REMEDIAL ACTION WORK PLAN ADDENDUM

for

767 EAST 133rd STREET Bronx, New York NYSDEC BCP Site No. C203123

Prepared for:

MARKLAND 745 LLC 55 Bruckner Boulevard Bronx, New York 10454

Prepared by:

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

> November 2021 Langan Project No. 170497202

CERTIFICATION

I, Jason J. Hayes, certify that I am currently a New York State registered professional engineer as defined in 6 NYCRR Part 375 and that this Remedial Action Work Plan (RÁWP) Addendum was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

I certify that all information and statements in this certification are true. I understand that a false statement made herein is punishable as Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

JASON HAYES

NYS Professional Engineer

1502/01/11

te // Signature

It is a violation of Article 145 of New York State Education Law for any person to alter this document in any way without the express written verification of adoption by any New York State licensed engineer in accordance with Section 7209(2), Article 145, New York State Education Law.

TABLE OF CONTENTS

1.	0 INTRODUCTION	1
2.	.0 PREVIOUS INVESTIGATION SUMMARY	3
	OER Remedial Investigation, July 2018	3
	BCP Remedial Investigation, January 2021	4
	May 2021 Test Pit and Soil Boring Investigation	4
	August 2021 Membrane Interface Probe Investigation	5
3.	.0 POTENTIAL OFF-SITE SOURCES	7

FIGURES

Figure 1	Potential Sources of CVOC Contamination
Figure 2	Soil Sample Analytical Results Map
Figure 3	Groundwater Sample Analytical Results Map
Figure 4	MIP Sample Location Map

TABLES

Table 1	Soil Sample Analytical Results (May-August 2021)
Table 2	Groundwater Sample Analytical Results (May 2021)

APPENDICES

Appendix A	Soil Boring Logs (May-August 2021)
Appendix B	Groundwater Sampling Logs (May-August 2021)
Appendix C	Laboratory Analytical Results (May-August 2021)
Appendix D	MIP Report and Logs

1.0 INTRODUCTION

The purpose of this Remedial Action Work Plan (RAWP) Addendum is to remove in-situ groundwater treatment as an element of the approved remedy at 767 East 133rd Street in the Bronx, New York (the "site"). This modification to the remedy presented in the RAWP is based on the cumulative results of five rounds of soil, groundwater and soil vapor investigations performed between May 2018 and January 2021, including the most recent supplemental May and August 2021 test pit, boring, and Membrane Interface Probe (MIP) investigations.

Data collected between May 2018 and January 2021 during the Brownfield Cleanup Program (BCP) Remedial Investigation (RI) and BCP eligibility investigations identified chlorinated volatile organic compounds (CVOCs) at concentrations above the New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGV) for Class GA water in groundwater. CVOCs were not detected in any soil samples at concentrations indicative of an on-site source; in fact, no CVOCs were detected in soil above the Title 6 New York Codes, Rules and Regulations (NYCRR) Part 375 Unrestricted Use (UU) or Protection of Groundwater (PGW) Soil Cleanup Objectives (SCOs). Based on the data, the source of CVOCs in groundwater at the site was suspected to be off-site; however, NYSDEC requested additional testing to further evaluate the source of COVCs in groundwater at the site.

Langan attempted an off-site investigation as part of the BCP RI in December 2020 to identify an off-site source. Figure 1 shows possible sources of CVOC contamination both on- and off-site that helped to guide this investigation. The proposed off-site investigation included advancement of borings and completion of monitoring wells in the East 134th Street sidewalks outside of the potential sources identified in Figure 1. Due to lack of site access to investigate the off-site properties and the presence of utilities and shallow bedrock, Langan was unable to complete the investigation as planned and was only able to collect limited off-site data. For these reasons, the investigation was inconclusive regarding sources of CVOCs in groundwater. It was determined that further attempts to investigate off-site would likely be unsuccessful due to lack of access and subgrade drilling conditions.

Langan's focus shifted to intensive on-site soil and groundwater investigation to further evaluate whether any on-site source(s) of CVOCs are present. Langan subsequently conducted a test pit and boring investigation in May 2021 and an intensive boring investigation using a membrane interface probe (MIP) in August 2021 to evaluate for a potential on-site source of CVOCs. In total, across five investigations, CVOCs were not detected above the Part 375 UU or PGW SCOs in 68 soil samples collected from the site (including quality assurance/quality control [QA/QC]). The

field observations, analytical soil data, and MIP measurements did not identify an on-site source of CVOCs.

2.0 PREVIOUS INVESTIGATION SUMMARY

The findings of the following previous investigations conducted at the site are summarized below:

- Office of Environmental Remediation (OER) Remedial Investigation, July 2018
- BCP Remedial Investigation, January 2021
- Test Pit and Soil Boring Investigation, May 2021
- Membrane Interface Probe Investigation, August 2021

Soil boring and monitoring well locations are shown on Figures 2 and 3, respectively. The findings of the OER and BCP Remedial Investigations, including laboratory reports, tabulated analytical data, and soil boring and groundwater sampling logs, are included in the NYSDEC-approved Remedial Investigation Report (RIR), dated July 20, 2021. Soil sampling results from the May and August 2021 investigations are summarized in Table 1, and groundwater sampling results from the May 2021 investigation are summarized in Table 2. Soil boring, test pit, and groundwater sampling logs and laboratory analytical reports from the May and August 2021 investigations are included in Appendices A, B, and C.

OER Remedial Investigation, July 2018

In May 2018, 9 soil borings and 5 monitoring wells were completed and 19 soil samples and 6 groundwater samples (including QA/QC samples) were collected as part of the RI performed under the New York City (NYC) Brownfield Jumpstart Program and the NYC Community Brownfield Planning Area Program. The depth to groundwater was between 0.47 feet below the cellar slab in the southeast part of the site to 9.56 feet below grade surface (bgs) in the northwest part of the site (el 3.59 to 5.54^{1}); groundwater flow direction was towards the south. CVOCs were detected at concentrations above the SGVs in groundwater samples collected from monitoring wells across the site, with the highest concentration near the western boundary of the site. Tetrachloroethene (PCE) concentrations ranged from non-detect in MW-03 to 3,700 micrograms per liter [μ g/L] in MW-02, and trichloroethene (TCE) concentrations ranged from non-detect in MW-03 to 500 μ g/L in MW-02 (sampled in December 2020). Odor, staining, and photoionization detector (PID) readings above background were not encountered when screening soil, and CVOCs were not detected above the UU or PGW SCOs in any soil samples.

¹ Elevations herein are referenced in North American Vertical Datum of 1988.

Remedial Action Work Plan Addendum 767 East 133rd Street Bronx, New York Langan Project No. 170497202 BCP Site No. C203123

BCP Remedial Investigation, January 2021

Between August 2019 and January 2021, 9 additional soil borings and 3 additional monitoring wells were completed, including 1 soil boring and 1 monitoring well in the East 134th Street sidewalk, and 26 soil samples and 10 groundwater samples (including QA/QC samples) were collected as part of the BCP RI. The RI also included surveying of monitoring well elevations and synoptic groundwater gauging. The depth to groundwater was between 5.43 and 8.87 feet bgs (el. 4.60 to 7.51), and the groundwater flow direction was determined to be towards the south-southwest. Groundwater is likely perched on top of shallow bedrock beneath the East 134th Street sidewalk, and groundwater flow direction may be influenced by the shallow bedrock.

Similar to the July 2018 OER RI, CVOCs were detected at concentrations above the SGVs in groundwater samples collected from monitoring wells across the site. CVOC concentrations were generally highest in groundwater samples from MW-02 near the western boundary of the site. PCE concentrations ranged from non-detect in MW-10 and MW-16 to 1,900 μ g/L in MW-18, and TCE concentrations ranged from non-detect in MW-10 and MW-16 to 280 μ g/L in MW-18. Odor, staining, and PID readings above background were not encountered when screening soil, and CVOCs were not detected above the UU or PGW SCOs in any soil samples.

In December 2020 at the request of the NYSDEC, Langan attempted to complete an off-site groundwater investigation along the East 134th Street sidewalk near the northwestern and northeastern adjoining properties located at 740 and 753 East 134th Street. Eleven (11) borings were advanced to refusal between 5 and 12 feet bgs, which was estimated to be the top of weathered bedrock (Figure 2). Groundwater was only encountered at soil boring SB-19 in the sidewalk adjacent to the site. Additional boring attempts were precluded by the presence of underground utility lines beneath the sidewalk. One groundwater monitoring well (MW-19) was successfully installed on the northeastern adjoining East 134th Street sidewalk; a groundwater sample collected from the well did not contain CVOCs above the SGVs. Odors, staining, and a maximum PID reading of 675 parts per million (ppm) were encountered in soil samples collected from 5 to 6 feet bgs in two borings, SB-17 and SB-20, on the East 134th Street sidewalk about 70 feet from the northern corner of the site; however, the two associated soil samples did not contain CVOCs.

May 2021 Test Pit and Soil Boring Investigation

Sixteen (16) soil samples, including QA/QC samples, were collected from 4 test pits (TP03 through TP06) and 12 remedial design borings (RDB-01 through RDB-12) advanced on the western portion of the site between May 10 and 27, 2021. Additionally, five temporary monitoring wells were installed and sampled. The objective of the investigation was to evaluate potential on-site source(s) of CVOCs near the area containing the highest CVOC concentrations in site

Remedial Action Work Plan Addendum 767 East 133rd Street Bronx, New York Langan Project No. 170497202 BCP Site No. C203123

groundwater, and to evaluate soil and bedrock conditions to inform the design of a hydraulic barrier wall.

The test pits were about 9 to 18 feet wide by 5 to 12 feet long and extended to depths between 10 and 12 feet bgs. The borings were advanced to about 12 feet bgs. Groundwater was observed at depths between 8 and 11 feet bgs. Odors, staining, and PID readings above background were not encountered when screening soil from the test pits or remedial design borings, and CVOCs were not detected above the UU or PGW SCOs in the soil samples.

Temporary monitoring wells (TMW-01, TMW-03, TMW-06, TMW-09, and TMW-11) were installed and groundwater samples were collected at the five well locations. CVOCs were detected at concentrations above the SGVs in each sample, with the highest PCE and TCE concentrations of 3,400 μ g/l and 380 μ g/l, respectively, in TMW-11, which was about 28 feet east of the western site boundary and 21 feet northeast of MW-02.

Soil boring and monitoring well locations are shown on Figures 2 and 3, respectively. Tables 1 and 2 summarize the soil and groundwater sampling analytical results from the May 2021 investigation, respectively. Soil boring and test pit logs are included in Appendix A, groundwater sampling logs are included in Appendix B, and laboratory analytical reports are included in Appendix C.

<u>August 2021 Membrane Interface Probe Investigation</u>

A membrane interface probe (MIP) investigation was conducted to identify and delineate the extent of any potential CVOC source material. Fifteen MIP borings (MIP01 through MIP15) were advanced in a gridded pattern using a direct-push drill rig affixed with a MIP system, and six soil samples were collected for comparison with the MIP data. The MIP system is an in situ soil and groundwater analysis methodology that includes a PID, flame ionization detector (FID), and halogenated-specific detector (XSD). The MIP system provides real-time soil measurements of electrical conductivity, soil permeability, and petroleum VOC and CVOC contamination, with the XSD targeting CVOCs. Pre- and post-response tests were conducted at each MIP location using a known concentration (2 ppm) of PCE to confirm the integrity of the system.

MIP borings were advanced to refusal (i.e., the estimated depth of weathered bedrock), which varied between about 9.5 feet bgs near the western site boundary and 26 feet bgs near the center of the site. MIP readings were continuously collected in each boring from both unsaturated and saturated soil. The XSD readings in unsaturated soil were between 0 and 1.5 microvolts (μ V) x 10⁵, which was at about 7 feet bgs (slightly above the groundwater table) near the western site boundary in MIP01. XSD readings in saturated soil were between 0 and 1.4 μ V x 10⁵, with the exception of a reading of about 6 μ V x 10⁵ that was measured at about 9.5 feet bgs near the

Remedial Action Work Plan Addendum 767 East 133rd Street Bronx, New York Langan Project No. 170497202 BCP Site No. C203123

western site boundary in MIP02, at the refusal depth. For comparison, a nearby soil sample collected about 4 feet north of MIP02 between 10 and 11 feet bgs (RDB-05) during the May 2021 investigation did not contain CVOCs above the UU or PGW SCOs.

An XSD reading between $0.1~\mu V \times 10^7$ and $1~\mu V \times 10^7$ may indicate the presence of dense non-aqueous phase liquid (DNAPL)². The maximum XSD reading at the site was about two orders of magnitude below the response threshold for DNAPL source material. XSD readings were lower in unsaturated soil than in saturated soil and increased with depth, reflecting the influence of CVOCs in groundwater. The highest XSD reading at each MIP location was typically in saturated soil near the refusal depth. XSD readings indicative of source material in unsaturated soil or DNAPL were not encountered.

Six confirmatory soil samples were collected from between 6 and 24 feet bgs from four borings (SB-MIP03, SB-MIP07, SB-MIP08 and SB-MIP10) located near corresponding MIP borings. The sampled borings were selected to provide additional data from previously unsampled locations and to correlate XSD readings with laboratory results. Odors, staining, and PID readings above background were not encountered when screening soils in the borings. CVOCs were not detected in any of the soil samples at concentrations above UU or PGW SCOs.

MIP boring locations are shown on Figure 4, and the MIP report and logs are included in Appendix D.

² The Interstate Technology & Regulatory Council Implementing Advanced Site Characterization Tools Team December 2019, *Implementing Advanced Site Characterization Tools, page 171*, accessed 8 September 2021 https://asct-1.itrcweb.org/asct_full_pdf 12 15 19.pdf>

3.0 POTENTIAL OFF-SITE SOURCES

The only documented historical on-site operation that may have used CVOCs was a piano string manufacturer that occupied former Lot 56 on the southeastern portion of the site between about 1927 and 1976. The former facility was about 55 feet south of the location of the highest CVOC concentrations in groundwater (i.e., MW-02, sampled during the July 2018 OER RI). PCE was detected in a well within the footprint of the former facility at a concentration two orders of magnitude less than the highest concentrations observed in groundwater. These data do not indicate the historical piano string manufacturer was a source of CVOC impacts in groundwater at the site

Groundwater elevations obtained during monitoring events between 2018 and 2020 indicated that the direction of groundwater flow varies between south and south-southwest. However, a historical survey of the area conducted in 1885 indicates that the local hydraulic gradient likely sloped south-southeast towards an inlet of the Bronx Kill located about 500 feet from the site³.

A geotechnical investigation conducted by Pillori Associates, Inc. in 2021 also indicates that the decomposed bedrock surface slopes from about 17 feet bgs near the northern corner of the site to 43 feet bgs in the Willow Avenue sidewalk in the southeastern portion of the site. Shallow, unconfined groundwater gradient typically follows bedrock topography, and properties located north and northwest of the site are therefore considered to be hydraulically upgradient. Appendix E includes the relevant section of Certified Copies of Important Maps appertaining to the 23rd and 24th Wards, City of New York, published by E. Robinson in 1888. Appendix F includes a boring location plan, cross-sections, and boring logs from Pillori's 2021 geotechnical investigation

The following existing and historical facilities constitute potential off-site sources of CVOC contamination north and west of the site:

- Safe manufacturing company on western adjoining property at 740 East 134th Street (2009 to present⁴)
- Commercial dry cleaner with three solvent tanks and metal fabrication on northeastern adjoining property across East 134th Street at 755 East 134th Street (1968 to 2007)

³ Certified Copies of Important Maps appertaining to the 23th and 24th Wards, City of New York, published by E. Robinson in 1885

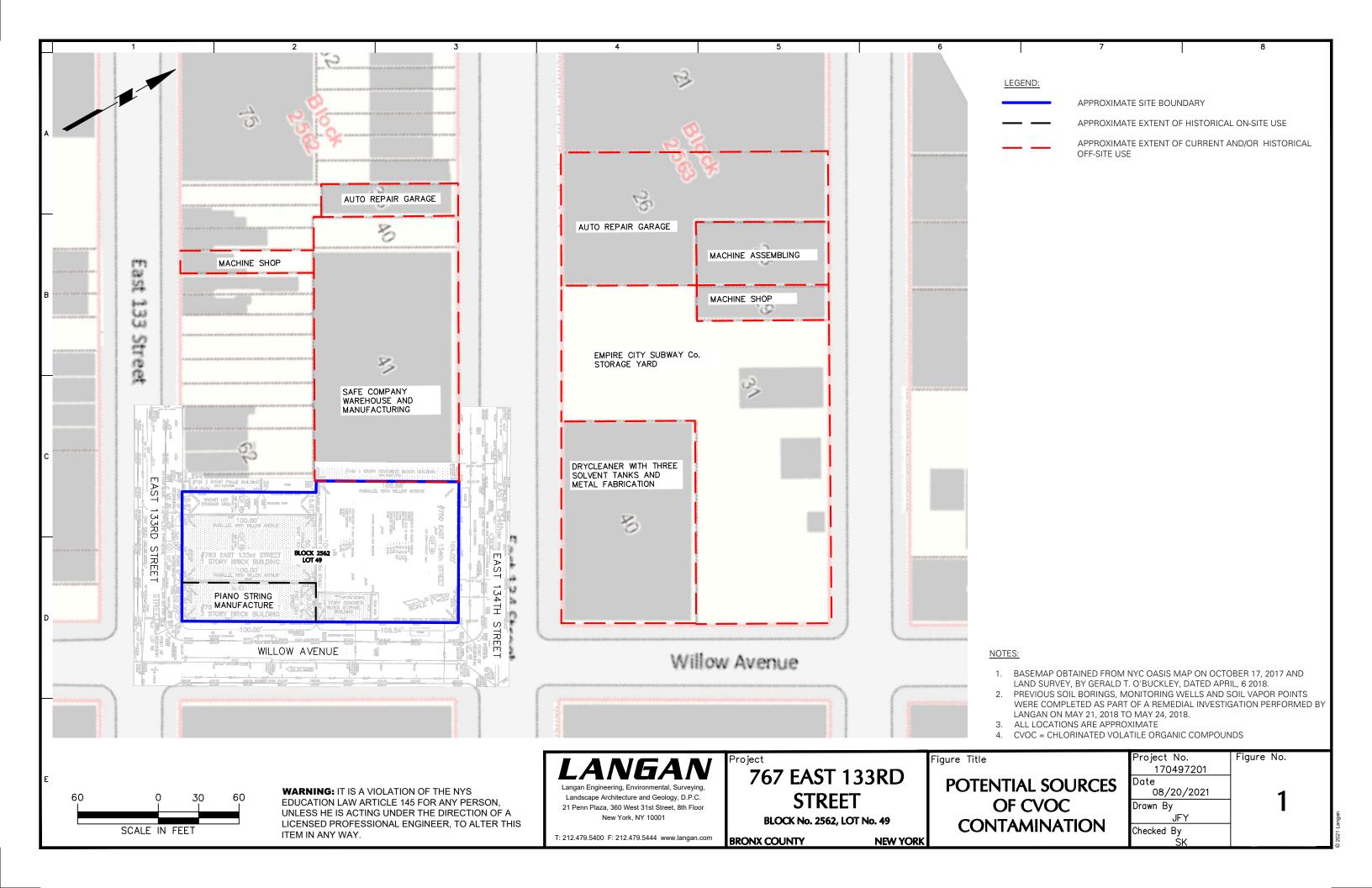
⁴ Dates provided in the bulleted list below are based on review of Google Street Viewer, Sanborn Fire Insurance Maps and observations made during visits to the site and surrounding area.

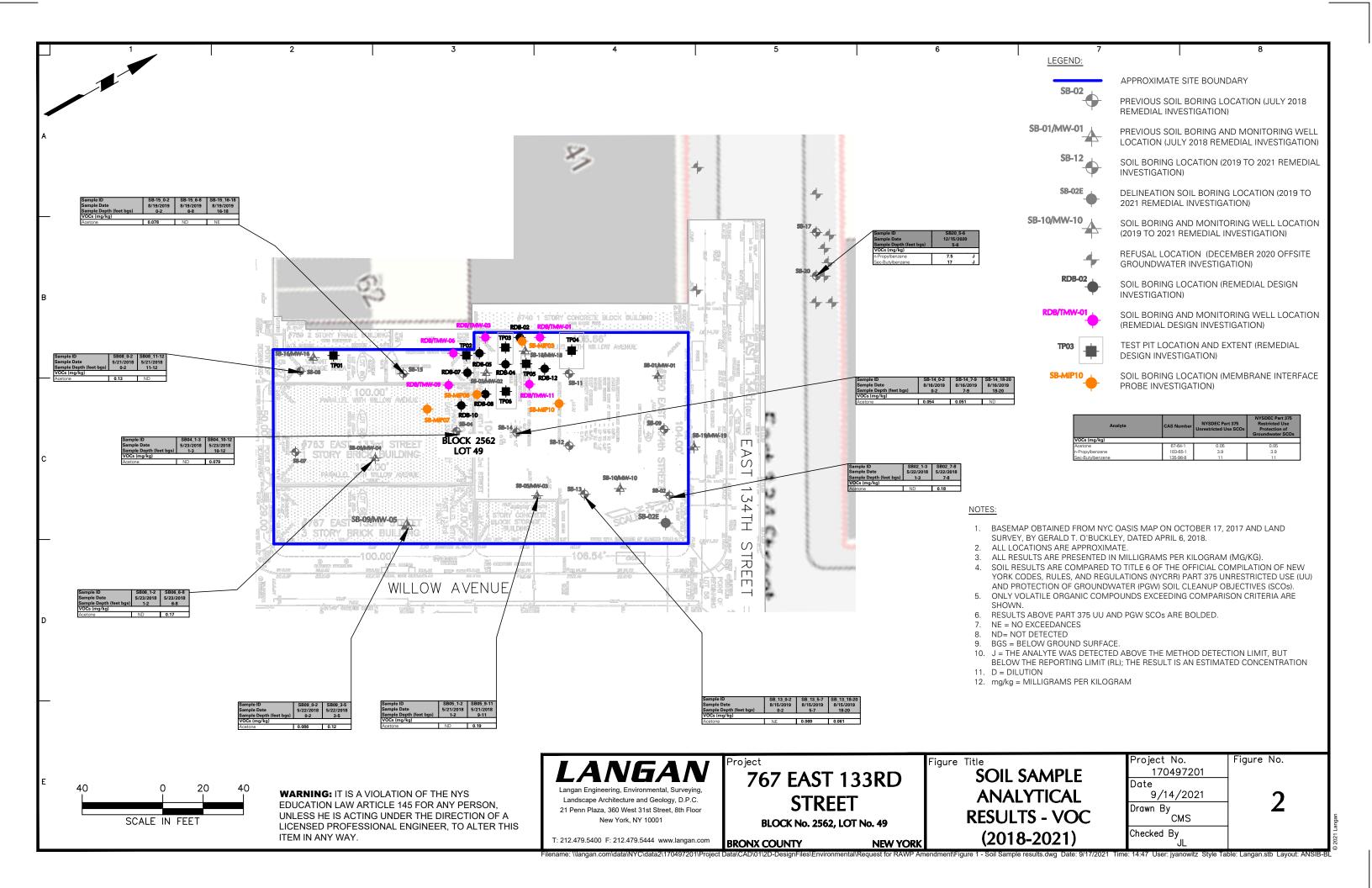
BCP Site No. C203123

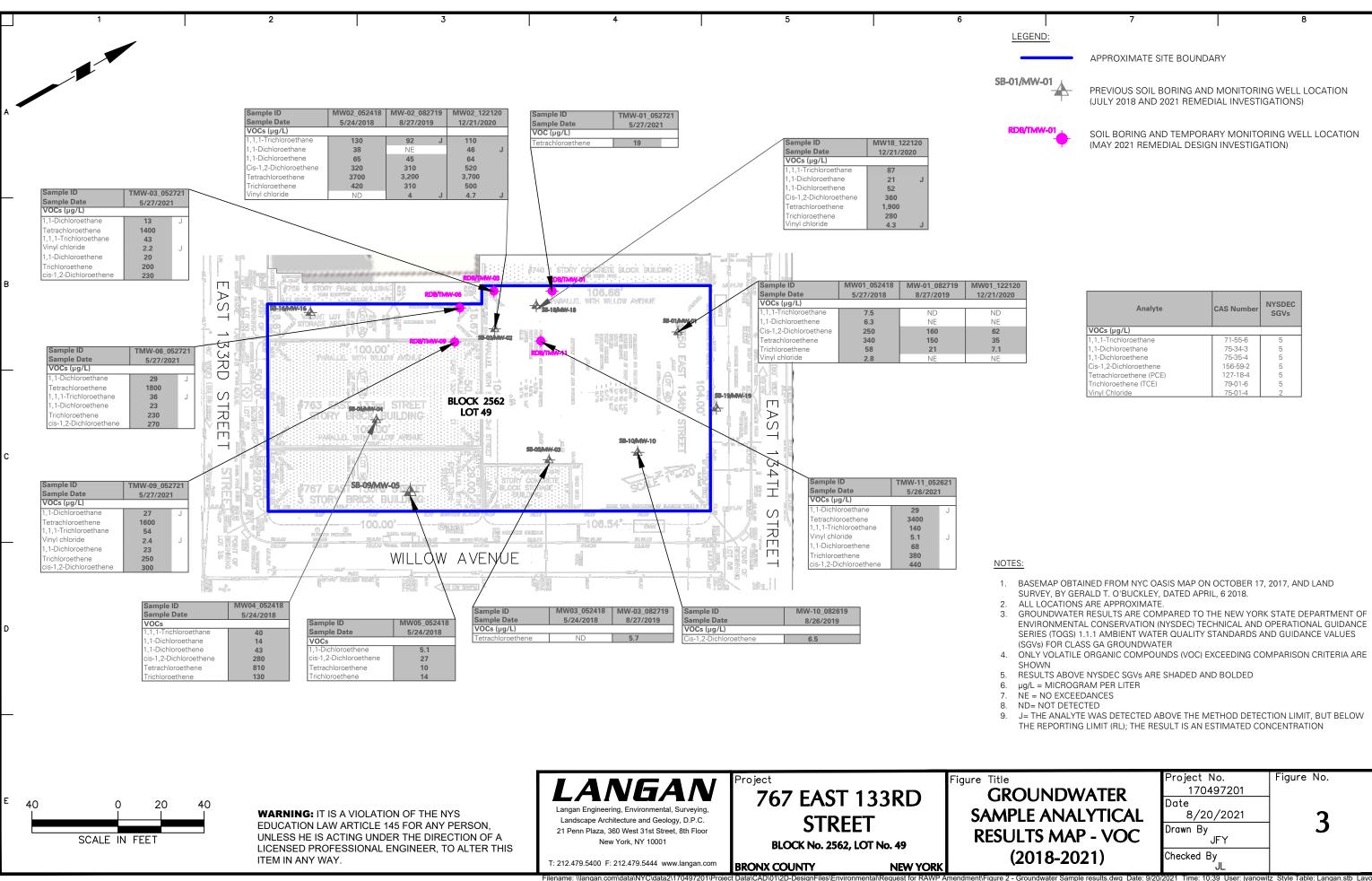
- Utility contractor staging yard about 50 feet north of the site across East 134th Street at 734 East 134th Street (1935 to present)
- Automotive repair garage about 85 feet north of the site at 704 East 135th Street (1935 to 2007)
- Machine shop about 85 feet west of the site at 739 East 133rd Street (1968 to 1969)
- Automotive repair garage about 100 feet west of the site at 728 East 134th Street (1968 to present)
- Machine shop about 105 feet north of the site at 710 East 135th Street (1935 to 1951)
- Machine assembly facility about 130 feet north of the site at 708 East 135th Street (1935 to 1951)

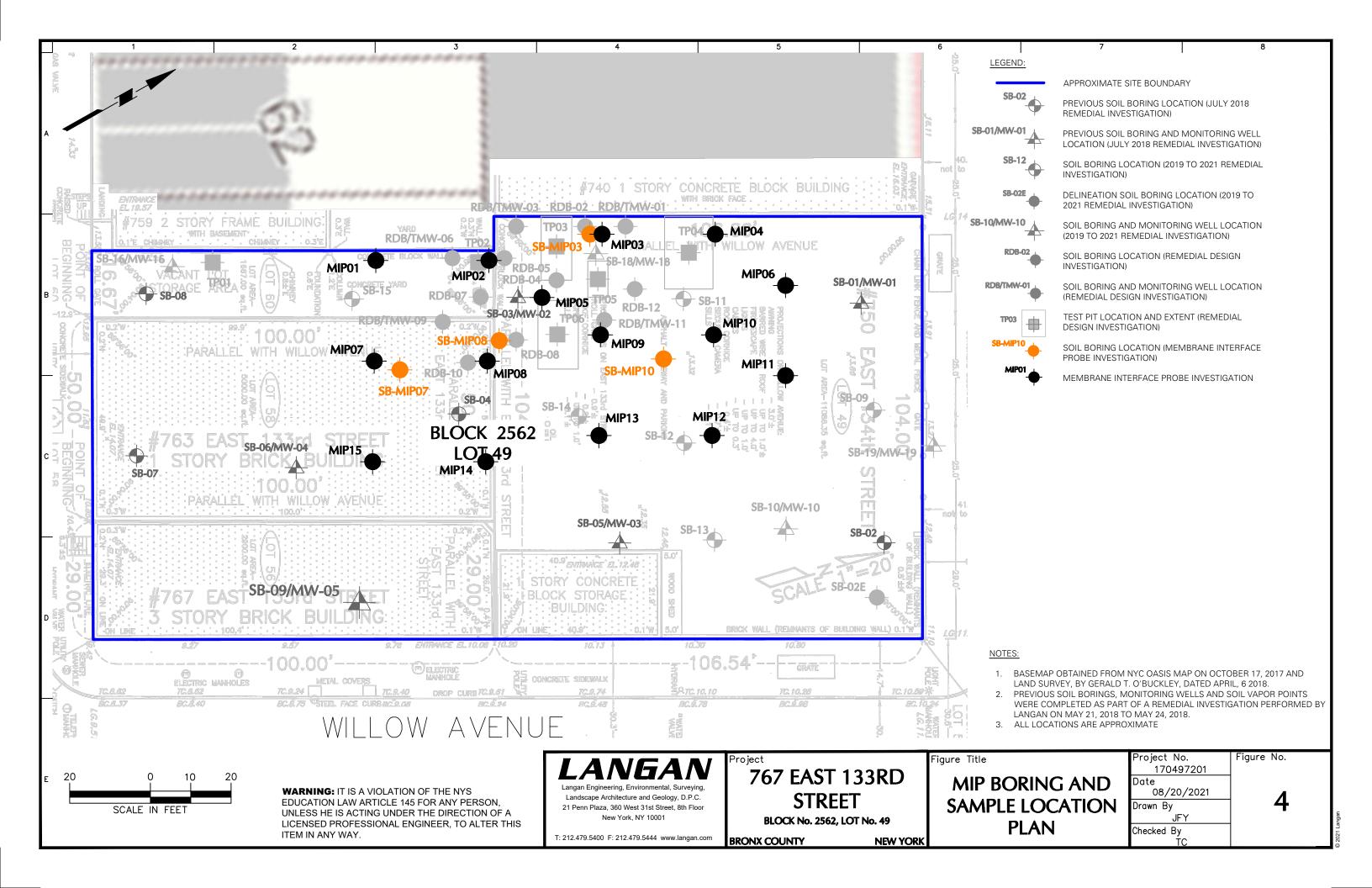
The area with the greatest groundwater impact is located near the western boundary of the site nearest the safe manufacturing company at 740 East 134th Street. However, other facilities, such as the commercial dry cleaner, the utility contractor staging yard, automotive repair garages, and machine shops/assembly facilities, are also located up-gradient of the safe manufacturing company and may be contributing sources

Based on the absence of a documented on-site CVOC during extensive investigations and the presence of multiple potential off-site CVOC sources located hydraulically up-gradient of the site, this RAWP amendment removes groundwater remediation as an element of the approved remedy for the site.


Even without site groundwater remediation, the remedy will be protective of human health and the environment through use of Institutional and Engineering Controls (IC/EC) and will minimize, to the extent feasible, migration of CVOCs in groundwater. The remedy includes measures that (1) prevent further migration of CVOC-impacted groundwater onto the site from properties to the north and west, (2) prevent potential migration of residual impacted groundwater from the site to the western adjoining residential properties, (3) prevent soil vapor intrusion within the new building, and (4) inhibit potential migration of residual impacted soil vapor from the site to the western adjoining residential properties. Although groundwater remediation is no longer a component of the remedy, the following IC/ECs presented in the RAWP will be implemented:


- 1. Installation of a hydraulic cutoff wall along the northern and western site boundaries to prevent CVOC-impacted groundwater flow across the site boundaries.
- 2. Installation of a soil vapor mitigation system that includes (i) an SMD system with a soil vapor barrier below the foundation slab and constructed with a 20-inch-thick vertical gas permeable aggregate layer to mitigate soil vapor intrusion into the proposed building, and


- (ii) an approximately 24-inch-wide horizontal gas permeable aggregate layer extending to about two feet above groundwater near the western site boundary to minimize soil vapor migration from the site toward the western adjoining residential properties.
- 3. Capping of the site with a 10-inch-thick concrete foundation slab, which directly overlies 36-inch-thick grade beams throughout the site to prevent direct contact with soil and CVOC-impacted groundwater.
- 4. Establishment of Institutional Controls (IC) that will prohibit potable use of groundwater at the site.


