

LIMITED PHASE II SUBSURFACE INVESTIGATION

of

1500 Astor Avenue Property 1500 Astor Avenue & 2302-2314 Eastchester Road Bronx, Bronx County, New York 10469

Prepared for:

Kazmarek Mowrey Cloud Laseter LLP On behalf of LNR Partners, LLC 1230 Peachtree Street N.E., Suite 3600 Atlanta, Georgia 30309

Prepared by:

Property Solutions Incorporated 31A Northfield Avenue Edison, New Jersey 08837

Final: July 22, 2016

Property Solutions Project No. 20152118.201 & 202

LIMITED PHASE II SUBSURFACE INVESTIGATION

of

1500 Astor Avenue Property 1500 Astor Avenue & 2302-2314 Eastchester Road Bronx, Bronx County, New York 10469

Prepared for:

Kazmarek Mowrey Cloud Laseter LLP On behalf of LNR Partners, LLC 1230 Peachtree Street N.E., Suite 3600 Atlanta, Georgia 30309

Prepared by:

Property Solutions Incorporated 31A Northfield Avenue Edison, New Jersey 08837

July 22, 2016

Property Solutions Project No. 20152118.201 & 202

in

Burton Turner Technical Manager

Hessemen

Donald P. Hessemer Regional Director

TABLE OF CONTENTS

SECTION

EXECUTIVE SUMMARY

1.0	INTRODUCTION	1
	 1.1 PURPOSE 1.2 SCOPE OF WORK 1.3 SPECIAL TERMS AND CONDITIONS	2
2.0	1.4 RELIANCE FIELD INVESTIGATION ACTIVITIES	
	 2.1 FIELD ACTIVITIES 2.2 SAMPLING METHODS 2.3 ANALYTICAL LABORATORY INFORMATION 2.4 FIELD DATA COLLECTION	7 9
3.0	REGULATORY STANDARDS	11
4.0	EXPLORATION RESULTS	
5.0	CONCLUSIONS	17
6.0	RECOMMENDATIONS	18
7.0	REFERENCES	

APPENDICES

MAPS AND PLANS
PROPERTY PHOTOGRAPHS
SOIL BORING LOGS
ANALYTICAL DATA
PROFESSIONAL QUALIFICATIONS

20152118

Property Solutions INC. 31A Northfield Avenue • Edison, New Jersey 08837• 732-417-0999

EXECUTIVE SUMMARY

Property Solutions Incorporated (Property Solutions) has conducted a Limited Phase II Subsurface Investigation (SI) at the 1500 Astor Avenue Property located at 1500 Astor Avenue in Bronx, Bronx County, New York (subject property) at the request of Kazmarek Mowrey Cloud Laseter LLP.

The Limited Phase II SI was performed based on the findings and recommendations presented in the Final Phase I Environmental Assessment (EA) prepared by Property Solutions and dated February 4, 2016 (Property Solutions project number 20152118). The potential environmental concerns identified in the Phase I EA included the following:

• Former Dry Cleaners (Unit 2312)

The Phase I EA identified that one of the tenant spaces (2312 Eastchester Road) within the onsite building was previously occupied by a drycleaner identified as MC Cleaners from approximately 1961 to 1993. The tenant space of 2312 Eastchester Road is now occupied by Dr. Donald Wallerson's medical office.

During the time period that the dry-cleaners operated, chlorinated solvents would have been typically used, particularly tetrachloroethylene, in the dry-cleaning process. A RCRA-Large Quantity Generator regulatory database listing for the location indicates spent halogenated (chlorinated) solvents (F002) as the generated waste type. Chlorinated solvents are highly mobile chemicals that can be released from dry cleaning operations in small but frequent releases. In addition, these chemicals can accumulate in the soil and migrate to the groundwater at the property.

No information was readily available pertaining to the former dry-cleaners and whether former subsurface investigations have been performed at the subject property to evaluate whether the former dry-cleaner had adversely impacted the subject property. In addition, there was no information available in regards to the chemicals and waste disposal process utilized at the former dry-cleaner tenant space. Due to the potential of a historical release in connection to the former drycleaner, the historical drycleaners at the subject property is considered to be a recognized environmental condition (REC).

Property Solutions was contracted by Kazmarek Mowrey Cloud Laseter LLP to evaluate the potential presence/absence of subsurface contamination as it relates to the Former Dry Cleaners located at 2312 Eastchester Road.

On April 7, 2016, Property Solutions advanced a total of four soil borings (SB-01 through SB-04) at the subject property. Soil borings SB-01, SB-02, and SB-03 were advanced at the rear (east) side of the building near the former dry cleaner's unit. Soil boring SB-04 was advanced at the front/street (west) side of the building near the former dry cleaner's unit. The soil borings were advanced to a depth of approximately nine to twelve feet below ground surface (bgs), where refusal was encountered. Groundwater was encountered in the soil borings at a depth of eight to ten feet bgs.

Two soil samples were collected from each "SB" soil boring for a total of eight soil samples [2118-SB-01(1.0-1.5) through 2118-SB-04(7.0-7.5)]. The soil samples were collected in laboratory supplied glassware, stored on ice, and submitted under chain of custody to a New York certified laboratory for analysis. The soil samples were analyzed for volatile organic compounds by USEPA Method 8260.

Grab groundwater samples were collected from two of the soil borings for a total of two grab groundwater samples (TW-03 and TW-04). The groundwater samples were collected in laboratory-supplied glassware, stored on ice, and submitted under chain-of-custody to a New York-certified laboratory. The groundwater samples were analyzed for volatile organic compounds by USEPA Method 8260.

Soil-gas samples were collected from two locations in the basement, through small borings advanced through the floor slab with a power drill. Teflon lined tubing was inserted into the boring, and the boring was sealed with non-toxic modeling clay. Helium gas was used as a tracer to check tubing connection and the seal with the concrete floor. The boring was purged through the tubing, removing approximately three volumes of air prior to collecting a sample. A grab soil gas sample was collected into laboratory-supplied vacuum canisters (Summa[®] canister) and submitted under chain of custody to a New York State-certified laboratory for analysis by USEPA Method TO-15.

Based on a review of the analytical laboratory data reported for the April 7, 2016 sampling event, concentrations of tetrachloroethylene (PCE), a constituent associated with dry cleaning operations, was found in groundwater sample 2118-TW-03(7.6), in soil samples 2118-SB-02(0.5-1.0) and 2118-SB-03(0.5-1.0), and in soil vapor samples 2118-SV-01(0.5) and 2118-SV-02(0.5), at concentrations exceeding New York State Department Health (NYSDOH) guidance values for further evaluation.

Based on the April 2016 Limited SI results, Property Solutions recommended additional investigation to further evaluate the soil and groundwater conditions, and potential of vapor encroachment impact to indoor air at the subject property, including additional soil and groundwater investigation to delineate the lateral extent of the impact to soil and groundwater, and collection of indoor air samples in the basement area and the first floor unit of the former dry cleaner operation.

On June 15 through June 17, 2016, Property Solutions installed six monitoring wells at the subject property, including five shallow / overburden wells, and one deep / bedrock well. Soil borings (SB-08 through SB-10) were advanced at the three well locations that were not sampled during the April 2016 investigation (MW-4 through MW-6). The soil borings were advanced to depths of refusal on weathered bedrock ranging from approximately 11.0 to 13.5 feet below ground surface (bgs). Groundwater was encountered in the soil borings at depths of 6.5 to 8.5 feet bgs. Two soil samples were collected from each "SB" soil boring for a total of six soil samples [2118-SB-08(4.0-4.5) through 2118-SB-10(10.0-10.5)]. The soil samples were collected in laboratory supplied glassware, stored on ice, and submitted under chain of custody to a New York certified laboratory for analysis. The soil samples were analyzed for volatile organic compounds by USEPA Method 8260.

Following completion of the monitoring well installations, sampling of the six wells was completed on June 17, 2016. The six wells were purged and sampled, and water quality parameters measured with a Horiba U-52 Multi-parameter Water Quality Meter immediately following sample collection at each well (monitored for pH, ORP, conductivity, turbidity, dissolved oxygen, and TDS). Static groundwater levels were measured prior to the purging of each well, which ranged from 5.8 feet depth bgs at MW-3 to 26.1 feet depth bgs at MW-1D. The wells were purged using a whale pump, and the groundwater samples were collected with Teflon bailers, and decanted into the laboratorysupplied glassware. A total of six groundwater samples were collected during this phase of the investigation.

Indoor air samples were collected from two locations in the subject building on June 16-17, 2016. Sample 2118-SV-01 was collected in the basement area of the former dry cleaner building unit (2312). Sample 2118-SV-02 was collected in the first floor area of the former dry cleaner unit, which is currently a combined space with building unit 2310. The 24-hour air samples were collected into laboratory-supplied vacuum canisters (Summa[®] canister) and submitted under chain of custody to a New York State-certified laboratory for analysis by USEPA Method TO-15.

Based on a review of the analytical laboratory data for the April 2016 sampling event, concentrations of PCE were found in groundwater sample 2118-TW-03(7.6), in soil samples 2118-SB-02(0.5-1.0) and 2118-SB-03(0.5-1.0) at concentrations exceeding their applicable New York State Department of Environmental Conservation (NYSDEC) criteria. Trichloroethylene (TCE) was also detected in groundwater sample 2118-TW-03(7.6) at a concentration slightly exceeding the applicable NYSDEC criterion for TCE. Concentrations of PCE were detected in soil vapor samples 2118-SV-01(0.5) and 2118-SV-02(0.5) at a concentration exceeding the concentrations exceeding NYSDOH guidance values for further evaluation

Based on the April 2016 results, Property Solutions recommended additional investigation to further evaluate the soil and groundwater conditions, and potential of vapor encroachment impact to indoor air at the subject property. The Limited Phase II SI activities completed in June 2016, included additional soil and groundwater investigation to delineate the lateral extent of the impact to soil and groundwater, and collection of indoor air samples in the basement area and the first floor unit of the former dry cleaner operation.

Based on a review of the analytical laboratory data reported for the June 2016 sampling event, concentrations of chlorinated VOCs including PCE, TCE, and cis-1,2-dichloroethene, constituents associated with dry cleaning operations, were found in groundwater samples 2118-MW1S(7.4), 2118-MW1D(26.5), and/or 2118-MW5(8.4) at concentrations exceeding their applicable NYSDEC criteria. The soil analytical results indicated a concentration of cis-1,2-dichloroethene was found in soil sample 2118-SB-08(4.0-4.5) at a concentration exceeding the applicable NYSDEC criteria. The indoor air analytical results indicated concentrations of PCE and 1,2-dichloroethane was found in samples 2118-IA-01 and/or 2118-IA-02 at a concentration exceeding the concentrations exceeding NYSDOH guidance values for further evaluation.

At this time, an additional groundwater sampling event has been recommended at the subject property, for collection of groundwater samples at monitoring wells MW-1D and MW-5. Following receipt and review of the data generated from the additional sampling event, a summary of the results will be provided with further recommendations, as appropriate.

20152118

Property Solutions INC. 31A Northfield Avenue • Edison, New Jersey 08837• 732-417-0999

1.0 INTRODUCTION

1.1 Purpose

Property Solutions Incorporated (Property Solutions) has conducted a Limited Phase II Subsurface Investigation (SI) at the 1500 Astor Avenue Property located at 1500 Astor Avenue in Bronx, Bronx County, New York (subject property) at the request of Kazmarek Mowrey Cloud Laseter LLP.

The Limited Phase II SI was performed based on the findings and recommendations presented in the Final Phase I Environmental Assessment (EA) prepared by Property Solutions and dated February 4, 2016 (Property Solutions project number 20152118). The potential environmental concerns identified in the Phase I EA included the following:

• Former Dry Cleaners (Unit 2312)

The Phase I EA identified that one of the tenant spaces (2312 Eastchester Road) within the onsite building was previously occupied by a drycleaner identified as MC Cleaners from approximately 1961 to 1993. The tenant space of 2312 Eastchester Road is now occupied by Dr. Donald Wallerson's medical office.

During the time period that the dry-cleaners operated, chlorinated solvents would have been typically used, particularly tetrachloroethylene, in the dry-cleaning process. A RCRA-Large Quantity Generator regulatory database listing for the location indicates spent halogenated (chlorinated) solvents (F002) as the generated waste type. Chlorinated solvents are highly mobile chemicals that can be released from dry cleaning operations in small but frequent releases. In addition, these chemicals can accumulate in the soil and migrate to the groundwater at the property.

No information was readily available pertaining to the former dry-cleaners and whether former subsurface investigations have been performed at the subject property to evaluate whether the former dry-cleaner had adversely impacted the subject property. In addition, there was no information available in regards to the chemicals and waste disposal process utilized at the former dry-cleaner tenant space. Due to the potential of a historical release in connection to the former drycleaner, the historical drycleaners at the subject property is considered to be a recognized environmental condition (REC).

Property Solutions was contracted by Kazmarek Mowrey Cloud Laseter LLP to evaluate the potential presence/absence of subsurface contamination as it relates to the Former Dry Cleaners located at 2312 Eastchester Road.

Field sampling activities for the initial phase of this Limited SI was conducted at the subject property on April 7, 2016, which included soil borings and temporary monitoring wells for the collection of soil and groundwater samples in the vicinity of the former dry cleaners unit, and collection of sub-slab soil vapor samples from the basement area of the former dry cleaners unit. Based on the results of the initial phase of the Limited SI, additional field sampling activities were

conducted at the subject property on June 15 through June 17, 2016, including the installation and sampling of five shallow / overburden monitoring wells and one deep / bedrock well, and collection of two indoor air samples within the former dry cleaners unit (basement and first floor sample locations).

1.2 Scope of Work

April 7, 2016 Sampling Event:

- 1. Property Solutions coordinated with a New York State-certified driller to contact the utility mark-out.
- 2. Property Solutions prepared a Health and Safety Plan for the subject property for use by Property Solutions' personnel.
- 3. Coordinated with a certified consultant to perform a geophysical survey at the subject property for utility clearance purposes.
- 4. Coordinated with a New York State-certified analytical laboratory for analysis of the environmental samples collected during this subsurface investigation.
- 5. Coordinated with the certified driller to advance soil borings at the subject property in the vicinity of the areas of concern. Three soil borings were advanced inside the basement beneath the former drycleaners unit (MC Cleaners) tenant space. Bedrock was encountered within two-inches beneath the floor slab; consequently, no soil samples were obtained from the interior borings (soil-gas samples were collected at two locations). Three soil borings were performed at the rear (east) exterior side of the tenant space. One soil borings were advanced utilizing hydraulic push technology (Geoprobe). All environmental sampling equipment was decontaminated prior to the advancement of each boring. Temporary wells were installed in two soil borings, one on each side of the building.
- 6. Soil-gas samples were collected from select borings employing the following procedures:
 - Teflon lined tubing was inserted into the floor slab boring and the boring was sealed with non-toxic modeling clay.
 - Helium gas was used as a tracer to check tubing connection and the seal with the concrete floor.
 - The boring was purged through the tubing, removing approximately three volumes of air prior to collecting a sample.
 - A grab soil gas sample was collected into laboratory-supplied vacuum canisters (Summa[®] canister) and submitted under chain of custody to a New York State-certified laboratory for analysis by USEPA Method TO-15.

• Property Solutions compared the sub-slab soil gas analytical results to applicable screening levels.

Subsequent to collecting the soil-gas samples, the soil borings could not be advanced due to the presence of bedrock immediately below the floor slab.

- 7. During advancement of the soil borings, continuous soil evaluation was performed. The samples were logged and field screened with a photoionization detector (PID) for the presence of organic vapors. The PID was calibrated to a known isobutylene standard prior to the sampling event.
- 8. Soil samples were collected from each of the four exterior soil borings. The samples were collected in laboratory-supplied containers, stored on ice, and submitted under chain-of-custody to a New York State-certified laboratory for analysis. As the depth to bedrock at the subject property is within 10-feet of ground surface, procurement of soil samples from the basement sub-slab borings were not obtained.
- 9. Groundwater samples were collected from two temporary well installed in two borings utilizing Teflon bailers, and decanted to laboratory-supplied containers, stored on ice, and submitted under chain-of-custody to a New York State certified laboratory for analysis.
- 10. No laboratory-prepared trip blanks, field blanks, or duplicate samples were analyzed.
- 11. Property Solutions compared the soil and groundwater analytical results to applicable New York State Department of Environmental Conservation (NYSDEC) soil and groundwater cleanup standards [New York State regulations at NYCRR Part 375 (soil) and NYCRR Part 703.5 (groundwater)]. The soil vapor sample results were compared to the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October, 2006
- 12. Property Solutions prepared a plan identifying the locations of the soil borings and temporary wells, and the sub-slab soil vapor sample locations, based upon field measurements taken during the subsurface investigation. The location plan is included in Appendix A.

June 15 through June 17, 2016 Sampling Event:

- 1. Property Solutions coordinated with a New York State-certified driller to contact the utility mark-out.
- 2. Property Solutions prepared a Health and Safety Plan for the subject property for use by Property Solutions' personnel.
- 3. Coordinated with a certified consultant to perform a geophysical survey at the subject property for utility clearance purposes.

- 4. Coordinated with a New York State-certified analytical laboratory for analysis of the environmental samples collected during this subsurface investigation.
- 5. Coordinated with the certified driller to advance soil borings at the subject property in the vicinity of the area of concern. Three soil borings were performed at the locations of proposed monitoring wells where soils have not been previously sampled, to observe soil conditions and collect samples. The soil borings were advanced utilizing hydraulic push technology (Geoprobe). All environmental sampling equipment was decontaminated prior to the advancement of each boring.
- 6. During advancement of the soil borings, continuous soil evaluation was performed. The samples were logged and field screened with a photoionization detector (PID) for the presence of organic vapors. The PID was calibrated to a known isobutylene standard prior to the sampling event.
- 7. Two soil samples were collected from each soil boring. The samples were collected in laboratory-supplied containers, stored on ice, and submitted under chain-of-custody to a New York State-certified laboratory for analysis.
- 8. Groundwater monitoring wells were installed at five locations at the subject property, as shown on the location plan included in Appendix A. One of the five locations consisted of an overburden / bedrock well grouping, in the parking lot area immediately east of the former dry cleaner unit.
- 9. Following installation, the wells were purged and sampled. Groundwater samples were collected in laboratory-supplied containers, stored on ice, and submitted under chain-of-custody to a New York State certified laboratory for analysis. The samples were analyzed for chlorinated volatile organic compounds (CVOCs), including PCE.
- 10. Two indoor air samples were collected over a 24-hour period between June 16 and June 17, 2016. One sample was collected from the basement area of the former dry cleaners unit, and one sample was collected from the first floor area of the former dry cleaner unit. Indoor air samples were collected in laboratory-supplied Summa canisters, and submitted under chain-of-custody to a New York State certified laboratory for analysis. The samples were analyzed for CVOCs, including PCE, by USEPA Method TO-15. The property owner coordinated the indoor air sampling event with the tenant.
- 11. No laboratory-prepared trip blanks, field blanks, or duplicate samples were collected or analyzed.
- 12. Property Solutions compared the soil and groundwater analytical results to applicable NYSDEC soil and groundwater cleanup standards [New York State regulations at NYCRR Part 375 (soil) and NYCRR Part 703.5 (groundwater)]. The indoor air sample results were

20152118

Property Solutions INC. 31A Northfield Avenue • Edison, New Jersey 08837• 732-417-0999

compared to the NYSDOH <u>Guidance for Evaluating Soil Vapor Intrusion in the State of New</u> <u>York</u>, October, 2006

13. Property Solutions prepared a plan identifying the locations of the soil borings, the installed monitoring wells, and the indoor air sample collection, based upon field measurements taken during the subsurface investigation. The location plan is included in Appendix A.

Property Solutions has prepared this Limited Phase II Site Investigation Report to summarize the activities and findings of this investigation, and document the soil, groundwater, sub-slab soil vapor, and indoor air sampling events completed in April 2016 and June 2016.

1.3 Special Terms and Conditions

This Limited Phase II SI was performed in accordance with the above Scope of Work. No special terms and conditions apply

1.4 Reliance

This report is intended for the sole use of Kazmarek Mowrey Cloud Laseter LLP, LNR Partners, LLC, and all trustees, servicers or other parties affiliated with any REMIC Trust holding an interest in the Subject Property at the time of this Phase I report, or any special purpose entity owned by such a REMIC Trust that may become a holder in due course of a loan secured by the Subject Property or that may become the fee owner of the Subject Property. The contents should not be relied upon by any other parties without the express written consent of Property Solutions Inc.

2.0 FIELD INVESTIGATION ACTIVITIES

2.1 Field Activities

April 7, 2016 Sampling Event

Prior to the start of the field investigation, Property Solutions coordinated Zebra Technical Services, LLC of Lynbrook, New York to contact the New York 811 underground utility mark out service, and ticket number 160850823 was assigned.

Field activities commenced on April 7, 2016, when Burton Turner, Technical Manager of Property Solutions, arrived at the subject property at 8:00 AM to begin subsurface investigation activities. Weather conditions at the time of the field activities consisted of cloudy skies and intermittent rain with an approximate outside air temperature of 50 degrees Fahrenheit.

Prior to the start of the field investigation, Property Solutions coordinated Greenstar Environmental Solutions of Wappingers Falls, New York to perform a geophysical survey to check for the presence of and provide locations of subsurface utilities, tanks, or other potential obstructions to the

subsurface explorations. The geophysical survey was completed using ground penetrating radar (GPR) equipment. The device radiates a polarized electromagnetic wave from a transmitter antenna into the earth and receives the reflected transmission via a receiving antenna. Radar reflections occur when the radio waves encounter a change in velocity or attenuation. The collection of GPR data was performed by pulling the antenna along grid lines while the positions of each radar reading were recorded with an odometer. The GPR data was recorded digitally in a portable computer for instant display and subsequent processing. Greenstar Environmental Solutions informed Property Solutions an electrical line was identified and marked on the sidewalk at the front (west) side of the building, and a sewer line was identified and marked on the rear (east) side of the building.

Soil borings for this Phase II Limited Subsurface Investigation were placed over the extent of the area of concern. A total of four soil borings were advanced exterior to the building (SB-01 through SB-04), and three borings in the basement of the building (SB-05 through SB-07), in the vicinity of the area of concern by the certified driller.

A sampling location map is included in Appendix A.

June 15 through June 17, 2016 Sampling Event:

Prior to the start of the field investigation, Property Solutions coordinated Zebra Technical Services, LLC of Lynbrook, New York to contact the New York 811 underground utility mark out service, and ticket numbers 161592094 and 161592089 were assigned.

Field activities commenced on June 15, 2016, when Burton Turner, Technical Manager of Property Solutions, arrived at the subject property at 7:20 AM to begin subsurface investigation activities. Weather conditions at the time of the field activities consisted of mostly clear skies with an approximate outside air temperature of 70 degrees Fahrenheit.

Prior to the start of the field investigation, Property Solutions coordinated Greenstar Environmental Solutions of Wappingers Falls, New York to perform a geophysical survey to check for the presence of and provide locations of subsurface utilities, tanks, or other potential obstructions to the subsurface explorations. The geophysical survey was completed using ground penetrating radar (GPR) equipment. The device radiates a polarized electromagnetic wave from a transmitter antenna into the earth and receives the reflected transmission via a receiving antenna. Radar reflections occur when the radio waves encounter a change in velocity or attenuation. The collection of GPR data was performed by pulling the antenna along grid lines while the positions of each radar reading were recorded with an odometer. The GPR data was recorded digitally in a portable computer for instant display and subsequent processing. Greenstar Environmental Solutions surveyed locations of the planned monitoring wells, and cleared a minimum five by five feet area for each of the intended drilling locations.

The soil borings conducted and monitoring wells installed for this Limited Phase II Subsurface Investigation were placed over the extent of the area of concern, to attempt to delineate the extent of soil and groundwater impact. A total of three soil borings were advanced exterior to the building, and six monitoring wells installed, in the vicinity of the area of concern by the certified driller.

A sampling location map depicting the locations of the three soil borings, six monitoring wells, and two indoor air sample collection locations is provided in Appendix A.

2.2 Sampling Methods

Property Solutions contracted Zebra Technical Services, LLC of Lynbrook, New York, a certified Geoprobe operator, to advance the soil borings for the collection of the representative subsurface samples. Zebra Technical Services, LLC utilizes a truck-mounted hydraulic push probe (Geoprobe), which advances a four-foot long stainless steel "Macro-Core" sampler. For each four-foot or five-foot advancement, a dedicated, disposable polybutyl acetate liner is used in which the samples are held for field assessment. Prior to advancement of each boring, the Geoprobe operator decontaminated the cutting shoe using a mixture of liquinox and water. The Geoprobe operator also inserted a dedicated disposable macro-core liner in each stainless steel sampling tube to prevent cross contamination of the soils encountered. The equipment utilized by Property Solutions to transfer the soil to the sampling jar was disposed of upon completion of each sampling event and Property Solutions field personnel utilized disposable latex gloves during sample collection and whenever they were in contact with the soils.

Soil Boring	Depth (ft.)	Boring Advanced To	Area of Concern Addressed
SB-01	9	Refusal	Former dry cleaner tenant space
SB-02	10	Refusal	Former dry cleaner tenant space
SB-03 / TW-03	12	Refusal	Former dry cleaner tenant space
SB-04 / TW-04	12	Refusal	Former dry cleaner tenant space
SV-01 / SB-05	< 1.0	Refusal immediately beneath floor slab / stone base (soil vapor sample only)	Former dry cleaner tenant space
SV-02 / SB-06	< 1.0	Refusal immediately beneath floor slab / stone base (soil vapor sample only)	Former dry cleaner tenant space
SB-07	< 1.0	Refusal (no samples)	Former dry cleaner tenant space
SB-08 / MW-3	11	Refusal	Former dry cleaner tenant space and impacted groundwater
SB-09 / MW-4	13.5	Refusal	Former dry cleaner tenant space and impacted groundwater
SB-10 / MW-5	11.5	Refusal	Former dry cleaner tenant space and impacted groundwater

The following table is a summary of the soil borings advanced during this investigation (borings completed during April 2016 and June 2016 sampling events).

April 7, 2016 Sampling Event

Two soil samples were collected from each "SB" soil boring for a total of eight soil samples [2118-SB-01(1.0-1.5) through 2118-SB-04(7.0-7.5)]. The soil samples were collected in laboratory supplied glassware, stored on ice, and submitted under chain of custody to a New York certified laboratory for analysis.

The soil-groundwater interface was encountered in borings SB-01 through SB-04 at a depth of 8 to 10 feet bgs. All borings encountered refusal at depths of nine to twelve feet bgs. Temporary monitoring wells were installed in soil borings SB-03 and SB-04. Groundwater samples were collected with dedicated disposable Teflon bailers. A total of two grab groundwater samples were collected during this investigation.

Soil-gas samples were collected from two locations in the basement, through small borings advanced through the floor slab with a power drill. Teflon lined tubing was inserted into the boring, and the boring was sealed with non-toxic modeling clay. Helium gas was used as a tracer to check tubing connection and the seal with the concrete floor. The boring was purged through the tubing, removing approximately three volumes of air prior to collecting a sample. A grab soil gas sample was collected into laboratory-supplied vacuum canisters (Summa[®] canister) and submitted under chain of custody to a New York State-certified laboratory for analysis by USEPA Method TO-15. Following collection of the soil-gas samples, the small-diameter borings were sealed with a concrete quick-mix.

June 15 through June 17, 2016 Sampling Event:

On June 15 through June 17, 2016, Property Solutions installed six monitoring wells at the subject property, including five shallow / overburden wells, and one deep / bedrock well. Soil borings (SB-08 through SB-10) were advanced at the three well locations that were not sampled during the April 2016 investigation (MW-4 through MW-6). The soil borings were advanced to depths of refusal on weathered bedrock ranging from approximately 11.0 to 13.5 feet below ground surface (bgs). Groundwater was encountered in the soil borings at depths of 6.5 to 8.5 feet bgs. Two soil samples were collected from each "SB" soil boring for a total of six soil samples [2118-SB-08(4.0-4.5) through 2118-SB-10(10.0-10.5)]. The soil samples were collected in laboratory supplied glassware, stored on ice, and submitted under chain of custody to a New York certified laboratory for analysis. The soil samples were analyzed for volatile organic compounds by USEPA Method 8260.

Property Solutions coordinated the installation of six permanent two-inch diameter monitoring wells at the subject property. These monitoring wells are identified as MW-1S, MW1D, MW-2, MS-3, MW-4, and MW-5. These monitoring wells were installed by Zebra Technical Services, LLC of Lynbrook, New York. The five shallow / overburden monitoring wells were installed by advancing eight-inch diameter well bores with 8-inch diameter hollow-stem auger equipment to refusal on bedrock, which occurred at depths ranging from 9 feet bgs at MW-1S to 17 feet bgs at MW-2. The

wellbore for the one deep / bedrock monitoring well (MW-1D) was advanced to a completion depth of 29.5 feet bgs utilizing a down-hole air hammer.

The well screen was constructed of 0.010 slot Schedule 40 PVC and the well casing was also Schedule 40 PVC. Each shallow well was finished with approximately five to ten feet of well screen and approximately three to five feet of casing. The void surrounding the screens was filled with No. 1 Morie sand and the well was grouted with neat cement and bentonite. The wells were developed for a minimum of 30 minutes utilizing a submersible whale pump with a pump rate of one gallon per minute.

Following completion of the monitoring well installations, sampling of the six wells was completed on June 17, 2016. The six wells were purged and sampled, and water quality parameters measured with a Horiba U-52 Multi-parameter Water Quality Meter immediately following sample collection at each well (monitored for pH, ORP, conductivity, turbidity, dissolved oxygen, and TDS). Static groundwater levels were measured prior to the purging of each well, which ranged from 5.8 feet depth bgs at MW-3 to 26.1 feet depth bgs at MW-1D. The wells were purged using a whale pump, and the groundwater samples were collected with Teflon bailers, and decanted into the laboratorysupplied glassware. A total of six groundwater samples were collected during this phase of the investigation.

Indoor air samples were collected from two locations in the subject building. Sample 2118-SV-01 was collected in the basement area of the former dry cleaner building unit (2312). Sample 2118-SV-02 was collected in the first floor area of the former dry cleaner unit, which is currently a combined space with building unit 2310. The 24-hour air samples were collected into laboratory-supplied vacuum canisters (Summa[®] canister) and submitted under chain of custody to a New York Statecertified laboratory for analysis by USEPA Method TO-15.

Photographs documenting the sampling events are provided in Appendix B.

A field log was maintained for each boring which details the observed soil conditions and drilling procedures. Copies of the soil boring logs are provided in Appendix C.

2.3 Analytical Laboratory Information

The soil and groundwater samples and the indoor air samples were submitted under chain of custody to Alpha Analytical, Inc. located in Westborough, Massachusetts (Alpha Analytical). Alpha Analytical is certified by the State of New York to analyze samples collected in the State of New York (Lab No. 11148).

The soil and groundwater samples were collected in laboratory-cleaned and supplied containers and stored on ice prior to delivery to Alpha Analytical. As each sample was collected, the sampling containers were labeled. The label denoted the name of the subject property, the sample location, the time and date the sample was collected, any preservatives added to the sample, and the analysis required for each sample. The information from each label was transferred onto the chain of custody

form provided by Alpha Analytical. Upon completion of the fieldwork, the soil samples were delivered under chain of custody to Alpha Analytical, for analysis. The soil vapor and indoor air samples were collected in laboratory-cleaned and supplied vacuum (Summa[®]) canisters.

The soil samples collected from the former dry cleaner area of concern were analyzed for volatile organic compounds (VOCs) by USEPA Method 8260. The groundwater samples collected from the temporary wells and permanent monitoring wells for the former dry cleaner area of concern were analyzed for VOCs by USEPA Method 8260. The soil gas samples and indoor air samples collected from the former dry cleaner area of concern were analyzed for VOCs by USEPA Method 8260.

Analytical results were provided to Property Solutions by Alpha Analytical in electronic format for submittal to the Kazmarek Mowrey Cloud Laseter LLP.

Per the agreed upon scope of work, no laboratory-prepared trip blanks or field blanks were collected or analyzed as part of this investigation.

2.4 Field Data Collection

Property Solutions field logged the soil borings continuously to determine property specific lithology. A field log was maintained for each boring detailing the observed soil conditions and drilling procedures. Copies of the soil boring logs are provided in Appendix C.

Property Solutions field screened each soil boring for the presence of total volatile organic compounds (VOCs) using a RAE Systems MiniRAE 3000 photo-ionization detector (PID) with a 10.6 electron-volt (eV) lamp. The PID is a trace gas analyzer calibrated to an isobutylene standard, which is capable of detecting total volatile organic vapor concentrations to a lower limit of approximately one part per million (ppm) isobutylene equivalence units.

During the field screening with the PID, no organic vapors were detected in the soils from borings SB-01, SB-04, SB-09, and SB-10, which were screened throughout the depth of each boring at sixinch intervals. In addition, throughout the depth of the borings, there was no visual or olfactory indication of impact to soils. Organic vapors were detected in soils from borings SB-02, SB-03, and SB-08. The boring with the highest PID readings was SB-03. The organic vapors were detected in this sample beginning at a depth of 0.5 feet bgs and continuing to 4.5 feet bgs, and low PID readings were observed at the groundwater interface between 9.0 and 10.0 feet bgs. PID readings screened throughout the depth of recovered soils are included in the boring logs provided in Appendix C.

Prior to collection of the grab groundwater sample from temporary well TW-03, an elevated PID reading of 90 to 100 meter units was observed at the top of the well casing. At TW-04, the PID reading prior to collection of the groundwater sample was zero. Prior to collection of samples from the six monitoring wells on June 17, 2016, PID screening was conducted two-inches below top of casing, with the following results:

Monitoring Well	PID value
MW-1S	9.4
MW-1D	0.0
MW-2	0.0
MW-3	0.5
MW-4	0.0
MW-5	1.8

3.0 **REGULATORY STANDARDS**

Property Solutions used the following NYSDEC and NYSDOH standards for comparison with contaminant levels identified in the soil and groundwater samples.

- NYSDEC regulations at NYCRR Part 375-6.8; <u>Remedial Program Soil Cleanup</u> <u>Objectives</u>
- NYSDEC regulations at NYCRR Part 703.5; <u>Water Quality Standards for Taste, Color-and Odor-producing, Toxic and Other Deleterious Substances</u>.
- NYSDOH <u>Guidance for Evaluating Soil Vapor Intrusion in the State of New York;</u> dated October 2006.

4.0 EXPLORATION RESULTS

4.1 Former Dry Cleaners (Unit 2312)

April 7, 2016 Sampling Event

Property Solutions installed a total of four soil borings in the vicinity of the Former Dry Cleaners (Unit 2312) to a depth of nine to twelve feet bgs. Two soil samples were collected from each of the borings, and were analyzed for volatile organic compounds.

Based on the results of four soil borings installed in the vicinity of the Former Dry Cleaners (Unit 2312), the subsurface conditions can be generally described as follows:

Based on the four completed borings, the soils encountered at the subject property beneath the asphalt pavement and concrete sidewalk consisted of a gravel base of four to eight inches thickness, underlain by apparent native soils consisting of silt with varying fractions of fine to coarse sand and fine gravel, generally grading coarser with depth. At depths ranging from 7.5 to 11.0 feet bgs, decomposed schist bedrock was encountered. Refusal to further penetration was encountered at depths ranging from 9.0 to 12.0 feet bgs.

Soil borings were attempted at three locations in the basement of Unit 2312. At each of the three locations, bedrock was encountered within three-inches (gravel base) beneath the concrete floor slab.

Consequently, no soil samples were collected. Soil vapor samples (SV-01 and SV-02) were collected at two of the drilled locations.

Based on the conditions encountered during this investigation, the soil-groundwater interface appears to occur at depths of approximately seven to ten feet below ground surface (bgs). Soil borings SB-03 and SB-04 were advanced to a depth of 12 feet bgs to facilitate in the collection of groundwater samples via a temporary monitoring well. A total of two grab groundwater samples were collected during this investigation.

Analytical results, as reported by Alpha Analytical, are provided in the analytical summary tables and the laboratory deliverable reports provided in Appendix E.

- Table 1A: Soil Analytical Results
- Table 1B: Groundwater Analytical Results
- Table 1C: Sub-Slab Soil Vapor Analytical Results
- Lab Deliverables (Report L1610441): Soil and Groundwater Analyses
- Lab Deliverables (Report L1610339): Sub-Slab Soil Vapor Analyses

The soil analytical results, summarized in Table 1A, confirm that concentrations of PCE were detected in soil samples ranging from non-detect to 380 milligrams per kilogram (mg/kg). The applicable NYSDEC soil criteria for the subject property are the Restricted-use Commercial Criteria. The criterion for PCE is 150 mg/kg, which was exceeded in sample SB-03 (0.5-1.0), collected from the soil sample core immediately beneath the surface asphalt and gravel base. Results for a second soil sample collected from the same boring, at 6.5 to 7.0 feet bgs, did not exceed the applicable criteria, providing vertical delineation. No other soil sample results exceeded their applicable criteria. A summary of detected compounds, i.e. with results exceeding the laboratory method detection limit (MDL), is provided in the following table:

LOCATION				2118-SB-01 (1.0-1.5)	2118-SB-01 (7.5-8.0)	2118-SB-02 (0.5-1.0)	2118-SB-02 (4.0-4.5)
SAMPLING DATE				4/7/2016	4/7/2016	4/7/2016	4/7/2016
LAB SAMPLE ID				L1610441-01	L1610441-02	L1610441-03	L1610441-04
Units: mg/kg	NY-CP51	NY-RESC	NY-RESGW	Results	Results	Results	Results
General Chemistry							
Solids, Total				84.9	91.4	92.9	89.4
Volatile Organics by 8260/5		35					
2-Butanone		500	0.12	0.16	0.0088	1.2	0.0087
Acetone		500	0.05	0.54	0.0011	1.2	0.0049
Tetrachloroethene		150	1.3	1.2	0.00088	13	0.072
Toluene	0.7	500	0.7	0.058	0.0018	0.19	0.001
Trichloroethene		200	0.47	0.054	0.00088	0.19	0.0017

LOCATION				2118-SB-03 (0.5-1.0)	2118-SB-03 (6.5-7.0)	2118-SB-04 (1.0-1.5)	2118-SB-04 (7.0-7.5)		
SAMPLING DATE				4/7/2016	4/7/2016	4/7/2016	4/7/2016		
LAB SAMPLE ID				L1610441-05	L1610441-06	L1610441-07	L1610441-08		
Units: mg/kg	NY-CP51	NY-RES C	NY-RESGW	Results	Results	Results	Results		
General Chemistry									
Solids, Total				85.9	91.2	88.8	90.3		
Volatile Organics by	y 8260/503	5							
2-Butanone		500	0.12	54	0.009	0.0078	0.0077		
Acetone		500	0.05	54	0.009	0.0078	0.0077		
Tetrachloroethene		150	1.3	380	0.034	0.00078	0.00077		
Toluene	0.7	500	0.7	8.2	0.0014	0.0013	0.00069		
Trichloroethene		200	0.47	5.4	0.001	0.00078	0.00077		
	= Exceeds	= Exceeds applicable criterion							
	= Non-det	ect result th	nat exceeds a	pplicable criterion du	e to sample dilution				
*NY-CP51: New Yor	k DEC CP-	51 Soil Cle	anup Levels	Criteria per NY CP-5	1 Soil Cleanup Level	s dated October 21, 2	2010.		
*NY-RESC: Comme	rcial Criter	ia, New Yo	rk Restricted	use current as of 5/2	007				
*NY-RESGW: Groun	dwater Cri	teria. New	York Restricte	ed use current as of 5	5/2007				

The groundwater analytical results, summarized in Table 1B, confirm that PCE was detected in groundwater sample TW-03 (7.6) at a concentration of 2,100 micrograms per liter (ug/L), and that trichloroethene (TCE) was detected at a concentration of 5.2 ug/L, exceeding the applicable NYSDEC criteria of 5 ug/L for each of these CVOCs. No analytes were detected in groundwater sample TW-04 (9.0) exceeding their applicable criteria. A summary of detected compounds, i.e. with results exceeding the laboratory MDL, is provided in the following table:

LOCATION		2118-TW-03 (7.6)	2118-TW-04 (9.0)		
SAMPLING DATE		4/7/2016	4/7/2016		
LAB SAMPLE ID		L1610441-09	L1610441-10		
Units: ug/L	NY-AWQS	Results	Results		
Volatile Organics by GC/MS					
Acetone	50	120	3.7		
Tetrachloroethene	5	2100	0.87		
Trichloroethene	5	5.2	0.5		
	= Exceeds appli	= Exceeds applicable criterion			
	= Non-detect res	riterion due to sample dilutior			

*NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

The soil-vapor analytical results, summarized in Table 1C, confirm that concentrations of PCE are present in vapors immediately beneath the concrete floor slab in the subject building's basement, detected ranging from 1,950 micrograms per cubic meter (ug/m³) to 5,210 ug/m³. The NYSDOH guidance evaluates concentrations detected in soil-vapor along with concentrations detected in indoor air, to determine the recommended action. No indoor air results are available for the subject property to evaluate according to the NYSDOH's applicable "matrix;" however, the recommended action for any soil vapor concentrations detected in a correlated indoor air sample. A summary of detected compounds, i.e. with results exceeding the laboratory MDL, is provided in the following table (acetone is a common lab-induced contaminant):

LOCATION		2118-SV-01 (0.5)	2118-SV-02 (0.5)			
SAMPLING DATE		4/7/2016	4/7/2016			
LAB SAMPLE ID		L1610339-01	L1610339-02			
Units: ug/m ³	NY-SSC	Results	Results			
Volatile Organics						
Acetone	5	7.91	28.7			
Tetrachloroethene	5	1950	5210			
Toluene	5	2.55	7.54			
	= Exceeds appl	= Exceeds applicable criterion				
	= Non-detect re	= Non-detect result that exceeds applicable criterion due to sample dilution				

*NY-SSC: New York DOH Matrix 1 Sub-slab Vapor Concentrations Criteria per Guidance for Evaluating Soil Vapor Intrusion dated October 2006. Matrix requires indoor air values for evaluation.

June 15 through June 17, 2016 Sampling Event:

Property Solutions completed a total of three soil borings and installed six monitoring wells to investigate the extent of groundwater impact identified in the grab groundwater sample collected from temporary well TW-03 on April 7, 2016 in the vicinity of the Former Dry Cleaners (Unit 2312). Soil borings were conducted at the three new well location that had not been previously sampled. The three soil borings were advanced to refusal depths which ranged from 11to 11.5 feet bgs. Two soil samples were collected from each of the borings, and were analyzed for CVOCs.

Based on the results of three soil borings installed in the vicinity of the Former Dry Cleaners (Unit 2312), the subsurface conditions can be generally described as consistent with the findings of the April 2016 investigation, with exception of location SB-08, where depth of fill extended to a depth of approximately eight feet bgs, suggesting the former presence of a structure at this location. PID screening and visual/olfactory observations identified soils apparently impacted with VOCs, though likely not associated with the CVOC-impacted soils at boring SB-03 completed in April 2016.

Two indoor air samples were collected in building unit 2312, the former dry cleaner location. Sample IA-01 was collected in the basement area of unit 2312 over a 24-hour period, and sample IA-02 was collected in the first floor area of unit 2312 over a 24-hour period.

The static groundwater level was measured at depths of approximately six to eight feet bgs at monitoring wells MW-1S, MW-3, MW-4, and MW-5. Groundwater levels at MW-1D and MW-5 were measured at depths of approximately 13-feet and 26-feet bgs, respectively; however, these depths measured prior to sampling may be due to slow recovery at these wells subsequent to the well development purging. A total of six groundwater samples were collected during this investigation, as the initial round of sampling of the new monitoring wells.

Analytical results, as reported by Alpha Analytical, are provided in the analytical summary tables and the laboratory deliverable reports provided in Appendix E.

- Table 2A: Soil Analytical Results
- Table 2B: Groundwater Analytical Results
- Table 2C: Sub-Slab Soil Vapor Analytical Results
- Lab Deliverables (Report L1618618): Soil Analyses
- Lab Deliverables (Report L1618805): Groundwater Analyses
- Lab Deliverables (Report L1618699): Indoor Air Analyses

The soil analytical results, summarized in Table 2A, confirm that a concentration of cis-1,2dichloroethene was detected in the shallow-depth soil sample at boring SB-08 [2118-SB8 (4.0-4.5)], at a concentration of 4.7 mg/kg. The applicable NYSDEC soil criteria for the subject property are the Restricted-use Commercial Criteria. The criterion for cis-1,2-dichloroethene is 500 mg/kg. However, the result does exceed the applicable criterion for potential impact to groundwater (NYSDEC Groundwater Criteria, Restricted Use), of 0.25 mg/kg. No other soil sample results exceeded their applicable criteria. A summary of detected compounds, i.e. with results exceeding the laboratory MDL, is provided in the following table:

LOCATION					2118-SB8 (4.0-4.5)	2118-SB8 (8.0-8.5)	2118-SB9 (4.0-4.5)
SAMPLING DATE					6/15/2016	6/15/2016	6/15/2016
LAB SAMPLE ID					L1618618-01	L1618618-02	L1618618-03
	NY-CP51	NY-RES C	NY-RESER	NY-RESGW	Results	Results	Results
General Chemistry							
Solids, Total					87.7	91.9	88.5
Volatile Organics by 8260/5035							
cis-1,2-Dichloroethene		500		0.25	4.7	0.0008	0.00086
Tetrachloroethene		150	2	1.3	1	0.0008	0.00086
trans-1,2-Dichloroethene		500		0.19	0.14	0.0012	0.0013
Trichloroethene		200	2	0.47	0.19	0.0008	0.00086
LOCATION					2118-S B9 (8.0-8.5)	2118-SB10 (4.5-5.0)	2118-SB10 (10.0-10.5)
SAMPLING DATE					6/15/2016	6/16/2016	6/16/2016
LAB SAMPLE ID					L1618618-04	L1618618-05	L1618618-06
LAB SAMPLE ID	NW ODEL	NW DEC C	NW DEGED	NW DEG GW			
	NY-CP51	NY-RESC	NY-RESER	NY-RESGW	Results	Results	Results
General Chemistry							
Solids, Total					90	88.6	88.3
Volatile Organics by 8260/5035							
cis-1,2-Dichloroethene		500		0.25	0.00084	0.00081	0.0062
Tetrachloroethene		150	2	1.3	0.00084	0.00081	0.001
trans-1,2-Dichloroethene		500		0.19	0.0013	0.0012	0.0012
Trichloroethene		200	2	0.47	0.00084	0.00081	0.0018
		s applicable					
*NY-CP51: New York DEC CP-51	Soil Clean	up Levels C	riteria per N	Y CP-51 Soil	Cleanup Levels da	ted October 21, 201	0.
*NY-RESC: Commercial Criteria,	New York R	estricted u	se current a	s of 5/2007			
*NY-RESGW: Groundwater Criteri	a New Yor	k Restricted	luse curren	t as of 5/2007	,		

*NY-RESGW: Groundwater Criteria, New York Restricted use current as of 5/2007

The groundwater analytical results, summarized in Table 2B, confirm that PCE was detected in the groundwater sample collected at MW-1S [(2118-MW-1S(7.4) at a concentration of 180 micrograms per liter (ug/L), and the groundwater sample collected at MW-1D [(2118-MW-1D(26.5) at a concentration of 8.3 ug/L. In the downgradient well MW-5, PCE was detected at a concentration of 24 ug/L, trichloroethene (TCE) was detected at a concentration of 30 ug/L, and cis-1,2-dichloroethene was detected at a concentration of 59 ug/L. These results exceed the applicable NYSDEC criteria of 5 ug/L for each of these chlorinated compounds. No analytes were detected in

groundwater sample collected at MW-2, MW-3, and MW-4 exceeding their applicable criteria. A summary of detected compounds, i.e. with results exceeding the laboratory MDL, is provided in the following table:

	2118-MW1S (7.4)	2118-MW1D (26.5)	2118-MW2 (13.2)
	6/17/2016	6/17/2016	6/17/2016
	L1618805-01	L1618805-02	L1618805-03
NY-AWQS	Results	Results	Results
5	2.5	2.5	2.5
5	180	8.3	0.79
5	1.9	0.18	0.5
	2118-MW3 (6.1)	2118-MW4 (6.8)	2118-MW5 (8.4)
	6/17/2016	6/17/2016	6/17/2016
	L1618805-04	L1618805-05	L1618805-06
NY-AWQS	Results	Results	Results
5	2.5	3.4	59
5	0.5	0.37	34
5	0.5	0.5	30
= Exceeds a			
	5 5 5 NY-AWQS 5 5 5	6/17/2016 L1618805-01 NY-AWQS Results 5 2.5 5 180 5 1.9 2118-MW3 (6.1) 6/17/2016 L1618805-04 NY-AWQS NY-AWQS Results 5 2.5 5 0.5 5 0.5 5 0.5	6/17/2016 6/17/2016 L1618805-01 L1618805-02 NY-AWQS Results Results 5 2.5 2.5 5 1.80 8.3 5 1.9 0.18 6/17/2016 6/17/2016 6/17/2016 6/17/2016 6/17/2016 1.1618805-05 NY-AWQS Results Results 6/17/2016 5/17/2016 0.17/2016 5 2.5 3.4 5 5 0.5 0.37 5

The indoor air analytical results, summarized in Table 2C, confirm that concentrations of PCE were detected in both samples, IA-01 (basement) and IA-02 (first floor), at 10.2 ug/m³ and 7.32 ug/m³ respectively. The NYSDOH guidance document (NYSDOH Guidance for Evaluating Soil Vapor Intrusion, October 2006) for indoor air provides Air Guideline Values in Table 3.1 of the guidance, which are currently set at 30 ug/m³ for PCE and 2 ug/m³ for TCE. The guidance does recommend that "reasonable and practical actions should be taken to reduce exposures when indoor air levels are above background, even when they are below the guideline." However, background samples were not collected during the sampling event for comparison to the indoor air sample results. The NYSDOH Guidance also recommends taking "reasonable and practical actions to identify source(s) and reduce exposures" where TCE exceeds 0.25 ug/m³ or PCE exceeds 3 ug/m³.

