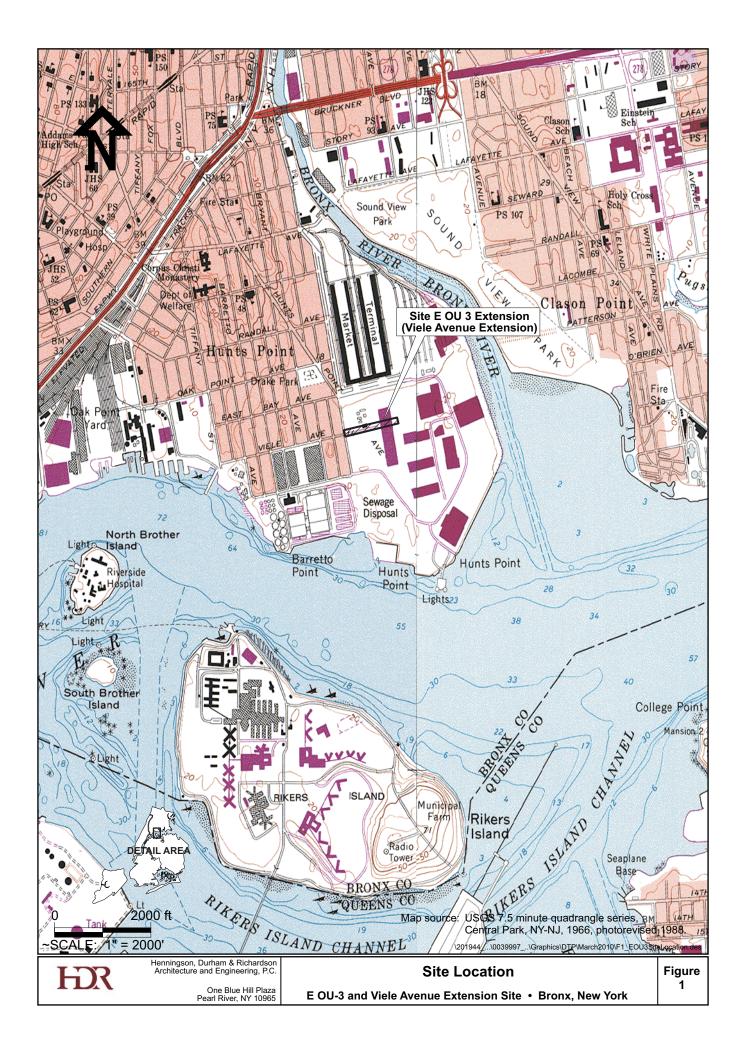
Boring logs and samples indicate that historic fill containing brick, concrete, coal, ash, cinders, wood and debris is present across the entire Site comprising the shallow soils. In a number of locations, the historic fill stretched from the surface to the confining clay layer (approximately 15 feet below the existing surface). In the central portion of the site, a native but thin sediment layer was noted beneath the surficial fill and above the clay. The gray clay was found beneath the entire site. The depth to the clay ranged from 10 to 15 feet below grade but it was consistently below the water table. There was no analysis of the physical properties of the clay; however, it is believed to be a hydraulic barrier between the shallow water table and groundwater beneath the clay. Groundwater in the shallow material is considered perched and dependent upon its ability to move horizontally, could become mounded as is noted in several borings. The groundwater within the site is not expected to be impacted by tidal influences that may exist closer to the bank of the Bronx River.

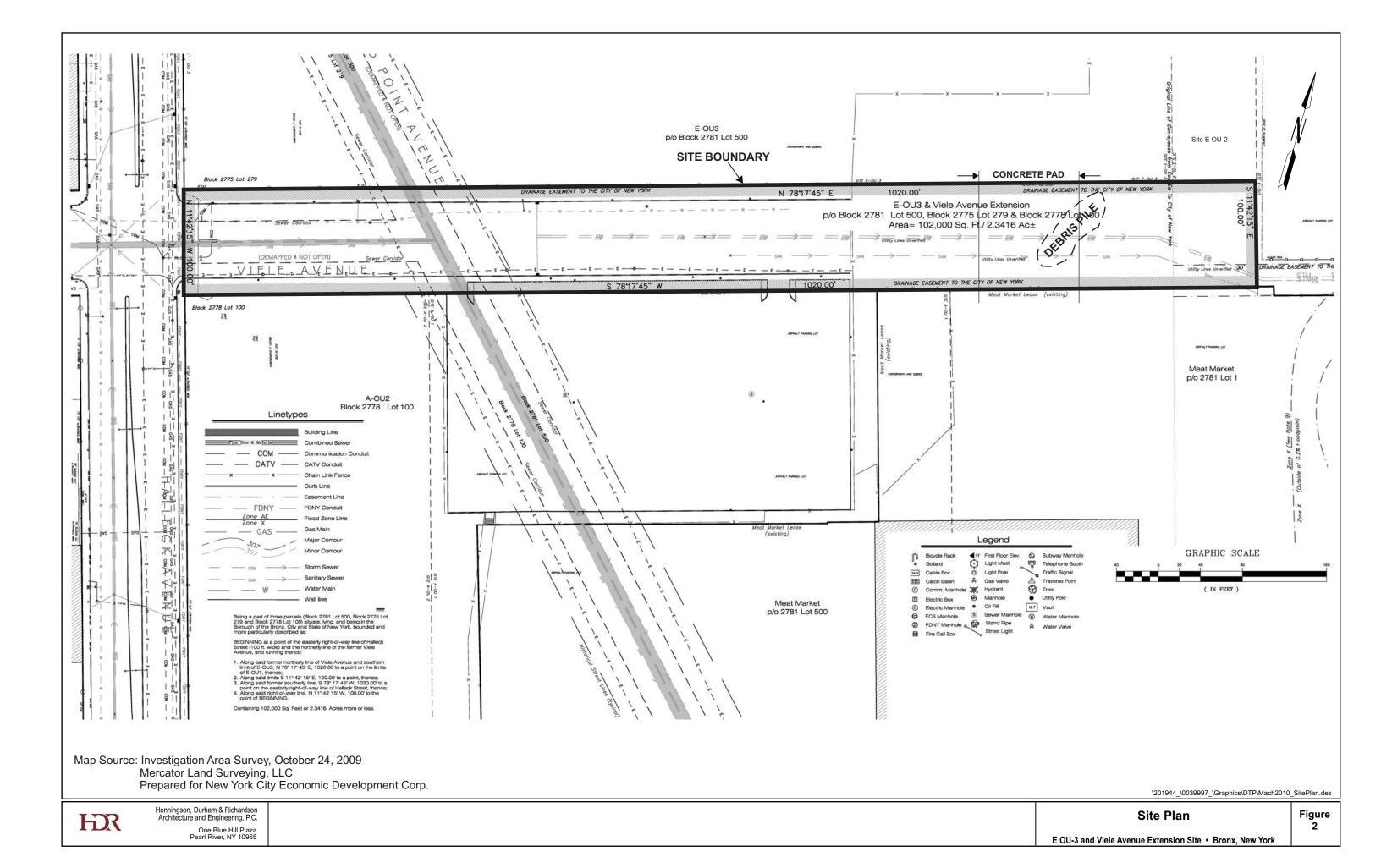
Although the Site is located on the footprint the former MGP site, no MGP waste (coal tar) was encountered with the exception of a small amount of coal tar noted on top of a concrete obstruction in boring B-11. Additional borings were installed surrounding the area in an attempt to delineate the waste and no other coal tar or coal tar impacted materials were observed. Analytical results of the soil and groundwater samples did not indicate the presence of MGP waste. The analytical data was typical of historic fill materials that are present throughout Hunts Point.

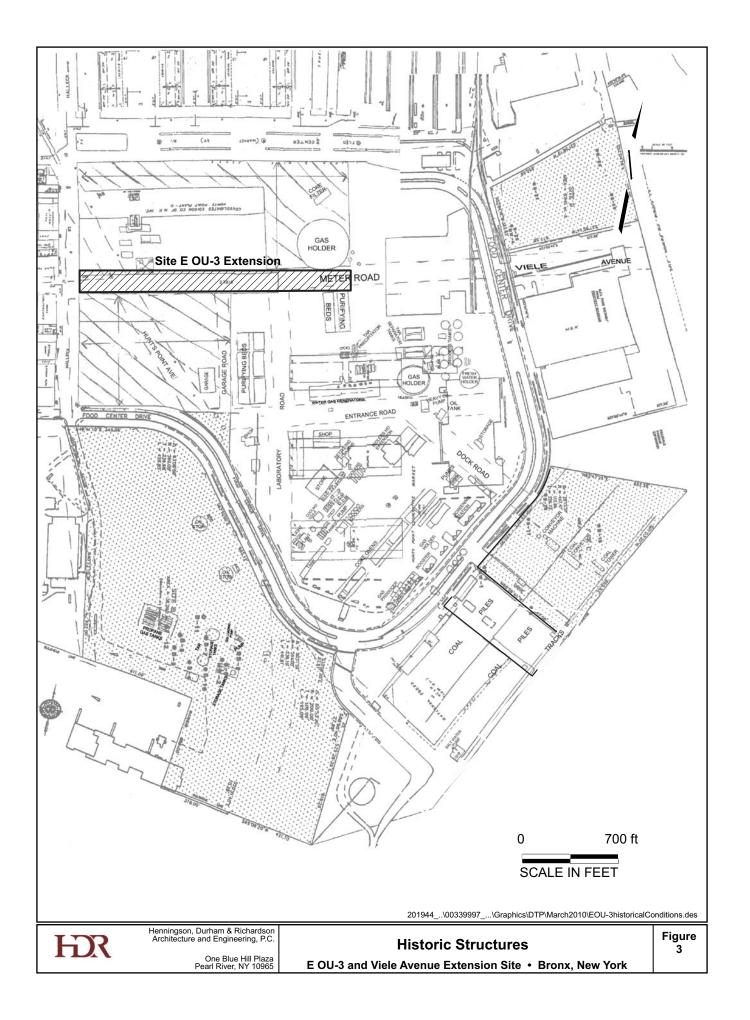
While there is no specific requirements for remediation or removal of material exceeding SCOs, data was compared to NYSDEC SCOs for Restricted Residential and Commercial Sites. During any future construction or redevelopment activities, regardless of analytical results, Site soils contain residual fill material associated with the Site's former use as an MGP. These fill materials include coal, cinders and ash; therefore, any excess soil will require disposal as industrial waste and cannot be recycled as construction and demolition debris. Material can be reused on-Site under the current version of NYCRR Part 360 Solid and Hazardous Material Regulations but excess would be a regulated solid waste and should be managed according to NYCRR Part 360 (as noted above).

HDR recommends that all redevelopment activities be implemented in compliance with a Site Management Plan (SMP). The SMP should address procedures for material excavation, handling, and disposal of all materials classified as historic fill and/or industrial waste. The objective of the plan is to provide environmental requirements for the management of subsurface soils/fill, the importation of fill materials, and the long-term maintenance/replacement of a barrier cover system.

During redevelopment, excavation in the area of boring B-11 should proceed with caution. A small amount of coal tar was noted and refusal was encountered at seven feet. Any small amounts of residual coal tar possibly trapped below the small structure should be handled in accordance with the SMP and disposed of at a properly permitted facility.

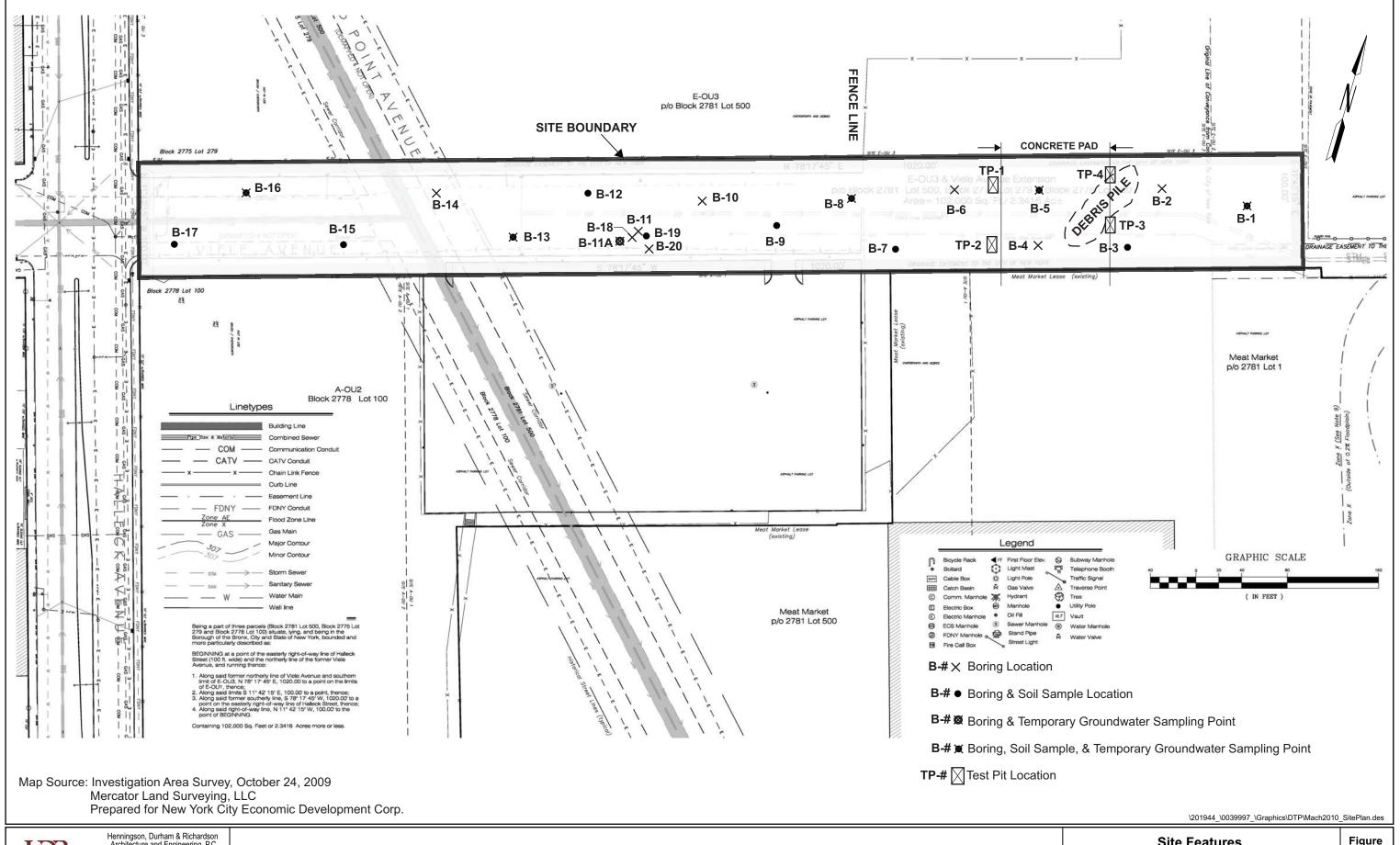

HDR also recommends a Site-Specific Health and Safety Plan (SSHASP) be prepared to provide information for site workers during redevelopment activities including the fill material present and the concentrations of Site contaminants. The SSHASP will discuss possible exposure concerns and should include procedures to be followed if waste material is encountered.