The design plans for the hydraulic cutoff wall and SMD system have been provided in a separate Remedial Design Memorandum

FIGURES

TABLES

Table 1 Soil Sample Analytical Results (May-August 2021)

767 East 133rd Street Bronx, New York NYSDEC BCP Site No.: C203123 Langan Project No.: 170497201

Sample ID Laboratory ID Sample Date Sample Depth (feet bgs) Volatile Organic Compounds	NYSDEC Part 375 Unrestricted Use and Protecion of Groundwater SCOs	RDB-01_7-8 L2128064-01 5/26/2021 7 to 8	RDB-02_8-9 L2128455-01 5/27/2021 8 to 9	RDB-03_9-10 L2128064-02 5/26/2021 9 to 10	RDB-04_8-9 L2128064-10 5/26/2021 8 to 9	RDB-05_10-11 L2128064-03 5/26/2021 10 to 11	RDB-06_8-9 L2128064-04 5/26/2021 8 to 9	RDB-07_9-10 L2128064-05 5/26/2021 9 to 10	RDB-08_9-10 L2128064-06 5/26/2021 9 to 10	RDB-09_9-10 L2128064-07 5/26/2021 9 to 10	RDB-10_8-9 L2128064-08 5/26/2021 8 to 9	RDB-11_9-10 L2128064-09 5/26/2021 9 to 10
1,1,1-Trichloroethane	0.68	0.0005 U	0.00057 U	0.00048 U	0.0005 U	0.00072	0.00054	0.001	0.00053 U	0.00099	0.00048 U	0.00053 U
1,1-Dichloroethane	0.27	0.00099 U	0.0011 U	0.00096 U	0.001 U	0.00098 U	0.00092 U	0.0015	0.001 U	0.0011 U	0.00097 U	0.0011 U
1,1-Dichloroethene	0.33	0.00099 U	0.0011 U	0.00096 U	0.001 U	0.00098 U	0.00092 U	0.00094 U	0.001 U	0.0011 U	0.00097 U	0.0011 U
cis-1,2-Dichloroethene	0.25	0.00099 U	0.0011 U	0.00096 U	0.001 U	0.0056	0.0045	0.038	0.001 U	0.0061	0.0014	0.0011 U
Tetrachloroethene	1.3	0.019	0.002	0.0042	0.0005 U	0.092	0.042	0.16	0.00053 U	0.0015	0.02	0.00053 U
Trichloroethene	0.47	0.0005 U	0.00057 U	0.00048 U	0.0005 U	0.0053	0.0034	0.0089	0.00053 U	0.00053 U	0.0021	0.00053 U
Vinyl chloride	0.02	0.00099 U	0.0011 U	0.00096 U	0.001 U	0.00098 U	0.00092 U	0.00094 U	0.001 U	0.0011 U	0.00097 U	0.0011 U

Sample ID Laboratory ID Sample Date Sample Depth (feet bgs) Volatile Organic Compounds	NYSDEC Part 375 Unrestricted Use and Protecion of Groundwater SCOs	RDB-12_9-10 L2128455-02 5/27/2021 9 to 10	DUP01_052721 L2128455-03 5/27/2021 9 to 10	TP03_051021_10 L2124281-01 5/10/2021 9 to 10	TP05_051021_10 L2124281-02 5/10/2021 9 to 10	TP06_051021_12 L2124281-03 5/10/2021 11 to 12	SB-MIP03_5-7 L2140976-01 7/29/2021 5 to 7	SB-MIP07_18-19 L2141567-04 8/3/2021 18 to 19	SB-MIP07_6-7 L2141567-03 8/3/2021 6 to 7	SB-MIP08_19-20 L2140976-02 7/29/2021 19 to 20	SB-MIP10_23-24 L2141567-02 8/3/2021 23 to 24	SB-MIP10_9-10 L2141567-01 8/3/2021 9 to 10
1,1,1-Trichloroethane	0.68	0.00048 U	0.00049 U	0.0027	0.00051 U	0.00049 U	0.00038 U	0.0086	0.00096 U	0.015	0.011	0.00066 U
1,1-Dichloroethane	0.27	0.00096 U	0.00099 U	0.0015	0.001 U	0.00098 U	0.00077 U	0.0027	0.0019 U	0.0033	0.0014	0.0013 U
1,1-Dichloroethene	0.33	0.00096 U	0.00099 U	0.0015	0.001 U	0.00098 U	0.00077 U	0.0036	0.0019 U	0.0069	0.003	0.0013 U
cis-1,2-Dichloroethene	0.25	0.0011	0.0009 J	0.023	0.001 U	0.00098 U	0.00077 U	0.089	0.00038 J	0.054	0.042	0.0013 U
Tetrachloroethene	1.3	0.00046 J	0.00019 J	0.13	0.00051 U	0.00049 U	0.0016	1	0.00096 U	0.3	0.16	0.00066 U
Trichloroethene	0.47	0.00048 U	0.00049 U	0.015	0.00051 U	0.00049 U	0.00038 U	0.099	0.00096 U	0.041	0.022	0.00066 U
Vinyl chloride	0.02	0.00096 U	0.00099 U	0.00098 U	0.001 U	0.00098 U	0.00077 U	0.00039 J	0.0026	0.0012	0.00083 U	0.0013 U

Notes

- 1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Protection of Groundwater Soil Cleanup Objectives (SCO).
- 2. Soil sample were only analayzed for the seven chlorinated volatile organic compounds listed above.
- 3. No analytes results were deteced above the Part 375 Unrestricted Use and Protection of Groundwater SCOs.
- 4. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.
- 5. Sample DUP01_052721 is a duplicate sample of RDB-12_9-10.
- 6. bgs = below grade surface
- 7. mg/kg = milligrams per kilogram

Qualifiers:

- J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 2 Groundwater Sample Analytical Results (May 2021)

767 East 133rd Street Bronx, New York NYSDEC BCP Site No.: C203123 Langan Project No.: 170497201

Sample ID Laboratory ID Sample Date	NYSDEC SGVs	TMW-01_05 L2128455 5/27/202	-06	TMW-03_05 L2128455- 5/27/202	07	TMW-06_05 L2128455 5/27/202	-05	TMW-11_05 L2128064- 5/26/202	11	TMW-09_05 L2128455- 5/27/202	04
Volatile Organic Compounds (µ	ıg/L)										
1,1-Dichloroethane	5	2.5	U	13	J	29	J	29	J	27	J
Tetrachloroethene	5	19		1400		1800		3400		1600	
1,1,1-Trichloroethane	5	2.5	U	43		36	J	140		54	
Vinyl chloride	2	1	U	2.2	J	1.5	J	5.1	J	2.4	J
1,1-Dichloroethene	5	0.5	U	20		23		68		23	
Trichloroethene	5	2.4		200		230		380		250	
cis-1,2-Dichloroethene	5	4.4		230		270		440		300	

Notes:

- 1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (NYSDEC SGVs).
- 2. Groundwater sample were only analayzed for the seven chlorinated volatile organic compounds listed above.
- 3. Analytes detected with concentrations above NYSDEC SGVs are bolded.
- 4. μg/L = micrograms per liter

Qualifiers:

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

APPENDIX A

Soil Boring Logs and Test Pit Logs

		4	/VG/	1/V		Log		Boring			RDE	3-01			Sheet 1	of	1
	Project		111 Willow Avenue				Pro	oject No.			1704	497201					
	Location						Ele	evation ar	nd Da	atum	1	101201					
	Drilling (Compa	111 Willow Ave				Da	ite Starte	d		N/A			Date I	Finished		
	D.1111	-	Lakewood Environmer	ntal Services, Corp.					<u> </u>		5	/26/21		<u> </u>	D. II	6/2/21	
	Drilling E	quipn	Geoprobe 6610 DT				Co	mpletion	Dep	th		12 ft		Rock	Depth	N/A	
	Size and	Туре					Nu	mber of	Samp	oles	Dist	urbed	3	Un	idisturbed N/A	Core	N/A
	Casing [Diame	ter (in)		Car	sing Depth (ft)	w	ater Leve	l (ft.)		First	i			mpletion	24 HR.	
AN	Casing H	lamm	N/A ^e Γι/Δ	Weight (lbs)	I/A	N/A Drop (in) N/A		illing Fore	` '				8	ΙŽ	_ N/A	$ar{ar{ar{\Lambda}}}$	N/A
Z	Sampler		4-foot acetate liner	14/			Fie	eld Engine	eer	Α	Adam	Hutchir	nson				
- Log	Sampler	Hamr		Weight (lbs)	I/A	Drop (in) N/A		ad Engin	501	Т	yler Z	Zorn					
report	RIAL	Elev.						Depth	Į.			mple Da	ata PIC	`		arks	
:	MATERIAL SYMBOL	(ft)		Sample Description	on			Scale	Number	Type	Recov (in)	Penetr. resist BL/6in	Read (ppn	ing	(Drilling Fluid, E Fluid Loss, Drilling	epth of Cas Resistance	sing, e, etc.)
1			R1A: Brown to dark fine gravel, brick, co	gray medium SAND,	, some	fine sand, trace	;	0 -					0.0				
7.7			fille graver, brick, co	ncrete (moist)[FILL]									0.0)			
4/202								- 1 - 	R-1A				0.0				
ó ::	>>>>		R1B: Reddish browr (moist)[FILL]	n fine SAND, trace m	nedium	sand, brick		- 2 -		ocore	24		0.0				
20.0			(Macrocore	2		0.0)			
7								3 -									
פאלו	>>>>								R-1B								
								4 -					0.0)			
			R2: Brown fine SAN (moist)[SP-SM]	ID, some silt, trace m	nedium	n sand							0.0				
10497								- 5 -					0.0				
200										o o			0.0)			
								6 -	R-2	Macrocore	28		0.0)			
AL										Ma							
								7 -							Collect RDB-0	1 7-8	
ב ב ב																_	
			R3: Brown to gray S	SILT, trace clay, trace	fine s	and	$\overline{\Delta}$	8 -					0.0)			
			(wet)[SP-SM]	•									0.0)			
2								- 9 -					0.0)			
DAIA								- - -	_	core			0.0)			
3 2								- 10 -	R-3	Macrocore	48		0.0)			
בו בו								- 					0.0				
18/50								- 11 - 					0.0				
								- - - 12 -					0.0	J			
Į.								'2							End of boring Installed TMV	/-01 and	
								13	1						screened from (refusal enco	intered at	: 14).
								<u> </u>							After groundw was complete	ater sam d TMW-0	pling 1 was
<u></u>								_ _ 14 _	1						removed and was backfilled	the soil bo with clea	oring In
NGA!									-						cutting and pa asphalt.	tched wit	h

Log of Boring **RDB-02** Sheet 1 of 1 Project Project No. 111 Willow Avenue 170497201 Elevation and Datum Location 111 Willow Ave N/A Drilling Company Date Started Date Finished 5/27/21 6/2/21 Lakewood Environmental Services, Corp. Drilling Equipment Completion Depth Rock Depth Geoprobe 6610 DT 12 ft N/A Size and Type of Bit Disturbed Undisturbed Core Number of Samples 2-inch Direct Push 3 N/A N/A Casing Diameter (in) Casing Depth (ft) Completion 24 HR. First Water Level (ft.) N/A N/A N/A N/A Drop (in) N/A Casing Hammer N/A Drilling Foreman Weight (lbs) N/A Adam Hutchinson Sampler 4-foot acetate liner Field Engineer Drop (in) N/A Weight (lbs) Sampler Hammer N/A N/A Tyler Zorn Sample Data MATERIAL SYMBOL Remarks Elev Depth Number Recov. (in)
Penetr. resist Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale (ppm) R1: Light gray to dark gray medium SAND, some fine sand, some fine gravel, concrete (moist)[FILL] 0.0 0.0 0.0 Macrocore 주 9 2 3 "ILANGAN.COMIDATAINYCIDATA2/170497201/PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170497201_ENTERPRISE 0.0 R2A: Light gray to brown fine SAND, trace silt, trace sand (moist)[SP-SM] 0.0 5 0.0 0.0 R2B: Brown fine SAND, some silt (moist)[SP-SM] 32 6 0.0 0.0 7 8 0.0 Collect RDB-02 8-9 R3: Tan to brown SILT, trace clay, trace fine sand (wet)[SP-SM] 0.0 9 0.0 0.0 R-3 32 10 0.0 0.0 11 End of boring at 12 feet bgs. Soil boring was backfilled with clean cutting and patched with asphalt. 13

6/2/21 N/A Core N/A 24 HR. N/A N/A Remarks iid, Depth of Casing, rilling Resistance, etc.)
N/A Core N/A 24 HR. N/A
Core N/A 24 HR. N/A Y N/A
Core N/A 24 HR. N/A Y N/A
24 HR. N/A N/A
N/A N/A
rilling Resistance, etc.)
DB-03_9-10
ring at 12 feet bgs.
MW-03 and
MW-03 and from 8 to 15 feet bg ncountered at 15).
MW-03 and from 8 to 15 feet bg accountered at 15). andwater sampling
MW-03 and from 8 to 15 feet bg ncountered at 15). ndwater sampling leted TMW-03 was and the soil boring
MW-03 and from 8 to 15 feet by accountered at 15). Indivater sampling leted TMW-03 was
С

			VUI	1/V		Log	of E	3oring			RDI	B-04			Sheet 1	of	1
	Project						Pr	oject No).			=					
	Location		111 Willow Avenue				Ele	evation	and D	atun		497201					
			111 Willow Ave								N/A						
	Drilling (Compa	-	mtal Camilaaa Ca			Da	ite Starl	ed		,	100104	D	ate F	inished	0/0/04	
	Drilling E	quipn	Lakewood Environmen nent	ntai Services, Co	лр.		Co	mpletic	n Dep	oth	- 5	5/26/21	R	lock I	Depth	6/2/21	
			Geoprobe 6610 DT									12 ft				N/A	
	Size and	I ype	2-inch Direct Push				Νι	ımber o	f Sam	ples	Dist	urbed	3	Und	disturbed N/A	Core	N/A
	Casing E	Diame	ter (in) N/A		С	asing Depth (ft) N/A	w	ater Lev	el (ft.)	Firs	t,	9.5	Coi	mpletion	24 HR.	N/A
7	Casing F	lamm	er _{i/A}	Weight (lbs)	N/A	Drop (in) N/A	Dr	illing Fo	rema	n	<u> </u>	_	9.5	<u> </u>		<u> </u>	IN/A
Z	Sampler		4-foot acetate liner		11//			eld Engi	noor	ŀ	Adam	Hutchi	nson				
- go-	Sampler	Hamr		Weight (lbs)	N/A	Drop (in) N/A	["	eiu Erigi	neer	7	Γyler i	7orn					
Sport:	JAL)'		14/7		14/7	14/71					Sa	mple Da			Por	narks	
:	MATERIAL SYMBOL	Elev. (ft)		Sample Descr	ription			Depth Scale	Number	ype	i)	Penetr. resist BL/6in	PID Readin	ng	(Drilling Fluid, E Fluid Loss, Drilling	epth of Ca	sing,
0 1	×××××		R1: Brown medium	SAND some fin	e cand to	race fine gravel		- o	Ž	+	~ ~	9 5 B	(ppm))	Fiuld Loss, Drilling		e, etc.)
.44.			brick, concrete (moi	ist)[FILL]	e sanu, u	ace ilile graver,		Ē	=				0.0				
17								- - 1	_				0.0				
14/20	\ggg							-	1				0.0				
٥ 								- - 2	- - - - -	Macrocore	24		0.0				
									1 2	Macı	(4		0.0				
בו ה								- 3]								
פואר	XXX							- 3	-								
ב								Ε,	1								
			R2: Brown fine SAN (moist)[SP-SM]	ND, trace silt, trace	ce mediur	m sand		- 4	-				0.0				
+3121			(1110151)[3F-3111]					-	-				0.0				
0/1/6								- 5 -	7				0.0				
LOG								E]	ore			0.0				
פוצ								- 6		Macrocore	40		0.0				
N AL								Ē	3	2			0.0				
								7	_				0.0				
סאוי								<u>-</u>	‡								
			R3: Brown to gray S	SILT. some fine s	sand. trac	e clav		- 8	}				0.0		Collect RDB-0)4 8-9	
			(wet)[SP-SM]	,	,	•		-	=				0.0				
2								9	_				0.0				
ξ'							$\bar{\Delta}$	E]	ø			0.0				
כו								10	R-3	Macrocore	26		0.0				
ACO E								Ē	3	Мас							
2								- - 11	_								
74972								-	7								
771								12	1						Food of head	-1.40 €	4 h
Ì								- ' -	‡						End of boring Soil boring wa	as backfill	ed with
ואל								- - 13	1						clean cutting asphalt.	and patch	ned with
4								- 13	=								
Š								_ 44									
JAN.								- 14 -	Ē								
ź								⊦	4						1		

		4	/VG/	1/V		Log		Boring		l	RDE	3-05			Sheet 1	of	1
	Project		111 Willow Avenue				Pro	oject No.			170	497201	ı				
	Location						Ele	evation a	nd Da	atum	l	+31201					
	Drilling (Compa	111 Willow Ave				Da	ite Starte	d		N/A			Date F	Finished		
	D.111.		Lakewood Environmer	ntal Services, Cor	rp.			1.0			5	/26/21		.	D . #	6/2/21	
	Drilling E	-quipn	Geoprobe 6610 DT					mpletion	і Бер	tn		12 ft		ROCK I	Depth	N/A	
	Size and	Туре					Nu	mber of	Sam	ples	Dist	urbed	3	Un	disturbed N/A	Core	N/A
	Casing [Diame	ter (in)		C	asing Depth (ft)	w	ater Leve	el (ft.)		First	t		Col	mpletion	24 HR.	
PAIN	Casing I	lamm	N/A ^e N/A	Weight (lbs)	N/A	N/A Drop (in) N/A	Dr	illing For	emar	1	1 -		11		N/A	<u> </u>	N/A
- LAN	Sampler		4-foot acetate liner				Fie	eld Engin	eer	Α	dam	Hutchi	nson				
r. Log	Sampler	Hamr	ner N/A	Weight (lbs)	N/A	Drop (in) N/A				T	yler Z	Zorn					
Repor	MATERIAL SYMBOL	Elev.		Cample Deser	intion			Depth	Je	0		mple Da	PIF)	Rem	arks	
N	MATE	(ft)		Sample Descri	iption			Scale	Number	Туре	Reco (in)	Penetr. resist BL/6in	Read (ppr	ling n)	(Drilling Fluid, D Fluid Loss, Drilling	epth of Cas Resistance	sing, e, etc.)
44:17			R1: Gray medium S concrete (dry)[FILL]	AND, some fine s	sand, sor	me fine gravel,		- 0 -					0.0				
7 17								- - 1 -					0.0				
14/20								- '					0.0	,			
o								_ _ 2 -	R-1	Macrocore	12						
DB.GF									"	Мас							
א_ שכ								- - 3 -									
אאאו								_									
	$\overset{\sim\sim}{\sim}$		R2: Brown to gray fi	ne SAND, trace s	silt, trace	medium sand		4 -					0.0)			
3/201			(moist)[SP-SM]					_					0.0)			
11/04								- 5 -					0.0)			
LOGS								_	2	core							
רופוא								- 6 -	R-2	Macrocore	16						
ENIA																	
Y CININ								- 7 - -									
ENVI								- - 8 -					0.0	1			
LINE			R3A: Brown to gray (moist)[SP-SM]	fine SAND, trace	e silt, trac	e medium sand							0.0				
ואפום			R3B: Brown SILT, tr	race clay, trace fir	ne sand ((wet)[SP-SM]		_ - 9 -	N-3F				0.0		Collect RDB-0)5 10-11	
AA								_		<u>e</u>			0.0)	Concertable	.0_10 11	
ביו בי								10 -		Macrocore	20						
וטאר								-		M							
1 20 1							∇	11 -	R-3E	3							
11048								-									
AIAZ								- 12 -							End of boring Soil boring wa	at 12 feet	t bgs.
N CL								- , -							clean cutting a asphalt.	and patch	ed with
AHA								- 13 - - -							aspiidit.		
3								- - - 14 -									
GAIN.								- ' -									
7		1						Г	1	1					Ì		

LA	VL	4/V		Log	of E	Boring		l	RDE	3-06		SI	heet	1	of	1
Project					Pr	oject No	-									
Location	111 Willow Avenue				Ele	evation a	and Da	atum		497201						
Drilling Compa	111 Willow Ave				Da	te Starte	ed		N/A		Da	ate Fini	shed			
	Lakewood Environme	ntal Services, Co	orp.						5	/26/21					6/2/21	
Drilling Equipr	Geoprobe 6610 DT				Co	mpletio	n Dep	th		12 ft		ock Dep	oth		N/A	
Size and Type	2-inch Direct Push				Nι	mber of	Sam	ples		urbed	3	Undist	N	/A	Core	N/A
Casing Diame	N/A		C	asing Depth (ft) N/A		ater Lev			First		10	Comp		/A	24 HR. <u>T</u>	N/A
Casing Hamm	^{er} N/A	Weight (lbs)	N/A	Drop (in) N/A	Jur	Illing Fo	remar		dom	Llutabii	noon					
Sampler	4-foot acetate liner				Fie	eld Engir	neer	A	uam	Hutchii	risori					
Sampler Ham	mer N/A	Weight (lbs)	N/A	Drop (in) N/A			_	Т	yler Z		-1-					
Sampler Hami		Sample Desci	ription			Depth Scale	Number	Type		Penetr. resist ald BL/6in	PID Reading (ppm)) F		Rema	arks epth of Cas Resistanc	sing, e, etc.)
	R1: Brown to gray n	nedium SAND, s	ome fine	sand, trace silt,		— 0 - -				_	0.0					
	trace fine gravel, bri	ick, concrete (mo	oist)[FILL]				3				0.0					
						- 1 -	_				0.0					
							3	ore								
						_ 2 -	- 2	Macrocore	14							
						-	1	Σ								
						_ 3 -	}									
						_	=									
	R2: Brown fine SAN	VID trace silt (mo	ict\[QD_Q]	\ <u>/</u> /1		- - 4 -	1				0.0					
	NZ. BIOWITIIIIE SAIN	VD, trace siit (mo	151/[0F-01	vij]				0.0					
						- - 5 -	_				0.0					
						-	-				0.0					
						- 6 -	R-2	Macrocore	24		0.0					
						-	7 2	Macr	2		0.0					
							1									
						⊢ 7 ·	3									
						_	1									
	R3: Brown SILT, tra	ace clay, trace fin	e sand (w	vet)[SP-SM]		- 8 - -	+				0.0	(Collect F	RDB-0	6_8-9	
							3				0.0					
						<u> </u>	_				0.0					
						-	1	ore			0.0					
					∇	10	R-3	Macrocore	34		0.0					
						_	_	Ma			0.0					
						- - 11 -	_									
]									
						_ 12 -	1						End of b	orina :	at 10 foo	t has
						- · -	†						Installed	TMW		•
						- - 13 -	=								8-18 fee ater sam	
<u> </u>						- 13	4					١ ١	was com	pletec	TMW-0	6 was
						-	‡					١ ١	was bac	kfilled	with clea	an -
						— 14 ·	<u> </u>						cutting a asphalt.	nd pat	ched wit	in
<u> </u>						<u> </u>	4						•			
-	I.					└ 15 -										

ABICABI

	\/V <i>L</i> J/	1/V	Log	of E	Boring			RDI	3-07			Sheet 1	of	1
Project	444 \\(\text{\tin}\text{\tin\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}\\ \text{\tert{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tert{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\tint{\text{\texi}}\tint{\text{\tin}}}\text{\text{\text{\ti			Pro	oject N	D .		470	407004					
Location	111 Willow Avenue			Ele	evation	and D	atum		497201					
Drilling Com	111 Willow Ave				4- 04			N/A			D-4- F	=:=:====		
Drilling Com	pany Lakewood Environme	ntal Services Corp		Da	ite Star	ea		5	5/26/21		Date F	Finished	6/2/21	
Drilling Equi	oment	rital colvides, colp.		Co	mpletio	n Dep	oth		720721	ı	Rock I	Depth	O/Z/Z I	
Size and Typ	Geoprobe 6610 DT			+				Dist	12 ft urbed		Un	disturbed	N/A Core	
	2-inch Direct Push		Cooing Donth (ft)	Nu	ımber c	f Sam	ples			3		N/A mpletion	24 HR.	N/A
Casing Dian	N/A		Casing Depth (ft) N/A		ater Le	` ′		Firs	· -	10	Z	- '	<u>T</u>	N/A
Casing Ham Sampler	merN/A	Weight (lbs) N/A	Drop (in) N/A	Dri	illing Fo	remai		dom	Hutchi	ncon				
	4-foot acetate liner	Woight (lbs)	Drop (in)	Fie	eld Eng	neer		luaiii	Tiutorii	115011				
Sampler Hail WATERIAL SYMBOL.	nmer N/A	Weight (lbs) N/A	Drop (in) N/A		ı		T	yler 2	Zorn mple Da	nto		1		
M Repo MATERIAL SYMBOL BI		Sample Description			Deptl	ı ja	g			PID		Rem		oina
: MATE (ft					Scale	Number	Туре	Rec Fi	Penetr. resist BL/6in	Read (ppn	n) ¯	(Drilling Fluid, E Fluid Loss, Drilling	Resistanc	e, etc.)
\$ XXX	R1: Light gray to bro	ownish gray medium SA vel, concrete, brick (moi	ND, some fine		0					0.0				
	gra		.5.7[]		- 1	7				0.0				
61/4/2021 12:44					- ']				0.0)			
					- - 2	<u>-</u>	Macrocore	16						
					F ²	- - - - -	Macre	~						
ENTERPRISE ROB GPJ					- ,	1								
					- 3 -	3								
					-	=								
IIX X X X X I	R2A: Light gray to be	prownish gray medium S vel, concrete, brick (moi	SAND, some fine		- 4	=				0.0				
	R2B: Brown fine SA	AND, some silt, trace me			- 	_R-2/	4			0.0				
8/1/20	(moist)[SP-SM]				- 5 -	3				0.0)			
					-	=	core			0.0)			
					- 6 -	3	Macrocore	30		0.0)			
						1				0.0)			
					- 7 -	R-2E	3							
					-	=								
		AND, some silt, trace me	edium sand		- 8 -	1				0.0)			
	(moist)[SP-SM]					=				0.0				
					- 9 -	R-3/	Α			0.0		Collect RDB-0	7_9-10	
	R3B: Brown SILT, s	some clay, trace fine sar	nd (wet)[SP-SM]	∇	- - , _	#	core	~		0.0				
				<u>-v</u>	10	=	Macrocore	48		0.0)			
					<u> </u>	=				0.0				
9720					- 11 -	-R-3E	3			0.0				
Ž/1,20					<u>-</u>	=				0.0)			
					12	1	1					End of boring Soil boring wa		
MLANGAN.COMIDATANYCIDATA217704972019-ROJECT DATA; DISCIPLINI-ENVIRONMENTALIGINTLOGS31770497201					- - ,_	=						clean cutting		
ATA					- 13 -	1						asphalt.		
OMIC					<u>-</u>	=								
SAN.C					<u> </u>	1								
Į P					- -	=								
	1													

				1/V		Log		Boring			RDE	3-08			Sheet 1	of	1
	Project		111 Millow Avenue				Pro	oject No.			170	497201					
	Location	1	111 Willow Avenue				Ele	evation a	nd D	atum		497201					
	Drilling	Compa	111 Willow Ave				Da	te Starte	rd -		N/A		11	Date F	Finished		
		·	Lakewood Environmer	ntal Services, Cor	p.		Date Started										
	Drilling	Equipn	nent	Co	mpletior	n Dep	th				Rock I	Depth					
	Size and	І Туре	Geoprobe 6610 DT of Bit	N.		C		Dist	12 ft urbed		Un	disturbed	N/A Core				
	Casing l	Diame	2-inch Direct Push		Cź	asing Depth (ft)	1	mber of			First	t	3	Co	N/A mpletion	24 HR.	N/A
z			N/A	Weight (lbs)		NI/A	1	ater Leve	` '		Δ	-	10	Ţ		<u>Ā</u>	N/A
HNGA	Casing Sample			Weight (ibs)	N/A	Drop (in) N/A		illing i oi	Ciliai		dam	Hutchi	nson				
og - L/	Sample		4-foot acetate liner	Weight (lbs)		Drop (in)	Fie	eld Engin	eer								
OLI: EC		T IGITII	N/A	111911(111)	N/A	N/A			Τ	<u>T</u>	yler Z Sa	Zorn mple Da	ata				
Rep	MATERIAL SYMBOL	Elev. (ft)		Sample Descri	iption			Depth Scale	Number	Туре		Penetr. resist BL/6in	PID Read) ina	Ren (Drilling Fluid, I Fluid Loss, Drillin	narks Depth of Ca	sing,
S PIN	×××××	(,	D4A O	OANID fine				— 0 <i>–</i>	N	F	å :	Per B. re.	(ppn	n)	Fluid Loss, Drillin	g Resistanc	e, etc.)
.44.2			R1A: Gray medium concrete, brick (moi:	SAND, some fine st)[FILL]	sand, tra	ace fine gravel,			1				0.0				
7 17								[- 1 -	R-1/	A			0.0				
14/21		1	R1B: Brown to gray (moist)[SP-SM]	fine SAND, some	medium	sand, trace silt	_						0.0				
٥ ٥]	(110151)[3F-3111]					[- 2 -]	Macrocore	22		0.0				
ם.פר]						_	-	Mac	•						
ב ה								[- 3 -]								
אלא								_	_R-1E	3							
INE				0.445				[- 4 -	1				0.0)			
			R2: Brown to gray fi (moist)[SP-SM]	ne SAND, trace s	ilt, trace i	medium sand		- ·	_				0.0				
.0497								- - 5 -]				0.0				
20/1]						-	-	0			0.0				
NEC								[- 6 -	R-2	Macrocore	38		0.0				
AL/GI]"	Mac			0.0				
MEN								- - 7 -	1				0.0				
								_	_				0.0				
/EINV]	DOA Doors to see	OILT to a colour				- - 8 -	1				0.0)			
LINE.			R3A: Brown to gray (wet)[SP-SM]	SILI, (race clay,	u ace fine	; sanu		<u>-</u> -	1				0.0				
בוארו		1						- - 9 -	1				0.0		Collect RDB-)8 9 <u>-</u> 10	
HA!		1						_]	ø			0.0		33,100,1100-1	0 10	
ב ב]					∇	- - 10 -	- - -R-3/	crocor	46		0.0)			
שכטא									R-3/	Ma			0.0)			
Z0 P]	L					- 11 -	_				0.0)			
0497			R3B: Bluish gray CL	AY, some silt (we	et)[ML]		_	_ _ _					0.0)			
NZ/		-						- - 12 -	-R-3E	3					End of boring	at 12 fee	t bas.
5								Ë	-						Soil boring wa	as backfill	ed with
AIN								- - 13 -	1						asphalt.	and pator	.54 11111
MICA								<u>-</u>	-								
3								- - 14 -	1								
YNGA A								<u> </u>	1								

ARICARI

L		1	/V <i>L</i> J/	1/V		Log	_	Boring	_		R	DB	-09			Sheet 1	of	1
Projec	ct		444 \000				Pro	oject N	0.		,	70.1	07001					
Locati	ion		111 Willow Avenue				Ele	evation	and	Datu		704	97201					
			111 Willow Ave				L				Ν	I/A						
Drillin	g Con		y Lakewood Environme	ntal Sandass C	orn		Da	te Star	ted			E I	26/21		Date F	Finished	6/2/21	
Drillin	g Equ	ipme	ent	ritai Seivices, Co	лр.		Co	mpletio	on De	pth		3/2	20/21		Rock	Depth	0/2/21	
Size a	nd Tu	(00.0	Geoprobe 6610 DT									Distu	12 ft		Un	disturbed	N/A Core	
	_		2-inch Direct Push				Νu	mber o	of Sai	nple	es		ibeu	3		N/A		N/A
Casin		- 1	N/A			Casing Depth (ft) N/A	w	ater Le	vel (f	.)		irst		10	Co	mpletion N/A	24 HR.	N/A
Casin	g Han	nme	N/A	Weight (lbs)	N/A	Drop (in) N/A	Dr	lling F	orem	an								
Casin Samp	ler	4	4-foot acetate liner				Fie	eld Eng	ineer		Ada	am ⊦	lutchin	son				
Samp ⊬	ler Ha	ımm	er N/A	Weight (lbs)	N/A	Drop (in) N/A					Tyle	er Zo	orn			1		
6/14/2021 12:44:25 PM Report Log	Ele	ev.		0 1 5				Dept	h	5			nple Da	ta PII	D		narks	
M Repo	(f	t)		Sample Desc	ription			Scale		2	Type	(in)	resist BL/6in	Read (ppr	ding	(Drilling Fluid, Drilling Fluid Loss, Drilling	epth of Car Resistanc	sing, e, etc.)
\$			R1: Brown to gray r		ome fine	e sand, trace fine		- 0	\pm		I	1		0.0	0			
<u>₹</u>	\otimes		gravel, brick, concre	ete (moist)[FILL]]		I			0.0	0			
$\sqrt{8}$	\otimes							- 1 -	7		I			0.0	0			
§ XX	\otimes								3_	_ g	2							
	\boxtimes							- 2	-[2	Macrocore	acion	12						
	\otimes								=	2	≥							
# 								- 3	-		I							
	\otimes								=		I							
	$\widetilde{\mathbb{N}}$	F	R2: Brown to gray f	ine SAND, trace	silt, trac	e medium sand		- 4	+		╂	+		0.0	0			
97201			(moist)[SP-SM]					-	=		I			0.0	0			
1704								5	-]		I			0.0	0			
ogs)								-	=	٥	ש			0.0	0			
								6	-10	7.1.	Maciocole	48		0.0	0			
Jar								-	1	Ž	Ĭ			0.0	0			
								7	-		I			0.0	0			
NE NE								-	-		I			0.0	0			
N W W W			R3A: Brown to bluis	sh grav SILT trad	ce clav t	race fine sand		- 8	+	+	╂	+		0.0	0			
			(wet)[SP-SM]	g, c, au	- 2.mj, t			-	_	,				0.0	0			
	##	-	R3B: Brown to bluis	sh grav SILT sor	ne clav (_	9	_R-	Ж				0.0	0	Collect RDB-(9_9-10	
ATA				g, s.z., soi	, (-/t-·J		-	-	9	D D			0.0	0		_	
							∇	10	_	Macrocore	200	30		0.0	0			
ROJE								Ľ]	M	M			0.0	0			
201/P								- - 11	=									
0497									R-	3B								
4247	Ц	\downarrow						_ 12	#	4						End of boring	at 10 fee	t has
CIDAT									=							Installed TMV	/-09_9-1	0 and
MANGAN COMIDATANYCIDATA2170497201/PROJECT DATA] DISCIPLINE(ENVIRONMENTALIGINTLOGS/170497201 ENTERPRISE RDB.GPJ								_ _ 13	=							screened fron bgs. After gro	undwater	•
NDAT,								<u> </u>	=							sampling was TMW-09 was		
.COM.								_ _ 14	=							soil boring wa	s backfille	ed with
1GAN								ļ ''	+							asphalt.	ини раки	OG WILL
								L 15	1									
								13										

1			VUL	1/V		Log o	of E	Boring	_		RDE	3-10			Sheet 1	of	1
ſ	Project						Pro	oject No.									
ŀ	Location		111 Willow Avenue				Ele	evation a	nd Da	atum		497201					
			111 Willow Ave								N/A						
	Drilling (Compa	any Lakewood Environmei	ntal Sarvicas Carn			Da	te Starte	ed		5	126/21		Date F	Finished	6/2/21	
ł	Drilling E	Equipn	nent	5/26/21 6/2/21 Completion Depth Rock Depth													
ļ	Size and	Type	Geoprobe 6610 DT								Diet	12 ft urbed		Lln	ndisturbed	N/A Core	
1			2-inch Direct Push				Nu	mber of	Sam	ples			3		N/A		N/A
1	Casing [N/A		Ca	asing Depth (ft) N/A		ater Leve			First	t	9	Co	empletion N/A	24 HR.	N/A
פאו	Casing I	lamm	er N/A	Weight (lbs)	N/A	Drop (in) N/A	Dri	Iling For	emar						_		
Ŕ	Sampler		4-foot acetate liner				Fie	eld Engin	eer	A	dam	Hutchii	nson				
r. Log	Sampler	Hamr	mer N/A	Weight (lbs)	N/A	Drop (in) N/A		_		Т	yler Z						
repor	RIAL BOL	Elev.		0 1 5 :				Depth	-i-			mple Da	ata PID)	Rem		
: M	MATERIAL SYMBOL	(ft)		Sample Descrip	otion			Scale	Number	Туре	Reco (in)	Penetr. resist BL/6in	Readi (ppm	ng	(Drilling Fluid, D Fluid Loss, Drilling	epth of Cas Resistanc	sing, e, etc.)
4.20 F			R1: Light gray to bro	own medium SAND), some	fine gravel, trace		— 0 –	+				0.0				
12:42			fine sand, concrete	(moist)[FILL]				_]				0.0				
707/	\ggg							- 1 -	-				0.0				
- 0/ 14	>>>								1	ore							
25								- 2 - -	- ~	Macrocore	16						
202										2							
101	\ggg							- 3 -	1								
ה ה ה								_									
			R2: Brown to dark g	gray fine SAND, tra	ace med	dium sand, trace		- 4 -	1				0.0				
10216			fine gravel, brick, co	ncrete (moist)[FILI	L]			-	1				0.0				
1,04								5 -					0.0				
200	>>>>							-	=	ore							
	\ggg							6 -	R-2	Macrocore	16						
N A L								-	-	M							
	>>>>							7 -	1								
52								<u>-</u>	-								
	XXX		R3A: Brown to dark	gray fine SAND tr	race silt	(wet)[SP-SM]		- 8 -	_				0.0		Collect RDB-1	10 8-9	
			. 10/ 11 2/ 0//// 10 44///	g. a, o, 12,		()[-	-				0.0			_	
2							∇	9 -	_ _R-3/	A			0.0				
Į.			R3B: Brown to bluis	h grav SII T trace	clay tra		_	-	╁	_e_			0.0				
֚֚֚֚֡֝֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֟֟֝ ֓֓			(wet)[ML]	g.u, c, acc	o.u.y, u.o			10 -]	Macrocore	36		0.0				
ROJE BOSE								_	_	Ma			0.0				
Z0 1:F								- - 11 -	1				0.0				
10497								_	R-3E	3							
¥								- - 12 -	_						End of boring	at 12 fee	t bas.
SDA								_							Soil boring wa	s backfill	ed with
AIN								- - 13 -	=						asphalt.	and pater	.SG WILLI
MUN								Ē									
3								- - 14 -	_								
NGA								_	-								

	/V <i>CI/</i> A/V	Log o	f Boring	RD	B-11	She	et 1	of	1
Project		ĺ	Project No.						
Location 1	111 Willow Avenue		Elevation and Da)497201				
	111 Willow Ave			N/A	١				
Drilling Company	у		Date Started		1	Date Finish			
Drilling Equipme	_akewood Environmental Services, Corp.		Completion Dept		5/26/21	Rock Depth		6/2/21	
1	Geoprobe 6610 DT		Completion Dept		12 ft	чоск Бериі		N/A	
Size and Type of	f Bit .		Number of Samp	Dis Dis	turbed	Undistur		Core	
Casing Diameter	2-inch Direct Push r (in) Casing Depth	n (ft)	·	Firs	st 3	Complet	N/A ion	24 HR.	N/A
	N/A Weight (lbs) Drop (in)	IN/A	Water Level (ft.) Drilling Foreman		7 10	<u> </u>	N/A	Ā	N/A
Casing Hammer	Weight (lbs) N/A Drop (in)	N/A	Dilling i oreman		Hutchinson				
Samplei 4	1-foot acetate liner		Field Engineer	7 tuair	T I I I I I I I I I I I I I I I I I I I				
Sampler Hamme	er N/A Weight (lbs) N/A Drop (in)	N/A		Tyler					
Flev.	Carrella Decembrica		Depth σ		ample Data		Rema	arks	
MATERIAL SYMBOL (tt)	Sample Description		Depth Scale	Type Recov	Denetr. Reaking BL/6in Reaking	ng (E I) Fluid	Orilling Fluid, De d Loss, Drilling I	pth of Casir Resistance,	ng, etc.)
Casing Hammer Sampler Sampler Hammer Sampler Hammer Toggwas (ft)	R1: Gray to dark gray medium SAND, some fine sand, to	race	- 0 -		0.0				
	fine gravel, brick, concrete, glass (moist)[FILL]		[]		0.0				
			[1]		0.0				
				ē	0.0				
: XXXXX			2 - 2	Macrocore 20					
				Ma					
			- 3 -						
			4						
	R2A: Brown to gray medium SAND, some fine sand, trac gravel, brick (moist)[FILL]	ce fine	- 4 -		0.0				
	graver, smort (moisty). IEE		R-2A		0.0				
	R2B: Brown fine SAND, trace silt (moist)[SP-SM]				0.0				
			[]	ore	0.0				
			6 -	Macrocore 36	0.0				
			+ +	≥	0.0				
			- 7 - R 2D		0.0				
			R-2B						
	P2A: Dark brown to grow fine SAND, some silt, trace also	.,	8 -		0.0				
	R3A: Dark brown to gray fine SAND, some silt, trace cla (moist)[SP-SM]	у	[]		0.0				
			9 -		0.0		lloct DDD 4	1 0 10	
			 R-3A		0.0		ollect RDB-11	1_9-10	
			10	Macrocore 44					
	R3B: Bluish gray to dark gray SILT, some clay, trace fine (wet)[SP-SM]	e sand	- 10 -	Macr.	0.0				
	(, _{[C} , C,]		ļ ļ		0.0				
			<u> </u>		0.0				
			R-3B		0.0				
			12				d of boring a		bgs.
			Ė j			scr	stalled TMW- reened from	8 to 18 fe	eet
			13			bgs	s. After grou mpling was c	ndwater	I
			‡ ‡			TM	/W-11 was r	emoved a	and the
			14			cle	il boring was ean cutting ar		
			F = -				phalt.		
			<u> </u>						