A summary of detected compounds, i.e. with results exceeding the laboratory MDL, is provided in the following table:

LOCATION		2118-IA-01	2118-IA-02
SAMPLING DATE		6/17/2016	6/17/2016
LAB SAMPLE ID		L1618699-01	L1618699-02
Units: ug/m ³	NY-IAC	Results	Results
Volatile Organics in Air by SIM			
1,2-Dichloroethane		0.206	0.275
cis-1,2-Dichloroethene		0.091	0.079
Tetrachloroethene	30	10.2	7.32
Trichloroethene	2	0.21	0.15
	= Exceeds appli	cable criterion	
*NY-IAC: New York DOH Matrix 1 Vapor Intrusion dated October 2		ns Criteria per Guidano	ce for Evaluating Soil

5.0 CONCLUSIONS

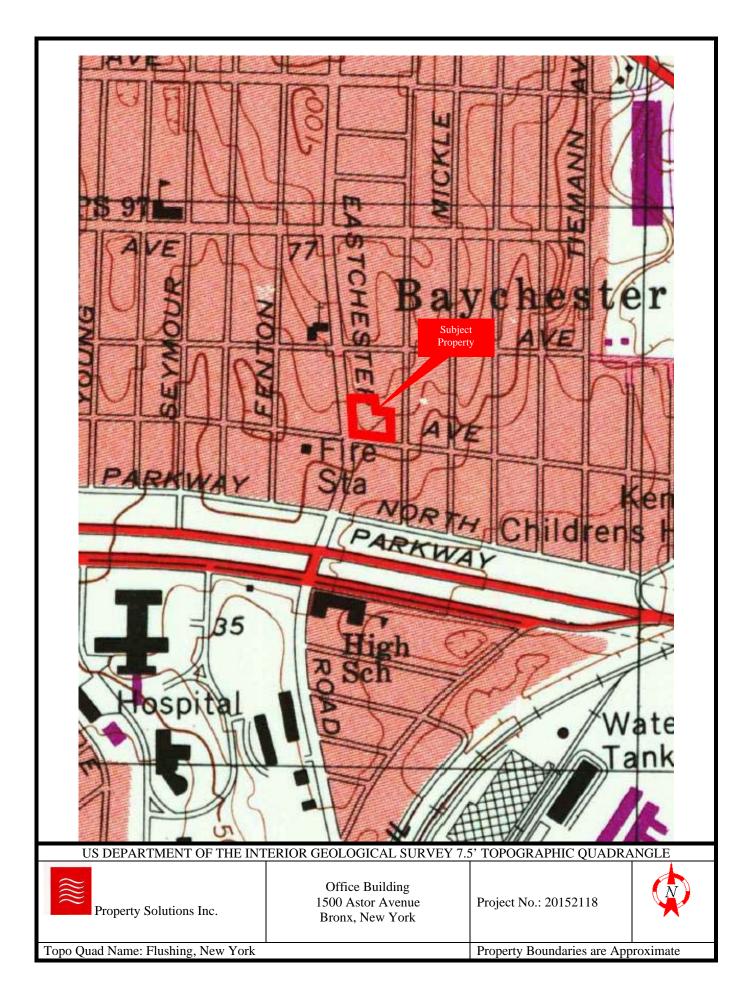
The Limited Phase II SI activities completed in April 2016 was performed to determine the potential presence/absence of subsurface contamination at the subject property as it relates to the environmental concerns identified below:

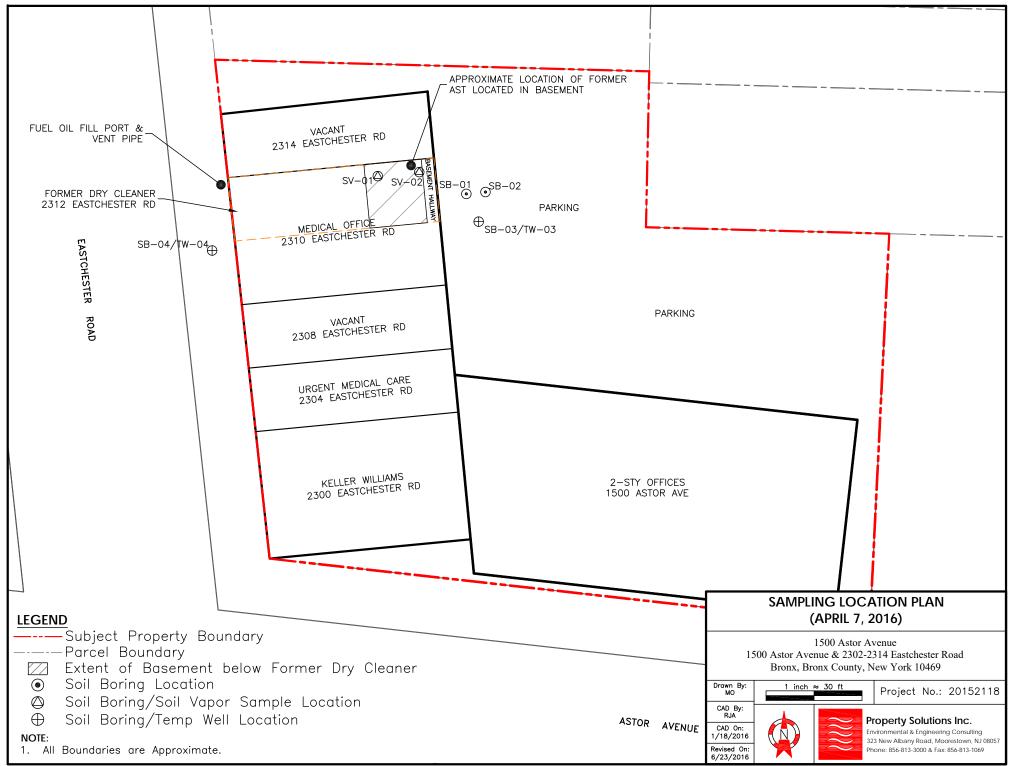
Based on a review of the analytical laboratory data for the April 2016 sampling event, concentrations of PCE, a constituent associated with dry cleaning operations, was found in groundwater sample 2118-TW-03(7.6), in soil samples 2118-SB-02(0.5-1.0) and 2118-SB-03(0.5-1.0) at concentrations exceeding their applicable New York State Department of Environmental Conservation (NYSDEC) criteria. Trichloroethylene (TCE) was also detected in groundwater sample 2118-TW-03(7.6) at a concentration slightly exceeding the applicable NYSDEC criterion for TCE. Concentrations of PCE were detected in soil vapor samples 2118-SV-01(0.5) and 2118-SV-02(0.5) at a concentration exceeding the concentrations exceeding NYSDOH guidance values for further evaluation

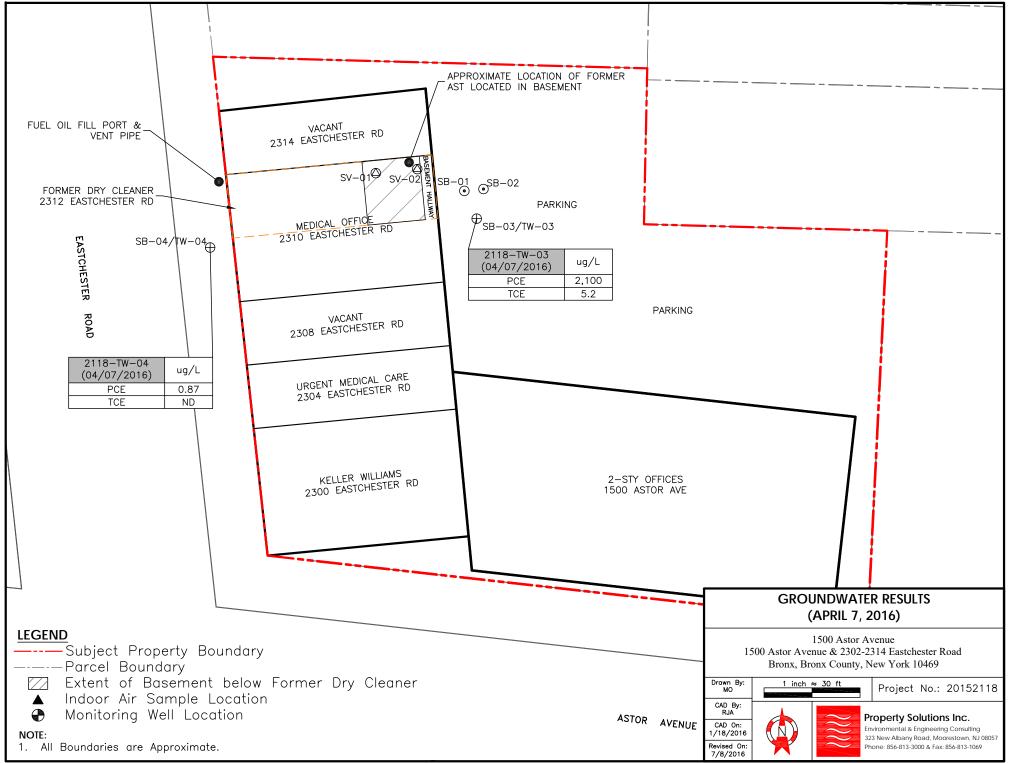
Based on the April 2016 results, Property Solutions recommended additional investigation to further evaluate the soil and groundwater conditions, and potential of vapor encroachment impact to indoor air at the subject property. The Limited Phase II SI activities completed in June 2016, included additional soil and groundwater investigation to delineate the lateral extent of the impact to soil and groundwater, and collection of indoor air samples in the basement area and the first floor unit of the former dry cleaner operation.

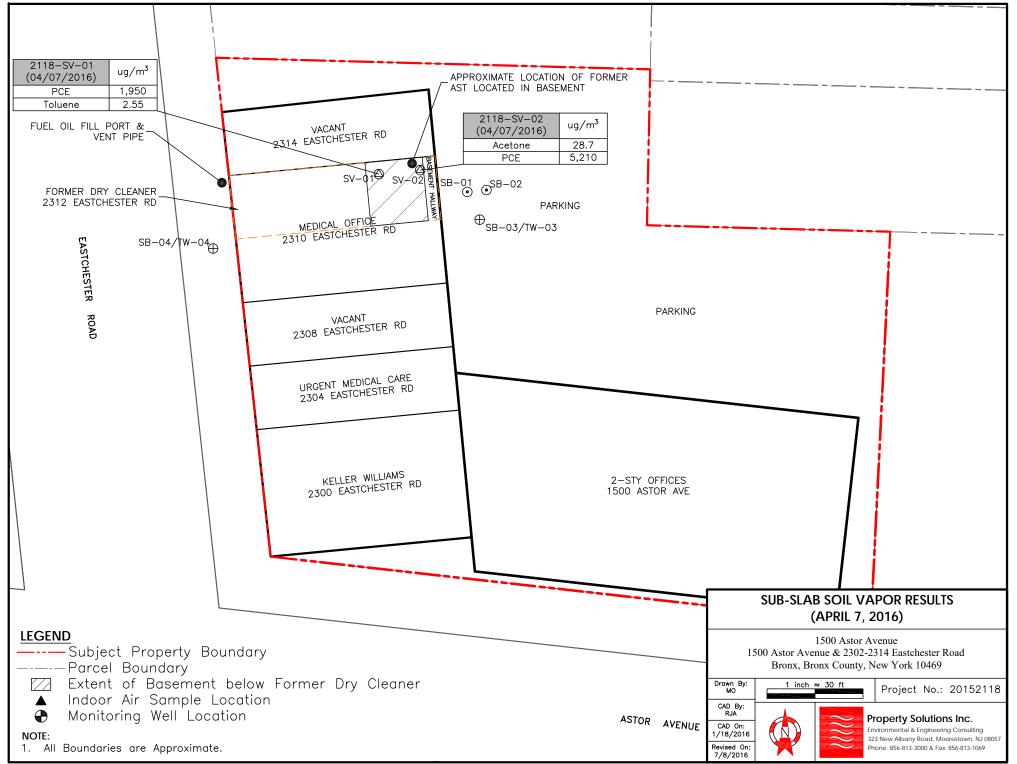
Based on a review of the analytical laboratory data reported for the June 2016 sampling event, concentrations of chlorinated VOCs including PCE, TCE, and cis-1,2-dichloroethene, constituents associated with dry cleaning operations, were found in groundwater samples 2118-MW1S(7.4), 2118-MW1D(26.5), and/or 2118-MW5(8.4) at concentrations exceeding their applicable NYSDEC criteria. The soil analytical results indicated a concentration of cis-1,2-dichloroethene was found in soil sample 2118-SB-08(4.0-4.5) at a concentration exceeding the applicable NYSDEC criteria. The indoor air analytical results indicated concentrations of PCE and 1,2-dichloroethane was found in

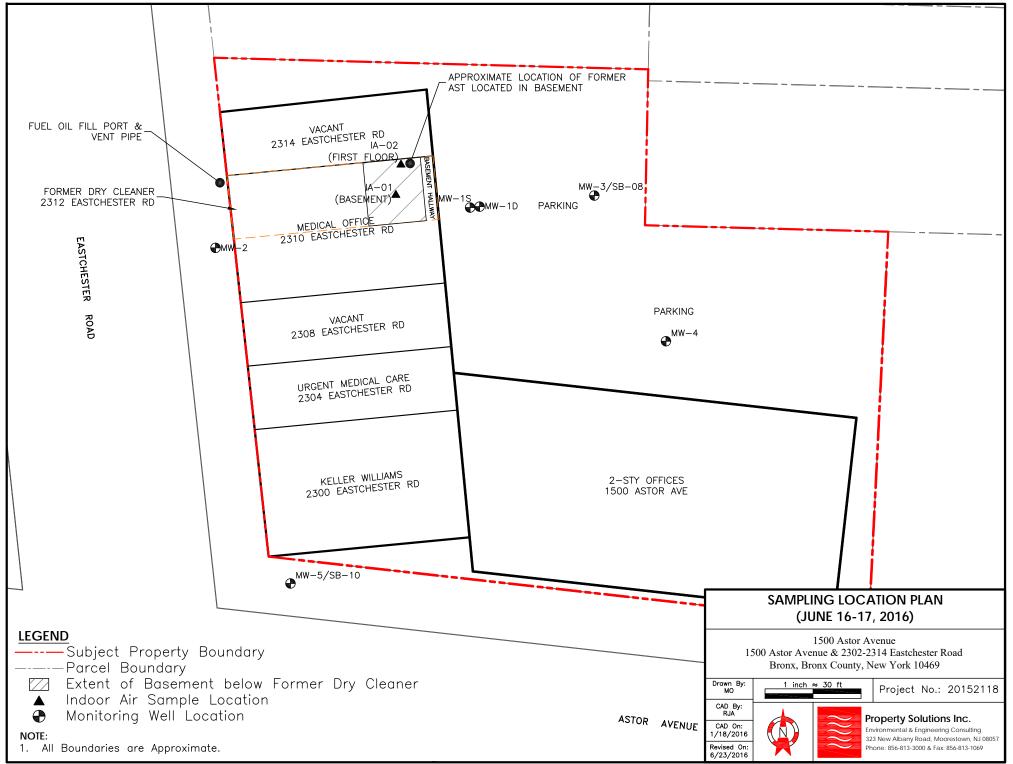
samples 2118-IA-01 and/or 2118-IA-02 at a concentration exceeding the concentrations exceeding NYSDOH guidance values for further evaluation.

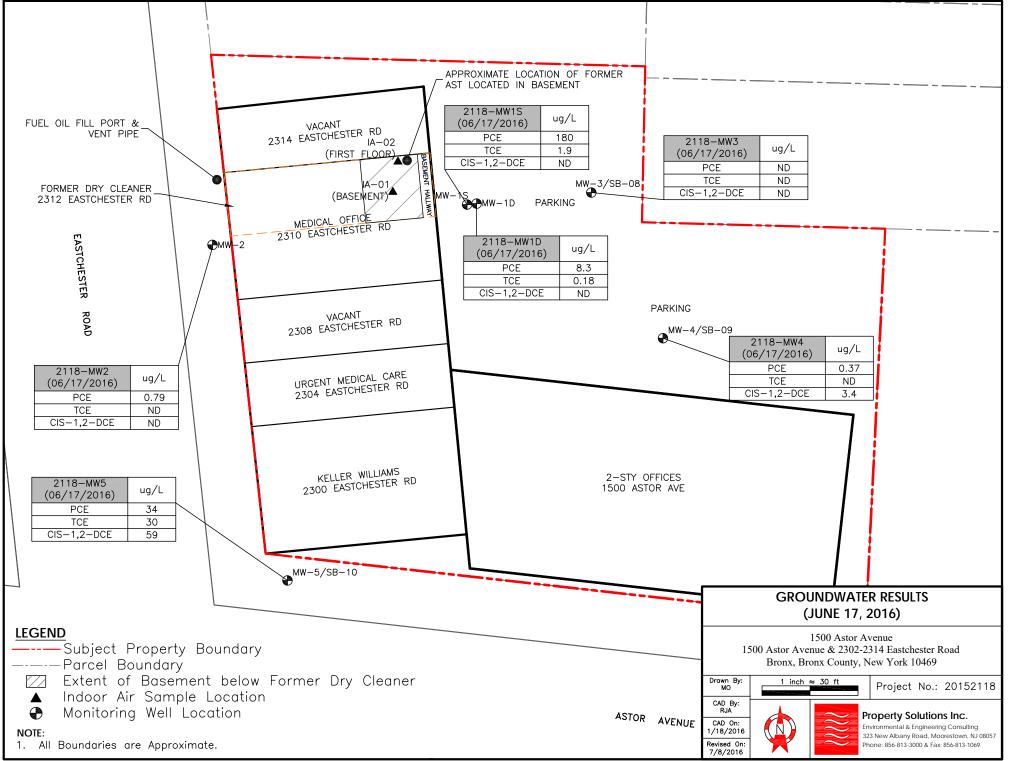

6.0 **RECOMMENDATIONS**

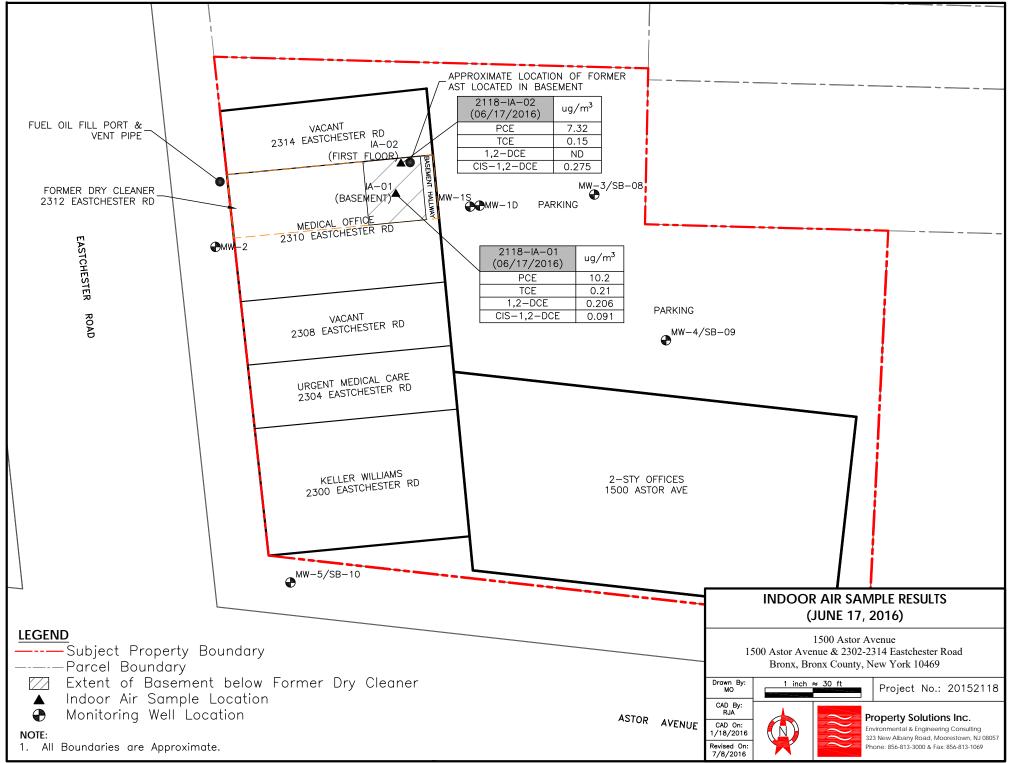

At this time, an additional groundwater sampling event has been recommended at the subject property, for collection of groundwater samples at monitoring wells MW-1D and MW-5. Following receipt and review of the data generated from the additional sampling event, a summary of the results will be provided with further recommendations, as appropriate.

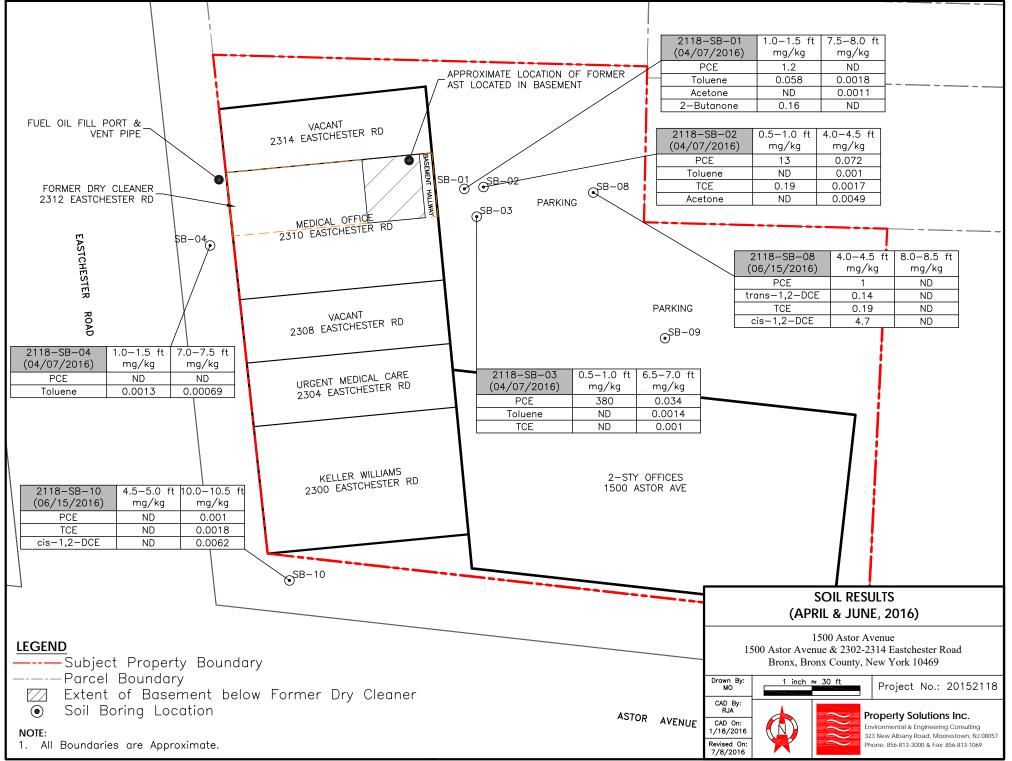

7.0 **REFERENCES**


- 1. United States Geological Survey's 7.5-minute topographic quadrangle map of <u>Flushing, New</u> <u>York</u>.
- 2. United States Department of Agriculture, Soil Conservation Services' <u>Soil Survey of Bronx</u> <u>County, New York</u>.
- 3. <u>Geologic Map of State/Area</u> produced by the New York Geological Survey.
- 4. New York State Department of Environmental Conservation regulations at NYCRR Part 375-6.8; <u>Remedial Program Soil Cleanup Objectives</u>
- 5. NYSDEC regulations at NYCRR Part 703.5, <u>Water Quality Standards for Taste, Color- and</u> <u>Odor-producing, Toxic and Other Deleterious Substances.</u>
- 6. NY State Department of Health (NYSDOH) <u>Guidance for Evaluating Soil Vapor Intrusion in</u> <u>the State of New York;</u> dated October 2006.


APPENDIX A MAPS AND PLANS







File: 20152118 property diagram.dwg

File: 20152118 property diagram.dwg

APPENDIX B PROPERTY PHOTOGRAPHS

PHOTO 1.

April 7, 2016: Area of planned borings on rear (east) side of Unit 2312 (former dry cleaners at 2312 Eastchester Road),

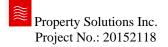

April 7, 2016: Area of planned borings on front (west) side of Unit 2312.

PHOTO 3.

April 7, 2016: Soil cores from boring SB-01.

PHOTO 4.

April 7, 2016: Soil cores from boring SB-02.

PHOTO 5.

April 7, 2016: Soil cores from boring SB-03.

PHOTO 6.

April 7, 2016: Start of boring SB-04

PHOTO 7.

April 7, 2016: Location of boring SB-04 with temporary well TW-04 installed.

PHOTO 8.

April 7, 2016: Location of soil-gas boring SV-01.

PHOTO 9.

April 7, 2016: Helium tracer test being performed at soil-gas boring SV-02

PHOTO 10.

May 15, 2016: Planned location of monitoring wells MW-1S and MW-1D.

PHOTO 11.

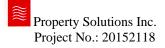
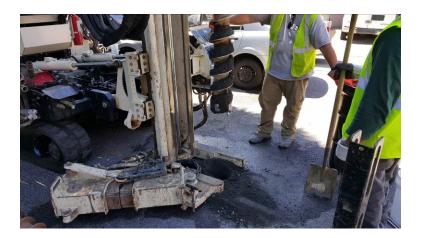

May 15, 2016: Planned location of monitoring well MW-2.

PHOTO 12.

May 15, 2016: Planned location of monitoring well MW-4.


PHOTO 13.

May 15, 2016: Planned location of monitoring well MW-5.

PHOTO 14.

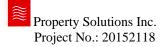

May 15, 2016: Well bore for installation of monitoring well MW-3.

PHOTO 15.

May 15, 2016: Well bore for installation of monitoring well MW-1S.

PHOTO 16.

May 16, 2016: Well bore for installation of monitoring well MW-1D (air hammer in bedrock).

PHOTO 17.

May 16, 2016: Installation of monitoring well MW-5.

PHOTO 18.

May 17, 2016: Completed monitoring wells MW-1S and MW-1D.

Property Solutions Inc. Project No.: 20152118 PHOTO 19.

May 17, 2016: Completed monitoring well MW-2.

PHOTO 20.

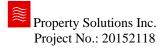

May 17, 2016: Completed monitoring well MW-3.

PHOTO 21.

May 17, 2016: Completed monitoring well MW-4.

РНОТО 22.

May 17, 2016: Completed monitoring well MW-5.

РНОТО 23.

Soil cores: SB-08 at MW-3 location.

PHOTO 24.

Soil cores: SB-09 at MW-4 location.

PHOTO 25.

Soil cores: SB-10 at MW-5 location.

РНОТО 26.

Drummed non-hazardous drilling waste: Six drums of soil cuttings, one drum of well development water.

PHOTO 27.

View of labeled drums.

APPENDIX C SOIL BORING LOGS

2	Pro	per	ty Solutions inc.		FIEL	DB	OREHOLE	LOG
\approx	Environ 323 Nev	nment w Alba	al & Engineering Consulting ny Road, Moorestown, NJ 08057 813-3000 & Fax: 856-813-1068		BORING TOTAL		: SB-01 TH: 9 ft	
	PROJE	CT IN	FORMATION		DRILL	ING I	NFORMATION	
SITE LOO BORING	Γ NAME: 1 CATION: 1	500 Astor N: Parki	3.201 or Avenue Property Ave & 2302-2314 Eastchester Rd, Bronx, NY ng lot, east of building unit 2312 COMPLETED: 4/7/2016	DRII RIG DRII SAM FIEL	LLING CO.: Z LLER: Charles G TYPE:Geoprobe LLING METHO PLING METHO D PERSONNEI IMER WT./DRO	reen 6620 D D: Dire D:Mac .: B. Tu	PT ct-push ro-core urner	
Z	∠ Water	level dui	ring drilling 🛛 💌 Water lev	/el in c	ompleted well			
DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION		SAMPLE No.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTION
0		GP	Asphalt pavement			0.0		
1-	$\Xi \equiv \Xi \equiv$		Stone base	21	18-SB-01 (1.0-1.5)	0.0		
2-			Silt, varying fractions f-m Sand, grading coarser with depth			0.4		
						0.2		
	<u></u>					0.0		
3-	<u> </u>							
3						0.0		
3- - 4-		ML				0.0		

0.0

0.0

0.0

0.0

2118-SB-01 (7.5-8.0)

Decomposed Schist Bedrock

б

7

8

9

Environmental & Engineering Consulting 233 New Albany Road, Moorestown, NV 08057 PROJECT INFORMATION ROJECT NIFORMATION ROJECT NAME: 1500 Astor Avenue Property TE LOCATION: 1500 Astor Avenue Property DRILLING CO: Zebra Technical Services DRILLING CO: Zebra Technical Services DRILLING CO: Abore Avenue Property TE LOCATION: 1500 Astor Avenue Property DRILLING CO: Abore Avenue Property TE LOCATION: 1500 Astor Avenue Property TE LOCATION: 1500 Astor Avenue Property TE LOCATION: Standarve & 2302-2314 Eastelscaft RJ, BION, NV DRILLING METHOD/Mater-corre FIELD PERSONNEL: B. Tumer HAMMER WT_JDOP:N/A TE Water level during drilling TE Water level during	\approx	Pr	opei	ty Solutions inc.		FIELI	DB	OREHOLE	LOG
Phone: 856-813-3000 & Fax: 856-813-1068 IOTAL DEPTH: 5.5 It PROJECT INFORMATION DRILLING INFORMATION ROJECT NO:: 20152118.201 LIENT: KMCL ROJECT NAME: 1500 Astor Avenue Property TE LOCATION: 1500 Astor Aveaue Property DRILLING CO:: Zebra Technical Services DRILLING METHOD: Direct-push SAMPLING METHOD: SAMPLING METHOD: ATE STARTED: 4/7/2016 COMPLETED: 4/7/2016 SOIL SOIL DESCRIPTION SAMPLE No. PID ppm CONSTRUCTION 0.0 1 Stone base 3 Stone base Silt, varying fractions f-m Sand 1.5 0.0 0.0 1.0 1.5 1.1 0.0 2 Stone base 3 ML 4 Stone base 3 0.0 1.5 0.0 0.0 0.0 1.5 0.1 0.6 0.0 0.7 0.0	\approx	Envi	ronmer	tal & Engineering Consulting		BORING	G NO.	: SB-02	
PROJECT INFORMATION DRILLING INFORMATION ROJECT NO.: 20152118.201 DRILLING CO.: Zebra Technical Services LIENT: KMCL BRILLER: Charles Green ROJECT NAME: 1500 Astor Avenue Property BRILLER: Charles Green TE LOCATION: 1500 Astor Avenue Property BRILLING METHOD: Direct-push SAMPLING METHOD: 20152118.201 BRILLING METHOD: Direct-push SAMPLING METHOD: 20162400 AMPLENO: BRILLING METHOD: ATE STARTED: 4/7/2016 COMPLETED: 4/7/2016 SAMPLENO: PID PRESONNEL: B. SOIL SOIL DESCRIPTION SAMPLE No: PID prm WELL ON STRUCTION WELL SOIL Sone base Sit, varying fractions f-m Sand 1.0 1.0 1.0 1.0 ML ML ML 2118-SB-42 (4.0-4.5) 0.0 0.0 0.0 0.0		525 I Phe	new Alt	-813-3000 & Fax: 856-813-1068	/	TOTAL	DEPT	H: 5.5 ft	
ROJECT NO:: 20152118.201 LIENT: KMCL ROJECT NAME: 1500 Astor Avenue Property TE LOCATION: 1500 Astor Ave & 2302-2314 Eastchester Rd, Bronx, NY DRING LOCATION: Parking lot, east of building unit 2312 ATE STARTED: 4/7/2016 COMPLETED: 4/7/2016 Z Water level during drilling ✓ Water level in completed well EPTH SOIL SOIL DESCRIPTION SAMPLE No. PID ppm CONSTRUCTION Description 0 GP Asphalt pavement 1.0 1.5 0.0 0						DRILL	ING I	NFORMATION	
EPTH SOIL SYMBOLS USCS SOIL DESCRIPTION SAMPLE No. PID ppm WELL CONSTRUCTION WELL DESCRIPTION 0 GP Asphalt pavement 2118-SB-02 (0.5-1.0) 0.0 1.0 1 Stone base 1.0 1.5 0.1 0.0 3 ML ML 0.0 0.0 0.0 4 ML 2118-SB-02 (4.04.5) 0.0 0.0	CLIENT PROJEC SITE LO BORINC	CT NO.: : CT NAME OCATION G LOCAT	201521 KMCL : 1500 Asto : 1500 Asto ION: Par	18.201 stor Avenue Property or Ave & 2302-2314 Eastchester Rd, Bronx, NY king lot, east of building unit 2312	DRII RIG DRII SAM FIEL	LLING CO.: Z LLER: Charles G TYPE:Geoprobe LLING METHO PLING METHO D PERSONNEL	ebra Te reen 6620 D D: Dire D:Mac : B. Tu	chnical Services T ct-push ro-core umer	
EPTH SYMBOLS USCS SOIL DESCRIPTION SAMPLE NO. ppm CONSTRUCTION DESCRIPTION 0 GP Asphalt pavement 2118-SB-02 (0.5-1.0) 0.0 1.0 1.0 1 Stone base Silt, varying fractions f-m Sand 1.5 0.1 0.0 3 ML ML 2118-SB-02 (4.0-4.5) 0.0 0.0 4 1 0.0 0.0 0.0 0.0		∞ Wa	ter level d	uring drilling 🛛 💌 Water le	evel in c	ompleted well			
GP Asphalt pavement 2118-SB-02 (0.5-1.0) 0.0 1 - Stone base 1.0 1.0 2 - Silt, varying fractions f-m Sand 1.5 0.5 3 - ML ML 0.0 0.0 4 - Image: Constraint of the second seco	DEPTH	SOIL SYMBO		S SOIL DESCRIPTION		SAMPLE No.		WELL CONSTRUCTION	WELL DESCRIPTIC
2	-		GP		21	18-SB-02 (0.5-1.0)			
4	-			Silt, varying fractions f-m Sand			0.5 0.1		
5 0.0	-				21	18-SB-02 (4.0-4.5)	0.0		
	5 -			Refusal on concrete			0.0		

		813-3000 & Fax: 856-813-1068 FORMATION				H: 12 ft NFORMATION	
PROJECT NO.: 2 CLIENT: H PROJECT NAME: 1 SITE LOCATION: 1 BORING LOCATIO DATE STARTED: 4/	20152113 KMCL 1500 Ast 1500 Astor DN: Parki /7/2016	8.201 or Avenue Property Ave & 2302-2314 Eastchester Rd, Bronx, NY ng lot, east of building unit 2312 COMPLETED: 6/15/2016	DRII RIG DRII SAM FIEL HAN	LLING CO.: Z LLER: Charles G TYPE:Geoprobe LLING METHO PLING METHO D PERSONNEL IMER WT./DRO	ebra Te reen / E 6620 D D: Dire D:Mac : B. Tu	chnical Services van Moraitia T / Geoprobe 7822 D ct-push / Hollow Sten ro-core umer	
	LICCO	ring drilling Water le SOIL DESCRIPTION		ompleted well SAMPLE No.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTIO
0 1 2 - 3 - - - - - - - - - - - - -	GP	Asphalt pavement Stone base Silt, varying fractions f-m Sand, grading coarser with depth		118-SB-03 (0.5-1.0) 118-SB-03 (6.5-7.0)	0 91 39 1.2 1.0 0.2 0.1 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2" dia. PVC riser 2" dia. PVC screen

Environ 323 Nev Phone	nment w Alba e: 856-	ty Solutions INC. al & Engineering Consulting any Road, Moorestown, NJ 08057 813-3000 & Fax: 856-813-1068	BORIN TOTAL	G NO. DEPT	OREHOLE :: SB-03 / N гн: 29.5 ft	IW-1D
PROJECT NO.: 2 CLIENT: K PROJECT NAME: 1 SITE LOCATION: 1	0152113 IMCL 500 Ast 500 Astor N: Parki			Zebra Te Green / E e 6620 E DD: Direc OD:Mac L: B. T	DT / 7822 DT ct-push, hollow-stem auger pro-core urner	
	level du	ring drilling Water lev SOIL DESCRIPTION	vel in completed well SAMPLE No.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTION
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ \end{array} $	ML	Asphalt pavement Stone base Silt, varying fractions f-m Sand, grading coarser with depth Decomposed Schist Bedrock	2118-SB-03 (0.5-1.0) 2118-SB-03 (6.5-7.0)	0.0 91 39 1.2 0.2 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		2" dia. PVC riser

\approx			ty Solutions INC.	-				
	Enviroi 323 Ne	nment w Alba	al & Engineering Consulting any Road, Moorestown, NJ 08057				: SB-04 / M	W-2
	Phone	e: 856-	813-3000 & Fax: 856-813-1068		TOTAL	DEPT	TH: 17 ft	
	PROJE	CT IN	FORMATION		DRILL	ING I	NFORMATION	
ROJEO		015211	8.201	DRII	LING CO.: Z	ebra Te	chnical Services	
LIENT	•	MCL			LLER: Charles G			
			or Avenue Property Ave & 2302-2314 Eastchester Rd, Bronx, NY		TYPE:Geoprobe			
			walk, west of building unit 2312		PLING METHO		ect-push / Hollow sten ro-core	i augei
					D PERSONNEL			
ATE S	TARTED: 4/	7/2016	COMPLETED: 6/17/2016	HAM	IMER WT./DRC	P:N/A		
	∞ Water	level du	ring drilling 🛛 💌 Water le	vel in c	ompleted well			
PTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION		SAMPLE No.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTIO
0-		GP	Asphalt pavement			0.0		
1-			Stone base	21	18-SB-04 (1.0-1.5)	0.0		
-			Silt, varying fractions f-m Sand, grading coarser with depth			0.0		
2-						0.0		2" dia. PVC riser
3 –						0.0		
-						0.0		
4 -						0.0		
5-						0.0		
5-						0.0		
6 –		ML				0.0		
-	$\pm \pm \pm \pm$					0.0		
7-	<u>===</u>			21	18-SB-04 (7.0-7.5)	0.0		
8-						0.0		
						0.0		
9-						0.0		
-	<u></u>					0.0		
10 -						0.0		2" dia. PVC screen
11 -						0.0		SCLEEN
-		SM	Decomposed Schist Bedrock			0.0		
12 -								
13 -								
- 14 -								
- 15 -								
- 16 –								
17 -								
	-		usal at 12 feet bgs; auger refusal at 17 feet b					Page 1 of 1

PID ppm C	WELL CONSTRUCTION	
-		WELL DESCRIPTIC
0.0 0.0 0.0 0.4 2.0 1.5 2.4 0.8 - - 1.2 0.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0		2" dia. PVC riser 2" dia. PVC screen
	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0

PROJECT NO.: 201 CLIENT: KM PROJECT NAME: 150 SITE LOCATION: ¹⁵⁰	152118 ICL 00 Asto 0 Astor : Parkin		DRII RIG ' DRII SAM	LLING CO.: Z LER: Evan Mora TYPE:Geoprobe	ebra Te aitia 7822 D D: Dire D: Mac	T ct-push / Hollow sten ro-core	n auger
DATE STARTED: 6/15		COMPLETED: 6/15/2016	HAM	IMER WT./DRO			
DEPTH SOIL SYMBOLS U	JSCS	SOIL DESCRIPTION		SAMPLE No.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTIO
 7	SM	Stone base F-m Sand, some to and silt Decomposed Schist Bedrock		18-SB-09 (4.0-4.5) 18-SB-09 (8.0-8.5)	- - - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		2" dia. PVC riser 2" dia. PVC screen

PROJECT INFORMATION DRILLING INFORMATION PROJECT NO: 20152118 CLIENT: KMCL PROJECT NAME: 1500 Astor Avenue Property DRILLING CO: Zebra Technical Services STIE LOCATION: 1500 Astor Avenue Property RIG TYPE:Georphore 7822 DT STIE LOCATION: Sidewalk, at corner of Astor Avenue and Eastchester Road BRILLING METHOD: Direct-push / Hollow stem auger DATE STARTED: 6/16/2016 COMPLETED: 6/16/2016 Vater level during drilling ✓ Water level in completed well DEPTH SOIL SOIL DESCRIPTION SAMPLE No. PID prm CONSTRUCTION DESCRI 0 Asphalt pavement -	\approx	Enviror 323 Nev	nment w Alba	ty Solutions INC. al & Engineering Consulting ny Road, Moorestown, NJ 08057 813-3000 & Fax: 856-813-1068		BORIN	G NO.	OREHOLE : SB-10 / M TH: 11.5 ft	
PROJECT NO:: 20152118 CLIENT: Maintain Street KMCL PROJECT NAME: 1500 Astor Avenue Property SITE LOCATION: 1500 Astor Avenue Property SITE LOCATION: Street-push / Hollow stem auger SAMPLING METHOD: SORING LOCATION: Side and a site of the street o						DRILL	ING I	NFORMATION	
DEPTH SOIL SYMBOLS USCS SOIL DESCRIPTION SAMPLE No. PID ppm WELL CONSTRUCTION WELL DESCRIPTION 0 Asphalt pavement - - 1 GP Fill soils, silty sand - 2 Fill soils, silty sand - - 3 - 0.0 0.0 4 - - 0.0 5 - - 0.0 6 - - - 7 - SM 8 - - 8 - -	CLIENT PROJEC SITE LC BORINC	CT NO.: 2 ': K CT NAME: 1 OCATION: 1' G LOCATIO TARTED: 6/	0152118 MCL 500 Ast 500 Astor N: Sidev Eastc 16/2016	3 or Avenue Property Ave & 2302-2314 Eastchester Rd, Bronx, NY valk, at corner of Astor Avenue and hester Road COMPLETED: 6/16/2016	DRII RIG DRII SAM FIEL HAM	LING CO.: Z LER: Evan Mor TYPE:Geoprobe LING METHO PLING METHO D PERSONNEI MER WT./DRO	Zebra Te raitia 7822 D D: Dire DD:Mac L: B. Tr	echnical Services DT ect-push / Hollow ster ro-core urner	
DET TIL SYMBOLS DESCRIPTION SAMPLE No. ppm CONSTRUCTION DESCRIPTION 0 Asphalt pavement - - - - - - 1 Asphalt pavement - - - - - - 2 TTTTTTTT Fill soils, silty sand - - - - - 3 TTTTTTTT For Sand and silt 0.0 0.0 0.0 0.0 - 4 TTTTTTT SM SM 2118-SB-10(45-5.0) 0.0 0.0 2* dia. 7 TTTTTTT SM SM - - - - 8 TTTTTTT SM SM - - - 8 TTTTTTT SM - - - -			evel du	ing drilling 🛛 💌 Water le	vel in co	ompleted well			1
Asphalt pavement - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 8 - - - <	DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION		SAMPLE No.		WELL CONSTRUCTION	WELL DESCRIPTIO
10	1- 2- 3- 4- 5- 6- 7- 8- 9- 10-			Fill soils, silty sand			0.0 0.0 0.0 0.0 - - - - - - - - - - - -		2" dia. PVC
Decomposed Schist Bedrock	±± -]	52626262	SM	Decomposed Schist Bedrock			0.0		

APPENDIX D ANALYTICAL DATA

										SOIL ANAL	ABLE 1A YTICAL RES PRIL 2016	ULTS										
LOCATION							2118-SB-	01 (1.0-1.5)	2118-SB-	01 (7.5-8.0)		02 (0.5-1.0)	2118-SB-0	2 (4.0-4.5)	2118-SB-0	03 (0.5-1.0)	2118-SB-0	3 (6.5-7.0)	2118-SB-0	4 (1.0-1.5)	2118-SB-0	4 (7.0-7.5)
SAMPLING DATE								/2016		2016		2016	4/7/2			2016	4/7/2			2016	4/7/2	
LAB SAMPLE ID	Cashlum	NW CDF1	NW DECC	NW DECEI	NY-RESGW	1.1.14		0441-01	L1610 Results	0441-02		441-03	L1610		L1610		L16104 Results		L1610		L1610	
General Chemistry	Casivuili	NI-CF51	NI-RESU	NI-KESEI	NI-RESGW	Units	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Solids, Total	NONE					%	84.9		91.4		92.9		89.4		85.9		91.2		88.8		90.3	
Volatile Organics by 8260/5035																						
Methylene chloride	75-09-2		500	12	0.05	mg/kg	0.54	U	0.0088	U	1.2	U	0.0087	U	54	U	0.009	U	0.0078	U	0.0077	U
1,1-Dichloroethane Chloroform	75-34-3 67-66-3		240 350	12	0.27	mg/kg mg/kg	0.08	U U	0.0013	U U	0.19	U U	0.0013 0.0013	U U	8.2 8.2	U	0.0013 0.0013	U U	0.0012 0.0012	U U	0.0012 0.0012	UU
Carbon tetrachloride	56-23-5		22	12	0.76	mg/kg	0.054	U	0.00088	U	0.12	U	0.00087	U	5.4	U	0.0009	U	0.00078	U	0.00077	U
1,2-Dichloropropane	78-87-5			700		mg/kg	0.19	U	0.0031	U	0.44	U	0.003	U	19	U	0.0031	U	0.0027	U	0.0027	U
Dibromochloromethane	124-48-1			10		mg/kg	0.054	U	0.00088	U	0.12	U	0.00087	U	5.4	U	0.0009	U	0.00078	U	0.00077	U
1,1,2-Trichloroethane Tetrachloroethene	79-00-5 127-18-4		150	2	1.3	mg/kg mg/kg	0.08	U	0.0013	U U	0.19	U	0.0013	U	8.2 380	U	0.0013	U	0.0012	U U	0.0012	UU
Chlorobenzene	108-90-7		500	40	1.1	mg/kg	0.054	U	0.00088	U	0.12	U	0.00087	U	5.4	U	0.0009	U	0.00078	U	0.00077	U
Trichlorofluoromethane	75-69-4					mg/kg	0.27	U	0.0044	U	0.63	U	0.0044	U	27	U	0.0045	U	0.0039	U	0.0038	U
1,2-Dichloroethane	107-06-2		30	10	0.02	mg/kg	0.054	U	0.00088	U	0.12	U	0.00087	U	5.4	U	0.0009	U	0.00078	U	0.00077	U
1,1,1-Trichloroethane Bromodichloromethane	71-55-6 75-27-4		500		0.68	mg/kg mg/kg	0.054	U U	0.00088	<u>U</u>	0.12	<u>U</u>	0.00087 0.00087	<u> </u>	5.4 5.4	U U	0.0009	U U	0.00078	U U	0.00077 0.00077	UU
trans-1.3-Dichloropropene	10061-02-6					mg/kg	0.054	U	0.00088	U	0.12	U	0.00087	U	5.4	U	0.0009	U	0.00078	U	0.00077	U
cis-1,3-Dichloropropene	10061-01-5					mg/kg	0.054	Ū	0.00088	Ŭ	0.12	Ŭ	0.00087	Ŭ	5.4	Ŭ	0.0009	Ŭ	0.00078	Ŭ	0.00077	Ŭ
1,3-Dichloropropene, Total	542-75-6					mg/kg	0.054	U	0.00088	U	0.12	U	0.00087	U	5.4	U	0.0009	U	0.00078	U	0.00077	U
1,1-Dichloropropene	563-58-6					mg/kg	0.27	<u>U</u>	0.0044	<u> </u>	0.63	<u>U</u>	0.0044	<u>U</u>	27	<u>U</u>	0.0045	<u>U</u>	0.0039	<u>U</u>	0.0038	U
Bromoform 1,1,2,2-Tetrachloroethane	75-25-2 79-34-5			2	0.6	mg/kg mg/kg	0.21	U U	0.0035	U 11	0.5	<u>U</u>	0.0035 0.00087	U U	22 5.4	U U	0.0036	U U	0.0031 0.00078	U U	0.0031 0.00077	UU
Benzene	79-34-5	0.06	44	70	0.06	mg/kg	0.054	U	0.00088	U U	0.12	U	0.00087	U	5.4	U	0.0009	U	0.00078	U	0.00077	U
Toluene	108-88-3	0.7	500	36	0.7	mg/kg	0.058	J	0.0018		0.19	Ŭ	0.001	J	8.2	Ŭ	0.0014		0.0013		0.00069	J
Ethylbenzene	100-41-4	1	390		1	mg/kg	0.054	U	0.00088	U	0.12	U	0.00087	U	5.4	U	0.0009	U	0.00078	U	0.00077	U
Chloromethane Bromomethane	74-87-3		 	ł		mg/kg	0.27	<u> </u>	0.0044	<u> </u>	0.63	<u> </u>	0.0044	<u> </u>	27	U	0.0045	U	0.0039	<u>U</u>	0.0038	U
Bromomethane Vinyl chloride	74-83-9 75-01-4		13	 	0.02	mg/kg mg/kg	0.11	U	0.0018	<u> </u>	0.25	U	0.0017 0.0017	U U	11	U	0.0018	U U	0.0016	U U	0.0015	UU
Chloroethane	75-00-3		10		1.9	mg/kg	0.11	Ŭ	0.0018	Ŭ	0.25	Ŭ	0.0017	Ŭ	11	Ŭ	0.0018	Ŭ	0.0016	Ŭ	0.0015	Ŭ
1,1-Dichloroethene	75-35-4		500		0.33	mg/kg	0.054	U	0.00088	U	0.12	U	0.00087	U	5.4	U	0.0009	U	0.00078	U	0.00077	U
trans-1,2-Dichloroethene	156-60-5		500		0.19	mg/kg	0.08	U	0.0013	U	0.19	U	0.0013	U	8.2	U	0.0013	U	0.0012	U	0.0012	U
Trichloroethene 1,2-Dichlorobenzene	79-01-6 95-50-1		200 500	2	0.47	mg/kg	0.054	U U	0.00088	U U	0.19 0.63	U	0.0017 0.0044	U	5.4 27	U U	0.001 0.0045	U	0.00078	U U	0.00077 0.0038	UU
1,3-Dichlorobenzene	541-73-1		280		2.4	mg/kg mg/kg	0.27	U	0.0044	U	0.63	U	0.0044	U	27	U U	0.0045	U	0.0039	U	0.0038	U
1,4-Dichlorobenzene	106-46-7		130	20	1.8	mg/kg	0.27	Ŭ	0.0044	Ŭ	0.63	Ŭ	0.0044	Ŭ	27	Ŭ	0.0045	Ŭ	0.0039	Ŭ	0.0038	Ŭ
Methyl tert butyl ether	1634-04-4	0.93	500		0.93	mg/kg	0.11	U	0.0018	U	0.25	U	0.0017	U	11	U	0.0018	U	0.0016	U	0.0015	U
p/m-Xylene	179601-23-1	0.26				mg/kg	0.11	<u> </u>	0.0018	<u> </u>	0.25	<u>U</u>	0.0017	<u> </u>	11	U	0.0018	<u> </u>	0.0016	<u>U</u>	0.0015	U
o-Xylene Xylenes, Total	95-47-6 1330-20-7	0.26	500	0.26	1.6	mg/kg mg/kg	0.11	U U	0.0018	U U	0.25	U	0.0017 0.0017	U U	11 11	U	0.0018	U U	0.0016	U U	0.0015 0.0015	UU
cis-1,2-Dichloroethene	156-59-2	0.20	500	0.20	0.25	mg/kg	0.054	U	0.00088	U	0.12	U	0.00087	U	5.4	U	0.0009	U	0.00078	U	0.00077	Ŭ
1,2-Dichloroethene, Total	540-59-0					mg/kg	0.054	U	0.00088	U	0.12	U	0.00087	U	5.4	U	0.0009	U	0.00078	U	0.00077	U
Dibromomethane	74-95-3					mg/kg	0.54	U	0.0088	U	1.2	U	0.0087	U	54	U	0.009	U	0.0078	U	0.0077	U
Styrene Dichlorodifluoromethane	100-42-5 75-71-8			300		mg/kg mg/kg	0.11 0.54	U U	0.0018	<u>U</u>	0.25	U U	0.0017 0.0087	U U	11 54	U U	0.0018	U U	0.0016	U U	0.0015 0.0077	UU
Acetone	67-64-1		500	2.2	0.05	mg/kg	0.54	U	0.0000	J	1.2	U	0.0049	J	54	U	0.009	U	0.0078	U	0.0077	Ŭ
Carbon disulfide	75-15-0				2.7	mg/kg	0.54	U	0.0088	U	1.2	U	0.0087	U	54	U	0.009	U	0.0078	U	0.0077	U
2-Butanone	78-93-3		500	100	0.12	mg/kg	0.16	J	0.0088	U	1.2	U	0.0087	U	54	U	0.009	U	0.0078	U	0.0077	U
Vinyl acetate	108-05-4				4	mg/kg	0.54	U	0.0088	<u> </u>	1.2	U U	0.0087	U U	54	U	0.009	<u>U</u>	0.0078	U	0.0077	U
4-Methyl-2-pentanone 1,2,3-Trichloropropane	108-10-1 96-18-4	1			0.34	mg/kg mg/kg	0.54	U	0.0088	<u> </u>	1.2	U	0.0087	U U	54 54	U	0.009	U U	0.0078	U U	0.0077 0.0077	UU
2-Hexanone	591-78-6	1	1		2.01	mg/kg	0.54	U	0.0088	U	1.2	U	0.0087	U	54	U	0.009	U	0.0078	U	0.0077	U
Bromochloromethane	74-97-5					mg/kg	0.27	U	0.0044	U	0.63	U	0.0044	U	27	U	0.0045	U	0.0039	U	0.0038	U
2,2-Dichloropropane	594-20-7	I	ļ	<u> </u>	ļ	mg/kg	0.27	U	0.0044	U	0.63	U	0.0044	U	27	U	0.0045	U	0.0039	U	0.0038	U
1,2-Dibromoethane 1,3-Dichloropropane	106-93-4 142-28-9				0.3	mg/kg mg/kg	0.21	U U	0.0035	U 11	0.5	U	0.0035	U U	22 27	U	0.0036	U U	0.0031	U U	0.0031 0.0038	UU
1,1,1,2-Tetrachloroethane	630-20-6	1	1	1	0.0	mg/kg	0.27	U	0.00044	U	0.03	U	0.00044	U	5.4	U	0.0043	U	0.00039	U	0.00077	U
Bromobenzene	108-86-1	1	<u> </u>		1	mg/kg	0.27	U	0.0044	Ŭ	0.63	U	0.0044	U	27	U	0.0045	U	0.0039	U	0.0038	U
n-Butylbenzene	104-51-8	12	500		12	mg/kg	0.054	U	0.00088	U	0.12	U	0.00087	U	5.4	U	0.0009	U	0.00078	U	0.00077	U
sec-Butylbenzene	135-98-8	11	500		11	mg/kg	0.054	<u> </u>	0.00088	<u> </u>	0.12	<u>U</u>	0.00087	U U	5.4	U	0.0009	U	0.00078	<u>U</u>	0.00077	U
tert-Butylbenzene o-Chlorotoluene	98-06-6 95-49-8	5.9	500	+	5.9	mg/kg mg/kg	0.27	U U	0.0044	U U	0.63	<u> </u>	0.0044	U U	27 27	U	0.0045	U U	0.0039	U U	0.0038	U
p-Chlorotoluene	106-43-4	1	1	1	1	mg/kg	0.27	U	0.0044	U	0.63	U	0.0044	U	27	U	0.0045	U	0.0039	U	0.0038	U
1,2-Dibromo-3-chloropropane	96-12-8					mg/kg	0.27	Ū	0.0044	Ŭ	0.63	Ŭ	0.0044	Ū	27	Ū	0.0045	Ū	0.0039	Ū	0.0038	Ŭ
Hexachlorobutadiene	87-68-3					mg/kg	0.27	U	0.0044	U	0.63	U	0.0044	U	27	U	0.0045	U	0.0039	U	0.0038	U
Isopropylbenzene	98-82-8 99-87-6	2.3			2.3	mg/kg	0.054	U U	0.00088	U U	0.12	U 11	0.00087	U U	5.4 5.4	U U	0.0009	U U	0.00078	U U	0.00077	UU
p-lsopropyltoluene Naphthalene	99-87-6 91-20-3	10	500		10	mg/kg mg/kg	0.054	U	0.00088	U U	0.12	U U	0.00087	U U	5.4	U	0.0009	U U	0.00078	U	0.00077	U
Acrylonitrile	107-13-1					mg/kg	0.54	U	0.0088	U	1.2	U	0.0087	U	54	U	0.009	U	0.0078	U	0.0077	U
n-Propylbenzene	103-65-1	3.9	500		3.9	mg/kg	0.054	Ū	0.00088	U	0.12	U	0.00087	U	5.4	U	0.0009	U	0.00078	U	0.00077	U
1,2,3-Trichlorobenzene	87-61-6			20	<u> </u>	mg/kg	0.27	U	0.0044	U	0.63	U	0.0044	U	27	U	0.0045	U	0.0039	U	0.0038	U
1,2,4-Trichlorobenzene	120-82-1	0.4	100	20	3.4	mg/kg	0.27	<u> </u>	0.0044	<u> </u>	0.63	U U	0.0044	U U	27	U	0.0045	U U	0.0039	U U	0.0038	U
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	108-67-8 95-63-6	8.4 3.6	190 190	<u> </u>	8.4 3.6	mg/kg mg/kg	0.27	U U	0.0044	U U	0.63	U U	0.0044	U	27 27	U	0.0045	U U	0.0039	U U	0.0038	UU
1,4-Dioxane	123-91-1	5.0	130	0.1	0.1	mg/kg	5.4	U	0.088	U	12	U	0.087	U	540	U	0.09	U	0.078	U	0.077	U
p-Diethylbenzene	105-05-5					mg/kg	0.21	U	0.0035	U	0.5	U	0.0035	U	22	U	0.0036	U	0.0031	U	0.0031	U
p-Ethyltoluene	622-96-8	I	ļ	I		mg/kg	0.21	U	0.0035	U	0.5	U	0.0035	U	22	U	0.0036	U	0.0031	U	0.0031	U
1,2,4,5-Tetramethylbenzene Ethyl ether	95-93-2 60-29-7					mg/kg mg/kg	0.21	U U	0.0035	U U	0.5	U 11	0.0035	U U	22 27	U U	0.0036	U U	0.0031	U U	0.0031	UU
trans-1,4-Dichloro-2-butene	110-57-6	1	1	1	1	mg/kg	0.27	U U	0.0044	U	0.63	U	0.0044	U	27	U U	0.0045	U U	0.0039	U U	0.0038	U
*NV-CP51: New York DEC CP-5									2.3011	J.		-		-	rk Restricted u	-		5	2.3000	5		