No reportable conditions were identified on the Site. However, it is possible that small isolated areas of MGP waste (coal tar/purifier) or petroleum impacted material may be encountered during rehabilitation and redevelopment excavations. If impacted soil is encountered, the soils should be segregated from non-impacted soils to prevent mixing and impacts to larger volumes of material. Additionally, while there were no methane or H₂S readings above background during intrusive activities, excavations into the organic silts and clays on-Site should be monitored.


Based upon the observation of the samples collected and analytical data, material disturbed as part of the rehabilitation and redevelopment should be acceptable for reuse on Site under NYCRR Part 360 1-15 (b)(7)(8). Material that is removed from the Site should be handled and disposed of in accordance with applicable state and federal regulations and the SMP.


It is assumed that Site redevelopment will include the construction of a building and related infrastructure. Based on the history of the Site and surrounding area as an MGP, there is a potential for vapor migration from historic fill and groundwater contamination identified on the site and the vicinity. The Site was identified to have naphthalene above the drinking water standard and naphthalene has also been identified in other parcels within the former MGP. HDR recommends a vapor barrier and passive venting system, at a minimum, be considered a standard method for mitigating any potential underground vapors that may be present on-Site or on nearby parcels. It is recommended that it be incorporated into the design of any buildings developed on the Site. In addition to the sub slab vapor barrier and passive venting system, a Site-wide cover system is recommended to reduce the potential for human contact to historic fill material and contaminants remaining in subsurface soils. This type of engineering cover system has been constructed at other Hunts Point development sites and was approved by NYSDEC and NYSDOH under the Brownfields Cleanup Program (BCP) and VCP.

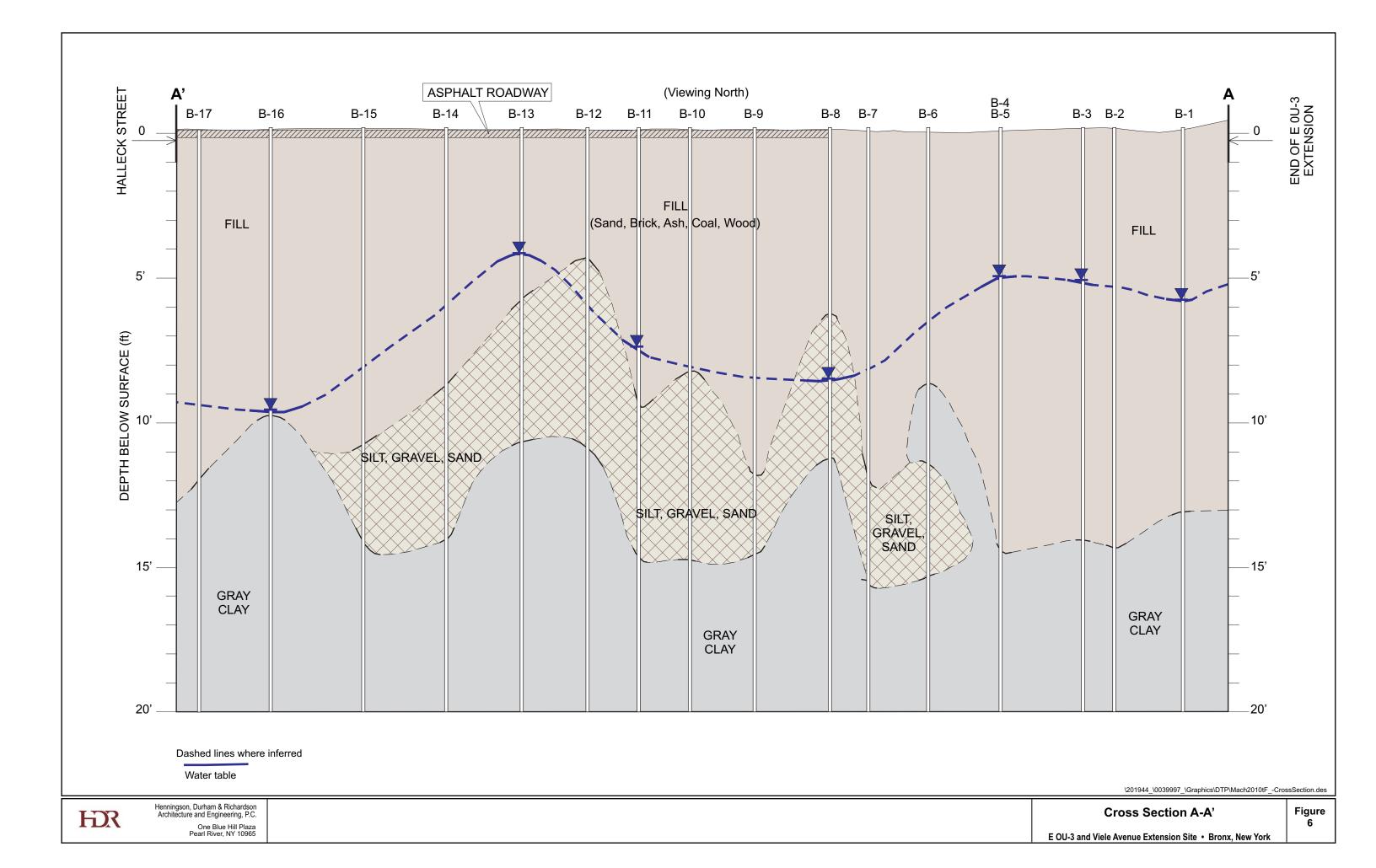
Figures



HIR

Henningson, Durham & Richardson Architecture and Engineering, P.C.

> One Blue Hill Plaza Pearl River, NY 10965


Site Aerial Photograph

HOR

Henningson, Durham & Richardson Architecture and Engineering, P.C. One Blue Hill Plaza Pearl River, NY 10965

Site Features,
Boring and Test Pit Locations
E OU-3 and Viele Avenue Extension Site • Bronx, New York

Tables

Table 1
Volatile Organic Compounds Detected in Soil
E OU-3 Extension/Viele Avenue Extension Phase II Investigation
Page 1 of 2

		SUBPA	RT 375-6																					
		Soil C																						
	Sample Id	Objec	ctives		B1			В3			В5			В5			В7			В9			B12	
	Sample Depth				5'			5'			8'			8'			5'			9'			9'	
	Lab Id	_ E	cial		J0486-02			J0486-05			J0486-09			J0486-09			J0486-07			J0486-17			J0486-28	
	Date Colletced	stec enti	ē		3/16/2010			3/16/2010	0		3/17/2010)		3/17/201	0		3/16/201	0		3/19/2010			3/18/2010	1
	Dilution Factor (DF)	stric side Os	Comm		1			1			1			1			1			1			1	
ANALYTE	CAS#	Res Res SC	SC	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier
Volatile Organic Compounds																								
1,2,4-Trichlorobenzene	120-82-1	NS	NS	ND	0.0055	U	0.017	0.028	J	0.0039	0.0061	J	ND	0.390	U	ND	0.380	U	ND	0.0063	U	ND	0.0079	U
1,2-Dichlorobenzene	95-50-1	100	500	0.002	0.0055	BJ	0.015	0.028	J	0.0036	0.0061	BJ	ND	0.390	U	ND	0.380	U	0.0015	0.0063	BJ	0.0018	0.0079	BJ
1,4-Dichlorobenzene	106-46-7	13	130	0.0016	0.0055	BJ	0.011	0.028	BJ	0.0028	0.0061	BJ	ND	0.390	U	ND	0.380	U	0.0023	0.0063	BJ	0.0017	0.0079	BJ
2-Butanone	78-93-3	100	500	ND	0.0055	U	0.016	0.028	J	ND	0.0061	U	ND	0.390	U	ND	0.380	U	ND	0.0063	U	ND	0.0079	U
Acetone	67-64-1	100	500	0.043	0.0055		0.13	0.028		0.033	0.0061		ND	0.390	U	ND	0.380	U	0.027	0.0063		0.0023	0.0079	U
Benzene	71-43-2	4.8	44	ND	0.0055	U	0.013	0.028	J	ND	0.0061	U	ND	0.390	U	ND	0.380	U	0.0084	0.0063		ND	0.0079	U
Carbon disulfide	75-15-0	NS	NS	ND	0.0055	U	0.0064	0.028	J	ND	0.0061	U	ND	0.390	U	ND	0.380	U	ND	0.0063	U	ND	0.0079	U
Chlorobenzene	108-90-7	100	500	0.0023	0.0055	BJ	0.017	0.028	BJ	0.0041	0.0061	BJ	ND	0.390	U	ND	0.380	U	0.0019	0.0063	BJ	0.0022	0.0079	BJ
Chloroethane	75-00-3	NS	NS	ND	0.0055	U	ND	0.028	U	ND	0.0061	U	ND	0.390	U	ND	0.380	U	ND	0.0063	U	ND	0.0079	U
Ethylbenzene	100-41-4	41	390	ND	0.0055	U	0.011	0.028	J	0.013	0.0061		ND	0.390	U	ND	0.380	U	ND	0.0063	U	ND	0.0079	U
M&p-Xylenes*	1330-20-7	100	500	ND	0.0055	U	0.018	0.028	J	0.0075	0.0061		ND	0.390	U	ND	0.380	U	ND	0.0063	U	ND	0.0079	U
Methylene chloride	75-09-2	100	500	0.005	0.0055	BJ	0.027	0.028	BJ	0.0047	0.0061	BJ	ND	0.390	U	ND	0.380	U	0.0066	0.0063		0.0067	0.0079	BJ
Naphthalene		100	500	0.0016	0.0055	BJ	0.32	0.028	В	0.82	0.0061	BE	6.8	0.390		2.5	0.380		0.0037	0.0063	J	ND	0.0079	U
O-Xylene*	95-47-6	100	500	ND	0.0055	U	0.037	0.028		0.0051	0.0061	J	ND	0.390	U	ND	0.380	U	ND	0.0063	U	ND	0.0079	U
Toluene	108-88-3	100	500	ND	0.0055	U	0.011	0.028	J	ND	0.0061	U	ND	0.390	U	ND	0.380	U	ND	0.0063	U	ND	0.0079	U
1,2,4 Trimethylbenzene	95-63-6	52	190	ND	0.0055	U	0.046	0.028		0.0093	0.0061		0.086	0.390	J	ND	0.380	U	ND	0.0063	U	ND	0.0079	U
1,3,5 Trimethylbenzene	108-67-8	52	190	ND	0.0055	U	0.012	0.028	J	0.0048	0.0061	J	ND	0.390	U	ND	0.380	U	ND	0.0063	U	ND	0.0079	U
Isopropylbenzene	98-82-8	NS	NS	ND	0.0055	U	0.023	0.028	J	0.0044	0.0061	J	ND	0.390	U	ND	0.380	U	ND	0.0063	U	ND	0.0079	U
N-Propylbenzene	103-65-1	100	500	ND	0.0055	U	ND	0.028	U	0.0056	0.0061	J	ND	0.390	U	ND	0.380	U	ND	0.0063	U	ND	0.0079	U
Total VOC Concentrations 0.0555				0.7304			0.9218			6.886			2.5			0.0514			0.0147					

Notes:

All data and SCOs are in mg/kg (ppm)

*BCP SCO values for M&P-xylenes and O-xylene are for total xylenes.

ND - not detected. .

J - estimated concentration

B - analyte also detected in method blank. mg/kg - milligrams per kilogram.

NS - no standard (cleanup objective) established.

Bold result indicates detected concentration.