		4	/VG/	<u>1/V</u>		Log		Boring			RDE	3-12			Sheet 1	of	1
	Project		111 Willow Avenue				Pro	oject No.			170	497201	1				
	Location						Ele	evation a	nd Da	atum	1	101201	•				
	Drilling (Compa	111 Willow Ave		N/A Date Started Date Finished												
	Drilling E		Lakewood Environmer		5/27/21 6/2/21 Completion Depth Rock Depth												
	Drilling E	quipn	Geoprobe 6610 DT		mpietion	Бер	ın		12 ft		KOCK	Depth	N/A				
I	Size and	Туре					Nu	mber of	Sam	ples	Dist	urbed	3	Un	ndisturbed N/A	Core	N/A
	Casing [Diame			Ca	asing Depth (ft) N/A	w	ater Leve	l (ft.)		First	t	10	Co	mpletion	24 HR.	N/A
GAIN	Casing H	lamm	eľn/A	Weight (lbs)	N/A	Drop (in) N/A	Dr	illing Fore	emar		_				<u> </u>	⊥ -≛	1471
- [4]	Sampler		4-foot acetate liner				Fie	eld Engin	eer	A	dam	Hutchi	nson				
rt: Log	Sampler	Hamr	mer N/A	Weight (lbs)	N/A	Drop (in) N/A		1		Т	yler Z	Zorn mple Da	oto		1		
Kepo	MATERIAL SYMBOL	Elev.		Sample Descri	rintion			Depth	per	e			PIF	<u> </u>	Rem	narks	sina
∑ .:	MAT	(ft)						Scale — 0 —	Number	Type	Rec (in	Penetr. resist BL/6in	Read (ppr	n) ̃	(Drilling Fluid, E Fluid Loss, Drilling	J Resistanc	e, etc.)
44.30			R1: Light gray to bro fine gravel, brick, co	own medium SAN encrete (moist)[FI	√D, some LL]	fine sand, trace		- :					0.0				
7 7			-					- - 1 -					0.0				
7/14/2										e							
: ::								- 2 -	₽ 1-	Macrocore	12						
SDB.G								- :		Ma							
101								_ 3 -									
ב ה ה ה								- :									
			R2: Brown to gray fi	ne SAND, trace s	silt, trace	medium sand		4 -	H				0.0)			
18/50			(moist)[SP-SM]										0.0)			
20110								- 5 -									
								- :	2	core							
NE/GIN								- 6 - -	R-2	Macrocore	80						
								- 7 -									
								' :									
NEINV:			D2A: Prouga to grove	fine CAND trace	ailt traa	a madium aand		[- 8 -					0.0)			
			R3A: Brown to gray (moist)[SP-SM]	TITIE SAND, Trace	siil, trace	e medium sand							0.0				
2			R3B: Brown to gray	SILT trace clay	trace fine	e sand		9 -	R-3/				0.0)	Collect RDB-	12 9-10	
Į,			(wet)[SP-SM]	,,,				- ·		ore			0.0)		_	
5							∇	10 -		Масгосоге	40		0.0)			
Į Ž								- - -		2			0.0)			
97.20								- 11 -	R-3E	3			0.0)			
104								<u> </u>	1								
Y Y								- 12 - -							End of boring Soil boring wa	as backfill	ed with
								- - 13 -	1						clean cutting asphalt.	and patch	ned with
Į Į								<u> </u>	1						·		
<u>Ş</u>								_ _ 14 -]								
NGAI								<u> </u>									

LOG OF TEST PIT TP-01 Sheet of 1 PROJECT NAME 111 Willow Avenue 170497201 5/10/2021 LOCATION ELEVATION 767 East 133rd Street EXCAVATION CONTRACTOR DEPTH WATER LEVEL - First WATER LEVEL - Completion Xolle Demolition 5 ft N/A N/A EQUIPMENT FOREMAN LANGAN PERSONNEL Kobelco SK350 Excavator Farielle Brazier SAMPLE PID readings (ppm) Depth Scale Symbol ELEV (feet) **DESCRIPTION REMARKS** Type 0 Asphalt Concrete Slab 0 Area: 8.5-feet-wide by 10.25-feet-long Dark brown fine SAND, some medium gravel, trace silt, brick, concrete, metal, fabric, wood planks, twigs, cobbles (dry) [FILL] 0 2 EXC 3

Report: TESTPITLOGS.GPJ ILANGAN.COMIDATAINYCIDATA2/170497201/PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS/170497201_ENTERPRISE

[SM]

LANGAN

0

Orange brown fine SAND, some silt, trace fine gravel (dry)

LOG OF TEST PIT TP-02 Sheet of 1 PROJECT NAME 111 Willow Avenue 170497201 5/10/2021 LOCATION ELEVATION 767 East 133rd Street EXCAVATION CONTRACTOR DEPTH WATER LEVEL - First WATER LEVEL - Completion Xolle Demolition 3 ft N/A N/A LANGAN PERSONNEL EQUIPMENT FOREMAN Kobelco SK350 Excavator Farielle Brazier SAMPLE PID readings (ppm) Depth Scale Symbol ELEV (feet) **DESCRIPTION REMARKS** Type 0 Asphalt Concrete Slab 0 Area: 6.67-feet-wide by 5.33-feet-long Dark brown fine SAND, some medium gravel, trace silt, brick, cncrete, fabric, twigs (dry) [FILL] 0 EXC 2 3 0 5

ILANGAN.COMIDATAINYCIDATA2/170497201/PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170497201_ENTERPRISE **LANGAN**

TESTPITLOGS.GPJ

LOG OF TEST PIT TP-03

Sheet of 1 PROJECT NAME DATE 111 Willow Avenue 170497201 5/10/2021 LOCATION ELEVATION 767 East 133rd Street EXCAVATION CONTRACTOR DEPTH WATER LEVEL - First WATER LEVEL - Completion Xolle Demolition 10 ft N/A N/A EQUIPMENT FOREMAN LANGAN PERSONNEL Kobelco SK350 Excavator Farielle Brazier SAMPLE Depth Symbol ELEV (feet) **DESCRIPTION REMARKS** Type Scale 0 Asphalt Concrete Slab 0 Area: 15.83-feet-wide by 7.58-feet-long Dark Brown, gap graded F-m SAND, some medium gravel, 1 trace silt, brick, metal, wood planks, branches, twigs, fabric (dry) [FILL] 2 3 Orange brown silty fine SAND, trace fine gravel (dry) [SM] 4 EXC 5 6 7 8 9 10 0 Collected sample TP03_051021_10 at 10-feet below grade surface 11 **LANGAN**

NLANGAN, COMIDATAINY CIDATA2/170497201/PROJECT DATA\ DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170497201_ENTERPRISE_TESTPITLOGS\GPJ

LOG OF TEST PIT TP-04

1

Sheet of 1 PROJECT NAME DATE 111 Willow Avenue 170497201 5/10/2021 LOCATION ELEVATION 767 East 133rd Street EXCAVATION CONTRACTOR DEPTH WATER LEVEL - First WATER LEVEL - Completion Xolle Demolition 11 ft N/A N/A EQUIPMENT FOREMAN LANGAN PERSONNEL Kobelco SK350 Excavator Farielle Brazier SAMPLE Depth Symbol ELEV (feet) **DESCRIPTION REMARKS** Type Scale Asphalt Concrete Slab Area: 18-feet-wide by 12-feet-long 1 0 Dark brown fine SAND, some fine gravel, trace silt, concrete, brick, metal, wood, fabric (dry) [FILL] 2 3 4 Orange brown to dark brown silty fine SAND, trace fine gravel (dry) [SM] 5 EXC 6 7 8 9 10 11 0 12 13 14 15 16 17 18 19 20 **LANGAN**

Report:

ILANGAN.COMIDATAINYCIDATA21170497201/PROJECT DATA, DISCIPLINE/ENVIRONMENTAL/GINTLOGS1170497201, ENTERPRISE, TESTPITLOGS.GPJ....5/21/2021 11:26:50 AM

LOG OF TEST PIT TP-05 Sheet of 1 PROJECT NAME DATE 111 Willow Avenue 170497201 5/10/2021 LOCATION ELEVATION 767 East 133rd Street EXCAVATION CONTRACTOR DEPTH WATER LEVEL - First WATER LEVEL - Completion Xolle Demolition 10 ft N/A N/A EQUIPMENT FOREMAN LANGAN PERSONNEL Kobelco SK350 Excavator Farielle Brazier SAMPLE Depth Symbol ELEV (feet) **DESCRIPTION REMARKS** Type Scale 0 Asphalt Concrete Slab 0 Area: 9-feet-wide by 5-feet-long Dark brown gap graded F-m SAND, some medium gravel, trace silt, brick, metals, twigs, branches, plastic (dry) [FILL] 2 3 0 Dark orange brown fine SAND, some silt, some fine gravel (dry) [SP-SM] 4 EXC 5 6 0 Dark gray sandy SILT (dry) [MLS] 7 8 9 10 Collected sample TP05_051021_10 at 10-feet below grade surface 11

"LANGAN, COMIDATAINY CIDATA21/170497201/PROJECT DATA\ DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170497201 ENTERPRISE TESTPITLOGS\GPJ **LANGAN**

LOG OF TEST PIT TP-06 Sheet of 1 PROJECT NAME 111 Willow Avenue 170497201 5/10/2021 LOCATION ELEVATION 767 East 133rd Street EXCAVATION CONTRACTOR DEPTH WATER LEVEL - First WATER LEVEL - Completion Xolle Demolition 12 ft 11 ft N/A EQUIPMENT FOREMAN LANGAN PERSONNEL Kobelco SK350 Excavator Farielle Brazier SAMPLE Depth Symbol ELEV (feet) **REMARKS DESCRIPTION** Type Scale Asphalt 0 Concrete Slab Area: 17-feet-wide by 10-feet-long 1 0 Dark brown fine SAND, some medium gravel, trace silt, brick, concrete, metal, wood debris (dry) [FILL] 2 0 Concrete Footing 3 4 5 0 Dark brown fine SAND, some medium gravel, trace silt, brick (dry) [FILL] EXC 6 /LANGAN.COM/DATA/NYC/DATA2/170497201/PROJECT DATA\ DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170497201, ENTERPRISE_TESTPITLOGS\GPJ 7 0 Dark orange brown to gray fine SAND, some silt (dry) [SM] 8 9 10 Grayish black silty fine SAND (moist) [SM] ∇ 11 Grayish black silty fine SAND (WET) [SM] 12 Collected sample TP06_051021_12 at 12-feet below grade surface 13 14 15 16

17

18

19

20

LANGAN

SB-MIP-03 Log of Boring Sheet of 1 Project Project No. 111 Willow Avenue 170497201 Location Elevation and Datum 111 Willow Ave Drilling Company Date Started Date Finished Lakewood Environmental Services, Corp. 7/29/21 7/29/21 **Drilling Equipment** Completion Depth Rock Depth Geoprobe 6610 DT 13 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 2-in Direct Push N/A N/A Casing Diameter (in) Casing Depth (ft) 24 HR. First Completion Water Level (ft.) N/A N/A 2in N/A 11 Casing Hammer N/A Drop (in) N/A Weight (lbs) Drilling Foreman N/A Adam Hutchinson Sampler Macrocore Field Engineer Drop (in) N/A Weight (lbs) Sampler Hammer N/A N/A Farielle Brazier Sample Data MATERIAL SYMBOL Remarks Elev Depth Number (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Sample Description (ft) Scale (ppm) R1A: Dark brown fine SAND, trace gravel, Asphalt (dry)[FILL] 0 R-1A R1B: Brown fine SAND, some fine gravel, trace silt, Brick, 0 metal (dry)[FILL] 0 2 0 27 3 4 /\LANGAN.COM\DATA\NYC\DATA2\170497201\PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\170497201_ENTERPRISE. 5 0 Collected soil sample R2A: Brown silty fine SAND (dry)[SM] SB-MIP03 5-7 6 0 0 0 51 0 0 R2B: Orangish brown silty fine SAND, trace clay (moist) 9 0 0 10 R3A: Orangish brown silty fine SAND, trace clay (moist) 0 _ R-3A 0 R3B: Orangish brown silty fine SAND, trace clay, trace fine 36 0 gravel (wet) 12 0 0 13 End of boring at 13 feet bgs. Soil boring was backfilled with clean cutting and 14 patched with asphalt. 15 16 17 18 19

LANGAN

	NVG/	<u>4/V</u>		Log		oring	•	SB-N	/IIP07	·	Shee	et 1	of	1
Project					Pro	ject No.		4-0						
Location	111 Willow Avenue	9			Ele	vation and D	atun		49720	1				
20000011	111 Willow Ave							•						
Drilling Compa	any				Dat	te Started				Da	te Finished	i		
	Lakewood Environ	mental Services,	Corp.					8	/23/21				8/23/21	
Drilling Equipm	nent				Cor	mpletion Dep	th				ck Depth			
Size and Type	Geoprobe 6610 DT	Γ						D:-4	19 ft urbed		I la alla ta cola a	. al	N/A	
Size and Type	2-in Direct Push				Nur	mber of Sam	ples	Disti	urbea	2	Undisturbe	N/A	Core	N/A
Casing Diamet	ter (in)		С	asing Depth (ft)	Wa	iter Level (ft.)		First	i		Completio		24 HR.	
Casing Hamm	N/A er	Weight (lbs)		Drop (in)		ling Foremar		$ \nabla$			<u> </u>	N/A	Ā	N/A
Sampler	e N/A	111-1311 (121-)	N/A	Drop (III) N/A	-			Adam	Hutch	inson				
	2-inch-diameter sp		Tube; Ma	acrocore	Fiel	ld Engineer								
Sampler Hamr	mer N/A	Weight (lbs)	N/A	Drop (in) N/A	<u> </u>				Boak					
اع ال						Davidh L	_		mple Da			Rem	arks	
SYMBOL (tt)		Sample Des	cription			Depth Scale	Tvne	(ii)	Penetr. resist BL/6in	PID Reading	(D	rilling Fluid, [Loss, Drilling		sing,
Σω ΄΄	D4. D. L			OUT / COST		- 0 2		_ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	A = 18	(ppm)	Fiuld	LOSS, Drilling	y resistance	e, etc.)
	R1: Reddish brow	wn to grayish bro	wn sandy	SILI (moist)[FI	ᄔᆝ					0				
						1 -				0				
					F	=]				0				
						2 =	ore			0				
					Ė	- <u> </u>	Macrocore	36		0				
					-	_ 3 _	×							
						= =								
					Ė	- 4 -								
					-	= _ =								
	R2: Light brown	to dark gray clay	ey SILT (n	noist)		- 5 								
					Ė	6 =								
					-	= " =					Coll	ected soi MIP07_6	l sample -7	
						7 -	e			0		00	-	
						R-2	Macrocore	40		0				
						_ 8	Mac			0				
						= =				0				
						9 =				0				
					Ė	= =				0				
	R3: Dark gray to	light gray silty C	LAY (mois	st)		10	+			0				
			•		F]								
					ŀ	_ 11 _								
					ŀ	- - 12 -	m			0.0				
					F	- 12 - 	Macrocore	42		0.2				
					Ė	_ 13 — 12°	Macr	4		0.3				
						: · · j				0.2				
					F	- 14 -				0.7				
					Ė	= =				0.7				
	R4: Dark gray to	light tannish bro	wn silty Cl	AY (wet)	Ė	15	+			0.3				
	TAT. Daik gray to	ngin tannish bio	wii siity Ol	Li (WEL)	F	= =				0.2				
					ļ	16 =				0.3				
					Ė	= =====================================	sore							
					F	17 - 2	Macrocore	24						
					F		Ž				Coll	ected soi	l sample	
					į	_ 18 _				0.2		MIP07_1		
						_ 10 =				0.3	End	of boring	at 19 fe	et bgs.
						_ 19 					with	boring w clean cu	tting and	iiieu
					þ	20 =					pate	ched with	asphalt.	

LANGAN

SB-MIP-08 Log of Boring Sheet of 1 Project Project No. 170497201 111 Willow Avenue Elevation and Datum Location 111 Willow Ave Drilling Company Date Started Date Finished Lakewood Environmental Services, Corp. 7/29/21 7/29/21 **Drilling Equipment** Completion Depth Rock Depth Geoprobe 6610 DT 20 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 2-in Direct Push N/A N/A Casing Diameter (in) 24 HR. Casing Depth (ft) Completion Water Level (ft.) N/A 2in N/A 12 N/A Drop (in) N/A Casing Hammer N/A Weight (lbs) Drilling Foreman N/A Adam Hutchinson Sampler Macrocore Field Engineer Drop (in) N/A Weight (lbs) Sampler Hammer N/A N/A Farielle Brazier Sample Data MATERIAL SYMBOL Remarks Elev Depth Number (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Sample Description (ppm) R1A: Dark brown fine SAND, Asphalt (dry)[FILL] 0 R1B: Grayish white fine GRAVEL, Cement (dry)[FILL] 0 R1C: Brown fine SAND, some silt, trace fine gravel, Brick 0 (dry)[FILL] 24 3 DISCIPLINE/ENVIRONMENTAL/GINTLOGS/170497201 ENTERPRISE. 5 0 R2A: Brown fine SAND, some silt, trace fine gravel R2B: Dark brown to grayish black silty fine SAND, trace 6 gravel (moist)[SM] 8 R-2B 9 0 R3A: Grayish brown fine SAND, some silt (wet)[SM] R3B: Light brown to grayish fine SAND, trace clay, trace silt 12 30 13 0 0 14 n 0 0 R4A: Dark brown to olive silty fine SAND, trace clay, trace fine gravel (wet)[SM] 16 R4B: Light brown fine SAND, trace silt (wet)[SP-SM] 17 40 0 Collected soil sample SB-MIP08_19-20 18 0 0 End of boring at 20 feet bgs. Soil boring was backfilled 19 4 with clean cutting and 7 patched with asphalt.

LANGAN

		VU	1/V		Log	of E	Boring	S	B-N	IIP10		Sł	heet	1	of	2
Project		444 1860				Pr	oject No.		470	40700						
Location		111 Willow Avenue				El	evation and Da	tum		197201	l					
		111 Willow Ave														
Drilling C	ompai		omtol Comileon C			Da	ate Started		,	2/2/24	Da	ate Finis	shed	0	100104	
Drilling E	quipm	Lakewood Environme ent	mai Services, Co	orp.		Co	ompletion Deptl	h	•	3/3/21	Ro	ock Dep	oth	0/	/23/21	
0: 1	_	Geoprobe 6610 DT				24 ft N/A Disturbed Undisturbed Core										
Size and	,,	2-in Direct Push				Νι	umber of Samp	les	Distu	irbed	2	Undist	urbed N/	4		N/A
Casing D	iamete	er (in) N/A		Ca	asing Depth (ft) N/A	w	ater Level (ft.)		First			Compl	letion N//		24 HR.	N/A
Casing H	lamme		Weight (lbs)	N/A	Drop (in) N/A	Dr	rilling Foreman							•	_=	
Sampler		2-inch-diameter split	spoon; Shelby Tu		crocore	Fi	eld Engineer	Α	dam	Hutchi	inson					
Sampler	Hamn	ner N/A	Weight (lbs)	N/A	Drop (in) N/A	1	o.ugoo.	Е	Isah	Boak						
SIAL OL	Elev.						Depth চু			nple Da			F	Rema	arks	
MATERIAL SYMBOL	(ft)	;	Sample Descrip	ption			Depth Scale	Type	(in)	Penetr. resist BL/6in	PID Reading (ppm)	9 6	Drilling Fl) Fluid Loss, [ing, e, etc.)
		R1: Reddish brown	sandy GRAVEL	(moist)	[FILL]					L W	0					
			-	,							0					
											0					
							2 =	ore								
							<u> </u>	Macrocore	18							
							3 -	2								
							E 4 =									
Elo O																
		R2: Light gray claye	ey SILT (moist)				5 =									
							6 =									
04917																
							F 7 = 1	core								
							8 - 8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8	Macrocore	24							
											0					
							9 =				0	(Collected	SB-	MIP10_9	9-10
							£ 10 =				0					
		R3: Dark gray CLA	Y (moist)				10				0					
							11 =									
							10				•					
							- 12 - - - - - - -	Macrocore	42		0 0					
							13	Macı	4		0					
											0					
							<u> 14 - </u>				0					
		DA Daniela anno 1	4 - 13 - 14 1	OL AV	((4)		15				0					
		R4: Brownish gray	to light brown silt	y CLAY	(wet)						-					
							16									
							17	e e			^					
							4.	Macrocor	4		0					
							18	Ma	4		0					
							E 10 =				0					
							<u> 19 </u>				0					

Log of Boring SB-MIP10 Sheet 2 of 2 Project Project No. 111 Willow Avenue 170497201 Location Elevation and Datum 111 Willow Ave Sample Data Remarks Elev. (ft) Depth Scale PID Reading (ppm) Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) 20 R5: Grayish tan SILT (wet) 21 0 R-5 42 0 22 0 NLANGAN.COMIDATANYC\DATA21170497201\PROJECT DATA|_DISCIPLINE\ENVIRONMENTAL\G\NTLOGS\170497201_ENTERPRISE.GPJ ... 9/14/2021 12:35:49 PM ... Report. Log - LANGAN 0 23 Collected SB-MIP10_23-24 0 0 24 End of boring at 24 feet bgs. Soil boring was backfilled with clean cutting and patched with asphalt. 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 42 43

APPENDIX B

Groundwater Sampling Logs

Project In	formation	Well Info	rmation	Equipment Information				ons Sampling Ir		formation	
Project Name:	111 Willow Ave	Well No:	TMW-09	Water Qua	lity Device Model:	Horiba U-52		Weather:	80s F, Sunny		TMW-09_052721
Project Number:	10497201	Well Depth:	18'		Pine Number:	21337	Backo	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Bronx, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peristaltic	PID Beneath	Inner Cap (ppm):	0.0		
Sampling	Elsah Boak	Well Screen	4 to		Pine Number:	11787	Pu	mp Intake Depth:	16'	Sample Date:	5/27/2021
Personnel:		Interval:	14		Tubing Diameter:	3/8" ID x 1/4" OD	Depth to V	Vater After Purge:	9.3	Sample Time:	2:40
					8						
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Clatina	NOTES	
	oCelsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		C4 - 1:11
					(+/- 10%) above 5	(+/- 10%) above	Drawdown <		Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
	· · ·		· · · · · · · · · · · · · · · · · · ·		BEGIN PU	JRGING	i e				
1:40	21.41	5.78	-72	2.19	0.0	4.00		0.0200	0.1		
1:45	23.47	5.95	23	2.27	0.0	5.37		0.0130	0.13		
1:50	25.24	6.21	78	2.32	0.0	5.74		0.0100	0.15		
1:55	26.08	6.33	23	2.33	0.0	5.49		0.0080	0.16		
2:00	27.59	6.50	85	2.36	0.0	5.64		0.0068	0.17		
2:05	28.58	6.56	101	2.36	0.0	5.61		0.0067	0.2		
2:10	29.26	6.60	117	2.35	0.0	5.51		0.0063	0.22		
2:15	29.84	6.63	127	2.34	0.0	5.45		0.0058	0.23		
2:20	30.23	6.66	131	2.35	0.0	5.35		0.0053	0.24		
2:25	30.59	6.66	135	2.35	0.0	5.32		0.0049	0.245		
2:30	30.84	6.71	136	2.36	0.0	5.25		0.0045	0.247		
2:35	31.00	6.74	136	2.37	0.0	5.32		0.0041	0.248		

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit
- 11. NA = Depth to water was not collected prior or during to sampling due to potenital per- and polyfluoroslkyl substances (PFAS) interference from the interface probe.

Project In	formation	Well Info	rmation	Equipment Information		mation Sampling Condition		ons Sampling		Information	
Project Name:	111 Willow Ave	Well No:	TMW-06	Water Qua	lity Device Model:	Horiba U-52		Weather:	80s F, Sunny		TMW-06_052721
Project Number:	10497201	Well Depth:	18'		Pine Number:	21337	Back	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Bronx, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peristaltic	PID Beneath	n Inner Cap (ppm):	0.0		
Sampling	Elsah Boak	Well Screen	5 to		Pine Number:		Pι	ımp Intake Depth:	16'	Sample Date:	5/27/2021
Personnel:		Interval:	15		Tubing Diameter:	3/8" ID x 1/4" OD	Depth to V	Vater After Purge:	9.0	Sample Time:	11:05
					8						
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	oCelsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above 5	(+/- 10%) above	Drawdown <		Volume (Gal)		Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	volume (Gai)	color, odor etc.	
					BEGIN PU	IRGING					
10:05	24.88	6.05	-88	1.22	800.0	4.68		0.1	0.25		
10:10	21.49	6.08	-99	1.36	800.00	1.95		0.04	0.4		
10:15	19.60	5.63	-8	1.49	772.00	0.20		0.05	0.75		
10:20	23.15	5.53	-81	1.60	712.00	1.36		0.05	1		
10:25	23.35	5.38	-90	1.80	701.00	1.35		0.051	1.26		
10:30	23.19	5.38	-74	1.89	720.00	1.03		0.055	1.65		
10:35	23.52	5.48	36	1.92	622.00	3.80		0.057142857	2		
10:40	23.64	5.47	35	1.93	606.0	3.30		0.05625	2.25		
10:45	23.70	5.48	58	1.94	387.0	3.63		0.057777778	2.6		
10:50	23.63	5.46	61	1.95	324.0	3.51		0.058	2.9		
10:55	23.68	5.44	64	1.95	281.0	3.39		0.063636364	3.5		
11:00	24.09	5.42	76	1.94	370.0	3.23		0.061666667	3.7		
				1							

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit
- 11. NA = Depth to water was not collected prior or during to sampling due to potenital per- and polyfluoroslkyl substances (PFAS) interference from the interface probe.

Project In	formation	Well Info	rmation	Equipment Information				ons Sampling Ir		formation	
Project Name:	111 Willow Ave	Well No:	TMW-09	Water Qua	lity Device Model:	Horiba U-52		Weather:	80s F, Sunny		TMW-09_052721
Project Number:	10497201	Well Depth:	18'		Pine Number:	21337	Backg	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Bronx, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peristaltic	PID Beneath	Inner Cap (ppm):	0.0		
Sampling	Elsah Boak	Well Screen	8 to		Pine Number:	11787	Pu	mp Intake Depth:	16'	Sample Date:	5/27/2021
Personnel:		Interval:	18		Tubing Diameter:	3/8" ID x 1/4" OD	Depth to V	Vater After Purge:	9.1	Sample Time:	12:40
					8						
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Communications	NOTES	
	oCelsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		C4 - L:1!12
					(+/- 10%) above 5	(+/- 10%) above	Drawdown <		Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
	· · ·		· · · · · · · · · · · · · · · · · · ·		BEGIN PU	IRGING	1				
11:40	15.79	6.11	-195	1.26	0.0	3.23		0.100	0.5		
11:45	18.03	5.85	-18	1.65	0.0	5.52		0.075	0.75		
11:50	19.03	5.84	69	2.49	0.0	6.29		0.057	0.85		
11:55	19.39	5.92	90	3.05	0.0	6.39		0.050	1		
12:00	19.44	5.89	102	3.45	0.0	6.41		0.046	1.15		
12:05	19.12	5.81	111	3.74	0.0	6.31		0.042	1.25		
12:10	18.95	5.90	114	3.88	0.0	6.53		0.040	1.4		
12:15	18.91	5.92	118	4.01	0.0	6.69		0.039	1.55		
12:20	18.83	5.90	122	4.07	0.0	6.57		0.038	1.7		
12:25	18.97	5.88	125	4.14	0.0	6.59		0.037	1.85		
12:30	18.81	5.88	125	4.17	0.0	6.42		0.036	2		
12:35	18.53	5.85	129	4.21	0.0	6.49		0.037	2.2		

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit
- 11. NA = Depth to water was not collected prior or during to sampling due to potenital per- and polyfluoroslkyl substances (PFAS) interference from the interface probe.

Project Inf	formation	Well Info	rmation	Equipment Information		on	S	ampling Condition	ıs	Sampling Information		
Project Name:	111 Willow Ave	Well No:	TMW-09	Water Qua	lity Device Model:	Horiba U-52		Weather:	80s F, Sunny		TMW-09_052721	
Project Number:	10497201	Well Depth:	18'		Pine Number:	21337	Backo	ground PID (ppm):	0.0	Sample(s):		
Site Location:	Bronx, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peristaltic	PID Beneath	Inner Cap (ppm):	0.0			
Sampling	Elsah Boak	Well Screen	8 to		Pine Number:		Pu	ımp Intake Depth:	16'	Sample Date:	5/27/2021	
Personnel:		Interval:	18		Tubing Diameter:	3/8" ID x 1/4" OD	Depth to V	Vater After Purge:	9.1	Sample Time:	9:00	
					8							
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES		
	oCelsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?	
					(+/- 10%) above 5	(+/- 10%) above	Drawdown <				Stabilized?	
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.		
•					BEGIN PU	IRGING						
8:00	16.82	5.26	5	1.77	1000.0	0.41		0.1	0.5			
8:05	15.10	4.90	-47	1.83	1000.00	4.93		0.1	1			
8:10	14.86	5.04	-14	2.89	1000.00	5.24		0.083	1.25			
8:15	14.97	5.10	0	3.34	1000.00	6.35		0.0813	1.625			
8:20	15.12	5.17	0	3.50	1000.00	6.36		0.08	2			
8:25	15.22	5.23	-4	3.56	1000.00	6.44		0.075	2.25			
8:30	15.35	5.28	-8	3.61	1000.00	6.69		0.071	2.5			
8:35	15.38	5.33	-11	3.67	1000.0	7.89		0.071	2.85			
8:40	15.33	5.47	-82	3.62	1000.0	3.70		0.067	3			
8:45	16.29	5.34	-9	3.57	1000.0	5.61		0.065	3.25			
8:50	16.05	5.36	-7	3.63	1000.0	5.96		0.064	3.5			
8:55	16.47	5.40	-11	3.64	10000.0	6.23		0.063	3.8			
				1								

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit
- 11. NA = Depth to water was not collected prior or during to sampling due to potenital per- and polyfluoroslkyl substances (PFAS) interference from the interface probe.

Project In	formation	Well Info	rmation	Equipment Information		Sampling Conditions			Sampling Information		
Project Name:	111 Willow Ave	Well No:	TMW-11	Water Qua	lity Device Model:	Horiba U-52		Weather:	80s F, Sunny		TMW-11_052621
Project Number:	170599501	Well Depth:	18		Pine Number:	21337	Back	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Bronx, NY	Well Diameter:	2-inch	Pump	Make and Model:	Peristaltic	PID Beneath	n Inner Cap (ppm):	0.0		
Sampling	TJ Malgieri	Well Screen	8 to		Pine Number:	11787	Pι	ımp Intake Depth:	16.00	Sample Date:	5/26/2021
Personnel:		Interval:	18		Tubing Diameter:	3/8" ID x 1/4" OD	Depth to V	Vater After Purge:	9.3	Sample Time:	14:20
					8						
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	oCelsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above 5	•	Drawdown <		Volume (Gal)		Stabilizeu:
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gai)	color, odor etc.	
					BEGIN PU						
13:10	15.05	3.99	28	21.90	148.0	1.01		0.0	0	slightly brown, no o	
13:15	13.85	5.22	-22	11.90	37.70	0.00		0.15	0.75	slightly brown, no o	odor
13:20	13.77	5.35	-27	11.20	14.20	0.32		0.125	1.25	no color or odor	
13:25	13.73	5.41	-31	11.10	5.70	2.56		0.13	2	no color or odor	
13:30	13.74	5.43	-32	11.20	4.20	0.00		0.125	2.5	no color or odor	
13:35	13.70	5.44	-34	11.20	3.20	0.00		0.13	3.25	no color or odor	
13:40	13.69	5.44	-34	11.20	2.80	0.00		0.13	4	no color or odor	
13:45	13.68	5.44	-33	11.20	1.8	0.00		0.13	4.5	no color or odor	
13:50	13.67	5.44	-34	11.20	1.7	0.00		0.13	4.75	no color or odor	
13:55	13.67	5.44	-33	11.20	1.2	0.00		0.13	4.75	no color or odor	
14:00	13.65	5.45	-34	11.20	1.0	0.00		0.13	4.75	no color or odor	
14:05	13.60	5.45	-34	11.20	1.0	0.00		0.13			
											

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit
- 11. NA = Depth to water was not collected prior or during to sampling due to potenital per- and polyfluoroslkyl substances (PFAS) interference from the interface probe.