 Iteration
 <thIteration</th>
 Iteration
 <thIteration</th>
 Iteration
 Iteration

 "NY-RESER: Ecological Resources Criteria, New York Restricted use current as of 5/2007

 "NY-RESEW: Groundwater Criteria, New York Restricted use current as of 5/2007

 "End of the second sec

TABLE 1B GROUNDWATER ANALYTICAL RESULTS APRIL 2016

OCATION AMPLING DATE						W-03 (7.6) /2016	2118-TW- 4/7/2	
AMPLING DATE AB SAMPLE ID						0441-09	4///2 L16104	
	CasNum	NY-AWQS	NY-TOGS-GA	Units	Results	Qual	Results	Qual
olatile Organics by GC/MS								
lethylene chloride	75-09-2	5	5	ug/l	62	U	2.5	U
,1-Dichloroethane	75-34-3	5	5	ug/l	62	UU	2.5	U U
hloroform arbon tetrachloride	67-66-3 56-23-5	7 5	7 5	ug/l ug/l	62 12	U	2.5 0.5	U U
,2-Dichloropropane	78-87-5	5	5 1	ug/l	25	U	0.5	<u> </u>
libromochloromethane	124-48-1	50	50	ug/l	12	U	0.5	U
.1.2-Trichloroethane	79-00-5	1	1	ug/l	38	Ŭ	1.5	U
etrachloroethene	127-18-4	5	5	ug/l	2100	Ű	0.87	Ŭ
chlorobenzene	108-90-7	5	5	ug/l	62	U	2.5	U
richlorofluoromethane	75-69-4	5	5	ug/l	62	U	2.5	U
,2-Dichloroethane	107-06-2	0.6	0.6	ug/l	12	U	0.5	U
,1,1-Trichloroethane	71-55-6	5	5	ug/l	62	U	2.5	U
romodichloromethane	75-27-4	50	50	ug/l	12	U	0.5	U
ans-1,3-Dichloropropene	10061-02-6	0.4	0.4	ug/l	12	U	0.5	U
s-1,3-Dichloropropene	10061-01-5	0.4	0.4	ug/l	12	U	0.5	U
,3-Dichloropropene, Total	542-75-6			ug/l	12	U	0.5	U
1-Dichloropropene	563-58-6	5	5	ug/l	62	U	2.5	U
romoform	75-25-2	50	50	ug/l	50	U	2	<u> </u>
,1,2,2-Tetrachloroethane	79-34-5	5	5	ug/l	12	U	0.5	<u> </u>
enzene oluene	71-43-2 108-88-3	1 5	1 5	ug/l	12 62	UU	0.5 2.5	<u>U</u>
thylbenzene	108-88-3	5	5	ug/l ug/l	62	U	2.5	U
chloromethane	74-87-3	5	5	ug/l	62	U	2.5	U
romomethane	74-87-3	5	5	ug/l	62	U	2.5	U
linyl chloride	75-01-4	2	2	ug/l	25	U	1	U
Chloroethane	75-00-3	5	5	ug/l	62	U	2.5	U
,1-Dichloroethene	75-35-4	5	5	ug/l	12	U	0.5	U
ans-1,2-Dichloroethene	156-60-5	5	5	ug/l	62	U	2.5	U
richloroethene	79-01-6	5	5	ug/l	5.2	J	0.5	U
,2-Dichlorobenzene	95-50-1	3	3	ug/l	62	U	2.5	U
,3-Dichlorobenzene	541-73-1	3	3	ug/l	62	U	2.5	U
,4-Dichlorobenzene	106-46-7	3	3	ug/l	62	U	2.5	U
lethyl tert butyl ether	1634-04-4	10	10	ug/l	62	U	2.5	U
/m-Xylene	179601-23-1	5	5	ug/l	62	U	2.5	U
	95-47-6	5	5	ug/l	62	U	2.5	U
ylenes, Total	1330-20-7	5	5	ug/l	62 62	UU	2.5	<u> </u>
is-1,2-Dichloroethene ,2-Dichloroethene, Total	156-59-2 540-59-0	5	5	ug/l	62	U	2.5 2.5	U
bibromomethane	74-95-3	5	5	ug/l ug/l	120	U	5	U
,2,3-Trichloropropane	96-18-4	0.04	0.04	ug/l	62	U	2.5	U
crylonitrile	107-13-1	5	5	ug/l	120	Ŭ	5	U
tyrene	100-42-5	5	930	ug/l	62	U	2.5	U
ichlorodifluoromethane	75-71-8	5	5	ug/l	120	U	5	Ū
cetone	67-64-1	50	50	ug/l	120	U	3.7	J
arbon disulfide	75-15-0	60	60	ug/l	120	U	5	U
-Butanone	78-93-3	50	50	ug/l	120	U	5	U
inyl acetate	108-05-4			ug/l	120	U	5	U
-Methyl-2-pentanone	108-10-1			ug/l	120	U	5	U
-Hexanone	591-78-6	50	50	ug/l	120	U	5	U
romochloromethane	74-97-5	5	5	ug/l	62	U	2.5	U
,2-Dichloropropane	594-20-7	5	5	ug/l	62	U	2.5	<u> </u>
,2-Dibromoethane	106-93-4	0.0006	0.0006	ug/l	50	U	2	<u> </u>
3-Dichloropropane	142-28-9	5	5	ug/l	62	U	2.5	<u> </u>
1,1,2-Tetrachloroethane romobenzene	630-20-6 108-86-1	5 5	5 5	ug/l ug/l	62 62	UU	2.5 2.5	<u> </u>
romobenzene -Butylbenzene	108-86-1	5	5	ug/I ug/I	62	U	2.5	U
ec-Butylbenzene	135-98-8	5	5	ug/l	62	U U	2.5	U
ert-Butylbenzene	98-06-6	5	5	ug/l	62	U U	2.5	U
-Chlorotoluene	95-49-8	5	5	ug/l	62	U U	2.5	U
-Chlorotoluene	106-43-4	5	5	ug/l	62	U	2.5	U
,2-Dibromo-3-chloropropane	96-12-8	0.04	0.04	ug/l	62	U	2.5	U
exachlorobutadiene	87-68-3	0.5	0.5	ug/l	62	U	2.5	U
opropylbenzene	98-82-8	5	5	ug/l	62	U	2.5	U
Isopropyltoluene	99-87-6	5	5	ug/l	62	U	2.5	U
aphthalene	91-20-3	10	10	ug/l	62	U	2.5	U
Propylbenzene	103-65-1	5	5	ug/l	62	U	2.5	U
2,3-Trichlorobenzene	87-61-6	5	5	ug/l	62	U	2.5	U
,2,4-Trichlorobenzene	120-82-1	5	5	ug/l	62	U	2.5	U
,3,5-Trimethylbenzene	108-67-8	5	5	ug/l	62	U	2.5	U
2,4-Trimethylbenzene	95-63-6	5	5	ug/l	62	U	2.5	U
,4-Dioxane	123-91-1			ug/l	6200	U	250	<u> </u>
-Diethylbenzene	105-05-5			ug/l	50	U	2	<u> </u>
-Ethyltoluene	622-96-8	-	F	ug/l	50	U	2	<u> </u>
,2,4,5-Tetramethylbenzene	95-93-2	5	5	ug/l	50	UU	2 2.5	U U
thyl ether	60-29-7			ug/l	62			

*NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.
*NY-TOGS-GA: New York TOGS 111 Groundwater Effluent Limitations criteria reflects all addendum to criteria through June 2004.
= Exceeds applicable criterion
= Non-detect result that exceeds applicable criterion due to sample dilution

TABLE 1C SUB-SLAB SOIL VAPOR ANALYTICAL RESULTS APRIL 2016

LOCATION				2118-SV		2118-SV-	
SAMPLING DATE				4/7/2		4/7/2	
LAB SAMPLE ID	Cashirm	NTZ GGG	TT 14	L1610		L16103	
/olatile Organics in Air	CasNum	NY-SSC	Units	Results	Qual	Results	Qual
Dichlorodifluoromethane	75-71-8	5	ug/m3	3.3	U	9.89	U
Chloromethane	74-87-3	5	ug/m3	1.38	U	4.13	U
Freon-114	76-14-2	5	ug/m3	4.66	<u>U</u>	14	U
/inyl chloride	75-01-4	5	ug/m3	1.71	<u>U</u>	5.11	U
I.3-Butadiene	106-99-0	5	ug/m3	1.48	<u> </u>	4.42	<u> </u>
Bromomethane	74-83-9	5	ug/m3	2.59	U	7.77	U
	74-83-9	5	<u> </u>	1.76	U	5.28	U
Chloroethane		5	ug/m3	31.5	U		U
Ethanol (invl bramida	64-17-5		ug/m3	2.92	U	94.2	U
/inyl bromide	593-60-2	5	ug/m3		U	8.74	0
Acetone Trichlorofluoromethane	67-64-1 75-69-4	5 5	ug/m3	7.91 3.75	U	28.7 11.2	U
			ug/m3		U		U
sopropanol	67-63-0	5	ug/m3	4.1	-	12.3	
,1-Dichloroethene	75-35-4	5	ug/m3	2.64	U	7.93	<u> </u>
ertiary butyl Alcohol	75-65-0	5	ug/m3	5.06	U	15.2	-
Nethylene chloride	75-09-2	5	ug/m3	5.8	U	17.4	U
B-Chloropropene	107-05-1	5	ug/m3	2.09	U	6.26	U
Carbon disulfide	75-15-0	5	ug/m3	2.08	U	6.23	U
Freon-113	76-13-1	5	ug/m3	5.11	U	15.3	U
rans-1,2-Dichloroethene	156-60-5	5	ug/m3	2.64	U	7.93	U
,1-Dichloroethane	75-34-3	5	ug/m3	2.7	U	8.09	U
Nethyl tert butyl ether	1634-04-4	5	ug/m3	2.4	U	7.21	U
-Butanone	78-93-3	5	ug/m3	4.93	U	14.7	U
is-1,2-Dichloroethene	156-59-2	5	ug/m3	2.64	U	7.93	U
thyl Acetate	141-78-6	5	ug/m3	6.02	U	18	U
Chloroform	67-66-3	5	ug/m3	3.26	U	9.77	U
etrahydrofuran	109-99-9	5	ug/m3	4.93	U	14.7	U
,2-Dichloroethane	107-06-2	5	ug/m3	2.7	U	8.09	U
-Hexane	110-54-3	5	ug/m3	2.35	U	7.05	U
,1,1-Trichloroethane	71-55-6	5	ug/m3	3.64	U	10.9	U
Benzene	71-43-2	5	ug/m3	2.13	U	6.39	U
Carbon tetrachloride	56-23-5	5	ug/m3	4.2	U	12.6	U
Cyclohexane	110-82-7	5	ug/m3	2.3	U	6.88	U
,2-Dichloropropane	78-87-5	5	ug/m3	3.08	U	9.24	U
Bromodichloromethane	75-27-4	5	ug/m3	4.47	U	13.4	U
,4-Dioxane	123-91-1	5	ug/m3	2.4	U	7.21	U
richloroethene	79-01-6	5	ug/m3	3.58	U	10.7	U
2,2,4-Trimethylpentane	540-84-1	5	ug/m3	3.12	U	9.34	U
leptane	142-82-5		ug/m3	2.73	U	8.2	U
is-1,3-Dichloropropene	10061-01-5	5	ug/m3	3.03	U	9.08	U
-Methyl-2-pentanone	108-10-1	5	ug/m3	6.84	U	20.5	U
rans-1,3-Dichloropropene	10061-02-6	5	ug/m3	3.03	U	9.08	U
,1,2-Trichloroethane	79-00-5	5	ug/m3	3.64	Ŭ	10.9	Ŭ
oluene	108-88-3	5	ug/m3	2.55		7.54	U
-Hexanone	591-78-6	5	ug/m3	2.73	U	8.2	U
Dibromochloromethane	124-48-1	5	ug/m3	5.68	<u> </u>	17	U
,2-Dibromoethane	106-93-4	5	ug/m3	5.13	U	15.4	U
etrachloroethene	127-18-4	5	ug/m3	1950	5	5210	0
Chlorobenzene	108-90-7	5	ug/m3	3.07	U	9.21	U
ithylbenzene	100-41-4	5	ug/m3	2.9	U	8.69	U
/m-Xylene	179601-23-1	5	ug/m3	5.78	<u>U</u>	17.4	U
Bromoform	75-25-2	5	ug/m3	6.9	<u>U</u>	20.7	U
Styrene	100-42-5	5	ug/m3	2.84	U	8.52	U
,1,2,2-Tetrachloroethane	79-34-5	5	ug/m3	4.58	U	13.7	U
-Xylene	95-47-6	5		2.9	U	8.69	U
-Xylene -Ethyltoluene	622-96-8	5	ug/m3	3.28	U	9.83	U
			ug/m3		U		U U
,3,5-Trimethylbenzene	108-67-8	5	ug/m3	3.28		9.83	-
,2,4-Trimethylbenzene	95-63-6	5	ug/m3	3.28	U	9.83	<u> </u>
enzyl chloride	100-44-7	5	ug/m3	3.45	U	10.4	U
,3-Dichlorobenzene	541-73-1	5	ug/m3	4.01	U	12	U
,4-Dichlorobenzene	106-46-7	5	ug/m3	4.01	U	12	U
,2-Dichlorobenzene	95-50-1	5	ug/m3	4.01	U	12	U
,2,4-Trichlorobenzene	120-82-1	5	ug/m3	4.95	U	14.8	U
exachlorobutadiene	87-68-3	5	ug/m3	7.11	U	21.3	U
NY-SSC: New York DOH Matrix							

= Non-detect result that exceeds applicable criterion due to sample dilution

TABLE 2A SOIL ANALYTICAL RESULTS HUNE 2016

							JUNE 2										
LOCATION						2118-SB8	8 (4.0-4.5)	2118-SB8	8 (8.0-8.5)	2118-SB9	(4.0-4.5)	2118-SB9	(8.0-8.5)	2118-SB1	0 (4.5-5.0)	2118-SB10	(10.0-10.5)
SAMPLING DATE						6/15/	2016	6/15/	2016	6/15/2	2016	6/15/2	2016	6/16/	2016	6/16/2	2016
LAB SAMPLE ID						L1618	618-01	L1618	618-02	L16186	618-03	L16186	618-04	L1618	618-05	L16186	618-06
	CasNum NY-CI	251 NY-RESC	NY-RESER	NY-RESGW	Units	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
General Chemistry																	
Solids, Total	NONE				%	87.7		91.9		88.5		90		88.6		88.3	
Volatile Organics by 8260/503	5		•					•		•		•		-		•	
1,1-Dichloroethane	75-34-3	240		0.27	mg/kg	0.084	U	0.0012	U	0.0013	U	0.0013	U	0.0012	U	0.0012	U
Tetrachloroethene	127-18-4	150	2	1.3	mg/kg	1		0.0008	U	0.00086	U	0.00084	U	0.00081	U	0.001	
1,2-Dichloroethane	107-06-2	30	10	0.02	mg/kg	0.056	U	0.0008	U	0.00086	U	0.00084	U	0.00081	U	0.00083	U
1,1,1-Trichloroethane	71-55-6	500		0.68	mg/kg	0.056	U	0.0008	U	0.00086	U	0.00084	U	0.00081	U	0.00083	U
Vinyl chloride	75-01-4	13		0.02	mg/kg	0.11	U	0.0016	U	0.0017	U	0.0017	U	0.0016	U	0.0017	U
1,1-Dichloroethene	75-35-4	500		0.33	mg/kg	0.056	U	0.0008	U	0.00086	U	0.00084	U	0.00081	U	0.00083	U
trans-1,2-Dichloroethene	156-60-5	500		0.19	mg/kg	0.14		0.0012	U	0.0013	U	0.0013	U	0.0012	U	0.0012	U
Trichloroethene	79-01-6	200	2	0.47	mg/kg	0.19		0.0008	U	0.00086	U	0.00084	U	0.00081	U	0.0018	
cis-1,2-Dichloroethene	156-59-2	500		0.25	mg/kg	4.7		0.0008	U	0.00086	U	0.00084	U	0.00081	U	0.0062	

*NY-CP51: New York DEC CP-51 Soil Cleanup Levels Criteria per NY CP-51 Soil Cleanup Levels dated October 21, 2010. *NY-RESC: Commercial Criteria, New York Restricted use current as of 5/2007

= Exceeds applicable criterion

*NY-RESER: Ecological Resources Criteria, New York Restricted use current as of 5/2007

*NY-RESGW: Groundwater Criteria, New York Restricted use current as of 5/2007

= Non-detect result that exceeds applicable criterion due to sample dilution

TABLE 2B GROUNDWATER ANALYTICAL RESULTS JUNE 2016

						9	01112 2010									
LOCATION					2118-MV	V1S (7.4)	2118-MW	1D (26.5)	2118-MV	V2 (13.2)	2118-MV	V3 (6.1)	2118-MV	V4 (6.8)	2118-MV	W5 (8.4)
SAMPLING DATE					6/17/	2016	6/17/2	2016	6/17/2	2016	6/17/2	2016	6/17/2	2016	6/17/2	2016
LAB SAMPLE ID					L1618	805-01	L16188	805-02	L16188	805-03	L16188	805-04	L16188	805-05	L16188	805-06
	CasNum	NY-AWQS	NY-TOGS-GA	Units	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Volatile Organics by GC/MS																
1,1-Dichloroethane	75-34-3	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Tetrachloroethene	127-18-4	5	5	ug/l	180		8.3		0.79		0.5	U	0.37	J	34	
1,2-Dichloroethane	107-06-2	0.6	0.6	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Vinyl chloride	75-01-4	2	2	ug/l	1	U	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethene	75-35-4	5	5	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
trans-1,2-Dichloroethene	156-60-5	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Trichloroethene	79-01-6	5	5	ug/l	1.9		0.18	J	0.5	U	0.5	U	0.5	U	30	
cis-1,2-Dichloroethene	156-59-2	5	5	ug/l	2.5	U	2.5	U	2.5	U	2.5	U	3.4		59	

*NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

*NY-TOGS-GA: New York TOGS 111 Groundwater Effluent Limitations criteria reflects all addendum to criteria through June 2004.

= Exceeds applicable criterion

TABLE 2C INDOOR AIR ANALYTICAL RESULTS JUNE 2016

LOCATION				2118-	IA-01	2118-1	[A-02	
SAMPLING DATE				6/17/	2016	6/17/2016		
LAB SAMPLE ID	L1618	699-01	L16180	599-02				
	CasNum	NY-IAC	Units	Results	Qual	Results	Qual	
Volatile Organics in Air by SIM		-						
Vinyl chloride	75-01-4		ug/m3	0.051	U	0.051	U	
1,1-Dichloroethene	75-35-4		ug/m3	0.079	U	0.079	U	
trans-1,2-Dichloroethene	156-60-5		ug/m3	0.079	U	0.079	U	
1,1-Dichloroethane	75-34-3		ug/m3	0.081	U	0.081	U	
cis-1,2-Dichloroethene	156-59-2		ug/m3	0.091		0.079	U	
1,2-Dichloroethane	107-06-2		ug/m3	0.206		0.275		
1,1,1-Trichloroethane	71-55-6		ug/m3	0.109	U	0.109	U	
Trichloroethene	79-01-6	2	ug/m3	0.21		0.15		
Tetrachloroethene	127-18-4	30	ug/m3	10.2		7.32		

*NY-IAC: New York DOH Matrix 1 Indoor Air Concentrations Criteria per Guidance for Evaluating Soil Vapor Intrusion dated October 2006.

= Exceeds applicable criterion

ANALYTICAL REPORT

Lab Number:	L1610441
Client:	Property Solutions Inc. 323 New Albany Road Moorestown, NJ 08057
ATTN: Phone: Project Name:	Burt Turner (856) 813-3000 1500 ASTOR
Project Name: Project Number: Report Date:	20152118.201 04/18/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04181614:19

Project Name:	1500 ASTOR
Project Number:	20152118.201

Lab Number:	L1610441
Report Date:	04/18/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1610441-01	2118-SB-01 (1.0-1.5)	SOIL	BRONX, NY	04/07/16 09:10	04/08/16
L1610441-02	2118-SB-01 (7.5-8.0)	SOIL	BRONX, NY	04/07/16 09:25	04/08/16
L1610441-03	2118-SB-02 (0.5-1.0)	SOIL	BRONX, NY	04/07/16 09:30	04/08/16
L1610441-04	2118-SB-02 (4.0-4.5)	SOIL	BRONX, NY	04/07/16 09:40	04/08/16
L1610441-05	2118-SB-03 (0.5-1.0)	SOIL	BRONX, NY	04/07/16 10:00	04/08/16
L1610441-06	2118-SB-03 (6.5-7.0)	SOIL	BRONX, NY	04/07/16 10:15	04/08/16
L1610441-07	2118-SB-04 (1.0-1.5)	SOIL	BRONX, NY	04/07/16 11:15	04/08/16
L1610441-08	2118-SB-04 (7.0-7.5)	SOIL	BRONX, NY	04/07/16 11:30	04/08/16
L1610441-09	2118-TW-03 (7.6)	WATER	BRONX, NY	04/07/16 10:25	04/08/16
L1610441-10	2118-TW-04 (9.0)	WATER	BRONX, NY	04/07/16 11:50	04/08/16

 Project Name:
 1500 ASTOR

 Project Number:
 20152118.201

 Lab Number:
 L1610441

 Report Date:
 04/18/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Project Name:
 1500 ASTOR

 Project Number:
 20152118.201

 Lab Number:
 L1610441

 Report Date:
 04/18/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1610441-10: Headspace was noted in the sample containers submitted for Volatile Organics. The analysis was performed at the client's request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Auchelle M. Monig Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 04/18/16

ORGANICS

VOLATILES

			Serial_N	o:04181614:19
Project Name:	1500 ASTOR		Lab Number:	L1610441
Project Number:	20152118.201		Report Date:	04/18/16
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1610441-01 2118-SB-01 (1.0-1.5) BRONX, NY Soil 1,8260C 04/15/16 10:43 BS 85%		Date Collected: Date Received: Field Prep:	04/07/16 09:10 04/08/16 Not Specified

ND ug/kg 80 4.6 1 Chloroform ND ug/kg 80 20. 1 Chloroform ND ug/kg 54 11. 1 1.2-Dichloropropane ND ug/kg 190 12. 1 Dibromochloromathane ND ug/kg 54 8.2 1 1.2-Dichloromathane ND ug/kg 54 8.2 1 1.1.1-Trichloroethane ND ug/kg 54 7.5 1 Chlorobenzene ND ug/kg 54 7.5 1 Trichloroethane ND ug/kg 54 6.1 1 1.2-Dichloroethane ND ug/kg 54 6.3 1 1.2-Dichloropropene ND ug/kg 54 6.3 1 1.2-Dichloropropene ND ug/kg 54 6.3 1 1.3-Dichloropropene ND ug/kg 54 6.3 1 1.1.2-Z-Tetrachlor	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND ug/kg 80 4.6 1 Chloroform ND ug/kg 80 20. 1 Carbon tetrachloride ND ug/kg 54 11. 1 1.2-Dichloropropane ND ug/kg 54 8.2 1 Dicromochloromethane ND ug/kg 64 8.2 1 1.12-Dichloropropane ND ug/kg 54 8.2 1 Dicromochloromethane ND ug/kg 54 8.2 1 1.12-Dichloropethane ND ug/kg 54 1.9 1 Chlorobethane ND ug/kg 54 1.9 1 1.1.2-Dichloropethane ND ug/kg 54 6.1 1 1.2-Dichloropethane ND ug/kg 54 6.3 1 1.2-Dichloropopene ND ug/kg 54 6.3 1 1.3-Dichloropropene ND ug/kg 54 6.3 1 1.	Volatile Organics by 8260/5035 - V	Vestborough Lab					
ND ug/kg 80 4.6 1 Chloroform ND ug/kg 80 20. 1 Carbon tetrachloride ND ug/kg 54 11. 1 1.2-Dichloropropane ND ug/kg 54 8.2 1 Dicromochloromethane ND ug/kg 64 8.2 1 1.12-Dichloropropane ND ug/kg 54 8.2 1 Dicromochloromethane ND ug/kg 54 8.2 1 1.12-Dichloropethane ND ug/kg 54 1.9 1 Chlorobethane ND ug/kg 54 1.9 1 1.1.2-Dichloropethane ND ug/kg 54 6.1 1 1.2-Dichloropethane ND ug/kg 54 6.3 1 1.2-Dichloropopene ND ug/kg 54 6.3 1 1.3-Dichloropropene ND ug/kg 54 6.3 1 1.	Methylene chloride	ND		ug/kg	540	59.	1
ND ug/kg 80 20. 1 Carbon tetrachloride ND ug/kg 54 11. 1 1.2-Dichloropropane ND ug/kg 190 12. 1 Dibromochloromethane ND ug/kg 64 8.2 1 1.1.2-Trichloroethane ND ug/kg 64 7.5 1 Chlorobenene 120 ug/kg 54 7.5 1 Chlorobenene ND ug/kg 54 7.5 1 Trichloroethane ND ug/kg 54 6.1 1 1.2-Dichloroethane ND ug/kg 54 6.1 1 1.4.2-Trichloroethane ND ug/kg 54 6.5 1 1.2-Dichloropropene ND ug/kg 54 6.5 1 1.5-Dichloropropene ND ug/kg 54 6.3 1 1.3-Dichloropropene ND ug/kg 54 6.3 1 1.1.	1,1-Dichloroethane	ND			80	4.6	1
ND ug/kg 54 11. 1 1.2-Dichloropropane ND ug/kg 190 12. 1 Dibromochloromethane ND ug/kg 54 8.2 1 1.1.2-Tichloroethane ND ug/kg 64 8.2 1 1.1.2-Trichloroethane ND ug/kg 54 7.5 1 Tetrachloroethane ND ug/kg 54 19. 1 Tetrachloroethane ND ug/kg 54 10. 1 1.2-Dichloroethane ND ug/kg 54 6.1 1 1.1.1-Trichloroethane ND ug/kg 54 6.3 1 1.1.1-Trichloroethane ND ug/kg 54 6.3 1 1.1.1-Trichloropropene ND ug/kg 54 6.3 1 1.1.1-Trichloropropene ND ug/kg 54 6.3 1 1.1.2-Tetrachloropropene ND ug/kg 54 6.3 1	Chloroform	ND			80	20.	1
ND ug/kg 190 12. 1 Dibromochloromethane ND ug/kg 54 8.2 1 1,1,2-Trichloroethane ND ug/kg 80 16. 1 Tetrachloroethane 1200 ug/kg 54 7.5 1 Chlorobenzene ND ug/kg 54 7.5 1 Trichloroethane ND ug/kg 54 10. 1 1,2-Dichloroethane ND ug/kg 54 6.1 1 1,2-Dichloroethane ND ug/kg 54 6.3 1 1,1,1-Trichloroethane ND ug/kg 54 6.3 1 1,2-Dichloropropene ND ug/kg 54 6.3 1 1,3-Dichloropropene ND ug/kg 54 6.3 1 1,1-Dichloropropene ND ug/kg 54 6.3 1 1,1,2-Trichloroethane ND ug/kg 54 6.3 1 <	Carbon tetrachloride	ND			54	11.	1
ND ug/kg 80 16. 1 Tetrachloroethane 1200 ug/kg 54 7.5 1 Chlorobenzene ND ug/kg 54 19. 1 Trichloroethane ND ug/kg 54 19. 1 1.2-Dichloroethane ND ug/kg 54 6.1 1 1.1.1.7-Trichloroethane ND ug/kg 54 6.9 1 Bromodichloromethane ND ug/kg 54 6.9 1 Bromodichloromethane ND ug/kg 54 6.3 1 1.1.1.7-Dichloropropene ND ug/kg 54 6.3 1 1.3-Dichloropropene, Total ND ug/kg 54 6.3 1 1.3.Dichloropropene, Total ND ug/kg 54 6.3 1 1.3.Dichloropropene, Total ND ug/kg 54 6.3 1 1.1.2.2-Tetrachloroethane ND ug/kg 54 6.3 1 <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td></td> <td>190</td> <td>12.</td> <td>1</td>	1,2-Dichloropropane	ND			190	12.	1
Tetrachloroethene 1200 ug/kg 54 7.5 1 Chlorobenzene ND ug/kg 54 19. 1 Trichlorofluoromethane ND ug/kg 270 21. 1 1,2-Dichloroethane ND ug/kg 54 6.1 1 1,1.1-Trichloroethane ND ug/kg 54 5.9 1 Bromodichloromethane ND ug/kg 54 6.5 1 stars.1.3-Dichloropropene ND ug/kg 54 6.3 1 1.3-Dichloropropene, Total ND ug/kg 54 6.3 1 1.1-Dichloropropene ND ug/kg 54 6.3 1 1.3-Dichloropropene ND ug/kg 54 6.3 1 1.1-Dichloropropene ND ug/kg 54 6.3 1 1.1-Dichloropropene ND ug/kg 54 6.3 1 1.1,2-Z-tetrachloroethane ND ug/kg 54	Dibromochloromethane	ND		ug/kg	54	8.2	1
ND ug/kg 54 19. 1 Trichlorodituoromethane ND ug/kg 270 21. 1 1.2-Dichloroethane ND ug/kg 54 6.1 1 1.1.1-Trichloroethane ND ug/kg 54 6.1 1 Bromodichloromethane ND ug/kg 54 6.5 1 trans-1.3-Dichloropropene ND ug/kg 54 6.3 1 1.3-Dichloropropene, Total ND ug/kg 54 6.3 1 1.1.1.2.2-Tetrachloroethane ND ug/kg 54 6.3 1 1.3-Dichloropropene, Total ND ug/kg 54 6.3 1 1.1.2.2-Tetrachloroethane ND ug/kg 54 5.4 1 Benzene ND ug/kg 54 6.3 1 Toluene 58 J <ug kg<="" td=""> 54 6.8 1 Ehylbenzene ND ug/kg 110 18. 1</ug>	1,1,2-Trichloroethane	ND		ug/kg	80	16.	1
Trichlorofluoromethane ND ug/kg 270 21. 1 1,2-Dichloroethane ND ug/kg 54 6.1 1 1,1.1-Trichloroethane ND ug/kg 54 5.9 1 Bromodichloromethane ND ug/kg 54 9.3 1 Bromodichloropropene ND ug/kg 54 6.5 1 trans-1,3-Dichloropropene ND ug/kg 54 6.3 1 1,3-Dichloropropene, Total ND ug/kg 24 6.3 1 1,1-Dichloropropene ND ug/kg 210 13. 1 1,1,2,2-Tetrachloroethane ND ug/kg 54 6.3 1 1,1,2,2-Tetrachloroethane ND ug/kg 54 6.3 1 1,1,2,2-Tetrachloroethane ND ug/kg 54 6.3 1 1,1,2,2-Tetrachloroethane ND ug/kg 10. 1 1 Ethylbenzene ND ug/kg <t< td=""><td>Tetrachloroethene</td><td>1200</td><td></td><td>ug/kg</td><td>54</td><td>7.5</td><td>1</td></t<>	Tetrachloroethene	1200		ug/kg	54	7.5	1
ND ug/kg 54 6.1 1 1.1.1-Trichloroethane ND ug/kg 54 5.9 1 Bromodichloromethane ND ug/kg 54 5.9 1 Bromodichloromethane ND ug/kg 54 9.3 1 trans-1,3-Dichloropropene ND ug/kg 54 6.5 1 cis-1,3-Dichloropropene ND ug/kg 54 6.3 1 1,3-Dichloropropene ND ug/kg 54 6.3 1 1,3-Dichloropropene, Total ND ug/kg 270 7.6 1 Bromoform ND ug/kg 54 6.3 1 1 1,1,2,2-Tetrachloroethane ND ug/kg 54 6.3 1 1 1,1,2,2-Tetrachloroethane ND ug/kg 54 6.3 1 1 Ethylbenzene ND ug/kg 54 6.3 1 1 Chloromethane ND ug/kg <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>54</td> <td>19.</td> <td>1</td>	Chlorobenzene	ND		ug/kg	54	19.	1
ND ug/kg 54 5.9 1 Bromodichloromethane ND ug/kg 54 9.3 1 trans-1,3-Dichloropropene ND ug/kg 54 9.3 1 trans-1,3-Dichloropropene ND ug/kg 54 6.5 1 1,3-Dichloropropene ND ug/kg 54 6.3 1 1,3-Dichloropropene, Total ND ug/kg 270 7.6 1 Bromodir ND ug/kg 54 6.3 1 1 1,1-Dichloropropene, Total ND ug/kg 270 7.6 1 Bromoform ND ug/kg 54 6.3 1 1,1,2,2-Tetrachloroethane ND ug/kg 54 6.3 1 Benzene ND ug/kg 54 6.3 1 1 Toluene 58 J ug/kg 54 6.8 1 1 Chloromethane ND ug/kg 110	Trichlorofluoromethane	ND		ug/kg	270	21.	1
Dromodichloromethane ND ug/kg 54 9.3 1 Bromodichloropropene ND ug/kg 54 6.5 1 cis.1,3-Dichloropropene ND ug/kg 54 6.3 1 1,3-Dichloropropene ND ug/kg 54 6.3 1 1,1-Dichloropropene, Total ND ug/kg 270 7.6 1 Bromodrom ND ug/kg 54 6.3 1 1,1-Dichloropropene ND ug/kg 270 7.6 1 Bromodrom ND ug/kg 54 6.3 1 1,1,2,2-Tetrachloroethane ND ug/kg 54 6.3 1 Benzene ND ug/kg 54 6.3 1 Toluene 58 J ug/kg 54 6.8 1 Chloromethane ND ug/kg 110 18 1 Chloromethane ND ug/kg 110 6.3 1	1,2-Dichloroethane	ND		ug/kg	54	6.1	1
ND ug/kg 54 6.5 1 cis-1,3-Dichloropropene ND ug/kg 54 6.3 1 1,3-Dichloropropene ND ug/kg 54 6.3 1 1,3-Dichloropropene, Total ND ug/kg 54 6.3 1 1,1-Dichloropropene, Total ND ug/kg 270 7.6 1 Bromoform ND ug/kg 54 5.4 1 1,1,2,2-Tetrachloroethane ND ug/kg 54 5.4 1 Benzene ND ug/kg 54 6.3 1 Toluene 58 J ug/kg 80 10. 1 Ethylbenzene ND ug/kg 54 6.8 1 Chloromethane ND ug/kg 10 16. 1 Vinyl chloride ND ug/kg 110 6.3 1 Chloroethane ND ug/kg 110 6.3 1 Vinyl	1,1,1-Trichloroethane	ND		ug/kg	54	5.9	1
ND ug/kg 54 6.3 1 1,3-Dichloropropene, Total ND ug/kg 54 6.3 1 1,1-Dichloropropene, Total ND ug/kg 270 7.6 1 Bromoform ND ug/kg 210 13. 1 1,1-Dichloropropene ND ug/kg 54 5.4 1 Bromoform ND ug/kg 54 5.4 1 Benzene ND ug/kg 54 6.3 1 Toluene 58 J ug/kg 54 6.8 1 Ethylbenzene ND ug/kg 54 6.8 1 1 Chloromethane ND ug/kg 110 18. 1 1 Vinyl chloride ND ug/kg 110 17. 1 1 Chloromethane ND ug/kg 110 17. 1 1 Vinyl chloride ND ug/kg 54 14.	Bromodichloromethane	ND		ug/kg	54	9.3	1
ND ug/kg 54 6.3 1 1,3-Dichloropropene, Total ND ug/kg 270 7.6 1 1,1-Dichloropropene ND ug/kg 210 13. 1 Bromoform ND ug/kg 54 5.4 1 1,1,2,2-Tetrachloroethane ND ug/kg 54 6.3 1 Benzene ND ug/kg 54 6.3 1 Toluene 58 J ug/kg 80 10. 1 Ethylbenzene ND ug/kg 54 6.8 1 1 Chloromethane ND ug/kg 110 18. 1 1 Vinyl chloride ND ug/kg 110 18. 1 1 Chloroethane ND ug/kg 110 17. 1 1 1,1-Dichloroethene ND ug/kg 54 14. 1 1 Linopertene ND ug/kg 80	trans-1,3-Dichloropropene	ND		ug/kg	54	6.5	1
1,1-Dichloropropene ND ug/kg 270 7.6 1 Bromoform ND ug/kg 210 13. 1 1,1,2,2-Tetrachloroethane ND ug/kg 54 5.4 1 Benzene ND ug/kg 54 6.3 1 Toluene 58 J ug/kg 80 10. 1 Ethylbenzene ND ug/kg 54 6.8 1 Chloromethane ND ug/kg 270 16. 1 Bromoform ND ug/kg 110 18. 1 Chloromethane ND ug/kg 110 18. 1 Stornomethane ND ug/kg 110 18. 1 Vinyl chloride ND ug/kg 110 17. 1 Chloroethane ND ug/kg 54 14. 1 1,1-Dichloroethene ND ug/kg 80 11. 1 1,1-Dichloroethene ND ug/kg 80 11. 1	cis-1,3-Dichloropropene	ND		ug/kg	54	6.3	1
ND ug/kg 210 13. 1 1,1,2,2-Tetrachloroethane ND ug/kg 54 5.4 1 Benzene ND ug/kg 54 6.3 1 Toluene 58 J ug/kg 54 6.8 1 Ethylbenzene ND ug/kg 54 6.8 1 Chloromethane ND ug/kg 270 16. 1 Bromoform ND ug/kg 110 18. 1 Chloromethane ND ug/kg 110 18. 1 Chloroethane ND ug/kg 110 18. 1 Chloroethane ND ug/kg 110 17. 1 Chloroethane ND ug/kg 54 14. 1 1,1-Dichloroethene ND ug/kg 80 11. 1 trans-1,2-Dichloroethene ND ug/kg 54 6.7 1	1,3-Dichloropropene, Total	ND		ug/kg	54	6.3	1
1,1,2,2-Tetrachloroethane ND ug/kg 54 5.4 1 Benzene ND ug/kg 54 6.3 1 Toluene 58 J ug/kg 80 10. 1 Ethylbenzene ND ug/kg 54 6.8 1 Chloromethane ND ug/kg 270 16. 1 Bromomethane ND ug/kg 110 18. 1 Vinyl chloride ND ug/kg 110 6.3 1 Chloroethane ND ug/kg 110 18. 1 Int-Dichloroethene ND ug/kg 110 17. 1 Int-Dichloroethene ND ug/kg 54 14. 1 Int-Dichloroethene ND ug/kg 80 11. 1 Int-Dichloroethene ND ug/kg 54 6.7 1	1,1-Dichloropropene	ND		ug/kg	270	7.6	1
Benzene ND ug/kg 54 6.3 1 Toluene 58 J ug/kg 80 10. 1 Ethylbenzene ND ug/kg 54 6.8 1 Chloromethane ND ug/kg 270 16. 1 Bromomethane ND ug/kg 110 18. 1 Vinyl chloride ND ug/kg 110 6.3 1 Chloroethane ND ug/kg 110 6.3 1 1,1-Dichloroethene ND ug/kg 54 14. 1 trans-1,2-Dichloroethene ND ug/kg 80 11. 1 Trichoroethene ND ug/kg 54 6.7 1	Bromoform	ND		ug/kg	210	13.	1
Toluene 58 J ug/kg 80 10. 1 Ethylbenzene ND ug/kg 54 6.8 1 Chloromethane ND ug/kg 270 16. 1 Bromomethane ND ug/kg 110 18. 1 Vinyl chloride ND ug/kg 110 6.3 1 Chloroethane ND ug/kg 110 6.3 1 Chloroethane ND ug/kg 110 17. 1 1,1-Dichloroethene ND ug/kg 54 14. 1 trans-1,2-Dichloroethene ND ug/kg 80 11. 1 Trichloroethene ND ug/kg 54 6.7 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	54	5.4	1
Ethylbenzene ND ug/kg 54 6.8 1 Chloromethane ND ug/kg 270 16. 1 Bromomethane ND ug/kg 110 18. 1 Vinyl chloride ND ug/kg 110 6.3 1 Chloroethane ND ug/kg 110 6.3 1 Chloroethane ND ug/kg 110 17. 1 1,1-Dichloroethene ND ug/kg 54 14. 1 trans-1,2-Dichloroethene ND ug/kg 80 11. 1 Trichloroethene ND ug/kg 54 6.7 1	Benzene	ND		ug/kg	54	6.3	1
Chloromethane ND ug/kg 270 16. 1 Bromomethane ND ug/kg 110 18. 1 Vinyl chloride ND ug/kg 110 6.3 1 Chloroethane ND ug/kg 110 6.3 1 Chloroethane ND ug/kg 100 17. 1 1,1-Dichloroethene ND ug/kg 54 14. 1 trans-1,2-Dichloroethene ND ug/kg 80 11. 1 Trichloroethene ND ug/kg 54 6.7 1	Toluene	58	J	ug/kg	80	10.	1
Bromomethane ND ug/kg 110 18. 1 Vinyl chloride ND ug/kg 110 6.3 1 Chloroethane ND ug/kg 110 17. 1 1,1-Dichloroethene ND ug/kg 54 14. 1 trans-1,2-Dichloroethene ND ug/kg 80 11. 1 Trichloroethene ND ug/kg 54 6.7 1	Ethylbenzene	ND		ug/kg	54	6.8	1
Vinyl chloride ND ug/kg 110 6.3 1 Chloroethane ND ug/kg 110 17. 1 1,1-Dichloroethene ND ug/kg 54 14. 1 trans-1,2-Dichloroethene ND ug/kg 80 11. 1 Trichloroethene ND ug/kg 54 6.7 1	Chloromethane	ND		ug/kg	270	16.	1
ChloroethaneNDug/kg11017.11,1-DichloroetheneNDug/kg5414.1trans-1,2-DichloroetheneNDug/kg8011.1TrichloroetheneNDug/kg546.71	Bromomethane	ND		ug/kg	110	18.	1
ND ug/kg 54 14. 1 trans-1,2-Dichloroethene ND ug/kg 80 11. 1 Trichloroethene ND ug/kg 54 6.7 1	Vinyl chloride	ND		ug/kg	110	6.3	1
trans-1,2-DichloroetheneNDug/kg8011.1TrichloroetheneNDug/kg546.71	Chloroethane	ND		ug/kg	110	17.	1
Trichloroethene ND ug/kg 54 6.7 1	1,1-Dichloroethene	ND		ug/kg	54	14.	1
	trans-1,2-Dichloroethene	ND		ug/kg	80	11.	1
1,2-Dichlorobenzene ND ug/kg 270 8.2 1	Trichloroethene	ND		ug/kg	54	6.7	1
	1,2-Dichlorobenzene	ND		ug/kg	270	8.2	1

		Serial_No:04181614:19					
Project Name:	1500 ASTOR				Lab Nu	mber:	L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
-,		SAMP		S			0,10,10
Lab ID:	L1610441-01				Date Col	llected:	04/07/16 09:10
Client ID:	2118-SB-01 (1.0-1.5)				Date Red		04/08/16
Sample Location:	BRONX, NY				Field Pre		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westborou	gh Lab					
1,3-Dichlorobenzene		ND		ug/kg	270	7.2	1
1,4-Dichlorobenzene		ND		ug/kg	270	7.4	1
Methyl tert butyl ether		ND		ug/kg	110	4.5	1
p/m-Xylene		ND		ug/kg	110	10.	1
o-Xylene		ND		ug/kg	110	9.2	1
Xylenes, Total		ND			110	9.2	1
cis-1,2-Dichloroethene		ND		ug/kg	54	9.2	1
1,2-Dichloroethene, Total		ND		ug/kg	54	7.6	1
Dibromomethane		ND		ug/kg	540	8.8	1
		ND		ug/kg		8.8	
Styrene Disblorediffueremethene		ND		ug/kg	110		1
Dichlorodifluoromethane				ug/kg	540	10.	1
Acetone		ND		ug/kg	540	55.	1
Carbon disulfide		ND		ug/kg	540	59.	1
2-Butanone		160	J	ug/kg	540	14.	1
Vinyl acetate		ND		ug/kg	540	7.1	1
4-Methyl-2-pentanone		ND		ug/kg	540	13.	1
1,2,3-Trichloropropane		ND		ug/kg	540	8.7	1
2-Hexanone		ND		ug/kg	540	36.	1
Bromochloromethane		ND		ug/kg	270	15.	1
2,2-Dichloropropane		ND		ug/kg	270	12.	1
1,2-Dibromoethane		ND		ug/kg	210	9.3	1
1,3-Dichloropropane		ND		ug/kg	270	7.8	1
1,1,1,2-Tetrachloroethane		ND		ug/kg	54	17.	1
Bromobenzene		ND		ug/kg	270	11.	1
n-Butylbenzene		ND		ug/kg	54	6.1	1
sec-Butylbenzene		ND		ug/kg	54	6.5	1
tert-Butylbenzene		ND		ug/kg	270	7.2	1
o-Chlorotoluene		ND		ug/kg	270	8.6	1
p-Chlorotoluene		ND		ug/kg	270	7.1	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	270	21.	1
Hexachlorobutadiene		ND		ug/kg	270	12.	1
Isopropylbenzene		ND		ug/kg	54	5.6	1
p-Isopropyltoluene		ND		ug/kg	54	6.7	1
		ND		ug/kg	270	7.4	1
Naphthalene		ND					
Naphthalene Acrylonitrile		ND		ug/kg	540	28.	1
				ug/kg ug/kg	540 54	28. 5.8	1
Acrylonitrile		ND					
Acrylonitrile n-Propylbenzene		ND ND		ug/kg	54	5.8	1

					:	Serial_No	o:04181614:19
Project Name:	1500 ASTOR				Lab Nu	mber:	L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
		SAMP		6			
Lab ID:	L1610441-01				Date Col	lected:	04/07/16 09:10
Client ID:	2118-SB-01 (1.0-1.5)				Date Red	ceived:	04/08/16
Sample Location:	BRONX, NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy 8260/5035 - Westborou	gh Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	270	7.6	1
1,4-Dioxane		ND		ug/kg	5400	770	1
p-Diethylbenzene		ND		ug/kg	210	8.6	1
p-Ethyltoluene		ND		ug/kg	210	6.6	1
1,2,4,5-Tetramethylbenze	ene	ND		ug/kg	210	7.0	1
Ethyl ether		ND		ug/kg	270	14.	1
trans-1,4-Dichloro-2-bute	ne	ND		ug/kg	270	21.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	108		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	96		70-130	