Table 1 Volatile Organic Compounds Detected in Soil E OU-3 Extension/Viele Avenue Extension Phase II Investigation Page 2 of 2

		SUBPAR	RT 375-6												
		Soil Cl	eanup												ļ
	Sample Id	Objec	tives	•	B13			B15			B16			B17	
	Sample Depth				9'			10'			9'			9'	
	Lab Id	_	cial		J0486-25			J0486-14			J0486-22	!		J0486-12	<u>!</u>
	Date Colletced	₽ ⊂	erci		3/18/2010			3/17/2010			3/18/2010)		3/17/2010)
	Dilution Factor (DF)	stric side Os			1			1			1			1	
ANALYTE	CAS#	Res Res SCC	Comm	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier
Volatile Organic Compounds															
1,2,4-Trichlorobenzene	120-82-1	NS	NS	ND	0.0054	U	ND	0.0047	U	ND	0.0054	U	ND	0.0055	U
1,2-Dichlorobenzene	95-50-1	100	500	0.0012	0.0054	BJ	0.0023	0.0047	BJ	0.0014	0.0054	BJ	0.0012	0.0055	BJ
1,4-Dichlorobenzene	106-46-7	13	130	ND	0.0054	U	0.0021	0.0047	BJ	0.0012	0.0054	BJ	0.0021	0.0055	BJ
2-Butanone	78-93-3	100	500	ND	0.0054	U	ND	0.0047	U	0.0077	0.0054		ND	0.0055	U
Acetone	67-64-1	100	500	0.029	0.0054		ND	0.0047	U	0.064	0.0054		ND	0.0055	U
Benzene	71-43-2	4.8	44	ND	0.0054	U	ND	0.0047	U	ND	0.0054	U	ND	0.0055	U
Carbon disulfide	75-15-0	NS	NS	ND	0.0054	U	ND	0.0047	U	0.0012	0.0054	J	ND	0.0055	U
Chlorobenzene	108-90-7	100	500	ND	0.0054	U	0.0029	0.0047	BJ	0.0016	0.0054	BJ	0.0017	0.0055	BJ
Chloroethane	75-00-3	NS	NS	ND	0.0054	U	ND	0.0047	U	ND	0.0054	BJ	ND	0.0055	U
Ethylbenzene	100-41-4	41	390	ND	0.0054	U	ND	0.0047	U	ND	0.0054	U	ND	0.0055	U
M&p-Xylenes*	1330-20-7	100	500	ND	0.0054	U	ND	0.0047	U	ND	0.0054	U	ND	0.0055	U
Methylene chloride	75-09-2	100	500	0.0056	0.0054	В	ND	0.0047	U	0.0032	0.0054	BJ	0.0044	0.0055	J
Naphthalene		100	500	ND	0.0054	U	0.0034	0.0047	BJ	0.0029	0.0054	BJ	ND	0.0055	U
O-Xylene*	95-47-6	100	500	ND	0.0054	U	ND	0.0047	U	ND	0.0054	U	ND	0.0055	U
Toluene	108-88-3	100	500	ND	0.0054	U	ND	0.0047	U	ND	0.0054	U	ND	0.0055	U
1,2,4 Trimethylbenzene	95-63-6	52	190	ND	0.0054	U	ND	0.0047	U	ND	0.0054	U	ND	0.0055	U
1,3,5 Trimethylbenzene	108-67-8	52	190	ND 0.0054 U			ND	0.0047	U	ND	0.0054	U	ND	0.0055	U
Isopropylbenzene	98-82-8	NS	NS	ND 0.0054 U			ND	0.0047	U	0.0022	0.0054	J	ND	0.0055	U
N-Propylbenzene	Propylbenzene 103-65-1 10				0.0054	U	ND	0.0047	U	ND	0.0054	U	ND	0.0055	U
Total VOC Concentration	ons			0.0358			0.0107			0.0854			0.0094		

Notes:

All data and SCOs are in mg/kg (ppm)

*BCP SCO values for M&P-xylenes and O-xylene are for total xylenes.

ND - not detected. .

J - estimated concentration

B - analyte also detected in method blank. mg/kg - milligrams per kilogr

NS - no standard (cleanup objective) established.

Bold result indicates detected concentration.

Table 2 Semi-Volatile Organic, Metals and PCB Compounds Detected in Soil E OU-3 Extension/Viele Avenue Extension Phase II Investigation Page 1 of 3

		SURPAR	T 375-6 Soil		B1 4-5'																			
	Sample Id		Objectives		В1			В1			В3			В3			B5			В5			В7	
	Sample Depth	<u>.</u>			4-5'			4-5'			4-5'			4-5'			7-8'			7-8'			5-6'	
	Lab Id	so	SCOS		J0486-01			J0486-01			J0486-04			J0486-04	ļ		J0486-08	1		J0486-08	:		J0486-0	6
	Date Colletced	SCOS			3/16/2010)		3/16/2010)		3/16/2010			3/16/2010)		3/17/2010)		3/17/2010)		3/16/201	0
	Dilution Factor (DF)	E S	cia		1			10			10			40			1			4			1	
		tricte	mmercial																					
ANALYTE	CAS#	Rest Resi	Con	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier
Semi-Volatile Organic Compounds																								
2-Methylnaphthalene	91-57-6	NS	NS	0.94	0.22		0.88	2.20	J	2.1	2.00		2	7.80	J	1.2	0.19		1.1	0.77		6.8	0.21	Е
2-Methylphenol	95-48-7	100	500	ND	0.22	U	ND	2.20	U	ND	2.00	U	ND	7.80	U	ND	0.19	U	ND	0.77	U	0.029	0.21	J
4- Methylphenol		100	500	0.43	0.22	J	ND	2.20	U	ND	2.00	U	ND	7.80	U	ND	0.19	U	ND	0.77	U	0.063	0.21	J
Acenaphthene	83-32-9	100	500	3.8	0.22	Е	3.9	2.20		3.6	2.00		3.6	7.80	J	4.2	0.19	Е	4	0.77		9.1	0.21	Е
Acenaphthylene	208-96-8	100	500	3	0.22		3.3	2.20		12	2.00		11	7.80		0.95	0.19		0.93	0.77		6.4	0.21	Е
Anthracene	120-12-7	100	500	3.4	0.22		4	2.20		17	2.00		16	7.80		1.9	0.19		2	0.77		14	0.21	Е
Benzo[a]anthracene	56-55-3	1	5.6	7.9	0.22	Е	6.5	2.20		29	2.00		28	7.80		3.2	0.19	Е	3	0.77		21	0.21	Е
Benzo[a]pyrene	50-32-8	1	1	8.1	0.22	Е	7.4	2.20		26	2.00		25	7.80		2.9	0.19		2.7	0.77		14	0.21	Е
Benzo[b]fluoranthene	205-99-2	1	5.6	5.4	0.22	Е	5.9	2.20		20	2.00		26	7.80		2.4	0.19		2	0.77		8.1	0.21	Е
Benzo[g,h,i]perylene	191-24-2	100	500	3	0.22		3.2	2.20		11	2.00		14	7.80		1.2	0.19		1.1	0.77		6	0.21	Е
Benzo[k]fluoranthene	207-08-9	3.9	56	3.3	0.22		5.1	2.20		14	2.00		11	7.80		1.9	0.19		2.2	0.77		5.6	0.21	Е
Bis(2-Ethylhexyl)phthalate	117-81-7	NS	NS	18	0.22	Е	31	2.20		ND	2.00	U	ND	7.80	U	ND	0.19	U	ND	0.77	U	ND	0.21	U
Carbazole	86-74-8	NS	NS	0.56	0.22		0.59	2.20	J	2.6	2.00		2.6	7.80	J	0.82	0.19		0.79	0.77		6.7	0.21	Е
Chrysene	218-01-9	3.9	56	3.6	0.22	U	8.3	2.20		20	2.00		26	7.80		2.6	0.19		3	0.77		8.6	0.21	Е
Dibenzo[a,h]Anthracene	53-70-3	0.33	0.56	2.7	0.22		1.3	2.20	J	5.3	2.00		4.9	7.80	J	0.62	0.19		0.44	0.77	J	7.1	0.21	Е
Dibenzofuran	132-64-9	59	350	1.6	0.22		1.6	2.20	J	3.3	2.00		3.1	7.80	J	2.1	0.19		2	0.77		6.8	0.21	Е
Fluoranthene	206-44-0	100	500	10	0.22	Е	14	2.20		48	2.00	Е	55	7.80		6.7	0.19	Е	7.2	0.77		36	0.21	Е
Fluorene	86-73-7	100	500	2.6	0.22		2.8	2.20		10	2.00		9.9	7.80		2.5	0.19		2.5	0.77		16	0.21	Е
Indeno[1,2,3-cd]pyrene	193-39-5	0.5	5.6	3.5	0.22		2.9	2.20		9.8	2.00		13	7.80		1.1	0.19		1.1	0.77		5.3	0.21	Е
Naphthalene	91-20-3	100	500	0.56	0.22		0.61	2.20	J	2.9	2.00		3	7.80	J	3	0.19		3	0.77		8.7	0.21	Е
Phenanthrene	85-01-8	100	500	6.9	0.22	Е	8.5	2.20		37	2.00	E	39	7.80		7.1	0.19	Е	7.6	0.77		52	0.21	E
Phenol	108-95-2	100	500	0.03	0.22	J	ND	2.20	U	ND	2.00	U	ND	7.80	U	ND	0.19	U	ND	0.77	U	0.054	0.21	J
Pyrene	129-00-0	100	500	9.7	0.22		13	2.20		43	2.00	Е	48	7.80		5.7	0.19	E	5.8	0.77		26	0.21	Е
	Total SVOCs			99.02			124.78			316.60			341.10			52.09			52.46			264.35		
Metals																								
Arsenic	7440-38-2	16	16	6.8		*				18.4		*				4.2		*				9.8		*
Barium	7440-39-3	400	400	143		*E				118		*E				142		*E				198		*E
Cadmium	7440-43-9	4.3	9.3	1.1		*				2.4		*				0.49		*				0.84		*
Chromium	7440-47-3	180	1500	25.2		*				20		*				25.5		*				20.4		*
Lead	7439-92-1	400	1000	368		*NE				252		*NE				101		*NE				310		N*E
Mercury	7439-97-6	0.81	2.8	0.72						1.4						0.3						0.4		
Selenium	7782-49-2	180	1500	0.51		U				0.77		В				0.96		U				0.61		U
Silver	7440-22-4	180	1500	0.052		U				0.064		U				0.098		U				0.063		U
Cyanide				0.83		В				3.9						8.7						5.4		
Polychlorinated Biphenyls																								
Aroclor-1254		NS	NS	0.15	0.045					0.15	0.039					ND	0.039	U				0.057	0.042	
Aroclor-1260		NS	NS	ND	0.045	U				ND	0.039	U				ND	0.039	U				ND	0.042	U
	Total PCBs	1	1	0.15					•	0.15					•	0.000				•	•	0.057		•
																						1		
					DF 1			110			DF 1			DF 50			DF 5						DF 5	
Other																								
Total Petroleum Hydrocarbons		NS	NS	1100	81					1100	81		11,000*			840	70					1600	75	

Notes:

All data and SCOs are in mg/kg (ppm)

ND - not detected. .

J - estimated concentration

E - compound concentration exceeded the calibration range

* - for inorganics relative percent difference for duplicate analyses is outside of control limit

N - for inorganics the matrix spike recovery falls outside of control limits

NS - no standard (cleanup objective) established.

Bold result indicates detected concentration.

Table 2 Semi-Volatile Organic, Metals and PCB Compounds Detected in Soil E OU-3 Extension/Viele Avenue Extension Phase II Investigation Page 2 of 3

		SUBPART	7 375-6 Soil															
	Sample Id	Cleanup	Objectives	-	B7			В9			B12			B12			B13	
	Sample Depth		w		5-6'			8-9'			8-9'			8-9'			8-9'	
	Lab Id	scos	scos		J0486-06			J0486-16	i		J0486-27	•		J0486-27	,		J0486-24	ļ
	Date Colletced	လ	S		3/16/2010)		3/19/2010)		3/18/2010)		3/18/2010)		3/18/2010)
	Dilution Factor (DF)	ed	rcia		40			1			1			4			1	
		Restricted Residential	Commercial															
ANALYTE	CAS#	Re Re	ပိ	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifie
Semi-Volatile Organic Compounds																		
2-Methylnaphthalene	91-57-6	NS	NS	9.2	8.2		0.064	0.20	J	0.16	0.20	J	0.17	0.79	J	ND	0.19	U
2-Methylphenol	95-48-7	100	500	ND	8.2	U	ND	0.20	U	ND	0.20	U	ND	0.79	U	ND	0.19	U
4- Methylphenol		100	500	ND	8.2	U	ND	0.20	U	ND	0.20	U	ND	0.79	U	ND	0.19	U
Acenaphthene	83-32-9	100	500	12	8.2		0.035	0.20	J	0.48	0.20		0.45	0.79	J	ND	0.19	U
Acenaphthylene	208-96-8	100	500	11	8.2		0.028	0.20	J	0.84	0.20		0.84	0.79		0.028	0.19	J
Anthracene	120-12-7	100	500	23	8.2		0.049	0.20	J	1.6	0.20		1.7	0.79	U	0.038	0.19	J
Benzo[a]anthracene	56-55-3	1	5.6	24	8.2		0.1	0.20	J	3.3	0.20	E	3.2	0.79		0.089	0.19	J
Benzo[a]pyrene	50-32-8	1	1	16	8.2		0.11	0.20	J	2.9	0.20		2.6	0.79		0.085	0.19	J
Benzo[b]fluoranthene	205-99-2	1	5.6	14	8.2		0.077	0.20	J	2.4	0.20		1.9	0.79		0.059	0.19	J
Benzo[g,h,i]perylene	191-24-2	100	500	6.6	8.2	J	0.054	0.20	J	1.2	0.20		1.1	0.79	U	0.041	0.19	J
Benzo[k]fluoranthene	207-08-9	3.9	56	9.1	8.2		0.098	0.20	J	1.6	0.20		2.5	0.79		0.061	0.19	J
Bis(2-Ethylhexyl)phthalate	117-81-7	NS	NS	ND	8.2	U	ND	0.20	U	ND	0.20	U	ND	0.79	U	ND	0.19	U
Carbazole	86-74-8	NS	NS	4.7	8.2	J	ND	0.20	U	0.27	0.20		0.26	0.79	J	ND	0.19	U
Chrysene	218-01-9	3.9	56	20	8.2		0.11	0.20	J	2.3	0.20		2.6	0.79		0.081	0.19	J
Dibenzo[a,h]Anthracene	53-70-3	0.33	0.56	2.8	8.2	J	0.026	0.20	J	0.55	0.20		0.41	0.79	J	ND	0.19	U
Dibenzofuran	132-64-9	59	350	9.6	8.2		ND	0.20	U	0.34	0.20		0.32	0.79	J	ND	0.19	U
Fluoranthene	206-44-0	100	500	51	8.2		0.26	0.20		6.1	0.20	Е	6.6	0.79		0.14	0.19	J
Fluorene	86-73-7	100	500	26	8.2		0.04	0.20	J	0.99	0.20		0.96	0.79		0.019	0.19	J
Indeno[1,2,3-cd]pyrene	193-39-5	0.5	5.6	6.8	8.2	J	0.057	0.20	J	1.3	0.20		1.1	0.79		0.036	0.19	J
Naphthalene	91-20-3	100	500	15	8.2		0.51	0.20		0.17	0.20	J	ND	0.79	U	ND	0.19	U
Phenanthrene	85-01-8	100	500	67	8.2		0.18	0.20	J	5	0.20	E	5.1	0.79		0.11	0.19	J
Phenol	108-95-2	100	500	ND	8.2	U	ND	0.20	U	ND	0.20	U	ND	0.79	U	ND	0.19	U
Pyrene	129-00-0	100	500	47	8.2		0.22	0.20		5.1	0.20	E	5.3	0.79	U	0.15	0.19	J
i yiene	Total SVOCs	100	000	- 7.	0.2		2.02	0.20		36.60	0.20	_	37.11	0.70	Ü	0.94	0.10	
Metals	Total 3VOCS						2.02			30.00			37.11			0.34		
Arsenic	7440-38-2	16	16				2.1		*	9.3		*				3.3		*
Barium	7440-39-3	400	400				92.6			159						86.5		
Cadmium	7440-43-9	4.3	9.3				0.18		В	0.45						0.27		
Chromium	7440-43-9	180	1500				28.3			16.8						22.6		
Lead	7440-47-3	400	1000				19.9		Е	412		Е				68.5		Е
	7439-92-1	0.81	2.8				0.05		*N	0.69		*N				0.19		*N
Mercury Selenium	7782-49-2	180	1500	1			2.4		14	3.1		IN			1	2.1		IN
Silver	7440-22-4	180	1500	1			0.11		В	0.47		В			1	0.18		В
Cyanide	1440-22-4	100	1300				0.11		U	0.47		U				0.18		U
Polychlorinated Biphenyls							0.10		J	0.10		0				0.10		U
Aroclor-1254		NS	NS				ND	0.039	U	ND	0.039	U				ND	0.038	U
Aroclor-1254 Aroclor-1260		NS NS	NS				ND	0.039	U	ND	0.039	U				ND	0.038	U
71100101-1200	Total PCBs	1	1			<u> </u>		0.038	J	0.000	0.038	U					0.036	U
	TOTAL PUBS			-		0.000			0.000						0.000			
				I						DF 5								
Other										<u> </u>								
Total Petroleum Hydrocarbons		NS	NS				65	14		170	72					30	14	

Notes:

All data and SCOs are in mg/kg (ppm)

ND - not detected. .