APPENDIX C

Laboratory Analytical Results

ANALYTICAL REPORT

Lab Number: L2124281

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor

New York, NY 10001-2727

ATTN: Stuart Knoop
Phone: (212) 479-5400

Project Name: 111 WILLOW AVE

Project Number: 170497201

Report Date: 05/17/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281 **Report Date:** 05/17/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2124281-01	TP03_051021_10	SOIL	BRONX, NY	05/10/21 10:40	05/10/21
L2124281-02	TP05_051021_10	SOIL	BRONX, NY	05/10/21 13:18	05/10/21
L2124281-03	TP06_051021_12	SOIL	BRONX, NY	05/10/21 13:49	05/10/21
L2124281-04	TB01_051021	WATER	BRONX, NY	05/10/21 00:00	05/10/21

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 Report Date: 05/17/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

M 2 M Jennifer L Clements

Authorized Signature:

Title: Technical Director/Representative Date: 05/17/21

ALPHA

ORGANICS

VOLATILES

05/10/21 10:40

Not Specified

05/10/21

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number: L2124281

Date Collected:

Date Received:

Report Date: 05/17/21

Lab ID: L2124281-01

Client ID: TP03_051021_10 Sample Location: BRONX, NY

Field Prep:

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 05/16/21 19:28

Analyst: JC 83% Percent Solids:

1,1-Dichloroethane 1.5 ug/kg 0.98 0.14 1 Chloroform ND ug/kg 1.5 0.14 1 Carbon eterachloride ND ug/kg 0.98 0.22 1 1,2-Dichloropropane ND ug/kg 0.98 0.12 1 Dibromochloromethane ND ug/kg 0.98 0.12 1 1,1,2-Trichloroethane ND ug/kg 0.98 0.26 1 Tetrachloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 0.49 0.12 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1-1,1-Trichloroethane ND ug/kg 0.98 0.27 1 trans-1,3-Dichloropropene ND ug/kg 0.	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane 1.5 ug/kg 0.98 0.14 1 Chloroform ND ug/kg 1.5 0.14 1 Carbon eterachloride ND ug/kg 0.98 0.22 1 1,2-Dichloropropane ND ug/kg 0.98 0.12 1 Dibromochloromethane ND ug/kg 0.98 0.12 1 Dibromochloromethane ND ug/kg 0.98 0.26 1 Tetrachloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Tichlorofluoromethane ND ug/kg 0.49 0.12 1 Tichlorofluoromethane ND ug/kg 0.98 0.25 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 cis-1,3-Dichloropropene ND ug/kg <td< td=""><td>Volatile Organics by EPA 5035 Lo</td><td>w - Westborough Lab</td><td></td><td></td><td></td><td></td><td></td></td<>	Volatile Organics by EPA 5035 Lo	w - Westborough Lab					
1,1-Dichloroethane 1.5 ug/kg 0.98 0.14 1 Chloroform ND ug/kg 1.5 0.14 1 Carbon tetrachloride ND ug/kg 0.98 0.22 1 1,2-Dichloropropane ND ug/kg 0.98 0.12 1 Dibromochloromethane ND ug/kg 0.98 0.26 1 1,1,2-Trichloroethane ND ug/kg 0.98 0.26 1 Tetrachloroethane 130 ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 0.49 0.12 1 1,1-1-Trichloroethane 2.7 ug/kg 0.98 0.25 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 cis-1,3-Dichloropropene ND ug/kg	Methylene chloride	ND		ug/kg	4.9	2.2	1
Chloroform ND ug/kg 1.5 0.14 1 Carbon tetrachloride ND ug/kg 0.98 0.22 1 1,2-Dichloropropane ND ug/kg 0.98 0.12 1 Dibromochloromethane ND ug/kg 0.98 0.14 1 1,1,2-Trichloroethane ND ug/kg 0.98 0.26 1 1,1,2-Trichloroethane 130 ug/kg 0.49 0.19 1 1-Trichloroethane ND ug/kg 0.49 0.12 1 1,1-Trichloroethane ND ug/kg 0.98 0.25 1 1,1-Trichloroethane ND ug/kg 0.49 0.16 1 1,1-Trichloroethane ND ug/kg 0.49 0.16 1 1,1-Trichloroethane ND ug/kg 0.49 0.11 1 1,1-Trichloroethane ND ug/kg 0.49 0.11 1 1,1-Trichloroethane ND ug/kg 0.49	1,1-Dichloroethane	1.5			0.98	0.14	1
1,2-Dichloropropane ND ug/kg 0.98 0.12 1 Dibromochloromethane ND ug/kg 0.98 0.14 1 1,1,2-Trichloroethane ND ug/kg 0.98 0.26 1 Tetrachloroethane 130 ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.19 1 Trichlorofluoromethane ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 0.98 0.25 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1-Trichloroethane ND ug/kg 0.98 0.25 1 1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 1 trans-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Chloromethane ND ug/kg 0.98 0.53 1 Chloromethane ND ug/kg 0.98 0.53 1 Chloromethane ND ug/kg 0.98 0.33 1	Chloroform	ND		ug/kg	1.5	0.14	1
Dibromochloromethane ND ug/kg 0.98 0.14 1 1,1,2-Trichloroethane ND ug/kg 0.98 0.26 1 Tetrachloroethane 130 ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1,1-Trichloroethane 2.7 ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.98 0.27 1 vis-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 1,1,1,2,2-Tetrachloroethane ND ug/	Carbon tetrachloride	ND		ug/kg	0.98	0.22	1
1,1,2-Trichloroethane ND ug/kg 0.98 0.26 1 Tetrachloroethane 130 ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichloroftuoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1,1-Trichloroethane 2.7 ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.98 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg	1,2-Dichloropropane	ND		ug/kg	0.98	0.12	1
Tetrachloroethene 130 ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1,1-Trichloroethane 2.7 ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 Bromodichloropropene ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 trans-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.15 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.98</td> <td>0.14</td> <td>1</td>	Dibromochloromethane	ND		ug/kg	0.98	0.14	1
Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1,1-Trichloroethane 2.7 ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.98 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.15 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.53<	1,1,2-Trichloroethane	ND		ug/kg	0.98	0.26	1
Trichlorofluoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1,1-Trichloroethane 2.7 ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.98 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.15 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.98 0.53 1 Toluene ND ug/kg 0.98 0.53 1 Ethylbenzene ND ug/kg 0.98	Tetrachloroethene	130		ug/kg	0.49	0.19	1
1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1,1-Trichloroethane 2.7 ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.98 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.15 1 1,1-Dichloropropene, Total ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.99 0.16 1 Toluene ND ug/kg 0.98 0.53 1 Ethylbenzene ND ug/kg 0.99 0.91 1 Chloromethane ND ug/kg 0.98	Chlorobenzene	ND		ug/kg	0.49	0.12	1
1,1,1-Trichloroethane 2.7 ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.98 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.15 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.53 1 Ethylbenzene ND ug/kg 0.98 0.53 1 Chloromethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33	Trichlorofluoromethane	ND		ug/kg	3.9	0.68	1
Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.98 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.15 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.53 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 2.0 0.57 1 Winyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44	1,2-Dichloroethane	ND		ug/kg	0.98	0.25	1
trans-1,3-Dichloropropene ND ug/kg 0.98 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.15 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.49 0.16 1 Ethylbenzene ND ug/kg 0.98 0.53 1 Ethylbenzene ND ug/kg 0.98 0.53 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.91 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 0.98 0.33 1	1,1,1-Trichloroethane	2.7		ug/kg	0.49	0.16	1
cis-1,3-Dichloropropene ND ug/kg 0.49 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.15 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.53 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.91 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 0.98 0.23 1	Bromodichloromethane	ND		ug/kg	0.49	0.11	1
1,3-Dichloropropene, Total ND ug/kg 0.49 0.15 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.53 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.91 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene 1.5 ug/kg 0.98 0.23 1	trans-1,3-Dichloropropene	ND		ug/kg	0.98	0.27	1
1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.53 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.91 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene 1.5 ug/kg 0.98 0.23 1	cis-1,3-Dichloropropene	ND		ug/kg	0.49	0.15	1
Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.53 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.91 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene 1.5 ug/kg 0.98 0.23 1	1,3-Dichloropropene, Total	ND		ug/kg	0.49	0.15	1
1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.53 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.91 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene 1.5 ug/kg 0.98 0.23 1	1,1-Dichloropropene	ND		ug/kg	0.49	0.16	1
Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.53 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.91 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene 1.5 ug/kg 0.98 0.23 1	Bromoform	ND		ug/kg	3.9	0.24	1
Toluene ND ug/kg 0.98 0.53 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.91 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene 1.5 ug/kg 0.98 0.23 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	0.49	0.16	1
Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.91 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene 1.5 ug/kg 0.98 0.23 1	Benzene	ND		ug/kg	0.49	0.16	1
Chloromethane ND ug/kg 3.9 0.91 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene 1.5 ug/kg 0.98 0.23 1	Toluene	ND		ug/kg	0.98	0.53	1
Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene 1.5 ug/kg 0.98 0.23 1	Ethylbenzene	ND		ug/kg	0.98	0.14	1
Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene 1.5 ug/kg 0.98 0.23 1	Chloromethane	ND		ug/kg	3.9	0.91	1
Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene 1.5 ug/kg 0.98 0.23 1	Bromomethane	ND		ug/kg	2.0	0.57	1
1,1-Dichloroethene 1.5 ug/kg 0.98 0.23 1	Vinyl chloride	ND		ug/kg	0.98	0.33	1
-5.19	Chloroethane	ND		ug/kg	2.0	0.44	1
trans-1,2-Dichloroethene ND ug/kg 1.5 0.13 1	1,1-Dichloroethene	1.5		ug/kg	0.98	0.23	1
	trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.13	1

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

SAMPLE RESULTS

Lab ID: Date Collected: 05/10/21 10:40

Client ID: TP03_051021_10 Date Received: 05/10/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lov	w - Westborough Lab					
Trichloroethene	15		ug/kg	0.49	0.13	1
1,2-Dichlorobenzene	0.14	J	ug/kg	2.0	0.14	1
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.14	1
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	1
Methyl tert butyl ether	ND		ug/kg	2.0	0.20	1
p/m-Xylene	ND		ug/kg	2.0	0.55	1
o-Xylene	ND		ug/kg	0.98	0.28	1
Xylenes, Total	ND		ug/kg	0.98	0.28	1
cis-1,2-Dichloroethene	23		ug/kg	0.98	0.17	1
1,2-Dichloroethene, Total	23		ug/kg	0.98	0.13	1
Dibromomethane	ND		ug/kg	2.0	0.23	1
Styrene	ND		ug/kg	0.98	0.19	1
Dichlorodifluoromethane	ND		ug/kg	9.8	0.90	1
Acetone	ND		ug/kg	9.8	4.7	1
Carbon disulfide	ND		ug/kg	9.8	4.4	1
2-Butanone	ND		ug/kg	9.8	2.2	1
Vinyl acetate	ND		ug/kg	9.8	2.1	1
4-Methyl-2-pentanone	ND		ug/kg	9.8	1.2	1
1,2,3-Trichloropropane	ND		ug/kg	2.0	0.12	1
2-Hexanone	ND		ug/kg	9.8	1.2	1
Bromochloromethane	ND		ug/kg	2.0	0.20	1
2,2-Dichloropropane	ND		ug/kg	2.0	0.20	1
1,2-Dibromoethane	ND		ug/kg	0.98	0.27	1
1,3-Dichloropropane	ND		ug/kg	2.0	0.16	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.49	0.13	1
Bromobenzene	ND		ug/kg	2.0	0.14	1
n-Butylbenzene	ND		ug/kg	0.98	0.16	1
sec-Butylbenzene	ND		ug/kg	0.98	0.14	1
tert-Butylbenzene	ND		ug/kg	2.0	0.12	1
o-Chlorotoluene	ND		ug/kg	2.0	0.19	1
p-Chlorotoluene	ND		ug/kg	2.0	0.10	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.9	0.98	1
Hexachlorobutadiene	ND		ug/kg	3.9	0.16	1
Isopropylbenzene	ND		ug/kg	0.98	0.11	1
p-Isopropyltoluene	ND		ug/kg	0.98	0.11	1
Naphthalene	ND		ug/kg	3.9	0.64	1
Acrylonitrile	ND		ug/kg	3.9	1.1	1

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

SAMPLE RESULTS

Lab ID: L2124281-01 Date Collected: 05/10/21 10:40

Client ID: TP03_051021_10 Date Received: 05/10/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
n-Propylbenzene	ND		ug/kg	0.98	0.17	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.32	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33	1	
1,4-Dioxane	ND		ug/kg	78	34.	1	
p-Diethylbenzene	ND		ug/kg	2.0	0.17	1	
p-Ethyltoluene	ND		ug/kg	2.0	0.38	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0	0.19	1	
Ethyl ether	ND		ug/kg	2.0	0.33	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.9	1.4	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	105	70-130	

L2124281

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number:

Report Date: 05/17/21

Lab ID: L2124281-02 Date Collected: 05/10/21 13:18

Client ID: Date Received: 05/10/21 TP05_051021_10 Sample Location: Field Prep: Not Specified BRONX, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 05/16/21 19:53

Analyst: JC 80% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Lo	ow - Westborough Lab						
Methylene chloride	ND		ug/kg	5.1	2.3	1	
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1	
Chloroform	ND		ug/kg	1.5	0.14	1	
Carbon tetrachloride	ND		ug/kg	1.0	0.24	1	
1,2-Dichloropropane	ND		ug/kg	1.0	0.13	1	
Dibromochloromethane	ND		ug/kg	1.0	0.14	1	
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27	1	
Tetrachloroethene	ND		ug/kg	0.51	0.20	1	
Chlorobenzene	ND		ug/kg	0.51	0.13	1	
Trichlorofluoromethane	ND		ug/kg	4.1	0.71	1	
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	1	
1,1,1-Trichloroethane	ND		ug/kg	0.51	0.17	1	
Bromodichloromethane	ND		ug/kg	0.51	0.11	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.28	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.51	0.16	1	
1,3-Dichloropropene, Total	ND		ug/kg	0.51	0.16	1	
1,1-Dichloropropene	ND		ug/kg	0.51	0.16	1	
Bromoform	ND		ug/kg	4.1	0.25	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.51	0.17	1	
Benzene	ND		ug/kg	0.51	0.17	1	
Toluene	ND		ug/kg	1.0	0.56	1	
Ethylbenzene	ND		ug/kg	1.0	0.14	1	
Chloromethane	ND		ug/kg	4.1	0.95	1	
Bromomethane	ND		ug/kg	2.0	0.59	1	
Vinyl chloride	ND		ug/kg	1.0	0.34	1	
Chloroethane	ND		ug/kg	2.0	0.46	1	
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	1	

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

SAMPLE RESULTS

Lab ID: L2124281-02 Date Collected: 05/10/21 13:18

Client ID: TP05_051021_10 Date Received: 05/10/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - West	borough Lab					
Trichloroethene	ND		ug/kg	0.51	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.15	1
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.15	1
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	1
Methyl tert butyl ether	ND		ug/kg	2.0	0.20	1
p/m-Xylene	ND		ug/kg	2.0	0.57	1
o-Xylene	ND		ug/kg	1.0	0.30	1
Xylenes, Total	ND		ug/kg	1.0	0.30	1
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	1
1,2-Dichloroethene, Total	ND		ug/kg	1.0	0.14	1
Dibromomethane	ND		ug/kg	2.0	0.24	1
Styrene	ND		ug/kg	1.0	0.20	1
Dichlorodifluoromethane	ND		ug/kg	10	0.94	1
Acetone	51		ug/kg	10	4.9	1
Carbon disulfide	ND		ug/kg	10	4.6	1
2-Butanone	8.6	J	ug/kg	10	2.3	1
Vinyl acetate	ND		ug/kg	10	2.2	1
4-Methyl-2-pentanone	ND		ug/kg	10	1.3	1
1,2,3-Trichloropropane	ND		ug/kg	2.0	0.13	1
2-Hexanone	ND		ug/kg	10	1.2	1
Bromochloromethane	ND		ug/kg	2.0	0.21	1
2,2-Dichloropropane	ND		ug/kg	2.0	0.21	1
1,2-Dibromoethane	ND		ug/kg	1.0	0.28	1
1,3-Dichloropropane	ND		ug/kg	2.0	0.17	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.51	0.13	1
Bromobenzene	ND		ug/kg	2.0	0.15	1
n-Butylbenzene	ND		ug/kg	1.0	0.17	1
sec-Butylbenzene	ND		ug/kg	1.0	0.15	1
tert-Butylbenzene	ND		ug/kg	2.0	0.12	1
o-Chlorotoluene	ND		ug/kg	2.0	0.20	1
p-Chlorotoluene	ND		ug/kg	2.0	0.11	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.1	1.0	1
Hexachlorobutadiene	ND		ug/kg	4.1	0.17	1
Isopropylbenzene	ND		ug/kg	1.0	0.11	1
p-Isopropyltoluene	ND		ug/kg	1.0	0.11	1
Naphthalene	ND		ug/kg	4.1	0.66	1
Acrylonitrile	ND		ug/kg	4.1	1.2	1

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

SAMPLE RESULTS

Lab ID: L2124281-02 Date Collected: 05/10/21 13:18

Client ID: TP05_051021_10 Date Received: 05/10/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
n-Propylbenzene	ND		ug/kg	1.0	0.17	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.33	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.28	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.20	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.34	1	
1,4-Dioxane	ND		ug/kg	82	36.	1	
p-Diethylbenzene	ND		ug/kg	2.0	0.18	1	
p-Ethyltoluene	ND		ug/kg	2.0	0.39	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0	0.20	1	
Ethyl ether	ND		ug/kg	2.0	0.35	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.1	1.4	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	122	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	106	70-130	

Project Name: 111 WILLOW AVE

Lab Number:

L2124281

Project Number: 170497201 Report Date: 05/17/21

SAMPLE RESULTS

Lab ID: L2124281-03 Client ID:

TP06_051021_12

Sample Location: BRONX, NY Date Collected: 05/10/21 13:49

Date Received: 05/10/21 Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 05/14/21 22:37

Analyst: **MKS** 81% Percent Solids:

1,1-Dichloroethane ND ug/kg 0.98 0.14 1 Chloroform ND ug/kg 1.5 0.14 1 Carbon eterachloride ND ug/kg 0.98 0.23 1 1,2-Dichloropropane ND ug/kg 0.98 0.12 1 Dibromochloromethane ND ug/kg 0.98 0.12 1 Dibromochloromethane ND ug/kg 0.98 0.26 1 Tetrachloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Tichloroflucromethane ND ug/kg 0.49 0.12 1 Tichloroflucromethane ND ug/kg 0.98 0.25 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 cis-1,3-Dichloropropene ND ug/kg	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/kg 0.98 0.14 1 Chloroform ND ug/kg 1.5 0.14 1 Carbon eterachloride ND ug/kg 0.98 0.23 1 1,2-Dichloropropane ND ug/kg 0.98 0.12 1 Dibromochloromethane ND ug/kg 0.98 0.26 1 1,1,2-Trichloroethane ND ug/kg 0.49 0.19 1 Tetrachloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 0.49 0.12 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1-Dichloromethane ND ug/kg 0.99 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.49<	Volatile Organics by EPA 5035 Lo	w - Westborough Lab					
1,1-Dichloroethane ND ug/kg 0.98 0.14 1 Chloroform ND ug/kg 1.5 0.14 1 Carbon tetrachloride ND ug/kg 0.98 0.23 1 1,2-Dichloropropane ND ug/kg 0.98 0.12 1 Dibromochloromethane ND ug/kg 0.98 0.26 1 1,1,2-Trichloroethane ND ug/kg 0.98 0.26 1 Tetrachloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofubromethane ND ug/kg 0.49 0.12 1 Trichloroethane ND ug/kg 0.98 0.25 1 Bromodichloromethane ND ug/kg 0.99 0.27 1 trans-1,3-Dichloropropene ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.4	Methylene chloride	ND		ug/kg	4.9	2.2	1
Chloroform ND ug/kg 1.5 0.14 1 Carbon tetrachloride ND ug/kg 0.98 0.23 1 1,2-Dichloropropane ND ug/kg 0.98 0.12 1 Dibromochloromethane ND ug/kg 0.98 0.14 1 1,1,2-Trichloroethane ND ug/kg 0.98 0.26 1 1,1,2-Trichloroethane ND ug/kg 0.49 0.19 1 1-Chlorobenzene ND ug/kg 0.49 0.12 1 1-Trichloroethane ND ug/kg 0.49 0.12 1 1,1-Trichloroethane ND ug/kg 0.98 0.25 1 1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.16 1 1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromomofichloromethane ND ug/kg 0.49<	1,1-Dichloroethane	ND			0.98	0.14	1
1,2-Dichloropropane ND	Chloroform	ND		ug/kg	1.5	0.14	1
Dibromochloromethane ND ug/kg 0.98 0.14 1 1,1,2-Trichloroethane ND ug/kg 0.98 0.26 1 Tetrachloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.16 1 Bromodichloropropene ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 uis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.16 1 1,1,1,2,2-Tetrachloroethane ND <	Carbon tetrachloride	ND		ug/kg	0.98	0.23	1
1,1,2-Trichloroethane ND ug/kg 0.98 0.26 1 Tetrachloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichloroftuoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.16 1 Bromodichloropropene ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 1,3-Dichloropropene ND ug/kg 0.49 0.16 1 1,1-Dichloropropene, Total ND ug/kg 0.49 0.16 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg <	1,2-Dichloropropane	ND		ug/kg	0.98	0.12	1
Tetrachloroethene ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 Bromodichloropropene ND ug/kg 0.98 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.16 1 1,1-Dichloropropene, Total ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg	Dibromochloromethane	ND		ug/kg	0.98	0.14	1
Chlorobenzene ND ug/kg 0.49 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 Bromodichloropropene ND ug/kg 0.98 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 1,3-Dichloropropene ND ug/kg 0.49 0.16 1 1,1-Dichloropropene, Total ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.98 0.54 1 Toluene ND ug/kg 0.98	1,1,2-Trichloroethane	ND		ug/kg	0.98	0.26	1
Trichlorofluoromethane ND ug/kg 3.9 0.68 1 1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.98 0.27 1 is-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.16 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 1,1-Dichloropropene, Total ND	Tetrachloroethene	ND		ug/kg	0.49	0.19	1
1,2-Dichloroethane ND ug/kg 0.98 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Bromodichloromethane ND ug/kg 0.49 0.11 1 Bromodichloropropene ND ug/kg 0.98 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.16 1 1,1-Dichloropropene, Total ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 0.49 0.16 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.54 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 0.98 <	Chlorobenzene	ND		ug/kg	0.49	0.12	1
ND	Trichlorofluoromethane	ND		ug/kg	3.9	0.68	1
Bromodichloromethane ND ug/kg 0.49 0.11 1 trans-1,3-Dichloropropene ND ug/kg 0.98 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.16 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.99 0.16 1 Ethylbenzene ND ug/kg 0.98 0.54 1 Chloromethane ND ug/kg 0.98 0.14 1 Chlorothane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 2.0 0.44	1,2-Dichloroethane	ND		ug/kg	0.98	0.25	1
trans-1,3-Dichloropropene ND ug/kg 0.98 0.27 1 cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.16 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 1,1-Dichloropropene ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 1,1-2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.54 1 Ethylbenzene ND ug/kg 0.98 0.54 1 Chloromethane ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 0.98 0.33 1	1,1,1-Trichloroethane	ND		ug/kg	0.49	0.16	1
cis-1,3-Dichloropropene ND ug/kg 0.49 0.16 1 1,3-Dichloropropene, Total ND ug/kg 0.49 0.16 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.54 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 0.98 0.23 1	Bromodichloromethane	ND		ug/kg	0.49	0.11	1
1,3-Dichloropropene, Total ND ug/kg 0.49 0.16 1 1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.54 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.98 0.23 1	trans-1,3-Dichloropropene	ND		ug/kg	0.98	0.27	1
1,1-Dichloropropene ND ug/kg 0.49 0.16 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.54 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.98 0.23 1	cis-1,3-Dichloropropene	ND		ug/kg	0.49	0.16	1
Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.54 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.98 0.23 1	1,3-Dichloropropene, Total	ND		ug/kg	0.49	0.16	1
1,1,2,2-Tetrachloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.54 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.98 0.23 1	1,1-Dichloropropene	ND		ug/kg	0.49	0.16	1
Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.98 0.54 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.98 0.23 1	Bromoform	ND		ug/kg	3.9	0.24	1
Toluene ND ug/kg 0.98 0.54 1 Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.98 0.23 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	0.49	0.16	1
Ethylbenzene ND ug/kg 0.98 0.14 1 Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.98 0.23 1	Benzene	ND		ug/kg	0.49	0.16	1
Chloromethane ND ug/kg 3.9 0.92 1 Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.98 0.23 1	Toluene	ND		ug/kg	0.98	0.54	1
Bromomethane ND ug/kg 2.0 0.57 1 Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.98 0.23 1	Ethylbenzene	ND		ug/kg	0.98	0.14	1
Vinyl chloride ND ug/kg 0.98 0.33 1 Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.98 0.23 1	Chloromethane	ND		ug/kg	3.9	0.92	1
Chloroethane ND ug/kg 2.0 0.44 1 1,1-Dichloroethene ND ug/kg 0.98 0.23 1	Bromomethane	ND		ug/kg	2.0	0.57	1
1,1-Dichloroethene ND ug/kg 0.98 0.23 1	Vinyl chloride	ND		ug/kg	0.98	0.33	1
-9.19	Chloroethane	ND		ug/kg	2.0	0.44	1
trans-1,2-Dichloroethene ND ug/kg 1.5 0.14 1	1,1-Dichloroethene	ND		ug/kg	0.98	0.23	1
	trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	1

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

SAMPLE RESULTS

Lab ID: L2124281-03 Date Collected: 05/10/21 13:49

Client ID: TP06_051021_12 Date Received: 05/10/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Wes	tborough Lab					
Trichloroethene	ND		ug/kg	0.49	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	1
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.14	1
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	1
Methyl tert butyl ether	ND		ug/kg	2.0	0.20	1
p/m-Xylene	ND		ug/kg	2.0	0.55	1
o-Xylene	ND		ug/kg	0.98	0.29	1
Xylenes, Total	ND		ug/kg	0.98	0.29	1
cis-1,2-Dichloroethene	ND		ug/kg	0.98	0.17	1
1,2-Dichloroethene, Total	ND		ug/kg	0.98	0.14	1
Dibromomethane	ND		ug/kg	2.0	0.23	1
Styrene	ND		ug/kg	0.98	0.19	1
Dichlorodifluoromethane	ND		ug/kg	9.8	0.90	1
Acetone	16		ug/kg	9.8	4.7	1
Carbon disulfide	ND		ug/kg	9.8	4.5	1
2-Butanone	ND		ug/kg	9.8	2.2	1
Vinyl acetate	ND		ug/kg	9.8	2.1	1
4-Methyl-2-pentanone	ND		ug/kg	9.8	1.3	1
1,2,3-Trichloropropane	ND		ug/kg	2.0	0.12	1
2-Hexanone	ND		ug/kg	9.8	1.2	1
Bromochloromethane	ND		ug/kg	2.0	0.20	1
2,2-Dichloropropane	ND		ug/kg	2.0	0.20	1
1,2-Dibromoethane	ND		ug/kg	0.98	0.28	1
1,3-Dichloropropane	ND		ug/kg	2.0	0.16	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.49	0.13	1
Bromobenzene	ND		ug/kg	2.0	0.14	1
n-Butylbenzene	ND		ug/kg	0.98	0.16	1
sec-Butylbenzene	ND		ug/kg	0.98	0.14	1
tert-Butylbenzene	ND		ug/kg	2.0	0.12	1
o-Chlorotoluene	ND		ug/kg	2.0	0.19	1
p-Chlorotoluene	ND		ug/kg	2.0	0.11	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	0.98	1
Hexachlorobutadiene	ND		ug/kg	3.9	0.17	1
Isopropylbenzene	ND		ug/kg	0.98	0.11	1
p-Isopropyltoluene	ND		ug/kg	0.98	0.11	1
Naphthalene	ND		ug/kg	3.9	0.64	1
Acrylonitrile	ND		ug/kg	3.9	1.1	1

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

SAMPLE RESULTS

Lab ID: L2124281-03 Date Collected: 05/10/21 13:49

Client ID: TP06_051021_12 Date Received: 05/10/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Lov	w - Westborough Lab						
n-Propylbenzene	ND		ug/kg	0.98	0.17	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.32	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33	1	
1,4-Dioxane	ND		ug/kg	79	35.	1	
p-Diethylbenzene	ND		ug/kg	2.0	0.17	1	
p-Ethyltoluene	ND		ug/kg	2.0	0.38	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0	0.19	1	
Ethyl ether	ND		ug/kg	2.0	0.34	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.9	1.4	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	127	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	111	70-130	

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number: L2124281

Report Date: 05/17/21

Lab ID: L2124281-04 Date Collected: 05/10/21 00:00 Client ID: Date Received: 05/10/21 TB01_051021 Sample Location: Field Prep: Not Specified BRONX, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/12/21 13:59

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

SAMPLE RESULTS

Lab ID: L2124281-04 Date Collected: 05/10/21 00:00

Client ID: TB01_051021 Date Received: 05/10/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier Unit	s RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab				
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1
p/m-Xylene	ND	ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
Xylenes, Total	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	1
Dibromomethane	ND	ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	1
Acrylonitrile	ND	ug/l	5.0	1.5	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	ND	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
Vinyl acetate	ND	ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
2,2-Dichloropropane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
1,3-Dichloropropane	ND	ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	1
Bromobenzene	ND	ug/l	2.5	0.70	1
n-Butylbenzene	ND	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ug/l	2.5	0.70	1
tert-Butylbenzene	ND	ug/l	2.5	0.70	1
o-Chlorotoluene	ND	ug/l	2.5	0.70	1
p-Chlorotoluene	ND	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Hexachlorobutadiene	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1
Naphthalene	ND	ug/l		0.70	1

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

SAMPLE RESULTS

Lab ID: L2124281-04 Date Collected: 05/10/21 00:00

Client ID: TB01_051021 Date Received: 05/10/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	109	70-130	

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/12/21 08:33

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 0	4 Batch:	WG1497858-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

L2124281

Project Name: 111 WILLOW AVE Lab Number:

Project Number: 170497201 **Report Date:** 05/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/12/21 08:33

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): (04 Batch:	WG1497858-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281

Report Date: 05/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/12/21 08:33

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 04	Batch:	WG1497858-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
1,2-Dichloroethane-d4	98	70-130		
Toluene-d8	98	70-130		
4-Bromofluorobenzene	98	70-130		
Dibromofluoromethane	111	70-130		

L2124281

Project Name: 111 WILLOW AVE Lab Number:

Project Number: 170497201 **Report Date:** 05/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/14/21 20:57

Analyst: LAC

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 Low	- Westbord	ugh Lab fo	r sample(s):	03	Batch:	WG1499288-5
Methylene chloride	ND		ug/kg	5.0		2.3
1,1-Dichloroethane	ND		ug/kg	1.0		0.14
Chloroform	ND		ug/kg	1.5		0.14
Carbon tetrachloride	ND		ug/kg	1.0		0.23
1,2-Dichloropropane	ND		ug/kg	1.0		0.12
Dibromochloromethane	ND		ug/kg	1.0		0.14
1,1,2-Trichloroethane	ND		ug/kg	1.0		0.27
Tetrachloroethene	ND		ug/kg	0.50		0.20
Chlorobenzene	ND		ug/kg	0.50		0.13
Trichlorofluoromethane	ND		ug/kg	4.0		0.70
1,2-Dichloroethane	ND		ug/kg	1.0		0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50		0.17
Bromodichloromethane	ND		ug/kg	0.50		0.11
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.27
cis-1,3-Dichloropropene	ND		ug/kg	0.50		0.16
1,3-Dichloropropene, Total	ND		ug/kg	0.50		0.16
1,1-Dichloropropene	ND		ug/kg	0.50		0.16
Bromoform	ND		ug/kg	4.0		0.25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		0.17
Benzene	ND		ug/kg	0.50		0.17
Toluene	ND		ug/kg	1.0		0.54
Ethylbenzene	ND		ug/kg	1.0		0.14
Chloromethane	ND		ug/kg	4.0		0.93
Bromomethane	1.6	J	ug/kg	2.0		0.58
Vinyl chloride	ND		ug/kg	1.0		0.34
Chloroethane	ND		ug/kg	2.0		0.45
1,1-Dichloroethene	ND		ug/kg	1.0		0.24
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.14
Trichloroethene	ND		ug/kg	0.50		0.14

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/14/21 20:57

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by EPA 5035 Lo	ow - Westbord	ough Lab for sample(s	s): 03	Batch: WG1499288-5
1,2-Dichlorobenzene	ND	ug/kg	2.0	0.14
1,3-Dichlorobenzene	ND	ug/kg	2.0	0.15
1,4-Dichlorobenzene	ND	ug/kg	2.0	0.17
Methyl tert butyl ether	ND	ug/kg	2.0	0.20
p/m-Xylene	ND	ug/kg	2.0	0.56
o-Xylene	ND	ug/kg	1.0	0.29
Xylenes, Total	ND	ug/kg	1.0	0.29
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.18
1,2-Dichloroethene, Total	ND	ug/kg	1.0	0.14
Dibromomethane	ND	ug/kg	2.0	0.24
Styrene	ND	ug/kg	1.0	0.20
Dichlorodifluoromethane	ND	ug/kg	10	0.92
Acetone	ND	ug/kg	10	4.8
Carbon disulfide	ND	ug/kg	10	4.6
2-Butanone	ND	ug/kg	10	2.2
Vinyl acetate	ND	ug/kg	10	2.2
4-Methyl-2-pentanone	ND	ug/kg	10	1.3
1,2,3-Trichloropropane	ND	ug/kg	2.0	0.13
2-Hexanone	ND	ug/kg	10	1.2
Bromochloromethane	ND	ug/kg	2.0	0.20
2,2-Dichloropropane	ND	ug/kg	2.0	0.20
1,2-Dibromoethane	ND	ug/kg	1.0	0.28
1,3-Dichloropropane	ND	ug/kg	2.0	0.17
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.50	0.13
Bromobenzene	ND	ug/kg	2.0	0.14
n-Butylbenzene	ND	ug/kg	1.0	0.17
sec-Butylbenzene	ND	ug/kg	1.0	0.15
tert-Butylbenzene	ND	ug/kg	2.0	0.12
o-Chlorotoluene	ND	ug/kg	2.0	0.19

L2124281

Project Name: 111 WILLOW AVE Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/14/21 20:57

Analyst: LAC

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by EPA 5035 Low	- Westboro	ugh Lab fo	r sample(s):	03	Batch:	WG1499288-5	
p-Chlorotoluene	ND		ug/kg	2.0		0.11	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0	
Hexachlorobutadiene	ND		ug/kg	4.0		0.17	
Isopropylbenzene	ND		ug/kg	1.0		0.11	
p-Isopropyltoluene	ND		ug/kg	1.0		0.11	
Naphthalene	ND		ug/kg	4.0		0.65	
Acrylonitrile	ND		ug/kg	4.0		1.2	
n-Propylbenzene	ND		ug/kg	1.0		0.17	
1,2,3-Trichlorobenzene	ND		ug/kg	2.0		0.32	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		0.27	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		0.19	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		0.33	
1,4-Dioxane	ND		ug/kg	80		35.	
p-Diethylbenzene	ND		ug/kg	2.0		0.18	
p-Ethyltoluene	ND		ug/kg	2.0		0.38	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0		0.19	
Ethyl ether	ND		ug/kg	2.0		0.34	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0		1.4	

	Acceptance						
Surrogate	%Recovery C	•					
1,2-Dichloroethane-d4	120	70-130					
Toluene-d8	105	70-130					
4-Bromofluorobenzene	107	70-130					
Dibromofluoromethane	104	70-130					

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/16/21 17:20

Analyst: AJK

arameter	Result	Qualifier	Units	RL	М	DL
olatile Organics by EPA 5035 Low	- Westboro	ugh Lab fo	r sample(s):	01-02	Batch:	WG1499663-5
Methylene chloride	ND		ug/kg	5.0	:	2.3
1,1-Dichloroethane	ND		ug/kg	1.0	C).14
Chloroform	ND		ug/kg	1.5	C).14
Carbon tetrachloride	ND		ug/kg	1.0	C	0.23
1,2-Dichloropropane	ND		ug/kg	1.0	C).12
Dibromochloromethane	ND		ug/kg	1.0	C).14
1,1,2-Trichloroethane	ND		ug/kg	1.0	C).27
Tetrachloroethene	ND		ug/kg	0.50	C	0.20
Chlorobenzene	ND		ug/kg	0.50	C).13
Trichlorofluoromethane	ND		ug/kg	4.0	C).70
1,2-Dichloroethane	ND		ug/kg	1.0	C	0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50	C).17
Bromodichloromethane	ND		ug/kg	0.50	C).11
trans-1,3-Dichloropropene	ND		ug/kg	1.0	C).27
cis-1,3-Dichloropropene	ND		ug/kg	0.50	C).16
1,3-Dichloropropene, Total	ND		ug/kg	0.50	C).16
1,1-Dichloropropene	ND		ug/kg	0.50	C).16
Bromoform	ND		ug/kg	4.0	C).25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	C).17
Benzene	ND		ug/kg	0.50	C).17
Toluene	ND		ug/kg	1.0	C).54
Ethylbenzene	ND		ug/kg	1.0	C).14
Chloromethane	ND		ug/kg	4.0	C).93
Bromomethane	1.6	J	ug/kg	2.0	C).58
Vinyl chloride	ND		ug/kg	1.0	C).34
Chloroethane	ND		ug/kg	2.0	C).45
1,1-Dichloroethene	ND		ug/kg	1.0	C).24
trans-1,2-Dichloroethene	ND		ug/kg	1.5	C).14
Trichloroethene	ND		ug/kg	0.50	C).14

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/16/21 17:20

Analyst: AJK

arameter	Result	Qualifier	Units	RL	М	DL
olatile Organics by EPA 5035 Low	- Westboro	ugh Lab fo	r sample(s):	01-02	Batch:	WG1499663-5
1,2-Dichlorobenzene	ND		ug/kg	2.0	C).14
1,3-Dichlorobenzene	ND		ug/kg	2.0	C).15
1,4-Dichlorobenzene	ND		ug/kg	2.0	C).17
Methyl tert butyl ether	ND		ug/kg	2.0	C	0.20
p/m-Xylene	ND		ug/kg	2.0	C	0.56
o-Xylene	ND		ug/kg	1.0	C).29
Xylenes, Total	ND		ug/kg	1.0	C).29
cis-1,2-Dichloroethene	ND		ug/kg	1.0	C).18
1,2-Dichloroethene, Total	ND		ug/kg	1.0	C).14
Dibromomethane	ND		ug/kg	2.0	C).24
Styrene	0.28	J	ug/kg	1.0	C	0.20
Dichlorodifluoromethane	ND		ug/kg	10	C).92
Acetone	ND		ug/kg	10		4.8
Carbon disulfide	ND		ug/kg	10		4.6
2-Butanone	ND		ug/kg	10		2.2
Vinyl acetate	ND		ug/kg	10		2.2
4-Methyl-2-pentanone	ND		ug/kg	10		1.3
1,2,3-Trichloropropane	ND		ug/kg	2.0	C).13
2-Hexanone	ND		ug/kg	10		1.2
Bromochloromethane	ND		ug/kg	2.0	C	0.20
2,2-Dichloropropane	ND		ug/kg	2.0	C	0.20
1,2-Dibromoethane	ND		ug/kg	1.0	C).28
1,3-Dichloropropane	ND		ug/kg	2.0	C).17
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.50	C).13
Bromobenzene	ND		ug/kg	2.0	C).14
n-Butylbenzene	ND		ug/kg	1.0	C).17
sec-Butylbenzene	ND		ug/kg	1.0	C).15
tert-Butylbenzene	ND		ug/kg	2.0	C).12
o-Chlorotoluene	ND		ug/kg	2.0	C).19