			Serial_N	o:04181614:19
Project Name:	1500 ASTOR		Lab Number:	L1610441
Project Number:	20152118.201		Report Date:	04/18/16
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1610441-02 2118-SB-01 (7.5-8.0) BRONX, NY Soil 1,8260C 04/15/16 00:47 BS 91%		Date Collected: Date Received: Field Prep:	04/07/16 09:25 04/08/16 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - W	estborough Lab					
Methylene chloride	ND		ug/kg	8.8	0.97	1
1,1-Dichloroethane	ND		ug/kg	1.3	0.08	1
Chloroform	ND		ug/kg	1.3	0.33	1
Carbon tetrachloride	ND		ug/kg	0.88	0.18	1
1,2-Dichloropropane	ND		ug/kg	3.1	0.20	1
Dibromochloromethane	ND		ug/kg	0.88	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.27	1
Tetrachloroethene	ND		ug/kg	0.88	0.12	1
Chlorobenzene	ND		ug/kg	0.88	0.31	1
Trichlorofluoromethane	ND		ug/kg	4.4	0.34	1
1,2-Dichloroethane	ND		ug/kg	0.88	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.88	0.10	1
Bromodichloromethane	ND		ug/kg	0.88	0.15	1
trans-1,3-Dichloropropene	ND		ug/kg	0.88	0.11	1
cis-1,3-Dichloropropene	ND		ug/kg	0.88	0.10	1
1,3-Dichloropropene, Total	ND		ug/kg	0.88	0.10	1
1,1-Dichloropropene	ND		ug/kg	4.4	0.12	1
Bromoform	ND		ug/kg	3.5	0.21	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.88	0.09	1
Benzene	ND		ug/kg	0.88	0.10	1
Toluene	1.8		ug/kg	1.3	0.17	1
Ethylbenzene	ND		ug/kg	0.88	0.11	1
Chloromethane	ND		ug/kg	4.4	0.26	1
Bromomethane	ND		ug/kg	1.8	0.30	1
Vinyl chloride	ND		ug/kg	1.8	0.10	1
Chloroethane	ND		ug/kg	1.8	0.28	1
1,1-Dichloroethene	ND		ug/kg	0.88	0.23	1
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.19	1
Trichloroethene	ND		ug/kg	0.88	0.11	1
1,2-Dichlorobenzene	ND		ug/kg	4.4	0.14	1

						Serial_No:04181614:19		
Project Name:	1500 ASTOR				Lab Nı	L1610441		
Project Number:	20152118.201				Report		04/18/16	
		SAMP		S			01,10,10	
Lab ID:	L1610441-02				Date Co	llected:	04/07/16 09:25	
Client ID:	2118-SB-01 (7.5-8.0)				Date Re		04/08/16	
Sample Location:	BRONX, NY				Field Pre	əp:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy 8260/5035 - Westborou	gh Lab						
1,3-Dichlorobenzene		ND		ug/kg	4.4	0.12	1	
1,4-Dichlorobenzene		ND		ug/kg	4.4	0.12	1	
Methyl tert butyl ether		ND		ug/kg	1.8	0.07	1	
p/m-Xylene		ND		ug/kg	1.8	0.17	1	
o-Xylene		ND		ug/kg	1.8	0.15	1	
Xylenes, Total		ND		ug/kg	1.8	0.15	1	
cis-1,2-Dichloroethene		ND		ug/kg	0.88	0.12	1	
1,2-Dichloroethene, Tota	1	ND		ug/kg	0.88	0.12	1	
Dibromomethane		ND		ug/kg	8.8	0.14	1	
Styrene		ND		ug/kg	1.8	0.35	1	
Dichlorodifluoromethane		ND		ug/kg	8.8	0.17	1	
Acetone		1.1	J	ug/kg	8.8	0.91	1	
Carbon disulfide		ND		ug/kg	8.8	0.97	1	
2-Butanone		ND		ug/kg	8.8	0.24	1	
Vinyl acetate		ND		ug/kg	8.8	0.12	1	
4-Methyl-2-pentanone		ND		ug/kg	8.8	0.22	1	
1,2,3-Trichloropropane		ND		ug/kg	8.8	0.14	1	
2-Hexanone		ND		ug/kg	8.8	0.59	1	
Bromochloromethane		ND		ug/kg	4.4	0.24	1	
2,2-Dichloropropane		ND		ug/kg	4.4	0.20	1	
1,2-Dibromoethane		ND		ug/kg	3.5	0.15	1	
1,3-Dichloropropane		ND		ug/kg	4.4	0.13	1	
1,1,1,2-Tetrachloroethan	e	ND		ug/kg	0.88	0.28	1	
Bromobenzene		ND		ug/kg	4.4	0.18	1	
n-Butylbenzene		ND		ug/kg	0.88	0.10	1	
sec-Butylbenzene		ND		ug/kg	0.88	0.11	1	
tert-Butylbenzene		ND		ug/kg	4.4	0.12	1	
o-Chlorotoluene		ND		ug/kg	4.4	0.14	1	
p-Chlorotoluene		ND		ug/kg	4.4	0.12	1	
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	4.4	0.35	1	
Hexachlorobutadiene		ND		ug/kg	4.4	0.20	1	
Isopropylbenzene		ND		ug/kg	0.88	0.09	1	
p-Isopropyltoluene		ND		ug/kg	0.88	0.11	1	
Naphthalene		ND		ug/kg	4.4	0.12	1	
Acrylonitrile		ND		ug/kg	8.8	0.45	1	
n-Propylbenzene		ND		ug/kg	0.88	0.10	1	
1,2,3-Trichlorobenzene		ND		ug/kg	4.4	0.13	1	
1,2,4-Trichlorobenzene		ND		ug/kg	4.4	0.16	1	
1,3,5-Trimethylbenzene		ND		ug/kg	4.4	0.13	1	
				00				

					Serial_No:04181614:19				
Project Name:	1500 ASTOR				Lab Nu	ımber:	L1610441		
Project Number:	20152118.201				Report	Date:	04/18/16		
		SAMP		6					
Lab ID:	L1610441-02				Date Co	llected:	04/07/16 09:25		
Client ID:	2118-SB-01 (7.5-8.0)			Date Received:		04/08/16			
Sample Location:	BRONX, NY				Field Prep:		Not Specified		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	y 8260/5035 - Westboroug	gh Lab							
1,2,4-Trimethylbenzene		ND		ug/kg	4.4	0.12	1		
1,4-Dioxane		ND		ug/kg	88	13.	1		
p-Diethylbenzene		ND		ug/kg	3.5	0.14	1		
p-Ethyltoluene		ND		ug/kg	3.5	0.11	1		
1,2,4,5-Tetramethylbenze	ene	ND		ug/kg	3.5	0.11	1		
Ethyl ether		ND		ug/kg	4.4	0.23	1		
trans-1,4-Dichloro-2-bute	ne	ND		ug/kg	4.4	0.34	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	91		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	102		70-130	

			Serial_N	o:04181614:19
Project Name:	1500 ASTOR		Lab Number:	L1610441
Project Number:	20152118.201		Report Date:	04/18/16
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1610441-03 D 2118-SB-02 (0.5-1.0) BRONX, NY Soil 1,8260C 04/15/16 11:11 BS 93%		Date Collected: Date Received: Field Prep:	04/07/16 09:30 04/08/16 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	stborough Lab					
Methylene chloride	ND		ug/kg	1200	140	2.5
1,1-Dichloroethane	ND		ug/kg	190	11.	2.5
Chloroform	ND		ug/kg	190	46.	2.5
Carbon tetrachloride	ND		ug/kg	120	26.	2.5
1,2-Dichloropropane	ND		ug/kg	440	29.	2.5
Dibromochloromethane	ND		ug/kg	120	19.	2.5
1,1,2-Trichloroethane	ND		ug/kg	190	38.	2.5
Tetrachloroethene	13000		ug/kg	120	18.	2.5
Chlorobenzene	ND		ug/kg	120	44.	2.5
Trichlorofluoromethane	ND		ug/kg	630	49.	2.5
1,2-Dichloroethane	ND		ug/kg	120	14.	2.5
1,1,1-Trichloroethane	ND		ug/kg	120	14.	2.5
Bromodichloromethane	ND		ug/kg	120	22.	2.5
rans-1,3-Dichloropropene	ND		ug/kg	120	15.	2.5
cis-1,3-Dichloropropene	ND		ug/kg	120	15.	2.5
1,3-Dichloropropene, Total	ND		ug/kg	120	15.	2.5
1,1-Dichloropropene	ND		ug/kg	630	18.	2.5
Bromoform	ND		ug/kg	500	30.	2.5
1,1,2,2-Tetrachloroethane	ND		ug/kg	120	13.	2.5
Benzene	ND		ug/kg	120	15.	2.5
Toluene	ND		ug/kg	190	24.	2.5
Ethylbenzene	ND		ug/kg	120	16.	2.5
Chloromethane	ND		ug/kg	630	37.	2.5
Bromomethane	ND		ug/kg	250	42.	2.5
Vinyl chloride	ND		ug/kg	250	15.	2.5
Chloroethane	ND		ug/kg	250	40.	2.5
1,1-Dichloroethene	ND		ug/kg	120	33.	2.5
trans-1,2-Dichloroethene	ND		ug/kg	190	27.	2.5
Trichloroethene	190		ug/kg	120	16.	2.5
1,2-Dichlorobenzene	ND		ug/kg	630	19.	2.5

					(Serial N	0:04181614:19
Project Name:	1500 ASTOR				Lab Nu		L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
-,	_0.02.10.201	SAMP		S			
Lab ID:	L1610441-03 D				Date Col	lected:	04/07/16 09:30
Client ID:	2118-SB-02 (0.5-1.0)				Date Red		04/08/16
Sample Location:	BRONX, NY				Field Pre		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westborou	gh Lab					
					000		0.5
1,3-Dichlorobenzene		ND ND		ug/kg	630 630	17. 17.	2.5
		ND		ug/kg			2.5
Methyl tert butyl ether		ND		ug/kg	250	10. 25.	2.5
p/m-Xylene				ug/kg	250		
o-Xylene		ND		ug/kg	250	22.	2.5
Xylenes, Total		ND		ug/kg	250	22.	2.5
cis-1,2-Dichloroethene		ND		ug/kg	120	18.	2.5
1,2-Dichloroethene, Tota	1	ND		ug/kg	120	18.	2.5
Dibromomethane		ND		ug/kg	1200	20.	2.5
Styrene		ND		ug/kg	250	50.	2.5
Dichlorodifluoromethane		ND		ug/kg	1200	24.	2.5
Acetone		ND		ug/kg	1200	130	2.5
Carbon disulfide		ND		ug/kg	1200	140	2.5
2-Butanone		ND		ug/kg	1200	34.	2.5
Vinyl acetate		ND		ug/kg	1200	16.	2.5
4-Methyl-2-pentanone		ND		ug/kg	1200	31.	2.5
1,2,3-Trichloropropane		ND		ug/kg	1200	20.	2.5
2-Hexanone		ND		ug/kg	1200	84.	2.5
Bromochloromethane		ND		ug/kg	630	35.	2.5
2,2-Dichloropropane		ND		ug/kg	630	28.	2.5
1,2-Dibromoethane		ND		ug/kg	500	22.	2.5
1,3-Dichloropropane		ND		ug/kg	630	18.	2.5
1,1,1,2-Tetrachloroethan	e	ND		ug/kg	120	40.	2.5
Bromobenzene		ND		ug/kg	630	26.	2.5
n-Butylbenzene		ND		ug/kg	120	14.	2.5
sec-Butylbenzene		ND		ug/kg	120	15.	2.5
tert-Butylbenzene		ND		ug/kg	630	17.	2.5
o-Chlorotoluene		ND		ug/kg	630	20.	2.5
p-Chlorotoluene		ND		ug/kg	630	17.	2.5
1,2-Dibromo-3-chloroprop	pane	ND		ug/kg	630	50.	2.5
Hexachlorobutadiene		ND		ug/kg	630	29.	2.5
Isopropylbenzene		ND		ug/kg	120	13.	2.5
p-Isopropyltoluene		ND		ug/kg	120	16.	2.5
Naphthalene		ND		ug/kg	630	17.	2.5
Acrylonitrile		ND		ug/kg	1200	64.	2.5
n-Propylbenzene		ND		ug/kg	120	14.	2.5
1,2,3-Trichlorobenzene		ND		ug/kg	630	18.	2.5
1,2,4-Trichlorobenzene		ND		ug/kg	630	23.	2.5
1,3,5-Trimethylbenzene		ND		ug/kg	630	18.	2.5
				~9,119			

					S	Serial_No	p:04181614:19
Project Name:	1500 ASTOR				Lab Nu	mber:	L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
		SAMP	LE RESULTS	6			
Lab ID:	L1610441-03	D			Date Col	lected:	04/07/16 09:30
Client ID:	2118-SB-02 (0.5-1.0)				Date Rec	eived:	04/08/16
Sample Location:	BRONX, NY				Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westboro	ugh Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	630	18.	2.5
1,4-Dioxane		ND		ug/kg	12000	1800	2.5
p-Diethylbenzene		ND		ug/kg	500	20.	2.5
p-Ethyltoluene		ND		ug/kg	500	16.	2.5
1,2,4,5-Tetramethylbenze	ne	ND		ug/kg	500	16.	2.5
Ethyl ether		ND		ug/kg	630	33.	2.5
trans-1,4-Dichloro-2-buter	ne	ND		ug/kg	630	49.	2.5

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	97		70-130	

			Serial_N	o:04181614:19
Project Name:	1500 ASTOR		Lab Number:	L1610441
Project Number:	20152118.201		Report Date:	04/18/16
		SAMPLE RESULTS		
Lab ID:	L1610441-04		Date Collected:	04/07/16 09:40
Client ID:	2118-SB-02 (4.0-4.5)		Date Received:	04/08/16
Sample Location:	BRONX, NY		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	04/15/16 13:01			
Analyst:	MV			
Percent Solids:	89%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Westbor	ough Lab					
Methylene chloride	ND		ug/kg	8.7	0.96	1
1,1-Dichloroethane	ND		ug/kg	1.3	0.08	1
Chloroform	ND		ug/kg	1.3	0.32	1
Carbon tetrachloride	ND		ug/kg	0.87	0.18	1
1,2-Dichloropropane	ND		ug/kg	3.0	0.20	1
Dibromochloromethane	ND		ug/kg	0.87	0.13	1
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.26	1
Tetrachloroethene	72		ug/kg	0.87	0.12	1
Chlorobenzene	ND		ug/kg	0.87	0.30	1
Trichlorofluoromethane	ND		ug/kg	4.4	0.34	1
1,2-Dichloroethane	ND		ug/kg	0.87	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.87	0.10	1
Bromodichloromethane	ND		ug/kg	0.87	0.15	1
trans-1,3-Dichloropropene	ND		ug/kg	0.87	0.10	1
cis-1,3-Dichloropropene	ND		ug/kg	0.87	0.10	1
1,3-Dichloropropene, Total	ND		ug/kg	0.87	0.10	1
1,1-Dichloropropene	ND		ug/kg	4.4	0.12	1
Bromoform	ND		ug/kg	3.5	0.21	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.87	0.09	1
Benzene	ND		ug/kg	0.87	0.10	1
Toluene	1.0	J	ug/kg	1.3	0.17	1
Ethylbenzene	ND		ug/kg	0.87	0.11	1
Chloromethane	ND		ug/kg	4.4	0.26	1
Bromomethane	ND		ug/kg	1.7	0.30	1
Vinyl chloride	ND		ug/kg	1.7	0.10	1
Chloroethane	ND		ug/kg	1.7	0.28	1
1,1-Dichloroethene	ND		ug/kg	0.87	0.23	1
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.18	1
Trichloroethene	1.7		ug/kg	0.87	0.11	1
1,2-Dichlorobenzene	ND		ug/kg	4.4	0.13	1

	Serial_No:04181614:19						o:04181614:19
Project Name:	1500 ASTOR				Lab Nu	imber:	L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
•		SAMP		S	•		0 1/ 10/ 10
Lab ID:	L1610441-04				Date Co	llected:	04/07/16 09:40
Client ID:	2118-SB-02 (4.0-4.5)				Date Re	ceived:	04/08/16
Sample Location:	BRONX, NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy 8260/5035 - Westborou	gh Lab					
1,3-Dichlorobenzene		ND		ug/kg	4.4	0.12	1
1,4-Dichlorobenzene		ND		ug/kg	4.4	0.12	1
Methyl tert butyl ether		ND		ug/kg	1.7	0.07	1
p/m-Xylene		ND		ug/kg	1.7	0.17	1
o-Xylene		ND		ug/kg	1.7	0.15	1
Xylenes, Total		ND		ug/kg	1.7	0.15	1
cis-1,2-Dichloroethene		ND		ug/kg	0.87	0.13	1
1,2-Dichloroethene, Tota	1	ND		ug/kg	0.87	0.12	1
Dibromomethane		ND		ug/kg	8.7	0.12	1
Styrene		ND		ug/kg	1.7	0.35	1
Dichlorodifluoromethane		ND		ug/kg	8.7	0.17	1
Acetone		4.9	J	ug/kg	8.7	0.90	1
Carbon disulfide		ND	-	ug/kg	8.7	0.96	1
2-Butanone		ND		ug/kg	8.7	0.24	1
Vinyl acetate		ND		ug/kg	8.7	0.12	1
4-Methyl-2-pentanone		ND		ug/kg	8.7	0.21	1
1,2,3-Trichloropropane		ND		ug/kg	8.7	0.14	1
2-Hexanone		ND		ug/kg	8.7	0.58	1
Bromochloromethane		ND		ug/kg	4.4	0.24	1
2,2-Dichloropropane		ND		ug/kg	4.4	0.20	1
1,2-Dibromoethane		ND		ug/kg	3.5	0.15	1
1,3-Dichloropropane		ND		ug/kg	4.4	0.13	1
1,1,1,2-Tetrachloroethan	e	ND		ug/kg	0.87	0.28	1
Bromobenzene		ND		ug/kg	4.4	0.18	1
n-Butylbenzene		ND		ug/kg	0.87	0.10	1
sec-Butylbenzene		ND		ug/kg	0.87	0.11	1
tert-Butylbenzene		ND		ug/kg	4.4	0.12	1
o-Chlorotoluene		ND		ug/kg	4.4	0.14	1
p-Chlorotoluene		ND		ug/kg	4.4	0.12	1
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	4.4	0.35	1
Hexachlorobutadiene		ND		ug/kg	4.4	0.20	1
Isopropylbenzene		ND		ug/kg	0.87	0.09	1
p-Isopropyltoluene		ND		ug/kg	0.87	0.11	1
Naphthalene		ND		ug/kg	4.4	0.12	1
Acrylonitrile		ND		ug/kg	8.7	0.45	1
n-Propylbenzene		ND		ug/kg	0.87	0.10	1
1,2,3-Trichlorobenzene		ND		ug/kg	4.4	0.13	1
1,2,4-Trichlorobenzene		ND		ug/kg	4.4	0.16	1
1,3,5-Trimethylbenzene		ND		ug/kg	4.4	0.12	1

					Serial_No:04181614:19		
Project Name:	1500 ASTOR				Lab Nu	ımber:	L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
		SAMP		6			
Lab ID:	L1610441-04				Date Co	llected:	04/07/16 09:40
Client ID:	2118-SB-02 (4.0-4.5)				Date Re	ceived:	04/08/16
Sample Location:	BRONX, NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westboroug	gh Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	4.4	0.12	1
1,4-Dioxane		ND		ug/kg	87	13.	1
p-Diethylbenzene		ND		ug/kg	3.5	0.14	1
p-Ethyltoluene		ND		ug/kg	3.5	0.11	1
1,2,4,5-Tetramethylbenze	ene	ND		ug/kg	3.5	0.11	1
Ethyl ether		ND		ug/kg	4.4	0.23	1
trans-1,4-Dichloro-2-bute	ne	ND		ug/kg	4.4	0.34	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	101		70-130	

			Serial_N	o:04181614:19
Project Name:	1500 ASTOR		Lab Number:	L1610441
Project Number:	20152118.201		Report Date:	04/18/16
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1610441-05 D 2118-SB-03 (0.5-1.0) BRONX, NY Soil 1,8260C 04/18/16 11:44 MV 86%		Date Collected: Date Received: Field Prep:	04/07/16 10:00 04/08/16 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by 8260/5035 - Westborough Lab								
Methylene chloride	ND		ug/kg	54000	6000	100		
1,1-Dichloroethane	ND		ug/kg	8200	460	100		
Chloroform	ND		ug/kg	8200	2000	100		
Carbon tetrachloride	ND		ug/kg	5400	1100	100		
1,2-Dichloropropane	ND		ug/kg	19000	1200	100		
Dibromochloromethane	ND		ug/kg	5400	840	100		
1,1,2-Trichloroethane	ND		ug/kg	8200	1600	100		
Tetrachloroethene	380000		ug/kg	5400	760	100		
Chlorobenzene	ND		ug/kg	5400	1900	100		
Trichlorofluoromethane	ND		ug/kg	27000	2100	100		
1,2-Dichloroethane	ND		ug/kg	5400	620	100		
1,1,1-Trichloroethane	ND		ug/kg	5400	600	100		
Bromodichloromethane	ND		ug/kg	5400	940	100		
trans-1,3-Dichloropropene	ND		ug/kg	5400	660	100		
cis-1,3-Dichloropropene	ND		ug/kg	5400	640	100		
1,3-Dichloropropene, Total	ND		ug/kg	5400	640	100		
1,1-Dichloropropene	ND		ug/kg	27000	770	100		
Bromoform	ND		ug/kg	22000	1300	100		
1,1,2,2-Tetrachloroethane	ND		ug/kg	5400	550	100		
Benzene	ND		ug/kg	5400	640	100		
Toluene	ND		ug/kg	8200	1000	100		
Ethylbenzene	ND		ug/kg	5400	690	100		
Chloromethane	ND		ug/kg	27000	1600	100		
Bromomethane	ND		ug/kg	11000	1800	100		
Vinyl chloride	ND		ug/kg	11000	640	100		
Chloroethane	ND		ug/kg	11000	1700	100		
1,1-Dichloroethene	ND		ug/kg	5400	1400	100		
trans-1,2-Dichloroethene	ND		ug/kg	8200	1200	100		
Trichloroethene	ND		ug/kg	5400	680	100		
1,2-Dichlorobenzene	ND		ug/kg	27000	830	100		

		Serial_No:04181614:19						
Project Name:	1500 ASTOR				Lab Nu	mber:	L1610441	
Project Number:	20152118.201				Report	Date:	04/18/16	
	20102110.201	SAMP		S				
Lab ID:	L1610441-05	D			Date Coll	lected:	04/07/16 10:00	
Client ID:	2118-SB-03 (0.5-1.0)				Date Rec		04/08/16	
Sample Location:	BRONX, NY				Field Pre	p:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y 8260/5035 - Westbord	ough Lab						
1,3-Dichlorobenzene		ND		ug/kg	27000	730	100	
1,4-Dichlorobenzene		ND		ug/kg	27000	750	100	
Methyl tert butyl ether		ND		ug/kg	11000	460	100	
p/m-Xylene		ND		ug/kg	11000	1100	100	
o-Xylene		ND		ug/kg	11000	930	100	
Xylenes, Total		ND		ug/kg	11000	930	100	
cis-1,2-Dichloroethene		ND		ug/kg	5400	780	100	
1,2-Dichloroethene, Total		ND		ug/kg	5400	780	100	
Dibromomethane		ND		ug/kg	54000	890	100	
Styrene		ND		ug/kg	11000	2200	100	
Dichlorodifluoromethane		ND		ug/kg	54000	1000	100	
Acetone		ND		ug/kg	54000	5600	100	
Carbon disulfide		ND		ug/kg	54000	6000	100	
2-Butanone		ND		ug/kg	54000	1500	100	
Vinyl acetate		ND		ug/kg	54000	720	100	
4-Methyl-2-pentanone		ND		ug/kg	54000	1300	100	
1,2,3-Trichloropropane		ND		ug/kg	54000	880	100	
2-Hexanone		ND		ug/kg	54000	3600	100	
Bromochloromethane		ND		ug/kg	27000	1500	100	
2,2-Dichloropropane		ND		ug/kg	27000	1200	100	
1,2-Dibromoethane		ND		ug/kg	22000	950	100	
1,3-Dichloropropane		ND		ug/kg	27000	790	100	
1,1,1,2-Tetrachloroethane	e	ND		ug/kg	5400	1700	100	
Bromobenzene		ND		ug/kg	27000	1100	100	
n-Butylbenzene		ND		ug/kg	5400	620	100	
sec-Butylbenzene		ND		ug/kg	5400	660	100	
tert-Butylbenzene		ND		ug/kg	27000	740	100	
o-Chlorotoluene		ND		ug/kg	27000	870	100	
p-Chlorotoluene		ND		ug/kg	27000	720	100	
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	27000	2200	100	
Hexachlorobutadiene		ND		ug/kg	27000	1200	100	
Isopropylbenzene		ND		ug/kg	5400	560	100	
p-Isopropyltoluene		ND		ug/kg	5400	680	100	
Naphthalene		ND		ug/kg	27000	750	100	
Acrylonitrile		ND		ug/kg	54000	2800	100	
n-Propylbenzene		ND		ug/kg	5400	590	100	
1,2,3-Trichlorobenzene		ND		ug/kg	27000	800	100	
1,2,4-Trichlorobenzene		ND		ug/kg	27000	990	100	
1,3,5-Trimethylbenzene		ND		ug/kg	27000	780	100	

					5	Serial_No	0:04181614:19	
Project Name:	1500 ASTOR				Lab Nu	mber:	L1610441	
Project Number:	20152118.201				Report	Date:	04/18/16	
		SAI	IPLE RESULT	S				
Lab ID:	L1610441-05	D			Date Coll	ected:	04/07/16 10:00	
Client ID:	2118-SB-03 (0.5-1			04/08/16				
Sample Location:	BRONX, NY			Field Prep:		Not Specified		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y 8260/5035 - Westb	orough Lab						
1,2,4-Trimethylbenzene		ND		ug/kg	27000	770	100	
1,4-Dioxane		ND		ug/kg	540000	78000	100	
p-Diethylbenzene		ND		ug/kg	22000	870	100	
p-Ethyltoluene		ND		ug/kg	22000	670	100	
1,2,4,5-Tetramethylbenze	ene	ND		ug/kg	22000	710	100	
Ethyl ether		ND		ug/kg	27000	1400	100	
trans-1.4-Dichloro-2-bute	ne	ND		ug/kg	27000	2100	100	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	95		70-130	

			Serial_N	o:04181614:19
Project Name:	1500 ASTOR		Lab Number:	L1610441
Project Number:	20152118.201		Report Date:	04/18/16
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1610441-06 2118-SB-03 (6.5-7.0) BRONX, NY Soil 1,8260C 04/17/16 15:42 MV		Date Collected: Date Received: Field Prep:	04/07/16 10:15 04/08/16 Not Specified
Percent Solids:	91%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	estborough Lab					
Methylene chloride	ND		ug/kg	9.0	0.99	1
1,1-Dichloroethane	ND		ug/kg	1.3	0.08	1
Chloroform	ND		ug/kg	1.3	0.33	1
Carbon tetrachloride	ND		ug/kg	0.90	0.19	1
1,2-Dichloropropane	ND		ug/kg	3.1	0.20	1
Dibromochloromethane	ND		ug/kg	0.90	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.27	1
Tetrachloroethene	34		ug/kg	0.90	0.13	1
Chlorobenzene	ND		ug/kg	0.90	0.31	1
Trichlorofluoromethane	ND		ug/kg	4.5	0.35	1
1,2-Dichloroethane	ND		ug/kg	0.90	0.10	1
1,1,1-Trichloroethane	ND		ug/kg	0.90	0.10	1
Bromodichloromethane	ND		ug/kg	0.90	0.16	1
trans-1,3-Dichloropropene	ND		ug/kg	0.90	0.11	1
cis-1,3-Dichloropropene	ND		ug/kg	0.90	0.10	1
1,3-Dichloropropene, Total	ND		ug/kg	0.90	0.10	1
1,1-Dichloropropene	ND		ug/kg	4.5	0.13	1
Bromoform	ND		ug/kg	3.6	0.21	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.90	0.09	1
Benzene	ND		ug/kg	0.90	0.11	1
Toluene	1.4		ug/kg	1.3	0.18	1
Ethylbenzene	ND		ug/kg	0.90	0.11	1
Chloromethane	ND		ug/kg	4.5	0.26	1
Bromomethane	ND		ug/kg	1.8	0.30	1
Vinyl chloride	ND		ug/kg	1.8	0.10	1
Chloroethane	ND		ug/kg	1.8	0.28	1
1,1-Dichloroethene	ND		ug/kg	0.90	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.19	1
Trichloroethene	1.0		ug/kg	0.90	0.11	1
1,2-Dichlorobenzene	ND		ug/kg	4.5	0.14	1

	Serial_No:04181614:19						
Project Name:	1500 ASTOR				Lab Number:		L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
	20102110.201	SAMP		S			10/10
Lab ID:	L1610441-06				Date Col	llected:	04/07/16 10:15
Client ID:	2118-SB-03 (6.5-7.0)				Date Re		04/08/16
Sample Location:	BRONX, NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westboroug	gh Lab					
1,3-Dichlorobenzene		ND		ug/kg	4.5	0.12	1
1,4-Dichlorobenzene		ND		ug/kg	4.5	0.12	1
Methyl tert butyl ether		ND		ug/kg	1.8	0.08	1
p/m-Xylene		ND		ug/kg	1.8	0.18	1
o-Xylene		ND		ug/kg	1.8	0.15	1
Xylenes, Total		ND		ug/kg	1.8	0.15	1
cis-1,2-Dichloroethene		ND		ug/kg	0.90	0.13	1
1,2-Dichloroethene, Total		ND		ug/kg	0.90	0.13	1
Dibromomethane		ND		ug/kg	9.0	0.15	1
Styrene		ND		ug/kg	1.8	0.36	1
Dichlorodifluoromethane		ND		ug/kg	9.0	0.17	1
Acetone		ND		ug/kg	9.0	0.93	1
Carbon disulfide		ND		ug/kg	9.0	0.99	1
2-Butanone		ND		ug/kg	9.0	0.24	1
Vinyl acetate		ND		ug/kg	9.0	0.12	1
4-Methyl-2-pentanone		ND		ug/kg	9.0	0.22	1
1,2,3-Trichloropropane		ND		ug/kg	9.0	0.15	1
2-Hexanone		ND		ug/kg	9.0	0.60	1
Bromochloromethane		ND		ug/kg	4.5	0.25	1
2,2-Dichloropropane		ND		ug/kg	4.5	0.20	1
1,2-Dibromoethane		ND		ug/kg	3.6	0.16	1
1,3-Dichloropropane		ND		ug/kg	4.5	0.13	1
1,1,1,2-Tetrachloroethane)	ND		ug/kg	0.90	0.28	1
Bromobenzene		ND		ug/kg	4.5	0.19	1
n-Butylbenzene		ND		ug/kg	0.90	0.10	1
sec-Butylbenzene		ND		ug/kg	0.90	0.11	1
tert-Butylbenzene		ND		ug/kg	4.5	0.12	1
o-Chlorotoluene		ND		ug/kg	4.5	0.14	1
p-Chlorotoluene		ND		ug/kg	4.5	0.12	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	4.5	0.36	1
Hexachlorobutadiene		ND		ug/kg	4.5	0.20	1
Isopropylbenzene		ND		ug/kg	0.90	0.09	1
p-Isopropyltoluene		ND		ug/kg	0.90	0.11	1
Naphthalene		ND		ug/kg	4.5	0.12	1
Acrylonitrile		ND		ug/kg	9.0	0.46	1
n-Propylbenzene		ND		ug/kg	0.90	0.10	1
1,2,3-Trichlorobenzene		ND		ug/kg	4.5	0.13	1
1,2,4-Trichlorobenzene		ND		ug/kg	4.5	0.16	1
1,3,5-Trimethylbenzene		ND		ug/kg	4.5	0.13	1

					Serial_No:04181614:19		
Project Name:	1500 ASTOR				Lab Nu	ımber:	L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
		SAMP	LE RESULTS	6			
Lab ID:	L1610441-06				Date Co	llected:	04/07/16 10:15
Client ID:	2118-SB-03 (6.5-7.0)				Date Re	ceived:	04/08/16
Sample Location:	BRONX, NY				Field Prep:		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westborou	gh Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	4.5	0.13	1
1,4-Dioxane		ND		ug/kg	90	13.	1
p-Diethylbenzene		ND		ug/kg	3.6	0.14	1
p-Ethyltoluene		ND		ug/kg	3.6	0.11	1
1,2,4,5-Tetramethylbenze	ene	ND		ug/kg	3.6	0.12	1
Ethyl ether		ND		ug/kg	4.5	0.23	1
trans-1,4-Dichloro-2-bute	ne	ND		ug/kg	4.5	0.35	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	97		70-130	

			Serial_N	o:04181614:19
Project Name:	1500 ASTOR		Lab Number:	L1610441
Project Number:	20152118.201		Report Date:	04/18/16
		SAMPLE RESULTS		
Lab ID:	L1610441-07		Date Collected:	04/07/16 11:15
Client ID:	2118-SB-04 (1.0-1.5)		Date Received:	04/08/16
Sample Location:	BRONX, NY		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	04/15/16 01:13			
Analyst:	BS			
Percent Solids:	89%			

Volatile Organics by 8260/5035 - Westboro Nethylene chloride ,1-Dichloroethane Chloroform Carbon tetrachloride ,2-Dichloropropane Dibromochloromethane ,1,2-Trichloroethane Tetrachloroethene Chlorobenzene	ugh Lab	Units	RL	MDL	Dilution Factor
,1-Dichloroethane Chloroform Carbon tetrachloride ,2-Dichloropropane Dibromochloromethane ,1,2-Trichloroethane etrachloroethene	ug. Lub				
,1-Dichloroethane Chloroform Carbon tetrachloride ,2-Dichloropropane Dibromochloromethane ,1,2-Trichloroethane etrachloroethene	ND	ug/kg	7.8	0.86	1
Carbon tetrachloride ,2-Dichloropropane Dibromochloromethane ,1,2-Trichloroethane	ND	ug/kg	1.2	0.07	1
,2-Dichloropropane Dibromochloromethane ,1,2-Trichloroethane	ND	ug/kg	1.2	0.29	1
Dibromochloromethane ,1,2-Trichloroethane etrachloroethene	ND	ug/kg	0.78	0.16	1
,1,2-Trichloroethane	ND	ug/kg	2.7	0.18	1
etrachloroethene	ND	ug/kg	0.78	0.12	1
	ND	ug/kg	1.2	0.24	1
Chlorobonzono	ND	ug/kg	0.78	0.11	1
	ND	ug/kg	0.78	0.27	1
richlorofluoromethane	ND	ug/kg	3.9	0.30	1
,2-Dichloroethane	ND	ug/kg	0.78	0.09	1
,1,1-Trichloroethane	ND	ug/kg	0.78	0.09	1
Bromodichloromethane	ND	ug/kg	0.78	0.14	1
rans-1,3-Dichloropropene	ND	ug/kg	0.78	0.09	1
is-1,3-Dichloropropene	ND	ug/kg	0.78	0.09	1
,3-Dichloropropene, Total	ND	ug/kg	0.78	0.09	1
,1-Dichloropropene	ND	ug/kg	3.9	0.11	1
Bromoform	ND	ug/kg	3.1	0.18	1
,1,2,2-Tetrachloroethane	ND	ug/kg	0.78	0.08	1
Benzene	ND	ug/kg	0.78	0.09	1
oluene	1.3	ug/kg	1.2	0.15	1
thylbenzene	ND	ug/kg	0.78	0.10	1
Chloromethane	ND	ug/kg	3.9	0.23	1
Bromomethane	ND	ug/kg	1.6	0.26	1
/inyl chloride	ND	ug/kg	1.6	0.09	1
Chloroethane	ND	ug/kg	1.6	0.25	1
,1-Dichloroethene	ND	ug/kg	0.78	0.20	1
rans-1,2-Dichloroethene	ND	ug/kg	1.2	0.16	1
richloroethene	ND	ug/kg	0.78	0.10	1
,2-Dichlorobenzene	ND	ug/kg	3.9	0.12	1

						Serial_N	0:04181614:19
Project Name:	1500 ASTOR				Lab Nu		L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
		SAMP	LE RESULT	S			
Lab ID:	L1610441-07				Date Co	llected:	04/07/16 11:15
Client ID:	2118-SB-04 (1.0-1.5)				Date Re	ceived:	04/08/16
Sample Location:	BRONX, NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy 8260/5035 - Westborou	gh Lab					
1,3-Dichlorobenzene		ND		ug/kg	3.9	0.10	1
1,4-Dichlorobenzene		ND		ug/kg	3.9	0.11	1
Methyl tert butyl ether		ND		ug/kg	1.6	0.07	1
p/m-Xylene		ND		ug/kg	1.6	0.15	1
o-Xylene		ND		ug/kg	1.6	0.13	1
Xylenes, Total		ND		ug/kg	1.6	0.13	1
cis-1,2-Dichloroethene		ND		ug/kg	0.78	0.11	1
1,2-Dichloroethene, Tota	l	ND		ug/kg	0.78	0.11	1
Dibromomethane		ND		ug/kg	7.8	0.13	1
Styrene		ND		ug/kg	1.6	0.31	1
Dichlorodifluoromethane		ND		ug/kg	7.8	0.15	1
Acetone		ND		ug/kg	7.8	0.81	1
Carbon disulfide		ND		ug/kg	7.8	0.86	1
2-Butanone		ND		ug/kg	7.8	0.21	1
Vinyl acetate		ND		ug/kg	7.8	0.10	1
4-Methyl-2-pentanone		ND		ug/kg	7.8	0.19	1
1,2,3-Trichloropropane		ND		ug/kg	7.8	0.13	1
2-Hexanone		ND		ug/kg	7.8	0.52	1
Bromochloromethane		ND		ug/kg	3.9	0.22	1
2,2-Dichloropropane		ND		ug/kg	3.9	0.18	1
1,2-Dibromoethane		ND		ug/kg	3.1	0.14	1
1,3-Dichloropropane		ND		ug/kg	3.9	0.11	1
1,1,1,2-Tetrachloroethan	e	ND		ug/kg	0.78	0.25	1
Bromobenzene		ND		ug/kg	3.9	0.16	1
n-Butylbenzene		ND		ug/kg	0.78	0.09	1
sec-Butylbenzene		ND		ug/kg	0.78	0.10	1
tert-Butylbenzene		ND		ug/kg	3.9	0.10	1
o-Chlorotoluene		ND		ug/kg	3.9	0.12	1
p-Chlorotoluene		ND		ug/kg	3.9	0.10	1
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	3.9	0.31	1
Hexachlorobutadiene		ND		ug/kg	3.9	0.18	1
Isopropylbenzene		ND		ug/kg	0.78	0.08	1
p-Isopropyltoluene		ND		ug/kg	0.78	0.10	1
Naphthalene		ND		ug/kg	3.9	0.11	1
Acrylonitrile		ND		ug/kg	7.8	0.40	1
n-Propylbenzene		ND		ug/kg	0.78	0.09	1
1,2,3-Trichlorobenzene		ND		ug/kg	3.9	0.12	1
1,2,4-Trichlorobenzene		ND		ug/kg	3.9	0.14	1
1,3,5-Trimethylbenzene		ND		ug/kg	3.9	0.11	1
				5 5			

						o:04181614:19	
Project Name:	1500 ASTOR				Lab Nu	ımber:	L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
		SAMP		6			
Lab ID:	L1610441-07				Date Co	llected:	04/07/16 11:15
Client ID:	2118-SB-04 (1.0-1.5)				Date Re	ceived:	04/08/16
Sample Location:	BRONX, NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westboroug	gh Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	3.9	0.11	1
1,4-Dioxane		ND		ug/kg	78	11.	1
p-Diethylbenzene		ND		ug/kg	3.1	0.12	1
p-Ethyltoluene		ND		ug/kg	3.1	0.10	1
1,2,4,5-Tetramethylbenze	ene	ND		ug/kg	3.1	0.10	1
Ethyl ether		ND		ug/kg	3.9	0.20	1
trans-1,4-Dichloro-2-bute	ne	ND		ug/kg	3.9	0.31	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	91		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	103		70-130	

			Serial_N	o:04181614:19
Project Name:	1500 ASTOR		Lab Number:	L1610441
Project Number:	20152118.201		Report Date:	04/18/16
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1610441-08 2118-SB-04 (7.0-7.5) BRONX, NY Soil 1,8260C 04/15/16 01:39 BS 90%		Date Collected: Date Received: Field Prep:	04/07/16 11:30 04/08/16 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - V	Westborough Lab					
Methylene chloride	ND		ug/kg	7.7	0.85	1
1,1-Dichloroethane	ND			1.2	0.85	1
·			ug/kg			
Chloroform	ND		ug/kg	1.2	0.28	1
Carbon tetrachloride	ND		ug/kg	0.77	0.16	1
1,2-Dichloropropane	ND		ug/kg	2.7	0.18	1
Dibromochloromethane	ND		ug/kg	0.77	0.12	1
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.23	1
Tetrachloroethene	ND		ug/kg	0.77	0.11	1
Chlorobenzene	ND		ug/kg	0.77	0.27	1
Trichlorofluoromethane	ND		ug/kg	3.8	0.30	1
1,2-Dichloroethane	ND		ug/kg	0.77	0.09	1
1,1,1-Trichloroethane	ND		ug/kg	0.77	0.09	1
Bromodichloromethane	ND		ug/kg	0.77	0.13	1
trans-1,3-Dichloropropene	ND		ug/kg	0.77	0.09	1
cis-1,3-Dichloropropene	ND		ug/kg	0.77	0.09	1
1,3-Dichloropropene, Total	ND		ug/kg	0.77	0.09	1
1,1-Dichloropropene	ND		ug/kg	3.8	0.11	1
Bromoform	ND		ug/kg	3.1	0.18	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.77	0.08	1
Benzene	ND		ug/kg	0.77	0.09	1
Toluene	0.69	J	ug/kg	1.2	0.15	1
Ethylbenzene	ND		ug/kg	0.77	0.10	1
Chloromethane	ND		ug/kg	3.8	0.23	1
Bromomethane	ND		ug/kg	1.5	0.26	1
Vinyl chloride	ND		ug/kg	1.5	0.09	1
Chloroethane	ND		ug/kg	1.5	0.24	1
1,1-Dichloroethene	ND		ug/kg	0.77	0.20	1
trans-1,2-Dichloroethene	ND		ug/kg	1.2	0.16	1
Trichloroethene	ND		ug/kg	0.77	0.10	1
1,2-Dichlorobenzene	ND		ug/kg	3.8	0.12	1
			~9, ~9	5.0		

					:	Serial_N	0:04181614:19
Project Name:	1500 ASTOR				Lab Nu	mber:	L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
-,	_0.02.10.201	SAMP		S			
Lab ID:	L1610441-08				Date Col	llected:	04/07/16 11:30
Client ID:	2118-SB-04 (7.0-7.5)				Date Re	ceived:	04/08/16
Sample Location:	BRONX, NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westboroug	gh Lab					
1,3-Dichlorobenzene		ND		ug/kg	3.8	0.10	1
1,4-Dichlorobenzene		ND		ug/kg	3.8	0.11	1
Methyl tert butyl ether		ND		ug/kg	1.5	0.07	1
p/m-Xylene		ND		ug/kg	1.5	0.15	1
o-Xylene		ND		ug/kg	1.5	0.13	1
Xylenes, Total		ND		ug/kg	1.5	0.13	1
cis-1,2-Dichloroethene		ND		ug/kg	0.77	0.10	1
1,2-Dichloroethene, Total		ND		ug/kg	0.77	0.11	1
Dibromomethane		ND		ug/kg	7.7	0.12	1
Styrene		ND		ug/kg	1.5	0.31	1
Dichlorodifluoromethane		ND		ug/kg	7.7	0.01	1
Acetone		ND		ug/kg	7.7	0.80	1
Carbon disulfide		ND		ug/kg	7.7	0.85	1
2-Butanone		ND		ug/kg	7.7	0.00	1
Vinyl acetate		ND		ug/kg	7.7	0.10	1
4-Methyl-2-pentanone		ND		ug/kg	7.7	0.19	1
1,2,3-Trichloropropane		ND		ug/kg	7.7	0.12	1
2-Hexanone		ND		ug/kg	7.7	0.51	1
Bromochloromethane		ND		ug/kg	3.8	0.01	1
2,2-Dichloropropane		ND		ug/kg	3.8	0.21	1
1,2-Dibromoethane		ND		ug/kg	3.1	0.13	1
1,3-Dichloropropane		ND		ug/kg	3.8	0.13	1
1,1,1,2-Tetrachloroethane	2	ND		ug/kg ug/kg	0.77	0.11	1
Bromobenzene	<u>,</u>	ND		ug/kg ug/kg	3.8	0.24	1
n-Butylbenzene		ND			0.77	0.10	1
sec-Butylbenzene		ND		ug/kg ug/kg	0.77	0.09	1
tert-Butylbenzene		ND		ug/kg ug/kg	3.8	0.09	1
o-Chlorotoluene		ND		ug/kg ug/kg	3.8	0.10	1
p-Chlorotoluene		ND			3.8	0.12	1
1,2-Dibromo-3-chloroprop	Dane	ND		ug/kg ug/kg	3.8	0.10	1
Hexachlorobutadiene		ND			3.8	0.30	1
Isopropylbenzene		ND		ug/kg	0.77	0.18	1
p-lsopropyltoluene		ND		ug/kg	0.77	0.08	1
		ND		ug/kg			1
Naphthalene				ug/kg	3.8	0.11	
Acrylonitrile		ND		ug/kg	7.7	0.40	1
n-Propylbenzene		ND		ug/kg	0.77	0.08	1
1,2,3-Trichlorobenzene		ND		ug/kg	3.8	0.11	1
1,2,4-Trichlorobenzene		ND		ug/kg	3.8	0.14	1
1,3,5-Trimethylbenzene		ND		ug/kg	3.8	0.11	1

						Serial_No	p:04181614:19
Project Name:	1500 ASTOR				Lab Nu	ımber:	L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
		SAMP		6			
Lab ID:	L1610441-08				Date Co	llected:	04/07/16 11:30
Client ID:	2118-SB-04 (7.0-7.5)				Date Re	ceived:	04/08/16
Sample Location:	BRONX, NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy 8260/5035 - Westborou	gh Lab					
1,2,4-Trimethylbenzene		ND		ug/kg	3.8	0.11	1
1,4-Dioxane		ND		ug/kg	77	11.	1
p-Diethylbenzene		ND		ug/kg	3.1	0.12	1
p-Ethyltoluene		ND		ug/kg	3.1	0.10	1
1,2,4,5-Tetramethylbenze	ene	ND		ug/kg	3.1	0.10	1
Ethyl ether		ND		ug/kg	3.8	0.20	1
trans-1,4-Dichloro-2-bute	ne	ND		ug/kg	3.8	0.30	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	90		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	103		70-130	

				Serial_N	o:04181614:19
Project Name:	1500 ASTOR			Lab Number:	L1610441
Project Number:	20152118.201			Report Date:	04/18/16
			SAMPLE RESULTS		
Lab ID:	L1610441-09	D		Date Collected:	04/07/16 10:25
Client ID:	2118-TW-03 (7.6)			Date Received:	04/08/16
Sample Location:	BRONX, NY			Field Prep:	Not Specified
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	04/15/16 13:15				
Analyst:	PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	62	18.	25
1,1-Dichloroethane	ND		ug/l	62	18.	25
Chloroform	ND		ug/l	62	18.	25
Carbon tetrachloride	ND		ug/l	12	3.4	25
1,2-Dichloropropane	ND		ug/l	25	3.3	25
Dibromochloromethane	ND		ug/l	12	3.7	25
1,1,2-Trichloroethane	ND		ug/l	38	12.	25
Tetrachloroethene	2100		ug/l	12	4.5	25
Chlorobenzene	ND		ug/l	62	18.	25
Trichlorofluoromethane	ND		ug/l	62	18.	25
1,2-Dichloroethane	ND		ug/l	12	3.3	25
1,1,1-Trichloroethane	ND		ug/l	62	18.	25
Bromodichloromethane	ND		ug/l	12	4.8	25
trans-1,3-Dichloropropene	ND		ug/l	12	4.1	25
cis-1,3-Dichloropropene	ND		ug/l	12	3.6	25
1,3-Dichloropropene, Total	ND		ug/l	12	3.6	25
1,1-Dichloropropene	ND		ug/l	62	18.	25
Bromoform	ND		ug/l	50	16.	25
1,1,2,2-Tetrachloroethane	ND		ug/l	12	3.6	25
Benzene	ND		ug/l	12	4.0	25
Toluene	ND		ug/l	62	18.	25
Ethylbenzene	ND		ug/l	62	18.	25
Chloromethane	ND		ug/l	62	18.	25
Bromomethane	ND		ug/l	62	18.	25
Vinyl chloride	ND		ug/l	25	1.7	25
Chloroethane	ND		ug/l	62	18.	25
1,1-Dichloroethene	ND		ug/l	12	3.6	25
trans-1,2-Dichloroethene	ND		ug/l	62	18.	25
Trichloroethene	5.2	J	ug/l	12	4.4	25
1,2-Dichlorobenzene	ND		ug/l	62	18.	25

					:	Serial N	0:04181614:19
Project Name:	1500 ASTOR				Lab Nu		L1610441
Project Number:	20152118.201				Report	Date [.]	04/18/16
	20102110.201	SAMP	LE RESULT	S	noport	Duto	04/10/10
Lab ID:	L1610441-09	D			Date Col	llected.	04/07/16 10:25
Client ID:	2118-TW-03 (7.6)	_			Date Re		04/08/16
Sample Location:	BRONX, NY				Field Pre		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborou	gh Lab					
1,3-Dichlorobenzene		ND		ug/l	62	18.	25
1,4-Dichlorobenzene		ND		ug/l	62	18.	25
Methyl tert butyl ether		ND		ug/l	62	18.	25
p/m-Xylene		ND		ug/l	62	18.	25
o-Xylene		ND		ug/l	62	18.	25
Xylenes, Total		ND		-	62	18.	25
cis-1,2-Dichloroethene		ND		ug/l	62	18.	25
1,2-Dichloroethene, Total		ND		ug/l	62	18.	25
		ND		ug/l	120	25.	25
Dibromomethane		ND		ug/l	62	25. 18.	25
1,2,3-Trichloropropane				ug/l			
Acrylonitrile		ND		ug/l	120	38.	25
Styrene		ND		ug/l	62	18.	25
Dichlorodifluoromethane		ND		ug/l	120	25.	25
Acetone		ND		ug/l	120	36.	25
Carbon disulfide		ND		ug/l	120	25.	25
2-Butanone		ND		ug/l	120	48.	25
Vinyl acetate		ND		ug/l	120	25.	25
4-Methyl-2-pentanone		ND		ug/l	120	25.	25
2-Hexanone		ND		ug/l	120	25.	25
Bromochloromethane		ND		ug/l	62	18.	25
2,2-Dichloropropane		ND		ug/l	62	18.	25
1,2-Dibromoethane		ND		ug/l	50	16.	25
1,3-Dichloropropane		ND		ug/l	62	18.	25
1,1,1,2-Tetrachloroethane	e	ND		ug/l	62	18.	25
Bromobenzene		ND		ug/l	62	18.	25
n-Butylbenzene		ND		ug/l	62	18.	25
sec-Butylbenzene		ND		ug/l	62	18.	25
tert-Butylbenzene		ND		ug/l	62	18.	25
o-Chlorotoluene		ND		ug/l	62	18.	25
p-Chlorotoluene		ND		ug/l	62	18.	25
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	62	18.	25
Hexachlorobutadiene		ND		ug/l	62	18.	25
Isopropylbenzene		ND		ug/l	62	18.	25
p-Isopropyltoluene		ND		ug/l	62	18.	25
Naphthalene		ND		ug/l	62	18.	25
n-Propylbenzene		ND		ug/l	62	18.	25
1,2,3-Trichlorobenzene		ND		ug/l	62	18.	25
1,2,4-Trichlorobenzene		ND		ug/l	62	18.	25
1,3,5-Trimethylbenzene		ND		ug/l	62	18.	25
-				5			