J - estimated concentration

E - compound concentration exceeded the calibration range

* - for inorganics relative percent difference for duplicate analyses is outside of control I

N - for inorganics the matrix spike recovery falls outside of control limits

NS - no standard (cleanup objective) established.

Bold result indicates detected concentration.

Table 2 Semi-Volatile Organic, Metals and PCB Compounds Detected in Soil E OU-3 Extension/Viele Avenue Extension Phase II Investigation Page 3 of 3

	T			1			1			1						1			1		
			T 375-6 Soil																		
	Sample Id	Cleanup	Objectives		B15			B16			B16			B17			B19			B19	
	Sample Depth	v	s		9-10'			8-9'			8-9'			8-9'			6-7'			6-7'	
	Lab Id	scos	scos		J0486-13			J0486-21			J0486-2			J0486-1			J0486-20			J0486-20	
	Date Colletced Dilution Factor (DF)		ial		3/17/2010 1)		3/18/2010)		3/18/201 2	0	-	3/17/201	U		3/19/2010 10)		3/19/2010 40	
	Dilution Factor (DF)	iricted	mercial														10			40	
ANALYTE	040#	Restric	Comm										l								
ANALYTE	CAS#	<u> </u>	ŭ	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier	Result	RL	Qualifier
Semi-Volatile Organic Compounds	04.57.0	110	NO	ND	0.40		0.000	0.40		ND	0.00		ND	0.00			4.00	J	0.00	7.70	
2-Methylnaphthalene	91-57-6	NS	NS	ND	0.18	U	0.022	0.19	J	ND	0.38	U	ND	0.23	U	1	1.90	U	0.89	7.70	J
2-Methylphenol	95-48-7	100	500	ND	0.18		ND	0.19	U	ND	0.38	U	ND	0.23		ND	1.90	U	ND	7.70	
4- Methylphenol	02.22.0	100	500	ND ND	0.18	U	ND 0.062	0.19	J	ND 0.059	0.38	J	ND 0.065	0.23	J	ND 2.5	1.90	U	ND 2.7	7.70 7.70	U J
Acenaphthene	83-32-9	100	500	0.027	0.18	J	0.062	0.19	J	0.059	0.38	J	0.065	0.23	J	14	1.90		16	7.70	J
Acenaphthylene	208-96-8	100	500	0.027		J	0.39			0.46	0.38	,	0.13	0.23	J	22	1.90		27	7.70	
Anthracene	120-12-7 56-55-3	100	500 5.6	0.019	0.18	J	2.9	0.19	+	2.4	0.38	-	1	0.23	,	45	1.90	Е	42	7.70	
Benzo[a]anthracene	50-55-3	1	5.6	0.063	0.18	J	3	0.19	+	1.8	0.38	-	0.84	0.23		45	1.90	E	35	7.70	
Benzo[a]pyrene Benzo[b]fluoranthene	205-99-2	1	5.6	0.077	0.18	J	1.6	0.19		1.6	0.38	+	0.84	0.23		26	1.90		27	7.70	
• •		100	500	0.043	0.18	J	1.2	0.19		0.82	0.38		0.76	0.23		11	1.90		16	7.70	U
Benzo[g,h,i]perylene	191-24-2 207-08-9		56	0.039	0.18	J	1.3	0.19		1.4	0.38		0.62	0.23		18	1.90		28	7.70	U
Benzo[k]fluoranthene Bis(2-Ethylhexyl)phthalate	117-81-7	3.9 NS	NS	ND	0.18	U	ND	0.19	U	ND	0.38	U	ND	0.23	U	ND	1.90	U	ND	7.70	U
Carbazole	86-74-8	NS	NS	ND	0.18	U	0.081	0.19	J	0.077	0.38	J	0.064	0.23	J	3.4	1.90	0	3.5	7.70	J
Chrysene	218-01-9	3.9	56	0.076	0.18	J	1.8	0.19	,	2.2	0.38	,	0.79	0.23	J	23	1.90		41	7.70	3
Dibenzo[a,h]Anthracene	53-70-3	0.33	0.56	ND	0.18	U	0.3	0.19		0.51	0.38		0.23	0.23	J	5.3	1.90		7.5	7.70	J
Dibenzofuran	132-64-9	59	350	ND	0.18	U	0.023	0.19	J	ND	0.38	U	0.033	0.23	J	4.5	1.90		4.5	7.70	J
Fluoranthene	206-44-0	100	500	0.11	0.18	J	3.8	0.19	E	3.7	0.38		1.4	0.23		66	1.90	Е	93	7.70	
Fluorene	86-73-7	100	500	ND	0.18	U	0.096	0.19	J	0.092	0.38	J	0.064	0.23	J	14	1.90	_	14	7.70	
Indeno[1,2,3-cd]pyrene	193-39-5	0.5	5.6	0.042	0.18	J	1	0.19		0.86	0.38		0.43	0.23		13	1.90		14	7.70	
Naphthalene	91-20-3	100	500	ND	0.18	U	ND.	0.19	U	ND	0.38	U	0.037	0.23	J	1	1.90	J	1	7.70	J
Phenanthrene	85-01-8	100	500	0.061	0.18	J	1.7	0.19		1.7	0.38		0.81	0.23		41	1.90	E	48	7.70	
Phenol	108-95-2	100	500	ND	0.18	U	ND	0.19	U	ND	0.38	U	ND	0.23	U	ND	1.90	U	ND	7.70	U
Pyrene	129-00-0	100	500	0.11	0.18	J	4.7	0.19	E	4.3	0.38		1.3	0.23		57	1.90	E	74	7.70	
- 7	Total SVOCs			0.75			24.41			22.35			9.29			408.70		_	495.09		
Metals				00						22.00			0.20						100.00		
Arsenic	7440-38-2	16	16	1.2		*	10.8		*				11.7		*	30.6		*			
Barium	7440-39-3	400	400	36.3		*E	129		 			1	409		*E	114					
Cadmium	7440-43-9	4.3	9.3	0.093		*B	1.3		1				1.2		*	2					
Chromium	7440-47-3	180	1500	9.6		*	11.4					1	17.8		*	41.8					
Lead	7439-92-1	400	1000	13.9		*NE	233		Е				678		*NE	296		Е			
Mercury	7439-97-6	0.81	2.8	0.066			0.15		*N				0.64			1.1		*N			
Selenium	7782-49-2	180	1500	0.49		U	1.5						0.78		U	6.2					
Silver	7440-22-4	180	1500	0.051		U	0.23		В				0.078		U	0.42		В			
Cyanide				0.13		U	0.15		U				0.65		В	0.16		U			
Polychlorinated Biphenyls							1			1						1					
Aroclor-1254		NS	NS	ND	0.036	U	ND	0.038	U				ND	0.047	U	ND	0.038	U			
Aroclor-1260		NS	NS	ND	0.036	U	ND	0.038	U				ND	0.047	U	0.052	0.038				
	Total PCBs	1	1	0.000			0.000		1			1	0.000			0.052		t.		1	1
							10									DF 50					
Other																					
Total Petroleum Hydrocarbons		NS	NS	16	13		680	140					130	17		5,300	710				

Notes:

All data and SCOs are in mg/kg (ppm)

ND - not detected. .

J - estimated concentration

E - compound concentration exceeded the calibration range

* - for inorganics relative percent difference for duplicate analyses is outside of control I

N - for inorganics the matrix spike recovery falls outside of control limits

NS - no standard (cleanup objective) established.

Bold result indicates detected concentration.

Table 3 Volatile Organic, Semi-Volatile Organic, Metals and PCB Compounds Detected in Groundwater E OU-3 Extension/Viele Avenue Extension Phase II Investigation Page 1 of 1

Simulta Company (Among March 1984) 18 0 sum		Sample Name: Lab Sample ID: Date Collected Dilution Factor (DF)		B1 J0486-03 3/16/2010 1	ı		B5 J0486-10 3/17/2010 1			B5 J0486-10 3/17/2010 C 20/SVO			B8 J0486-18 3/19/2010 1			B11 J0486-15 3/19/2010 1	1		B13 J0486-26 3/18/2010 1	ı		B16 J0486-23 3/18/2010 1	ı
2.4 Fromplehouses	ANALYTE Volatile Organic Compounds		Pacult	PI	Qualifier	Pacult	PI	Qualifier	Pacult	PI	Qualifier	Pacult	PI	Qualifier	Pacult	PI	Qualifier	Pacult	PI	Qualifier	Pacult	PI	Qualifier
1.5. 1.5.								Qualifici															
Secondary Seco					-												-			-			
Septiments								Л															
Section 1								-												U			
Nonemary S		1																		- 11			
Inflormation S		-															- 11						
geographenese								U									U						
Separation Sep								-															
Interest each effect of the component of								J															
September S														U			-						
preparatives 10 NO 50 U 469 50 E 4690 100 - 3.2 50 U 40 50 U 30 50 U 40 50 U 30 50 U 40 50 U																	J						
Second Company Seco											U			-									
Security of the content of the conte								E						-									
Second S																							
The production The																							
## A Post Program Compounds S		5		5.0	U		5.0	J		100	U		5.0	U		5.0	J		5.0	U		5.0	U
2.4 Triestreaments			2.8			774.3			1650			11.9			149.8			10.9			1.0		
- Admentiplement 1										-													
Methylphene	1,2,4-Trichlorobenzene	5		10				U	ND			ND				10		ND	10			10	
Methylphered 1	2,4-Dimethylphenol	1		10	U		10	J	ND	80	U	ND	10	U	ND	10	U		10	U	ND	10	U
Methylophened 1	2-Methylnaphthalene	NS			U			E						U						U			U
Membry physhole	2-Methylphenol	1	ND	10	U	9		J	ND		U	ND	10	U	ND	10	U	ND	10	U	ND	10	U
comperhence 20 2,3 10 J 280 10 E 170 80 ND ND 10 U 6 10 J ND 10 U ND 10	4-Methylphenol					27								U									
Compatifyline NS		20	2.9	10	J	200		E	170			ND		U			J		10	U	ND	10	
Inflinations 5.0 NO 10 U 33 10 39 80 NO 10 U NO			ND		U			J	ND		U	ND		U	ND								
Part																							
Part									25		J												
ancapi player product of the control			ND						17		.i	ND		II.									
ancalg (Appendence					1																		
## Property Property																							
Big February Property Pro								J															
artisación NS ND 10 U 34 10 44 80 J ND 10 U ND	Benzo[k]fluoranthene				_									_									
httpsene httpsene https://processes.org/lines/septene https://processes.org/lines/septene/septene https://processes.org/lines/septene/								U															
Nemocrophysical part																							
No.	Chrysene																						
Useranthene 50 2.5 10 J 92 10 120 80 2.9 10 J ND 10 U								J															
Lucrene 50	Dibenzofuran			10	U	86	10		ND	80	U	ND	10	U	ND	10			10	U	ND	10	
Angle 1.8 10 1 10 10 10 10 10 10	Fluoranthene				J				120			2.9		J	ND	10	U		10			10	
Second Parameter 10	Fluorene	50	1.1	10	J	100	10		110	80		ND	10	U	3	10	٦	ND	10	U	ND	10	U
Nemarker So	Indeno[1,2,3-cd]pyrene	0.002	1.8	10	J	8.1	10	J	ND	80	C	ND	10	U	ND	10	C	ND	10	U	ND	10	U
No	Naphthalene	10	ND	10	U	580	10	E	970	80		1.8	10	J	6.7	10	J	ND	10	U	ND	10	U
yrene	Phenanthrene	50	2.2	10	J	180	10	Е	220	80		3.1	10	J	5	10	٦	ND	10	U	ND	10	U
Total SVOCs 18.5 1771.9 2113 14.3 31.7 0 0	Phenol	1	ND	10	U	14	10		17	80	J	ND	10	U	ND	10	U	ND	10	U	ND	10	U
	Pyrene	50	2.4	10	J	110	10		75	80	J	2.7	10	J	ND	10	U	ND	10	U	ND	10	U
Servic 25 58.7			18.5			1771.9			2113			14.3			31.7						0		
Service 25 58.7	Metals																						
admium 5 1000 2440		0E	E0 7						0.2		D	42.2		В	45		В	AE E			E 4		В
Section Sect						l				-	В			В			В			-			В
thromium																							
Perform 10											В			В			В						
Intercorp 0.7	Chromium																			В			В
Pelnim 10 10 10 10 10 10 10 1	Lead	25	8330						556			331			451			60.3	-		423		
Pelnim 10 10 10 10 10 10 10 1	Mercury	0.7	4.4						0.42			0.83			0.058		В	0.056		U	2		
Second S					U						U			В			U			-	21.4		В
yanide 200 333 102 282 332 474 32.1 Olychoriated Biphenyls roclor-1016 0.09 ND 1 U ND																							
Orocloridate Oroc					U					ļ	В			U			U			U			U
No No No No No No No No		200	333						102			282			332			474			32.1		
No No No No No No No No	Polychlorinated Biphenyls																						
No No No No No No No No	Aroclor-1016	0.09	ND	1	U	ND	1	U				ND	1	U	ND	1	U	ND	1	U	ND	1	U
No 1				1			1						1			1			1			1	
ND 1 U ND				-						l			-										
rocior-1248 0.09 ND 1 U				-					ļ	ļ													
No.				-	-								-	-									
0.09 ND 1 U ND 1	Aroclor-1248	0.09		1	U		1						1			1			1			1	
Total PCBs 0 0 0 0 0 0 0 0 0 0 ther	Aroclor-1254	0.09	ND	1	U	ND	1	U				ND	1	U	ND	1	U	ND	1	U	ND	1	U
Total PCBs 0 0 0 0 0 0 0 0 0 0 ther	Aroclor-1260	0.09	ND	1	U	ND	1	U				ND	1	U	ND	1	U	ND	1	U	ND	1	U
rther																							
			Ü												· ·			-			_ ·		
oral Petroleum Hydrocaroons NS 4300 35 12900 1800 1 ND 35 U 12700 1800 1790 35 ND 35 U		110	40.00	0.7		00	4000				,	No	0.7		0777	1000		765	0-		No.	0=	
	lotal Petroleum Hydrocarbons	NS	4300	35	l	2900	1800					ND	35	U	2700	1800		790	35	1	ND	35	U

All data and standards/guidance values are reported in ug/L (ppb)

All data and standards/gludance values are reported in Ug/L pp. ND - not detected.