L2124281

Project Name: 111 WILLOW AVE Lab Number:

Project Number: 170497201 **Report Date:** 05/17/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/16/21 17:20

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by EPA 5035 Low	v - Westboro	ugh Lab for	sample(s):	01-02	Batch: WG1499663	-5
p-Chlorotoluene	ND		ug/kg	2.0	0.11	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0	
Hexachlorobutadiene	ND		ug/kg	4.0	0.17	
Isopropylbenzene	ND		ug/kg	1.0	0.11	
p-Isopropyltoluene	ND		ug/kg	1.0	0.11	
Naphthalene	ND		ug/kg	4.0	0.65	
Acrylonitrile	ND		ug/kg	4.0	1.2	
n-Propylbenzene	ND		ug/kg	1.0	0.17	
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.32	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33	
1,4-Dioxane	ND		ug/kg	80	35.	
p-Diethylbenzene	ND		ug/kg	2.0	0.18	
p-Ethyltoluene	ND		ug/kg	2.0	0.38	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0	0.19	
Ethyl ether	ND		ug/kg	2.0	0.34	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0	1.4	

Acceptance					
%Recovery Qu	ualifier Criteria				
117	70-130				
107	70-130				
108	70-130				
105	70-130				
	117 107 108				

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westl	borough Lab Associated	sample(s): 04	Batch: WG14	197858-3	WG1497858-4				
Methylene chloride	100		100		70-130	0		20	
1,1-Dichloroethane	110		110		70-130	0		20	
Chloroform	100		100		70-130	0		20	
Carbon tetrachloride	96		98		63-132	2		20	
1,2-Dichloropropane	110		110		70-130	0		20	
Dibromochloromethane	100		100		63-130	0		20	
1,1,2-Trichloroethane	100		100		70-130	0		20	
Tetrachloroethene	100		100		70-130	0		20	
Chlorobenzene	100		100		75-130	0		20	
Trichlorofluoromethane	90		98		62-150	9		20	
1,2-Dichloroethane	100		100		70-130	0		20	
1,1,1-Trichloroethane	99		100		67-130	1		20	
Bromodichloromethane	99		100		67-130	1		20	
trans-1,3-Dichloropropene	84		84		70-130	0		20	
cis-1,3-Dichloropropene	95		98		70-130	3		20	
1,1-Dichloropropene	94		93		70-130	1		20	
Bromoform	95		94		54-136	1		20	
1,1,2,2-Tetrachloroethane	100		100		67-130	0		20	
Benzene	99		96		70-130	3		20	
Toluene	100		100		70-130	0		20	
Ethylbenzene	100		100		70-130	0		20	
Chloromethane	97		110		64-130	13		20	
Bromomethane	84		87		39-139	4		20	

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	4 Batch: WG14	197858-3	WG1497858-4			
Vinyl chloride	100		110		55-140	10	20	
Chloroethane	100		110		55-138	10	20	
1,1-Dichloroethene	110		110		61-145	0	20	
trans-1,2-Dichloroethene	110		110		70-130	0	20	
Trichloroethene	97		98		70-130	1	20	
1,2-Dichlorobenzene	100		100		70-130	0	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	85		88		63-130	3	20	
p/m-Xylene	100		100		70-130	0	20	
o-Xylene	100		100		70-130	0	20	
cis-1,2-Dichloroethene	110		110		70-130	0	20	
Dibromomethane	99		98		70-130	1	20	
1,2,3-Trichloropropane	94		95		64-130	1	20	
Acrylonitrile	120		120		70-130	0	20	
Styrene	100		100		70-130	0	20	
Dichlorodifluoromethane	69		75		36-147	8	20	
Acetone	99		98		58-148	1	20	
Carbon disulfide	100		98		51-130	2	20	
2-Butanone	110		100		63-138	10	20	
Vinyl acetate	100		100		70-130	0	20	
4-Methyl-2-pentanone	100		100		59-130	0	20	
2-Hexanone	110		120		57-130	9	20	

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westbor	rough Lab Associated	sample(s): 0	4 Batch: WG1	1497858-3	WG1497858-4		
Bromochloromethane	120		120		70-130	0	20
2,2-Dichloropropane	100		100		63-133	0	20
1,2-Dibromoethane	99		100		70-130	1	20
1,3-Dichloropropane	94		96		70-130	2	20
1,1,1,2-Tetrachloroethane	100		99		64-130	1	20
Bromobenzene	100		100		70-130	0	20
n-Butylbenzene	100		100		53-136	0	20
sec-Butylbenzene	100		100		70-130	0	20
tert-Butylbenzene	110		110		70-130	0	20
o-Chlorotoluene	100		100		70-130	0	20
p-Chlorotoluene	100		100		70-130	0	20
1,2-Dibromo-3-chloropropane	100		100		41-144	0	20
Hexachlorobutadiene	90		90		63-130	0	20
Isopropylbenzene	100		100		70-130	0	20
p-Isopropyltoluene	110		110		70-130	0	20
Naphthalene	110		110		70-130	0	20
n-Propylbenzene	100		100		69-130	0	20
1,2,3-Trichlorobenzene	98		100		70-130	2	20
1,2,4-Trichlorobenzene	96		95		70-130	1	20
1,3,5-Trimethylbenzene	100		99		64-130	1	20
1,2,4-Trimethylbenzene	100		100		70-130	0	20
1,4-Dioxane	152		172	Q	56-162	12	20
p-Diethylbenzene	110		110		70-130	0	20

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 04	Batch: WG	1497858-3	WG1497858-4			
p-Ethyltoluene	100		99		70-130	1		20
1,2,4,5-Tetramethylbenzene	100		100		70-130	0		20
Ethyl ether	93		100		59-134	7		20
trans-1,4-Dichloro-2-butene	95		92		70-130	3		20

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qua	MRecovery Qual	Criteria	_
1,2-Dichloroethane-d4	97	97	70-130	
Toluene-d8	103	103	70-130	
4-Bromofluorobenzene	102	100	70-130	
Dibromofluoromethane	99	101	70-130	

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
latile Organics by EPA 5035 Low - We	stborough Lab Asso	ociated sample	e(s): 03 Batch	: WG149	9288-3 WG14992	288-4	
Methylene chloride	117		114		70-130	3	30
1,1-Dichloroethane	124		120		70-130	3	30
Chloroform	111		107		70-130	4	30
Carbon tetrachloride	102		101		70-130	1	30
1,2-Dichloropropane	115		114		70-130	1	30
Dibromochloromethane	104		105		70-130	1	30
1,1,2-Trichloroethane	113		112		70-130	1	30
Tetrachloroethene	99		95		70-130	4	30
Chlorobenzene	103		102		70-130	1	30
Trichlorofluoromethane	137		126		70-139	8	30
1,2-Dichloroethane	123		120		70-130	2	30
1,1,1-Trichloroethane	109		106		70-130	3	30
Bromodichloromethane	111		111		70-130	0	30
trans-1,3-Dichloropropene	113		112		70-130	1	30
cis-1,3-Dichloropropene	109		109		70-130	0	30
1,1-Dichloropropene	118		115		70-130	3	30
Bromoform	91		96		70-130	5	30
1,1,2,2-Tetrachloroethane	107		109		70-130	2	30
Benzene	117		114		70-130	3	30
Toluene	109		107		70-130	2	30
Ethylbenzene	110		108		70-130	2	30
Chloromethane	186	Q	174	Q	52-130	7	30
Bromomethane	276	Q	253	Q	57-147	9	30

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
platile Organics by EPA 5035 Low - '	Westborough Lab Ass	ociated sam	ole(s): 03 Batch	: WG149	9288-3 WG14992	288-4	
Vinyl chloride	225	Q	202	Q	67-130	11	30
Chloroethane	257	Q	232	Q	50-151	10	30
1,1-Dichloroethene	126		123		65-135	2	30
trans-1,2-Dichloroethene	118		116		70-130	2	30
Trichloroethene	108		107		70-130	1	30
1,2-Dichlorobenzene	98		98		70-130	0	30
1,3-Dichlorobenzene	100		98		70-130	2	30
1,4-Dichlorobenzene	97		96		70-130	1	30
Methyl tert butyl ether	103		103		66-130	0	30
p/m-Xylene	109		106		70-130	3	30
o-Xylene	109		106		70-130	3	30
cis-1,2-Dichloroethene	113		112		70-130	1	30
Dibromomethane	110		111		70-130	1	30
Styrene	114		111		70-130	3	30
Dichlorodifluoromethane	172	Q	166	Q	30-146	4	30
Acetone	114		110		54-140	4	30
Carbon disulfide	145	Q	140	Q	59-130	4	30
2-Butanone	113		115		70-130	2	30
Vinyl acetate	128		129		70-130	1	30
4-Methyl-2-pentanone	98		99		70-130	1	30
1,2,3-Trichloropropane	108		110		68-130	2	30
2-Hexanone	98		100		70-130	2	30
Bromochloromethane	108		109		70-130	1	30

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281

Volatile Organics by EPA 5035 Low - Westborough Lab Associated sample(s): 03 Batch: WG1499288-3 WG149928-3 WG149928-3	Parameter	LCS %Recovery		LCSD ecovery	%Recovery Qual Limits	RPD	RPD Qual Limits
1,2-Dibromoethane 111 113 70-130 2 30 1,3-Dichloropropane 114 114 69-130 0 30 1,1,1,2-Tetrachloroethane 101 100 70-130 1 30 Bromobenzene 94 94 94 70-130 0 30 n-Butylbenzene 112 109 70-130 3 30 sec-Butybenzene 105 104 70-130 1 30 tetr-Butylbenzene 100 98 70-130 2 30 o-Chtorotoluene 110 108 70-130 2 30 p-Chlorotoluene 110 108 70-130 2 30 p-Chlorotoluene 110 108 70-130 2 30 1,2-Dibromo-3-chloropropane 79 81 68-130 3 30 Hexachlorobutadiene 86 84 67-130 2 30 Isopropylbenzene 100 100 70-130 1 30 Naphthalene 84 86 70-130 1 </td <td>Volatile Organics by EPA 5035 Low - Westb</td> <td>orough Lab Ass</td> <td>ociated sample(s):</td> <td>03 Batch:</td> <td>WG1499288-3 WG149928</td> <td>38-4</td> <td></td>	Volatile Organics by EPA 5035 Low - Westb	orough Lab Ass	ociated sample(s):	03 Batch:	WG1499288-3 WG149928	38-4	
1,3-Dichloropropane 114 114 69-130 0 30 1,1,1,2-Tetrachloroethane 101 100 70-130 1 30 Bromobenzene 94 94 70-130 0 30 n-Butylbenzene 112 109 70-130 3 30 sec-Butylbenzene 105 104 70-130 1 30 tetr-Butylbenzene 100 98 70-130 2 30 o-Chlorotoluene 110 108 70-130 2 30 o-Chlorotoluene 110 108 70-130 2 30 p-Chlorotoluene 1110 108 70-130 2 30 1,2-Dibromo-3-chloropropane 79 81 88-130 3 30 Hexachlorobutadiene 86 84 67-130 2 30 Isopropylbenzene 100 100 70-130 0 30 P-Isopropyltoluene 101 100 70-130 1 30 Naphthalene 84 86 70-130 2 3	2,2-Dichloropropane	108		106	70-130	2	30
1.1,1,2-Tetrachloroethane 101 100 70-130 1 30 Bromobenzene 94 94 70-130 0 30 n-Butylbenzene 112 109 70-130 3 30 sec-Butylbenzene 105 104 70-130 1 30 tert-Butylbenzene 100 98 70-130 2 30 o-Chlorotoluene 110 108 70-130 2 30 p-Chlorotoluene 110 108 70-130 2 30 p-Chlorotoluene 110 108 70-130 2 30 1,2-Dibromo-3-chloropropane 79 81 68-130 3 30 Hexachlorobutadiene 86 84 67-130 2 30 Isopropyltoluene 100 100 70-130 0 30 p-Isopropyltoluene 101 100 70-130 1 30 Naphthalene 84 86 70-130 2 30 Naphthalene 84 86 70-130 1 30	1,2-Dibromoethane	111		113	70-130	2	30
Bromobenzene 94 94 70-130 0 30 n-Butylbenzene 112 109 70-130 3 30 sec-Butylbenzene 105 104 70-130 1 30 tert-Butylbenzene 100 98 70-130 2 30 o-Chlorotoluene 110 108 70-130 2 30 p-Chlorotoluene 110 108 70-130 2 30 1,2-Dibromo-3-chloropropane 79 81 68-130 3 30 Hexachlorobutadiene 86 84 67-130 2 30 Isopropylloluene 100 100 70-130 0 30 p-Isopropylloluene 101 100 70-130 1 30 Naphthalene 84 86 70-130 2 30 Acrylonitrile 119 124 70-130 1 30 n-Propylbenzene 107 106 70-130 1 30	1,3-Dichloropropane	114		114	69-130	0	30
n-Butylbenzene 112 109 70-130 3 30 sec-Butylbenzene 105 104 70-130 1 30 tert-Butylbenzene 100 98 70-130 2 30 o-Chlorotoluene 110 108 70-130 2 30 p-Chlorotoluene 110 108 70-130 2 30 1,2-Dibromo-3-chloropropane 79 81 68-130 3 30 Hexachlorobutadiene 86 84 67-130 2 30 Isopropylbenzene 100 100 70-130 0 30 p-Isopropyltoluene 101 100 70-130 1 30 Naphthalene 84 86 70-130 2 30 Acrylonitrile 119 124 70-130 4 30 n-Propylbenzene 107 106 70-130 1 30 1,2,4-Trichlorobenzene 86 84 70-130 2 30	1,1,1,2-Tetrachloroethane	101		100	70-130	1	30
Sec-Butylbenzene 105 104 70-130 1 30 tert-Butylbenzene 100 98 70-130 2 30 o-Chlorotoluene 110 108 70-130 2 30 p-Chlorotoluene 110 108 70-130 2 30 1,2-Dibromo-3-chloropropane 79 81 68-130 3 30 Hexachlorobutadiene 86 84 67-130 2 30 Isopropylbenzene 100 100 70-130 0 30 p-Isopropyltoluene 101 100 70-130 1 30 Naphthalene 84 86 70-130 2 30 Acrylonitrile 119 124 70-130 4 30 n-Propylbenzene 107 106 70-130 1 30 1,2,3-Trichlorobenzene 86 84 70-130 2 30 1,2,4-Trimethylbenzene 103 102 70-130 1 <td< td=""><td>Bromobenzene</td><td>94</td><td></td><td>94</td><td>70-130</td><td>0</td><td>30</td></td<>	Bromobenzene	94		94	70-130	0	30
tert-Butylbenzene 100 98 70-130 2 30 o-Chlorotoluene 110 108 70-130 2 30 p-Chlorotoluene 1110 108 70-130 2 30 1,2-Dibromo-3-chloropropane 79 81 68-130 3 30 Hexachlorobutadiene 86 84 67-130 2 30 Isopropylbenzene 100 100 70-130 0 30 p-Isopropyltoluene 101 100 70-130 1 30 Naphthalene 84 86 70-130 2 30 Acrylonitrile 119 124 70-130 4 30 n-Propylbenzene 107 106 70-130 1 30 1,2,3-Trichlorobenzene 86 84 70-130 2 30 1,2,4-Trimethylbenzene 103 102 70-130 1 30 1,2,4-Trimethylbenzene 106 103 70-130 3	n-Butylbenzene	112		109	70-130	3	30
o-Chlorotoluene 110 108 70-130 2 30 p-Chlorotoluene 110 108 70-130 2 30 1,2-Dibromo-3-chloropropane 79 81 68-130 3 30 Hexachlorobutadiene 86 84 67-130 2 30 Isopropylbenzene 100 100 70-130 0 30 p-Isopropyltoluene 101 100 70-130 1 30 Naphthalene 84 86 70-130 2 30 Acrylonitrile 119 124 70-130 4 30 n-Propylbenzene 107 106 70-130 1 30 1,2,3-Trichlorobenzene 86 84 70-130 2 30 1,2,4-Trichlorobenzene 86 84 70-130 2 30 1,3,5-Trimethylbenzene 103 102 70-130 1 30 1,2,4-Trimethylbenzene 106 103 70-130 3	sec-Butylbenzene	105		104	70-130	1	30
p-Chlorotoluene 110 108 70-130 2 30 1,2-Dibromo-3-chloropropane 79 81 68-130 3 30 Hexachlorobutadiene 86 84 67-130 2 30 Isopropylbenzene 100 100 70-130 0 30 p-Isopropyltoluene 101 100 70-130 1 30 Naphthalene 84 86 70-130 2 30 Acrylonitrile 119 124 70-130 4 30 n-Propylbenzene 107 106 70-130 1 30 1,2,3-Trichlorobenzene 86 84 70-130 2 30 1,2,4-Trichlorobenzene 86 84 70-130 2 30 1,3,5-Trimethylbenzene 103 102 70-130 1 30 1,2,4-Trimethylbenzene 106 103 70-130 3 30 1,4-Dioxane 90 87 65-136 3	tert-Butylbenzene	100		98	70-130	2	30
1,2-Dibromo-3-chloropropane 79 81 68-130 3 30 Hexachlorobutadiene 86 84 67-130 2 30 Isopropylbenzene 100 100 70-130 0 30 p-Isopropyltoluene 101 100 70-130 1 30 Naphthalene 84 86 70-130 2 30 Acrylonitrile 119 124 70-130 4 30 n-Propylbenzene 107 106 70-130 1 30 1,2,3-Trichlorobenzene 86 84 70-130 2 30 1,2,4-Trichlorobenzene 86 84 70-130 2 30 1,3,5-Trimethylbenzene 103 102 70-130 1 30 1,2,4-Trimethylbenzene 106 103 70-130 3 30 1,4-Dioxane 90 87 65-136 3 30	o-Chlorotoluene	110		108	70-130	2	30
Hexachlorobutadiene 86 84 67-130 2 30 Isopropylbenzene 100 100 70-130 0 30 p-Isopropyltoluene 101 100 70-130 1 30 Naphthalene 84 86 70-130 2 30 Acrylonitrile 119 124 70-130 4 30 n-Propylbenzene 107 106 70-130 1 30 1,2,3-Trichlorobenzene 86 84 70-130 2 30 1,2,4-Trichlorobenzene 86 84 70-130 2 30 1,3,5-Trimethylbenzene 103 102 70-130 1 30 1,2,4-Trimethylbenzene 106 103 70-130 3 30 1,4-Dioxane 90 87 65-136 3 30	p-Chlorotoluene	110		108	70-130	2	30
Isopropylbenzene 100 100 70-130 0 30 p-Isopropyltoluene 101 100 70-130 1 30 Naphthalene 84 86 70-130 2 30 Acrylonitrile 119 124 70-130 4 30 n-Propylbenzene 107 106 70-130 1 30 1,2,3-Trichlorobenzene 86 84 70-130 2 30 1,2,4-Trichlorobenzene 86 84 70-130 2 30 1,3,5-Trimethylbenzene 103 102 70-130 1 30 1,2,4-Trimethylbenzene 106 103 70-130 3 30 1,4-Dioxane 90 87 65-136 3 30	1,2-Dibromo-3-chloropropane	79		81	68-130	3	30
p-Isopropyltoluene 101 100 70-130 1 30 Naphthalene 84 86 70-130 2 30 Acrylonitrile 119 124 70-130 4 30 n-Propylbenzene 107 106 70-130 1 30 1,2,3-Trichlorobenzene 86 84 70-130 2 30 1,2,4-Trichlorobenzene 86 84 70-130 2 30 1,3,5-Trimethylbenzene 103 102 70-130 1 30 1,2,4-Trimethylbenzene 106 103 70-130 3 30 1,2,4-Trimethylbenzene 106 103 70-130 3 30 1,4-Dioxane 90 87 65-136 3 30	Hexachlorobutadiene	86		84	67-130	2	30
Naphthalene 84 86 70-130 2 30 Acrylonitrile 119 124 70-130 4 30 n-Propylbenzene 107 106 70-130 1 30 1,2,3-Trichlorobenzene 86 84 70-130 2 30 1,2,4-Trichlorobenzene 86 84 70-130 2 30 1,3,5-Trimethylbenzene 103 102 70-130 1 30 1,2,4-Trimethylbenzene 106 103 70-130 3 30 1,4-Dioxane 90 87 65-136 3 30	Isopropylbenzene	100		100	70-130	0	30
Acrylonitrile 119 124 70-130 4 30 n-Propylbenzene 107 106 70-130 1 30 1,2,3-Trichlorobenzene 86 84 70-130 2 30 1,2,4-Trichlorobenzene 86 84 70-130 2 30 1,3,5-Trimethylbenzene 103 102 70-130 1 30 1,2,4-Trimethylbenzene 106 103 70-130 3 30 1,4-Dioxane 90 87 65-136 3 30	p-Isopropyltoluene	101		100	70-130	1	30
n-Propylbenzene 107 106 70-130 1 30 1,2,3-Trichlorobenzene 86 84 70-130 2 30 1,2,4-Trichlorobenzene 86 84 70-130 2 30 1,3,5-Trimethylbenzene 103 102 70-130 1 30 1,2,4-Trimethylbenzene 106 103 70-130 3 30 1,4-Dioxane 90 87 65-136 3 30	Naphthalene	84		86	70-130	2	30
1,2,3-Trichlorobenzene 86 84 70-130 2 30 1,2,4-Trichlorobenzene 86 84 70-130 2 30 1,3,5-Trimethylbenzene 103 102 70-130 1 30 1,2,4-Trimethylbenzene 106 103 70-130 3 30 1,4-Dioxane 90 87 65-136 3 30	Acrylonitrile	119		124	70-130	4	30
1,2,4-Trichlorobenzene 86 84 70-130 2 30 1,3,5-Trimethylbenzene 103 102 70-130 1 30 1,2,4-Trimethylbenzene 106 103 70-130 3 30 1,4-Dioxane 90 87 65-136 3 30	n-Propylbenzene	107		106	70-130	1	30
1,3,5-Trimethylbenzene 103 102 70-130 1 30 1,2,4-Trimethylbenzene 106 103 70-130 3 30 1,4-Dioxane 90 87 65-136 3 30	1,2,3-Trichlorobenzene	86		84	70-130	2	30
1,2,4-Trimethylbenzene 106 103 70-130 3 30 1,4-Dioxane 90 87 65-136 3 30	1,2,4-Trichlorobenzene	86		84	70-130	2	30
1,4-Dioxane 90 87 65-136 3 30	1,3,5-Trimethylbenzene	103		102	70-130	1	30
	1,2,4-Trimethylbenzene	106		103	70-130	3	30
70.420 20 20	1,4-Dioxane	90		87	65-136	3	30
p-Dietriyibenzene 101 98 70-130 3	p-Diethylbenzene	101		98	70-130	3	30

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281

Parameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits		
Volatile Organics by EPA 5035 Low - Westborough Lab Associated sample(s): 03 Batch: WG1499288-3 WG1499288-4										
p-Ethyltoluene	103		102		70-130	1		30		
1,2,4,5-Tetramethylbenzene	96		95		70-130	1		30		
Ethyl ether	123		122		67-130	1		30		
trans-1,4-Dichloro-2-butene	119		118		70-130	1		30		

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	113	110	70-130	
Toluene-d8	104	103	70-130	
4-Bromofluorobenzene	99	99	70-130	
Dibromofluoromethane	98	98	70-130	

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - Westh	oorough Lab Asso	ociated samp	le(s): 01-02 Bat	ch: WG1	499663-3 WG14	99663-4	
Methylene chloride	116		116		70-130	0	30
1,1-Dichloroethane	126		124		70-130	2	30
Chloroform	111		110		70-130	1	30
Carbon tetrachloride	102		101		70-130	1	30
1,2-Dichloropropane	117		117		70-130	0	30
Dibromochloromethane	102		106		70-130	4	30
1,1,2-Trichloroethane	111		114		70-130	3	30
Tetrachloroethene	97		98		70-130	1	30
Chlorobenzene	103		103		70-130	0	30
Trichlorofluoromethane	132		126		70-139	5	30
1,2-Dichloroethane	120		121		70-130	1	30
1,1,1-Trichloroethane	109		108		70-130	1	30
Bromodichloromethane	110		111		70-130	1	30
trans-1,3-Dichloropropene	111		114		70-130	3	30
cis-1,3-Dichloropropene	110		112		70-130	2	30
1,1-Dichloropropene	120		118		70-130	2	30
Bromoform	94		99		70-130	5	30
1,1,2,2-Tetrachloroethane	110		114		70-130	4	30
Benzene	117		116		70-130	1	30
Toluene	109		110		70-130	1	30
Ethylbenzene	111		110		70-130	1	30
Chloromethane	185	Q	180	Q	52-130	3	30
Bromomethane	233	Q	218	Q	57-147	7	30

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - Westb	orough Lab Ass	sociated samp	ole(s): 01-02 Ba	tch: WG1	499663-3 WG14	99663-4	
Vinyl chloride	216	Q	211	Q	67-130	2	30
Chloroethane	242	Q	238	Q	50-151	2	30
1,1-Dichloroethene	128		124		65-135	3	30
trans-1,2-Dichloroethene	119		117		70-130	2	30
Trichloroethene	109		109		70-130	0	30
1,2-Dichlorobenzene	98		99		70-130	1	30
1,3-Dichlorobenzene	100		100		70-130	0	30
1,4-Dichlorobenzene	98		98		70-130	0	30
Methyl tert butyl ether	105		104		66-130	1	30
p/m-Xylene	108		106		70-130	2	30
o-Xylene	109		106		70-130	3	30
cis-1,2-Dichloroethene	114		112		70-130	2	30
Dibromomethane	111		111		70-130	0	30
Styrene	111		109		70-130	2	30
Dichlorodifluoromethane	166	Q	162	Q	30-146	2	30
Acetone	116		114		54-140	2	30
Carbon disulfide	146	Q	144	Q	59-130	1	30
2-Butanone	118		119		70-130	1	30
Vinyl acetate	128		129		70-130	1	30
4-Methyl-2-pentanone	103		107		70-130	4	30
1,2,3-Trichloropropane	111		117		68-130	5	30
2-Hexanone	104		106		70-130	2	30
Bromochloromethane	107		107		70-130	0	30

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281

arameter	LCS %Recovery Qu	LCSD ual %Recovery C	%Recovery Qual Limits	RPD	RPD Qual Limits
platile Organics by EPA 5035 Low - We	stborough Lab Associate	d sample(s): 01-02 Batch:	WG1499663-3 WG149	9663-4	
2,2-Dichloropropane	108	107	70-130	1	30
1,2-Dibromoethane	109	114	70-130	4	30
1,3-Dichloropropane	114	116	69-130	2	30
1,1,1,2-Tetrachloroethane	100	99	70-130	1	30
Bromobenzene	96	97	70-130	1	30
n-Butylbenzene	114	114	70-130	0	30
sec-Butylbenzene	108	108	70-130	0	30
tert-Butylbenzene	102	101	70-130	1	30
o-Chlorotoluene	112	112	70-130	0	30
p-Chlorotoluene	111	111	70-130	0	30
1,2-Dibromo-3-chloropropane	80	84	68-130	5	30
Hexachlorobutadiene	85	85	67-130	0	30
Isopropylbenzene	105	104	70-130	1	30
p-Isopropyltoluene	104	104	70-130	0	30
Naphthalene	88	92	70-130	4	30
Acrylonitrile	123	123	70-130	0	30
n-Propylbenzene	110	110	70-130	0	30
1,2,3-Trichlorobenzene	87	88	70-130	1	30
1,2,4-Trichlorobenzene	87	87	70-130	0	30
1,3,5-Trimethylbenzene	106	105	70-130	1	30
1,2,4-Trimethylbenzene	107	107	70-130	0	30
1,4-Dioxane	89	94	65-136	5	30
p-Diethylbenzene	103	102	70-130	1	30

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2124281

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by EPA 5035 Low - Westborough Lab Associated sample(s): 01-02 Batch: WG1499663-3 WG1499663-4									
p-Ethyltoluene	107		106		70-130	1		30	
1,2,4,5-Tetramethylbenzene	98		98		70-130	0		30	
Ethyl ether	124		125		67-130	1		30	
trans-1,4-Dichloro-2-butene	119		122		70-130	2		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	111	111	70-130
Toluene-d8	104	103	70-130
4-Bromofluorobenzene	105	103	70-130
Dibromofluoromethane	100	97	70-130

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: 111 WILLOW AVE

L2124281 Report Date: **Project Number:** 05/17/21 170497201

SAMPLE RESULTS

Lab ID: Date Collected: L2124281-01 05/10/21 10:40

Client ID: Date Received: TP03_051021_10 05/10/21 Not Specified Sample Location: BRONX, NY Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lab)								
Solids, Total	83.0		%	0.100	NA	1	-	05/12/21 12:28	121,2540G	RI

Project Name: 111 WILLOW AVE

Project Number: 170497201 Lab Number:

L2124281

Report Date: 05/17/21

SAMPLE RESULTS

Lab ID: L2124281-02

Client ID: TP05_051021_10 Date Collected:

05/10/21 13:18

Date Received:

05/10/21

Sample Location: BRONX, NY

Field Prep:

Not Specified

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Solids, Total	79.9		%	0.100	NA	1	-	05/12/21 12:28	121,2540G	RI

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number:

L2124281

Report Date: 05/17/21

SAMPLE RESULTS

Lab ID: L2124281-03

Client ID: TP06_051021_12 Sample Location: BRONX, NY

Date Collected:

05/10/21 13:49

05/10/21

51021_12 Date Received:

Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab									
Solids, Total	81.4		%	0.100	NA	1	-	05/12/21 12:28	121,2540G	RI

L2124281

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

05/17/21 Project Number: 170497201 Report Date:

Parameter	Native Sam	ple D	ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	QC Batch ID:	WG1497796-1	QC Sample:	L2120474-01	Client ID:	DUP Sample
Solids, Total	90.8		91.1	%	0		20

Project Name:

111 WILLOW AVE

111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2124281-01A	Vial MeOH preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260HLW(14)
L2124281-01B	Vial water preserved	Α	NA		4.4	Υ	Absent	11-MAY-21 16:14	NYTCL-8260HLW(14)
L2124281-01C	Vial water preserved	Α	NA		4.4	Υ	Absent	11-MAY-21 16:14	NYTCL-8260HLW(14)
L2124281-01D	Plastic 2oz unpreserved for TS	Α	NA		4.4	Υ	Absent		TS(7)
L2124281-02A	Vial MeOH preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260HLW(14)
L2124281-02B	Vial water preserved	Α	NA		4.4	Υ	Absent	11-MAY-21 16:14	NYTCL-8260HLW(14)
L2124281-02C	Vial water preserved	Α	NA		4.4	Υ	Absent	11-MAY-21 16:14	NYTCL-8260HLW(14)
L2124281-02D	Plastic 2oz unpreserved for TS	Α	NA		4.4	Υ	Absent		TS(7)
L2124281-03A	Vial MeOH preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260HLW(14)
L2124281-03B	Vial water preserved	Α	NA		4.4	Υ	Absent	11-MAY-21 16:14	NYTCL-8260HLW(14)
L2124281-03C	Vial water preserved	Α	NA		4.4	Υ	Absent	11-MAY-21 16:14	NYTCL-8260HLW(14)
L2124281-03D	Plastic 2oz unpreserved for TS	Α	NA		4.4	Υ	Absent		TS(7)
L2124281-04A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260(14)
L2124281-04B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260(14)

YES

Project Name: 111 WILLOW AVE Lab Number: L2124281

Project Number: 170497201 **Report Date:** 05/17/21

GLOSSARY

Acronyms

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid Phase Microsystection (SPME)

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: 111 WILLOW AVE Lab Number: L2124281
Project Number: 170497201 Report Date: 05/17/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:111 WILLOW AVELab Number:L2124281Project Number:170497201Report Date:05/17/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: 111 WILLOW AVE Lab Number: L2124281
Project Number: 170497201 Report Date: 05/17/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ΔLPHA	NEW YORK CHAIN OF CUSTODY	Service Center Mahwah, NJ 074 Albany, NY 1220 Tonawanda, NY	30: 35 Whitney 5: 14 Walker Wa	ay	95	Page			Date F	ec'd	111	12		ALPHA JOB# 81	
Westborough, MA 01561	Mansfield, MA 02048	Project Info	ormation	W. Bright	PURME		1000	Deliv	erables			1		Billing Information	N/S
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name	MEDICAL PROPERTY.	villowA	No			ПП	ASP-A			ASP-	В	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Locat		onx, A				ī		(1 File)			S (4 File)	PO#	
Client Information	C 75 C	Project #	17049		4			1 1	Other	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			- (- , ,,,,,,	177	
Client: / ar ça	0	(Use Project	-					Regu		lequirem	ent	16 16	7000	Disposal Site Information	100
	3194 St X451)	Project Mana			/s /	6			NY TO	me-inter-mon		NY Pa	et 375		
		ALPHAQuote	ger. DT	MIT MI	12) goor	noopei	angan com	님		andards	L	NY C		Please identify below location applicable disposal facilities.	of
- NY , NY	9-5400	The same of the sa	THE RESERVE TO THE PARTY OF THE		F - F - S - S - S - S - S - S - S - S -	- SWEET							01		
	1-3700	Turn-Arour	THE RESERVE TO SERVE THE PARTY OF THE PARTY			E lotte		님		tricted Use	-	Other		Disposal Facility:	
Fax:	nl	B	Standard		Due Date:			ᅵᆜ		estricted U				□ NJ □ NY	
	elangan o com	Rush (only if	pre approved)		# of Days:			Ш	-	wer Disch	arge			Other:	-
These samples have be			⊔					ANA	LYSIS		_			Sample Filtration	T
Other project specific	se also email		owitz@	Olangun.	com			/ms						Done Lab to do Preservation Lab to do (Please Specify below)	t a l B o
ALPHA Lab ID		W.S		Colle	ection	Sample	Sampler's	1							t
(Lab Use Only)	Sa	ample ID		Date	Time	Matrix	Initials							Sample Specific Comments	
24281-4	TP03-0	51021-	10 Um	5 10001	10:40	5	F3	V			+			HOUN	
	TP6S_C		10 1444	5 10/201		3	FB	1		_	+	1	\vdash	HOLK	+
-13	TP66_0		12 10-02	1202031	13:49	2		1		_	+		\vdash	HOLD	+
-74	TBQ_C		12000		15:00	no	PB	V		_	+		-	FlaB	+
	1592	231021		2/10/301	15.00	AQ								Hat	
TO THE REAL PROPERTY.															
Preservative Code: Container Code Westboro: Certification A = None P = Plastic Westboro: Certification B = HCI A = Amber Glass Mansfield: Certification C = HNO3 V = Vial				Container Type										Please print clearly, legi and completely. Sample not be logged in and	es can
D 10004	G = Glass B = Bacteria Cup					P	reservative							turnaround time clock w	
E 110011	C = Cube	Relinquished By: Date/Time						Danah.	and Day	_	+	Data	/Time	start until any ambiguitie resolved. BY EXECUTIF	
G = NaHSO ₄	O = Other E = Encore						1	recen	ed By:		5/	-	/Time /744	THIS COC, THE CLIEN	
H = Na ₂ S ₂ O ₃	E = Encore D = BOD Bottle	91	7 7		5 10 362	1744	020	ye	Way	1	5/	1		HAS READ AND AGRE	ES
K/E = Zn Ac/NaOH O = Other		Mor	1 Na	may	5/10/2, 5/11/21	1886	83ln	100	AA	10		0/21	23:00	TO BE BOUND BY ALP TERMS & CONDITIONS	
		701	716	41 -	2111101	116:50	10 7/1/		192/	7	6/1	17.71	02150	TERMS & CONDITIONS	O.

ANALYTICAL REPORT

Lab Number: L2128064

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor

New York, NY 10001-2727

ATTN: Stuart Knoop Phone: (212) 479-5400

Project Name: 111 WILLOW AVE

Project Number: 170497201

Report Date: 06/02/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 111 WILLOW AVE

Project Number: 170497201

 Lab Number:
 L2128064

 Report Date:
 06/02/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2128064-01	RDB-01_7-8	SOIL	BRONX, NY	05/26/21 09:20	05/26/21
L2128064-02	RDB-03_9-10	SOIL	BRONX, NY	05/26/21 10:08	05/26/21
L2128064-03	RDB-05_10-11	SOIL	BRONX, NY	05/26/21 12:50	05/26/21
L2128064-04	RDB-06_8-9	SOIL	BRONX, NY	05/26/21 10:50	05/26/21
L2128064-05	RDB-07_9-10	SOIL	BRONX, NY	05/26/21 12:40	05/26/21
L2128064-06	RDB-08_9-10	SOIL	BRONX, NY	05/26/21 13:30	05/26/21
L2128064-07	RDB-09_9-10	SOIL	BRONX, NY	05/26/21 11:42	05/26/21
L2128064-08	RDB-10_8-9	SOIL	BRONX, NY	05/26/21 13:50	05/26/21
L2128064-09	RDB-11_9-10	SOIL	BRONX, NY	05/26/21 08:40	05/26/21
L2128064-10	RDB-04_8-9	SOIL	BRONX, NY	05/26/21 14:20	05/26/21
L2128064-11	TMW-11_052621	WATER	BRONX, NY	05/26/21 14:20	05/26/21
L2128064-12	FB01_052621	WATER	BRONX, NY	05/26/21 14:30	05/26/21
L2128064-13	TB01_052621	WATER	BRONX, NY	05/26/21 14:30	05/26/21

Project Name: 111 WILLOW AVE Lab Number: L2128064
Project Number: 170497201 Report Date: 06/02/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.								