					Ş	Serial_No	0:04181614:19
Project Name:	1500 ASTOR				Lab Nu	mber:	L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
		SAMP	PLE RESULTS	5			
Lab ID:	L1610441-09	D			Date Col	lected:	04/07/16 10:25
Client ID:	2118-TW-03 (7.6)				Date Red	ceived:	04/08/16
Sample Location:	BRONX, NY				Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborou	gh Lab					
1,2,4-Trimethylbenzene		ND		ug/l	62	18.	25
1,4-Dioxane		ND		ug/l	6200	1000	25
p-Diethylbenzene		ND		ug/l	50	18.	25
p-Ethyltoluene		ND		ug/l	50	18.	25
1,2,4,5-Tetramethylbenze	ene	ND		ug/l	50	16.	25
Ethyl ether		ND		ug/l	62	18.	25
trans-1,4-Dichloro-2-bute	ne	ND		ug/l	62	18.	25

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	95		70-130	

			Serial_N	o:04181614:19
Project Name:	1500 ASTOR		Lab Number:	L1610441
Project Number:	20152118.201		Report Date:	04/18/16
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1610441-10 2118-TW-04 (9.0) BRONX, NY Water 1,8260C 04/15/16 13:47 PD		Date Collected: Date Received: Field Prep:	04/07/16 11:50 04/08/16 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.87		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
rans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

						Serial_N	0:04181614:19
Project Name:	1500 ASTOR				Lab Nu		L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
•		SAMP	LE RESULTS	5			
Lab ID: Client ID:	L1610441-10 2118-TW-04 (9.0)				Date Co Date Re		04/07/16 11:50 04/08/16
Sample Location:	BRONX, NY				Field Pre		Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
	, ,						
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Tota	l	ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		3.7	J	ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethan	e	ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		ND		ug/l	2.5	0.70	1
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1
,		•		9, -	-		

					:	Serial_No	0:04181614:19
Project Name:	1500 ASTOR				Lab Nu	ımber:	L1610441
Project Number:	20152118.201				Report	Date:	04/18/16
		SAMP	LE RESULTS	5			
Lab ID:	L1610441-10				Date Co	llected:	04/07/16 11:50
Client ID:	2118-TW-04 (9.0)				Date Re	ceived:	04/08/16
Sample Location:	BRONX, NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborough	n Lab					
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,4-Dioxane		ND		ug/l	250	41.	1
p-Diethylbenzene		ND		ug/l	2.0	0.70	1
p-Ethyltoluene		ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenze	ene	ND		ug/l	2.0	0.65	1
Ethyl ether		ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-bute	ene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	99		70-130	

Analytical Method:	1,8260C
Analytical Date:	04/14/16 22:11
Analyst:	BS

arameter	Result	Qualifier	Units	RL		MDL
platile Organics by 8260/5035	- Westborough	Lab for sa	mple(s):	02,07-08	Batch:	WG884030-3
Methylene chloride	ND		ug/kg	10		1.1
1,1-Dichloroethane	ND		ug/kg	1.5		0.09
Chloroform	ND		ug/kg	1.5		0.37
Carbon tetrachloride	ND		ug/kg	1.0		0.21
1,2-Dichloropropane	ND		ug/kg	3.5		0.23
Dibromochloromethane	ND		ug/kg	1.0		0.15
1,1,2-Trichloroethane	ND		ug/kg	1.5		0.30
Tetrachloroethene	ND		ug/kg	1.0		0.14
Chlorobenzene	ND		ug/kg	1.0		0.35
Trichlorofluoromethane	ND		ug/kg	5.0		0.39
1,2-Dichloroethane	ND		ug/kg	1.0		0.11
1,1,1-Trichloroethane	ND		ug/kg	1.0		0.11
Bromodichloromethane	ND		ug/kg	1.0		0.17
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.12
cis-1,3-Dichloropropene	ND		ug/kg	1.0		0.12
1,3-Dichloropropene, Total	ND		ug/kg	1.0		0.12
1,1-Dichloropropene	ND		ug/kg	5.0		0.14
Bromoform	ND		ug/kg	4.0		0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0		0.10
Benzene	ND		ug/kg	1.0		0.12
Toluene	ND		ug/kg	1.5		0.19
Ethylbenzene	ND		ug/kg	1.0		0.13
Chloromethane	ND		ug/kg	5.0		0.29
Bromomethane	ND		ug/kg	2.0		0.34
Vinyl chloride	ND		ug/kg	2.0		0.12
Chloroethane	ND		ug/kg	2.0		0.32
1,1-Dichloroethene	ND		ug/kg	1.0		0.26
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.21
Trichloroethene	ND		ug/kg	1.0		0.12

Analytical Method:	1,8260C
Analytical Date:	04/14/16 22:11
Analyst:	BS

arameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by 8260/5035	- Westborough	Lab for sa	mple(s):	02,07-08	Batch: WG	884030-3
1,2-Dichlorobenzene	ND		ug/kg	5.0	0.15	
1,3-Dichlorobenzene	ND		ug/kg	5.0	0.14	
1,4-Dichlorobenzene	ND		ug/kg	5.0	0.14	
Methyl tert butyl ether	ND		ug/kg	2.0	0.08	
p/m-Xylene	ND		ug/kg	2.0	0.20	
o-Xylene	ND		ug/kg	2.0	0.17	
Xylenes, Total	ND		ug/kg	2.0	0.17	
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.14	
1,2-Dichloroethene, Total	ND		ug/kg	1.0	0.14	
Dibromomethane	ND		ug/kg	10	0.16	
Styrene	ND		ug/kg	2.0	0.40	
Dichlorodifluoromethane	ND		ug/kg	10	0.19	
Acetone	ND		ug/kg	10	1.0	
Carbon disulfide	ND		ug/kg	10	1.1	
2-Butanone	ND		ug/kg	10	0.27	
Vinyl acetate	ND		ug/kg	10	0.13	
4-Methyl-2-pentanone	ND		ug/kg	10	0.24	
1,2,3-Trichloropropane	ND		ug/kg	10	0.16	
2-Hexanone	ND		ug/kg	10	0.67	
Bromochloromethane	ND		ug/kg	5.0	0.28	
2,2-Dichloropropane	ND		ug/kg	5.0	0.23	
1,2-Dibromoethane	ND		ug/kg	4.0	0.17	
1,3-Dichloropropane	ND		ug/kg	5.0	0.14	
1,1,1,2-Tetrachloroethane	ND		ug/kg	1.0	0.32	
Bromobenzene	ND		ug/kg	5.0	0.21	
n-Butylbenzene	ND		ug/kg	1.0	0.11	
sec-Butylbenzene	ND		ug/kg	1.0	0.12	
tert-Butylbenzene	ND		ug/kg	5.0	0.14	
o-Chlorotoluene	ND		ug/kg	5.0	0.16	

Analytical Method:	1,8260C
Analytical Date:	04/14/16 22:11
Analyst:	BS

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by 8260/5035	- Westborough	Lab for san	nple(s):	02,07-08	Batch: WG884030-
p-Chlorotoluene	ND		ug/kg	5.0	0.13
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0	0.40
Hexachlorobutadiene	ND		ug/kg	5.0	0.23
Isopropylbenzene	ND		ug/kg	1.0	0.10
p-Isopropyltoluene	ND		ug/kg	1.0	0.12
Naphthalene	ND		ug/kg	5.0	0.14
Acrylonitrile	ND		ug/kg	10	0.51
n-Propylbenzene	ND		ug/kg	1.0	0.11
1,2,3-Trichlorobenzene	ND		ug/kg	5.0	0.15
1,2,4-Trichlorobenzene	ND		ug/kg	5.0	0.18
1,3,5-Trimethylbenzene	ND		ug/kg	5.0	0.14
1,2,4-Trimethylbenzene	ND		ug/kg	5.0	0.14
1,4-Dioxane	ND		ug/kg	100	14.
p-Diethylbenzene	ND		ug/kg	4.0	0.16
p-Ethyltoluene	ND		ug/kg	4.0	0.12
1,2,4,5-Tetramethylbenzene	ND		ug/kg	4.0	0.13
Ethyl ether	ND		ug/kg	5.0	0.26
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0	0.39

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	92		70-130	

Analytical Method:	1,8260C
Analytical Date:	04/15/16 12:43
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s): 09	-10 Batch:	WG884114-3
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.13
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.14
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.14
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Analytical Method:	1,8260C
Analytical Date:	04/15/16 12:43
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s): 09-	10 Batch:	WG884114-3
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Analytical Method:	1,8260C
Analytical Date:	04/15/16 12:43
Analyst:	PD

arameter	Result 0	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	/estborough Lab fe	or sample(s): 09-10	Batch:	WG884114-3
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	41.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.65
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	97		70-130	

Analytical Method:	1,8260C
Analytical Date:	04/15/16 10:15
Analyst:	BS

arameter	Result	Qualifier	Units	RI	-	MDL
platile Organics by 8260/5035	- Westborough	Lab for sa	mple(s):	01,03	Batch:	WG884361-3
Methylene chloride	ND		ug/kg	50	0	55.
1,1-Dichloroethane	ND		ug/kg	75	5	4.3
Chloroform	ND		ug/kg	75	5	18.
Carbon tetrachloride	ND		ug/kg	50)	10.
1,2-Dichloropropane	ND		ug/kg	18	0	11.
Dibromochloromethane	ND		ug/kg	50)	7.7
1,1,2-Trichloroethane	ND		ug/kg	75	5	15.
Tetrachloroethene	ND		ug/kg	50)	7.0
Chlorobenzene	ND		ug/kg	50)	17.
Trichlorofluoromethane	ND		ug/kg	25	0	19.
1,2-Dichloroethane	ND		ug/kg	50)	5.7
1,1,1-Trichloroethane	ND		ug/kg	50)	5.5
Bromodichloromethane	ND		ug/kg	50)	8.7
trans-1,3-Dichloropropene	ND		ug/kg	50)	6.0
cis-1,3-Dichloropropene	ND		ug/kg	50)	5.9
1,3-Dichloropropene, Total	ND		ug/kg	50)	5.9
1,1-Dichloropropene	ND		ug/kg	25	0	7.1
Bromoform	ND		ug/kg	20	0	12.
1,1,2,2-Tetrachloroethane	ND		ug/kg	50)	5.0
Benzene	ND		ug/kg	50)	5.9
Toluene	ND		ug/kg	75	5	9.7
Ethylbenzene	ND		ug/kg	50)	6.4
Chloromethane	ND		ug/kg	25	0	15.
Bromomethane	ND		ug/kg	10	0	17.
Vinyl chloride	ND		ug/kg	10	D	5.9
Chloroethane	ND		ug/kg	10	D	16.
1,1-Dichloroethene	ND		ug/kg	50)	13.
trans-1,2-Dichloroethene	ND		ug/kg	75	5	11.
Trichloroethene	ND		ug/kg	50)	6.2

Analytical Method:	1,8260C
Analytical Date:	04/15/16 10:15
Analyst:	BS

arameter	Result	Qualifier	Units	RI	-	MDL
platile Organics by 8260/503	5 - Westborough	Lab for sa	mple(s):	01,03	Batch:	WG884361-3
1,2-Dichlorobenzene	ND		ug/kg	250		7.7
1,3-Dichlorobenzene	ND		ug/kg	25	0	6.8
1,4-Dichlorobenzene	ND		ug/kg	25	0	6.9
Methyl tert butyl ether	ND		ug/kg	10	0	4.2
p/m-Xylene	ND		ug/kg	10	0	9.9
o-Xylene	ND		ug/kg	10	0	8.6
Xylenes, Total	ND		ug/kg	10	0	8.6
cis-1,2-Dichloroethene	ND		ug/kg	50)	7.1
1,2-Dichloroethene, Total	ND		ug/kg	50)	7.1
Dibromomethane	ND		ug/kg	50	0	8.2
Styrene	ND		ug/kg	10	0	20.
Dichlorodifluoromethane	ND		ug/kg	50	0	9.5
Acetone	ND		ug/kg	50	0	52.
Carbon disulfide	ND		ug/kg	50	0	55.
2-Butanone	ND		ug/kg	50	0	14.
Vinyl acetate	ND		ug/kg	50	0	6.6
4-Methyl-2-pentanone	ND		ug/kg	50	0	12.
1,2,3-Trichloropropane	ND		ug/kg	50	0	8.1
2-Hexanone	ND		ug/kg	50	0	33.
Bromochloromethane	ND		ug/kg	25	0	14.
2,2-Dichloropropane	ND		ug/kg	25	0	11.
1,2-Dibromoethane	ND		ug/kg	20	0	8.7
1,3-Dichloropropane	ND		ug/kg	25	0	7.3
1,1,1,2-Tetrachloroethane	ND		ug/kg	50)	16.
Bromobenzene	ND		ug/kg	25	D	10.
n-Butylbenzene	ND		ug/kg	50)	5.7
sec-Butylbenzene	ND		ug/kg	50)	6.1
tert-Butylbenzene	ND		ug/kg	25	D	6.8
o-Chlorotoluene	ND		ug/kg	25	0	8.0

Analytical Method:	1,8260C
Analytical Date:	04/15/16 10:15
Analyst:	BS

arameter	Result	Qualifier	Units	RI	-	MDL
olatile Organics by 8260/503	5 - Westborough	Lab for sa	mple(s):	01,03	Batch:	WG884361-3
p-Chlorotoluene	ND		ug/kg	25	0	6.6
1,2-Dibromo-3-chloropropane	ND		ug/kg	25	0	20.
Hexachlorobutadiene	ND		ug/kg	25	0	11.
Isopropylbenzene	ND		ug/kg	50)	5.2
p-Isopropyltoluene	ND		ug/kg	50)	6.2
Naphthalene	ND		ug/kg	25	0	6.9
Acrylonitrile	ND		ug/kg	50	0	26.
n-Propylbenzene	ND		ug/kg	50)	5.5
1,2,3-Trichlorobenzene	ND		ug/kg	25	0	7.4
1,2,4-Trichlorobenzene	ND		ug/kg	25	0	9.1
1,3,5-Trimethylbenzene	ND		ug/kg	25	0	7.2
1,2,4-Trimethylbenzene	ND		ug/kg	25	0	7.1
1,4-Dioxane	ND		ug/kg	500	0	720
p-Diethylbenzene	ND		ug/kg	20	0	8.0
p-Ethyltoluene	ND		ug/kg	20	0	6.2
1,2,4,5-Tetramethylbenzene	ND		ug/kg	20	0	6.5
Ethyl ether	ND		ug/kg	25	0	13.
trans-1,4-Dichloro-2-butene	ND		ug/kg	25	0	20.

	Acceptance				
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	96		70-130		
Toluene-d8	106		70-130		
4-Bromofluorobenzene	100		70-130		
Dibromofluoromethane	94		70-130		

L1610441

04/18/16

 Project Name:
 1500 ASTOR
 Lab Number:

 Project Number:
 20152118.201
 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/15/16 10:15Analyst:MV

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by 8260/503	35 - Westborough	Lab for sa	mple(s):	04	Batch:	WG884365-3
Methylene chloride	ND		ug/kg		10	1.1
1,1-Dichloroethane	ND		ug/kg		1.5	0.09
Chloroform	ND		ug/kg		1.5	0.37
Carbon tetrachloride	ND		ug/kg		1.0	0.21
1,2-Dichloropropane	ND		ug/kg		3.5	0.23
Dibromochloromethane	ND		ug/kg		1.0	0.15
1,1,2-Trichloroethane	ND		ug/kg		1.5	0.30
Tetrachloroethene	ND		ug/kg		1.0	0.14
Chlorobenzene	ND		ug/kg		1.0	0.35
Trichlorofluoromethane	ND		ug/kg		5.0	0.39
1,2-Dichloroethane	ND		ug/kg		1.0	0.11
1,1,1-Trichloroethane	ND		ug/kg		1.0	0.11
Bromodichloromethane	ND		ug/kg		1.0	0.17
trans-1,3-Dichloropropene	ND		ug/kg		1.0	0.12
cis-1,3-Dichloropropene	ND		ug/kg		1.0	0.12
1,3-Dichloropropene, Total	ND		ug/kg		1.0	0.12
1,1-Dichloropropene	ND		ug/kg		5.0	0.14
Bromoform	ND		ug/kg		4.0	0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg		1.0	0.10
Benzene	ND		ug/kg		1.0	0.12
Toluene	ND		ug/kg		1.5	0.19
Ethylbenzene	ND		ug/kg		1.0	0.13
Chloromethane	ND		ug/kg		5.0	0.29
Bromomethane	ND		ug/kg		2.0	0.34
Vinyl chloride	ND		ug/kg		2.0	0.12
Chloroethane	ND		ug/kg		2.0	0.32
1,1-Dichloroethene	ND		ug/kg		1.0	0.26
trans-1,2-Dichloroethene	ND		ug/kg		1.5	0.21
Trichloroethene	ND		ug/kg		1.0	0.12

L1610441

04/18/16

 Project Name:
 1500 ASTOR
 Lab Number:

 Project Number:
 20152118.201
 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/15/16 10:15Analyst:MV

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by 8260/503	35 - Westborough	Lab for sample(s):	04 Batch:	WG884365-3
1,2-Dichlorobenzene	ND	ug/kg	5.0	0.15
1,3-Dichlorobenzene	ND	ug/kg	5.0	0.14
1,4-Dichlorobenzene	ND	ug/kg	5.0	0.14
Methyl tert butyl ether	ND	ug/kg	2.0	0.08
p/m-Xylene	ND	ug/kg	2.0	0.20
o-Xylene	ND	ug/kg	2.0	0.17
Xylenes, Total	ND	ug/kg	2.0	0.17
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.14
1,2-Dichloroethene, Total	ND	ug/kg	1.0	0.14
Dibromomethane	ND	ug/kg	10	0.16
Styrene	ND	ug/kg	2.0	0.40
Dichlorodifluoromethane	ND	ug/kg	10	0.19
Acetone	ND	ug/kg	10	1.0
Carbon disulfide	ND	ug/kg	10	1.1
2-Butanone	ND	ug/kg	10	0.27
Vinyl acetate	ND	ug/kg	10	0.13
4-Methyl-2-pentanone	ND	ug/kg	10	0.24
1,2,3-Trichloropropane	ND	ug/kg	10	0.16
2-Hexanone	ND	ug/kg	10	0.67
Bromochloromethane	ND	ug/kg	5.0	0.28
2,2-Dichloropropane	ND	ug/kg	5.0	0.23
1,2-Dibromoethane	ND	ug/kg	4.0	0.17
1,3-Dichloropropane	ND	ug/kg	5.0	0.14
1,1,1,2-Tetrachloroethane	ND	ug/kg	1.0	0.32
Bromobenzene	ND	ug/kg	5.0	0.21
n-Butylbenzene	ND	ug/kg	1.0	0.11
sec-Butylbenzene	ND	ug/kg	1.0	0.12
tert-Butylbenzene	ND	ug/kg	5.0	0.14
o-Chlorotoluene	ND	ug/kg	5.0	0.16

L1610441

04/18/16

 Project Name:
 1500 ASTOR
 Lab Number:

 Project Number:
 20152118.201
 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/15/16 10:15Analyst:MV

Parameter	Result	Qualifier Units		RL	MDL
olatile Organics by 8260/5035	- Westborough	Lab for sample(s):	04	Batch:	WG884365-3
p-Chlorotoluene	ND	ug/kg		5.0	0.13
1,2-Dibromo-3-chloropropane	ND	ug/kg		5.0	0.40
Hexachlorobutadiene	ND	ug/kg		5.0	0.23
Isopropylbenzene	ND	ug/kg		1.0	0.10
p-Isopropyltoluene	ND	ug/kg		1.0	0.12
Naphthalene	ND	ug/kg		5.0	0.14
Acrylonitrile	ND	ug/kg		10	0.51
n-Propylbenzene	ND	ug/kg		1.0	0.11
1,2,3-Trichlorobenzene	ND	ug/kg		5.0	0.15
1,2,4-Trichlorobenzene	ND	ug/kg		5.0	0.18
1,3,5-Trimethylbenzene	ND	ug/kg		5.0	0.14
1,2,4-Trimethylbenzene	ND	ug/kg		5.0	0.14
1,4-Dioxane	ND	ug/kg		100	14.
p-Diethylbenzene	ND	ug/kg		4.0	0.16
p-Ethyltoluene	ND	ug/kg		4.0	0.12
1,2,4,5-Tetramethylbenzene	ND	ug/kg		4.0	0.13
Ethyl ether	ND	ug/kg		5.0	0.26
trans-1,4-Dichloro-2-butene	ND	ug/kg		5.0	0.39

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	96		70-130			
Toluene-d8	106		70-130			
4-Bromofluorobenzene	100		70-130			
Dibromofluoromethane	94		70-130			

 Project Name:
 1500 ASTOR
 Lab Number:

 Project Number:
 20152118.201
 Report Date:

 hber:
 L1610441

 Date:
 04/18/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8260C 04/17/16 12:30 MV

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by 8260/503	5 - Westborough	Lab for sa	mple(s):	06	Batch:	WG884614-3
Methylene chloride	ND		ug/kg		10	1.1
1,1-Dichloroethane	ND		ug/kg		1.5	0.09
Chloroform	ND		ug/kg		1.5	0.37
Carbon tetrachloride	ND		ug/kg		1.0	0.21
1,2-Dichloropropane	ND		ug/kg		3.5	0.23
Dibromochloromethane	ND		ug/kg		1.0	0.15
1,1,2-Trichloroethane	ND		ug/kg		1.5	0.30
Tetrachloroethene	ND		ug/kg		1.0	0.14
Chlorobenzene	ND		ug/kg		1.0	0.35
Trichlorofluoromethane	ND		ug/kg		5.0	0.39
1,2-Dichloroethane	ND		ug/kg		1.0	0.11
1,1,1-Trichloroethane	ND		ug/kg		1.0	0.11
Bromodichloromethane	ND		ug/kg		1.0	0.17
trans-1,3-Dichloropropene	ND		ug/kg		1.0	0.12
cis-1,3-Dichloropropene	ND		ug/kg		1.0	0.12
1,3-Dichloropropene, Total	ND		ug/kg		1.0	0.12
1,1-Dichloropropene	ND		ug/kg		5.0	0.14
Bromoform	ND		ug/kg		4.0	0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg		1.0	0.10
Benzene	ND		ug/kg		1.0	0.12
Toluene	0.30	J	ug/kg		1.5	0.19
Ethylbenzene	ND		ug/kg		1.0	0.13
Chloromethane	ND		ug/kg		5.0	0.29
Bromomethane	ND		ug/kg		2.0	0.34
Vinyl chloride	ND		ug/kg		2.0	0.12
Chloroethane	ND		ug/kg		2.0	0.32
1,1-Dichloroethene	ND		ug/kg		1.0	0.26
trans-1,2-Dichloroethene	ND		ug/kg		1.5	0.21
Trichloroethene	ND		ug/kg		1.0	0.12

 Project Name:
 1500 ASTOR
 Lab Number:

 Project Number:
 20152118.201
 Report Date:

 nber:
 L1610441

 Date:
 04/18/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8260C 04/17/16 12:30 MV

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by 8260/5035 - V	Vestborough	Lab for sa	mple(s):	06	Batch:	WG884614-3
1,2-Dichlorobenzene	ND		ug/kg		5.0	0.15
1,3-Dichlorobenzene	ND		ug/kg		5.0	0.14
1,4-Dichlorobenzene	ND		ug/kg		5.0	0.14
Methyl tert butyl ether	ND		ug/kg		2.0	0.08
p/m-Xylene	ND		ug/kg		2.0	0.20
o-Xylene	ND		ug/kg		2.0	0.17
Xylenes, Total	ND		ug/kg		2.0	0.17
cis-1,2-Dichloroethene	ND		ug/kg		1.0	0.14
1,2-Dichloroethene, Total	ND		ug/kg		1.0	0.14
Dibromomethane	ND		ug/kg		10	0.16
Styrene	ND		ug/kg		2.0	0.40
Dichlorodifluoromethane	ND		ug/kg		10	0.19
Acetone	ND		ug/kg		10	1.0
Carbon disulfide	ND		ug/kg		10	1.1
2-Butanone	ND		ug/kg		10	0.27
Vinyl acetate	ND		ug/kg		10	0.13
4-Methyl-2-pentanone	ND		ug/kg		10	0.24
1,2,3-Trichloropropane	ND		ug/kg		10	0.16
2-Hexanone	ND		ug/kg		10	0.67
Bromochloromethane	ND		ug/kg		5.0	0.28
2,2-Dichloropropane	ND		ug/kg		5.0	0.23
1,2-Dibromoethane	ND		ug/kg		4.0	0.17
1,3-Dichloropropane	ND		ug/kg		5.0	0.14
1,1,1,2-Tetrachloroethane	ND		ug/kg		1.0	0.32
Bromobenzene	ND		ug/kg		5.0	0.21
n-Butylbenzene	ND		ug/kg		1.0	0.11
sec-Butylbenzene	ND		ug/kg		1.0	0.12
tert-Butylbenzene	ND		ug/kg		5.0	0.14
o-Chlorotoluene	ND		ug/kg		5.0	0.16

 Project Name:
 1500 ASTOR
 Lab Number:

 Project Number:
 20152118.201
 Report Date:

ber: L1610441 ate: 04/18/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8260C 04/17/16 12:30 MV

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by 8260/5035	- Westborough	Lab for sample(s):	06 Batch:	WG884614-3
p-Chlorotoluene	ND	ug/kg	5.0	0.13
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.0	0.40
Hexachlorobutadiene	ND	ug/kg	5.0	0.23
Isopropylbenzene	ND	ug/kg	1.0	0.10
p-Isopropyltoluene	ND	ug/kg	1.0	0.12
Naphthalene	ND	ug/kg	5.0	0.14
Acrylonitrile	ND	ug/kg	10	0.51
n-Propylbenzene	ND	ug/kg	1.0	0.11
1,2,3-Trichlorobenzene	ND	ug/kg	5.0	0.15
1,2,4-Trichlorobenzene	ND	ug/kg	5.0	0.18
1,3,5-Trimethylbenzene	ND	ug/kg	5.0	0.14
1,2,4-Trimethylbenzene	ND	ug/kg	5.0	0.14
1,4-Dioxane	ND	ug/kg	100	14.
p-Diethylbenzene	ND	ug/kg	4.0	0.16
p-Ethyltoluene	ND	ug/kg	4.0	0.12
1,2,4,5-Tetramethylbenzene	ND	ug/kg	4.0	0.13
Ethyl ether	ND	ug/kg	5.0	0.26
trans-1,4-Dichloro-2-butene	ND	ug/kg	5.0	0.39

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	95		70-130	

L1610441

04/18/16

 Project Name:
 1500 ASTOR
 Lab Number:

 Project Number:
 20152118.201
 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/18/16 11:17Analyst:MV

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by 8260/50	35 - Westborough	Lab for sa	mple(s):	05	Batch:	WG884683-3
Methylene chloride	ND		ug/kg		500	55.
1,1-Dichloroethane	ND		ug/kg		75	4.3
Chloroform	ND		ug/kg		75	18.
Carbon tetrachloride	ND		ug/kg		50	10.
1,2-Dichloropropane	ND		ug/kg		180	11.
Dibromochloromethane	ND		ug/kg		50	7.7
1,1,2-Trichloroethane	ND		ug/kg		75	15.
Tetrachloroethene	ND		ug/kg		50	7.0
Chlorobenzene	ND		ug/kg		50	17.
Trichlorofluoromethane	ND		ug/kg		250	19.
1,2-Dichloroethane	ND		ug/kg		50	5.7
1,1,1-Trichloroethane	ND		ug/kg		50	5.5
Bromodichloromethane	ND		ug/kg		50	8.7
trans-1,3-Dichloropropene	ND		ug/kg		50	6.0
cis-1,3-Dichloropropene	ND		ug/kg		50	5.9
1,3-Dichloropropene, Total	ND		ug/kg		50	5.9
1,1-Dichloropropene	ND		ug/kg		250	7.1
Bromoform	ND		ug/kg		200	12.
1,1,2,2-Tetrachloroethane	ND		ug/kg		50	5.0
Benzene	ND		ug/kg		50	5.9
Toluene	10	J	ug/kg		75	9.7
Ethylbenzene	ND		ug/kg		50	6.4
Chloromethane	ND		ug/kg		250	15.
Bromomethane	ND		ug/kg		100	17.
Vinyl chloride	ND		ug/kg		100	5.9
Chloroethane	ND		ug/kg		100	16.
1,1-Dichloroethene	ND		ug/kg		50	13.
trans-1,2-Dichloroethene	ND		ug/kg		75	11.
Trichloroethene	ND		ug/kg		50	6.2

 Project Name:
 1500 ASTOR
 Lab Number:
 L1610441

 Project Number:
 20152118.201
 Report Date:
 04/18/16

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/18/16 11:17Analyst:MV

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by 8260/503	35 - Westborough	Lab for sam	ple(s):	05	Batch:	WG884683-3
1,2-Dichlorobenzene	ND		ug/kg		250	7.7
1,3-Dichlorobenzene	ND		ug/kg		250	6.8
1,4-Dichlorobenzene	ND		ug/kg		250	6.9
Methyl tert butyl ether	ND		ug/kg		100	4.2
p/m-Xylene	ND		ug/kg		100	9.9
o-Xylene	ND		ug/kg		100	8.6
Xylenes, Total	ND		ug/kg		100	8.6
cis-1,2-Dichloroethene	ND		ug/kg		50	7.1
1,2-Dichloroethene, Total	ND		ug/kg		50	7.1
Dibromomethane	ND		ug/kg		500	8.2
Styrene	ND		ug/kg		100	20.
Dichlorodifluoromethane	ND		ug/kg		500	9.5
Acetone	ND		ug/kg		500	52.
Carbon disulfide	ND		ug/kg		500	55.
2-Butanone	ND		ug/kg		500	14.
Vinyl acetate	ND		ug/kg		500	6.6
4-Methyl-2-pentanone	ND		ug/kg		500	12.
1,2,3-Trichloropropane	ND		ug/kg		500	8.1
2-Hexanone	ND		ug/kg		500	33.
Bromochloromethane	ND		ug/kg		250	14.
2,2-Dichloropropane	ND		ug/kg		250	11.
1,2-Dibromoethane	ND		ug/kg		200	8.7
1,3-Dichloropropane	ND		ug/kg		250	7.3
1,1,1,2-Tetrachloroethane	ND		ug/kg		50	16.
Bromobenzene	ND		ug/kg		250	10.
n-Butylbenzene	ND		ug/kg		50	5.7
sec-Butylbenzene	ND		ug/kg		50	6.1
tert-Butylbenzene	ND		ug/kg		250	6.8
o-Chlorotoluene	ND		ug/kg		250	8.0

 Project Name:
 1500 ASTOR
 Lab Number:
 L1610441

 Project Number:
 20152118.201
 Report Date:
 04/18/16

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/18/16 11:17Analyst:MV

Parameter	Result	Qualifier	Units		RL	MDL
/olatile Organics by 8260/5035 - V	Westborough	Lab for sar	nple(s):	05	Batch:	WG884683-3
p-Chlorotoluene	ND		ug/kg		250	6.6
1,2-Dibromo-3-chloropropane	ND		ug/kg		250	20.
Hexachlorobutadiene	ND		ug/kg		250	11.
Isopropylbenzene	ND		ug/kg		50	5.2
p-lsopropyltoluene	ND		ug/kg		50	6.2
Naphthalene	ND		ug/kg		250	6.9
Acrylonitrile	ND		ug/kg		500	26.
n-Propylbenzene	ND		ug/kg		50	5.5
1,2,3-Trichlorobenzene	ND		ug/kg		250	7.4
1,2,4-Trichlorobenzene	ND		ug/kg		250	9.1
1,3,5-Trimethylbenzene	ND		ug/kg		250	7.2
1,2,4-Trimethylbenzene	ND		ug/kg		250	7.1
1,4-Dioxane	ND		ug/kg		5000	720
p-Diethylbenzene	ND		ug/kg		200	8.0
p-Ethyltoluene	ND		ug/kg		200	6.2
1,2,4,5-Tetramethylbenzene	ND		ug/kg		200	6.5
Ethyl ether	ND		ug/kg		250	13.
trans-1,4-Dichloro-2-butene	ND		ug/kg		250	20.

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	91		70-130	

Project Name: 1500 ASTOR Project Number: 20152118.201

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by 8260/5035 - Westboroug	gh Lab Associat	ed sample(s):	02,07-08 Bat	ch: WG884030-1 WG88403	80-2	
Methylene chloride	106		108	70-130	2	30
1,1-Dichloroethane	104		107	70-130	3	30
Chloroform	104		108	70-130	4	30
Carbon tetrachloride	109		110	70-130	1	30
1,2-Dichloropropane	102		106	70-130	4	30
Dibromochloromethane	93		96	70-130	3	30
2-Chloroethylvinyl ether	90		95	70-130	5	30
1,1,2-Trichloroethane	100		102	70-130	2	30
Tetrachloroethene	102		104	70-130	2	30
Chlorobenzene	97		101	70-130	4	30
Trichlorofluoromethane	118		121	70-139	3	30
1,2-Dichloroethane	102		105	70-130	3	30
1,1,1-Trichloroethane	103		105	70-130	2	30
Bromodichloromethane	96		100	70-130	4	30
trans-1,3-Dichloropropene	90		92	70-130	2	30
cis-1,3-Dichloropropene	97		101	70-130	4	30
1,1-Dichloropropene	105		109	70-130	4	30
Bromoform	82		85	70-130	4	30
1,1,2,2-Tetrachloroethane	98		101	70-130	3	30
Benzene	101		104	70-130	3	30
Toluene	94		97	70-130	3	30

Project Name: 1500 ASTOR Project Number: 20152118.201

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by 8260/5035 - Westboroug	gh Lab Associat	ted sample(s):	02,07-08 Bat	ch: WG884030-1 WG88403	30-2	
Ethylbenzene	93		96	70-130	3	30
Chloromethane	115		116	52-130	1	30
Bromomethane	107		107	57-147	0	30
Vinyl chloride	84		84	67-130	0	30
Chloroethane	113		110	50-151	3	30
1,1-Dichloroethene	110		113	65-135	3	30
trans-1,2-Dichloroethene	108		109	70-130	1	30
Trichloroethene	104		109	70-130	5	30
1,2-Dichlorobenzene	97		102	70-130	5	30
1,3-Dichlorobenzene	97		102	70-130	5	30
1,4-Dichlorobenzene	98		103	70-130	5	30
Methyl tert butyl ether	96		99	66-130	3	30
p/m-Xylene	94		97	70-130	3	30
o-Xylene	91		94	70-130	3	30
cis-1,2-Dichloroethene	107		110	70-130	3	30
Dibromomethane	104		109	70-130	5	30
Styrene	90		93	70-130	3	30
Dichlorodifluoromethane	114		116	30-146	2	30
Acetone	92		91	54-140	1	30
Carbon disulfide	59		60	59-130	2	30
2-Butanone	95		96	70-130	1	30

Project Name: 1500 ASTOR Project Number: 20152118.201

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
olatile Organics by 8260/5035 - Westborov	ugh Lab Associate	ed sample(s):	02,07-08 Bate	ch: WG884030-1 WG8840	30-2		
Vinyl acetate	94		94	70-130	0	30	
4-Methyl-2-pentanone	79		84	70-130	6	30	
1,2,3-Trichloropropane	98		101	68-130	3	30	
2-Hexanone	72		73	70-130	1	30	
Bromochloromethane	114		118	70-130	3	30	
2,2-Dichloropropane	99		101	70-130	2	30	
1,2-Dibromoethane	99		102	70-130	3	30	
1,3-Dichloropropane	98		101	69-130	3	30	
1,1,1,2-Tetrachloroethane	99		101	70-130	2	30	
Bromobenzene	100		104	70-130	4	30	
n-Butylbenzene	93		97	70-130	4	30	
sec-Butylbenzene	94		98	70-130	4	30	
tert-Butylbenzene	93		98	70-130	5	30	
o-Chlorotoluene	92		95	70-130	3	30	
p-Chlorotoluene	93		96	70-130	3	30	
1,2-Dibromo-3-chloropropane	80		87	68-130	8	30	
Hexachlorobutadiene	97		101	67-130	4	30	
Isopropylbenzene	94		97	70-130	3	30	
p-Isopropyltoluene	94		98	70-130	4	30	
Naphthalene	90		96	70-130	6	30	
Acrylonitrile	97		96	70-130	1	30	

Project Name: 1500 ASTOR Project Number: 20152118.201

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by 8260/5035 - Westboro	ugh Lab Associat	ed sample(s):	02,07-08 Bat	ch: WG884030-1 WG8840	30-2	
Isopropyl Ether	93		93	66-130	0	30
tert-Butyl Alcohol	85		86	70-130	1	30
n-Propylbenzene	95		98	70-130	3	30
1,2,3-Trichlorobenzene	96		102	70-130	6	30
1,2,4-Trichlorobenzene	95		101	70-130	6	30
1,3,5-Trimethylbenzene	94		98	70-130	4	30
1,2,4-Trimethylbenzene	92		96	70-130	4	30
Methyl Acetate	97		96	51-146	1	30
Ethyl Acetate	108		110	70-130	2	30
Acrolein	119		120	70-130	1	30
Cyclohexane	100		102	59-142	2	30
1,4-Dioxane	97		101	65-136	4	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	115		116	50-139	1	30
p-Diethylbenzene	90		92	70-130	2	30
p-Ethyltoluene	90		93	70-130	3	30
1,2,4,5-Tetramethylbenzene	84		88	70-130	5	30
Tetrahydrofuran	96		99	66-130	3	30
Ethyl ether	110		108	67-130	2	30
trans-1,4-Dichloro-2-butene	87		88	70-130	1	30
Methyl cyclohexane	99		103	70-130	4	30
Ethyl-Tert-Butyl-Ether	91		94	70-130	3	30

 Project Name:
 1500 ASTOR

 Project Number:
 20152118.201

 Lab Number:
 L1610441

 Report Date:
 04/18/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recov Qual Limits		RPD Qual Limits	
Volatile Organics by 8260/5035 - Westboroug	gh Lab Associate	d sample(s):	02,07-08 Batch	n: WG884030-1 W	G884030-2		
Tertiary-Amyl Methyl Ether	89		92	70-130	3	30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	98		97		70-130	
Toluene-d8	94		93		70-130	
4-Bromofluorobenzene	98		96		70-130	
Dibromofluoromethane	103		101		70-130	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated s	ample(s): ()9-10 Batch: \	WG884114-1	WG884114-2		
Methylene chloride	94		93		70-130	1	20
1,1-Dichloroethane	93		91		70-130	2	20
Chloroform	100		98		70-130	2	20
2-Chloroethylvinyl ether	95		105		70-130	10	20
Carbon tetrachloride	108		104		63-132	4	20
1,2-Dichloropropane	92		91		70-130	1	20
Dibromochloromethane	98		97		63-130	1	20
1,1,2-Trichloroethane	94		94		70-130	0	20
Tetrachloroethene	102		98		70-130	4	20
Chlorobenzene	96		94		75-130	2	20
Trichlorofluoromethane	104		102		62-150	2	20
1,2-Dichloroethane	94		96		70-130	2	20
1,1,1-Trichloroethane	111		106		67-130	5	20
Bromodichloromethane	104		102		67-130	2	20
trans-1,3-Dichloropropene	103		98		70-130	5	20
cis-1,3-Dichloropropene	99		98		70-130	1	20
1,1-Dichloropropene	100		98		70-130	2	20
Bromoform	100		102		54-136	2	20
1,1,2,2-Tetrachloroethane	88		90		67-130	2	20
Benzene	96		94		70-130	2	20
Toluene	97		93		70-130	4	 20

Project Name: 1500 ASTOR Project Number: 20152118.201

Parameter	LCS %Recovery	Qual	LC. %Rec		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	09-10 B	atch: V	VG884114-1	WG884114-2			
Ethylbenzene	100		g	96		70-130	4		20
Chloromethane	69		6	64		64-130	8		20
Bromomethane	65		5	59		39-139	10		20
Vinyl chloride	98		g	96		55-140	2		20
Chloroethane	96		g	95		55-138	1		20
1,1-Dichloroethene	102		ę	98		61-145	4		20
trans-1,2-Dichloroethene	97		ę	95		70-130	2		20
Trichloroethene	97		ę	97		70-130	0		20
1,2-Dichlorobenzene	95		ę	95		70-130	0		20
1,3-Dichlorobenzene	95		ę	95		70-130	0		20
1,4-Dichlorobenzene	94		ę	93		70-130	1		20
Methyl tert butyl ether	83		8	37		63-130	5		20
p/m-Xylene	100		g	96		70-130	4		20
o-Xylene	99		g	95		70-130	4		20
cis-1,2-Dichloroethene	98		ę	96		70-130	2		20
Dibromomethane	96		g	93		70-130	3		20
1,2,3-Trichloropropane	87		8	38		64-130	1		20
Acrylonitrile	84		ę	90		70-130	7		20
Isopropyl Ether	86		8	36		70-130	0		20
tert-Butyl Alcohol	88		g	96		70-130	9		20
Styrene	104		1	00		70-130	4		20

Project Name: 1500 ASTOR Project Number: 20152118.201

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09-10 Batch:	WG884114-1	WG884114-2			
Dichlorodifluoromethane	87		81		36-147	7		20
Acetone	75		79		58-148	5		20
Carbon disulfide	82		80		51-130	2		20
2-Butanone	77		78		63-138	1		20
Vinyl acetate	96		97		70-130	1		20
4-Methyl-2-pentanone	84		89		59-130	6		20
2-Hexanone	77		82		57-130	6		20
Acrolein	100		104		40-160	4		20
Bromochloromethane	105		109		70-130	4		20
2,2-Dichloropropane	101		97		63-133	4		20
1,2-Dibromoethane	94		95		70-130	1		20
1,3-Dichloropropane	92		91		70-130	1		20
1,1,1,2-Tetrachloroethane	108		105		64-130	3		20
Bromobenzene	96		94		70-130	2		20
n-Butylbenzene	98		96		53-136	2		20
sec-Butylbenzene	98		95		70-130	3		20
tert-Butylbenzene	96		94		70-130	2		20
o-Chlorotoluene	94		93		70-130	1		20
p-Chlorotoluene	94		93		70-130	1		20
1,2-Dibromo-3-chloropropane	99		98		41-144	1		20
Hexachlorobutadiene	92		90		63-130	2		20

Project Name: 1500 ASTOR Project Number: 20152118.201

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD nits
olatile Organics by GC/MS - Westborou	gh Lab Associated s	sample(s):	09-10 Batch:	WG884114-1	WG884114-2		
Isopropylbenzene	101		97		70-130	4	 20
p-Isopropyltoluene	96		94		70-130	2	20
Naphthalene	83		84		70-130	1	 20
n-Propylbenzene	98		96		69-130	2	 20
1,2,3-Trichlorobenzene	88		89		70-130	1	 20
1,2,4-Trichlorobenzene	94		94		70-130	0	 20
1,3,5-Trimethylbenzene	95		94		64-130	1	 20
1,2,4-Trimethylbenzene	96		95		70-130	1	 20
Methyl Acetate	84		90		70-130	7	 20
Ethyl Acetate	79		81		70-130	3	 20
Cyclohexane	92		90		70-130	2	 20
Ethyl-Tert-Butyl-Ether	83		85		70-130	2	 20
Tertiary-Amyl Methyl Ether	82		84		66-130	2	 20
1,4-Dioxane	84		90		56-162	7	 20
1,1,2-Trichloro-1,2,2-Trifluoroethane	102		100		70-130	2	 20
p-Diethylbenzene	92		90		70-130	2	20
p-Ethyltoluene	99		98		70-130	1	20
1,2,4,5-Tetramethylbenzene	101		99		70-130	2	20
Ethyl ether	92		99		59-134	7	20
trans-1,4-Dichloro-2-butene	91		94		70-130	3	20
lodomethane	35	Q	38	Q	70-130	8	20

 Project Name:
 1500 ASTOR

 Project Number:
 20152118.201

 Lab Number:
 L1610441

 Report Date:
 04/18/16

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	09-10	Batch:	WG884114-1	WG884114-2				
Methyl cyclohexane	93			91		70-130	2		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
			100		70.400	
1,2-Dichloroethane-d4	97		100		70-130	
Toluene-d8	95		94		70-130	
4-Bromofluorobenzene	93		94		70-130	
Dibromofluoromethane	101		102		70-130	

arameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by 8260/5035	- Westborough Lab Associate	ed sample(s):	01,03	Batch:	WG884361-	WG884361-2			
Methylene chloride	83		84	1		70-130	1		30
1,1-Dichloroethane	86		87	7		70-130	1		30
Chloroform	83		84	1		70-130	1		30
Carbon tetrachloride	84		8	5		70-130	1		30
1,2-Dichloropropane	86		88	3		70-130	2		30
Dibromochloromethane	98		98	3		70-130	0		30
1,1,2-Trichloroethane	99		98	3		70-130	1		30
Tetrachloroethene	103		10	2		70-130	1		30
Chlorobenzene	96		96	6		70-130	0		30
Trichlorofluoromethane	67	Q	67	7	Q	70-139	0		30
1,2-Dichloroethane	80		8	1		70-130	1		30
1,1,1-Trichloroethane	84		86	6		70-130	2		30
Bromodichloromethane	82		83	3		70-130	1		30
trans-1,3-Dichloropropene	95		97	7		70-130	2		30
cis-1,3-Dichloropropene	80		82	2		70-130	2		30
1,1-Dichloropropene	85		86	6		70-130	1		30
Bromoform	98		10	0		70-130	2		30
1,1,2,2-Tetrachloroethane	108		10	9		70-130	1		30
Benzene	85		86	6		70-130	1		30
Toluene	99		10	0		70-130	1		30
Ethylbenzene	98		98	3		70-130	0		30

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by 8260/5035 - Westborou	gh Lab Associat	ed sample(s):	01,03 Batch:	WG884361-7	1 WG884361-2			
Chloromethane	113		116		52-130	3		30
Bromomethane	59		56	Q	57-147	5		30
Vinyl chloride	104		105		67-130	1		30
Chloroethane	74		75		50-151	1		30
1,1-Dichloroethene	87		88		65-135	1		30
trans-1,2-Dichloroethene	84		85		70-130	1		30
Trichloroethene	87		87		70-130	0		30
1,2-Dichlorobenzene	100		100		70-130	0		30
1,3-Dichlorobenzene	104		103		70-130	1		30
1,4-Dichlorobenzene	103		104		70-130	1		30
Methyl tert butyl ether	78		80		66-130	3		30
p/m-Xylene	101		101		70-130	0		30
o-Xylene	98		98		70-130	0		30
cis-1,2-Dichloroethene	83		84		70-130	1		30
Dibromomethane	82		84		70-130	2		30
Styrene	98		99		70-130	1		30
Dichlorodifluoromethane	130		131		30-146	1		30
Acetone	90		89		54-140	1		30
Carbon disulfide	93		97		59-130	4		30
2-Butanone	93		96		70-130	3		30
Vinyl acetate	83		86		70-130	4		30

Project Name: 1500 ASTOR Project Number: 20152118.201

Parameter	LCS %Recovery QL	LCSD Ial %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by 8260/5035 - Westbo	rough Lab Associated sa	mple(s): 01,03 Batch:	WG884361-1 WG884361-2		
4-Methyl-2-pentanone	81	82	70-130	1	30
1,2,3-Trichloropropane	105	107	68-130	2	30
2-Hexanone	102	103	70-130	1	30
Bromochloromethane	88	87	70-130	1	30
2,2-Dichloropropane	85	85	70-130	0	30
1,2-Dibromoethane	98	98	70-130	0	30
1,3-Dichloropropane	97	97	69-130	0	30
1,1,1,2-Tetrachloroethane	101	100	70-130	1	30
Bromobenzene	102	103	70-130	1	30
n-Butylbenzene	109	110	70-130	1	30
sec-Butylbenzene	107	108	70-130	1	30
tert-Butylbenzene	107	108	70-130	1	30
o-Chlorotoluene	103	104	70-130	1	30
p-Chlorotoluene	103	103	70-130	0	30
1,2-Dibromo-3-chloropropane	104	101	68-130	3	30
Hexachlorobutadiene	119	117	67-130	2	30
Isopropylbenzene	101	104	70-130	3	30
p-Isopropyltoluene	106	106	70-130	0	30
Naphthalene	105	105	70-130	0	30
Acrylonitrile	97	99	70-130	2	30
Isopropyl Ether	95	96	66-130	1	30

Parameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by 8260/5035 - Westbor	ough Lab Associate	ed sample(s):	01,03	Batch:	WG884361-	1 WG884361-2			
tert-Butyl Alcohol	82		8	4		70-130	2		30
n-Propylbenzene	104		10	5		70-130	1		30
1,2,3-Trichlorobenzene	113		11	1		70-130	2		30
1,2,4-Trichlorobenzene	110		10	8		70-130	2		30
1,3,5-Trimethylbenzene	106		10)7		70-130	1		30
1,2,4-Trimethylbenzene	105		10	6		70-130	1		30
Methyl Acetate	101		10)1		51-146	0		30
Ethyl Acetate	111		11	2		70-130	1		30
Acrolein	82		8	3		70-130	1		30
Cyclohexane	98		10)1		59-142	3		30
1,4-Dioxane	86		9	0		65-136	5		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	93		9	6		50-139	3		30
p-Diethylbenzene	112		11	3		70-130	1		30
p-Ethyltoluene	111		11	2		70-130	1		30
1,2,4,5-Tetramethylbenzene	94		9,	4		70-130	0		30
Tetrahydrofuran	100		10	0		66-130	0		30
Ethyl ether	80		8	2		67-130	2		30
trans-1,4-Dichloro-2-butene	108		10	9		70-130	1		30
Methyl cyclohexane	90		9,	4		70-130	4		30
Ethyl-Tert-Butyl-Ether	84		8	6		70-130	2		30
Tertiary-Amyl Methyl Ether	81		8	3		70-130	2		30

Lab Control Sample Analysis

Batch Quality Control

 Project Name:
 1500 ASTOR

 Project Number:
 20152118.201

 Lab Number:
 L1610441

 Report Date:
 04/18/16

 LCS
 LCSD
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 Value
 Limits
 RPD

 Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s):
 01,03
 Batch:
 WG884361-1
 WG884361-2

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	93		94		70-130	
Toluene-d8	106		106		70-130	
4-Bromofluorobenzene	97		98		70-130	
Dibromofluoromethane	96		97		70-130	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limit	
/olatile Organics by 8260/5035 - Westborou	gh Lab Associat	ed sample(s):	04 Batch:	WG884365-1	WG884365-2			
Methylene chloride	83		84		70-130	1	30	
1,1-Dichloroethane	86		87		70-130	1	30	
Chloroform	83		84		70-130	1	30	
Carbon tetrachloride	84		85		70-130	1	30	
1,2-Dichloropropane	86		88		70-130	2	30	
Dibromochloromethane	98		98		70-130	0	30	
1,1,2-Trichloroethane	99		98		70-130	1	30	
Tetrachloroethene	103		102		70-130	1	30	
Chlorobenzene	96		96		70-130	0	30	
Trichlorofluoromethane	67	Q	67	Q	70-139	0	30	
1,2-Dichloroethane	80		81		70-130	1	30	
1,1,1-Trichloroethane	84		86		70-130	2	30	
Bromodichloromethane	82		83		70-130	1	30	
trans-1,3-Dichloropropene	95		97		70-130	2	30	
cis-1,3-Dichloropropene	80		82		70-130	2	30	
1,1-Dichloropropene	85		86		70-130	1	30	
Bromoform	98		100		70-130	2	30	
1,1,2,2-Tetrachloroethane	108		109		70-130	1	30	
Benzene	85		86		70-130	1	30	
Toluene	99		100		70-130	1	30	
Ethylbenzene	98		98		70-130	0	30	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by 8260/5035 - Westboroug	gh Lab Associat	ed sample(s):	04 Batch:	WG884365-1	WG884365-2			
Chloromethane	113		116		52-130	3		30
Bromomethane	59		56	Q	57-147	5		30
Vinyl chloride	104		105		67-130	1		30
Chloroethane	74		75		50-151	1		30
1,1-Dichloroethene	87		88		65-135	1		30
trans-1,2-Dichloroethene	84		85		70-130	1		30
Trichloroethene	87		87		70-130	0		30
1,2-Dichlorobenzene	100		100		70-130	0		30
1,3-Dichlorobenzene	104		103		70-130	1		30
1,4-Dichlorobenzene	103		104		70-130	1		30
Methyl tert butyl ether	78		80		66-130	3		30
p/m-Xylene	101		101		70-130	0		30
o-Xylene	98		98		70-130	0		30
cis-1,2-Dichloroethene	83		84		70-130	1		30
Dibromomethane	82		84		70-130	2		30
Styrene	98		99		70-130	1		30
Dichlorodifluoromethane	130		131		30-146	1		30
Acetone	90		89		54-140	1		30
Carbon disulfide	93		97		59-130	4		30
2-Butanone	93		96		70-130	3		30
Vinyl acetate	83		86		70-130	4		30