AWQS/GV - ambient water quality standard or guidance value.

NS - no standard or guidance value established.

ug/L - micrograms per liter.

J - estimated concentration.

B - A trace concentration below the reportting limit and equal to or above the detection limit.

U - Not detected.

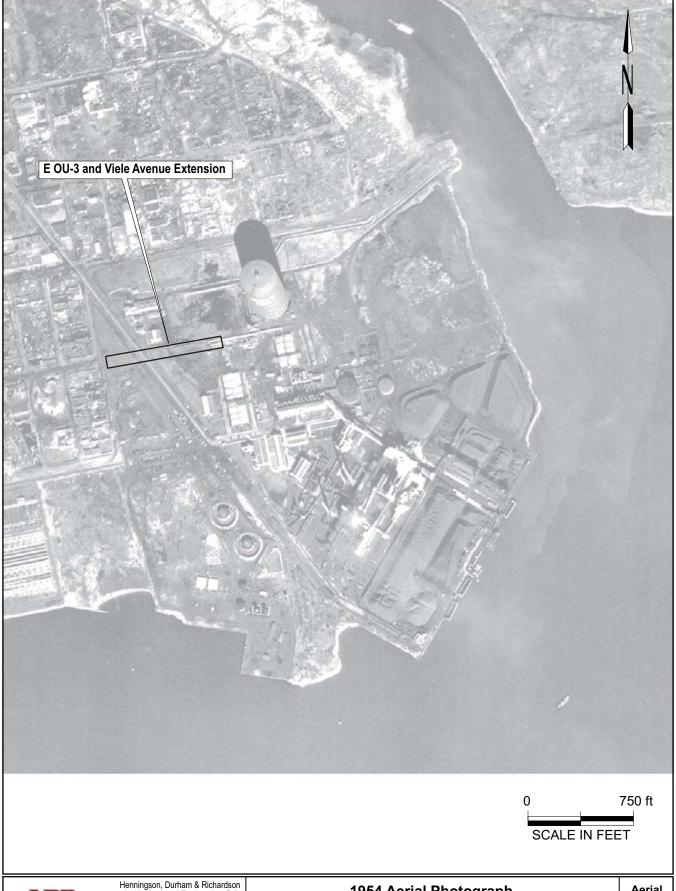
 $\label{thm:highlighted} \mbox{Highlighted - concentration reported exceeds respective standard or guidance value.}$

Photographs

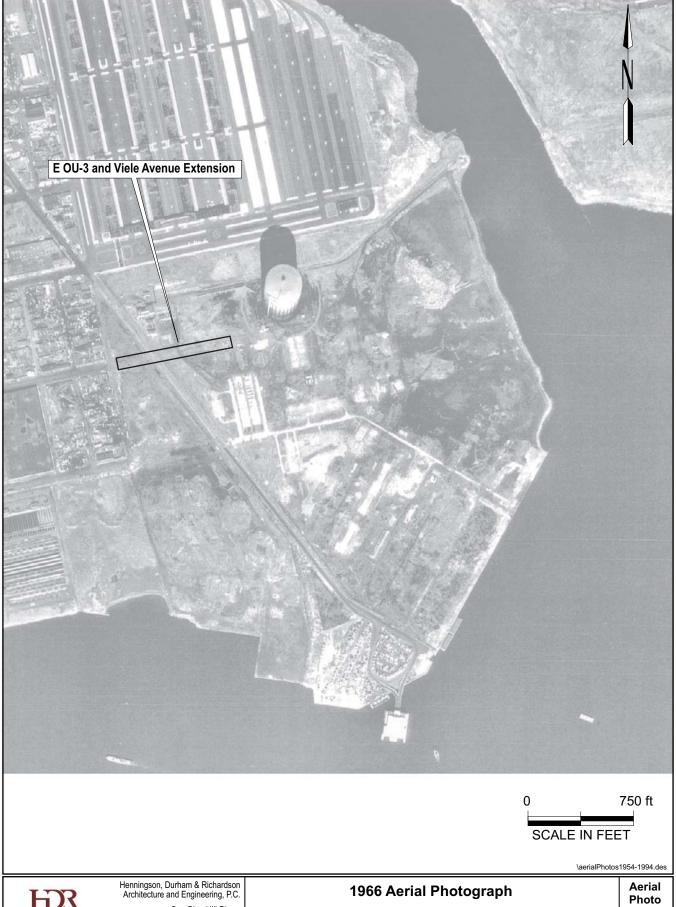
Photograph 1: Geophysical Survey

Photograph 2: Abandoned Concrete Foundation Slab

Photograph 3: Test Pit (along west edge of concrete slab)

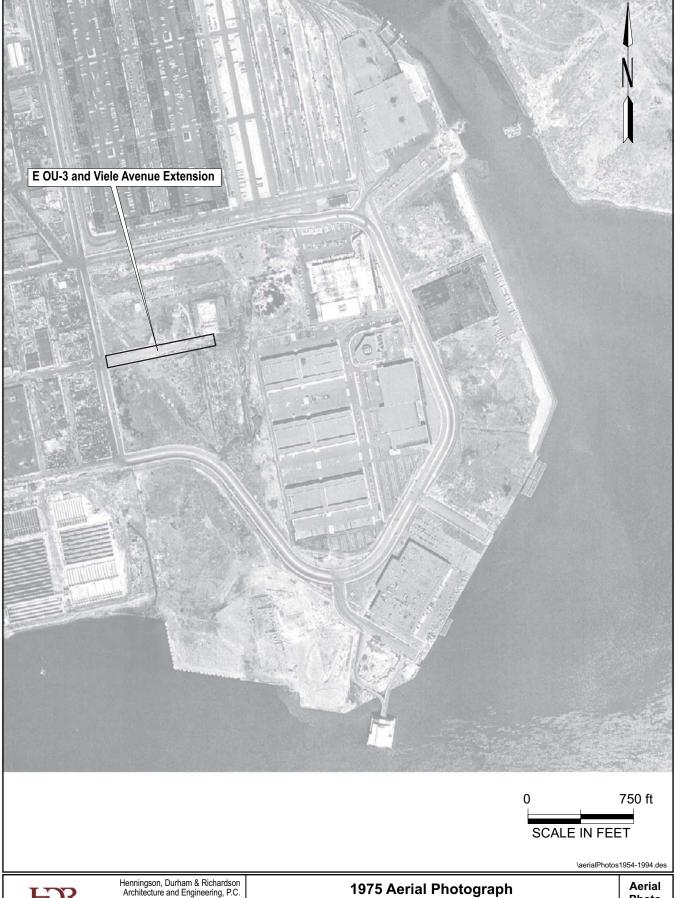


Photograph 4: Drilling Boring B18.



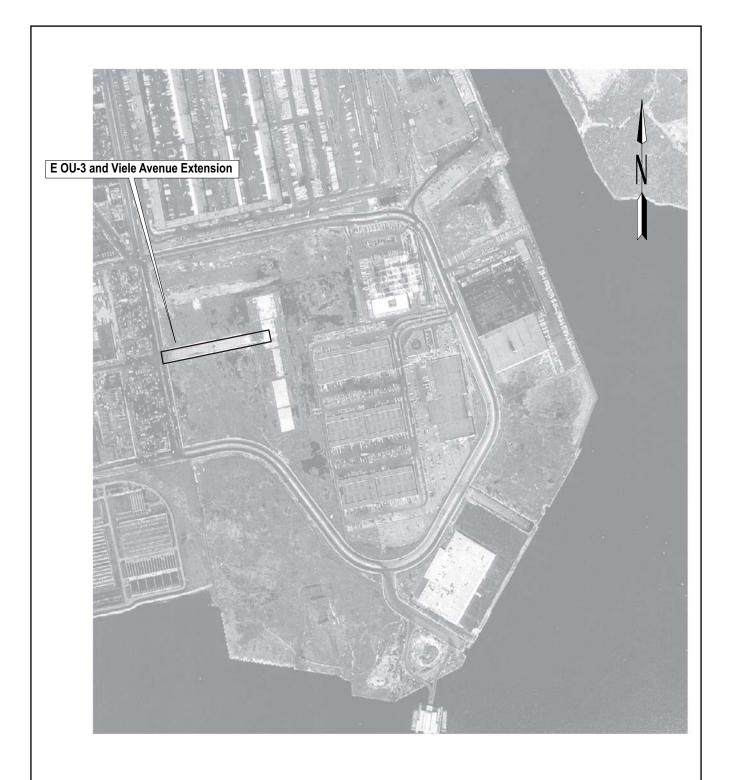
Photograph 5: Large Debris Pile

APPENDIX A Historic Photographs



HOR

One Blue Hill Plaza Pearl River, NY 10965

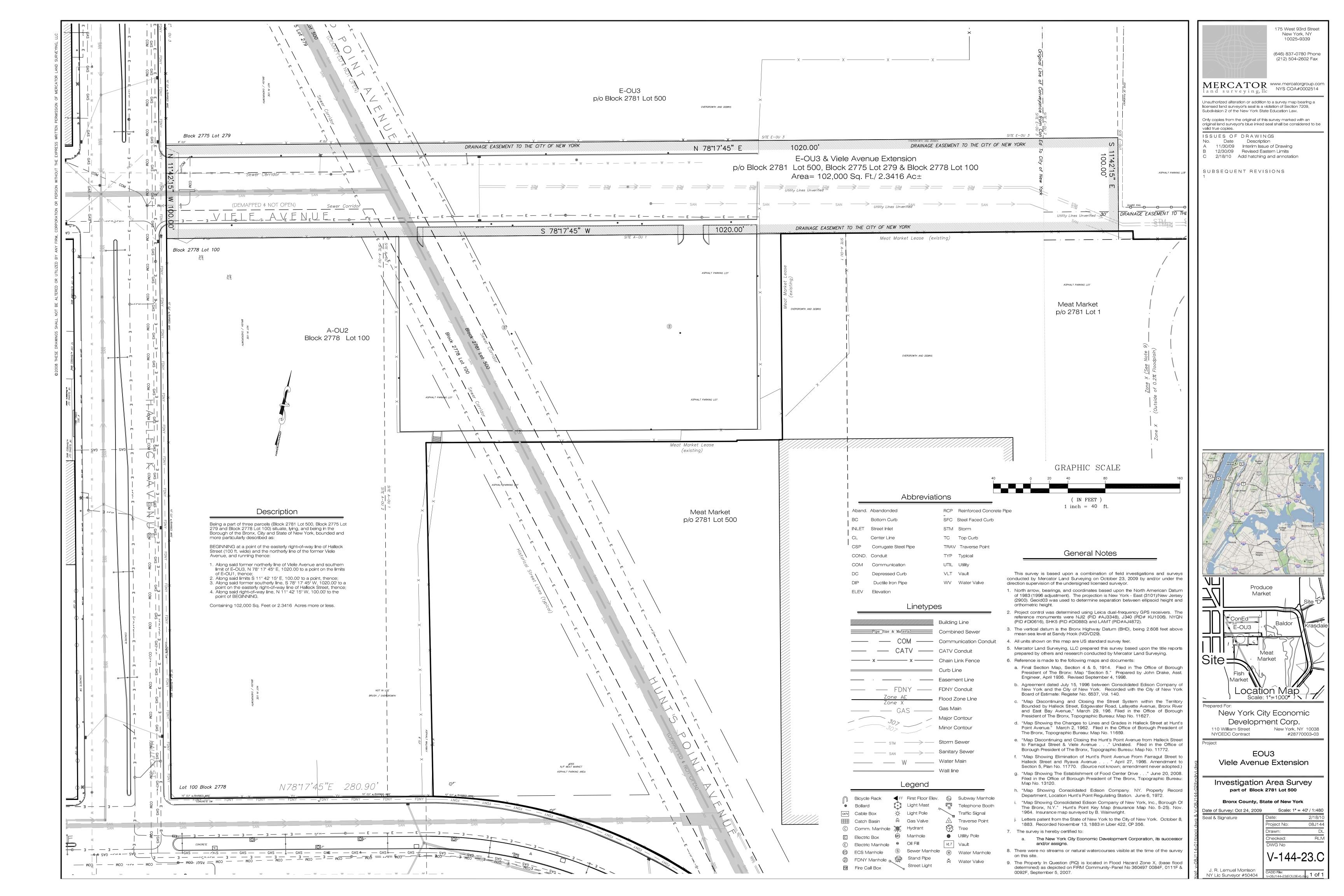

2

HOR

Henningson, Durham & Richardson Architecture and Engineering, P.C.

One Blue Hill Plaza Pearl River, NY 10965

Henningson, Durham & Richardson Architecture and Engineering, P.C.