Project Name: 111 WILLOW AVE Lab Number: L2128064

Project Number: 170497201 Report Date: 06/02/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2128064-10: A sample container identified as "RDB-04_8-9" for Total Solids was listed on the Chain of Custody, but not received. This was verified by the client. At the client's request, the Total Solids result reported is the average of the submitted samples.

Volatile Organics

L2128064-04, -05, -08, and -10: One or more of the internal standard and surrogate recoveries are outside the acceptance criteria; however, the internal standard and surrogates are within criteria for the target compounds; therefore, the results are reported.

L2128064-06: The internal standard (IS) response(s) for chlorobenzene-d5 (48%), and 1,4-dichlorobenzene-d4 (39%) were below the acceptance criteria; however, re-analysis achieved similar results: chlorobenzene-d5 (45%), and 1,4-dichlorobenzene-d4 (36%). The results of both analyses are reported.

L2128064-07: The internal standard (IS) response(s) for chlorobenzene-d5 (49%), and 1,4-dichlorobenzene-d4 (41%) were below the acceptance criteria; however, re-analysis achieved similar results: chlorobenzene-d5 (44%), and 1,4-dichlorobenzene-d4 (37%). The results of both analyses are reported.

L2128064-09: The internal standard (IS) response(s) for chlorobenzene-d5 (46%), and 1,4-dichlorobenzene-d4 (37%) were below the acceptance criteria; however, re-analysis achieved similar results: chlorobenzene-d5 (43%), and 1,4-dichlorobenzene-d4 (35%). The results of both analyses are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/02/21

Custen Walker Cristin Walker

ORGANICS

VOLATILES

L2128064

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Report Date: 06/02/21

Lab Number:

SAIIII EE NEGOL

Lab ID: L2128064-01 Date Collected: 05/26/21 09:20

Client ID: RDB-01_7-8 Date Received: 05/26/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 06/02/21 08:46

Analyst: MV Percent Solids: 80%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 I	_ow - Westborough Lab						
1,1-Dichloroethane	ND		ug/kg	0.99	0.14	1	
Tetrachloroethene	19		ug/kg	0.50	0.19	1	
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.16	1	
Vinyl chloride	ND		ug/kg	0.99	0.33	1	
1,1-Dichloroethene	ND		ug/kg	0.99	0.24	1	
Trichloroethene	ND		ug/kg	0.50	0.14	1	
cis-1,2-Dichloroethene	ND		ua/ka	0.99	0.17	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	108	70-130	

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number: L2128064

Report Date: 06/02/21

Lab ID: L2128064-02 Date Collected: 05/26/21 10:08

Client ID: Date Received: 05/26/21 RDB-03_9-10 Field Prep: Sample Location: BRONX, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 06/02/21 09:07

Analyst: MV 84% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - W	estborough Lab					
1,1-Dichloroethane	ND		ug/kg	0.96	0.14	1
Tetrachloroethene	4.2		ug/kg	0.48	0.19	1
1,1,1-Trichloroethane	ND		ug/kg	0.48	0.16	1
Vinyl chloride	ND		ug/kg	0.96	0.32	1
1,1-Dichloroethene	ND		ug/kg	0.96	0.23	1
Trichloroethene	ND		ug/kg	0.48	0.13	1
cis-1,2-Dichloroethene	ND		ug/kg	0.96	0.17	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	109	70-130	

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

L2128064

Lab Number:

Report Date: 06/02/21

Lab ID: L2128064-03 Date Collected: 05/26/21 12:50

RDB-05_10-11 Client ID: Date Received: 05/26/21 Field Prep: Sample Location: BRONX, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 06/02/21 09:28

Analyst: MV 84% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 L	ow - Westborough Lab						
1,1-Dichloroethane	ND		ug/kg	0.98	0.14	1	
Tetrachloroethene	92		ug/kg	0.49	0.19	1	
1,1,1-Trichloroethane	0.72		ug/kg	0.49	0.16	1	
Vinyl chloride	ND		ug/kg	0.98	0.33	1	
1,1-Dichloroethene	ND		ug/kg	0.98	0.23	1	
Trichloroethene	5.3		ug/kg	0.49	0.13	1	
cis-1,2-Dichloroethene	5.6		ug/kg	0.98	0.17	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	103	70-130	

L2128064

Not Specified

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Report Date: 06/02/21

Lab Number:

Lab ID: L2128064-04

Client ID: RDB-06_8-9 Sample Location: BRONX, NY Date Collected: 05/26/21 10:50 Date Received: 05/26/21 Field Prep:

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 06/02/21 09:49

Analyst: MV86% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 I	Low - Westborough Lab						
1,1-Dichloroethane	ND		ug/kg	0.92	0.13	1	
Tetrachloroethene	42		ug/kg	0.46	0.18	1	
1,1,1-Trichloroethane	0.54		ug/kg	0.46	0.15	1	
Vinyl chloride	ND		ug/kg	0.92	0.31	1	
1,1-Dichloroethene	ND		ug/kg	0.92	0.22	1	
Trichloroethene	3.4		ug/kg	0.46	0.13	1	
cis-1,2-Dichloroethene	4.5		ug/kg	0.92	0.16	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	108	70-130	

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

L2128064

Lab Number:

Report Date: 06/02/21

Lab ID: L2128064-05 Date Collected: 05/26/21 12:40

Client ID: Date Received: 05/26/21 RDB-07_9-10 Field Prep: Sample Location: BRONX, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 06/02/21 10:30

Analyst: MV 84% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lov	w - Westborough Lab					
1,1-Dichloroethane	1.5		ug/kg	0.94	0.14	1
Tetrachloroethene	160		ug/kg	0.47	0.18	1
1,1,1-Trichloroethane	1.0		ug/kg	0.47	0.16	1
Vinyl chloride	ND		ug/kg	0.94	0.32	1
1,1-Dichloroethene	ND		ug/kg	0.94	0.22	1
Trichloroethene	8.9		ug/kg	0.47	0.13	1
cis-1,2-Dichloroethene	38		ug/kg	0.94	0.16	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	101	70-130	

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number: L2128064

Report Date: 06/02/21

Lab ID: L2128064-06 Date Collected: 05/26/21 13:30

Client ID: Date Received: 05/26/21 RDB-08_9-10 Field Prep: Sample Location: BRONX, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 06/02/21 10:51

Analyst: MV79% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - V	Vestborough Lab					
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1
Tetrachloroethene	ND		ug/kg	0.53	0.21	1
1,1,1-Trichloroethane	ND		ug/kg	0.53	0.18	1
Vinyl chloride	ND		ug/kg	1.0	0.35	1
1,1-Dichloroethene	ND		ug/kg	1.0	0.25	1
Trichloroethene	ND		ug/kg	0.53	0.14	1
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	115	70-130	

Project Name: 111 WILLOW AVE Lab Number: L2128064

Project Number: 170497201 **Report Date:** 06/02/21

SAMPLE RESULTS

Lab ID: L2128064-06 R Date Collected: 05/26/21 13:30

Client ID: RDB-08_9-10 Date Received: 05/26/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 06/02/21 13:39

Analyst: MKS Percent Solids: 79%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low	- Westborough Lab					
1,1-Dichloroethane	ND		ug/kg	1.6	0.23	1
Tetrachloroethene	ND		ug/kg	0.78	0.31	1
1,1,1-Trichloroethane	ND		ug/kg	0.78	0.26	1
Vinyl chloride	ND		ug/kg	1.6	0.52	1
1,1-Dichloroethene	ND		ug/kg	1.6	0.37	1
Trichloroethene	ND		ug/kg	0.78	0.21	1
cis-1,2-Dichloroethene	ND		ug/kg	1.6	0.27	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	123	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	118	70-130	

L2128064

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number:

Report Date: 06/02/21

Lab ID: L2128064-07 Date Collected: 05/26/21 11:42

Client ID: Date Received: 05/26/21 RDB-09_9-10 Field Prep: Sample Location: Not Specified BRONX, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 06/02/21 11:12

Analyst: MV77% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 I	Low - Westborough Lab						
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1	
Tetrachloroethene	1.5		ug/kg	0.53	0.21	1	
1,1,1-Trichloroethane	0.99		ug/kg	0.53	0.18	1	
Vinyl chloride	ND		ug/kg	1.1	0.36	1	
1,1-Dichloroethene	ND		ug/kg	1.1	0.25	1	
Trichloroethene	ND		ug/kg	0.53	0.15	1	
cis-1,2-Dichloroethene	6.1		ug/kg	1.1	0.19	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	111	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	111	70-130	

L2128064

Project Name: 111 WILLOW AVE Lab Number:

Project Number: 170497201 **Report Date:** 06/02/21

SAMPLE RESULTS

Lab ID: L2128064-07 R Date Collected: 05/26/21 11:42

Client ID: RDB-09_9-10 Date Received: 05/26/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 06/02/21 13:59

Analyst: MKS Percent Solids: 77%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lo	ow - Westborough Lab					
1,1-Dichloroethane	ND		ug/kg	1.2	0.17	1
Tetrachloroethene	0.67		ug/kg	0.60	0.23	1
1,1,1-Trichloroethane	ND		ug/kg	0.60	0.20	1
Vinyl chloride	ND		ug/kg	1.2	0.40	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.28	1
Trichloroethene	ND		ug/kg	0.60	0.16	1
cis-1,2-Dichloroethene	9.0		ug/kg	1.2	0.21	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	112	70-130	

L2128064

06/02/21

05/26/21 13:50

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected:

Lab ID: L2128064-08

Client ID: Date Received: 05/26/21 RDB-10_8-9 Field Prep: Sample Location: BRONX, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 06/02/21 11:33

Analyst: MV83% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 L	ow - Westborough Lab					
1,1-Dichloroethane	ND		ug/kg	0.97	0.14	1
Tetrachloroethene	20		ug/kg	0.48	0.19	1
1,1,1-Trichloroethane	ND		ug/kg	0.48	0.16	1
Vinyl chloride	ND		ug/kg	0.97	0.32	1
1,1-Dichloroethene	ND		ug/kg	0.97	0.23	1
Trichloroethene	2.1		ug/kg	0.48	0.13	1
cis-1,2-Dichloroethene	1.4		ug/kg	0.97	0.17	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	111	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	109	70-130	

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number: L2128064

Report Date: 06/02/21

Lab ID: L2128064-09 Date Collected: 05/26/21 08:40

Client ID: Date Received: 05/26/21 RDB-11_9-10 Field Prep: Sample Location: BRONX, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 06/02/21 11:54

Analyst: MV77% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 L	ow - Westborough Lab						
1,1-Dichloroethane	ND		ug/kg	1.1	0.15	1	
Tetrachloroethene	ND		ug/kg	0.53	0.21	1	
1,1,1-Trichloroethane	ND		ug/kg	0.53	0.18	1	
Vinyl chloride	ND		ug/kg	1.1	0.36	1	
1,1-Dichloroethene	ND		ug/kg	1.1	0.25	1	
Trichloroethene	ND		ug/kg	0.53	0.14	1	
cis-1,2-Dichloroethene	ND		ua/ka	1.1	0.18	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	122	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	119	70-130	

L2128064

Project Name: Lab Number: 111 WILLOW AVE

Project Number: Report Date: 170497201 06/02/21

SAMPLE RESULTS

Lab ID: R Date Collected: 05/26/21 08:40 L2128064-09

Client ID: Date Received: 05/26/21 RDB-11_9-10 Field Prep: Sample Location: BRONX, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 06/02/21 14:20

Analyst: MKS 77% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low	- Westborough Lab					
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Tetrachloroethene	ND		ug/kg	0.56	0.22	1
1,1,1-Trichloroethane	ND		ug/kg	0.56	0.19	1
Vinyl chloride	ND		ug/kg	1.1	0.38	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.27	1
Trichloroethene	ND		ug/kg	0.56	0.15	1
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.20	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	112	70-130	

L2128064

Project Name: 111 WILLOW AVE

Project Number: 170497201

Report Date:

Lab Number:

Date Collected:

06/02/21

SAMPLE RESULTS

Lab ID: L2128064-10

Client ID: RDB-04_8-9 Sample Location: BRONX, NY

05/26/21 14:20 Date Received: 05/26/21 Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 06/02/21 14:41

Analyst: MKS 82% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 I	_ow - Westborough Lab						
1,1-Dichloroethane	ND		ug/kg	1.0	0.14	1	
Tetrachloroethene	ND		ug/kg	0.50	0.20	1	
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17	1	
Vinyl chloride	ND		ug/kg	1.0	0.34	1	
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	1	
Trichloroethene	ND		ug/kg	0.50	0.14	1	
cis-1,2-Dichloroethene	ND		ua/ka	1.0	0.18	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	89		70-130	
4-Bromofluorobenzene	149	Q	70-130	
Dibromofluoromethane	115		70-130	

L2128064

Project Name: Lab Number: 111 WILLOW AVE

Project Number: Report Date: 170497201 06/02/21

SAMPLE RESULTS

Lab ID: D Date Collected: 05/26/21 14:20 L2128064-11

Client ID: Date Received: 05/26/21 TMW-11_052621 Field Prep: Sample Location: BRONX, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/28/21 12:30

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
1,1-Dichloroethane	29	J	ug/l	50	14.	20	
Tetrachloroethene	3400		ug/l	10	3.6	20	
1,1,1-Trichloroethane	140		ug/l	50	14.	20	
Vinyl chloride	5.1	J	ug/l	20	1.4	20	
1,1-Dichloroethene	68		ug/l	10	3.4	20	
Trichloroethene	380		ug/l	10	3.5	20	
cis-1.2-Dichloroethene	440		ua/l	50	14.	20	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	87	70-130	
Dibromofluoromethane	107	70-130	

L2128064

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Report Date:

06/02/21

Lab ID: L2128064-12

Client ID: FB01_052621 Sample Location: BRONX, NY

Date Collected: 05/26/21 14:30 Date Received: 05/26/21

Field Prep: Not Specified

Lab Number:

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/28/21 11:44

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Accept Qualifier Crite	
1,2-Dichloroethane-d4	112	70-	130
Toluene-d8	95	70-	130
4-Bromofluorobenzene	90	70-	130
Dibromofluoromethane	117	70-	130

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number: L2128064

Report Date: 06/02/21

Lab ID: L2128064-13 Date Collected: 05/26/21 14:30

Client ID: Date Received: 05/26/21 TB01_052621 Sample Location: Field Prep: Not Specified BRONX, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/28/21 12:07

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	119	70-130	

L2128064

Project Name: 111 WILLOW AVE Lab Number:

Project Number: 170497201 **Report Date:** 06/02/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/28/21 08:38

Analyst: PD

Parameter	Result Qua	lifier Units	RL	MDL	
Volatile Organics by GC/MS - W	Vestborough Lab for s	sample(s): 11-13	Batch:	WG1505015-5	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Tetrachloroethene	ND	ug/l	0.50	0.18	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
Trichloroethene	ND	ug/l	0.50	0.18	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	

		Acceptance	
Surrogate	%Recovery Qualit	ier Criteria	_
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	116	70-130	

L2128064

Project Name: 111 WILLOW AVE Lab Number:

Project Number: 170497201 **Report Date:** 06/02/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/02/21 08:25

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 Low	- Westbord	ough Lab fo	r sample(s):	01-10	Batch: WG1506462-5
1,1-Dichloroethane	ND		ug/kg	1.0	0.14
Tetrachloroethene	ND		ug/kg	0.50	0.20
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17
Vinyl chloride	ND		ug/kg	1.0	0.34
1,1-Dichloroethene	ND		ug/kg	1.0	0.24
Trichloroethene	ND		ug/kg	0.50	0.14
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18

	Acceptance					
Surrogate	%Recovery Qualif	ier Criteria				
1,2-Dichloroethane-d4	102	70-130				
Toluene-d8	97	70-130				
4-Bromofluorobenzene	101	70-130				
Dibromofluoromethane	106	70-130				

Lab Control Sample Analysis Batch Quality Control

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number:

L2128064

06/02/21

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	11-13 Batch:	WG1505015-3	WG1505015-4			
1,1-Dichloroethane	99		97		70-130	2		20
Tetrachloroethene	100		100		70-130	0		20
1,1,1-Trichloroethane	100		100		67-130	0		20
Vinyl chloride	92		90		55-140	2		20
1,1-Dichloroethene	100		100		61-145	0		20
Trichloroethene	94		96		70-130	2		20
cis-1,2-Dichloroethene	100		99		70-130	1		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	104	106	70-130
Toluene-d8	99	100	70-130
4-Bromofluorobenzene	93	90	70-130
Dibromofluoromethane	104	103	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number:

L2128064

Report Date:

06/02/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 Low - Westbo	rough Lab Ass	ociated sample	(s): 01-10 Ba	atch: WG1	506462-3 WG150	6462-4		
1,1-Dichloroethane	90		90		70-130	0		30
Tetrachloroethene	92		92		70-130	0		30
1,1,1-Trichloroethane	94		91		70-130	3		30
Vinyl chloride	121		119		67-130	2		30
1,1-Dichloroethene	113		106		65-135	6		30
Trichloroethene	105		103		70-130	2		30
cis-1,2-Dichloroethene	105		105		70-130	0		30

Commo mode	LCS	LCSD	Acceptance Criteria	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	_
1,2-Dichloroethane-d4	90	90	70-130	
Toluene-d8	95	97	70-130	
4-Bromofluorobenzene	93	96	70-130	
Dibromofluoromethane	96	95	70-130	

INORGANICS & MISCELLANEOUS

Project Name: 111 WILLOW AVE Lab Number: L2128064

Project Number: 170497201 **Report Date:** 06/02/21

SAMPLE RESULTS

Lab ID: L2128064-01 Date Collected: 05/26/21 09:20

Client ID: RDB-01_7-8 Date Received: 05/26/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result Q	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	79.9		%	0.100	NA	1	-	05/27/21 22:58	121,2540G	TR

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number:

L2128064

Report Date: 06/02/21

SAMPLE RESULTS

Lab ID: L2128064-02

Client ID: RDB-03_9-10 Sample Location: BRONX, NY

Date Collected:

05/26/21 10:08

Date Received: Field Prep:

05/26/21 Not Specified

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	83.6		%	0.100	NA	1	-	05/27/21 22:58	121,2540G	TR

Project Name: 111 WILLOW AVE Lab Number:

L2128064

Project Number: 170497201 Report Date:

06/02/21

SAMPLE RESULTS

Lab ID:

L2128064-03

Client ID:

RDB-05_10-11

Date Collected:

05/26/21 12:50

Sample Location: BRONX, NY

Date Received: Field Prep:

05/26/21 Not Specified

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	83.5		%	0.100	NA	1	-	05/27/21 22:58	121,2540G	TR

Project Name: 111 WILLOW AVE Lab Number: L2128064

Project Number: 170497201 **Report Date:** 06/02/21

SAMPLE RESULTS

Lab ID: L2128064-04 Date Collected: 05/26/21 10:50

Client ID: RDB-06_8-9 Date Received: 05/26/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab									
Solids, Total	85.5		%	0.100	NA	1	-	05/27/21 22:58	121,2540G	TR

Project Name: Lab Number: 111 WILLOW AVE

L2128064 Report Date: **Project Number:** 06/02/21 170497201

SAMPLE RESULTS

Lab ID: Date Collected: L2128064-05 05/26/21 12:40

Client ID: RDB-07_9-10 Date Received: 05/26/21 Not Specified Sample Location: BRONX, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	83.9		%	0.100	NA	1	-	05/27/21 22:58	121,2540G	TR

Project Name: Lab Number: 111 WILLOW AVE

L2128064 Report Date: **Project Number:** 06/02/21 170497201

SAMPLE RESULTS

Lab ID: Date Collected: L2128064-06 05/26/21 13:30

Client ID: RDB-08_9-10 Date Received: 05/26/21 Not Specified Sample Location: BRONX, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab									
Solids, Total	78.9		%	0.100	NA	1	-	05/27/21 22:58	121,2540G	TR

Project Name: 111 WILLOW AVE

Lab Number: L2128064

Project Number: 170497201 Report Date:

06/02/21

SAMPLE RESULTS

Lab ID: L2128064-07

Client ID: RDB-09_9-10 Sample Location: BRONX, NY

Date Collected: 05/26/21 11:42

Date Received: 05/26/21

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	76.8		%	0.100	NA	1	-	05/27/21 22:58	121,2540G	TR

Project Name: Lab Number: 111 WILLOW AVE

L2128064 Report Date: **Project Number:** 06/02/21 170497201

SAMPLE RESULTS

Lab ID: Date Collected: L2128064-08 05/26/21 13:50

Client ID: RDB-10_8-9 Date Received: 05/26/21 Not Specified Sample Location: BRONX, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab									
Solids, Total	82.6		%	0.100	NA	1	-	05/27/21 22:58	121,2540G	TR

Project Name: 111 WILLOW AVE

Lab Number: L2128064 170497201

Report Date: 06/02/21

SAMPLE RESULTS

Lab ID: Date Collected: L2128064-09 05/26/21 08:40

Client ID: RDB-11_9-10 Date Received: 05/26/21 Not Specified Sample Location: BRONX, NY Field Prep:

Sample Depth:

Project Number:

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Solids, Total	77.4		%	0.100	NA	1	-	05/27/21 22:58	121,2540G	TR

Project Name: Lab Number: 111 WILLOW AVE

L2128064 Report Date: **Project Number:** 06/02/21 170497201

SAMPLE RESULTS

Lab ID: Date Collected: L2128064-10 05/26/21 14:20

Client ID: RDB-04_8-9 Date Received: 05/26/21 Not Specified Sample Location: BRONX, NY Field Prep:

Sample Depth:

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab								
Solids, Total	81.5	%	0.100	NA	1	-		121,2540G	

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2128064 06/02/21

Report Date:

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-09	QC Batch ID:	WG1504743-1	QC Sample:	L2126746-03	Client ID:	DUP Sample
Solids, Total	83.7		84.9	%	1		20

Project Name:

Project Number: 170497201

111 WILLOW AVE

111 WILLOW AVE Lab Number: L2128064

Project Number: 170497201 **Report Date:** 06/02/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Container Information

Project Name:

Cooler Custody Seal

A Absent

Container Information		rmation		Initial	Final	Temp	р		Frozen		
	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
	L2128064-01A	Vial MeOH preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260HLW(14)	
	L2128064-01B	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)	
	L2128064-01C	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)	
	L2128064-01D	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		TS(7)	
	L2128064-02A	Vial MeOH preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260HLW(14)	
	L2128064-02B	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)	
	L2128064-02C	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)	
	L2128064-02D	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		TS(7)	
	L2128064-03A	Vial MeOH preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260HLW(14)	
	L2128064-03B	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)	
	L2128064-03C	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)	
	L2128064-03D	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		TS(7)	
	L2128064-04A	Vial MeOH preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260HLW(14)	
	L2128064-04B	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)	
	L2128064-04C	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)	
	L2128064-04D	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		TS(7)	
	L2128064-05A	Vial MeOH preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260HLW(14)	
	L2128064-05B	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)	
	L2128064-05C	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)	
	L2128064-05D	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		TS(7)	
	L2128064-06A	Vial MeOH preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260HLW(14)	
	L2128064-06B	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)	
	L2128064-06C	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)	

Lab Number: L2128064

Report Date: 06/02/21

Project Name: 111 WILLOW AVE

Project Number: 170497201

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2128064-06D	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		TS(7)
	L2128064-07A	Vial MeOH preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260HLW(14)
	L2128064-07B	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)
	L2128064-07C	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)
	L2128064-07D	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		TS(7)
	L2128064-08A	Vial MeOH preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260HLW(14)
	L2128064-08B	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)
	L2128064-08C	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)
	L2128064-08D	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		TS(7)
	L2128064-09A	Vial MeOH preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260HLW(14)
	L2128064-09B	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)
	L2128064-09C	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)
	L2128064-09D	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		TS(7)
	L2128064-10A	Vial MeOH preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260HLW(14)
	L2128064-10B	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)
	L2128064-10C	Vial water preserved	Α	NA		3.8	Υ	Absent	27-MAY-21 15:11	NYTCL-8260HLW(14)
	L2128064-10D	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		ARCHIVE()
	L2128064-11A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
	L2128064-11B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
	L2128064-11C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
	L2128064-12A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
	L2128064-12B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
	L2128064-12C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
	L2128064-13A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
	L2128064-13B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)

Project Name: 111 WILLOW AVE Lab Number: L2128064

Project Number: 170497201 **Report Date:** 06/02/21

GLOSSARY

Acronyms

EDL

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:111 WILLOW AVELab Number:L2128064Project Number:170497201Report Date:06/02/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report. Initial pH reflects pH of container determined up

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$ Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:111 WILLOW AVELab Number:L2128064Project Number:170497201Report Date:06/02/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:06022116:19

Project Name: 111 WILLOW AVE Lab Number: L2128064
Project Number: 170497201 Report Date: 06/02/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:06022116:19

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Revision 19

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	lay	05	Page 1 of		THE PERSON NAMED IN	e Rec'	5/	21	11		ALPHA JOB# L2/28067
Westborough, MA 01581	Mansfield, MA 02048	Project Information	N. C. Tank	Harris Control	THE REAL PROPERTY.	78 1 5 E & S	Delivera	oles	NO D	100		DE TOTAL	Billing Information
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: \\\	MM	4.10			□ AS	P-A	- Ind	X A	SP-B		Same as Client Info
FAX: 506-898-9193	FAX: 508-822-3288	Project Name.	VINOW 7	Tue			_	ulS (1 F	nav.		QuIS (4	Ello\	PO#
SAD ATTENDED 1945		Project Location: 873	AX, N						ne)	П.	Quio (4	riiej	-0-
Client Information	ESSEPTION BUILDING	Project # 17049	102				∐ Of	her					
Client: Langan		(Use Project name as Pr					Regulate	ry Requ	iremen'	į.			Disposal Site Information
Address: 2) Renn Pla		Project Manager: 5+0	art K	goon			☐ NY	TOGS			Y Part 37	5	Please identify below location of
St. 18th FL. New	11061 My 12011	ALPHAQuote #:					☐ AV	Q Standa	ards	N	Y CP-51		applicable disposal facilities.
Phone: 212-47		Turn-Around Time					□ NY	Restricte	d Use		Ither		Disposal Facility:
Fax:		Standard	X	Due Date:			□ NY	Unrestric	ted Use				□ NJ □ NY
Email: Sknoop A	ANDER CAM	Rush (only if pre approved)		# of Days:				C Sewer	Discharo	ie.			Other:
	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN			# Of Days.		_			Discrising				
	peen previously analyz						ANALY	-					Sample Filtration
	destanan	j janowitz@lan agement@lango	gan com	n and			+ 375 VOCS*	(i,)-dichiora ethora)	leis-1,2-dichlaraethand	(PCE), (TCE),	(U.1-dichlassathera)	Alcto of the	Done Lab to do Preservation Lab to do (Please Specify below)
ALDUA L-E ID			Call	ection		T	2	= =	12	0	2 1		in reason opening acromy
ALPHA Lab ID (Lab Use Only)	Sa	imple ID			Sample	Sampler's	NYCP.	5 -	3	6	3 =		
Control of the Contro		100000000	Date	Time	Matrix	Initials	The real Property lies	_ =	3		~ =	-	Sample Specific Comments
28067-11	RDB-01_	7-8	5/26/21	98:50	2	TH	X						* only run VOCs
-06	RDB-03-	9-10	1	80101	i	TM	X						for histed analytes
-05	RDB-05-			17150		TM	X						0
-29	PDB-06-			10,50		TW	X		\vdash		\neg		
-				12140		Tim	-	_	+	_	_		
-05	RDB - 07 -						X	_	-	-	-	-	-
70	RDB - 08-			13130		15	X	_		-	_	+	
-07	RDB-09.			11:45		TM	X			_			
180	ROB-10-	8-0		13:30		TZ	X						
-09	RDB-11-	9-10		08:40		TM	X				10		
10	208-04	R-9	¥	14:20	V	TZ	X						
Preservative Code:	Container Code	Westboro: Certification N	o- MA935						\vdash			0	B
A = None	P = Plastic				Con	tainer Type			ΙI				Please print clearly, legibly
B = HCI C = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification N	o: MA015					+	\vdash	\rightarrow	-	-	and completely. Samples ca not be logged in and
D = H ₂ SO ₄	G = Glass				F	reservative							turnaround time clock will no
E = NaOH	B = Bacteria Cup												start until any ambiguities are
F = MeOH	C = Cube	Relinquished I	Зу:	Date/	Гime		Received	By:		1	Date/Tim	Pro hi	resolved. BY EXECUTING
$G = NaHSO_4$ $H = Na_2S_2O_3$	O = Other E = Encore	Tyler Bin typ	1.7	5/26/21	15:45	HU	0	71.57	1	25	/-	7/	THIS COC, THE CLIENT
$H = Na_2S_2O_3$ K/E = Zn Ac/NBOH	D = BOD Bottle	- West	2/1	3/22	1800	1	Mn	2/1/	11/2	2	Valo	1 10	HAS READ AND AGREES
O = Other	1	2. Con all	11/1/11 -	15/1/2	200	Valley.		THE	110	2/2	14//2X	12/2	TERMS & CONDITIONS.
COLOR DO CONTRACTOR CONTRACTOR	, ,	aux max	ped 5	BUSI	034	15/1	1/1	The state of the s	2	15%	27/31	23.45	(See reverse side.)
Form No: 01-25 HC (rev. 3 age 46 of 47	30-Sept-2013)	- 0//		1720	1	1	0	/	7	25.5	#000 ES	_	7

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	/ay	05	Page Z of		D Deliver	ate Ro in La	ec'd b	57.	261	2		-	PHA Job# 2 (2 % 06 %	
8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	IX, NY	tve				ASP-A EQuIS Other	1 File		A E		(4 File)	PO	Same as Client Info	
Client Information		Project # 170 497	1				-	itory R	an iira	ment			0.00	Dis	posal Site Information	9.50
St., 217, Nau Phone: 212-47 Fax:	Maza 360 w 31st JYOVK, NY 10011 9 - 5400	(Use Project name as Project Manager: Student ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved)	art Kn	Due Date:				NY TOG NWQ Sta NY Rest NY Unire	S andards icted U stricted	s Jse i Use	<u> </u>	Y Part Y CP- ther		Ple	ase identify below location of olicable disposal facilities. posal Facility: NJ NY Other:	
These samples have b	een previously analyz	ed by Alpha					ANAL	YSIS		-13	~			Sa	mple Filtration	T
Please specify Metals	data mare	ients: ino witz@langa agement@lang					Part STIS VOCE	(1,1,1-trichlosethy)	(1,1-dichbroethous),	(1.1-dichloraethens)	as-1,1-dichloraethou	3), (TCE),	winy chloride)	Pr	Done Lab to do eservation Lab to do do eservation Compare the serve the ser	tal Bott
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	0.4950.00	ection	Sample Matrix	Sampler's Initials		Ξ	1	<u>-</u>	4	(POE)	N. C.	80	mple Specific Comments	- 1
28064-11	TBOI - 057	1535	5/26/21	14:30	W	TM TE	XXX	*						*	only run VOCs or listed analytes	
									+							Ŧ
																\perp
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N			1,000	tainer Type		1	1	+				1	Please print clearly, legib and completely. Samples not be logged in and turnaround time clock will	s can
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 3 age 47 Of 47	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished Yev Bron Try Authority	By:	5/26/21 5/26/21 5/26/21		All Sign	Right Park	ed By:	Su X	a	56	6	Time 3/1/23	90	start until any ambiguities resolved. BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPITERMS & CONDITIONS (See reverse side.)	IG r ES HA'S

ANALYTICAL REPORT

Lab Number: L2128455

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor

New York, NY 10001-2727

ATTN: Stuart Knoop
Phone: (212) 479-5400

Project Name: 111 WILLOW AVE

Project Number: 170497201

Report Date: 06/03/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 111 WILLOW AVE

Project Number: 170497201

 Lab Number:
 L2128455

 Report Date:
 06/03/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2128455-01	RDB-02_8-9	SOIL	BRONX, NY	05/27/21 08:45	05/27/21
L2128455-02	RDB-12_9-10	SOIL	BRONX, NY	05/27/21 09:45	05/27/21
L2128455-03	DUP01_052721	SOIL	BRONX, NY	05/27/21 00:00	05/27/21
L2128455-04	TMW-09_052721	WATER	BRONX, NY	05/27/21 09:00	05/27/21
L2128455-05	TMW-06_052721	WATER	BRONX, NY	05/27/21 12:40	05/27/21
L2128455-06	TMW-01_052721	WATER	BRONX, NY	05/27/21 14:40	05/27/21
L2128455-07	TMW-03_052721	WATER	BRONX, NY	05/27/21 11:05	05/27/21
L2128455-08	FB01_052721	WATER	BRONX, NY	05/27/21 15:45	05/27/21
L2128455-09	TB01_052721	WATER	BRONX, NY	05/27/21 00:00	05/27/21

Project Name: 111 WILLOW AVE Lab Number:

Project Number: 170497201 **Report Date:** 06/03/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 111 WILLOW AVE Lab Number: L2128455

Project Number: 170497201 Report Date: 06/03/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2128455-03: The container for TS analysis was received empty. The TS result reported was specified by the client.