Parameter	LCS %Recovery	Qual 9	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by 8260/5035 - West	tborough Lab Associated	sample(s): 0	04 Batch:	WG884365-1	WG884365-2			
4-Methyl-2-pentanone	81		82		70-130	1		30
1,2,3-Trichloropropane	105		107		68-130	2		30
2-Hexanone	102		103		70-130	1		30
Bromochloromethane	88		87		70-130	1		30
2,2-Dichloropropane	85		85		70-130	0		30
1,2-Dibromoethane	98		98		70-130	0		30
1,3-Dichloropropane	97		97		69-130	0		30
1,1,1,2-Tetrachloroethane	101		100		70-130	1		30
Bromobenzene	102		103		70-130	1		30
n-Butylbenzene	109		110		70-130	1		30
sec-Butylbenzene	107		108		70-130	1		30
tert-Butylbenzene	107		108		70-130	1		30
o-Chlorotoluene	103		104		70-130	1		30
p-Chlorotoluene	103		103		70-130	0		30
1,2-Dibromo-3-chloropropane	104		101		68-130	3		30
Hexachlorobutadiene	119		117		67-130	2		30
Isopropylbenzene	101		104		70-130	3		30
p-Isopropyltoluene	106		106		70-130	0		30
Naphthalene	105		105		70-130	0		30
Acrylonitrile	97		99		70-130	2		30
Isopropyl Ether	95		96		66-130	1		30

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by 8260/5035 - Westbord	ough Lab Associat	ed sample(s):	04 Batch:	WG884365-1	WG884365-2			
tert-Butyl Alcohol	82		84		70-130	2		30
n-Propylbenzene	104		105		70-130	1		30
1,2,3-Trichlorobenzene	113		111		70-130	2		30
1,2,4-Trichlorobenzene	110		108		70-130	2		30
1,3,5-Trimethylbenzene	106		107		70-130	1		30
1,2,4-Trimethylbenzene	105		106		70-130	1		30
Methyl Acetate	101		101		51-146	0		30
Ethyl Acetate	111		112		70-130	1		30
Acrolein	82		83		70-130	1		30
Cyclohexane	98		101		59-142	3		30
1,4-Dioxane	86		90		65-136	5		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	93		96		50-139	3		30
p-Diethylbenzene	112		113		70-130	1		30
p-Ethyltoluene	111		112		70-130	1		30
1,2,4,5-Tetramethylbenzene	94		94		70-130	0		30
Tetrahydrofuran	100		100		66-130	0		30
Ethyl ether	80		82		67-130	2		30
trans-1,4-Dichloro-2-butene	108		109		70-130	1		30
Methyl cyclohexane	90		94		70-130	4		30
Ethyl-Tert-Butyl-Ether	84		86		70-130	2		30
Tertiary-Amyl Methyl Ether	81		83		70-130	2		30

Lab Control Sample Analysis

Batch Quality Control

 Project Name:
 1500 ASTOR

 Project Number:
 20152118.201

 Lab Number:
 L1610441

 Report Date:
 04/18/16

 LCS
 LCSD
 %Recovery
 Recovery
 RPD

 Parameter
 %Recovery
 Qual
 Limits
 RPD
 Qual
 Limits

 Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s):
 04
 Batch:
 WG884365-1
 WG884365-2

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	93		94		70-130	
Toluene-d8	107		106		70-130	
4-Bromofluorobenzene	97		98		70-130	
Dibromofluoromethane	96		97		70-130	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD		PD nits
Volatile Organics by 8260/5035 - Westborou	gh Lab Associat	ed sample(s):	06 Batch:	WG884614-1	WG884614-2			
Methylene chloride	86		81		70-130	6		30
1,1-Dichloroethane	85		79		70-130	7		30
Chloroform	83		79		70-130	5	:	30
Carbon tetrachloride	79		74		70-130	7		30
1,2-Dichloropropane	88		83		70-130	6		30
Dibromochloromethane	96		92		70-130	4		30
1,1,2-Trichloroethane	100		95		70-130	5		30
Tetrachloroethene	93		88		70-130	6		30
Chlorobenzene	93		87		70-130	7		30
Trichlorofluoromethane	66	Q	61	Q	70-139	8	-	30
1,2-Dichloroethane	83		78		70-130	6		30
1,1,1-Trichloroethane	80		74		70-130	8	-	30
Bromodichloromethane	84		78		70-130	7	-	30
trans-1,3-Dichloropropene	94		91		70-130	3	-	30
cis-1,3-Dichloropropene	82		78		70-130	5	-	30
1,1-Dichloropropene	78		74		70-130	5		30
Bromoform	100		96		70-130	4		30
1,1,2,2-Tetrachloroethane	111		107		70-130	4		30
Benzene	83		78		70-130	6		30
Toluene	94		89		70-130	5		30
Ethylbenzene	92		86		70-130	7		30

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics by 8260/5035 - Westborou	gh Lab Associat	ed sample(s):	06 Batch	: WG884614-1	WG884614-2		
Chloromethane	124		121		52-130	2	30
Bromomethane	64		59		57-147	8	30
Vinyl chloride	103		96		67-130	7	30
Chloroethane	74		69		50-151	7	30
1,1-Dichloroethene	83		77		65-135	8	30
trans-1,2-Dichloroethene	80		75		70-130	6	30
Trichloroethene	83		77		70-130	8	 30
1,2-Dichlorobenzene	98		94		70-130	4	30
1,3-Dichlorobenzene	100		94		70-130	6	30
1,4-Dichlorobenzene	100		97		70-130	3	30
Methyl tert butyl ether	78		76		66-130	3	 30
p/m-Xylene	95		90		70-130	5	 30
o-Xylene	91		86		70-130	6	 30
cis-1,2-Dichloroethene	82		77		70-130	6	 30
Dibromomethane	87		80		70-130	8	30
Styrene	93		89		70-130	4	30
Dichlorodifluoromethane	133		126		30-146	5	30
Acetone	95		92		54-140	3	30
Carbon disulfide	84		78		59-130	7	30
2-Butanone	96		86		70-130	11	30
Vinyl acetate	86		84		70-130	2	30

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by 8260/5035 - Westboro	ugh Lab Associat	ed sample(s):	06 Batch:	WG884614-1	WG884614-2			
4-Methyl-2-pentanone	79		78		70-130	1		30
1,2,3-Trichloropropane	106		102		68-130	4		30
2-Hexanone	98		98		70-130	0		30
Bromochloromethane	91		86		70-130	6		30
2,2-Dichloropropane	81		74		70-130	9		30
1,2-Dibromoethane	98		95		70-130	3		30
1,3-Dichloropropane	98		94		69-130	4		30
1,1,1,2-Tetrachloroethane	99		95		70-130	4		30
Bromobenzene	98		94		70-130	4		30
n-Butylbenzene	96		92		70-130	4		30
sec-Butylbenzene	95		90		70-130	5		30
tert-Butylbenzene	96		92		70-130	4		30
o-Chlorotoluene	108		76		70-130	35	Q	30
p-Chlorotoluene	98		92		70-130	6		30
1,2-Dibromo-3-chloropropane	101		100		68-130	1		30
Hexachlorobutadiene	100		98		67-130	2		30
Isopropylbenzene	92		87		70-130	6		30
p-lsopropyltoluene	95		91		70-130	4		30
Naphthalene	102		103		70-130	1		30
Acrylonitrile	104		100		70-130	4		30
Isopropyl Ether	93		88		66-130	6		30

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RF Qual Lin	PD nits
olatile Organics by 8260/5035 - Westbor	rough Lab Associat	ed sample(s):	06 Batch:	WG884614-1	WG884614-2			
tert-Butyl Alcohol	82		82		70-130	0	3	30
n-Propylbenzene	98		92		70-130	6	3	80
1,2,3-Trichlorobenzene	107		106		70-130	1	3	80
1,2,4-Trichlorobenzene	104		102		70-130	2	3	80
1,3,5-Trimethylbenzene	98		93		70-130	5	3	80
1,2,4-Trimethylbenzene	100		94		70-130	6	3	80
Methyl Acetate	105		101		51-146	4	3	80
Ethyl Acetate	153	Q	160	Q	70-130	4	3	80
Acrolein	98		94		70-130	4	3	80
Cyclohexane	86		80		59-142	7	3	80
1,4-Dioxane	84		86		65-136	2	3	80
1,1,2-Trichloro-1,2,2-Trifluoroethane	84		77		50-139	9	3	80
p-Diethylbenzene	96		92		70-130	4	3	80
p-Ethyltoluene	98		93		70-130	5	3	80
1,2,4,5-Tetramethylbenzene	84		81		70-130	4	3	80
Tetrahydrofuran	105		99		66-130	6	3	80
Ethyl ether	85		80		67-130	6	3	80
trans-1,4-Dichloro-2-butene	101		98		70-130	3	3	80
Methyl cyclohexane	76		71		70-130	7	3	80
Ethyl-Tert-Butyl-Ether	82		80		70-130	2	3	80
Tertiary-Amyl Methyl Ether	80		77		70-130	4	3	80

Lab Control Sample Analysis

Batch Quality Control

 Project Name:
 1500 ASTOR

 Project Number:
 20152118.201

 Lab Number:
 L1610441

 Report Date:
 04/18/16

 LCS
 LCSD
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 %Recovery
 Qual
 Limits

 Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s):
 06
 Batch:
 WG884614-1
 WG884614-2

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
1,2-Dichloroethane-d4	95		94		70-130
Toluene-d8	105		105		70-130
4-Bromofluorobenzene	97		96		70-130
Dibromofluoromethane	97		96		70-130

Lab Control Sample Analysis

Batch Quality Control

Parameter

Lab Number: L1610441 **Report Date:** 04/18/16

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Qual Qual Qual Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 05 Batch: WG884683-1 WG884683-2 Methylene chloride 90 70-130 30 91 1 1,1-Dichloroethane 92 90 70-130 2 30 Chloroform 85 70-130 30 89 5 Carbon tetrachloride 30 92 89 70-130 3 1,2-Dichloropropane 93 92 70-130 30 1 Dibromochloromethane 70-130 30 102 100 2 1,1,2-Trichloroethane 102 100 70-130 2 30 Tetrachloroethene 105 70-130 30 111 6 Chlorobenzene 70-130 30 101 98 3 Trichlorofluoromethane 70-139 30 77 74 4 70-130 30 1.2-Dichloroethane 85 83 2 1,1,1-Trichloroethane 92 89 70-130 3 30 Bromodichloromethane 85 70-130 30 86 1 trans-1,3-Dichloropropene 70-130 30 100 99 1 cis-1,3-Dichloropropene 70-130 30 90 87 3 1,1-Dichloropropene 92 70-130 30 96 4 Bromoform 106 104 70-130 2 30 1,1,2,2-Tetrachloroethane 114 111 70-130 3 30

89

102

101

70-130

70-130

70-130

3

3

3

30

30

30

Ethylbenzene

Benzene

Toluene

92

105

104

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by 8260/5035 - Westboroug	gh Lab Associat	ed sample(s):	05 Batch:	WG884683-1	WG884683-2				
Chloromethane	127		130		52-130	2		30	
Bromomethane	66		64		57-147	3		30	
Vinyl chloride	117		114		67-130	3		30	
Chloroethane	55		79		50-151	36	Q	30	
1,1-Dichloroethene	100		94		65-135	6		30	
trans-1,2-Dichloroethene	94		89		70-130	5		30	
Trichloroethene	92		89		70-130	3		30	
1,2-Dichlorobenzene	105		104		70-130	1		30	
1,3-Dichlorobenzene	107		105		70-130	2		30	
1,4-Dichlorobenzene	108		106		70-130	2		30	
Methyl tert butyl ether	85		85		66-130	0		30	
p/m-Xylene	107		103		70-130	4		30	
o-Xylene	101		99		70-130	2		30	
cis-1,2-Dichloroethene	92		88		70-130	4		30	
Dibromomethane	87		86		70-130	1		30	
Styrene	100		98		70-130	2		30	
Dichlorodifluoromethane	161	Q	156	Q	30-146	3		30	
Acetone	88		88		54-140	0		30	
Carbon disulfide	100		96		59-130	4		30	
2-Butanone	94		90		70-130	4		30	
Vinyl acetate	91		88		70-130	3		30	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
Volatile Organics by 8260/5035 - Westborou	gh Lab Associate	ed sample(s):	05 Batch:	WG884683-1	WG884683-2		
4-Methyl-2-pentanone	86		85		70-130	1	30
1,2,3-Trichloropropane	109		109		68-130	0	30
2-Hexanone	105		103		70-130	2	30
Bromochloromethane	95		94		70-130	1	30
2,2-Dichloropropane	93		88		70-130	6	30
1,2-Dibromoethane	103		102		70-130	1	30
1,3-Dichloropropane	103		102		69-130	1	30
1,1,1,2-Tetrachloroethane	104		100		70-130	4	30
Bromobenzene	109		106		70-130	3	30
n-Butylbenzene	112		108		70-130	4	30
sec-Butylbenzene	114		110		70-130	4	30
tert-Butylbenzene	117		113		70-130	3	30
o-Chlorotoluene	91		106		70-130	15	30
p-Chlorotoluene	110		106		70-130	4	30
1,2-Dibromo-3-chloropropane	109		106		68-130	3	30
Hexachlorobutadiene	123		118		67-130	4	30
Isopropylbenzene	114		108		70-130	5	30
p-Isopropyltoluene	114		110		70-130	4	30
Naphthalene	114		113		70-130	1	30
Acrylonitrile	103		104		70-130	1	30
Isopropyl Ether	100		99		66-130	1	30

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics by 8260/5035 - Westbo	orough Lab Associate	d sample(s):	05 Batch:	WG884683-1	WG884683-2		
tert-Butyl Alcohol	86		86		70-130	0	30
n-Propylbenzene	115		110		70-130	4	30
1,2,3-Trichlorobenzene	116		114		70-130	2	30
1,2,4-Trichlorobenzene	116		112		70-130	4	30
1,3,5-Trimethylbenzene	114		110		70-130	4	30
1,2,4-Trimethylbenzene	113		109		70-130	4	30
Methyl Acetate	103		101		51-146	2	30
Ethyl Acetate	120		119		70-130	1	30
Acrolein	102		99		70-130	3	30
Cyclohexane	110		106		59-142	4	30
1,4-Dioxane	92		95		65-136	3	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	102		97		50-139	5	30
p-Diethylbenzene	115		110		70-130	4	30
p-Ethyltoluene	114		110		70-130	4	30
1,2,4,5-Tetramethylbenzene	97		95		70-130	2	30
Tetrahydrofuran	105		102		66-130	3	30
Ethyl ether	87		86		67-130	1	30
trans-1,4-Dichloro-2-butene	105		103		70-130	2	30
Methyl cyclohexane	100		94		70-130	6	30
Ethyl-Tert-Butyl-Ether	91		90		70-130	1	30
Tertiary-Amyl Methyl Ether	88		87		70-130	1	30

Lab Control Sample Analysis

Batch Quality Control

 Project Name:
 1500 ASTOR

 Project Number:
 20152118.201

 Lab Number:
 L1610441

 Report Date:
 04/18/16

 LCS
 LCSD
 %Recovery
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 Limits
 RPD
 Qual
 Limits

	LCS	LCSD	Acceptance			
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	91		91		70-130	
Toluene-d8	106		106		70-130	
4-Bromofluorobenzene	102		102		70-130	
Dibromofluoromethane	94		93		70-130	

INORGANICS & MISCELLANEOUS

Serial	No:04181614:19
Ochai	110.04101014.15

 Lab Number:
 L1610441

 Report Date:
 04/18/16

 Project Name:
 1500 ASTOR

 Project Number:
 20152118.201

Lab ID:	L1610441-01	Date Collected:	04/07/16 09:10
Client ID:	2118-SB-01 (1.0-1.5)	Date Received:	04/08/16
Sample Location:	BRONX, NY	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	84.9		%	0.100	NA	1	-	04/11/16 15:58	121,2540G	RI

Serial	No:04181614:19
Ochai	110.04101014.15

Lab Number: 1500 ASTOR L1610441 Project Number: 20152118.201 Report Date: 04/18/16

SAMPLE RESULTS

Lab ID:	L1610441-02	Date Collected:	04/07/16 09:25
Client ID:	2118-SB-01 (7.5-8.0)	Date Received:	04/08/16
Sample Location:	BRONX, NY	Field Prep:	Not Specified
Matrix:	Soil	-	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	91.4		%	0.100	NA	1	-	04/11/16 15:58	121,2540G	RI

Project Name:

Serial	No:04181614:19
Ochai	110.04101014.15

 Lab Number:
 L1610441

 Report Date:
 04/18/16

SAMPLE RESULTS

Lab ID:	L1610441-03	Date Collected:	04/07/16 09:30
Client ID:	2118-SB-02 (0.5-1.0)	Date Received:	04/08/16
Sample Location:	BRONX, NY	Field Prep:	Not Specified
Matrix:	Soil	-	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	92.9		%	0.100	NA	1	-	04/11/16 15:58	121,2540G	RI

Project Name:

Project Number: 20152118.201

1500 ASTOR

Serial	No:04181614:19
Ochai	110.04101014.15

 Lab Number:
 L1610441

 Report Date:
 04/18/16

SAMPLE RESULTS

Lab ID:	L1610441-04	Date Collected:	04/07/16 09:40
Client ID:	2118-SB-02 (4.0-4.5)	Date Received:	04/08/16
Sample Location:	BRONX, NY	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	89.4		%	0.100	NA	1	-	04/11/16 15:58	121,2540G	RI

Project Name:

Project Number: 20152118.201

1500 ASTOR

Serial	No:04181614:19
Ochai	110.04101014.15

Lab Number: 1500 ASTOR L1610441 Project Number: 20152118.201 Report Date: 04/18/16

SAMPLE RESULTS

Lab ID:	L1610441-05	Date Collected:	04/07/16 10:00
Client ID:	2118-SB-03 (0.5-1.0)	Date Received:	04/08/16
Sample Location:	BRONX, NY	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lab)								
Solids, Total	85.9		%	0.100	NA	1	-	04/11/16 15:58	121,2540G	RI

Project Name:

Serial	No:04181614:19
Ochai	110.04101014.15

 Project Name:
 1500 ASTOR
 Lab Number:
 L1610441

 Project Number:
 20152118.201
 Report Date:
 04/18/16

 SAMPLE RESULTS
 Comparison
 Comparison
 Comparison

			Dilution	Date	Date	Analytical	
Matrix:	Soil						
Sample Location:	BRONX, NY			Field Pr	ep:	Not Specified	
Client ID:	2118-SB-03 (6.5-7.0)			Date Re	eceived:	04/08/16	
Lab ID:	L1610441-06			Date Co	llected:	04/07/16 10:15	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	91.2		%	0.100	NA	1	-	04/11/16 15:58	121,2540G	RI

Serial	No:04181614:19
Ochai	110.04101014.15

 Project Name:
 1500 ASTOR
 Lab Number:
 L1610441

 Project Number:
 20152118.201
 Report Date:
 04/18/16

 SAMPLE RESULTS
 Comparison
 Comparison
 Comparison

Lab ID:	L1610441-07	Date Collected:	04/07/16 11:15
Client ID:	2118-SB-04 (1.0-1.5)	Date Received:	04/08/16
Sample Location:	BRONX, NY	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	88.8		%	0.100	NA	1	-	04/11/16 15:58	121,2540G	RI

Serial	No:04181614:19
Ochai	110.04101014.15

 Project Name:
 1500 ASTOR
 Lab Number:
 L1610441

 Project Number:
 20152118.201
 Report Date:
 04/18/16

 SAMPLE RESULTS
 Comparison
 Comparison
 Comparison

Lab ID: Client ID:	L1610441-08 2118-SB-04 (7.0-7.5)	Date Collected: Date Received:	04/07/16 11:30 04/08/16
Sample Location:	BRONX, NY	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	90.3		%	0.100	NA	1	-	04/11/16 15:58	121,2540G	RI

Project Name:	1500 ASTOR	Li	ab Duplicate Analy Batch Quality Control		La	ıb Number	r:	L1610441	
Project Number:	20152118.201				Re	eport Date	:	04/18/16	
Deremeter		Notivo Comple	Dunligata Comple	Unito	חחח	Qual	חחח	Limite	

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated	I sample(s): 01-08 QC B	atch ID: WG882451-1 G	C Sample: L	1610368-01	Client ID: DUP Sample
Solids, Total	80.1	79.8	%	0	20

_

Lab Number: L1610441 Report Date: 04/18/16

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

1500 ASTOR

Reagent H2O Preserved Vials Frozen on: 04/09/2016 05:11

Cooler Information Custody Seal Cooler

Project Number: 20152118.201

А

Absent

Project Name:

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1610441-01A	Vial MeOH preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-01B	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-01C	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-01D	Plastic 2oz unpreserved for TS	А	N/A	2.2	Y	Absent	TS(7)
L1610441-02A	Vial MeOH preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-02B	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-02C	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-02D	Plastic 2oz unpreserved for TS	А	N/A	2.2	Y	Absent	TS(7)
L1610441-03A	Vial MeOH preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-03B	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-03C	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-03D	Plastic 2oz unpreserved for TS	А	N/A	2.2	Y	Absent	TS(7)
L1610441-04A	Vial MeOH preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-04B	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-04C	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-04D	Plastic 2oz unpreserved for TS	А	N/A	2.2	Y	Absent	TS(7)
L1610441-05A	Vial MeOH preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-05B	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-05C	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-05D	Plastic 2oz unpreserved for TS	А	N/A	2.2	Y	Absent	TS(7)
L1610441-06A	Vial MeOH preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-06B	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-06C	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-06D	Plastic 2oz unpreserved for TS	А	N/A	2.2	Y	Absent	TS(7)
L1610441-07A	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-07B	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)
L1610441-07C	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)

Lab Number: L1610441 Report Date: 04/18/16

Project Name: 1500 ASTOR Project Number: 20152118.201

Container Information Temp									
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)		
L1610441-07D	Plastic 2oz unpreserved for TS	А	N/A	2.2	Y	Absent	TS(7)		
L1610441-08A	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)		
L1610441-08B	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)		
L1610441-08C	Vial water preserved	А	N/A	2.2	Y	Absent	NYTCL-8260HLW(14)		
L1610441-08D	Plastic 2oz unpreserved for TS	А	N/A	2.2	Y	Absent	TS(7)		
L1610441-09A	Vial HCI preserved	А	N/A	2.2	Y	Absent	NYTCL-8260(14)		
L1610441-09B	Vial HCI preserved	А	N/A	2.2	Y	Absent	NYTCL-8260(14)		
L1610441-09C	Vial HCI preserved	А	N/A	2.2	Y	Absent	NYTCL-8260(14)		
L1610441-10A	Vial HCI preserved	А	N/A	2.2	Y	Absent	NYTCL-8260(14)		
L1610441-10B	Vial HCI preserved	А	N/A	2.2	Y	Absent	NYTCL-8260(14)		
L1610441-10C	Vial HCI preserved	А	N/A	2.2	Y	Absent	NYTCL-8260(14)		

L1610441

04/18/16

Lab Number:

Report Date:

Project Name: 1500 ASTOR

Project Number: 20152118.201

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: DU Report with 'J' Qualifiers

Project Name: 1500 ASTOR Project Number: 20152118.201

Lab Number: L1610441

Report Date: 04/18/16

Data Qualifiers

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

 Project Name:
 1500 ASTOR

 Project Number:
 20152118.201

 Lab Number:
 L1610441

 Report Date:
 04/18/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Алрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105			Page 0	1		Date Rec'd in Lab 4/9/16				ALPHA JOD # [161044]	1	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	erables	3				Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: 1500	Astor				V	ASP-A	Ą		ASP-	B	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Bror						EQuis	6 (1 File] EQul	S (4 File)		
Client Information		Project # 26152118					1 🗆	Other				20152118,201		
Client: Property SO	lutions Inc	(Use Project name as Pro					Regu	latory I	Require	nent			Disposal Site Information	
Address: 31A NOG		Project Manager: Ru	and the second se	NOL			X	NY TOGS NY Part 375			Please identify below location of	f		
Edison,		ALPHAQuote #:						AWQ S	itandards		NY CI	P-51	applicable disposal facilities.	
Phone: (732)47-0		Turn-Around Time						NY Res	stricted U	se	Other		Disposal Facility:	
Fax:		Standard	X	Due Date:				NY Uni	estricted	Use			NJ NY	
	operty solutions Inc	Rush (only if pre approved)		# of Days:				NYC S	ewer Disc	charge			Other:	
These samples have be							ANA	LYSIS					Sample Filtration	T
Other project specific							<u> </u>			-			Done	- O t
Please specify Metals	9						7-761	FRA	-701				Lab to do Preservation Lab to do	a I B o
							0	A	0				(Please Specify below)	t
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's	82161	0	2					
(Lab Use Only)			Date	Time	Matrix	Initials	20	0	S				Sample Specific Comments	е
10441 01	2118-SB-011	1.0-1-5)	417/16	09:10AM	Soil	Br	/							
07	2118-5B-01 (1.5-8.0)	HITILE	09-25 AM	56.1	BT	~							
OS	2118-SB-02 (0.5-1.07	4/1/10	09:30AM	soil	BT	~							
04	3118-5B-02	(4.0-4.5)	4/7/16	09:40 AM	SDIL	BT	1							
OS	2118-5B-03 1	05-1.0)	4/7/16	10:00 AM	Soil	BT	1/							
06	2118-58-031	(6.5-7.6)	4/1/16	10: 15 AM	Soil	BT	1							
4	2118-58-04	(1.671.5)	4/7/16	11: ISAM	Soil	BT	\checkmark							
OS.	2118-5B-04	(7.6-7.5)	417116	11=30 AM	Soil	BT	\checkmark		1					
01	218-TW-03	(7.6)	417/16	10:25 AM	GW	BT		X	1					
10	2118- +W-04	(9.0)	4/7/16.	11:50AM	GW	BT		X	\checkmark					
Preservative Code: A = None B = HCl $C = HNO_3$ $D = H_2SO_4$	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification No Mansfield: Certification No				tainer Type Preservative	A 3 A	83)	A 3) B				Please print clearly, legibl and completely. Samples not be logged in and turnaround time clock will	can
E = NaOH	B = Bacteria Cup						1	5	-	_			start until any ambiguities	are
F = MeOH G = NaHSO₄	C = Cube O = Other	, Relinguished E	By:	Date/			Receiv	ed By:			Date/	Time	resolved. BY EXECUTING	
$H = Na_2S_2O_3$	E = Encore	Mutin Ilun	_	4816-1	2'57	Black	~/	AAC	1	8-87	6-	12is	THIS COC, THE CLIENT	
K/E = Zn Ac/NaOH	D = BOD Bottle	BABALI/		4816.	1930		in		kh	4-8	10	1931	TO BE BOUND BY ALPH	IA'S
O = Other		Join Tops	-	4/1/16	BB	Millutio		Willin	7	4/0	116	7375	TERMS & CONDITIONS.	
Form No: 01-25 HC (rev. 3	80-Sept-2013)						,			117		-	(See reverse side.)	

ANALYTICAL REPORT

Lab Number:	L1610339	
Client:	Property Solutions Inc. 323 New Albany Road Moorestown, NJ 08057	
ATTN: Phone: Project Name: Project Number: Report Date:	Burt Turner (856) 813-3000 1500 ASTOR AVENUE 20152118.201 04/18/16	

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

 Project Name:
 1500 ASTOR AVENUE

 Project Number:
 20152118.201

 Lab Number:
 L1610339

 Report Date:
 04/18/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1610339-01	2118-SV-01 (0.5)	SOIL_VAPOR	BRONX, NY	04/07/16 14:18	04/08/16
L1610339-02	2118-SV-02 (0.5)	SOIL_VAPOR	BRONX, NY	04/07/16 14:58	04/08/16

Project Name:1500 ASTOR AVENUEProject Number:20152118.201

 Lab Number:
 L1610339

 Report Date:
 04/18/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: 1500 ASTOR AVENUE Project Number: 20152118.201
 Lab Number:
 L1610339

 Report Date:
 04/18/16

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on April 6, 2016. The canister certification results are provided as an addendum.

SamplesL1610339-01 and -02: The samples have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 04/18/16

AIR

L1610339

04/18/16

Lab Number:

Report Date:

 Project Name:
 1500 ASTOR AVENUE

 Project Number:
 20152118.201

L1610339-01 D

2118-SV-01 (0.5)

BRONX, NY Soil_Vapor 48,TO-15

04/17/16 19:27

MB

Lab ID:

Matrix:

Analyst:

Client ID:

Sample Location:

Anaytical Method: Analytical Date:

Date Collected:	04/07/16 14:18
Date Received:	04/08/16
Field Prep:	Not Specified

		nnh)/						
Parameter	Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansf			mbe					
Dichlorodifluoromethane	ND	0.667		ND	3.30			3.333
Chloromethane	ND	0.667		ND	1.38			3.333
Freon-114	ND	0.667		ND	4.66			3.333
Vinyl chloride	ND	0.667		ND	1.71			3.333
1,3-Butadiene	ND	0.667		ND	1.48			3.333
Bromomethane	ND	0.667		ND	2.59			3.333
Chloroethane	ND	0.667		ND	1.76			3.333
Ethanol	ND	16.7		ND	31.5			3.333
Vinyl bromide	ND	0.667		ND	2.92			3.333
Acetone	ND	3.33		ND	7.91			3.333
Trichlorofluoromethane	ND	0.667		ND	3.75			3.333
Isopropanol	ND	1.67		ND	4.10			3.333
1,1-Dichloroethene	ND	0.667		ND	2.64			3.333
Tertiary butyl Alcohol	ND	1.67		ND	5.06			3.333
Methylene chloride	ND	1.67		ND	5.80			3.333
3-Chloropropene	ND	0.667		ND	2.09			3.333
Carbon disulfide	ND	0.667		ND	2.08			3.333
Freon-113	ND	0.667		ND	5.11			3.333
trans-1,2-Dichloroethene	ND	0.667		ND	2.64			3.333
1,1-Dichloroethane	ND	0.667		ND	2.70			3.333
Methyl tert butyl ether	ND	0.667		ND	2.40			3.333
2-Butanone	ND	1.67		ND	4.93			3.333
cis-1,2-Dichloroethene	ND	0.667		ND	2.64			3.333
Ethyl Acetate	ND	1.67		ND	6.02			3.333

 Project Name:
 1500 ASTOR AVENUE

 Project Number:
 20152118.201

 Lab Number:
 L1610339

 Report Date:
 04/18/16

Lab ID: Client ID: Sample Location:	L1610339-01 2118-SV-01 (0. BRONX, NY	D 5)	ppbV				Collecte Receive Prep:		04/07/16 14:18 04/08/16 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Fastan
Volatile Organics ir	n Air - Mansfield La	ab							
Chloroform		ND	0.667		ND	3.26			3.333
Tetrahydrofuran		ND	1.67		ND	4.93			3.333
1,2-Dichloroethane		ND	0.667		ND	2.70			3.333
n-Hexane		ND	0.667		ND	2.35			3.333
1,1,1-Trichloroethane		ND	0.667		ND	3.64			3.333
Benzene		ND	0.667		ND	2.13			3.333
Carbon tetrachloride		ND	0.667		ND	4.20			3.333
Cyclohexane		ND	0.667		ND	2.30			3.333
1,2-Dichloropropane		ND	0.667		ND	3.08			3.333
Bromodichloromethane		ND	0.667		ND	4.47			3.333
1,4-Dioxane		ND	0.667		ND	2.40			3.333
Trichloroethene		ND	0.667		ND	3.58			3.333
2,2,4-Trimethylpentane		ND	0.667		ND	3.12			3.333
Heptane		ND	0.667		ND	2.73			3.333
cis-1,3-Dichloropropene	•	ND	0.667		ND	3.03			3.333
4-Methyl-2-pentanone		ND	1.67		ND	6.84			3.333
trans-1,3-Dichloroprope	ne	ND	0.667		ND	3.03			3.333
1,1,2-Trichloroethane		ND	0.667		ND	3.64			3.333
Toluene		0.676	0.667		2.55	2.51			3.333
2-Hexanone		ND	0.667		ND	2.73			3.333
Dibromochloromethane		ND	0.667		ND	5.68			3.333
1,2-Dibromoethane		ND	0.667		ND	5.13			3.333
Tetrachloroethene		287	0.667		1950	4.52			3.333
Chlorobenzene		ND	0.667		ND	3.07			3.333
Ethylbenzene		ND	0.667		ND	2.90			3.333
p/m-Xylene		ND	1.33		ND	5.78			3.333
Bromoform		ND	0.667		ND	6.90			3.333
Styrene		ND	0.667		ND	2.84			3.333

Project Name:	1500 ASTOR AVENUE
Project Number:	20152118.201

Lab Number:	L1610339
Report Date:	04/18/16

Lab ID: Client ID: Sample Location:	L1610339-01 2118-SV-01 (0. BRONX, NY	D 5)	nah)/			Date Field	Collecte Receive Prep:		04/07/16 14:18 04/08/16 Not Specified
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	Dilution Factor
Volatile Organics in	Air - Mansfield L								
1,1,2,2-Tetrachloroethar	ne	ND	0.667		ND	4.58			3.333
o-Xylene		ND	0.667		ND	2.90			3.333
4-Ethyltoluene		ND	0.667		ND	3.28			3.333
1,3,5-Trimethylbenzene		ND	0.667		ND	3.28			3.333
1,2,4-Trimethylbenzene		ND	0.667		ND	3.28			3.333
Benzyl chloride		ND	0.667		ND	3.45			3.333
1,3-Dichlorobenzene		ND	0.667		ND	4.01			3.333
1,4-Dichlorobenzene		ND	0.667		ND	4.01			3.333
1,2-Dichlorobenzene		ND	0.667		ND	4.01			3.333
1,2,4-Trichlorobenzene		ND	0.667		ND	4.95			3.333
Hexachlorobutadiene		ND	0.667		ND	7.11			3.333

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	91		60-140

L1610339

04/18/16

Lab Number:

Report Date:

 Project Name:
 1500 ASTOR AVENUE

 Project Number:
 20152118.201

L1610339-02 D

2118-SV-02 (0.5)

BRONX, NY

Soil_Vapor 48,TO-15

MB

04/17/16 19:56

Lab ID:

Matrix:

Analyst:

Client ID:

Sample Location:

Anaytical Method: Analytical Date: SAMPLE RESULTS

Date Collected:04/07/16 14:58Date Received:04/08/16Field Prep:Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
Dichlorodifluoromethane	ND	2.00		ND	9.89			10
Chloromethane	ND	2.00		ND	4.13			10
Freon-114	ND	2.00		ND	14.0			10
Vinyl chloride	ND	2.00		ND	5.11			10
1,3-Butadiene	ND	2.00		ND	4.42			10
Bromomethane	ND	2.00		ND	7.77			10
Chloroethane	ND	2.00		ND	5.28			10
Ethanol	ND	50.0		ND	94.2			10
Vinyl bromide	ND	2.00		ND	8.74			10
Acetone	12.1	10.0		28.7	23.8			10
Trichlorofluoromethane	ND	2.00		ND	11.2			10
sopropanol	ND	5.00		ND	12.3			10
1,1-Dichloroethene	ND	2.00		ND	7.93			10
Tertiary butyl Alcohol	ND	5.00		ND	15.2			10
Methylene chloride	ND	5.00		ND	17.4			10
3-Chloropropene	ND	2.00		ND	6.26			10
Carbon disulfide	ND	2.00		ND	6.23			10
Freon-113	ND	2.00		ND	15.3			10
trans-1,2-Dichloroethene	ND	2.00		ND	7.93			10
1,1-Dichloroethane	ND	2.00		ND	8.09			10
Methyl tert butyl ether	ND	2.00		ND	7.21			10
2-Butanone	ND	5.00		ND	14.7			10
cis-1,2-Dichloroethene	ND	2.00		ND	7.93			10
Ethyl Acetate	ND	5.00		ND	18.0			10

 Project Name:
 1500 ASTOR AVENUE

 Project Number:
 20152118.201

 Lab Number:
 L1610339

 Report Date:
 04/18/16

Lab ID: Client ID: Sample Location:	L1610339-02 2118-SV-02 (0. BRONX, NY	D 5)				Date Field	Collecte Receive Prep:		04/07/16 14:58 04/08/16 Not Specified
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	Dilution Factor
Volatile Organics ir	n Air - Mansfield La		NL.		nesuns		mee	quanne	
Chloroform		ND	2.00		ND	9.77			10
Tetrahydrofuran		ND	5.00		ND	14.7			10
1,2-Dichloroethane		ND	2.00		ND	8.09			10
n-Hexane		ND	2.00		ND	7.05			10
1,1,1-Trichloroethane		ND	2.00		ND	10.9			10
Benzene		ND	2.00		ND	6.39			10
Carbon tetrachloride		ND	2.00		ND	12.6			10
Cyclohexane		ND	2.00		ND	6.88			10
1,2-Dichloropropane		ND	2.00		ND	9.24			10
Bromodichloromethane		ND	2.00		ND	13.4			10
1,4-Dioxane		ND	2.00		ND	7.21			10
Trichloroethene		ND	2.00		ND	10.7			10
2,2,4-Trimethylpentane		ND	2.00		ND	9.34			10
Heptane		ND	2.00		ND	8.20			10
cis-1,3-Dichloropropene		ND	2.00		ND	9.08			10
4-Methyl-2-pentanone		ND	5.00		ND	20.5			10
trans-1,3-Dichloroprope	ne	ND	2.00		ND	9.08			10
1,1,2-Trichloroethane		ND	2.00		ND	10.9			10
Toluene		ND	2.00		ND	7.54			10
2-Hexanone		ND	2.00		ND	8.20			10
Dibromochloromethane		ND	2.00		ND	17.0			10
1,2-Dibromoethane		ND	2.00		ND	15.4			10
Tetrachloroethene		768	2.00		5210	13.6			10
Chlorobenzene		ND	2.00		ND	9.21			10
Ethylbenzene		ND	2.00		ND	8.69			10
p/m-Xylene		ND	4.00		ND	17.4			10
Bromoform		ND	2.00		ND	20.7			10
Styrene		ND	2.00		ND	8.52			10

Project Name:	1500 ASTOR AVENUE
Project Number:	20152118.201

 Lab Number:
 L1610339

 Report Date:
 04/18/16

Lab ID: Client ID: Sample Location:	D 5)				Date Field	Collecte Receive Prep:		04/07/16 14:58 04/08/16 Not Specified	
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	Dilution Factor
Volatile Organics in	Air - Mansfield La			MDL	Results		MDE	Quanner	
1,1,2,2-Tetrachloroethar	ie	ND	2.00		ND	13.7			10
o-Xylene		ND	2.00		ND	8.69			10
4-Ethyltoluene		ND	2.00		ND	9.83			10
1,3,5-Trimethylbenzene		ND	2.00		ND	9.83			10
1,2,4-Trimethylbenzene		ND	2.00		ND	9.83			10
Benzyl chloride		ND	2.00		ND	10.4			10
1,3-Dichlorobenzene		ND	2.00		ND	12.0			10
1,4-Dichlorobenzene		ND	2.00		ND	12.0			10
1,2-Dichlorobenzene		ND	2.00		ND	12.0			10
1,2,4-Trichlorobenzene		ND	2.00		ND	14.8			10
Hexachlorobutadiene		ND	2.00		ND	21.3			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	89		60-140

Method Blank Analysis Batch Quality Control

Analytical Method:48,TO-15Analytical Date:04/17/16 13:59

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	- Mansfield Lab for sam	ple(s): 01-	02 Batch	: WG88448	37-4			
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/17/16 13:59

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air -	Mansfield Lab for sam	ple(s): 01-	02 Batch	: WG88448	37-4			
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1

Method Blank Analysis Batch Quality Control

Analytical Method:48,TO-15Analytical Date:04/17/16 13:59

		ppbV				ug/m3		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - N	lansfield Lab for samp	ole(s): 01-	02 Batch	n: WG88448	37-4			
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Batch Quality Control

Project Number: 20152118.201

 Lab Number:
 L1610339

 Report Date:
 04/18/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-02 Batch: WG884487-3 Chlorodifluoromethane 84 70-130 --Propylene 97 70-130 --Propane 96 70-130 --Dichlorodifluoromethane 70-130 96 --Chloromethane 101 70-130 --1,2-Dichloro-1,1,2,2-tetrafluoroethane 70-130 96 --Methanol 99 70-130 --Vinyl chloride 98 70-130 --1.3-Butadiene 70-130 103 --Butane 100 70-130 --Bromomethane 70-130 88 --Chloroethane 95 70-130 --Ethyl Alcohol 106 70-130 --Dichlorofluoromethane 70-130 91 --Vinyl bromide 70-130 87 --Acrolein 70-130 89 --Acetone 96 70-130 --70-130 Acetonitrile 96 --Trichlorofluoromethane 70-130 92 -iso-Propyl Alcohol 92 70-130 --Acrylonitrile 94 70-130 --

Batch Quality Control

Project Number: 20152118.201

 Lab Number:
 L1610339

 Report Date:
 04/18/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-02 Batch: WG884487-3 99 70-130 Pentane --Ethyl ether 104 70-130 --1.1-Dichloroethene 98 70-130 -tert-Butyl Alcohol 70-130 93 --Methylene chloride 110 70-130 --3-Chloropropene 70-130 109 --Carbon disulfide 96 70-130 --1,1,2-Trichloro-1,2,2-Trifluoroethane 94 70-130 -trans-1.2-Dichloroethene 70-130 89 --1.1-Dichloroethane 100 70-130 --Methyl tert butyl ether 79 70-130 --Vinyl acetate 125 70-130 --2-Butanone 92 70-130 -cis-1.2-Dichloroethene 100 70-130 --Ethyl Acetate 70-130 88 --Chloroform 70-130 87 --Tetrahydrofuran 94 70-130 --70-130 2,2-Dichloropropane 78 --1.2-Dichloroethane 70-130 84 -n-Hexane 70-130 110 --Isopropyl Ether 94 70-130 --

Batch Quality Control

Project Number: 20152118.201

 Lab Number:
 L1610339

 Report Date:
 04/18/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-02 Batch: WG884487-3 Ethyl-Tert-Butyl-Ether 98 70-130 --1,1,1-Trichloroethane 103 70-130 --1,1-Dichloropropene 98 70-130 --70-130 Benzene 102 --Carbon tetrachloride 104 70-130 --Cyclohexane 70-130 108 --Tertiary-Amyl Methyl Ether 95 70-130 --Dibromomethane 98 70-130 --70-130 1,2-Dichloropropane 112 --Bromodichloromethane 105 70-130 --1.4-Dioxane 99 70-130 --Trichloroethene 97 70-130 --2,2,4-Trimethylpentane 114 70-130 --Methyl Methacrylate 106 70-130 --70-130 Heptane 115 -cis-1,3-Dichloropropene 108 70-130 --4-Methyl-2-pentanone 119 70-130 -trans-1,3-Dichloropropene 94 70-130 --1,1,2-Trichloroethane 70-130 106 --Toluene 70-130 93 --1,3-Dichloropropane 97 70-130 --

Batch Quality Control

Project Number: 20152118.201

 Lab Number:
 L1610339

 Report Date:
 04/18/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-02 Batch: WG884487-3 2-Hexanone 118 70-130 --Dibromochloromethane 100 70-130 --1.2-Dibromoethane 98 70-130 --Butyl Acetate 70-130 96 --Octane 90 70-130 --Tetrachloroethene 70-130 94 --1,1,1,2-Tetrachloroethane 93 70-130 --Chlorobenzene 96 70-130 --Ethylbenzene 70-130 99 --102 70-130 p/m-Xylene --Bromoform 105 70-130 --Styrene 99 70-130 --1,1,2,2-Tetrachloroethane 115 70-130 -o-Xylene 105 70-130 --1,2,3-Trichloropropane 70-130 97 --Nonane (C9) 110 70-130 --Isopropylbenzene 97 70-130 --70-130 Bromobenzene 95 -o-Chlorotoluene 70-130 93 -n-Propylbenzene 70-130 96 -p-Chlorotoluene 92 70-130 --

Batch Quality Control

Project Number: 20152118.201

Lab Number: L1610339 Report Date: 04/18/16

LCSD LCS %Recovery RPD %Recovery Limits RPD Limits %Recovery Qual Qual Qual Parameter Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-02 Batch: WG884487-3 4-Ethyltoluene 98 70-130 --1,3,5-Trimethylbenzene 100 70-130 -tert-Butylbenzene 100 70-130 --1,2,4-Trimethylbenzene 110 70-130 --Decane (C10) 105 70-130 --Benzyl chloride 110 70-130 --1,3-Dichlorobenzene 104 70-130 --1,4-Dichlorobenzene 102 70-130 -sec-Butylbenzene 100 70-130 _ p-Isopropyltoluene 91 70-130 --1.2-Dichlorobenzene 101 70-130 -n-Butylbenzene 103 70-130 --1,2-Dibromo-3-chloropropane 97 70-130 --Undecane 108 70-130 --Dodecane (C12) 112 70-130 --1.2.4-Trichlorobenzene 101 70-130 --Naphthalene 92 70-130 --1,2,3-Trichlorobenzene 70-130 94 --Hexachlorobutadiene 104 70-130 --

Project Name:1500 ASTOR AVENUEProject Number:20152118.201

Lab Number: Report Date:

L1610339 04/18/16

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
olatile Organics in Air - Mansfield Lab Associated	sample(s): 01-02	QC Batch ID: WG884487-5	QC Sample:	L1611031-01	Client ID: [OUP Sample
Dichlorodifluoromethane	0.526	0.428	ppbV	21		25
Chloromethane	0.504	0.501	ppbV	1		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC		25
Vinyl chloride	ND	ND	ppbV	NC		25
1,3-Butadiene	1.97	1.90	ppbV	4		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	ND	ND	ppbV	NC		25
Ethyl Alcohol	39.6	39.8	ppbV	1		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	359	361	ppbV	1		25
Trichlorofluoromethane	0.247	0.241	ppbV	2		25
iso-Propyl Alcohol	46.4	48.4	ppbV	4		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
tert-Butyl Alcohol	7.52	7.77	ppbV	3		25
Methylene chloride	ND	ND	ppbV	NC		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	0.268	0.269	ppbV	0		25
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25

Project Name: 1500 ASTOR AVENUE Project Number: 20152118.201 Lab Number: Report Date:

L1610339 04/18/16

RPD **Native Sample** Duplicate Sample Units RPD Limits Parameter Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-02 QC Batch ID: WG884487-5 QC Sample: L1611031-01 Client ID: DUP Sample 1.1-Dichloroethane ND ND ppbV NC 25 Methyl tert butyl ether ND ND ppbV NC 25 2-Butanone 17.0 16.5 ppbV 3 25 cis-1.2-Dichloroethene ND ND ppbV NC 25 Ethyl Acetate 8.10 8.34 ppbV 3 25 Chloroform 1.57 1.59 ppbV 1 25 Tetrahydrofuran 5.77 5.83 ppbV 1 25 1,2-Dichloroethane ND ND ppbV NC 25 n-Hexane 8.47 8.32 ppbV 2 25 1,1,1-Trichloroethane ND ND ppbV NC 25 Benzene 5.51 5.51 ppbV 0 25 Carbon tetrachloride ND ND ppbV NC 25 Cyclohexane 2.29 2.37 ppbV 3 25 1,2-Dichloropropane ND ND ppbV NC 25 Bromodichloromethane 1.18 1.14 ppbV 3 25 1,4-Dioxane ND ND ppbV NC 25 Trichloroethene ND ND ppbV NC 25 2,2,4-Trimethylpentane 2.46 2.49 ppbV 1 25 Heptane 12.0 11.5 ppbV 4 25

Project Name: 1500 ASTOR AVENUE Project Number: 20152118.201 Lab Number: Report Date:

L1610339 04/18/16

RPD **Native Sample** Duplicate Sample Units RPD Limits Parameter Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-02 QC Batch ID: WG884487-5 QC Sample: L1611031-01 Client ID: DUP Sample cis-1,3-Dichloropropene ND ND ppbV NC 25 4-Methyl-2-pentanone 3.91 3.84 ppbV 2 25 trans-1,3-Dichloropropene ND ND ppbV NC 25 1,1,2-Trichloroethane ND ND ppbV NC 25 Toluene 30.8 30.3 ppbV 2 25 2-Hexanone 1.17 1.20 ppbV 3 25 Dibromochloromethane 1.00 1.00 ppbV 0 25 1,2-Dibromoethane ND ND ppbV NC 25 Tetrachloroethene 1.42 1.44 ppbV 1 25 Chlorobenzene ND ND ppbV NC 25 Ethylbenzene 14.2 14.2 ppbV 0 25 p/m-Xylene 56.9 55.9 ppbV 2 25 Bromoform 0.327 0.322 ppbV 2 25 Styrene 0.278 0.288 ppbV 4 25 1,1,2,2-Tetrachloroethane ND ND ppbV NC 25 o-Xylene 13.8 13.8 ppbV 0 25 4-Ethyltoluene 1.59 1.58 ppbV 1 25 1,3,5-Trimethylbenzene 1.63 1.65 ppbV 1 25 1,2,4-Trimethylbenzene 5.61 5.52 ppbV 2 25

Project Name: 1500 ASTOR AVENUE Project Number: 20152118.201

Lab Number: L1610339 **Report Date:**

04/18/16

RPD Parameter Native Sample Duplicate Sample Units RPD Limits Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-02 QC Batch ID: WG884487-5 QC Sample: L1611031-01 Client ID: DUP Sample Benzyl chloride ND NC ND ppbV 25 ppbV NC 1,3-Dichlorobenzene ND ND 25 1,4-Dichlorobenzene ND ND ppbV NC 25 1,2-Dichlorobenzene ND ND ppbV NC 25 1,2,4-Trichlorobenzene ND ND ppbV NC 25 NC 25 Hexachlorobutadiene ND ND ppbV

Project Name: 1500 ASTOR AVENUE

Project Number: 20152118.201

Serial_No:04181611:42 Lab Number: L1610339

Report Date: 04/18/16

Canister and Flow Controller Information

								1	D	F 1			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1610339-01	2118-SV-01 (0.5)	0518	SV200	04/06/16	220078		-	-	-	Pass	216	205	5
L1610339-01	2118-SV-01 (0.5)	253	2.7L Can	04/06/16	220078	L1609503-02	Pass	-29.9	-0.5	-	-	-	-
L1610339-02	2118-SV-02 (0.5)	0604	SV200	04/06/16	220078		-	-	-	Pass	213	207	3
L1610339-02	2118-SV-02 (0.5)	113	2.7L Can	04/06/16	220078	L1609503-02	Pass	-29.9	-0.8	-	-	-	-