One Blue Hill Plaza Pearl River, NY 10965

1984 Aerial Photograph

HOR

APPENDIX B E OU-3 EXTENSION & Viele Avenue Extension Investigation Area Survey

APPENDIX C Boring Logs

Boring No.	B-1
SURFACE ELEV	
DATUM	
SHEET	1 OF 1

PROJECT NAME	NYCEDC E OU-3 Extensio		SHEET 1 OF 1		
					<u> </u>
BORING LOCATION		DATE	3/16/2010	DRILLER NAME / COMPANY	A. Babel / ADT
MONITORING INSTRU	JMENTATION	PID, V Rae C	GI	HDR FIELD INSPECTOR	T. Goehring

MICINIT	ORING INS	INDIVIDITA	IIION		1 1D, V	Rae CGI	HDR FIELD INSPECTOR	r. Goenring	
			т	o Inch Geo	nroha Ca	mnlo	· · · · · · · · · · · · · · · · · · ·		
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)	Moisture	Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI
_	_								
0 —							0-4 in TOPSOIL	Sample collected at 4	LEL = 0
								5 ft for SVOC, PCB,	H2S= 0
-	B-1 4-5 f	0-5	0.0	Wet at 5 ft	Light	21			O ₂ = 20.9
-	B-15 ft				3			Hg, Cyanide, VOC	CO = 0
	D-1 3 II						sand, brick, coal, glass, plastic	3, -,	0
5 —									. =.
							0-20 in FILL - Dark brown silt, some fine sand,		LEL = 0
		F 40					brick, coal, glass, plastic 20-38 in FILL - Yellow brown fine to medium		H2S= 0
		5-10	0.0	Wet	Light	45	SILTY SAND, tr. clay.		O ₂ = 20.9
							38-45 in FILL - Dense gray silt and fine		CO = 0
40							GRAVEL, trace fine to medium sand, glass		
10						t	0-30 in Black SILT and fine GRAVEL,		LEL = 0
							some fine to medium sand		H2S= 0
		10-15	0.0	Wet	None	32	30-32 in Gray CLAY, trace silt and		$O_2 = 20.9$
		10-13	0.0	WCt	TVOITC	32	organics (seashells)		CO = 0
							9(CO = 0
15 —						1	0-41 in Gray CLAY, trace silt and organics		LEL = 0
							(seashells)		H2S= 0
		15-20	0.0	Mak	Mana	41	(Seasilelis)		
		13-20	0.0	Wet	None	41			
									CO = 0
20 —							One we device to an		
							Groundwater:		
							Initial Sampling SWL= 4.63 Sample time at: 1040		
							-		
							Sample SWL = 4.71		
25 —							Well installed to 20 ft		
							vveil installed to 20 ft		
30 —									
35 —						-			
40 —									
45 —									
45 —									
50									

NOTES:

Proportions And - Equal Sandy - 31 - 49% Some - 13 - 30%

IU - Instrument Units

Trace - 1 - 12%

NYCEDC E OU-3 Extension Phase II

PROJECT NAME

ENGINEERS FIELD BORING LOG

Boring No.	B-2	
SURFACE ELEV		
DATUM		
SHEET	1 OF 1	

				<u> </u>
BORING LOCATION	DATE	3/16/2010	DRILLER NAME / COMPANY	A. Babel / ADT
MONITORING INSTRUMENTATION	PID, V Ra	e CGI	HDR FIELD INSPECTOR	T. Goehring

	ORING INS		•			Rae CGI	HDR FIELD INSPECTOR	1. Goening	
_			Tw	o Inch Geo	probe Sai	mple			
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)	Moisture	Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI
0 —	-	0-5	0.0	Dry	None	43	0-6 in TOPSOIL 6-43 in FILL - Dark brown silt, some coarse to medium sand, brick, glass, styrofoam, wood		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
5 —		5-10	0.0	Moist	Light	55	0-55 in FILL - Dark brown silt, some coarse to medium sand, trace fine gravel, some brick, wood, coal	Burnt odor	LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
10 —		10-15	0.0	Wet	None	41	0-41 in Black SILT and fine GRAVEL, some fine to medium sand, trace clay		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
20 —		15-20	0.0	Wet	None	36	0-36 in Gray CLAY, trace silt and organics (seashells)		$\begin{array}{lll} \text{LEL} = & 0 \\ \text{H2S} = & 0 \\ \text{O}_2 = & 20.9 \\ \text{CO} = & 0 \end{array}$
25 —									
30 —									
35 —									
40 —									
45 —									

NOTES:

Proportions
And - Equal
Sandy - 31 - 49%

Some - 13 - 30% Trace - 1 - 12%

IU - Instrument Units

Boring No. B-3
SURFACE ELEV
DATUM
SHEET 1 OF 1

PROJECT NAME	NYCEDC E OU-	3 Extension Phase I		SHEET 1 OF 1		
BORING LOCATION		DATE	3/16/2010	DRILLER NAME / COMPANY	A. Babel / ADT	
MONITORING INSTRUMENT	ATION	PID, V F	Rae CGI	HDR FIELD INSPECTOR	T. Goehring	

			Tw	o Inch Geo	probe Sar	nple		1		
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)	Moisture	Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI	
0									1	
	B-3 4-5 ft B-3 5 ft	0-5	2.6	Moist	Light	44	0-6 in TOPSOIL 6-44 in FILL - Black silt, some wood, brick, ash, coal, trace fine to coarse sand and clay	Sample collected at 4-5 ft for SVOC, PCB, TPH, 5 ft for Metals, Hg, Cyanide, VOC	LEL = 0 H2S= 0 O_2 = 20.8 CO = 0	
5 —		5-10	0.0	Wet at 5 ft	Light		0-53 in FILL - Black silt, some wood, brick, ash, coal, trace fine to coarse sand and clay		LEL = 0 H2S= 0 O ₂ = 20.8 CO = 0	
10 —		10-15	0.0	Wet	Light		0-30 in Dark gray to black SILT and fine GRAVEL, some medium to coarse sand 30-38 Gray CLAY, trace silt and organics (seashells)		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0	
15 —		15-20	0.0	Wet	None	30	0-30 in Gray clay, trace silt and organics (seashells)		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0	
20 —										
30 —										
35 —										
40 —										
45 —										
50 —										

NOTES:

Proportions
And - Equal
Sandy - 31 - 49%
Some - 13 - 30% Trace - 1 - 12%

IU - Instrument Units

NYCEDC E OU-3 Extension Phase II

PROJECT NAME

ENGINEERS FIELD BORING LOG

Boring No. B-4 SURFACE ELEV DATUM SHEET 1 OF 1

BORING LOCATION	DATE	3/17/2010	DRILLER NAME / COMPANY	A. Babel / ADT	
MONITORING INSTRUMENTATION	PID, V Rae CGI		HDR FIELD INSPECTOR	T. Goehring	

	Two Inch Geoprobe Sample					mple		1	I	
(ft.)		Sample								
Depth (ft.)	Sample No.	Depth (ft)	PID (IU*)	Moisture	Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI	
0 —			1			1	la ta : GONODETE	In	151	
							0-16 in CONCRETE 16-19 in FILL - Brown medium to coarse	Burnt odor	LEL = 0 H2S= 0	
		0-5	0.0	Moist	Light	36	sand, some silt		O ₂ = 20.9	
							19-36 FILL - Black silt, trace fine sand,		CO = 0	
5 —							brick, ash, gravel		151	
							0-14 in FILL - Black clayey silt, some brick, ash, concrete, trace fine gravel		LEL = 0 H2S= 0	
		5-10	0.0	Wet at 8 ft	Light	14	onor, don, concrete, trace into graver		O ₂ = 20.9	
									CO = 0	
10 —									151	
-							0-10 in FILL - Black clayey silt, some brick, ash, fine gravel, concrete		LEL = 0 H2S= 0	
		10-15	0.0	Wet	Light	10	briok, don, fine graver, controle		O ₂ = 20.9	
					ŭ				CO = 0	
15 —							O 24 in Conv. Cl. AV. 45555 for 5551		LEL = 0	
-							0-21 in Gray CLAY, trace fine sand and organics (seashells)		LEL = 0 H2S= 0	
		15-20	0.0	Wet	Light	21	organies (codencies)		O ₂ = 20.9	
									CO = 0	
20 —								ļ		
-										
25 —										
30 —										
35 —										
30										
40 —										
45 —								-		
50 —						J		<u> </u>		

NOTES:

IU - Instrument Units

Proportions And - Equal Sandy - 31 - 49% Some - 13 - 30%

Trace - 1 - 12%

Boring No.	B-5	
SURFACE ELEV		
DATUM		
SHEET	OF1	

PROJECT NAME NYCEDC E OU	-3 Extension Phase II		SHEET 1 OF 1		
BORING LOCATION	DATE	3/17/2010	DRILLER NAME / COMPANY	A. Babel / ADT	
MONITORING INSTRUMENTATION	PID, V Ra	ae CGI	HDR FIELD INSPECTOR	T. Goehring	

	Two Inch Geoprobe Sample								
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)		Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI
0 —									
5 —		0-5	0.0	Moist	Light	60	0-36 in CONCRETE 0-48 in FILL - Light brown fine to coarse sand, some silt, 48-60 in FILL - Dark brown to black silt, some wood, ash, coal fragments		LEL = 0 H2S= 0 0 ₂ = 20.9 CO = 0
	B-5 7-8 ft B-5 8 ft	5-10	14.6	Wet at 8 ft	Light	52	fine gravel	TPH, 8 ft for Metals,	LEL = 0 H2S= 0 0 ₂ = 20.9 CO = 0
10 —		10-15	2.1	Wet	Light	33	0-28 in Light brown medium to coarse SAND, little fine gravel, trace clay 28-33 in Black medium to coarse SAND and fine GRAVEL, some silt		LEL = 0 H2S= 0 0 ₂ = 20.9 CO = 0
15 —		15-20	0.0	Wet	None	14	0-14 in Gray CLAY, trace fine sand and organics (seashells)		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
20 —							Groundwater: Initial Sampling SWL= 4.89 Sample time at: Sample SWL = 4.86	Note: Water sample was turbid	
25 —									
35 —									
40 —									
45 —									
50									

NOTES:

Proportions And - Equal Sandy - 31 - 49% Some - 13 - 30% Trace - 1 - 12%

IU - Instrument Units

Boring No. B-6 SURFACE ELEV DATUM

PROJECT NAME	NYCEDC E OU-3 E	xtension Phase II			SHEET 1 OF 1
BORING LOCATION		DATE	3/16/2010	DRILLER NAME / COMPANY	A. Babel / ADT
MONITORING INSTRU	MENTATION	PID, V Ra		HDR FIELD INSPECTOR	T. Goehring

			Tw	o Inch Geo	probe Sai	mple			
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)		Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI
_									
5		0-5	0.1	Dry	Light	38	0-6 in TOPSOIL 6-10 in FILL - Light brown medium to coarse sand, some silt 10-38 in FILL - Black silt and fine GRAVEL, some medium to coarse sand, ash, brick		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
10 —		5-10	0.0	Wet at 6 ft	Light	50	0-38 in FILL - Black silt and fine gravel, some medium to coarse sand, ash, brick, wood, coal 38-50 in Gray CLAY, trace fine sand and organics (seashells)		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
15 —		10-15	0.0	Wet	Light	49	0-16 in Gray CLAY, trace fine sand and organics (seashells) 16-49 in Black SILT and fine GRAVEL, trace fine sand and clay		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
		15-20	0.0	Wet	Light	48	0-48 in Gray CLAY, trace fine sand and organics (seashells)		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
20 —									
25 —									
30 —									
35 —									
40 —									
45 —									
50 —									

NOTES:

Proportions And - Equal

IU - Instrument Units

Sandy - 31 - 49% Some - 13 - 30%

Trace - 1 - 12%

Boring No.	B-7	
SURFACE ELEV		
DATUM		
SHEET	1 OF 1	

PROJECT NAME	NYCEDC E OU-3	Extension Phase II			SHEET 1 OF 1	
BORING LOCATION		DATE	3/16/2010	DRILLER NAME / COMPANY	A. Babel / ADT	
MONITORING INSTRUMEN	TATION	PID, V Ra	ne CGI	HDR FIELD INSPECTOR	T. Goehring	

			Tw	o Inch Geo	probe Sar	mple			
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)	Moisture	Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI
0									
		0-5	0.6	Moist	Light		0-6 in TOPSOIL 6-46 in FILL - Brown grading to gray silt, some fine to coarse sand, brick, ash, wood, glass		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
5 —	B-7 5-6 ft B-7 5 ft	5-10	1.4	Wet at 7 ft	Light	33	0-33 in FILL - Gray to black silt, some fine to coarse sand, brick, ash, trace wood and glass	6 ft for SVOC, PCB,	LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
10 —		10-15	0.4	Wet	Light	36	0-26 in FILL - Black silt and fine gravel, trace medium to coarse sand 26-30 in FILL - concrete 0-36 in Black SILT and fine GRAVEL, trace medium to coarse sand		LEL = 0 H2S= 0 0 ₂ = 20.9 CO = 0
15 —		15-20	0.0	Wet	None	49	0-18 in Black SILT and fine GRAVEL, trace medium to coarse sand 18-49 in Gray CLAY, trace silt and organics (seashells)		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
20 —									
30 —									
35 —									
40 —									
45 —									
50 —									

NOTES:

Proportions And - Equal Sandy - 31 - 49% Some - 13 - 30% Trace - 1 - 12%

IU - Instrument Units

Boring No.	B-8	
SURFACE ELEV		
DATUM		
SHEET	1 OF 1	

PROJECT NAME	NYCEDC E OU-3 Extensi	on Phase II			SHEET 1 OF 1	
						
BORING LOCATION		DATE	3/19/2010	DRILLER NAME / COMPANY	A. Babel / ADT	
MONITORING INSTR	UMENTATION	PID, V Ra	ae CGI	HDR FIELD INSPECTOR	T. Goehring	