Dissolved Metals

L2128455-07: The dissolved results are greater than the total results. The sample containers were verified as being labeled correctly by the laboratory.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

M 2 M Jennifer L Clements

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 06/03/21

ORGANICS

VOLATILES

L2128455

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number:

Report Date: 06/03/21

Lab ID: Date Collected: 05/27/21 08:45 L2128455-01

Client ID: Date Received: 05/27/21 RDB-02_8-9 Field Prep: Sample Location: BRONX, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 06/03/21 09:47

Analyst: MKS 78% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - W	Vestborough Lab					
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Tetrachloroethene	2.0		ug/kg	0.57	0.22	1
1,1,1-Trichloroethane	ND		ug/kg	0.57	0.19	1
Vinyl chloride	ND		ug/kg	1.1	0.38	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.27	1
Trichloroethene	ND		ug/kg	0.57	0.16	1
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.20	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	92	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	115	70-130	

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number: L2128455

Report Date: 06/03/21

Lab ID: Date Collected: 05/27/21 09:45 L2128455-02

Client ID: Date Received: 05/27/21 RDB-12_9-10 Field Prep: Sample Location: BRONX, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 06/02/21 16:44

Analyst: JC 83% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
1,1-Dichloroethane	ND		ug/kg	0.96	0.14	1	
Tetrachloroethene	0.46	J	ug/kg	0.48	0.19	1	
1,1,1-Trichloroethane	ND		ug/kg	0.48	0.16	1	
Vinyl chloride	ND		ug/kg	0.96	0.32	1	
1,1-Dichloroethene	ND		ug/kg	0.96	0.23	1	
Trichloroethene	ND		ug/kg	0.48	0.13	1	
cis-1,2-Dichloroethene	1.1		ug/kg	0.96	0.17	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	104	70-130	

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number: L2128455

Report Date: 06/03/21

Lab ID: Date Collected: 05/27/21 00:00 L2128455-03

Client ID: Date Received: 05/27/21 DUP01_052721 Field Prep: Sample Location: BRONX, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 06/02/21 17:09

JC Analyst: 82% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 I	Low - Westborough Lab						
1,1-Dichloroethane	ND		ug/kg	0.99	0.14	1	
Tetrachloroethene	0.19	J	ug/kg	0.49	0.19	1	
1,1,1-Trichloroethane	ND		ug/kg	0.49	0.16	1	
Vinyl chloride	ND		ug/kg	0.99	0.33	1	
1,1-Dichloroethene	ND		ug/kg	0.99	0.23	1	
Trichloroethene	ND		ug/kg	0.49	0.14	1	
cis-1,2-Dichloroethene	0.90	J	ug/kg	0.99	0.17	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	105		70-130	

L2128455

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number:

Report Date: 06/03/21

Lab ID: D L2128455-04 Client ID: TMW-09_052721

Sample Location: BRONX, NY Date Collected: 05/27/21 09:00 Date Received: 05/27/21 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/01/21 13:27

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
1,1-Dichloroethane	27	J	ug/l	50	14.	20	
Tetrachloroethene	1600		ug/l	10	3.6	20	
1,1,1-Trichloroethane	54		ug/l	50	14.	20	
Vinyl chloride	2.4	J	ug/l	20	1.4	20	
1,1-Dichloroethene	23		ug/l	10	3.4	20	
Trichloroethene	250		ug/l	10	3.5	20	
cis-1,2-Dichloroethene	300		ug/l	50	14.	20	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	114		70-130	
Toluene-d8	112		70-130	
4-Bromofluorobenzene	116		70-130	
Dibromofluoromethane	92		70-130	

L2128455

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Report Date: 06/03/21

Lab ID: D L2128455-05

Client ID: TMW-06_052721 Sample Location: BRONX, NY

Date Collected: 05/27/21 12:40

Lab Number:

Date Received: 05/27/21 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/01/21 13:50

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
1,1-Dichloroethane	29	J	ug/l	50	14.	20	
Tetrachloroethene	1800		ug/l	10	3.6	20	
1,1,1-Trichloroethane	36	J	ug/l	50	14.	20	
Vinyl chloride	1.5	J	ug/l	20	1.4	20	
1,1-Dichloroethene	23		ug/l	10	3.4	20	
Trichloroethene	230		ug/l	10	3.5	20	
cis-1,2-Dichloroethene	270		ua/l	50	14.	20	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	113	70-130	
4-Bromofluorobenzene	117	70-130	
Dibromofluoromethane	93	70-130	

L2128455

Project Name: Lab Number: 111 WILLOW AVE

Project Number: Report Date:

170497201 06/03/21

SAMPLE RESULTS

Lab ID: L2128455-06 Date Collected: 05/27/21 14:40

Client ID: Date Received: 05/27/21 TMW-01_052721 Sample Location: Field Prep: BRONX, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/01/21 12:17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Tetrachloroethene	19		ug/l	0.50	0.18	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
Trichloroethene	2.4		ug/l	0.50	0.18	1		
cis-1,2-Dichloroethene	4.4		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	113		70-130	
4-Bromofluorobenzene	117		70-130	
Dibromofluoromethane	94		70-130	

L2128455

Project Name: 111 WILLOW AVE

Project Number: 170497201

Report Date: 06/03/21

Lab Number:

SAMPLE RESULTS

Lab ID: D L2128455-07

Client ID: TMW-03_052721 Sample Location: BRONX, NY

Date Collected: 05/27/21 11:05

Date Received: 05/27/21 Field Prep: Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/01/21 14:13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - V	Vestborough Lab						
1,1-Dichloroethane	13	J	ug/l	25	7.0	10	
Tetrachloroethene	1400		ug/l	5.0	1.8	10	
1,1,1-Trichloroethane	43		ug/l	25	7.0	10	
Vinyl chloride	2.2	J	ug/l	10	0.71	10	
1,1-Dichloroethene	20		ug/l	5.0	1.7	10	
Trichloroethene	200		ug/l	5.0	1.8	10	
cis-1,2-Dichloroethene	230		ua/l	25	7.0	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	113	70-130	
4-Bromofluorobenzene	116	70-130	
Dibromofluoromethane	94	70-130	

L2128455

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Date Collected: 05/27/21 15:45

Report Date: 06/03/21

Lab Number:

Lab ID: L2128455-08 Client ID: Date Received: 05/27/21 FB01_052721 Sample Location: Field Prep: Not Specified BRONX, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/01/21 12:41

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	113	70-130	
4-Bromofluorobenzene	116	70-130	
Dibromofluoromethane	94	70-130	

Project Name: 111 WILLOW AVE

Project Number: 170497201

SAMPLE RESULTS

Lab Number: L2128455

Report Date: 06/03/21

Lab ID: L2128455-09 Date Collected: 05/27/21 00:00

Client ID: Date Received: 05/27/21 TB01_052721 Sample Location: Field Prep: Not Specified BRONX, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/01/21 13:04

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	/estborough Lab						
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
cis-1,2-Dichloroethene	ND		ua/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	113	70-130	
4-Bromofluorobenzene	116	70-130	
Dibromofluoromethane	94	70-130	

Lab Number:

Project Name: 111 WILLOW AVE

Project Number: 170497201 **Report Date:** 06/03/21

thod Blank Analysis

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/01/21 11:08

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough Lab f	or sample(s):	04-09 Batch:	WG1506689-5	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Tetrachloroethene	ND	ug/l	0.50	0.18	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
Trichloroethene	ND	ug/l	0.50	0.18	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	

		Acceptance	
Surrogate	%Recovery Qualif	ier Criteria	_
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	113	70-130	
4-Bromofluorobenzene	116	70-130	
Dibromofluoromethane	94	70-130	

Lab Number:

Project Name: 111 WILLOW AVE

Project Number: Report Date: 170497201 06/03/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date:

06/02/21 15:54

Analyst: KTD

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by EPA 5035 Lov	v - Westbord	ough Lab foi	r sample(s):	02-03	Batch: WG1507012-5
1,1-Dichloroethane	ND		ug/kg	1.0	0.14
Tetrachloroethene	ND		ug/kg	0.50	0.20
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17
Vinyl chloride	ND		ug/kg	1.0	0.34
1,1-Dichloroethene	ND		ug/kg	1.0	0.24
Trichloroethene	ND		ug/kg	0.50	0.14
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18

		Acceptance	
Surrogate	%Recovery Qualif	ier Criteria	_
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	100	70-130	

Project Name: 111 WILLOW AVE Lab Number:

Project Number: 170497201 **Report Date:** 06/03/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/03/21 08:53

Analyst: MKS

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by EPA 5035 Low	- Westbord	ough Lab fo	r sample(s):	01	Batch:	WG1507188-5	
1,1-Dichloroethane	ND		ug/kg	1.0		0.14	
Tetrachloroethene	ND		ug/kg	0.50		0.20	
1,1,1-Trichloroethane	ND		ug/kg	0.50		0.17	
Vinyl chloride	ND		ug/kg	1.0		0.34	
1,1-Dichloroethene	ND		ug/kg	1.0		0.24	
Trichloroethene	ND		ug/kg	0.50		0.14	
cis-1,2-Dichloroethene	ND		ug/kg	1.0		0.18	

		Acceptance	
Surrogate	%Recovery Qualif	ier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	89	70-130	
Dibromofluoromethane	117	70-130	

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number:

L2128455

Report Date:

06/03/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	04-09 Batch:	WG1506689-3	WG1506689-4			
1,1-Dichloroethane	97		98		70-130	1		20
Tetrachloroethene	88		89		70-130	1		20
1,1,1-Trichloroethane	84		86		67-130	2		20
Vinyl chloride	90		93		55-140	3		20
1,1-Dichloroethene	82		84		61-145	2		20
Trichloroethene	84		85		70-130	1		20
cis-1,2-Dichloroethene	84		86		70-130	2		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	112	111	70-130
Toluene-d8	113	113	70-130
4-Bromofluorobenzene	116	116	70-130
Dibromofluoromethane	95	94	70-130

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number:

L2128455

Report Date:

06/03/21

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 Low - Westbo	rough Lab Ass	ociated sample	(s): 02-03 Ba	atch: WG1	507012-3 WG150	7012-4		
1,1-Dichloroethane	110		109		70-130	1		30
Tetrachloroethene	104		103		70-130	1		30
1,1,1-Trichloroethane	100		100		70-130	0		30
Vinyl chloride	79		77		67-130	3		30
1,1-Dichloroethene	108		105		65-135	3		30
Trichloroethene	100		101		70-130	1		30
cis-1,2-Dichloroethene	104		104		70-130	0		30

	LCS	LCSD	Acceptance Criteria
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	94	98	70-130
Toluene-d8	98	99	70-130
4-Bromofluorobenzene	104	98	70-130
Dibromofluoromethane	98	98	70-130

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2128455

Report Date: 06/03/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by EPA 5035 Low	•		le(s): 01 Batcl	h: WG150718	8-3 WG15071				
1,1-Dichloroethane	81		77		70-130	5		30	
Tetrachloroethene	91		90		70-130	1		30	
1,1,1-Trichloroethane	99		97		70-130	2		30	
Vinyl chloride	74		72		67-130	3		30	
1,1-Dichloroethene	89		86		65-135	3		30	
Trichloroethene	94		90		70-130	4		30	
cis-1,2-Dichloroethene	92		90		70-130	2		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	96	93	70-130
Toluene-d8	94	94	70-130
4-Bromofluorobenzene	88	90	70-130
Dibromofluoromethane	107	106	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number:

L2128455

Report Date:

06/03/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 50 RDB-02_8-9	35 Low - Westl	oorough Lab	Associated s	sample(s): 01	QC Batch	ID: WG1	507188-6 WG	150718	8-7 QC Sai	mple: L	2128455-01 Client ID:
1,1-Dichloroethane	ND	104	77	74		60	53	Q	70-130	25	30
Tetrachloroethene	2.0	104	91	86		68	58	Q	70-130	29	30
1,1,1-Trichloroethane	ND	104	100	97		76	66	Q	70-130	29	30
Vinyl chloride	ND	104	75	72		60	53	Q	67-130	22	30
1,1-Dichloroethene	ND	104	92	89		69	61	Q	65-135	29	30
Trichloroethene	ND	104	90	87		67	59	Q	70-130	30	30
cis-1,2-Dichloroethene	ND	104	85	81		66	58	Q	70-130	25	30

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	99	99	70-130
4-Bromofluorobenzene	89	89	70-130
Dibromofluoromethane	107	107	70-130
Toluene-d8	92	93	70-130

METALS

Project Name: 111 WILLOW AVE Lab Number: L2128455

Project Number: 170497201 **Report Date:** 06/03/21

SAMPLE RESULTS

 Lab ID:
 L2128455-07
 Date Collected:
 05/27/21 11:05

 Client ID:
 TMW-03_052721
 Date Received:
 05/27/21

 Sample Location:
 BRONX, NY
 Field Prep:
 Refer to COC

Sample Depth:
Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Iron, Total	11.2		mg/l	0.0500	0.0191	1	06/01/21 12:2	5 06/03/21 16:57	EPA 3005A	1,6020B	CD
Manganese, Total	2.007		mg/l	0.00100	0.00044	1	06/01/21 12:2	5 06/03/21 16:57	EPA 3005A	1,6020B	CD
Dissolved Metals - Mansfield Lab											
Iron, Dissolved	24.8		mg/l	0.0500	0.0191	1	06/01/21 16:2	5 06/03/21 17:56	EPA 3005A	1,6020B	CD
Manganese, Dissolved	2.603		mg/l	0.00100	0.00044	1	06/01/21 16:2	5 06/03/21 17:56	EPA 3005A	1,6020B	CD

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number:

L2128455

Report Date: 06/03/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	07 Batc	h: WG15	505996-	1				
Iron, Total	ND	mg/l	0.0500	0.0191	1	06/01/21 12:25	06/03/21 16:16	1,6020B	CD
Manganese, Total	ND	mg/l	0.00100	0.00044	1 1	06/01/21 12:25	06/03/21 16:16	1,6020B	CD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	ansfield Lab	for sample	e(s): 07	Batch: V	VG1506	005-1				
Iron, Dissolved	ND		mg/l	0.0500	0.0191	1	06/01/21 16:25	06/03/21 16:21	1 1,6020B	CD
Manganese, Dissolved	ND		mg/l	0.00100	0.00044	1	06/01/21 16:25	06/03/21 16:2	1 1,6020B	CD

Prep Information

Digestion Method: EPA 3005A

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2128455

Report Date: 06/03/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 07 Batch:	WG150599	06-2					
Iron, Total	105		-		80-120	-		
Manganese, Total	104		-		80-120	-		
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 07 Ba	atch: WG15	06005-2					
Iron, Dissolved	118		-		80-120	-		
Manganese, Dissolved	104		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number:

L2128455

Report Date: 06/03/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 07	QC Batch	ID: WG150599	6-3 (QC Sample:	L2128260-01	Clien	t ID: MS Sa	mple		
Iron, Total	0.666	1	1.74	107		-	-		75-125	-		20
Manganese, Total	0.00998	0.5	0.5440	107		-	-		75-125	-		20
Dissolved Metals - Mansfield	Lab Associated	sample(s): ()7 QC Ba	atch ID: WG150	06005-	3 WG15060	05-4 QC Sai	mple: L	2126412-04	Clier	nt ID: I	MS Sample
Iron, Dissolved	0.0268J	1	1.20	120		1.18	118		75-125	2		20
Manganese, Dissolved	0.02267	0.5	0.5594	107		0.5569	107		75-125	0		20

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L2128455

Report Date:

06/03/21

Parameter	Native Sample D	uplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 07	QC Batch ID: WG1505996-	4 QC Sample:	L2128260-01	Client ID: DI	JP Sample	
Iron, Total	0.666	0.669	mg/l	0		20
Manganese, Total	0.00998	0.00968	mg/l	3		20

Project Name:

Project Number: 170497201

111 WILLOW AVE

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: 111 WILLOW AVE

L2128455 Report Date: **Project Number:** 170497201

06/03/21

SAMPLE RESULTS

Lab ID: Date Collected: L2128455-01 05/27/21 08:45

Client ID: RDB-02_8-9 Date Received: 05/27/21 Not Specified Sample Location: BRONX, NY Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	•								
Solids, Total	78.0		%	0.100	NA	1	-	05/29/21 10:57	121,2540G	RI

Project Name: Lab Number: 111 WILLOW AVE

L2128455 **Project Number:** Report Date: 06/03/21 170497201

SAMPLE RESULTS

Lab ID: Date Collected: L2128455-02 05/27/21 09:45

RDB-12_9-10 Client ID: Date Received: 05/27/21 Not Specified Sample Location: BRONX, NY Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - '	Westborough Lab	•								
Solids, Total	83.0		%	0.100	NA	1	-	05/29/21 10:57	121,2540G	RI

Project Name: 111 WILLOW AVE

Project Number: 170497201 Lab Number:

L2128455

Report Date: 06/03/21

SAMPLE RESULTS

Lab ID: L2128455-03

DUP01_052721 Client ID: Sample Location: BRONX, NY

Date Collected:

05/27/21 00:00

Date Received:

05/27/21

Field Prep:

Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	/estborough Lab									
Solids, Total	81.5		%	0.100	NA	1	-		121,2540G	

Project Name: 111 WILLOW AVE

Project Number: 170497201 Lab Number:

L2128455

Report Date: 06/03/21

SAMPLE RESULTS

Lab ID: L2128455-07

Client ID: TMW-03_052721 Date Collected:

05/27/21 11:05

Date Received: Sample Location: BRONX, NY Field Prep:

05/27/21

Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westh	orough Lat)							
Alkalinity, Total	209.	mg CaCO3/L	2.00	NA	1	-	06/01/21 10:21	121,2320B	JB
Nitrogen, Nitrate	9.71	mg/l	0.500	0.114	5	-	05/29/21 04:27	121,4500NO3-F	MR
Sulfate	93.	mg/l	50	6.8	5	06/02/21 11:27	06/02/21 11:27	1,9038	JB
Chemical Oxygen Demand	47.	mg/l	20	6.0	1	06/01/21 19:10	06/01/21 22:05	44,410.4	TL
Total Organic Carbon	2.5	mg/l	0.50	0.11	1	-	05/29/21 04:49	1,9060A	DW

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number: L2128455

Report Date: 06/03/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): 07	Batch:	WG15	05203-1				
Nitrogen, Nitrate	ND		mg/l	0.100	0.022	1	-	05/29/21 04:49	121,4500NO3-I	- MR
General Chemistry -	Westborough Lab	for sam	ple(s): 07	Batch:	WG15	05235-1				
Total Organic Carbon	ND		mg/l	0.50	0.11	1	-	05/29/21 04:49	1,9060A	DW
General Chemistry -	Westborough Lab	for sam	ple(s): 07	Batch:	WG15	05948-1				
Alkalinity, Total	ND		mg CaCO3/L	2.00	NA	1	-	06/01/21 10:21	121,2320B	JB
General Chemistry -	Westborough Lab	for sam	ple(s): 07	Batch:	WG15	06041-1				
Sulfate	ND		mg/l	10	1.4	1	06/02/21 11:27	06/02/21 11:27	1,9038	JB
General Chemistry -	Westborough Lab	for sam	ple(s): 07	Batch:	WG15	06219-1				
Chemical Oxygen Demand	ND		mg/l	20	6.0	1	06/01/21 19:10	06/01/21 22:03	44,410.4	TL

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number:

L2128455

Report Date:

06/03/21

Parameter	LCS %Recovery Qua	LCSD al %Recovery Q	%Recovery ual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 07	Batch: WG1505203-2				
Nitrogen, Nitrate	93	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 07	Batch: WG1505235-2				
Total Organic Carbon	98	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 07	Batch: WG1505948-2				
Alkalinity, Total	105	-	90-110	-		10
General Chemistry - Westborough Lab	Associated sample(s): 07	Batch: WG1506041-2				
Sulfate	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 07	Batch: WG1506219-2				
Chemical Oxygen Demand	99	-	90-110	-		

L2128455

Matrix Spike Analysis Batch Quality Control

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number:

Report Date: 06/03/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery (Recov Qual Limit	•		PD nits
General Chemistry - West	tborough Lab Assoc	ciated samp	ple(s): 07	QC Batch ID: \	WG15052	203-4	QC Sample: L212	8640-01 CI	lient ID: MS	Sample	
Nitrogen, Nitrate	1.31	4	5.66	109		-	-	83-11	3 -		17
General Chemistry - West	tborough Lab Assoc	ciated samp	ple(s): 07	QC Batch ID: \	WG15052	235-4	QC Sample: L212	8729-01 CI	lient ID: MS	Sample	
Total Organic Carbon	13.	16	30	104		-	-	80-12	0 -		20
General Chemistry - West	tborough Lab Assoc	ciated samp	ple(s): 07	QC Batch ID: \	WG15059	948-4	QC Sample: L212	7542-01 CI	lient ID: MS	Sample	
Alkalinity, Total	49.9	100	154	104		-	-	86-11	6 -		10
General Chemistry - West	tborough Lab Assoc	ciated samp	ple(s): 07	QC Batch ID: \	WG15060	041-4	QC Sample: L212	8102-01 CI	lient ID: MS	Sample	
Sulfate	14.	40	51	92		-	-	55-14	7 -		14
General Chemistry - West	tborough Lab Assoc	ciated samp	ple(s): 07	QC Batch ID: \	WG15062	219-3	QC Sample: L212	6192-04 CI	lient ID: MS	Sample	
Chemical Oxygen Demand	ND	238	260	108		-	-	90-11	0 -		20

Lab Duplicate Analysis Batch Quality Control

Project Name: 111 WILLOW AVE

Project Number: 170497201

Lab Number:

L2128455

Report Date: 06/03/21

Parameter	Nat	ive Sa	mple	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	07 (QC Batch ID:	WG1505203-3	QC Sample: L	2128640-01	Client ID:	DUP Sample
Nitrogen, Nitrate		1.31		1.33	mg/l	2		17
General Chemistry - Westborough Lab	Associated sample(s):	07 (QC Batch ID:	WG1505235-3	QC Sample: L	2128729-01	Client ID:	DUP Sample
Total Organic Carbon		13.		14	mg/l	7		20
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch	ID: WG1505257-	-1 QC Sample	: L2128455-	01 Client	ID: RDB-02_8-9
Solids, Total		78.0		78.9	%	1		20
General Chemistry - Westborough Lab	Associated sample(s):	07 (QC Batch ID:	WG1505948-3	QC Sample: L	2127542-01	Client ID:	DUP Sample
Alkalinity, Total		49.9		50.3	mg CaCO3	3/L 1		10
General Chemistry - Westborough Lab	Associated sample(s):	07 (QC Batch ID:	WG1506041-3	QC Sample: L	2128102-01	Client ID:	DUP Sample
Sulfate		14.		13	mg/l	7		14
General Chemistry - Westborough Lab	Associated sample(s):	07 (QC Batch ID:	WG1506219-4	QC Sample: L	2126192-04	Client ID:	DUP Sample
Chemical Oxygen Demand		ND		ND	mg/l	NC		20

111 WILLOW AVE Lab Number: L2128455

Project Number: 170497201 **Report Date:** 06/03/21

YES

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

C Absent

Container Info	ormation			Final	Temp			Frozen	
Container ID	Container Type	Cooler	Initial pH	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2128455-01A	Vial MeOH preserved	С	NA		2.8	Υ	Absent		NYTCL-8260HLW(14)
L2128455-01A1	Vial MeOH preserved	С	NA		2.8	Υ	Absent		NYTCL-8260HLW(14)
L2128455-01A2	Vial MeOH preserved	С	NA		2.8	Υ	Absent		NYTCL-8260HLW(14)
L2128455-01B	Vial water preserved	С	NA		2.8	Υ	Absent	28-MAY-21 22:42	NYTCL-8260HLW(14)
L2128455-01B1	Vial water preserved	С	NA		2.8	Υ	Absent	28-MAY-21 22:42	NYTCL-8260HLW(14)
L2128455-01B2	Vial water preserved	С	NA		2.8	Υ	Absent	28-MAY-21 22:42	NYTCL-8260HLW(14)
L2128455-01C	Vial water preserved	С	NA		2.8	Υ	Absent	28-MAY-21 22:42	NYTCL-8260HLW(14)
L2128455-01C1	Vial water preserved	С	NA		2.8	Υ	Absent	28-MAY-21 22:42	NYTCL-8260HLW(14)
L2128455-01C2	Vial water preserved	С	NA		2.8	Υ	Absent	28-MAY-21 22:42	NYTCL-8260HLW(14)
L2128455-01D	Plastic 2oz unpreserved for TS	С	NA		2.8	Υ	Absent		TS(7)
L2128455-01D1	Plastic 2oz unpreserved for TS	С	NA		2.8	Υ	Absent		TS(7)
L2128455-02A	Vial MeOH preserved	С	NA		2.8	Υ	Absent		NYTCL-8260HLW(14)
L2128455-02B	Vial water preserved	С	NA		2.8	Υ	Absent	28-MAY-21 22:42	NYTCL-8260HLW(14)
L2128455-02C	Vial water preserved	С	NA		2.8	Υ	Absent	28-MAY-21 22:42	NYTCL-8260HLW(14)
L2128455-02D	Plastic 2oz unpreserved for TS	С	NA		2.8	Υ	Absent		TS(7)
L2128455-03A	Vial MeOH preserved	С	NA		2.8	Υ	Absent		NYTCL-8260HLW(14)
L2128455-03B	Vial water preserved	С	NA		2.8	Υ	Absent	28-MAY-21 22:42	NYTCL-8260HLW(14)
L2128455-03C	Vial water preserved	С	NA		2.8	Υ	Absent	28-MAY-21 22:42	NYTCL-8260HLW(14)
L2128455-03D	Plastic 2oz unpreserved for TS	С	NA		2.8	Υ	Absent		ARCHIVE()
L2128455-04A	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-04B	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-04C	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-05A	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)

Lab Number: L2128455

Report Date: 06/03/21

Project Name: 111 WILLOW AVE

Project Number: 170497201

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L2128455-05B	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-05C	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-06A	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-06B	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-06C	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-07A	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-07B	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-07C	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-07D	Vial H2SO4 preserved	С	NA		2.8	Υ	Absent		TOC-9060(28)
L2128455-07E	Vial H2SO4 preserved	С	NA		2.8	Υ	Absent		TOC-9060(28)
L2128455-07F	Vial H2SO4 preserved	С	NA		2.8	Υ	Absent		TOC-9060(28)
L2128455-07G	Plastic 250ml unpreserved/No Headspace	С	NA		2.8	Υ	Absent		ALK-T-2320(14)
L2128455-07H	Plastic 250ml unpreserved	С	7	7	2.8	Υ	Absent		SO4-9038(28),NO3-4500(2)
L2128455-07I	Plastic 250ml HNO3 preserved	С	<2	<2	2.8	Υ	Absent		MN-6020S(180),FE-6020S(180)
L2128455-07J	Plastic 250ml HNO3 preserved	С	<2	<2	2.8	Υ	Absent		FE-6020T(180),MN-6020T(180)
L2128455-07K	Plastic 250ml H2SO4 preserved	С	<2	<2	2.8	Υ	Absent		COD-410(28)
L2128455-08A	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-08B	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-08C	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-09A	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)
L2128455-09B	Vial HCl preserved	С	NA		2.8	Υ	Absent		NYTCL-8260(14)

Container Comments

L2128455-03D Received empty

Project Name: 111 WILLOW AVE Lab Number: L2128455

Project Number: 170497201 **Report Date:** 06/03/21

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:111 WILLOW AVELab Number:L2128455Project Number:170497201Report Date:06/03/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:111 WILLOW AVELab Number:L2128455Project Number:170497201Report Date:06/03/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: 111 WILLOW AVE Lab Number: L2128455

Project Number: 170497201 Report Date: 06/03/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

Page 44 of 45

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ay	5	Page of			The second	ec'd ab	51	28	21			ALPHA Job # L2128 455	
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Location: Bro	wellow mx, NT					SP-A		le)	hand	ASP-E	3 6 (4 Fil		Billing Information Same as Client Info	
Client Information			1770				-	Other	San 1975			-	-		Diseasel City Information	
Client: Largan		(Use Project name as Project name)	-				Regula	-		emen		104 D	1075		Disposal Site Information	
Address: ZI Penn			art Ki	qoon			=	IY TOO			1	NY Par			Please identify below location o applicable disposal facilities.	of
	10001 YUNION	The second of th		Call and the Sales			=	WQ S				NY CP	-51	- 1		
Phone: 212-4	79-5400	Turn-Around Time				SOUR HU		IY Res			-	Other			Disposal Facility:	
Fax:		Standard	100	Due Date:			_	IY Unr							□ nı □ nı	
Email: S KNOOT	Alangan.an	Rush (only if pre approved		# of Days;				IYC Se	wer D	ischar	-				Other:	10379
These samples have be	een previously analyz	ed by Alpha					ANAL	YSIS	5	-	3				Sample Filtration	_
Please specify Metals	or TAL.	to datama	ngena lengm	ot Plan	gan.	com	275 WOCS #	(1,1,1thichlaredoug	(1,1-dichloraether	did progher	1,2-dichionseth), CTOE)	31 chlorice	10 -	Lab to do Preservation Lab to do (Please Specify below)	8 0 1
ALPHA Lab ID (Lab Use Only)	· Sa	ample ID	Colle	ection Time	Sample Matrix	Sampler's Initials	MC P	5	(1)	-1/17	1-S12	CRE	(vin	Te Par	Sample Specific Comments	t i
10-22486	20B-02	7-9	05/27/21	8:45	2	TZ	X	~		_	_				an MS/MJD	
702	PDR-12		22/21/50	9:45	1	1	X								Honkin VOC	
-03	PUPOI-	572721	1		V		X	\neg	\neg						for little analyte	
-04		7-052721		9:00	W		×								0	
-05	TMW-0	6-052721		12140	1		X								* also run for	-
706		-062721		14:40			X	\neg							sulfate, nitrate	
707		3_552721		11:05			X.							X	TOC, COD, and	
-08		52721		15:45	- 1	*	X								alkalinity	
-09		125.25	X		75		X								0	
		0-01-01			23400		1									
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification Mansfield: Certification Mansfield: Relinquished	lo: MA015	Date/15/201 20	Time	Ily	Receiv	pd By:	~) />/	1	570	Sp	Time	11	Please print clearly, legicand completely. Sample not be logged in and turnaround time clock we start until any ambiguitie resolved. BY EXECUTII OTHIS COC, THE CLIEN HAS READ AND AGRETO BE BOUND BY ALF TERMS & CONDITION:	es car will no ies an ING NT EES PHA'S

ANALYTICAL REPORT

Lab Number: L2140976

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor New York, NY 10001-2727

ATTN: Stuart Knoop Phone: (212) 479-5400

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201

Report Date: 08/10/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201

 Lab Number:
 L2140976

 Report Date:
 08/10/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2140976-01	SB-MIP03_5-7	SOIL	BRONX, NY	07/29/21 12:00	07/30/21
L2140976-02	SB-MIP08 19-20	SOIL	BRONX, NY	07/29/21 12:45	07/30/21

 Project Name:
 111 WILLOW AVE/767 E. 133RD ST
 Lab Number:
 L2140976

 Project Number:
 170497201
 Report Date:
 08/10/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

 Project Name:
 111 WILLOW AVE/767 E. 133RD ST
 Lab Number:
 L2140976

 Project Number:
 170497201
 Report Date:
 08/10/21

Case Narrative (continued)

Report Submission

August 10, 2021: This final report includes the results of the Volatile Organics analysis performed on

L2140976-02.

August 06, 2021: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Wille M. Morris

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 08/10/21

ORGANICS

VOLATILES

L2140976

08/10/21

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201

SAMPLE RESULTS

Lab Number:

Report Date:

 Lab ID:
 L2140976-01
 Date Collected:
 07/29/21 12:00

 Client ID:
 SB-MIP03_5-7
 Date Received:
 07/30/21

 Sample Location:
 BRONX, NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/04/21 22:20

Analyst: JC Percent Solids: 88%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low	- Westborough Lab					
Methylene chloride	ND		ug/kg	3.8	1.8	1
1,1-Dichloroethane	ND		ug/kg	0.77	0.11	1
Chloroform	ND		ug/kg	1.2	0.11	1
Carbon tetrachloride	ND		ug/kg	0.77	0.18	1
1,2-Dichloropropane	ND		ug/kg	0.77	0.10	1
Dibromochloromethane	ND		ug/kg	0.77	0.11	1
1,1,2-Trichloroethane	ND		ug/kg	0.77	0.20	1
Tetrachloroethene	1.6		ug/kg	0.38	0.15	1
Chlorobenzene	ND		ug/kg	0.38	0.10	1
Trichlorofluoromethane	ND		ug/kg	3.1	0.53	1
1,2-Dichloroethane	ND		ug/kg	0.77	0.20	1
1,1,1-Trichloroethane	ND		ug/kg	0.38	0.13	1
Bromodichloromethane	ND		ug/kg	0.38	0.08	1
trans-1,3-Dichloropropene	ND		ug/kg	0.77	0.21	1
cis-1,3-Dichloropropene	ND		ug/kg	0.38	0.12	1
1,3-Dichloropropene, Total	ND		ug/kg	0.38	0.12	1
1,1-Dichloropropene	ND		ug/kg	0.38	0.12	1
Bromoform	ND		ug/kg	3.1	0.19	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.38	0.13	1
Benzene	ND		ug/kg	0.38	0.13	1
Toluene	ND		ug/kg	0.77	0.42	1
Ethylbenzene	ND		ug/kg	0.77	0.11	1
Chloromethane	ND		ug/kg	3.1	0.72	1
Bromomethane	ND		ug/kg	1.5	0.45	1
Vinyl chloride	ND		ug/kg	0.77	0.26	1
Chloroethane	ND		ug/kg	1.5	0.35	1
1,1-Dichloroethene	ND		ug/kg	0.77	0.18	1
trans-1,2-Dichloroethene	ND		ug/kg	1.2	0.10	1

Project Name: 111 WILLOW AVE/767 E. 133RD ST **Lab Number:** L2140976

Project Number: 170497201 **Report Date:** 08/10/21

SAMPLE RESULTS

Lab ID: L2140976-01 Date Collected: 07/29/21 12:00

Client ID: SB-MIP03_5-7 Date Received: 07/30/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - V	Westborough Lab					
Trichloroethene	ND		//	0.38	0.10	1
1,2-Dichlorobenzene	ND		ug/kg	1.5	0.10	1
1,3-Dichlorobenzene	ND		ug/kg	1.5	0.11	1
1,4-Dichlorobenzene	ND		ug/kg	1.5	0.11	1
Methyl tert butyl ether	ND		ug/kg	1.5	0.13	1
p/m-Xylene	ND		ug/kg	1.5	0.13	1
o-Xylene	ND ND		ug/kg	0.77	0.43	1
<u> </u>	ND		ug/kg		0.22	1
Xylenes, Total			ug/kg	0.77		
cis-1,2-Dichloroethene	ND		ug/kg	0.77	0.13	1
1,2-Dichloroethene, Total	ND		ug/kg	0.77	0.10	1
Dibromomethane	ND		ug/kg	1.5	0.18	1
Styrene	ND		ug/kg	0.77	0.15	1
Dichlorodifluoromethane	ND		ug/kg	7.7	0.70	1
Acetone	ND		ug/kg	7.7	3.7	1
Carbon disulfide	ND		ug/kg	7.7	3.5	1
2-Butanone	ND		ug/kg	7.7	1.7	1
Vinyl acetate	ND		ug/kg	7.7	1.6	1
4-Methyl-2-pentanone	ND		ug/kg	7.7	0.98	1
1,2,3-Trichloropropane	ND		ug/kg	1.5	0.10	1
2-Hexanone	ND		ug/kg	7.7	0.90	1
Bromochloromethane	ND		ug/kg	1.5	0.16	1
2,2-Dichloropropane	ND		ug/kg	1.5	0.16	1
1,2-Dibromoethane	ND		ug/kg	0.77	0.21	1
1,3-Dichloropropane	ND		ug/kg	1.5	0.13	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.38	0.10	1
Bromobenzene	ND		ug/kg	1.5	0.11	1
n-Butylbenzene	ND		ug/kg	0.77	0.13	1
sec-Butylbenzene	ND		ug/kg	0.77	0.11	1
tert-Butylbenzene	ND		ug/kg	1.5	0.09	1
o-Chlorotoluene	ND		ug/kg	1.5	0.15	1
p-Chlorotoluene	ND		ug/kg	1.5	0.08	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.3	0.77	1
Hexachlorobutadiene	ND		ug/kg	3.1	0.13	1
Isopropylbenzene	ND		ug/kg	0.77	0.08	1
p-Isopropyltoluene	ND		ug/kg	0.77	0.08	1
Naphthalene	ND		ug/kg	3.1	0.50	1
Acrylonitrile	ND		ug/kg	3.1	0.88	1

Project Name: 111 WILLOW AVE/767 E. 133RD ST Lab Number: L2140976

Project Number: 170497201 **Report Date:** 08/10/21

SAMPLE RESULTS

Lab ID: L2140976-01 Date Collected: 07/29/21 12:00

Client ID: SB-MIP03_5-7 Date Received: 07/30/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low -	Westborough Lab						
n-Propylbenzene	ND		ug/kg	0.77	0.13	1	
1,2,3-Trichlorobenzene	ND		ug/kg	1.5	0.25	1	
1,2,4-Trichlorobenzene	ND		ug/kg	1.5	0.21	1	
1,3,5-Trimethylbenzene	ND		ug/kg	1.5	0.15	1	
1,2,4-Trimethylbenzene	ND		ug/kg	1.5	0.26	1	
1,4-Dioxane	ND		ug/kg	61	27.	1	
p-Diethylbenzene	ND		ug/kg	1.5	0.14	1	
p-Ethyltoluene	ND		ug/kg	1.5	0.29	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	1.5	0.15	1	
Ethyl ether	ND		ug/kg	1.5	0.26	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	3.8	1.1	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	103		70-130	

L2140976

08/10/21

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201

SAMPLE RESULTS

Date Collected: 07/29/21 12:45

Lab Number:

Report Date:

 Lab ID:
 L2140976-02

 Client ID:
 SB-MIP08_19-20

Sample Location: BRONX, NY

Date Received: 07/30/21
Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/06/21 12:33

Analyst: JC Percent Solids: 85%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - W	estborough Lab					
Methylene chloride	ND		ug/kg	5.8	2.7	1
1,1-Dichloroethane	3.3		ug/kg	1.2	0.17	1
Chloroform	ND		ug/kg	1.8	0.16	1
Carbon tetrachloride	ND		ug/kg	1.2	0.27	1
1,2-Dichloropropane	ND		ug/kg	1.2	0.14	1
Dibromochloromethane	ND		ug/kg	1.2	0.16	1
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.31	1
Tetrachloroethene	300		ug/kg	0.58	0.23	1
Chlorobenzene	ND		ug/kg	0.58	0.15	1
Trichlorofluoromethane	ND		ug/kg	4.7	0.81	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.30	1
1,1,1-Trichloroethane	15		ug/kg	0.58	0.19	1
Bromodichloromethane	ND		ug/kg	0.58	0.13	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.32	1
cis-1,3-Dichloropropene	ND		ug/kg	0.58	0.18	1
1,3-Dichloropropene, Total	ND		ug/kg	0.58	0.18	1
1,1-Dichloropropene	ND		ug/kg	0.58	0.18	1
Bromoform	ND		ug/kg	4.7	0.29	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.58	0.19	1
Benzene	ND		ug/kg	0.58	0.19	1
Toluene	ND		ug/kg	1.2	0.63	1
Ethylbenzene	ND		ug/kg	1.2	0.16	1
Chloromethane	ND		ug/kg	4.7	1.1	1
Bromomethane	ND		ug/kg	2.3	0.68	1
Vinyl chloride	1.2		ug/kg	1.2	0.39	1
Chloroethane	ND		ug/kg	2.3	0.53	1
1,1-Dichloroethene	6.9		ug/kg	1.2	0.28	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.16	1