		Serial_No:04	4181611:42
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1609503
Project Number:	CANISTER QC BAT	Report Date:	04/18/16
	Air Canister Certification Results		

Lab ID:	L1609503-02	Date Collected:	04/01/16 16:30
Client ID:	CAN 389 SHELF 3	Date Received:	04/02/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	04/02/16 16:10		
Analyst:	RY		

		ррьV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Report Date: 04/18/16

Lab ID: Client ID: Sample Location:	L1609503-02 CAN 389 SHEI	_F 3	ppbV				Collecte Receive Prep:		04/01/16 16:30 04/02/16 Not Specified
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in A	Air - Mansfield Lab								
Methylene chloride		ND	0.500		ND	1.74			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.623			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	•	ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
Vinyl acetate		ND	1.00		ND	3.52			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.793			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.500		ND	1.47			1
2,2-Dichloropropane		ND	0.200		ND	0.924			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.705			1
Diisopropyl ether		ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.836			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.908			1
Benzene		ND	0.200		ND	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.836			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.721			1

Report Date: 04/18/16

Lab ID: Client ID: Sample Location:	L1609503-02 CAN 389 SHEI	LF 3	pph/			Date Field	Collecte Receive Prep:		04/01/16 16:30 04/02/16 Not Specified
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	Dilution Factor
Volatile Organics in A	vir - Mansfield Lab								
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Methyl Methacrylate		ND	0.500		ND	2.05			1
Heptane		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	е	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.754			1
1,3-Dichloropropane		ND	0.200		ND	0.924			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.38			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethan	е	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.921			1
Ethylbenzene		ND	0.200		ND	0.869			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.07			1
Styrene		ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethan	е	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.869			1
1,2,3-Trichloropropane		ND	0.200		ND	1.21			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.983			1
Bromobenzene		ND	0.200		ND	0.793			1

Report Date: 04/18/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1609503-02 CAN 389 SHEL	_F 3					Collecte Receive Prep:		04/01/16 16:30 04/02/16 Not Specified
_			ppbV		-	ug/m3		• •••	Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r
Volatile Organics in	Air - Mansfield Lab								
2-Chlorotoluene		ND	0.200		ND	1.04			1
n-Propylbenzene		ND	0.200		ND	0.983			1
4-Chlorotoluene		ND	0.200		ND	1.04			1
4-Ethyltoluene		ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene		ND	0.200		ND	0.983			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.983			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropro	ppane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
			ppbV			ug/m3			Dilution
Sample Location:						Field I	Prep:		Not Specified
Client ID:	CAN 389 SHEL	F 3				Date I	Receive	ed:	04/02/16
Lab ID:	L1609503-02					Date (Collecte	ed:	04/01/16 16:30
		Air Can	ister Ce	rtificatio	on Results				
Project Number:	CANISTER QC E	ВАТ				R	eport D	ate: (04/18/16
Project Name:	BATCH CANIST	ER CERT	FICATION	1		La	ıb Num	ber: [_1609503
							Serial	_No:041	81611:42

% Recovery

95

93

Qualifier

Acceptance Criteria

60-140

60-140

60-140

Volatile Organics in Air - Mansfield Lab

Internal Standard

1,4-Difluorobenzene

Bromochloromethane

chlorobenzene-d5

Lab ID:	L1609503-02	Date Collected:	04/01/16 16:30
Client ID:	CAN 389 SHELF 3	Date Received:	04/02/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	04/02/16 16:10		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Report Date: 04/18/16

Lab ID: Client ID: Sample Location:	L1609503-02 CAN 389 SHE	LF 3	aut 1			Date Field	Collecte Receive Prep:		04/01/16 16:3 04/02/16 Not Specified
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	Dilution _r Factor
Volatile Organics in A	Air by SIM - Mans								
Bromodichloromethane		ND	0.020		ND	0.134			1
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroproper	าย	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.050		ND	0.188			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethar	ne	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethar	ne	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.200		ND	0.983			1
4-Ethyltoluene		ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Report Date: 04/18/16

CAN 389 SHEL	.F 3	ppbV			Date			04/01/16 16:30 04/02/16 Not Specified Dilution
	Results	RL	MDL	Results	RL	MDL	Qualifier	Fastar
Air by SIM - Mansfi	eld Lab							
	ND	0.200		ND	1.10			1
	ND	0.050		ND	0.371			1
	ND	0.050		ND	0.262			1
	ND	0.050		ND	0.371			1
	ND	0.050		ND	0.533			1
		Air by SIM - Mansfield Lab ND ND ND ND	ppbVResultsRLAir by SIM - Mansfield LabNDND0.200ND0.050ND0.050ND0.050	ppbVResultsRLMDLAir by SIM - Mansfield LabND0.200ND0.050ND0.050ND0.050ND0.050ND0.050ND0.050	ppbVResultsRLMDLResultsAir by SIM - Mansfield LabND0.200NDND0.050NDNDND0.050NDND0.050NDND0.050NDND0.050ND	ppbV ug/m3 Results RL MDL Results RL Air by SIM - Mansfield Lab ND 0.200 ND 1.10 ND 0.050 ND 0.371 ND 0.050 ND 0.262 ND 0.050 ND 0.371	Field Prep: ppbV ug/m3 Results RL MDL Results RL MDL Air by SIM - Mansfield Lab ND 0.200 ND 1.10 ND 0.050 ND 0.371 ND 0.050 ND 0.371 ND 0.050 ND 0.371	Field Prep:ppbVug/m3ResultsRLMDLResultsRLMDLQualifierAir by SIM - Mansfield LabND0.200ND1.10ND0.200ND1.10ND0.050ND0.371ND0.050ND0.262ND0.050ND0.371

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	96		60-140

Lab Number: L1610339 Report Date: 04/18/16

Project Name:1500 ASTOR AVENUEProject Number:20152118.201

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information Custody Seal

Cooler

N/A Present/Intact

Container Info	rmation			Temp		
Container ID	Container Type	Cooler	рН	deg C Pres	Seal	Analysis(*)
L1610339-01A	Canister - 2.7 Liter	N/A	N/A	Y	Absent	TO15-LL(30)
L1610339-02A	Canister - 2.7 Liter	N/A	N/A	Y	Absent	TO15-LL(30)

Project Name: 1500 ASTOR AVENUE

Project Number: 20152118.201

Lab Number: L1610339

Report Date: 04/18/16

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Project Name: 1500 ASTOR AVENUE

Project Number: 20152118.201

Lab Number: L1610339

Report Date: 04/18/16

Data Qualifiers

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name:1500 ASTOR AVENUEProject Number:20152118.201

 Lab Number:
 L1610339

 Report Date:
 04/18/16

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

FC(ISOA, IVJ INTRACOUNT. Phone: (J32) 417 - 0999 Fax: (J32) 417 - 0888 Fax: (J32) 417 - 0888 Imail: BTURNER@property SQUHUNS Inc. com Email: BTURNEr@property SQUHUNS Inc. com Imail:				¥	4	Serial_No	p:04181611:42
Zural View Project Information Report Information - Data Deliverables Billing Information 20 Forbes Bild Managerid, Manageid, Manageid, Manageid, Manageida, Manageri Bio NX, NY DFAX					Date Rec'd in Lab: 4/9/10	ALPHA Job #	: <i>L1610</i> 339
TEL: 508-822-9300 FAX: 508-822-9308 Project Name: /SOC AS-{of Avenue Client Information Project Location: Bronx, NY DADEx Client: Property Solutions In C Project Manager: But on Tur nev Address: 31 A Northfeld Aumue Project Manager: But on Tur nev Address: 31 A Northfeld Aumue Project Manager: But on Tur nev Address: 31 A Northfeld Aumue Project Manager: But on Tur nev Address: 31 A Northfeld Aumue Project Manager: But on Tur nev Fax: (732) 417 - 0999 Turn-Around Time Phone: (732) 417 - 0858 Project Manager: Time: Date Due: Time: Other Project Specific Requirements/Comments: Project Specific Requirements/Comments: Project Specific Target Compound List: Collection ALPHA Lab ID (Lab Use Only) Sample ID End Date Istart Time End Time Vacuum Final Matrix All S-SV-01 (0.S) 4/11/16/4:05 All S-SV-01 (0.S) 4/11/16/4:05 All S-SV-04 (0.S) 4/11/16/4:4/5 All S-SV-04 (0.S) 4/11/16/4:4/5 All S-SV-04 (0.S) 4/11/16/4:4/5 All S-SV-04 (0.S) 4/11/16/4:4/5 All S-SV-04 (0.S) 4/11/16/4/14/5		-			Report Information - Data Deliverables	Billing Inform	ation
Client Information Project Location: $B \mid D \mid X$, NY Defex Citeria Checker: (Default based on Regulatory Citeria Indicated) Other Formats: Regulatory Regulatory Regulatory Citeria Indicated) Other Formats: Client: Project Manager: $B \mid A \mid C \mid T \mid T \mid C \mid T \mid T \mid C \mid T \mid T \mid C \mid T \mid T$			Project Name: 1500 AS+(of Avenue		Same as Client	t info PO #20152118
Client: Project #: 20152 118; 201 (Default based on Regulatory Criteria Indicated) Other Formats: ddress: 31 A. Northfield Aunue Project Manager: Button Tur Nether Eclison, NJ ALPHA Quote #: Date Manager: Button Tur Nether 'hone: (132) 417 - 0949 Turn-Around Time Begulatory Crienta Indicated) State/Fed Program Regulatory Requirements/Rep 'ax: (132) 417 - 0985 X'standard RUSH (way confirmed # pre-approved) Button Lyncar(D program, Southons Inc. Crime) ANALYSIS 'mail: BTurner(D program, Southons Inc. Crime Date Due: Time:	Client Informatio	n	Project Location: Bronx,	NY			
Address: 31 A Northfield Arunuc Project Manager: But on Tur ner Memaline Memaline Regulatory Requirements/Rep Eclison, NT ALPHA Quote #: Date Due: Date Due: Date Due: Date Due: Date Due: Date Due: Time: ALPHA Lab ID Sample ID Collection Sample ID Collection Final Sample Sampler's Can Date Due: Sample Sampler's Can Sample Sampler's Can Date Due: Sample Comment 2339, 01 21185-SV-O1 (O.S) 411116/4:05 14:18 29.0 -1.03 \$SV BT 2.7L 23 05.18 X Date Sample Comment 0239, 01 21185-SV-O1 (O.S) 411116/4:4/5 14:58 29.4	lient: Proper	- v solutions in c.			(Default based on Regulatory Criteria Indicated)		
Field Son NT ALPHA Quote #: Dadditional Deliverables: State/Fed Program Report Io: (if afferent than Project Manager) ax: (132) 4(17 - 0988) Turn-Around Time 25standard RUSH (enty confirmed if pre-approved) 25standard 25standard </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Regulatory Re</td> <td>equirements/Report Limi</td>						Regulatory Re	equirements/Report Limi
Prone: (132) (17 - 0999 Turn-Around Time ax: (132) (17 - 0888) (17 - 0888) imail: BTurner@property Solutions Inc. com BTurner@property Solutions Inc. com imail: BTurner@property Solutions Inc. com Date Due: Time: These samples have been previously analyzed by Alpha Date Due: Time: Other Project Specific Requirements/Comments: Date Due: Time: Project-Specific Target Compound List: D ALPHA Lab ID (Lab Use Only) Sample ID COLLECTION End Date Istart Time I End Time Vacuum Vacuu			· · · _ · · · · · · · · · · · · · · · ·			State/Fed F	Program Res / Comr
ax: (132) 417 - 0888 Imail: BTurner@propertySolvtunsinc.com mail: BTurner@propertySolvtunsinc.com Date Due: Time: These samples have been previously analyzed by Alpha Date Due: Time: Other Project Specific Requirements/Comments: Date Due: Time: Project-Specific Target Compound List: Imail: Sample Sample's Can ID ID Flow ALPHA Lab ID (Lab Use Only) Sample ID End Date Start Time End Time Vacuum Vacuum Vacuum Vacuum Matrix* Sample Sample's Can Controller Controller Controller V339, 01 2118 - SV - 01 (0.5) 4/11116/4:05 14:58 29.4 -1.78 SV BT 2.7L 253 05.18 X Imail: Imail: Sample Solved X Imail: Imail: Imail: Sample Comment:	hone: (732) 4	17-0999	Turn-Around Time			-	
Anali: BTurner@property Sqiptions Inc. Carr These samples have been previously analyzed by Alpha Other Project Specific Requirements/Comments: Project-Specific Target Compound List: □ Date Due: Time: Date Due: Time: Date Due: Time: Project-Specific Target Compound List: □ ALI Columns Below Must Be Filled Out (Lab Use Only) Sample ID End Date Start Time End Time Vacuum Vacuum Matrix* Sample's Can ID ID - Flow So So So So So So So					BTUINER & PROPERTUSINHUNSING	·(m	·
These samples have been previously analyzed by Alpha Date Due: Time: Other Project Specific Requirements/Comments: Project-Specific Target Compound List: □ All Columns Below Must Be Filled Out Matrix* Initial Sample ID Collection Initial Sample Sample's Can I.D I.D Float Sample Comment 2339, 01 2118 - SV - 01 (0.5) 4/11/16/14:05 14:18 29.0 1.03 \$SV BT 2.7L 253 6518 X I I . OQ 2118 - SV - 02 (0.5) 4/11/16/14:05 14:58 29.4 -1.78 SV BT 2.7L 13 0604 X I I	- /			ly confirmed if pre-approved!) .			SIS
Project-Specific Target Compound List: \Box All Columns Below Must Be Filled Out ALPHA Lab ID (Lab Use Only) Sample ID COLLECTION End Date Start Time End Time Vacuum Vacuum Matrix* Sample's Can ID Controller ID ID Flow Controller V339, 01 2118-SV-01 (0.5) 4/11/16/14:05 14:18 29.0 -1.03 \$SV BT 2.7L 13 0604 X ID Sample Comment V339, 01 2118-SV-01 (0.5) 4/11/16/14:05 14:58 29.4 -1.78 SV BT 2.7L 13 0604 X ID			Data Dua:	Time:			
2339, 01 2118-5V-01 (0.5) 41711614:05 14:18 29.0-1.03 ESV BT 2.7L 253 6518 X .O2 2118-5V-02 (0.5) 41711614:45 14:58 29.4 -1.78 SV BT 2.7L 113 0604X	Other Project S	pecific Requirements/Co	omments:		-	V TO.1	
2339, 01 2118-SV-01 (0.5) 41711614:05 14:18 29.0-1.03 ISV BT 2.7L 253 6518 X .02 2118-SV-02 (0.5) 41711614:45 14:58 29.4 -1.78 SV BT 2.7L 113 0604X	Project-Specific	Target Compound List				ⁿ Petrole	
2339, 01 2118-5V-01 (0.5) 41711614:05 14:18 29.0-1.03 ESV BT 2.7L 253 6518 X . O2 2118-5V-02 (0.5) 41711614:45 14:58 29.4 -1.78 5V BT 2.7L 113 0604X	!		All Columns Be	low Must	Be Filled Out	Merca, No	
2339, 01 2118-5V-01 (0.5) 41711614:05 14:18 29.0-1.03 ESV BT 2.7L 253 0518 X . OD 2118-5V-02 (0.5) 41711614:05 14:58 29.4 -1.78 5V BT 2.7L 113 0604X	ALPHA Lab ID		COLLECTIO		Sample Sampler's Can ID ID-Flow	PH S. 15 S	/
2339, 01 2118-5V-01 (0.5) 41711614:05 14:18 29.0-1.03 \$SV BT 2.76 253 6518 X . O2 2118-5V-02 (0.5) 41711614:45 14:58 29.4 -1.78 SV BT 2.76 113 0604X			End Date Start Time End Tim	ne Vacuum Vacuum	Matrix* Initials Size Can Controller		Sample Comments (i.e. PI
	1339,01	2118-54-01 (0.5)	4/17/16/17:05 14:18	29.0-1.03	55V BT 2.7L 253 US18 X		
	.02	2118-54-02 (0.5)	4/111614:45 14:58	29.4 -1.78	5V BT 2.7L 113 0604 X		
Image: state in the state							
				_			
Other = Please Specify Container Type	*SAMPLI	E MATRIX CODES	SV = Soil Vapor/Landfill Gas/SVE		Container Type		Please print clearly, legibly and completely. Samples can not be logged in and turnaround time
Relinguished By: Date/Time Received By: Date/Time: clock will not start until		7	Relinguished By:				clock will not start until any amb guities are resolved. All sample
		12W BQ	Bole	418116725	S Get Williamps 4-8-	16-12:50	submitted are subject to Alpha's Terms and Conditions. See reverse side.

ANALYTICAL REPORT

Lab Number:	L1618618
Client:	Property Solutions Inc. 323 New Albany Road Moorestown, NJ 08057
ATTN: Phone:	Burt Turner (856) 813-3000
Project Name:	1500 ASTOR AVE.
Project Number:	20152118.202
Report Date:	06/23/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:06231614:32

Project Name:	1500 ASTOR AVE.
Project Number:	20152118.202

Lab Number:	L1618618
Report Date:	06/23/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1618618-01	2118-SB8 (4.0-4.5)	SOIL	1500 ASTOR AVE., BRONX, NY	06/15/16 10:40	06/16/16
L1618618-02	2118-SB8 (8.0-8.5)	SOIL	1500 ASTOR AVE., BRONX, NY	06/15/16 10:55	06/16/16
L1618618-03	2118-SB9 (4.0-4.5)	SOIL	1500 ASTOR AVE., BRONX, NY	06/15/16 12:40	06/16/16
L1618618-04	2118-SB9 (8.0-8.5)	SOIL	1500 ASTOR AVE., BRONX, NY	06/15/16 12:55	06/16/16
L1618618-05	2118-SB10 (4.5-5.0)	SOIL	1500 ASTOR AVE., BRONX, NY	06/16/16 11:50	06/16/16
L1618618-06	2118-SB10 (10.0-10.5)	SOIL	1500 ASTOR AVE., BRONX, NY	06/16/16 12:00	06/16/16

Project Name: 1500 ASTOR AVE. Project Number: 20152118.202

 Lab Number:
 L1618618

 Report Date:
 06/23/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

 Lab Number:
 L1618618

 Report Date:
 06/23/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Custen Walker Cristin Walker

Title: Technical Director/Representative

Date: 06/23/16

ORGANICS

VOLATILES

		Serial_No	0:06231614:32
Project Name:	1500 ASTOR AVE.	Lab Number:	L1618618
Project Number:	20152118.202	Report Date:	06/23/16
	SAMPLE RESULTS	3	
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1618618-01 2118-SB8 (4.0-4.5) 1500 ASTOR AVE., BRONX, NY Soil 1,8260C 06/22/16 15:02 BN	Date Collected: Date Received: Field Prep:	06/15/16 10:40 06/16/16 Not Specified
Percent Solids:	88%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by 8260/5035 - Westborough Lab								
				0.4	4.0	_		
1,1-Dichloroethane	ND		ug/kg	84	4.8	1		
Tetrachloroethene	1000		ug/kg	56	7.9	1		
1,2-Dichloroethane	ND		ug/kg	56	6.4	1		
1,1,1-Trichloroethane	ND		ug/kg	56	6.2	1		
Vinyl chloride	ND		ug/kg	110	6.6	1		
1,1-Dichloroethene	ND		ug/kg	56	15.	1		
trans-1,2-Dichloroethene	140		ug/kg	84	12.	1		
Trichloroethene	190		ug/kg	56	7.0	1		
cis-1,2-Dichloroethene	4700		ug/kg	56	8.0	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	100		70-130	

		Serial_N	0:06231614:32
Project Name:	1500 ASTOR AVE.	Lab Number:	L1618618
Project Number:	20152118.202	Report Date:	06/23/16
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1618618-02 2118-SB8 (8.0-8.5) 1500 ASTOR AVE., BRONX, NY Soil 1,8260C 06/22/16 12:53 BN 92%	Date Collected: Date Received: Field Prep:	06/15/16 10:55 06/16/16 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - Westborough Lab							
1.1-Dichloroethane	ND		ua/ka	1.2	0.07	1	
Tetrachloroethene	ND		ug/kg ug/kg	0.80	0.07	1	
1.2-Dichloroethane	ND		ug/kg	0.80	0.09	1	
1.1.1-Trichloroethane	ND		ug/kg	0.80	0.09	1	
Vinyl chloride	ND		ug/kg	1.6	0.09	1	
1,1-Dichloroethene	ND		ug/kg	0.80	0.21	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.2	0.17	1	
Trichloroethene	ND		ug/kg	0.80	0.10	1	
cis-1,2-Dichloroethene	ND		ug/kg	0.80	0.11	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

		Serial_N	0:06231614:32
Project Name:	1500 ASTOR AVE.	Lab Number:	L1618618
Project Number:	20152118.202	Report Date:	06/23/16
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1618618-03 2118-SB9 (4.0-4.5) 1500 ASTOR AVE., BRONX, NY Soil 1,8260C 06/22/16 13:19 BN 89%	Date Collected: Date Received: Field Prep:	06/15/16 12:40 06/16/16 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 -	Westborough Lab					
1.1-Dichloroethane	ND			1.3	0.07	4
Tetrachloroethene	ND		ug/kg	0.86	0.07	1
1.2-Dichloroethane	ND		ug/kg	0.86	0.12	1
1,1,1-Trichloroethane	ND		ug/kg	0.86	0.10	1
Vinyl chloride	ND		ug/kg ug/kg	1.7	0.10	1
1,1-Dichloroethene	ND		ug/kg	0.86	0.10	1
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.18	1
Trichloroethene	ND		ug/kg	0.86	0.11	1
cis-1,2-Dichloroethene	ND		ug/kg	0.86	0.12	1
			0.0			

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	112		70-130
Toluene-d8	102		70-130
4-Bromofluorobenzene	99		70-130
Dibromofluoromethane	102		70-130

		Serial_N	0:06231614:32
Project Name:	1500 ASTOR AVE.	Lab Number:	L1618618
Project Number:	20152118.202	Report Date:	06/23/16
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1618618-04 2118-SB9 (8.0-8.5) 1500 ASTOR AVE., BRONX, NY Soil 1,8260C 06/22/16 13:45 BN 90%	Date Collected: Date Received: Field Prep:	06/15/16 12:55 06/16/16 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - Westborough Lab							
1.1 Disbloroothono	ND			1.3	0.07	4	
1,1-Dichloroethane			ug/kg				
Tetrachloroethene	ND		ug/kg	0.84	0.12	1	
1,2-Dichloroethane	ND		ug/kg	0.84	0.10	1	
1,1,1-Trichloroethane	ND		ug/kg	0.84	0.09	1	
Vinyl chloride	ND		ug/kg	1.7	0.10	1	
1,1-Dichloroethene	ND		ug/kg	0.84	0.22	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.18	1	
Trichloroethene	ND		ug/kg	0.84	0.10	1	
cis-1,2-Dichloroethene	ND		ug/kg	0.84	0.12	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	102		70-130	

		Serial_N	0:06231614:32
Project Name:	1500 ASTOR AVE.	Lab Number:	L1618618
Project Number:	20152118.202	Report Date:	06/23/16
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1618618-05 2118-SB10 (4.5-5.0) 1500 ASTOR AVE., BRONX, NY Soil 1,8260C 06/22/16 14:10 BN 89%	Date Collected: Date Received: Field Prep:	06/16/16 11:50 06/16/16 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - Westborough Lab							
				4.0	0.07	_	
1,1-Dichloroethane	ND		ug/kg	1.2	0.07	1	
Tetrachloroethene	ND		ug/kg	0.81	0.11	1	
1,2-Dichloroethane	ND		ug/kg	0.81	0.09	1	
1,1,1-Trichloroethane	ND		ug/kg	0.81	0.09	1	
Vinyl chloride	ND		ug/kg	1.6	0.10	1	
1,1-Dichloroethene	ND		ug/kg	0.81	0.21	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.2	0.17	1	
Trichloroethene	ND		ug/kg	0.81	0.10	1	
cis-1,2-Dichloroethene	ND		ug/kg	0.81	0.12	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	100		70-130	

		Serial_N	0:06231614:32
Project Name:	1500 ASTOR AVE.	Lab Number:	L1618618
Project Number:	20152118.202	Report Date:	06/23/16
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1618618-06 2118-SB10 (10.0-10.5) 1500 ASTOR AVE., BRONX, NY Soil 1,8260C 06/22/16 14:36 BN 88%	Date Collected: Date Received: Field Prep:	06/16/16 12:00 06/16/16 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Westbo	rough Lab					
				4.0	0.07	_
1,1-Dichloroethane	ND		ug/kg	1.2	0.07	1
Tetrachloroethene	1.0		ug/kg	0.83	0.12	1
1,2-Dichloroethane	ND		ug/kg	0.83	0.09	1
1,1,1-Trichloroethane	ND		ug/kg	0.83	0.09	1
Vinyl chloride	ND		ug/kg	1.7	0.10	1
1,1-Dichloroethene	ND		ug/kg	0.83	0.22	1
trans-1,2-Dichloroethene	ND		ug/kg	1.2	0.18	1
Trichloroethene	1.8		ug/kg	0.83	0.10	1
cis-1,2-Dichloroethene	6.2		ug/kg	0.83	0.12	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	101		70-130	

Project Name:	1500 ASTOR AVE.	Lab Number:	L1618618
Project Number:	20152118.202	Report Date:	06/23/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	06/22/16 09:06
Analyst:	BN

Result	Qualifier	Units	RL	-	MDL	
Westborough	Lab for sar	nple(s):	02-06	Batch:	WG906572-3	
ND		ug/kg	1.5	5	0.09	
ND		ug/kg	1.0)	0.14	
ND		ug/kg	1.0)	0.11	
ND		ug/kg	1.()	0.11	
ND		ug/kg	2.0)	0.12	
ND		ug/kg	1.0)	0.26	
ND		ug/kg	1.5	5	0.21	
ND		ug/kg	1.0)	0.12	
ND		ug/kg	1.0)	0.14	
	Westborough ND ND ND ND ND ND ND ND ND	Westborough Lab for sar ND ND ND ND ND ND ND ND ND ND ND	NDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kg	ND ug/kg 1.5 ND ug/kg 1.6 ND ug/kg 1.0 ND ug/kg 1.0	ND ug/kg 1.5 ND ug/kg 1.0 ND ug/kg 1.0	ND ug/kg 1.5 0.09 ND ug/kg 1.0 0.14 ND ug/kg 1.0 0.14 ND ug/kg 1.0 0.11 ND ug/kg 1.0 0.11 ND ug/kg 1.0 0.11 ND ug/kg 1.0 0.12 ND ug/kg 1.0 0.26 ND ug/kg 1.5 0.21 ND ug/kg 1.0 0.12

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	108		70-130			
Toluene-d8	102		70-130			
4-Bromofluorobenzene	98		70-130			
Dibromofluoromethane	102		70-130			

Project Name:	1500 ASTOR AVE.	Lab Number:	L1618618
Project Number:	20152118.202	Report Date:	06/23/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	06/22/16 09:06
Analyst:	BN

Parameter	Result Qua	alifier Units	RL	MDL	
olatile Organics by 8260/503	85 - Westborough Lab	for sample(s): 01	1 Batch:	WG906929-3	
1,1-Dichloroethane	ND	ug/kg	75	4.3	
Tetrachloroethene	ND	ug/kg	50	7.0	
1,2-Dichloroethane	ND	ug/kg	50	5.7	
1,1,1-Trichloroethane	ND	ug/kg	50	5.5	
Vinyl chloride	ND	ug/kg	100	5.9	
1,1-Dichloroethene	ND	ug/kg	50	13.	
trans-1,2-Dichloroethene	ND	ug/kg	75	11.	
Trichloroethene	ND	ug/kg	50	6.2	
cis-1,2-Dichloroethene	ND	ug/kg	50	7.1	

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	108		70-130			
Toluene-d8	102		70-130			
4-Bromofluorobenzene	98		70-130			
Dibromofluoromethane	102		70-130			

Lab Control Sample Analysis

Batch Quality Control

20152118.202

Lab Number: L1618618 Report Date: 06/23/16

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 02-06 Batch: WG906572-1 WG906572-2 Methylene chloride 101 100 70-130 30 1 1,1-Dichloroethane 110 106 70-130 30 4 Chloroform 106 70-130 30 107 1 Carbon tetrachloride 30 118 111 70-130 6 1,2-Dichloropropane 106 103 70-130 3 30 Dibromochloromethane 70-130 30 101 102 1 Q 2-Chloroethylvinyl ether 136 129 70-130 5 30 1,1,2-Trichloroethane 101 100 70-130 30 1 Tetrachloroethene 70-130 30 110 104 6 Chlorobenzene 70-130 30 97 97 0 Q Q 70-139 30 Trichlorofluoromethane 158 148 7 1,2-Dichloroethane 106 108 70-130 2 30 1,1,1-Trichloroethane 120 70-130 30 113 6 Bromodichloromethane 70-130 30 106 103 3 trans-1,3-Dichloropropene 70-130 30 103 103 0 cis-1,3-Dichloropropene 97 70-130 30 100 3 1,1-Dichloropropene 113 106 70-130 6 30 Bromoform 102 102 70-130 0 30 1.1.2.2-Tetrachloroethane 70-130 30 94 95 1 70-130 30 Benzene 100 97 3 Toluene 104 102 70-130 2 30

Lab Control Sample Analysis Batch Quality Control

Project Number: 20152118.202 Lab Number: L1618618 Report Date: 06/23/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by 8260/5035 - Westboro	ugh Lab Associa	ted sample(s):	02-06 Batch:	WG906572-1	WG906572-2		
Ethylbenzene	111		108		70-130	3	30
Chloromethane	124		133	Q	52-130	7	30
Bromomethane	133		128		57-147	4	30
Vinyl chloride	137	Q	128		67-130	7	30
Chloroethane	150		142		50-151	5	30
1,1-Dichloroethene	116		109		65-135	6	30
trans-1,2-Dichloroethene	108		102		70-130	6	30
Trichloroethene	109		105		70-130	4	30
1,2-Dichlorobenzene	97		95		70-130	2	30
1,3-Dichlorobenzene	99		96		70-130	3	30
1,4-Dichlorobenzene	98		96		70-130	2	30
Methyl tert butyl ether	96		94		66-130	2	30
p/m-Xylene	104		102		70-130	2	30
o-Xylene	103		100		70-130	3	30
cis-1,2-Dichloroethene	104		101		70-130	3	30
Dibromomethane	102		101		70-130	1	30
Styrene	104		103		70-130	1	30
Dichlorodifluoromethane	101		92		30-146	9	30
Acetone	144	Q	122		54-140	17	30
Carbon disulfide	111		103		59-130	7	30
2-Butanone	110		111		70-130	1	30

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L1618618 Report Date: 06/23/16

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 02-06 Batch: WG906572-1 WG906572-2 Vinyl acetate 105 104 70-130 30 1 4-Methyl-2-pentanone 107 104 70-130 3 30 1,2,3-Trichloropropane 94 68-130 30 98 4 30 2-Hexanone 119 115 70-130 3 Bromochloromethane 103 99 70-130 30 4 2,2-Dichloropropane 70-130 30 112 105 6 1,2-Dibromoethane 101 102 70-130 1 30 1,3-Dichloropropane 101 101 69-130 0 30 1,1,1,2-Tetrachloroethane 70-130 30 104 103 1 Bromobenzene 100 70-130 30 100 0 n-Butylbenzene 116 109 70-130 30 6 sec-Butylbenzene 107 101 70-130 6 30 tert-Butylbenzene 105 100 70-130 30 5 o-Chlorotoluene 70-130 30 104 100 4 p-Chlorotoluene 70-130 30 104 100 4 1,2-Dibromo-3-chloropropane 87 68-130 30 89 2 Hexachlorobutadiene 118 113 67-130 4 30 Isopropylbenzene 110 105 70-130 5 30 p-Isopropyltoluene 70-130 30 105 99 6 Naphthalene 70-130 30 92 91 1 Acrylonitrile 117 116 70-130 30 1

Lab Control Sample Analysis

Batch Quality Control

20152118.202

Lab Number: L1618618 Report Date: 06/23/16

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 02-06 Batch: WG906572-1 WG906572-2 Isopropyl Ether 116 114 66-130 2 30 tert-Butyl Alcohol 91 88 70-130 3 30 n-Propylbenzene 106 70-130 30 111 5 30 1,2,3-Trichlorobenzene 100 99 70-130 1 1,2,4-Trichlorobenzene 106 101 70-130 5 30 1,3,5-Trimethylbenzene 70-130 30 103 100 3 1,2,4-Trimethylbenzene 104 100 70-130 4 30 Methyl Acetate 107 107 51-146 30 0 Ethyl Acetate 70-130 30 124 118 5 70-130 30 Acrolein 114 119 4 Cyclohexane 125 116 59-142 30 7 1,4-Dioxane 90 91 65-136 1 30 1,1,2-Trichloro-1,2,2-Trifluoroethane 110 103 50-139 30 7 107 70-130 30 p-Diethylbenzene 98 9 p-Ethyltoluene 94 70-130 30 100 6 1,2,4,5-Tetramethylbenzene 94 70-130 30 99 5 Tetrahydrofuran 109 107 66-130 2 30 Ethyl ether 123 122 67-130 1 30 trans-1.4-Dichloro-2-butene 70-130 30 106 103 3 Methyl cyclohexane 70-130 30 105 96 9 Ethyl-Tert-Butyl-Ether 101 100 70-130 30 1

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

 Lab Number:
 L1618618

 Report Date:
 06/23/16

	LCS			LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Reco	overy	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by 8260/5035 - Westboroug	h Lab Associated	d sample(s):	02-06	Batch:	WG906572-1	WG906572-2				
Tertiary-Amyl Methyl Ether	91		89	9		70-130	2		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	107		107		70-130	
Toluene-d8	107		107		70-130	
4-Bromofluorobenzene	97		98		70-130	
Dibromofluoromethane	100		102		70-130	

Project Number: 20152118.202 Lab Number: L1618618 Report Date: 06/23/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westborou	gh Lab Associat	ed sample(s):	01 Batch:	WG906929-1	WG906929-2			
Methylene chloride	101		100		70-130	1	30	
1,1-Dichloroethane	110		106		70-130	4	30	
Chloroform	107		106		70-130	1	30	
Carbon tetrachloride	118		111		70-130	6	30	
1,2-Dichloropropane	106		103		70-130	3	30	
Dibromochloromethane	101		102		70-130	1	30	
2-Chloroethylvinyl ether	136	Q	129		70-130	5	30	
1,1,2-Trichloroethane	101		100		70-130	1	30	
Tetrachloroethene	110		104		70-130	6	30	
Chlorobenzene	97		97		70-130	0	30	
Trichlorofluoromethane	158	Q	148	Q	70-139	7	30	
1,2-Dichloroethane	106		108		70-130	2	30	
1,1,1-Trichloroethane	120		113		70-130	6	30	
Bromodichloromethane	106		103		70-130	3	30	
trans-1,3-Dichloropropene	103		103		70-130	0	30	
cis-1,3-Dichloropropene	100		97		70-130	3	30	
1,1-Dichloropropene	113		106		70-130	6	30	
Bromoform	102		102		70-130	0	30	
1,1,2,2-Tetrachloroethane	94		95		70-130	1	30	
Benzene	100		97		70-130	3	30	
Toluene	104		102		70-130	2	30	

Lab Control Sample Analysis

Batch Quality Control

Project Number: 20152118.202

Lab Number: L1618618 Report Date: 06/23/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 01 Batch: WG906929-1 WG906929-2 Ethylbenzene 111 108 70-130 3 30 Chloromethane 124 133 Q 52-130 30 7 Bromomethane 133 128 57-147 30 4 Q Vinyl chloride 30 137 128 67-130 7 Chloroethane 150 142 50-151 30 5 65-135 30 1.1-Dichloroethene 116 109 6 trans-1,2-Dichloroethene 108 102 70-130 6 30 Trichloroethene 109 105 70-130 30 4 1.2-Dichlorobenzene 95 70-130 30 97 2 1,3-Dichlorobenzene 70-130 30 99 96 3 96 70-130 30 1.4-Dichlorobenzene 98 2 Methyl tert butyl ether 96 94 66-130 2 30 p/m-Xylene 104 102 70-130 2 30 o-Xylene 70-130 30 103 100 3 cis-1,2-Dichloroethene 70-130 30 104 101 3 Dibromomethane 101 70-130 30 102 1 Styrene 104 103 70-130 1 30 Dichlorodifluoromethane 101 92 30-146 9 30 Q 122 54-140 30 Acetone 144 17 Carbon disulfide 59-130 30 111 103 7 2-Butanone 110 111 70-130 30 1

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L1618618 Report Date: 06/23/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 01 Batch: WG906929-1 WG906929-2 Vinyl acetate 105 104 70-130 30 1 4-Methyl-2-pentanone 107 104 70-130 3 30 1,2,3-Trichloropropane 94 68-130 30 98 4 30 2-Hexanone 119 115 70-130 3 Bromochloromethane 103 99 70-130 30 4 2,2-Dichloropropane 70-130 30 112 105 6 1,2-Dibromoethane 101 102 70-130 1 30 1,3-Dichloropropane 101 101 69-130 0 30 1.1.1.2-Tetrachloroethane 70-130 30 104 103 1 Bromobenzene 100 70-130 30 100 0 n-Butylbenzene 116 109 70-130 30 6 sec-Butylbenzene 107 101 70-130 6 30 tert-Butylbenzene 105 100 70-130 30 5 o-Chlorotoluene 70-130 30 104 100 4 p-Chlorotoluene 70-130 30 104 100 4 1,2-Dibromo-3-chloropropane 87 68-130 30 89 2 Hexachlorobutadiene 118 113 67-130 4 30 Isopropylbenzene 110 105 70-130 5 30 p-Isopropyltoluene 70-130 30 105 99 6 Naphthalene 70-130 30 92 91 1 Acrylonitrile 117 116 70-130 30 1

Project Name: 1500 ASTOR AVE.

Project Number: 20152118.202 Lab Number: L1618618 Report Date: 06/23/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westbord	ough Lab Associat	ed sample(s):	01 Batch:	WG906929-1	WG906929-2			
Isopropyl Ether	116		114		66-130	2	30	
tert-Butyl Alcohol	91		88		70-130	3	30	
n-Propylbenzene	111		106		70-130	5	30	
1,2,3-Trichlorobenzene	100		99		70-130	1	30	
1,2,4-Trichlorobenzene	106		101		70-130	5	30	
1,3,5-Trimethylbenzene	103		100		70-130	3	30	
1,2,4-Trimethylbenzene	104		100		70-130	4	30	
Methyl Acetate	107		107		51-146	0	30	
Ethyl Acetate	124		118		70-130	5	30	
Acrolein	114		119		70-130	4	30	
Cyclohexane	125		116		59-142	7	30	
1,4-Dioxane	90		91		65-136	1	30	
1,1,2-Trichloro-1,2,2-Trifluoroethane	110		103		50-139	7	30	
p-Diethylbenzene	107		98		70-130	9	30	
p-Ethyltoluene	100		94		70-130	6	30	
1,2,4,5-Tetramethylbenzene	99		94		70-130	5	30	
Tetrahydrofuran	109		107		66-130	2	30	
Ethyl ether	123		122		67-130	1	30	
trans-1,4-Dichloro-2-butene	106		103		70-130	3	30	
Methyl cyclohexane	105		96		70-130	9	30	
Ethyl-Tert-Butyl-Ether	101		100		70-130	1	30	

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

 Lab Number:
 L1618618

 Report Date:
 06/23/16

Parameter	LCS %Recovery	Qual		.CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by 8260/5035 - Westboroug	h Lab Associate	d sample(s):	01	Batch:	WG906929-1	WG906929-2				
Tertiary-Amyl Methyl Ether	91			89		70-130	2		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
4.2 Disklara othera d4	407		407		70.400	
1,2-Dichloroethane-d4	107		107		70-130	
Toluene-d8	102		104		70-130	
4-Bromofluorobenzene	97		98		70-130	
Dibromofluoromethane	100		102		70-130	

INORGANICS & MISCELLANEOUS

Serial	No:06231614:32
oona.	

Field Prep:

Not Specified

Project Name: 1500 ASTOR AVE. Lab Number: L1618618 **Project Number: 20152118.202 Report Date:** 06/23/16 SAMPLE RESULTS Lab ID: Date Collected: L1618618-01 06/15/16 10:40 2118-SB8 (4.0-4.5) Client ID: Date Received: 06/16/16 Sample Location: 1500 ASTOR AVE., BRONX, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	General Chemistry - Westborough Lab									
Solids, Total	87.7		%	0.100	NA	1	-	06/17/16 12:26	121,2540G	RI

Matrix:

Serial	No:06231614:32
oona.	

Project Name:	1500 ASTOR AVE.		Lab Number:	L1618618
Project Number:	20152118.202		Report Date:	06/23/16
		SAMPLE RESULTS		
Lab ID:	L1618618-02		Date Collected:	06/15/16 10:55
Client ID:	2118-SB8 (8.0-8.5)		Date Received:	06/16/16
Sample Location:	1500 ASTOR AVE., BRONX, NY		Field Prep:	Not Specified

Date Analyzed Analytical Method Dilution Date Factor Prepared Parameter Result Qualifier Units RL MDL Analyst General Chemistry - Westborough Lab Solids, Total 91.9 % 0.100 NA 1 -06/17/16 12:26 121,2540G RI

Matrix:

Serial	No:06231614:32
oona.	

Field Prep:

Not Specified

Project Name: 1500 ASTOR AVE. Lab Number: L1618618 **Project Number: 20152118.202 Report Date:** 06/23/16 SAMPLE RESULTS Lab ID: Date Collected: 06/15/16 12:40 L1618618-03 2118-SB9 (4.0-4.5) Client ID: Date Received: 06/16/16 Sample Location: 1500 ASTOR AVE., BRONX, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	General Chemistry - Westborough Lab									
Solids, Total	88.5		%	0.100	NA	1	-	06/17/16 12:26	121,2540G	RI

Matrix:

Serial	No:06231614:32
oona.	

Project Name:	1500 ASTOR AVE.		Lab Number:	L1618618
Project Number:	20152118.202		Report Date:	06/23/16
		SAMPLE RESULTS		
Lab ID:	L1618618-04		Date Collected:	06/15/16 12:55
Client ID:	2118-SB9 (8.0-8.5)		Date Received:	06/16/16
Sample Location:	1500 ASTOR AVE., BRONX, NY		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lat)								
Solids, Total	90.0		%	0.100	NA	1	-	06/17/16 12:26	121,2540G	RI

Matrix:

Serial	No:06231614:32
oona.	

Project Name:1500 ASTOR AVE.Lab Number:L1618618Project Number:20152118.202Report Date:06/23/16SAMPLE RESULTSLab ID:L1618618-05Date Collected:06/16/16 11:50

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Matrix:	So	bil									
Sample	Location: 15	00 ASTOR A	VE., BRON	IX, NY				Field F	rep:	Not Specified	
Client ID) : 21	18-SB10 (4.	5-5.0)					Date R	Received:	06/16/16	
Lab ID.	L I	1010010-0	5					Date C	onected.	00/10/10 11.5	.0

General Chemistry -	Westborough Lab								
Solids, Total	88.6	%	0.100	NA	1	-	06/17/16 12:26	121,2540G	RI

Serial	No:06231614:32
oona.	

 Project Name:
 1500 ASTOR AVE.
 Lab Number:
 L1618618

 Project Number:
 20152118.202
 Report Date:
 06/23/16

 SAMPLE RESULTS
 Date Collected:
 06/16/16 12:00

P	arameter	Result Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
	Matrix:	Soil							
	Sample Location:	1500 ASTOR AVE., BRONX, NY				Field F	rep:	Not Specified	
	Client ID:	2118-SB10 (10.0-10.5)				Date R	Received:	06/16/16	
	Lab ID:	L1618618-06				Date C	collected:	06/16/16 12:0	0

General Chemistry - Westborough Lab Solids, Total 88.3 % 0.100 NA 1 - 06/17/16 12:26 121,2540G RI	i di di li otori	Roodin Qu		=			-	•		, mary or
, ,	Concred Chemistry	Maatharaugh Lah								
Solids, Total 88.3 % 0.100 NA 1 - 06/17/16 12:26 121,2540G RI	General Chemistry -	westborougn Lab								
	Solids, Total	88.3	%	0.100	NA	1	-	06/17/16 12:26	121,2540G	RI

20

Project Name: Project Number:	1500 ASTOR AVE. 20152118.202	Lal	Duplicate Analy Batch Quality Control	L	ab Number: Report Date:	L1618618 06/23/16
Parameter		Native Sample	Duplicate Sample	Units RPD	Qual	RPD Limits
General Chemistry - Wes	stborough Lab Associated san	nple(s): 01-06 QC Batch	ID: WG905040-1 QC	Sample: L1618580-01	Client ID: DU	UP Sample

87.5

%

0

87.4

Solids, Total

Serial_No:06231614:32

Lab Number: L1618618 Report Date: 06/23/16

Project Name: 1500 ASTOR AVE. Project Number: 20152118.202

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	ormation						
Container ID	Container Type	Cooler	рΗ	Temp deg C	Pres	Seal	Analysis(*)
L1618618-01A	Vial MeOH preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-01B	Vial water preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-01C	Vial water preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-01D	Plastic 2oz unpreserved for TS	А	N/A	4.3	Y	Absent	TS(7)
L1618618-02A	Vial MeOH preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-02B	Vial water preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-02C	Vial water preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-02D	Plastic 2oz unpreserved for TS	А	N/A	4.3	Y	Absent	TS(7)
L1618618-03A	Vial MeOH preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-03B	Vial water preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-03C	Vial water preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-03D	Plastic 2oz unpreserved for TS	А	N/A	4.3	Y	Absent	TS(7)
L1618618-04A	Vial MeOH preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-04B	Vial water preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-04C	Vial water preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-04D	Plastic 2oz unpreserved for TS	А	N/A	4.3	Y	Absent	TS(7)
L1618618-05A	Vial MeOH preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-05B	Vial water preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-05C	Vial water preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-05D	Plastic 2oz unpreserved for TS	А	N/A	4.3	Y	Absent	TS(7)
L1618618-06A	Vial MeOH preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-06B	Vial water preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-06C	Vial water preserved	А	N/A	4.3	Y	Absent	NYTCL-8260HLW(14)
L1618618-06D	Plastic 2oz unpreserved for TS	А	N/A	4.3	Y	Absent	TS(7)

L1618618

06/23/16

Lab Number:

Report Date:

Project Name: 1500 ASTOR AVE.

Project Number: 20152118.202

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the rep

Report Format: DU Report with 'J' Qualifiers

Serial_No:06231614:32

Project Name: 1500 ASTOR AVE.