			Tw	o Inch Geo	probe Sar	mple				
Œ.		Sample								
Depth (ft.)	Sample No.	Depth (ft)	PID (IU*)	Moisture	Odor	Recovery (inches)	Sample Description (Inches)	Remarks		CGI
0 —						T	lo o : AORIJAI T	T	li ei	
							0-6 in ASPHALT 6-11 in CONCRETE		LEL = H2S=	0
		0-5	0.0	Moist	Light	52	11-52 in FILL - Black to dark brown silt		O ₂ =	20.9
					,		and medium to coarse sand, some fine		CO =	0
5 —							gravel, brick, wood, ash			
							0-8 in FILL - Black to brown silt and medium to coarse sand, some fine gravel, brick, wood, ash	Sample collected at 8		0
		E 10	0.0	Wet at 9 ft	Links	14	8-12 in FILL - Gray fine to medium silty sand, trace	9 ft for SVOC, PCB, TPH, 9 ft for Metals,	H2S= O ₂ =	0
		5-10	0.0	wet at 9 it	Light	14	coarse sand 12-14 in Brown fine to medium GRAVEL, some silt,	Hg, Cyanide, VOC	O ₂ = CO =	20.9
							trace fine to medium sand		00-	0
10 —							0-8 in Brown fine to medium GRAVEL,		LEL =	0
							some silt, trace fine to medium sand		H2S=	0
		10-15	0.0	Wet	None	31	8-31 in Gray CLAY, trace silt, fine sand		O ₂ =	20.9
							and organics (seashells)		CO =	0
15 —							0-60 in Gray CLAY, trace silt, fine sand		LEL =	0
							and organics (seashells)		H2S=	0
		15-20	0.0	Wet	None	60			O ₂ =	20.9
									CO =	0
20 —							Groundwater:	Well set to 14 ft		
							Initial Sampling SWL= 8.63	Won out to 111t		
<u> </u>							Sample time at: 1300			
							Sample SWL = 8.68			
25 —										
30 —										
35 —										
40 —										
40		•		_						
-										
45 —										
-										
50 —										

NOTES:

Proportions

And - Equal

Sandy - 31 - 49% Some - 13 - 30% Trace - 1 - 12%

IU - Instrument Units

NYCEDC E OU-3 Extension Phase II

PROJECT NAME

ENGINEERS FIELD BORING LOG

Boring No.	B-9	
SURFACE ELEV		
DATUM		
SHEET	1 OF 1	

BORING LOCATION	DATE	3/19/2010	DRILLER NAME / COMPANY	A. Babel / ADT	
MONITORING INSTRUMENTATION	PID V R	ae CGI	HDR FIELD INSPECTOR	T Goehring	Ξ

		Two Inch Geoprobe Sample							1	
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)	Moisture	Odor	Recovery (inches)	Sample Description (Inches)	Sample Description (Inches) Remarks		
0 —										
		0-5	1.2	Moist	Light	29	0-6 in ASPHALT 6-11 in CONCRETE 11-29 in FILL - Black silt and fine gravel, some medium to coarse sand, wood, brick, ash		LEL = 0 H2S= 0 O_2 = 20.9 CO = 0	
	B-9 8-9 ft B-9 9 ft	5-10	2.9	Wet at 10 ft	Light	36	0-36 in FILL - Black silt and fine gravel, some fine to medium sand, trace brick, ash, coal	Sample collected at 8-9 ft for SVOC, PCB, TPH, 9 ft for Metals, Hg, Cyanide, VOC	LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0	
10 —		10-15	0.0	Wet	None	49	0-36 in FILL - Black silt and f gravel, some fine to med sand, trace brick, ash, coal 36-42 in FILL - Crushed schist cobble 42-49 in FILL - Gray silt and fine sand, trace wood and fine gravel		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0	
15		15-20	0.0	Wet	None	60	0-60 in gray CLAY, trace fine sand and organics (seashells)		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0	
20 —										
25 —										
30 —										
40 —										
45 —										
50 —										

NOTES:

Proportions

And - Equal Sandy - 31 - 49% Some - 13 - 30% Trace - 1 - 12%

IU - Instrument Units

ENGINEERS FIELD BORING LOG

HDR FIELD INSPECTOR

Boring No.	B-10
SURFACE ELEV	
DATUM	
SHEET	1 OF 1

PROJECT NAME	NYCEDC E OU-3 Extension		SHEET 1 OF 1		
BORING LOCATION		DATE	3/19/2010	DRILLER NAME / COMPANY	A. Babel / ADT
MONITORING INSTRU	JMENTATION	PID, V Rae	e CGI	HDR FIELD INSPECTOR	T. Goehring

			Tw	o Inch Geo	probe Sai	nple		Γ	1
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)		Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI
0 —									l El
		0-5	0.0	Moist	None	48	0-6 in ASPHALT 6-11 in CONCRETE 11-48 in FILL - Dark brown silt, some fine gravel, medium to coarse sand, trace brick, ash		LEL = 0 H2S= 0 $O_2 =$ 20.9 CO = 0
5 —		5-10	0.0	Wet at 10 ft	Organic Odor	36	0-26 in FILL - Yellow brown fine to med sandy silt, some clay, trace fine gravel 26-31 in Light gray SILT 31-36 in Gray fine to medium GRAVEL, some silt	Marsh-like odor	$\begin{array}{llllllllllllllllllllllllllllllllllll$
10 —		10-15	0.0	Wet	None	29	0-29 in Gray fine GRAVEL, some silt, trace fine to coarse sand		LEL = 0 H2S= 0 $O_2 =$ 20.9 CO = 0
15 —		15-20	0.0	Wet	None	3	Gray CLAY, trace fine sand and organics (seashells)		LEL = 0 H2S= 0 $O_2 = 20.9$ CO = 0
20 —									
25 —									
30 —									
35 —									
40 —									
45 —									
50 —									

NOTES:

Proportions
And - Equal
Sandy - 31 - 49%
Some - 13 - 30%

Trace - 1 - 12%

IU - Instrument Units

Boring No. B-11 & B11A SURFACE ELEV DATUM

PROJECT NAME	NYCEDC E OU-3 Extension Phase II	
--------------	----------------------------------	--

SHEET 1_OF_1_

BORING LOCATION	DATE	3/19/2010	DRILLER NAME / COMPANY	A. Babel / ADT	
MONITORING INSTRUMENTATION	PID, V R	ae CGI	HDR FIELD INSPECTOR	T. Goehring	

			Tw	o Inch Geo	probe Sai	nple			
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)	Moisture	Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI
0 —									
		0-5	0.0	Moist	Light	41	0-6 in ASPHALT 6-11 in CONCRETE 11-41 in FILL - Black silt and fine to medium sand, trace fine gravel and brick		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
5 —		5-10	0.0	Moist	Light	21	0-21 in FILL - Black silt, some fine to medium sand, trace fine gravel At 7ft moved boring to B-11A Location and continued logging	Coal tar seen on sampler at 7 ft at refusal, no soil recovered, moved boring 5 ft to avoid obstruction	LEL = 0 H2S= 0 $O_2 =$ 20.9 CO = 0
10 —		10-15	0.0	Wet	None	34	0-34 in FILL - Black silt, some fine to medium sand, trace fine gravel		LEL = 0 H2S= 0 $O_2 =$ 20.9 CO = 0
15		15-20	0.0	Wet	None	39	0-39 in Gray/mottled brown CLAY, trace fine sand and silt, plant rootlets		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
20 —							Groundwater: Initial Sampling SWL= 7.53 Sample time at: 1000 Sample SWL = 7.46	Water was turbid during sampling	
25 —									
30 —									
35 —									
45 —									
50									

NOTES:

Proportions
And - Equal
Sandy - 31 - 49%
Some - 13 - 30%
Trace - 1 - 12%

IU - Instrument Units PID calibrated to 100 ppm isobutylene

Boring No.	B-12
SURFACE ELEV	
DATUM	
SHEET	1 OF 1
	_

PROJECT NAME	NYCEDC E OU-3 Extensio	n Phase II		SHEET	1 OF 1	
BORING LOCATION		DATE	3/19/2010	DRILLER NAME / COMPANY	A. Babel / AD	л
MONITORING INSTRUMENT	ATION	PID, V Rae (CGI	HDR FIELD INSPECTOR	T. Goehring	j

Sample No. Sample Sample										
0.5 0.4 Mais Light 34 Colored High 1.5 1.5 0.5 0.4 Mais Light 34 1.5 1.5 0.5	÷			Tw	o Inch Geo	probe Sa	mple			
0-5	Depth (ft	Sample No.		PID (IU*)	Moisture	Odor		Sample Description (Inches)	Remarks	CGI
0-5	0 —									
B-12 8-9 ft S-10 Z6 Mesil Light 36 Coarse sand, trace fine gravel and gray B-12 9 ft S-10 R-12 9 ft S-10 R-12 9 ft S-10 R-12 9 ft R-			0-5	0.4	Moist	Light	34	6-11 in CONCRETE 11-34 in FILL - Dark gray silt, some fine to coarse sand, trace fine gravel and gray clay		H2S= 0 O ₂ = 20.9
10-15 0.0 Wet Light 39 10-39 in Gray CLAY, trace fine sand and slit 15-20 0.0 Wet Light 55 15-20 0.0 Wet Light 55 15-20 0.0 Wet Light 15-20 0.0 Wet 15-20 0.0 0.0 Wet 15-20 0.			5-10	2.6	Mosit	Light	36	coarse sand, trace fine gravel and gray clay	8-9 ft for SVOC, PCB, TPH, 9 ft for Metals, Hg, Cyanide,	H2S= 0 O ₂ = 20.9
15-20 00 Wel Light 55 Silt Gray CLAY, trace tine sand and like) H2S= 0 0, = 20.9 CO = 0			10-15	0.0	Wet	Light		trace medium to coarse sand 10-39 in Gray CLAY, trace fine sand and	like)	$H2S=0$ $O_2 = 20.9$
25			15-20	0.0	Wet	Light			like)	H2S= 0 O ₂ = 20.9
30— 35— 40— 45— 45—										
35 ————————————————————————————————————										
40										
50										

NOTES:

Proportions And - Equal Sandy - 31 - 49% Some - 13 - 30% Trace - 1 - 12%

IU - Instrument Units

Boring No.	B-13
SURFACE ELEV	
DATUM	
SHEET	1 OF 1
	<u> </u>

PROJECT NAME NYCEDC E O	U-3 Extension Phase II			SHEET 1 OF 1	
BORING LOCATION	DATE	3/18/2010	DRILLER NAME / COMPANY	A. Babel / ADT	
MONITORING INSTRUMENTATION	PID, V R	ae CGI	HDR FIELD INSPECTOR	T. Goehring	

			Tw	o Inch Geo	probe Sai	mple				
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)	Moisture	Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CG	I
0 —										
		0-5	0.0	Dry	Light	33	0-6 in ASPHALT 6-11 in CONCRETE 10-33 in FILL - Brown silt, some fine gravel, trace fine to coarse sand		LEL = 0 H2S= 0 O_2 = 2 CO = 0	0.9
5 —	B-13 8-9 ft B-13 9 ft	5-10	1.7	Moist	light			9 ft for SVOC, PCB,	H2S= 0	0.9
10 —		10-15	0.0	Wet	Light	58	0-43 in Gray CLAYEY SILT and fine GRAVEL, trace fine to medium sand 43-28 in Gray CLAY and SILT, some organics (rootlets and marsh mat)	vvet ac 10 ft	LEL = 0 H2S= 0 O ₂ = 2 CO = 0	0.9
15 —		15-20	0.0	Wet	Light		0-60 in Gray CLAY, trace fine sand and silt, organics (plant material)	Organic odor (marshlike)	LEL = 0 H2S= 0 $O_2 = 20$ CO = 0	0.9
20 —							Groundwater: Initial Sampling SWL= 4.46 Sample time at: 1330 Sample SWL = 13.61	Well set to 14 ft Water was slightly turbid		
25 —										
30 —										
35 —										
40 —										
45 —										

NOTES:

Proportions
And - Equal
Sandy - 31 - 49%
Some - 13 - 30% Trace - 1 - 12%

IU - Instrument Units

NYCEDC E OU-3 Extension Phase II

PROJECT NAME

ENGINEERS FIELD BORING LOG

Boring No.	B-14	
SURFACE ELEV		
DATUM		
SHEET	1 OF 1	

				- -
BORING LOCATION	DATE	3/18/2010	DRILLER NAME / COMPANY	A. Babel / ADT
MONITORING INSTRUMENTATION	PID, V Ra	ae CGI	HDR FIELD INSPECTOR	T. Goehring

	ORING INS				, .	Rae CGI	HDR FIELD INSPECTOR	1. Goenning	
			Tw	o Inch Geo	probe Sa	mple			
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)		Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI
0								=	=
		0-5	0.0	Dry	None	36	0-6 in ASPHALT 6-18 in CONCRETE 18-36 in FILL - Dark brown silt and fine to coarse sand, trace fine gravel and clay		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
5 —		5-10	0.0	Moist	None	40	0-29 in FILL - Yellow brown fine to medium silty sand, trace fine gravel, miceaceous 29-36 in FILL - Crushed schist cobble 36-40 in FILL - Crushed gniess cobble	Wet at 10 ft	LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
		10-15	0.0	Wet	None	23	0-12 in FILL - Yellow brown fine to medium silty sand, trace fine gravel, micaceous 12-14 in Gray CLAYEY SILT 14-23 in Gray fine GRAVEL and coarse SAND, some silt, trace fine sand		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
15 —		15-20	0.0	Wet	None	19	0-16 in Fine GRAVEL, trace silt 16-18 in Gray CLAY, trace fine sand and silt		$\begin{array}{lll} \text{LEL} = & 0 \\ \text{H2S} = & 0 \\ 0_2 = & 20.9 \\ \text{CO} = & 0 \end{array}$
20 —									
25 —									
30 —									
35									
40 —									
45 —									
40									
50						<u> </u>			

NOTES:

Proportions
And - Equal
Sandy - 31 - 49%
Some - 13 - 30% Trace - 1 - 12%

IU - Instrument Units

Boring No.	B-15	
SURFACE ELEV		
DATUM		
SHEET	1 OF 1	

PROJECT NAME	NYCEDC E OU-3 Extension	n Phase II			SHEET 1 OF 1
BORING LOCATION		DATE	3/17/2010	DRILLER NAME / COMPANY	A. Babel / ADT
MONITORING INSTRUMENTA	TION	PID, V F	tae CGI	HDR FIELD INSPECTOR	T. Goehring

						rtac cor		T. Cooming		
3			Tw	o Inch Geo	probe Sa	mple				
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)	Moisture	Odor	Recovery (inches)	Sample Description (Inches)	Remarks		CGI
0 —										
		0-5	0.0	Dry	None	40	0-6 in ASPHALT 6-30 in FILL - Brick, concrete, wood, silt, trace coal 30-40 in FILL - Light brown medium to coarse sand, trace fine sand and silt		LEL = H2S= O ₂ = CO =	0 0 20.9 0
5 —	B-15 9-10 ft B-13 10 ft	5-10	0.0	Moist	None	18	0-18 in FILL - Light brown medium to coarse sand, trace coal and coal dust	Sample collected at 9- 10 ft for SVOC, PCB, TPH, 10 ft for Metals, Hg, Cyanide, VOC Wet at 10 ft	LEL = H2S= O ₂ = CO =	0 0 20.9
10 —		10-15	0.0	Wet	None	10	0-8 in FILL - Light brown medium to coarse sand, trace coal and coal dust 8-10 in Gray medium to coarse SAND, some fine gravel and fine sand and silt		LEL = H2S= O ₂ = CO =	0 0 20.9 0
15 —		15-20	0.0	Wet	None	51	0-51 in Gray CLAY, trace fine sand, some organics (plant matter)		LEL = H2S= O ₂ = CO =	0 0 20.9
25 —										
30 —										
35 —										
45 —										

NOTES:

Proportions
And - Equal

Sandy - 31 - 49% Some - 13 - 30% Trace - 1 - 12% IU - Instrument Units

Boring No.	B-16
SURFACE ELEV	
DATUM	
SHEET	1 OF 1

J-3 Extension Phase II			SHEET 1 OF 1	
DATE	3/18/2010	DRILLER NAME / COMPANY	A. Babel / ADT	
PID, V Ra	ae CGI	HDR FIELD INSPECTOR	T. Goehring	
			DATE 3/18/2010 DRILLER NAME / COMPANY	DATE 3/18/2010 DRILLER NAME / COMPANY A. Babel / ADT

			Tw	o Inch Geo	probe Sar	nple			
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)	Moisture	Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI
0 —									
		0-5	1.5	Dry	Light	14	0-6 in ASPHALT 6-14 in FILL - Black silt, some brick, concrete, wood, ash, trace fine sand		LEL = 0 H2S= 0 0_2 = 20.9 CO = 0
5 —	B-16 8-9 ft B-16 9 ft	5-10	4.6	Moist	Light	23	concrete, wood, ash, trace fine sand	Sample collected at 8- 9 ft for SVOC, PCB, TPH, 9 ft for Metals, Hg, Cyanide, VOC Wet at 10 ft	LEL = 0 H2S= 0 $O_2 =$ 20.9 CO = 0
15 —		10-15	0.0	Wet	Light	39	0-39 in Gray grading to mottled black-gray CLAY, trace fine sand, silt and organics (plant matter)	Organic odor (marshlike)	LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
		15-20	0.0	Wet	Light	16	0-16 in Gray CLAY trace fine sand, silt and organics (plant matter and seashells)	Organic odor (marshlike)	LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
20 —							Groundwater: Initial Sampling SWL= 9.86 Sample time at: 945 Sample SWL = 9.87	Well installed to 15 ft	
25 —									
30 —									
40 —									
45 —									
50									

NOTES:

Proportions And - Equal Sandy - 31 - 49% Some - 13 - 30% Trace - 1 - 12%

IU - Instrument Units PID calibrated to 100 ppm isobutylene

PROJECT NAME

NYCEDC E OU-3 Extension Phase II

ENGINEERS FIELD BORING LOG

Boring No.	B-17	
SURFACE ELEV		
DATUM		
SHEET	1 OF 1	

BORING LOCATION	DATE	3/17/2010	DRILLER NAME / COMPANY	A. Babel / ADT	
MONITORING INSTRUMENTATION	PID, V Ra	e CGI	HDR FIELD INSPECTOR	T. Goehring	

			Tw	o Inch Geo	probe Sar	nple		1		
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)		Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI	
0 —										
		0-5	0.0	Dry	Light	55	0-4 in ASPHALT 4-55 in FILL - concrete, brick, rock fragments, black silt, some fine to coarse sand, trace clay and fine gravel		LEL = 0 H2S= 0 O_2 = 20.9 CO = 0	
5 —	B-17 8-9 ft B-17 8 ft	5-10	1.4	Moist	Slight		trace clay	Sample collected at 8- 9 ft for SVOC, PCB, TPH, 8 ft for Metals, Hg, Cyanide, VOC Wet at 10 ft	LEL = 0 H2S= 0 O_2 = 20.9 CO = 0	
15 —		10-15	0.0	Wet	Light		0-16 in FILL - Black fine gravel and silt, trace fine sand, some wood	Organic odor (marshlike)	LEL = 0 H2S= 0 $O_2 =$ 20.9 CO = 0	
20 —		15-20	0.0	Wet	None	14	0-14 in Gray CLAY, trace fine sand		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0	
25 —										
30 —										
40 —										
45 —										
50										

NOTES:

Proportions
And - Equal
Sandy - 31 - 49%
Some - 13 - 30% Trace - 1 - 12%

IU - Instrument Units

PROJECT NAME NYCEDC E OU-3 Extension Phase II

ENGINEERS FIELD BORING LOG

DATUM SHEET 1 OF 1	Boring No.	B-18	
	SURFACE ELEV		
SHEET 1 OF 1	DATUM		
	SHEET	1 OF 1	

BORING LOCATION	DATE	3/19/2010	DRILLER NAME / COMPANY	A. Babel / ADT	
MONITORING INSTRUMENTATION	PID, V Rae	CGI	HDR FIELD INSPECTOR	T. Goehring	

							TIDK FIELD INSPECTOR	T. Cocining	
_			Tw	o Inch Geo	probe Sa	mple			
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)	Moisture	Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI
0 —	B								
		0-5	0.0	Moist	Light	31	0-6 in ASPHALT 6-11 in CONCRETE 11-31 in FILL - Black silt and medium to coarse sand, some brick, ash, clay		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
5 —		5-10	0.0	Moist	Light	42	0-42 in FILL - Black silt and medium to coarse sand, some brick, ash, clay		LEL = 0 H2S= 0 $O_2 =$ 20.9 CO = 0
10 —									
15 —									
							Boring completed to approximate depth of coal tar seen in B-11		
20 —									
25 —									
30 —									
35 —									
40 —									
45 —									
50 —									

NOTES:

Proportions
And - Equal
Sandy - 31 - 49%
Some - 13 - 30% Trace - 1 - 12%

IU - Instrument Units

Boring No.	B-19
SURFACE ELEV	
DATUM	
SHEET	1 OF 1

PROJECT NAME	NYCEDC E OU-		SHEET 1 OF 1			
BORING LOCATION MONITORING INSTRUMEI	NTATION	DATE PID, V R	3/19/2010 ae CGI	DRILLER NAME / COMPANY HDR FIELD INSPECTOR	A. Babel / ADT T. Goehring	_

			Tw	o Inch Geo	probe Sai	nple			
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)	Moisture	Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI
0 —									
		0-5	1.3	Moist	Light	23	0-6 in ASPHALT 6-11 in CONCRETE 11-23 in FILL - cinders, some silt, ash, fine gravel		LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
5 —	B-19 6-7 ft B-19 7 ft	5-10	2.6	Moist	Light	15	gravel Refusal at 7', Concrete in sampler shoe	,	LEL = 0 H2S= 0 O ₂ = 20.9 CO = 0
15 —							Boring completed to approximate depth of coal tar seen in B-11		
20 —									
25 —									
30 —									
35 —									
40 —									
45 —									
50			<u> </u>			<u> </u>			

Proportions
And - Equal

Sandy - 31 - 49% Some - 13 - 30% Trace - 1 - 12%

IU - Instrument Units

NYCEDC E OU-3 Extension Phase II

PROJECT NAME

ENGINEERS FIELD BORING LOG

Boring No.	B-20
SURFACE ELEV	
DATUM	
SHEET	1 OF 1

·				- -
BORING LOCATION	DATE	3/19/2010	DRILLER NAME / COMPANY	A. Babel / ADT
MONITORING INSTRUMENTATION	PID, V	Rae CGI	HDR FIELD INSPECTOR	T. Goehring

WICHIT	MONITORING INSTRUMENTATION PID, V Rae CGI						HDR FIELD INSPECTOR	r. Goenning	
			Tw	o Inch Geo	probe Sa	mple			
Depth (ft.)	Sample No.	Sample Depth (ft)	PID (IU*)		Odor	Recovery (inches)	Sample Description (Inches)	Remarks	CGI
0 —			•						
		0-5	0.0	Moist	Light	31	0-6 in ASPHALT 6-11 in CONCRETE 11-31 in FILL - cinders, some silt and coarse sand, trace ash		LEL = 0 H2S= 0 O_2 = 20.9 CO = 0
5 —		5-10	0.0	Moist	Light	42	0-42 in FILL - Dark brown silt, some cinders, trace fine sand		LEL = 0 H2S= 0 $O_2 =$ 20.9 CO = 0
10 —									
15 —							Boring completed to approximate depth of		
							coal tar seen in B-11		
20 —									
-									
25 —									
20									
30 —									
-									
35 —							+		
40 —									
45 —									
50 —									

NOTES:

Proportions
And - Equal
Sandy - 31 - 49%
Some - 13 - 30%

Trace - 1 - 12%

IU - Instrument Units

APPENDIX D Test Pit Logs

	HDR Test				Crew: TG				
J	UDK		Test Pit	Log	Sheet	1	of 1		
Project Name	e: E OU-3 Ext	tension			Name:	TP1			
Client:		NYCEDC			Date:	Start	3/15/2010		
Excavator Ty	pe: Backhoe					Finish	3/15/2010		
Operator:					Final D	epth	10'		
Test Pit Locat	tion: Northw	est edge of c	oncrete pad			to Water:	4'		
Coordinates:					Surf. El	levation			
Logged By: T					Hole Di	iameter:			
Monitoring In		ID, CGI							
Photograph #	<u> </u>		Photo #(s)	1					
Depth	Instru	ment(s) Re	ading		Desc	cription			
(Ft)	PID	FID	% LEL			-			
0-1	0		0	0-1 ft Topsoil					
1-2'	0		0	1-2 ft Yellow brown	n coarse	to fine SAND,	some fine		
				gravel and cobbles	and silt,	trace clay			
2-10'	0		0	2-10 ft Light brown	very fine	e to fine SAND	and SILT, trace		
<u> </u>		 		clay					
				1					
			1	1					
				1					
				İ					
	 		 	1					
				İ					
				1					
	<u> </u>	<u> </u>		1					
				1					
			 	1					
				1					
				1					
	<u> </u>	<u> </u>		1					
				1					
			 	1					
				i					
Additional Note	es								
Ctrong oc	To a stand on a	·!l ··· a abaan		1					
•	dor noted on so oundwater, no			1					
giv	Uulluwater, 110) FID Icauling	,5	İ					
				1					
				1					
<u> </u>			_	1					
			ŗ	1					

HDR				Crew: TG				
			Test Pit	Log	Sheet	1	of	1
Project Name:	E OU-3 Ext	ension			Name:	TP2		
Client:		NYCEDC			Date:	Start	3/15	/2010
Excavator Typ	e: Backhoe					Finish	3/15	/2010
Operator:					Final D	epth	-	10'
Test Pit Locati	ion: Southwo	est east edge	of concrete p	ad	Depth t	o Water:		4'
Coordinates:					Surf. El	levation		
Logged By: T	Goehring				Hole Di	ameter:		
Monitoring In	strument: P	D, CGI						
Photograph #			Photo #(s)					
Depth	Instru	ment(s) Re	ading		Desc	cription		
(Ft)	PID	FÌD	% LEL			'		
0-1	0		0	0-1 ft Topsoil				
1.0.5	=		_				_	
1-3.5'	0		0	1-3.5 ft Yellow brow			D, some	fine
3.5-10'	0		0	gravel and cobbles 3.5-10 ft Light brow			JD and S	SII T
3.5 10	U		J	trace clay	ii very iii	ne to line oza	1D and C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				,				
Additional Note	es							
•	or noted on s							
gro	oundwater, no	PID reading	S					

HDR			_	Crew: TG				
			Test Pit	Log	Sheet	1	of	1
Project Name	: E OU-3 Ext	ension			Name:	TP3		
Client:		NYCEDC			Date:	Start	3/15	5/2010
Excavator Ty	pe: Backhoe					Finish	3/15	5/2010
Operator:					Final D	epth	-	10'
Test Pit Locat	tion: Southea	st east edge o	of concrete pa	ad	Depth t	o Water:		4'
Coordinates:					Surf. E	levation		
Logged By: T	Goehring				Hole Di	iameter:		
Monitoring In	nstrument: P	ID, CGI						
Photograph #			Photo #(s)					
Depth	Instru	ment(s) Re	eading		Des	cription		
(Ft)	PID	FID	% LEL					
0-1	0		0	0-1 ft Topsoil				
1-2.5'	0		0	1-2.5 ft Yellow brow			D, some	fine
2.5-10'	0		0	gravel and cobbles 2-10 ft Light brown) and SII	T trace
2.5-10	U			clay	very inte	e to line SAINL	and Sil	_i, liace
				,				
Additional Note								
Strong od	lor noted on s	oil, no sheen	seen on					
gr	oundwater, no	PID reading	S					

HDR			Test Pit Log		Crew: TG			
					Sheet	1	of	1
Project Name:	E OU-3 Ext	ension			Name:	TP4		
Client: NYCEDC					Date:	Start	3/15/20)10
Excavator Type: Backhoe						Finish	3/15/20)10
Operator:					Final D	epth	10'	
Test Pit Location:Northeast east edge of concrete pad						to Water:	4	ļ'
Coordinates:				levation				
Logged By: T					Hole D	iameter:		
Monitoring Instrument: PID, CGI								
Photograph #			Photo #(s)					
Depth (Ft)	Instru PID	ment(s) Re FID	ading % LEL	Description				
0-2	0		0	0-2 ft Debris				
2-3.5'	0			2-3.5 ft Yellow brown coarse to fine SAND, some fine gravel and cobbles and silt, trace clay 3.5-10 ft Light brown very fine to fine SAND and SILT,				
3.5-10'	0			3.5-10 ft Light brow trace clay	n very fi	ne to fine SAN	D and SIL	Γ,
Additional Notes Strong odor noted on soil, no sheen seen on groundwater, no PID readings								