Project Number: 20152118.202

Lab Number: L1618618

Report Date: 06/23/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

 Lab Number:
 L1618618

 Report Date:
 06/23/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:06231614:32

ALPHA	NEW YORK CHAIN OF CUSTODY	<u>Service Centers</u> Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Way	05	Page of		- C	Date R in La		/16	116		ALPHA Job #	518
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Delive	erables					Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 1500	Astar	Ave				ASP-A			ASP-I	В	Same as Clien	nt Info
FAX. 506-696-9195	FAX. 500-022-3200	Project Location: 1500			nx . A	JY		EQuIS	(1 File)		EQuis	S (4 File)	PO #	
Client Information		Project # 2015			,	1		Other						
Client: Property	De hotome The	Use Project name as P					Regula	atory R	equirem	ent		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Disposal Site Inform	nation
Address: 3A No	white lel for	Project Manager:		N 21 N				NY TOG	S		NY Pa	rt 375	Please identify below l	ocation of
Edison 1	11	ALPHAQuote #:			14		1 🗆 /	AWQ St	andards	X	NY CP	-51	applicable disposal fac	
Phone: (732)4	17-0999	Turn-Around Time		1.		-		NY Rest	ricted Use	, T	Other		Disposal Façility:	
Fax:	- 0888.	Standard	d 🕅	Due Date:	6/2	3/16		NY Unre	stricted U	se				NY
		Rust (of mine approved		# of Days:		-INC		NYC Sev	wer Disch	arge			Other:	6
These samples have b	V						ANAL						Sample Filtration	Т
Other project specific										T				o
Chlorinat Please specify Metals	ted VOCq						-chlorineted						Done Lab to do Preservation Lab to do (Please Specify be	elow)
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle	ection Time	Sample Matrix	Sampler's Initials	Vos-						Sample Specific Com	t I I
11618618-01	711C CRR	40-16	61516	1040	Boil	TP-				-	+			e e
02	2118-580	100 851	610110		0011	R	~			+				
03	2116 680	1010-0.8		1055						+	$\left \right $			
04	2110-201	(40-4,5)	11	1240		1	V			+				
05	2118-539	(8.0-8.5)	1 lulu	1255		P			_	+	\vdash	_		
		(4.5-5.0)	6/16/16	1150	V	- AZ		-						
06	2118-SBIC	(10.0-10,5)	11	1200	~									
			<u> </u>											
										_				
$C = HNO_3$	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification N Mansfield: Certification N				ainer Type	X						Please print clear and completely. S not be logged in a	Samples can and
4	G = Glass B = Bacteria Cup				Pr	reservative	F						turnaround time c start until any amb	No. Strand Strand Level and Strands
F = MeOH	C = Cube	Relinquished	Bv:	Date/T	Time	F	Receive	ed By:			Date/	Time	resolved. BY EXE	0
0 Hano04	O = Other E = Encore		rner		21448	-	aidi		AAL	1/1	616	1448	THIS COC, THE	CLIENT
11 - 1420203	D = BOD Bottle	antanain /		1 al bal	1830	Tin	T	Top	h	4-16		1230	HAS READ AND	
O = Other		Joint Topl	11	61611	2202	hu	1	1021	1				TO BE BOUND B TERMS & CONDI	
Form No: 01-25 HC (rev. 30)-Sept-2013)	JJONN 10000	<u> </u>	u pre pre la	nav	- ul	1	V		pp	0/14	2230	(See reverse side	

ANALYTICAL REPORT

Lab Number:	L1618805
Client:	Property Solutions Inc. 323 New Albany Road Moorestown, NJ 08057
ATTN: Phone:	Burt Turner (856) 813-3000
Project Name:	1500 ASTOR AVE.
Project Number:	20152118.202
Report Date:	06/23/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:06231613:15

Project Name:	1500 ASTOR AVE.
Project Number:	20152118.202

Lab Number:	L1618805
Report Date:	06/23/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1618805-01	2118-MW1S (7.4)	WATER	1500 ASTOR AVE., BRONX, NY	06/17/16 08:45	06/17/16
L1618805-02	2118-MW1D (26.5)	WATER	1500 ASTOR AVE., BRONX, NY	06/17/16 08:29	06/17/16
L1618805-03	2118-MW2 (13.2)	WATER	1500 ASTOR AVE., BRONX, NY	06/17/16 12:40	06/17/16
L1618805-04	2118-MW3 (6.1)	WATER	1500 ASTOR AVE., BRONX, NY	06/17/16 09:22	06/17/16
L1618805-05	2118-MW4 (6.8)	WATER	1500 ASTOR AVE., BRONX, NY	06/17/16 09:58	06/17/16
L1618805-06	2118-MW5 (8.4)	WATER	1500 ASTOR AVE., BRONX, NY	06/17/16 10:45	06/17/16

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

 Lab Number:
 L1618805

 Report Date:
 06/23/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

 Lab Number:
 L1618805

 Report Date:
 06/23/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Custen Walker Cristin Walker

Title: Technical Director/Representative

Date: 06/23/16

ORGANICS

VOLATILES

	Serial_No:06231613:15				
Project Name:	1500 ASTOR AVE.	Lab Number:	L1618805		
Project Number:	20152118.202	Report Date:	06/23/16		
	SAMPLE RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1618805-01 2118-MW1S (7.4) 1500 ASTOR AVE., BRONX, NY Water 1,8260C 06/22/16 16:27 PD	Date Collected: Date Received: Field Prep:	06/17/16 08:45 06/17/16 Not Specified		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1			
Tetrachloroethene	180		ug/l	0.50	0.18	1			
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1			
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1			
Vinyl chloride	ND		ug/l	1.0	0.07	1			
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1			
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Trichloroethene	1.9		ug/l	0.50	0.18	1			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	99		70-130	

	Serial_No:06231613:15				
Project Name:	1500 ASTOR AVE.	Lab Number:	L1618805		
Project Number:	20152118.202	Report Date:	06/23/16		
	SAMPLE RESULTS				
Lab ID: Client ID: Sample Location:	L1618805-02 2118-MW1D (26.5) 1500 ASTOR AVE., BRONX, NY	Date Collected: Date Received: Field Prep:	06/17/16 08:29 06/17/16 Not Specified		
Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/22/16 16:56 PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1.1 Dichleroothono	ND			2.5	0.70	1			
1,1-Dichloroethane			ug/l		0.70				
Tetrachloroethene	8.3		ug/l	0.50	0.18	1			
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1			
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1			
Vinyl chloride	ND		ug/l	1.0	0.07	1			
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1			
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Trichloroethene	0.18	J	ug/l	0.50	0.18	1			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

		Serial_No:06231613:15			
Project Name:	1500 ASTOR AVE.	Lab Number:	L1618805		
Project Number:	20152118.202	Report Date:	06/23/16		
	SAMPLE RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1618805-03 2118-MW2 (13.2) 1500 ASTOR AVE., BRONX, NY Water 1,8260C 06/22/16 17:24 PD	Date Collected: Date Received: Field Prep:	06/17/16 12:40 06/17/16 Not Specified		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
				0.5	0.70			
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Tetrachloroethene	0.79		ug/l	0.50	0.18	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	100		70-130	

	Serial_No:06231613:15				
Project Name:	1500 ASTOR AVE.	Lab Number:	L1618805		
Project Number:	20152118.202	Report Date:	06/23/16		
	SAMPLE RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date:	L1618805-04 2118-MW3 (6.1) 1500 ASTOR AVE., BRONX, NY Water 1,8260C 06/22/16 17:52	Date Collected: Date Received: Field Prep:	06/17/16 09:22 06/17/16 Not Specified		
Analyst:	PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1.1 Dicklorecthone	ND			2.5	0.70	1		
1,1-Dichloroethane			ug/l			1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	100		70-130	

	Serial_No:06231613:15				
Project Name:	1500 ASTOR AVE.	Lab Number:	L1618805		
Project Number:	20152118.202	Report Date:	06/23/16		
	SAMPLE RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1618805-05 2118-MW4 (6.8) 1500 ASTOR AVE., BRONX, NY Water 1,8260C 06/22/16 18:20 PD	Date Collected: Date Received: Field Prep:	06/17/16 09:58 06/17/16 Not Specified		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
				0.5	0.70			
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Tetrachloroethene	0.37	J	ug/l	0.50	0.18	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
cis-1,2-Dichloroethene	3.4		ug/l	2.5	0.70	1		
			- 0/-					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	100		70-130	

Serial_No:06231613:15					
Project Name:	1500 ASTOR AVE.	Lab Number:	L1618805		
Project Number:	20152118.202	Report Date:	06/23/16		
	SAMPLE RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1618805-06 2118-MW5 (8.4) 1500 ASTOR AVE., BRONX, NY Water 1,8260C 06/22/16 18:48 PD	Date Collected: Date Received: Field Prep:	06/17/16 10:45 06/17/16 Not Specified		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Tetrachloroethene	34		ug/l	0.50	0.18	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	30		ug/l	0.50	0.18	1		
cis-1,2-Dichloroethene	59		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	100		70-130	

Project Name:	1500 ASTOR AVE.	Lab Number:	L1618805
Project Number:	20152118.202	Report Date:	06/23/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	06/22/16 09:53
Analyst:	PD

Parameter	Result Qua	lifier Units	RL	MDL	
Volatile Organics by GC/MS -	Westborough Lab for s	sample(s): 01-0	6 Batch:	WG906708-5	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Tetrachloroethene	ND	ug/l	0.50	0.18	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
1,1-Dichloroethene	ND	ug/l	0.50	0.14	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	96		70-130	

Project Name: 1500 ASTOR AVE. Lab Number: L1618805 Report Date: 06/23/16

Project Number: 20152118.202

Parameter	LCS %Recovery Qu	LCSD wal %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated samp	ole(s): 01-06 Batch:	WG906708-3 WG906708-4		
Methylene chloride	98	100	70-130	2	20
1,1-Dichloroethane	98	100	70-130	2	20
Chloroform	98	100	70-130	2	20
2-Chloroethylvinyl ether	110	97	70-130	13	20
Carbon tetrachloride	98	100	63-132	2	20
1,2-Dichloropropane	98	100	70-130	2	20
Dibromochloromethane	96	95	63-130	1	20
1,1,2-Trichloroethane	98	97	70-130	1	20
Tetrachloroethene	100	100	70-130	0	20
Chlorobenzene	100	100	75-130	0	20
Trichlorofluoromethane	92	100	62-150	8	20
1,2-Dichloroethane	96	97	70-130	1	20
1,1,1-Trichloroethane	98	100	67-130	2	20
Bromodichloromethane	97	97	67-130	0	20
trans-1,3-Dichloropropene	99	96	70-130	3	20
cis-1,3-Dichloropropene	97	98	70-130	1	20
1,1-Dichloropropene	100	100	70-130	0	20
Bromoform	96	96	54-136	0	20
1,1,2,2-Tetrachloroethane	95	94	67-130	1	20
Benzene	99	100	70-130	1	20
Toluene	100	100	70-130	0	20

Project Name: 1500 ASTOR AVE. Lab Number: L1618805 Report Date: 06/23/16

Project Number: 20152118.202

arameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
platile Organics by GC/MS - Westboroug	h Lab Associated sample(s	s): 01-06 Batch:	WG906708-3 WG906708-4	1	
Ethylbenzene	100	100	70-130	0	20
Chloromethane	70	77	64-130	10	20
Bromomethane	110	110	39-139	0	20
Vinyl chloride	79	89	55-140	12	20
Chloroethane	98	100	55-138	2	20
1,1-Dichloroethene	95	100	61-145	5	20
trans-1,2-Dichloroethene	98	100	70-130	2	20
Trichloroethene	100	100	70-130	0	20
1,2-Dichlorobenzene	98	100	70-130	2	20
1,3-Dichlorobenzene	100	100	70-130	0	20
1,4-Dichlorobenzene	100	100	70-130	0	20
Methyl tert butyl ether	94	94	63-130	0	20
p/m-Xylene	105	110	70-130	5	20
o-Xylene	105	105	70-130	0	20
cis-1,2-Dichloroethene	98	100	70-130	2	20
Dibromomethane	99	98	70-130	1	20
1,2,3-Trichloropropane	93	98	64-130	5	20
Acrylonitrile	90	90	70-130	0	20
Isopropyl Ether	95	99	70-130	4	20
tert-Butyl Alcohol	76	98	70-130	25	Q 20
Styrene	105	105	70-130	0	20

Project Name: 1500 ASTOR AVE. Lab Number: L1618805 Report Date: 06/23/16

Project Number: 20152118.202

arameter	LCS %Recovery Qi	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated samp	ble(s): 01-06 Batch:	WG906708-3 WG906708-4		
Dichlorodifluoromethane	50	54	36-147	8	20
Acetone	94	100	58-148	6	20
Carbon disulfide	87	91	51-130	4	20
2-Butanone	94	98	63-138	4	20
Vinyl acetate	95	96	70-130	1	20
4-Methyl-2-pentanone	80	80	59-130	0	20
2-Hexanone	81	81	57-130	0	20
Acrolein	91	87	40-160	4	20
Bromochloromethane	100	100	70-130	0	20
2,2-Dichloropropane	100	100	63-133	0	20
1,2-Dibromoethane	95	94	70-130	1	20
1,3-Dichloropropane	96	95	70-130	1	20
1,1,1,2-Tetrachloroethane	99	100	64-130	1	20
Bromobenzene	100	100	70-130	0	20
n-Butylbenzene	110	110	53-136	0	20
sec-Butylbenzene	110	110	70-130	0	20
tert-Butylbenzene	110	110	70-130	0	20
o-Chlorotoluene	98	100	70-130	2	20
p-Chlorotoluene	100	110	70-130	10	20
1,2-Dibromo-3-chloropropane	86	84	41-144	2	20
Hexachlorobutadiene	110	120	63-130	9	20

Project Name: 1500 ASTOR AVE. Lab Number: L1618805 Report Date: 06/23/16

Project Number: 20152118.202

arameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westborough	Lab Associated sample(s)	: 01-06 Batch:	WG906708-3	WG906708-4			
Isopropylbenzene	100	110		70-130	10		20
p-Isopropyltoluene	110	110		70-130	0		20
Naphthalene	81	86		70-130	6		20
n-Propylbenzene	110	110		69-130	0		20
1,2,3-Trichlorobenzene	89	100		70-130	12		20
1,2,4-Trichlorobenzene	94	97		70-130	3		20
1,3,5-Trimethylbenzene	100	110		64-130	10		20
1,2,4-Trimethylbenzene	100	110		70-130	10		20
Methyl Acetate	84	86		70-130	2		20
Ethyl Acetate	84	86		70-130	2		20
Cyclohexane	97	100		70-130	3		20
Ethyl-Tert-Butyl-Ether	95	97		70-130	2		20
Tertiary-Amyl Methyl Ether	94	94		66-130	0		20
1,4-Dioxane	60	106		56-162	55	Q	20
1,1,2-Trichloro-1,2,2-Trifluoroethane	99	100		70-130	1		20
1,4-Diethylbenzene	110	110		70-130	0		20
4-Ethyltoluene	100	110		70-130	10		20
1,2,4,5-Tetramethylbenzene	100	100		70-130	0		20
Tetrahydrofuran	89	97		58-130	9		20
Ethyl ether	94	95		59-134	1		20
trans-1,4-Dichloro-2-butene	84	76		70-130	10		20

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

 Lab Number:
 L1618805

 Report Date:
 06/23/16

Pa	rameter	LCS %Recovery	Qual	LC: %Rec	SD overy	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Vo	latile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-06 B	atch:	WG906708-3	WG906708-4				
	lodomethane	35	Q	5	51	Q	70-130	37	Q	20	
	Methyl cyclohexane	100		1(00		70-130	0		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	97		95		70-130	
Toluene-d8	101		101		70-130	
4-Bromofluorobenzene	100		100		70-130	
Dibromofluoromethane	101		100		70-130	

Serial_No:06231613:15

Lab Number: L1618805 Report Date: 06/23/16

Project Name: 1500 ASTOR AVE. Project Number: 20152118.202

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1618805-01A	Vial HCI preserved	А	N/A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-01B	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-01C	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-02A	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-02B	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-02C	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-03A	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-03B	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-03C	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-04A	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-04B	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-04C	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-05A	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-05B	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-05C	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-06A	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-06B	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)
L1618805-06C	Vial HCI preserved	А	N\A	5.6	Y	Absent	NYTCL-8260-C9(14)

L1618805

06/23/16

Lab Number:

Report Date:

Project Name: 1500 ASTOR AVE.

Project Number: 20152118.202

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

- STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the 1 original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A - Spectra identified as "Aldol Condensation Product".
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Serial_No:06231613:15

Project Name: 1500 ASTOR AVE.

Project Number: 20152118.202

Lab Number: L1618805

Report Date: 06/23/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

 Lab Number:
 L1618805

 Report Date:
 06/23/16

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:06231613:15

Westborough, MA 01581 8 Walkup Dr.	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co Project Information	Nay ooper Ave, Suite 105	(Pag	pe (in Deliverab		6	1171		ALPHA Job # LUGI S805 Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 1500,	AsterAve		-				ASP-E		Same as Client Info	
		Project Location:	Astw Ave Br	onx, N	Ý	EQuIS (1 File) EQUIS (4 File)				PO#		
Client Information		Project # 20152	-118.202	- /		Oth	er					
Client: Property St	notions since	(Use Project name as Pr	roject #)	_		Regulator	y Requireme	ent			Disposal Site Information	
Address: 3' A Nor	thrield Ave	Project Manager: B	Turner				rogs	X	NY Par	t 375	Please identify below location of	f
Edison, N	Ľ	ALPHAQuote #:	and the second				Q Standards		NY CP-	-51	applicable disposal facilities.	
Phone: (732) 4	17-0999	Turn-Around Time			-		Restricted Use		Other		Disposal Facility:	
Fax:	-0888	Standard	d 🗌 🛛 Due [Date:			Inrestricted U	se				
	2004 Solutionsi	Bustwonly if pre approved	i) 🗌 # of E	Days: Ad	AL TAT		Sewer Discha	arge			Other:	
These samples have b					0	ANALYSI	S				Sample Filtration	Т
Other project specific								Τ			Done	0
Chikerinate Please specify Metals		alysis				RIPTIN					Lab to do Preservation Lab to do	a I B
						1 7					(Please Specify below)	O f
ALPHA Lab ID			Collection	Sample	Sampler's	03						t
(Lab Use Only)	Sa	mple ID	Date Time		Initials	3					Sample Specific Comments	 e
18805-01	2118-MWI	6(7.4)	6/17/16 8:4		-BP-							
- 10000 07	7118-MINI	10/7/251	61110 021	19 11	1		+	+				+
07	5118-MA/	7 (13,2)	12:	40 11	BO		+ $+$	+				+-1
	7118-Mi	316	9:2	-7	RO			+	+			+
	2118-MM	14(60)	915		A A		2		\vdash			+
-06	218 1	15(24)	1019		B			-	\vdash			+
-00	C110=1010	v) (0+1)	1019	<u>> u</u>	42			-	+			+
										-		+
												+-1
						<u>├──</u>						+
Preservative Code:	Container Code						+ $+$ $-$					Щ
A = None	P = Plastic	Westboro: Certification N	lo: MA935	Cor	ntainer Type	V					Please print clearly, legibl	
	A = Amber Glass V = Vial	Mansfield: Certification N	lo: MA015		ar 14 1	¥					and completely. Samples	can
	G = Glass			, i	Preservative	B					not be logged in and turnaround time clock will	not
E = NaOH	B = Bacteria Cup	L				D					start until any ambiguities	are
	C = Cube O = Other	Relinquished I		ate/Time		Received B		<u> </u>	Date/T		resolved. BY EXECUTING	
$H = Na_2S_2O_3$	E = Encore	Durton un	n 6/17/	16 1410	Lim	- the	TAMY	611	7116	1419	THIS COC, THE CLIENT	
N/E - ZITAC/NaOH	D = BOD Bottle	Jahr tro	1 DAL 6/17/	16 192(1700	Nº 101	er t	5-1	7-16	142	TO BE BOUND BY ALPH	
O = Other		Tom Teh	6/ 0/17/1	6 23:05	Ma	hum	in/	Gli	7/16	29:05	TERMS & CONDITIONS.	
Form No: 01-25 HC (rev. 30	-Sept-2013)		,101	<i>c c c c c c c c c c</i>	11		5				(See reverse side.)	

V

ANALYTICAL REPORT

Lab Number:	L1618699
Client:	Property Solutions Inc.
	323 New Albany Road Moorestown, NJ 08057
ATTN:	Burt Turner
Phone:	(856) 813-3000
Project Name:	1500 ASTOR AVE.
Project Number:	20152118.202
Report Date:	06/24/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:06241612:54

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

 Lab Number:
 L1618699

 Report Date:
 06/24/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1618699-01	2118-IA-01	AIR	1500 ASTOR AVE., BRONX, NY	06/17/16 13:20	06/17/16
L1618699-02	2118-IA-02	AIR	1500 ASTOR AVE., BRONX, NY	06/17/16 13:15	06/17/16

Project Name: 1500 ASTOR AVE. Project Number: 20152118.202

 Lab Number:
 L1618699

 Report Date:
 06/24/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

 Lab Number:
 L1618699

 Report Date:
 06/24/16

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on June 14, 2016. The canister certification results are provided as an addendum.

Sample Receipt

The sample designated 2118-IA-01 (L1618699-01) had a RPD for the pre- and post-flow controller calibration check (57% RPD) that was outside of the control limit (20% RPD). The initial flow rate for the flow controller was 3.3 mL/minute; the final flow rate was 5.9 mL/minute. The final pressure recorded by the laboratory of the associated canister was -0.1 inches of mercury. No further action was required.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 06/24/16

AIR

 Project Name:
 1500 ASTOR AVE.
 Lab Number:
 L1618699

 Project Number:
 20152118.202
 Report Date:
 06/24/16

SAMPLE RESULTS

Lab ID:	L1618699-01	Date Collected:	06/17/16 13:20
Client ID:	2118-IA-01	Date Received:	06/17/16
Sample Location:	1500 ASTOR AVE., BRONX, NY	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	06/23/16 20:57		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	0.023	0.020		0.091	0.079			1
1,2-Dichloroethane	0.051	0.020		0.206	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Trichloroethene	0.039	0.020		0.210	0.107			1
Tetrachloroethene	1.51	0.020		10.2	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	91		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	95		60-140

 Project Name:
 1500 ASTOR AVE.
 Lab Number:
 L1618699

 Project Number:
 20152118.202
 Report Date:
 06/24/16

SAMPLE RESULTS

Lab ID:	L1618699-02	Date Collected:	06/17/16 13:15
Client ID:	2118-IA-02	Date Received:	06/17/16
Sample Location:	1500 ASTOR AVE., BRONX, NY	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	06/23/16 21:32		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,2-Dichloroethane	0.068	0.020		0.275	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Trichloroethene	0.028	0.020		0.150	0.107			1
Tetrachloroethene	1.08	0.020		7.32	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	90		60-140

Report Date: 06/24/16

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 06/23/16 18:50

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab fo	or sample	e(s): 01-02	Batch: V	VG907174	-4		
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1

Report Date: 06/24/16

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 06/23/16 18:50

		ppbV		ug/m3			_	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab f	or sample	e(s): 01-02	Batch: W	G907174	-4		
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.020		ND	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1

Report Date: 06/24/16

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 06/23/16 18:50

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab f	or sample	(s): 01-02	Batch: W	/G907174	-4		
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Project Name: 1500 ASTOR AVE. Lab Number: L1618699 Report Date: 06/24/16

Project Number: 20152118.202

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics in Air by SIM - Mansfield L	ab Associated s	ample(s): 01-	02 Batch: W	G907174-3					
Propylene	86		-		70-130	-		25	
Dichlorodifluoromethane	79		-		70-130	-		25	
Chloromethane	75		-		70-130	-		25	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	78		-		70-130	-		25	
Vinyl chloride	76		-		70-130	-		25	
1,3-Butadiene	80		-		70-130	-		25	
Bromomethane	80		-		70-130	-		25	
Chloroethane	75		-		70-130	-		25	
Ethyl Alcohol	90		-		70-130	-		25	
Vinyl bromide	79		-		70-130	-		25	
Acetone	87		-		70-130	-		25	
Trichlorofluoromethane	82		-		70-130	-		25	
iso-Propyl Alcohol	81		-		70-130	-		25	
Acrylonitrile	78		-		70-130	-		25	
1,1-Dichloroethene	80		-		70-130	-		25	
Methylene chloride	85		-		70-130	-		25	
3-Chloropropene	86		-		70-130	-		25	
Carbon disulfide	78		-		70-130	-		25	
1,1,2-Trichloro-1,2,2-Trifluoroethane	79		-		70-130	-		25	
Halothane	83		-		70-130	-		25	
trans-1,2-Dichloroethene	72		-		70-130	-		25	

Project Name: 1500 ASTOR AVE. Lab Number: L1618699 Report Date: 06/24/16

Project Number: 20152118.202

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	ab Associated s	ample(s): 0	1-02 Batch: W	G907174-3					
1,1-Dichloroethane	92		-		70-130	-		25	
Methyl tert butyl ether	89		-		70-130	-		25	
2-Butanone	95		-		70-130	-		25	
cis-1,2-Dichloroethene	98		-		70-130	-		25	
Ethyl Acetate	99		-		70-130	-		25	
Chloroform	96		-		70-130	-		25	
Tetrahydrofuran	91		-		70-130	-		25	
1,2-Dichloroethane	93		-		70-130	-		25	
n-Hexane	98		-		70-130	-		25	
1,1,1-Trichloroethane	107		-		70-130	-		25	
Benzene	98		-		70-130	-		25	
Carbon tetrachloride	109		-		70-130	-		25	
Cyclohexane	96		-		70-130	-		25	
1,2-Dichloropropane	102		-		70-130	-		25	
Bromodichloromethane	107		-		70-130	-		25	
1,4-Dioxane	102		-		70-130	-		25	
Trichloroethene	100		-		70-130	-		25	
2,2,4-Trimethylpentane	107		-		70-130	-		25	
cis-1,3-Dichloropropene	100		-		70-130	-		25	
4-Methyl-2-pentanone	111		-		70-130	-		25	
trans-1,3-Dichloropropene	92		-		70-130	-		25	

Project Name: 1500 ASTOR AVE. Lab Number: L1618699 Report Date: 06/24/16

Project Number: 20152118.202

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics in Air by SIM - Mansfield La	ab Associated s	ample(s): 01	-02 Batch: WO	G907174-3					
1,1,2-Trichloroethane	105		-		70-130	-		25	
Toluene	96		-		70-130	-		25	
2-Hexanone	117		-		70-130	-		25	
Dibromochloromethane	106		-		70-130	-		25	
1,2-Dibromoethane	100		-		70-130	-		25	
Tetrachloroethene	95		-		70-130	-		25	
1,1,1,2-Tetrachloroethane	98		-		70-130	-		25	
Chlorobenzene	98		-		70-130	-		25	
Ethylbenzene	99		-		70-130	-		25	
p/m-Xylene	108		-		70-130	-		25	
Bromoform	107		-		70-130	-		25	
Styrene	106		-		70-130	-		25	
1,1,2,2-Tetrachloroethane	102		-		70-130	-		25	
o-Xylene	107		-		70-130	-		25	
Isopropylbenzene	100		-		70-130	-		25	
4-Ethyltoluene	110		-		70-130	-		25	
1,3,5-Trimethylbenzene	106		-		70-130	-		25	
1,2,4-Trimethylbenzene	112		-		70-130	-		25	
Benzyl chloride	113		-		70-130	-		25	
1,3-Dichlorobenzene	109		-		70-130	-		25	
1,4-Dichlorobenzene	99		-		70-130	-		25	

Lab Control Sample Analysis

Batch Quality Control

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

 Lab Number:
 L1618699

 Report Date:
 06/24/16

LCS LCSD %Recovery RPD %Recovery Parameter %Recovery Qual Limits RPD Qual Limits Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-02 Batch: WG907174-3 105 sec-Butylbenzene 70-130 25 -p-Isopropyltoluene 70-130 25 94 --1,2-Dichlorobenzene 105 70-130 25 --109 70-130 25 n-Butylbenzene --1,2,4-Trichlorobenzene 102 70-130 25 --Naphthalene 105 70-130 25 --1,2,3-Trichlorobenzene 70-130 25 103 --Hexachlorobutadiene 109 70-130 25 --

Lab Duplicate Analysis Batch Quality Control

Project Name: 1500 ASTOR AVE. Project Number: 20152118.202

Lab Number: L1618699 Report Date: 06/24/16

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
olatile Organics in Air by SIM - Mansfield Lab ample	Associated sample(s): 01-02	QC Batch ID: WG90	7174-5 QC S	Sample: L16 ⁻	18893-01 Client ID: DUP
Dichlorodifluoromethane	1.45	1.64	ppbV	12	25
Chloromethane	ND	ND	ppbV	NC	25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC	25
Vinyl chloride	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
Bromomethane	ND	ND	ppbV	NC	25
Chloroethane	0.213	0.200	ppbV	6	25
Trichlorofluoromethane	1.43	1.38	ppbV	4	25
1,1-Dichloroethene	1.69	1.49	ppbV	13	25
Methylene chloride	ND	ND	ppbV	NC	25
1,1,2-Trichloro-1,2,2-Trifluoroethane	20.5	18.7	ppbV	9	25
trans-1,2-Dichloroethene	1.68	1.75	ppbV	4	25
1,1-Dichloroethane	6.82	7.06	ppbV	3	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	68.7	70.8	ppbV	3	25
Chloroform	5.37	5.63	ppbV	5	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	58.3	59.9	ppbV	3	25
Benzene	0.547	0.557	ppbV	2	25

Lab Duplicate Analysis Batch Quality Control

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

) I
 Lab Number:
 L1618699

 Report Date:
 06/24/16

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air by SIM - Mansfield Lab ample	Associated sample(s): 01-02	QC Batch ID: WG9	07174-5 QC S	Sample: L1618	893-01 Client ID: DUP
Carbon tetrachloride	0.090	0.093	ppbV	4	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	0.253	0.253	ppbV	0	25
Trichloroethene	180E	177E	ppbV	2	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	6.31	6.44	ppbV	2	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Tetrachloroethene	286E	261E	ppbV	9	25
1,1,1,2-Tetrachloroethane	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	0.966	1.02	ppbV	5	25
p/m-Xylene	4.18	4.46	ppbV	6	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	1.37	1.44	ppbV	5	25

Lab Duplicate Analysis Batch Quality Control

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

Lab Number: Report Date:

e: 06/24/16

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air by SIM - Mansfield Lab ample	Associated sample(s): 01-02	QC Batch ID: WG90	07174-5 QC Sa	mple: L16188	93-01 Client ID: DUP
4-Ethyltoluene	0.233	0.253	ppbV	8	25
1,3,5-Trimethylbenzene	0.203	0.237	ppbV	15	25
1,2,4-Trimethylbenzene	0.956	1.02	ppbV	6	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	0.137	0.140	ppbV	2	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Naphthalene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
olatile Organics in Air by SIM - Mansfield Lab ample	Associated sample(s): 01-02	QC Batch ID: WG90)7174-5 QC Sa	mple: L16188	93-01 Client ID: DUP
Trichloroethene	186	188	ppbV	1	25
Tetrachloroethene	291	328	ppbV	12	25

Project Name: 1500 ASTOR AVE.

Project Number: 20152118.202

Serial_No:06241612:54
Lab Number: L1618699

Report Date: 06/24/16

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1618699-01	2118-IA-01	0112	#16 AMB	06/14/16	223974		-	-	-	Pass	3.3	5.9	57
L1618699-01	2118-IA-01	1826	6.0L Can	06/14/16	223974	L1617594-02	Pass	-28.6	-0.1	-	-	-	-
L1618699-02	2118-IA-02	0201	#16 AMB	06/14/16	223974		-	-	-	Pass	3.3	3.2	3
L1618699-02	2118-IA-02	789	6.0L Can	06/14/16	223974	L1617594-02	Pass	-29.5	-8.2	-	-	-	-

		Serial_No:00	6241612:54
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1617594
Project Number:	CANISTER QC BAT	Report Date:	06/24/16
	Air Canister Certification Results		

Lab ID:	L1617594-02	Date Collected:	06/09/16 09:00
Client ID:	CAN 986 SHELF 47	Date Received:	06/09/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	06/09/16 15:32		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Analyst:

RY

Report Date: 06/24/16

Lab ID: Client ID: Sample Location:	L1617594-02 CAN 986 SHE	LF 47	_F 47 ррьV				Collecte Receive Prep:		06/09/16 09:0 06/09/16 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	E
Volatile Organics in A	Air - Mansfield Lab)							
Methylene chloride		ND	0.500		ND	1.74			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.623			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene)	ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
Vinyl acetate		ND	1.00		ND	3.52			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.793			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.500		ND	1.47			1
2,2-Dichloropropane		ND	0.200		ND	0.924			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.705			1
Diisopropyl ether		ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.836			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.908			1
Benzene		ND	0.200		ND	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.836			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.721			1

Report Date: 06/24/16

	L1617594-02 CAN 986 SHEL	_F 47 ppbV					Collecte Receive Prep:	ed:	06/09/16 09:0 06/09/16 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	E
Volatile Organics in Air	r - Mansfield Lab	I							
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Methyl Methacrylate		ND	0.500		ND	2.05			1
Heptane		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene		ND	0.200		ND	0.908			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.754			1
1,3-Dichloropropane		ND	0.200		ND	0.924			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.38			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane		ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.921			1
Ethylbenzene		ND	0.200		ND	0.869			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.07			1
Styrene		ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane		ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.869			1
1,2,3-Trichloropropane		ND	0.200		ND	1.21			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.983			1
Bromobenzene		ND	0.200		ND	0.793			1

Report Date: 06/24/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1617594-02 CAN 986 SHEL	.F 47					Collecte Receive Prep:		06/09/16 09:00 06/09/16 Not Specified
			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r
Volatile Organics in A	Air - Mansfield Lab	1							
2-Chlorotoluene		ND	0.200		ND	1.04			1
n-Propylbenzene		ND	0.200		ND	0.983			1
4-Chlorotoluene		ND	0.200		ND	1.04			1
4-Ethyltoluene		ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene		ND	0.200		ND	0.983			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.983			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropro	opane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
			ppbV			ug/m3			Dilution
Sample Location:						Field F	Prep:		Not Specified
Client ID:	CAN 986 SHEL	F 47				Date R	Receive	ed:	06/09/16
Lab ID:	L1617594-02					Date C	Collecte	ed:	06/09/16 09:00
		Air Can	nister Ce	rtificatio	on Results				
Project Number:	CANISTER QC E	ВАТ				Re	port D	ate: (6/24/16
Project Name:	BATCH CANIST	ER CERT	IFICATION	1		La	b Num	ber: լ	1617594
							Serial_	_No:0624	41612:54

% Recovery 87

93

83

Qualifier

Acceptance Criteria

60-140

60-140

60-140

Volatile Organics in Air - Mansfield Lab

Internal Standard

1,4-Difluorobenzene

Bromochloromethane

chlorobenzene-d5

Lab ID:	L1617594-02	Date Collected:	06/09/16 09:00
Client ID:	CAN 986 SHELF 47	Date Received:	06/09/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	06/09/16 15:32		
Analyst:	RY		

		ppbV	ppbV			ug/m3		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Report Date: 06/24/16

Lab ID: L1617594-0. Client ID: CAN 986 SH Sample Location:		LF 47 ppbV					Collecte Receive Prep:	red:	06/09/16 09:0 06/09/16 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	E
Volatile Organics in <i>I</i>	Air by SIM - Mans	field Lab							
Bromodichloromethane		ND	0.020		ND	0.134			1
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroproper	ne	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.050		ND	0.188			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethar	ne	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.100		ND	0.461			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethar	ne	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.200		ND	0.983			1
4-Ethyltoluene		ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1

L1617594-02 CAN 986 SHEL	.F 47	ppbV		Date Collected: Date Received: Field Prep: ug/m3				06/09/16 09:00 06/09/16 Not Specified Dilution		
	Results	RL	MDL	Results	RL	MDL	Qualifier	Faster		
Air by SIM - Mansfi	eld Lab									
	ND	0.200		ND	1.10			1		
	ND	0.050		ND	0.371			1		
	ND	0.050		ND	0.262			1		
	ND	0.050		ND	0.371			1		
	ND	0.050		ND	0.533			1		
	CAN 986 SHEL	CAN 986 SHELF 47 Results Air by SIM - Mansfield Lab ND ND ND ND ND ND	ND 0.200 ND 0.050 ND 0.050	ppbV Results MDL Air by SIM - Mansfield Lab MD 0.200 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050	PPbVResultsRLMDLResultsAir by SIM - Mansfield LabND0.200NDND0.050NDNDND0.050NDND0.050NDND0.050NDND0.050ND	Date F47 Date Field ppbV ug/m3 Results RL MDL Results RL Air by SIM - Mansfield Lab ND 0.200 ND 1.10 ND 0.050 ND 0.371 ND 0.050 ND 0.262 ND 0.050 ND 0.371	Date Receive Field Prep: ppbV ug/m3 Results RL MDL Results RL MDL Air by SIM - Mansfield Lab ND 0.200 ND 1.10 ND 0.050 ND 0.371 ND 0.050 ND 0.371 ND 0.050 ND 0.371	Date Received: Field Prep:ppbVug/m3ResultsRLMDLResultsRLMDLQualifierAir by SIM - Mansfield LabND0.200ND1.10ND0.050ND0.371ND0.050ND0.262ND0.050ND0.371		

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	86		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	84		60-140

Serial_No:06241612:54

Lab Number: L1618699 Report Date: 06/24/16

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information Custody Seal

Cooler

N/A Present/Intact

Container Information							
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1618699-01A	Canister - 6 Liter	N/A	N/A	N/A	Y	Absent	TO15-SIM(30)
L1618699-02A	Canister - 6 Liter	N/A	N/A	N/A	Y	Absent	TO15-SIM(30)

for

L1618699

06/24/16

Lab Number:

Report Date:

Project Name: 1500 ASTOR AVE.

Project Number: 20152118.202

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

- RI ess than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound TIC list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the 1 original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A - Spectra identified as "Aldol Condensation Product".
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Serial_No:06241612:54

Project Name: 1500 ASTOR AVE.

Project Number: 20152118.202

Lab Number: L1618699

Report Date: 06/24/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

 Project Name:
 1500 ASTOR AVE.

 Project Number:
 20152118.202

 Lab Number:
 L1618699

 Report Date:
 06/24/16

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

r											· · · · ·	<u>Seria</u>	<u>L_No:</u>	06241612:5	4
	AIR A chain of custody	NALYSI	S PA	GEOF	Date R	ec'd in Lab	: ()	18/1	'e		ALI	PHA 、	Job #	= L101	8699
ANALYTICA.	L	Project Info	ormation		Repo	t Informa	tion - D	ata Del	liverab	les	Bil	ling Ir	oform	ation	
	ansfield, MA 02048) FAX: 508-822-3288	Project Name:	1500 Ast	or Aug.	□ FA>						🗆 Sa	ame as	Client	t info PO #:	
Client Information	on	Project Locatio	TEronx	NY			cker:								
Client:	hy Sopotrons	Project #: 7	0152118-	202		(Default based	on Regula	tory Criteria	a Indicated,)					
Address: 31AN	orthoged Ave		ger: B. Tu			Other Forma AIL (standa		port)			Re	gulato	ory Re	equirements/	Report Limits
Edison	NT	ALPHA Quote	e #:		🗆 Ado	litional Deliv	verables					e/Fed	P	Program	Res / Comm
	417-0999	Turn-Arou	nd Time		Report	to: (if different t	han Project N	lanager)			-N	Y_			
Fax:	-0888														
	propertysolutions			confirmed if pre-approved	#) 							AN	ALYS	SIS	
	ve been previously analyzed by Alpha Specific Requirements/Con											4	0,5	?///	
-	Target Compound List:	_ <i>CI</i>	ploring	ed VOC	s (Solven	1 5) 0+	rly.	•		/		etroleum	19	' / /	
					-		/			_ /		e Non-p	ercapta		
	^	ll Colur	mns Bel	ow Mu	ist Be F	-illed	Ou	t		5	Sill Sub	0	W8 /	/ /	
ALPHA Lab ID (Lab Use Only)	Sample ID	End Date Sta	COLLECTIO	N InitialF Vacuum Va	inal Sample cuum Matrix*	Sampler's Initials		ID II Can Co	D - Flow ontroller /		\$ / 4 /	Fixed Gases	-s & Mercaptans by T	Sample Com	ments (i.e. PID)
18699.01	2118-IA-01 2118-IA-02	6114-613	3:32 13:20	29.08 0	,10 AA	B	6	8260	91(2						
,02	2118-TA-02	1 13	34 13:15	30.15 7	.95 AA	Æ		7890		1					
												+			
					······································				_						
									_						
		AA = Ambient Air	r (Indoor/Outdoor)							<u>r</u>				1	
*SAMPL	E MATRIX CODES	SV = Soil Vapor/L Other = Please Spe				Co	ontainer	Туре		PULMIN (nples can not be
		Relinquished		Date/Ti	me	Receiv	/ed By:	l	<u>_</u> ^		ate/Ti	me:			nt until a⊓y ambi-
	1/21	tin Jun	n	6/17/16	1410 2	Jan 9	to to	HAL	6		K	141		submitted are si	ved. All samples ubject to Alpha's ditions
		he to	- AHL	6/17/16	2220 0		lle.	$\sim \sim$	6-1	7-1	6	33	20	See reverse sid	
Page-3216732*: (25	5-Sep-15)	will	and (6-1/8-16 0	23;10_ <i>l</i>	CM LE	3al	γ	- U	(18//	¥_(13.10	ノ	L	

APPENDIX E PROFESSIONAL QUALIFICATIONS

EDUCATION	Bachelor of Arts, Earth Science, 1987 Kean University, Union, New Jersey				
	Associates in Applied Sciences, Civil Engineering Technology, 1979 Union County College, Cranford, New Jersey				
ACCREDITATIONS	Professional Engineer (Civil), New Jersey Professional Geologist, Pennsylvania OSHA 40-Hour HAZWOPER Training				

SUMMARY OF QUALIFICATIONS

Mr. Turner is licensed as a professional engineer and professional geologist, with over 30 years of diverse technical and managerial experience in the environmental site remediation and geotechnical engineering fields. He has successfully planned and managed soil and groundwater remedial investigations, construction quality control programs for landfill closures, groundwater treatment systems, aquifer pumping tests, landfill gas control systems, and health and safety / air monitoring programs at contaminated sites. Mr. Turner has extensive experience with the regulatory framework in New Jersey site remediation as well as federal oversight projects, for due diligence assessments, receptor evaluations including vapor intrusion, underground storage tanks, and is well versed in the recent Site Remediation Reform Act (SRRA) requirements for oversight by LSRPs and resulting regulatory changes. He has completed permitting requirements for NJPDES surface and groundwater discharges, landfill disruption, and other NJDEP permit issues. Site experience includes federal Superfund sites in the northeast, and numerous small and large sites with NJDEP oversight, with the successful closure of numerous site remediation cases. Mr. Turner also has extensive experience with preparing proposals and cost estimates for all phases of the site remediation process. He has developed and managed two geotechnical laboratories along with extensive experience completing soil and foundation investigations and engineering reports. He has also managed the installation of geotechnical instrumentation for a major earthen dam and other infrastructure projects in the northeast.

PROJECT EXPERIENCE

Commercial / Residential Phase I Environmental Assessments, and Preliminary Assessments, NJ

Mr. Turner has performed Phase I Environmental Assessments on commercial and residential properties using the ASTM E1527 standards. Commercial facilities include office buildings, shopping centers, retail outlets, fueling stations, and warehouses. He has also completed numerous Preliminary Assessments under NJDEP requirements.

Commercial and Industrial Phase II and Phase III Environmental Site Investigation, NJ

Mr. Turner has prepared scopes of work for and managed numerous Phase II/III Environmental Site Assessments to evaluate the presence of, and nature and extent of organic and inorganic soil and groundwater contamination, including impact from fuels, oils, pesticides, PCBs, and chlorinated organic compounds. On many sites, responsibilities included cost management. Programs for soil, groundwater, soil vapor, and indoor air impact have been developed and implemented. He has supervised numerous sites through the investigation and remedial action phases, completed all necessary reporting and administrative submittals for obtaining no further action status for the sites or areas of concern.

Phase II and Phase III Environmental Site Assessments, UST Sites, NJ

Mt. Turner has prepared workplans and managed environmental investigation and remedial action phases for petroleum underground storage tanks at numerous gas stations, auto repair shops, churches, schools, and other commercial as well as residential sites throughout north and central New Jersey. He has completed all reporting and administrative (including LSRP) submittals to NJDEP for achieving site closure.

ISRA Site Assessments, Investigations and Remediation – Various Locations – New Jersey

Performed and managed numerous Preliminary Assessments, Site Investigations, Remedial Investigations, and Remediation at industrial establishments in New Jersey. Sites included a former sewing machine manufacturer in Elizabeth, paint manufacturing facility in Carlstadt, a former chemical manufacturing facility in Kearny, and former print shop in Paterson, among others. Site investigation activities have included soil boring and test pit sampling, groundwater monitoring well installation and sampling, geophysical surveys, soil gas surveys, potable water sampling, UST investigations, and concrete chip sampling. Remedial measures included excavation and disposal of petroleum contaminated soil and sampling & disposal of abandoned drums.

Investigation and Remediation of Pesticides-impacted Former Orchard, Wyckoff, NJ

Developed the Remedial Action Workplan for NJDEP approval, supervised sampling and analysis requirements for 7-acre site by soil excavation and blending, and completed final reporting documents for remediation of a pesticides-impacted former tree orchard, achieving site closure for future recreational reuse of the property.

Groundwater Treatment System, NJ Transit Facility, Bay Head Junction, NJ

Completed the design, installation, system startup and training, and served as O&M advisor for a groundwater extraction and treatment system at NJ Transit facility.

CERCLA Sites

Closure of NPL Landfill, Freehold, NJ.

Mr. Turner served as the Assistant Manager of Quality Control for the construction of a multi-layer impermeable cap at a 50+ acre landfill, including the development and management of an onsite geotechnical laboratory. Cap included a field-seamed HDPE liner and overlying drainage layer, with passive gas venting and perimeter bentonite slurry wall.

Closure of Hazardous Waste Landfill, Plattsburgh, NY.

Manager of Quality Control for the construction of an impermeable cap at a 13 acre landfill on a DOD site. Coordination of closure activities with Army Corps of Engineers oversight.

Groundwater Investigation and Aquifer Evaluation for Treatment System Design, Watertown, NY.

Planned, conducted, and evaluated results of an aquifer pumping / drawdown test at large petroleumimpacted area at an active DOD military base, and determined aquifer parameters for design of large dual-phase extraction groundwater treatment system.

Health and Safety

Health and Safety Plan Preparation and Site Management, Various Sites, NJ

Mr. Turner developed health and safety plans for CFR1920:120 sites per OSHA requirements, and managed site personnel H&S at various environmental remediation sites, including oversight for onsite personnel and perimeter air and dust monitoring requirements, scaffolding, excavation safety, and traffic plans for waste transport. Developed criteria and monitored for "action levels" for implementation of the OSHA-designated levels of personal protective equipment for site personnel.

Laboratory Management (Geotechnical)

Geotechnical Laboratory Development and Management: Developed and managed a permanent geotechnical laboratory and staff for Melick-Tully and Associates, South Bound Brook, NJ, for grain size, compaction, soil plasticity/liquidity indices, consolidation, unconfined compression, and flexible-wall permeability testing. Developed and managed a field geotechnical laboratory at a CERCLA landfill closure site in Freehold, NJ, for conducting onsite expedited testing, including grain size, compaction, and flexible-wall permeability testing.

DONALD P. HESSEMER REGIONAL DIRECTOR

EDUCATION	Master of Environmental Health Science Polytechnic Institute of New York Brooklyn, New York
	Bachelor of Science (Resource Management) SUNY College of Environmental Science Syracuse, New York
ACCREDITATIONS	Certified Hazardous Materials Manager – Institute of Hazardous Materials Management OSHA 40-Hour HAZWOPER Training AHERA Certified Asbestos Inspector NYS Department of Labor – Asbestos Inspector

SUMMARY OF QUALIFICATIONS

Mr. Hessemer is an Environmental Scientist and Regional Director with more than 30 years of consulting experience in environmental due diligence, regulatory compliance, hazardous waste investigations and analytical laboratory analysis and management for public and private sector clients. He has conducted and managed site assessments for commercial and industrial properties, Phase II site investigations, remediation projects, asbestos and lead-based paint programs, and a contract laboratory program to support the EPA Superfund Program. Mr. Hessemer is well versed in ASTM due diligence standards, New Jersey Technical Requirements for Site Remediation, and the Superfund program. A Certified Hazardous Materials Manager (CHMM) and a skilled project manager, Mr. Hessemer makes sure that projects meet both the client's objectives and the project's schedule and budget. He has proven skill in coordinating large portfolio due diligence programs and teams and identifying environmental liabilities for prospective purchasers and lending institutions.

REPRESENTATIVE PROJECT EXPERIENCE

Commercial and Residential Phase I Environmental Assessments – US, UK, France, and Germany

Mr. Hessemer has performed or managed Phase I Environmental Assessments on thousands of commercial and residential properties using the latest ASTM standards. Commercial facilities include office buildings, shopping centers and malls, retail outlets, warehouses, apartment complexes, and television broadcasting studios and transmitter sites, and timberland.

Commercial and Industrial Phase II Environmental Site Assessments – Various States, US

Mr. Hessemer has prepared scopes of work for and managed numerous Phase II Site Assessments to evaluate environmental concerns identified in Phase I ESAs by providing information regarding the nature and extent of soil and groundwater contamination. Programs for soil, soil vapor, indoor air quality, groundwater sampling have been performed. Geophysical investigations have been designed to aid in soil boring placement.

Industrial Due Diligence Assessments – US, Brazil, and India

Performed or managed pre-acquisition due diligence assessments of industrial and manufacturing properties including cogeneration plants, healthcare product manufacturing facilities, a dairy plant, pulp and paper mills, compressed gas plants, electronics manufacturers, chemical plants, and printing facilities. The assessments generally included the identification of liabilities associated with site contamination, off-site contingent liabilities, and an evaluation of facility regulatory compliance with federal and state environmental regulations including permit status for water, stormwater, wastewater, air emissions, hazardous materials reporting, hazardous waste management, PCB-management, and oil storage.

Federal Regulatory Compliance Programs – US Postal Service – Metro New York City and Central New Jersey Districts

Mr. Hessemer managed two \$2.5 million contracts for environmental compliance services at owned or leased postal services within Manhattan and The Bronx, NY, and Central New Jersey. Served as the single point of contact with the District Environmental Compliance Coordinators and managed the overall program administration. Responsible for making management assignments, setting priorities, and ensuring administrative support for timely project performance. Projects included turnkey asbestos, lead based paint, and lead in drinking water surveys and O&M programs, noise level surveys, personal noise dosimetry testing to measure worker exposure, drinking water testing programs, and technical review of energy audit reports.

Environmental Liability Cost Assessments - International

Served on an ENSR international due diligence team assigned to evaluate the environmental liabilities of a European based company with chemical plants in the US. Responsible for assessing the liabilities of four specific plants in the US based on technical review of environmental health and safety records including permits, investigation and remediation reports, and other EHS documents, and a site inspection of the main US facility. The assessment resulted in the identification of liabilities and associated liability cost estimation and prioritization of recommended actions.

Environmental Liability Cost Assessments – Phoenix, Arizona

Served as senior scientist member of team effort to review a lending institution's loan portfolio for environmental liabilities as part of a potential acquisition. Reviewed various documents including Phase I and Phase II ESA reports and remedial action plans. Information reviewed was used to identify environmental liabilities and assign remedial cost estimates, ranked by likelihood.

Environmental Support of Emergency Bridge Reconstruction

Served as environmental lead in support of NYCDOT's emergency reconstruction of the Borden Avenue Bridge in Long Island City, NY. Prepared a Corrective Action Plan (CAP) in response to the discovery of petroleum-contaminated sediment in the adjacent Dutch Kills water body during construction. The CAP established procedures for handling and disposal of petroleum-contaminated sediment, and provided design detail of a temporary on-site water treatment system for dewatering fluid to support a SPDESequivalent discharge permit. Prepared permit modification requests for 6 NYCRR Part 608 Water Quality Certification, NYCRR Part 661 Tidal Wetlands Permit, and ECL Article 15 Protection of Waters Permit.

Environmental Services Oversight - New York City Schools, NY

Provided oversight of field personnel engaged in various environmental activities for the NYCSCA including Phase I ESAs, Phase II Subsurface Investigations, Indoor Air Quality and Soil Vapor Investigations, and Remediation Programs. Responsible for scope of work and report review, interfacing with client representatives, and performing periodic school site visits. (06/09 – Present)

Environmental Permitting – New York, New York

Prepared NYSDEC Petroleum Bulk Storage (PBS) Applications for fuel oil storage tanks as part of an Emergency Generator Upgrade Program for six Health and Hospital Corporation (HHC) facilities in New York City. Managed subcontractor in the preparation of NYSDEC air permit modifications.

ISRA Investigations and Remediation – Various Locations – New Jersey

Performed and managed numerous Preliminary Assessments, Site Investigations, Remedial Investigations, and Remediation at industrial establishments throughout central and northern NJ. Properties included former paper mills, a miniature lighting facility, an electronic manufacturer, an ion-exchange regeneration plant, an asphalt blending and storage terminal, a polymer compound manufacturer, label printing and packaging facility. Site investigation activities have included geophysical surveys, soil gas surveys, soil boring sampling, groundwater monitoring well installation and sampling, potable water sampling, UST investigations, concrete chip sampling, and septic system sampling. Remedial measures included excavation and disposal of petroleum contaminated soil and disposal of abandoned drums.

CERCLA Superfund Investigations

Hazardous Waste Investigation and Management, Bound Brook, NJ. Project Manager of a focused feasibility study at an inactive pesticide formulation plant in Bound Brook, New Jersey. Project involved developing remedial alternatives for dioxin contamination of a building and soils, and included field sampling of contaminated materials and subcontracting a structural engineer to evaluate the structural integrity of the building. Assistant Project Manager of a CERCLA Remedial Investigation/Feasibility Study Work Plan for the site. The proposed scope of work included characterization of the nature and extent of on-site contamination and off-site migration of contaminants, determination of potential threats to public health and the environment, and the development and evaluation of remedial alternatives.

Hazardous Waste Investigation and Management, New Brunswick, NJ. Project Manager of a field testing project at New Brunswick, New Jersey, for the EPA revised Hazard Ranking System (HRS) Model for CERCLA hazardous waste sites. Project involved collecting sufficient environmental data to test the model. Tasks included field sampling of soils, private wells, surface water, and aquatic organisms; soil borings to obtain site-specific geologic information and preparation of technical reports.

CERCLA Site Investigations, NJ, NY, and PR. Program Manager of EPA Region 2 Field Investigation Team (FIT) site investigations. Responsibilities included overall coordination of program including managing a staff of 12 site managers, project assignments, review of work plans and technical reports, scheduling and budgeting, and interfacing with client (EPA).

Hazardous Waste Investigation and Management, Newark, NJ. Sample Management Officer of an area-wide dioxin contamination investigation based in Newark, New Jersey. Tasks included interfacing with the EPA Contract Laboratory Program (CLP) office, coordinating the quality assurance program, and packaging and shipping dioxin contaminated soil samples to analytical laboratories.

Hazardous Waste Investigation and Management, Toms River, NJ. Project Scientist during remedial investigation and feasibility study of an active pharmaceutical plant. Responsibilities included acting as Health and Safety Officer during the sampling of monitoring wells, Sample Management Officer during the collection of soil samples for dioxin analysis, and technical writing during report preparation.

Groundwater Investigation, Hazardous Waste Investigation and Management, Niagara Falls, NY. Health and Safety Officer during the installation and sampling of monitoring wells during an area-wide groundwater study. Responsibilities included the health and safety of on-site personnel including drilling crew and air monitoring.

Hazardous Waste Investigation and Management, Grand Island, NY. Technical Oversight Scientist during dioxin analysis of samples collected from a Niagara Falls, New York, facility involved in the manufacture of 2,4,5-TCP. Responsibilities included inspection and documentation of sample management and sample preparation procedures by Occidental personnel and their consulting laboratory.

Laboratory Management

EPA Contract Laboratory Program (CLP), Inorganic Analysis - Environmental Laboratory Analysis and Management, US-wide. Project Manager of CLP Inorganic Analysis Contract. Approximately 200 samples of water and soil samples per month from Superfund sites were analyzed for priority pollutant trace metals. Responsibilities included scheduling incoming samples, assigning work for staff chemists, bidding on samples for special analysis, contact with EPA and Sample Management headquarters and attending CLP conferences. Also served as Environmental Chemist for CLP contract.