Project Name: 111 WILLOW AVE/767 E. 133RD ST **Lab Number:** L2140976

Project Number: 170497201 **Report Date:** 08/10/21

SAMPLE RESULTS

Lab ID: L2140976-02 Date Collected: 07/29/21 12:45

Client ID: SB-MIP08_19-20 Date Received: 07/30/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - '	Westborough Lab					
Trichloroothono	41			0.58	0.16	1
Trichloroethene			ug/kg			
1,2-Dichlorobenzene	ND ND		ug/kg	2.3	0.17	1
1,3-Dichlorobenzene			ug/kg			1
1,4-Dichlorobenzene	ND		ug/kg	2.3	0.20	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.23	1
p/m-Xylene	ND		ug/kg	2.3	0.65	1
o-Xylene	ND		ug/kg	1.2	0.34	1
Xylenes, Total	ND		ug/kg	1.2	0.34	1
cis-1,2-Dichloroethene	54		ug/kg	1.2	0.20	1
1,2-Dichloroethene, Total	54		ug/kg	1.2	0.16	1
Dibromomethane	ND		ug/kg	2.3	0.28	1
Styrene	ND		ug/kg	1.2	0.23	1
Dichlorodifluoromethane	ND		ug/kg	12	1.1	1
Acetone	ND		ug/kg	12	5.6	1
Carbon disulfide	ND		ug/kg	12	5.3	1
2-Butanone	ND		ug/kg	12	2.6	1
Vinyl acetate	ND		ug/kg	12	2.5	1
4-Methyl-2-pentanone	ND		ug/kg	12	1.5	1
1,2,3-Trichloropropane	ND		ug/kg	2.3	0.15	1
2-Hexanone	ND		ug/kg	12	1.4	1
Bromochloromethane	ND		ug/kg	2.3	0.24	1
2,2-Dichloropropane	ND		ug/kg	2.3	0.24	1
1,2-Dibromoethane	ND		ug/kg	1.2	0.32	1
1,3-Dichloropropane	ND		ug/kg	2.3	0.19	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.58	0.15	1
Bromobenzene	ND		ug/kg	2.3	0.17	1
n-Butylbenzene	ND		ug/kg	1.2	0.19	1
sec-Butylbenzene	ND		ug/kg	1.2	0.17	1
tert-Butylbenzene	ND		ug/kg	2.3	0.14	1
o-Chlorotoluene	ND		ug/kg	2.3	0.22	1
p-Chlorotoluene	ND		ug/kg	2.3	0.13	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.5	1.2	1
Hexachlorobutadiene	ND		ug/kg	4.7	0.20	1
Isopropylbenzene	ND		ug/kg	1.2	0.13	1
p-Isopropyltoluene	ND		ug/kg	1.2	0.13	1
Naphthalene	ND		ug/kg	4.7	0.76	1
Acrylonitrile	ND		ug/kg	4.7	1.3	1

Project Name: 111 WILLOW AVE/767 E. 133RD ST **Lab Number:** L2140976

Project Number: 170497201 **Report Date:** 08/10/21

SAMPLE RESULTS

Lab ID: L2140976-02 Date Collected: 07/29/21 12:45

Client ID: SB-MIP08_19-20 Date Received: 07/30/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low - Wes	tborough Lab						
n-Propylbenzene	ND		ug/kg	1.2	0.20	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.3	0.38	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.3	0.32	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.3	0.22	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.3	0.39	1	
1,4-Dioxane	ND		ug/kg	93	41.	1	
p-Diethylbenzene	ND		ug/kg	2.3	0.21	1	
p-Ethyltoluene	ND		ug/kg	2.3	0.45	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.3	0.22	1	
Ethyl ether	ND		ug/kg	2.3	0.40	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.8	1.6	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	98	70-130	

Project Name: 111 WILLOW AVE/767 E. 133RD ST **Lab Number:** L2140976

Project Number: 170497201 **Report Date:** 08/10/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/04/21 18:52

Analyst: KTD

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 Low	- Westbord	ugh Lab fo	r sample(s):	01	Batch:	WG1531865-5
Methylene chloride	ND		ug/kg	5.0		2.3
1,1-Dichloroethane	ND		ug/kg	1.0		0.14
Chloroform	0.14	J	ug/kg	1.5		0.14
Carbon tetrachloride	ND		ug/kg	1.0		0.23
1,2-Dichloropropane	ND		ug/kg	1.0		0.12
Dibromochloromethane	ND		ug/kg	1.0		0.14
1,1,2-Trichloroethane	ND		ug/kg	1.0		0.27
Tetrachloroethene	ND		ug/kg	0.50		0.20
Chlorobenzene	ND		ug/kg	0.50		0.13
Trichlorofluoromethane	ND		ug/kg	4.0		0.70
1,2-Dichloroethane	ND		ug/kg	1.0		0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50		0.17
Bromodichloromethane	ND		ug/kg	0.50		0.11
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.27
cis-1,3-Dichloropropene	ND		ug/kg	0.50		0.16
1,3-Dichloropropene, Total	ND		ug/kg	0.50		0.16
1,1-Dichloropropene	ND		ug/kg	0.50		0.16
Bromoform	ND		ug/kg	4.0		0.25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		0.17
Benzene	ND		ug/kg	0.50		0.17
Toluene	ND		ug/kg	1.0		0.54
Ethylbenzene	ND		ug/kg	1.0		0.14
Chloromethane	ND		ug/kg	4.0		0.93
Bromomethane	ND		ug/kg	2.0		0.58
Vinyl chloride	ND		ug/kg	1.0		0.34
Chloroethane	ND		ug/kg	2.0		0.45
1,1-Dichloroethene	ND		ug/kg	1.0		0.24
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.14
Trichloroethene	ND		ug/kg	0.50		0.14

L2140976

Project Name: 111 WILLOW AVE/767 E. 133RD ST **Lab Number:**

Project Number: 170497201 **Report Date:** 08/10/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/04/21 18:52

Analyst: KTD

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by EPA 5035 Lo	ow - Westbord	ough Lab for sample(s	s): 01	Batch: WG1531865-5	
1,2-Dichlorobenzene	ND	ug/kg	2.0	0.14	
1,3-Dichlorobenzene	ND	ug/kg	2.0	0.15	
1,4-Dichlorobenzene	ND	ug/kg	2.0	0.17	
Methyl tert butyl ether	ND	ug/kg	2.0	0.20	
p/m-Xylene	ND	ug/kg	2.0	0.56	
o-Xylene	ND	ug/kg	1.0	0.29	
Xylenes, Total	ND	ug/kg	1.0	0.29	
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.18	
1,2-Dichloroethene, Total	ND	ug/kg	1.0	0.14	
Dibromomethane	ND	ug/kg	2.0	0.24	
Styrene	ND	ug/kg	1.0	0.20	
Dichlorodifluoromethane	ND	ug/kg	10	0.92	
Acetone	ND	ug/kg	10	4.8	
Carbon disulfide	ND	ug/kg	10	4.6	
2-Butanone	ND	ug/kg	10	2.2	
Vinyl acetate	ND	ug/kg	10	2.2	
4-Methyl-2-pentanone	ND	ug/kg	10	1.3	
1,2,3-Trichloropropane	ND	ug/kg	2.0	0.13	
2-Hexanone	ND	ug/kg	10	1.2	
Bromochloromethane	ND	ug/kg	2.0	0.20	
2,2-Dichloropropane	ND	ug/kg	2.0	0.20	
1,2-Dibromoethane	ND	ug/kg	1.0	0.28	
1,3-Dichloropropane	ND	ug/kg	2.0	0.17	
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.50	0.13	
Bromobenzene	ND	ug/kg	2.0	0.14	
n-Butylbenzene	ND	ug/kg	1.0	0.17	
sec-Butylbenzene	ND	ug/kg	1.0	0.15	
tert-Butylbenzene	ND	ug/kg	2.0	0.12	
o-Chlorotoluene	ND	ug/kg	2.0	0.19	

L2140976

Lab Number:

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: Report Date: 170497201 08/10/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/04/21 18:52

Analyst: KTD

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 I	Low - Westboro	ugh Lab fo	r sample(s):	01	Batch:	WG1531865-5
p-Chlorotoluene	ND		ug/kg	2.0		0.11
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Hexachlorobutadiene	ND		ug/kg	4.0		0.17
Isopropylbenzene	ND		ug/kg	1.0		0.11
p-Isopropyltoluene	ND		ug/kg	1.0		0.11
Naphthalene	ND		ug/kg	4.0		0.65
Acrylonitrile	ND		ug/kg	4.0		1.2
n-Propylbenzene	ND		ug/kg	1.0		0.17
1,2,3-Trichlorobenzene	ND		ug/kg	2.0		0.32
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		0.33
1,4-Dioxane	ND		ug/kg	80		35.
p-Diethylbenzene	ND		ug/kg	2.0		0.18
p-Ethyltoluene	ND		ug/kg	2.0		0.38
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0		0.19
Ethyl ether	ND		ug/kg	2.0		0.34
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0		1.4

	Acceptance
%Recovery Qua	-
104	70-130
101	70-130
95	70-130
101	70-130
	104 101 95

Project Name: 111 WILLOW AVE/767 E. 133RD ST Lab Number: L2140976

Project Number: 170497201 **Report Date:** 08/10/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/06/21 06:31

Analyst: MV

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 Low	- Westbord	ough Lab for	sample(s):	02	Batch:	WG1532257-5
Methylene chloride	ND		ug/kg	5.0		2.3
1,1-Dichloroethane	ND		ug/kg	1.0		0.14
Chloroform	ND		ug/kg	1.5		0.14
Carbon tetrachloride	ND		ug/kg	1.0		0.23
1,2-Dichloropropane	ND		ug/kg	1.0		0.12
Dibromochloromethane	ND		ug/kg	1.0		0.14
1,1,2-Trichloroethane	ND		ug/kg	1.0		0.27
Tetrachloroethene	ND		ug/kg	0.50		0.20
Chlorobenzene	ND		ug/kg	0.50		0.13
Trichlorofluoromethane	ND		ug/kg	4.0		0.70
1,2-Dichloroethane	ND		ug/kg	1.0		0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50		0.17
Bromodichloromethane	ND		ug/kg	0.50		0.11
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.27
cis-1,3-Dichloropropene	ND		ug/kg	0.50		0.16
1,3-Dichloropropene, Total	ND		ug/kg	0.50		0.16
1,1-Dichloropropene	ND		ug/kg	0.50		0.16
Bromoform	ND		ug/kg	4.0		0.25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		0.17
Benzene	ND		ug/kg	0.50		0.17
Toluene	ND		ug/kg	1.0		0.54
Ethylbenzene	ND		ug/kg	1.0		0.14
Chloromethane	ND		ug/kg	4.0		0.93
Bromomethane	ND		ug/kg	2.0		0.58
Vinyl chloride	ND		ug/kg	1.0		0.34
Chloroethane	ND		ug/kg	2.0		0.45
1,1-Dichloroethene	ND		ug/kg	1.0		0.24
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.14
Trichloroethene	ND		ug/kg	0.50		0.14

L2140976

Project Name: 111 WILLOW AVE/767 E. 133RD ST **Lab Number:**

Project Number: 170497201 **Report Date:** 08/10/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/06/21 06:31

Analyst: MV

arameter	Result	Qualifier Units	RL		MDL
olatile Organics by EPA 5035 Lo	ow - Westbord	ough Lab for sample(s)	: 02	Batch:	WG1532257-5
1,2-Dichlorobenzene	ND	ug/kg	2.0		0.14
1,3-Dichlorobenzene	ND	ug/kg	2.0		0.15
1,4-Dichlorobenzene	ND	ug/kg	2.0		0.17
Methyl tert butyl ether	ND	ug/kg	2.0		0.20
p/m-Xylene	ND	ug/kg	2.0		0.56
o-Xylene	ND	ug/kg	1.0		0.29
Xylenes, Total	ND	ug/kg	1.0		0.29
cis-1,2-Dichloroethene	ND	ug/kg	1.0		0.18
1,2-Dichloroethene, Total	ND	ug/kg	1.0		0.14
Dibromomethane	ND	ug/kg	2.0		0.24
Styrene	ND	ug/kg	1.0		0.20
Dichlorodifluoromethane	ND	ug/kg	10		0.92
Acetone	ND	ug/kg	10		4.8
Carbon disulfide	ND	ug/kg	10		4.6
2-Butanone	ND	ug/kg	10		2.2
Vinyl acetate	ND	ug/kg	10		2.2
4-Methyl-2-pentanone	ND	ug/kg	10		1.3
1,2,3-Trichloropropane	ND	ug/kg	2.0		0.13
2-Hexanone	ND	ug/kg	10		1.2
Bromochloromethane	ND	ug/kg	2.0		0.20
2,2-Dichloropropane	ND	ug/kg	2.0		0.20
1,2-Dibromoethane	ND	ug/kg	1.0		0.28
1,3-Dichloropropane	ND	ug/kg	2.0		0.17
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.50		0.13
Bromobenzene	ND	ug/kg	2.0		0.14
n-Butylbenzene	ND	ug/kg	1.0		0.17
sec-Butylbenzene	ND	ug/kg	1.0		0.15
tert-Butylbenzene	ND	ug/kg	2.0		0.12
o-Chlorotoluene	ND	ug/kg	2.0		0.19

L2140976

Lab Number:

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: Report Date: 170497201 08/10/21

Method Blank Analysis Batch Quality Control

Analyst: MV

1,8260C

08/06/21 06:31

Analytical Method:

Analytical Date:

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 Lo	w - Westboro	ugh Lab fo	or sample(s):	02	Batch:	WG1532257-5
p-Chlorotoluene	ND		ug/kg	2.0		0.11
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Hexachlorobutadiene	ND		ug/kg	4.0		0.17
Isopropylbenzene	ND		ug/kg	1.0		0.11
p-Isopropyltoluene	ND		ug/kg	1.0		0.11
Naphthalene	ND		ug/kg	4.0		0.65
Acrylonitrile	ND		ug/kg	4.0		1.2
n-Propylbenzene	ND		ug/kg	1.0		0.17
1,2,3-Trichlorobenzene	ND		ug/kg	2.0		0.32
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		0.33
1,4-Dioxane	ND		ug/kg	80		35.
p-Diethylbenzene	ND		ug/kg	2.0		0.18
p-Ethyltoluene	ND		ug/kg	2.0		0.38
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0		0.19
Ethyl ether	ND		ug/kg	2.0		0.34
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0		1.4

		Acceptance
Surrogate	%Recovery Qu	<u>•</u>
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	91	70-130
Dibromofluoromethane	93	70-130

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201

Lab Number: L2140976

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - Westb	orough Lab Ass	ociated sample(s): 01 Batch:	WG1531865-3 WG153186	55-4	
Methylene chloride	97		93	70-130	4	30
1,1-Dichloroethane	103		99	70-130	4	30
Chloroform	91		91	70-130	0	30
Carbon tetrachloride	98		94	70-130	4	30
1,2-Dichloropropane	99		97	70-130	2	30
Dibromochloromethane	96		94	70-130	2	30
1,1,2-Trichloroethane	100		97	70-130	3	30
Tetrachloroethene	103		97	70-130	6	30
Chlorobenzene	98		94	70-130	4	30
Trichlorofluoromethane	118		112	70-139	5	30
1,2-Dichloroethane	96		95	70-130	1	30
1,1,1-Trichloroethane	99		95	70-130	4	30
Bromodichloromethane	94		93	70-130	1	30
trans-1,3-Dichloropropene	103		100	70-130	3	30
cis-1,3-Dichloropropene	98		96	70-130	2	30
1,1-Dichloropropene	99		96	70-130	3	30
Bromoform	85		84	70-130	1	30
1,1,2,2-Tetrachloroethane	98		99	70-130	1	30
Benzene	97		93	70-130	4	30
Toluene	99		94	70-130	5	30
Ethylbenzene	101		96	70-130	5	30
Chloromethane	136	Q	126	52-130	8	30
Bromomethane	128		119	57-147	7	30

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201

Lab Number: L2140976

Parameter	LCS %Recovery	Qual	LCSD %Recovery		ecovery Limits	RPD	RPD Qual Limits	
Volatile Organics by EPA 5035 Low - Westbo	rough Lab Ass	ociated sample	(s): 01 Batch	WG1531865-3	WG1531865-	4		
Vinyl chloride	133	Q	124	6	67-130	7	30	
Chloroethane	112		110	Ę	50-151	2	30	
1,1-Dichloroethene	104		99	6	65-135	5	30	
trans-1,2-Dichloroethene	101		96	7	70-130	5	30	
Trichloroethene	96		93	7	70-130	3	30	
1,2-Dichlorobenzene	95		93	7	70-130	2	30	
1,3-Dichlorobenzene	96		93	7	70-130	3	30	
1,4-Dichlorobenzene	96		93	7	70-130	3	30	
Methyl tert butyl ether	94		93	(66-130	1	30	
p/m-Xylene	100		96	7	70-130	4	30	
o-Xylene	99		95	7	70-130	4	30	
cis-1,2-Dichloroethene	98		95	7	70-130	3	30	
Dibromomethane	91		90	7	70-130	1	30	
Styrene	99		96	7	70-130	3	30	
Dichlorodifluoromethane	213	Q	199	Q 3	30-146	7	30	
Acetone	92		90	5	54-140	2	30	
Carbon disulfide	104		100	Ę	59-130	4	30	
2-Butanone	93		90	-	70-130	3	30	
Vinyl acetate	109		108	7	70-130	1	30	
4-Methyl-2-pentanone	84		82	7	70-130	2	30	
1,2,3-Trichloropropane	93		93	(68-130	0	30	
2-Hexanone	91		90	7	70-130	1	30	
Bromochloromethane	96		92	7	70-130	4	30	

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201

Lab Number: L2140976

arameter	LCS %Recovery	-	SD overy	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 Low - We	stborough Lab Asso	ciated sample(s): 01	Batch:	WG153186	5-3 WG153186	65-4		
2,2-Dichloropropane	100		94		70-130	6		30
1,2-Dibromoethane	100		96		70-130	4		30
1,3-Dichloropropane	99		95		69-130	4		30
1,1,1,2-Tetrachloroethane	98		96		70-130	2		30
Bromobenzene	92		90		70-130	2		30
n-Butylbenzene	104	1	00		70-130	4		30
sec-Butylbenzene	101		97		70-130	4		30
tert-Butylbenzene	100		97		70-130	3		30
o-Chlorotoluene	98		95		70-130	3		30
p-Chlorotoluene	100		96		70-130	4		30
1,2-Dibromo-3-chloropropane	82		32		68-130	0		30
Hexachlorobutadiene	98		94		67-130	4		30
Isopropylbenzene	102		99		70-130	3		30
p-Isopropyltoluene	101		96		70-130	5		30
Naphthalene	92		90		70-130	2		30
Acrylonitrile	95		94		70-130	1		30
n-Propylbenzene	101		97		70-130	4		30
1,2,3-Trichlorobenzene	95		92		70-130	3		30
1,2,4-Trichlorobenzene	99		94		70-130	5		30
1,3,5-Trimethylbenzene	100		97		70-130	3		30
1,2,4-Trimethylbenzene	99		97		70-130	2		30
1,4-Dioxane	89		90		65-136	1		30
p-Diethylbenzene	101		97		70-130	4		30

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201

Lab Number: L2140976

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 Low - Westborough Lab Associated sample(s): 01 Batch: WG1531865-3 WG1531865-4								
p-Ethyltoluene	99		96		70-130	3		30
1,2,4,5-Tetramethylbenzene	99		95		70-130	4		30
Ethyl ether	103		102		67-130	1		30
trans-1,4-Dichloro-2-butene	102		100		70-130	2		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	96	98	70-130
Toluene-d8	103	102	70-130
4-Bromofluorobenzene	100	100	70-130
Dibromofluoromethane	97	98	70-130

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201

Lab Number: L2140976

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by EPA 5035 Low - Westb	oorough Lab Ass	ociated sample	e(s): 02 Batch:	WG1532257-3 WG15322	57-4	
Methylene chloride	86		87	70-130	1	30
1,1-Dichloroethane	90		91	70-130	1	30
Chloroform	94		94	70-130	0	30
Carbon tetrachloride	97		97	70-130	0	30
1,2-Dichloropropane	91		93	70-130	2	30
Dibromochloromethane	105		106	70-130	1	30
1,1,2-Trichloroethane	100		101	70-130	1	30
Tetrachloroethene	110		110	70-130	0	30
Chlorobenzene	105		106	70-130	1	30
Trichlorofluoromethane	105		101	70-139	4	30
1,2-Dichloroethane	95		95	70-130	0	30
1,1,1-Trichloroethane	97		96	70-130	1	30
Bromodichloromethane	96		96	70-130	0	30
trans-1,3-Dichloropropene	100		102	70-130	2	30
cis-1,3-Dichloropropene	99		98	70-130	1	30
1,1-Dichloropropene	94		96	70-130	2	30
Bromoform	102		104	70-130	2	30
1,1,2,2-Tetrachloroethane	98		100	70-130	2	30
Benzene	93		93	70-130	0	30
Toluene	98		98	70-130	0	30
Ethylbenzene	102		102	70-130	0	30
Chloromethane	64		66	52-130	3	30
Bromomethane	95		93	57-147	2	30

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201

Lab Number: L2140976

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - Westb	orough Lab Ass	ociated sample(s): 02 Ba	tch: WG15322	257-3 WG15322	57-4	
Vinyl chloride	82		84		67-130	2	30
Chloroethane	97		95		50-151	2	30
1,1-Dichloroethene	88		90		65-135	2	30
trans-1,2-Dichloroethene	93		94		70-130	1	30
Trichloroethene	98		97		70-130	1	30
1,2-Dichlorobenzene	110		111		70-130	1	30
1,3-Dichlorobenzene	114		114		70-130	0	30
1,4-Dichlorobenzene	110		112		70-130	2	30
Methyl tert butyl ether	89		89		66-130	0	30
p/m-Xylene	107		106		70-130	1	30
o-Xylene	108		107		70-130	1	30
cis-1,2-Dichloroethene	95		97		70-130	2	30
Dibromomethane	100		100		70-130	0	30
Styrene	110		109		70-130	1	30
Dichlorodifluoromethane	62		62		30-146	0	30
Acetone	83		86		54-140	4	30
Carbon disulfide	76		77		59-130	1	30
2-Butanone	68	Q	69	Q	70-130	1	30
Vinyl acetate	84		86		70-130	2	30
4-Methyl-2-pentanone	85		88		70-130	3	30
1,2,3-Trichloropropane	96		98		68-130	2	30
2-Hexanone	83		86		70-130	4	30
Bromochloromethane	102		102		70-130	0	30

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201

Lab Number: L2140976

Parameter	LCS %Recovery	LCS Qual %Reco	,	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 Low - West	oorough Lab Ass	ociated sample(s): 02	Batch: WG1532257-3	3 WG1532257	·-4		
2,2-Dichloropropane	95	94	1	70-130	1		30
1,2-Dibromoethane	97	97	7	70-130	0		30
1,3-Dichloropropane	98	98	3	69-130	0		30
1,1,1,2-Tetrachloroethane	106	10	5	70-130	1		30
Bromobenzene	109	10	9	70-130	0		30
n-Butylbenzene	110	11	0	70-130	0		30
sec-Butylbenzene	105	10	6	70-130	1		30
tert-Butylbenzene	105	10	6	70-130	1		30
o-Chlorotoluene	83	84	1	70-130	1		30
p-Chlorotoluene	101	10	2	70-130	1		30
1,2-Dibromo-3-chloropropane	88	91	I	68-130	3		30
Hexachlorobutadiene	114	11	5	67-130	1		30
Isopropylbenzene	104	10	4	70-130	0		30
p-Isopropyltoluene	110	11	0	70-130	0		30
Naphthalene	105	10	8	70-130	3		30
Acrylonitrile	77	81	l e	70-130	5		30
n-Propylbenzene	104	10	5	70-130	1		30
1,2,3-Trichlorobenzene	116	11	8	70-130	2		30
1,2,4-Trichlorobenzene	122	12	4	70-130	2		30
1,3,5-Trimethylbenzene	103	10	5	70-130	2		30
1,2,4-Trimethylbenzene	105	10	5	70-130	0		30
1,4-Dioxane	79	81		65-136	3		30
p-Diethylbenzene	112	11	3	70-130	1		30

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201

Lab Number: L2140976

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 Low - Westbo	rough Lab Asso	ociated sample	(s): 02 Batch	: WG153225	7-3 WG153225	7-4		
p-Ethyltoluene	106		107		70-130	1		30
1,2,4,5-Tetramethylbenzene	111		113		70-130	2		30
Ethyl ether	88		89		67-130	1		30
trans-1,4-Dichloro-2-butene	95		97		70-130	2		30

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	95	95	70-130	
Toluene-d8	98	98	70-130	
4-Bromofluorobenzene	90	91	70-130	
Dibromofluoromethane	96	96	70-130	

INORGANICS & MISCELLANEOUS

Serial_No:08102114:33

Project Name: 111 WILLOW AVE/767 E. 133RD ST Lab Number: L2140976

Project Number: 170497201 **Report Date:** 08/10/21

SAMPLE RESULTS

Lab ID: L2140976-01 Date Collected: 07/29/21 12:00

Client ID: SB-MIP03_5-7 Date Received: 07/30/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - '	Westborough Lab)								
Solids, Total	87.9		%	0.100	NA	1	-	08/03/21 12:38	121,2540G	RI

Serial_No:08102114:33

Project Name: 111 WILLOW AVE/767 E. 133RD ST Lab Number: L2140976

Project Number: 170497201 **Report Date:** 08/10/21

SAMPLE RESULTS

Lab ID: L2140976-02 Date Collected: 07/29/21 12:45

Client ID: SB-MIP08_19-20 Date Received: 07/30/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	85.3		%	0.100	NA	1	-	08/05/21 11:52	121,2540G	RI

Lab Duplicate Analysis Batch Quality Control

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201

Lab Number:

L2140976

Report Date:

08/10/21

Parameter	Native Sample	Duplicate Sample	le Units	RPD	Qual RPD Limi	its
General Chemistry - Westborough Lab Associate	ted sample(s): 01 QC Batch ID:	WG1530918-1	QC Sample: L2141	287-01 Clie	ent ID: DUP Sample	
Solids, Total	85.4	86.5	%	1	20	
General Chemistry - Westborough Lab Associate	ted sample(s): 02 QC Batch ID:	WG1531807-1	QC Sample: L2141	574-01 Clie	ent ID: DUP Sample	
Solids, Total	89.8	90.5	%	1	20	

Serial_No:08102114:33

Project Name: 111 WILLOW AVE/767 E. 133RD ST

Project Number: 170497201 **Report Date:** 08/10/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2140976-01A	Vial MeOH preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260HLW(14)
L2140976-01B	Vial water preserved	Α	NA		2.1	Υ	Absent	30-JUL-21 23:27	NYTCL-8260HLW(14)
L2140976-01C	Vial water preserved	Α	NA		2.1	Υ	Absent	30-JUL-21 23:27	NYTCL-8260HLW(14)
L2140976-01D	Plastic 2oz unpreserved for TS	Α	NA		2.1	Υ	Absent		TS(7)
L2140976-02A	Vial MeOH preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260HLW(14)
L2140976-02B	Vial water preserved	Α	NA		2.1	Υ	Absent	30-JUL-21 23:27	NYTCL-8260HLW(14)
L2140976-02C	Vial water preserved	Α	NA		2.1	Υ	Absent	30-JUL-21 23:27	NYTCL-8260HLW(14)
L2140976-02D	Plastic 2oz unpreserved for TS	Α	NA		2.1	Υ	Absent		TS(7)

GLOSSARY

Acronyms

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$ Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:08102114:33

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581	NEW JERSEY CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cod Project Information	/ay	5	Page			ite Rec'o	7/3	0/2	1	ALPHA Job # L2/409 76 Billing Information	
8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client Information	320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	oillow/Ax tanx, A	767E	1334	H	□ ₽	J Full / Re QuIS (1 F ther] EQul	S (4 File)	Same as Client Info	
Fax: Email: Z.Yano	31-75+ 8+41 NY 9-5400 Witzelangan.a	(Use Project name as Project Manager: Standard Time Standard Rush (only if pre approved)	oject#) [] var+ K	Due Date:			S S N N	RS Impac J Ground J IGW SP ther	rement ential/Non it to Grour Water Qu LP Leach	dwater ality Sta	indards	Site Information Is this site impacted by Petroleum? Yes Petroleum Product:	
These samples have b For EPH, selection is REQUIRED: Category 1 Category 2		Other project specific r		comments:			analy S	SIS				Done Lab to do Preservation Lab to do (Please Specify below)	Total Bot
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle Date	ction Time	Sample Matrix	Sampler's Initials						Sample Specific Comments	t
4.0976-01	SB-MIPO SB-MIPO		7/29/2021		Soil	18	X						
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other Form No: 01-14 HC (rev. 3)	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification N Mansfield: Certification N Relinquished	By:	Date/ # 20 20 1/30/5	F	Preservative		i By:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date 30 3 5 5 5 5 5 5 5 5 5	Time 01 1047 01 1647	Please print clearly, legibly and completely. Samples not be logged in and turnaround time clock will start until any ambiguities resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHITERMS & CONDITIONS. (See reverse side.)	not are G

ANALYTICAL REPORT

Lab Number: L2141567

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor

New York, NY 10001-2727

ATTN: Stuart Knoop
Phone: (212) 479-5400
Project Name: 111 WILLOW

Project Number: 170497201

Report Date: 08/09/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 111 WILLOW **Project Number:** 170497201

 Lab Number:
 L2141567

 Report Date:
 08/09/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2141567-01	SB-MIP10_9-10	SOIL	BRONX, NY	08/03/21 12:00	08/04/21
L2141567-02	SB-MIP10_23-24	SOIL	BRONX, NY	08/03/21 12:01	08/04/21
L2141567-03	SB-MIP07_6-7	SOIL	BRONX, NY	08/03/21 13:00	08/04/21
L2141567-04	SB-MIP07_18-19	SOIL	BRONX, NY	08/03/21 13:01	08/04/21

Project Name:111 WILLOWLab Number:L2141567Project Number:170497201Report Date:08/09/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:111 WILLOWLab Number:L2141567Project Number:170497201Report Date:08/09/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2141567-04: The sample was analyzed as a High Level Methanol in order to quantitate results within the calibration range. The result should be considered estimated, and is qualified with an E flag, for any compound that exceeded the calibration on the initial Low Level analysis. The results of both analyses are reported. Differences were noted between the results of the analyses which have been attributed to vial discrepancies.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/09/21

Custen Walker Cristin Walker

ORGANICS

VOLATILES

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 **Report Date:** 08/09/21

SAMPLE RESULTS

PESIII TS

Lab ID: L2141567-01 Date Collected: 08/03/21 12:00

Client ID: SB-MIP10_9-10 Date Received: 08/04/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/06/21 10:49

Analyst: JC Percent Solids: 74%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Lov	w - Westborough Lab						
Methylene chloride	ND		ug/kg	6.6	3.0	1	
1,1-Dichloroethane	ND		ug/kg	1.3	0.19	1	
Chloroform	ND		ug/kg	2.0	0.18	1	
Carbon tetrachloride	ND		ug/kg	1.3	0.30	1	
1,2-Dichloropropane	ND		ug/kg	1.3	0.16	1	
Dibromochloromethane	ND		ug/kg	1.3	0.18	1	
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.35	1	
Tetrachloroethene	ND		ug/kg	0.66	0.26	1	
Chlorobenzene	ND		ug/kg	0.66	0.17	1	
Trichlorofluoromethane	ND		ug/kg	5.3	0.92	1	
1,2-Dichloroethane	ND		ug/kg	1.3	0.34	1	
1,1,1-Trichloroethane	ND		ug/kg	0.66	0.22	1	
Bromodichloromethane	ND		ug/kg	0.66	0.14	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.3	0.36	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.66	0.21	1	
1,3-Dichloropropene, Total	ND		ug/kg	0.66	0.21	1	
1,1-Dichloropropene	ND		ug/kg	0.66	0.21	1	
Bromoform	ND		ug/kg	5.3	0.33	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.66	0.22	1	
Benzene	ND		ug/kg	0.66	0.22	1	
Toluene	ND		ug/kg	1.3	0.72	1	
Ethylbenzene	ND		ug/kg	1.3	0.19	1	
Chloromethane	ND		ug/kg	5.3	1.2	1	
Bromomethane	ND		ug/kg	2.6	0.77	1	
Vinyl chloride	ND		ug/kg	1.3	0.44	1	
Chloroethane	ND		ug/kg	2.6	0.60	1	
1,1-Dichloroethene	ND		ug/kg	1.3	0.32	1	
trans-1,2-Dichloroethene	ND		ug/kg	2.0	0.18	1	

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 **Report Date:** 08/09/21

SAMPLE RESULTS

Lab ID: L2141567-01 Date Collected: 08/03/21 12:00

Client ID: SB-MIP10_9-10 Date Received: 08/04/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - W	estborough Lab					
Trichloroethene	ND			0.66	0.18	1
1,2-Dichlorobenzene	ND		ug/kg	2.6	0.10	1
1,3-Dichlorobenzene	ND		ug/kg	2.6	0.19	1
1,4-Dichlorobenzene	ND		ug/kg	2.6	0.23	1
	ND		ug/kg	2.6	0.23	1
Methyl tert butyl ether			ug/kg			
p/m-Xylene	ND		ug/kg	2.6	0.74	1
o-Xylene	ND		ug/kg	1.3	0.39	1
Xylenes, Total	ND		ug/kg	1.3	0.39	1
cis-1,2-Dichloroethene	ND		ug/kg	1.3	0.23	1
1,2-Dichloroethene, Total	ND		ug/kg	1.3	0.18	1
Dibromomethane	ND		ug/kg	2.6	0.32	1
Styrene	ND		ug/kg	1.3	0.26	1
Dichlorodifluoromethane	ND		ug/kg	13	1.2	1
Acetone	61		ug/kg	13	6.4	1
Carbon disulfide	ND		ug/kg	13	6.0	1
2-Butanone	9.4	J	ug/kg	13	2.9	1
Vinyl acetate	ND		ug/kg	13	2.8	1
4-Methyl-2-pentanone	ND		ug/kg	13	1.7	1
1,2,3-Trichloropropane	ND		ug/kg	2.6	0.17	1
2-Hexanone	ND		ug/kg	13	1.6	1
Bromochloromethane	ND		ug/kg	2.6	0.27	1
2,2-Dichloropropane	ND		ug/kg	2.6	0.27	1
1,2-Dibromoethane	ND		ug/kg	1.3	0.37	1
1,3-Dichloropropane	ND		ug/kg	2.6	0.22	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.66	0.18	1
Bromobenzene	ND		ug/kg	2.6	0.19	1
n-Butylbenzene	ND		ug/kg	1.3	0.22	1
sec-Butylbenzene	ND		ug/kg	1.3	0.19	1
tert-Butylbenzene	ND		ug/kg	2.6	0.16	1
o-Chlorotoluene	ND		ug/kg	2.6	0.25	1
p-Chlorotoluene	ND		ug/kg	2.6	0.14	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	4.0	1.3	1
Hexachlorobutadiene	ND		ug/kg	5.3	0.22	1
Isopropylbenzene	ND		ug/kg	1.3	0.14	1
p-Isopropyltoluene	ND		ug/kg	1.3	0.14	1
Naphthalene	ND		ug/kg	5.3	0.86	1
Acrylonitrile	ND		ug/kg	5.3	1.5	1
• • •	·· -		~a,.,a			

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 **Report Date:** 08/09/21

SAMPLE RESULTS

Lab ID: L2141567-01 Date Collected: 08/03/21 12:00

Client ID: SB-MIP10_9-10 Date Received: 08/04/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Westb	orough Lab					
n-Propylbenzene	ND		ug/kg	1.3	0.23	1
1,2,3-Trichlorobenzene	ND		ug/kg	2.6	0.43	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.6	0.36	1
1,3,5-Trimethylbenzene	ND		ug/kg	2.6	0.26	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.6	0.44	1
1,4-Dioxane	ND		ug/kg	110	46.	1
p-Diethylbenzene	ND		ug/kg	2.6	0.23	1
p-Ethyltoluene	ND		ug/kg	2.6	0.51	1
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.6	0.25	1
Ethyl ether	ND		ug/kg	2.6	0.45	1
trans-1,4-Dichloro-2-butene	ND		ug/kg	6.6	1.9	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	99	70-130	

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 **Report Date:** 08/09/21

SAMPLE RESULTS

Lab ID: Date Collected: 08/03/21 12:01

Client ID: SB-MIP10_23-24 Date Received: 08/04/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/06/21 11:15

Analyst: JC Percent Solids: 84%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
Methylene chloride	ND		ug/kg	4.2	1.9	1	
1,1-Dichloroethane	1.4		ug/kg	0.83	0.12	1	
Chloroform	0.13	J	ug/kg	1.2	0.12	1	
Carbon tetrachloride	ND		ug/kg	0.83	0.19	1	
1,2-Dichloropropane	ND		ug/kg	0.83	0.10	1	
Dibromochloromethane	ND		ug/kg	0.83	0.12	1	
1,1,2-Trichloroethane	ND		ug/kg	0.83	0.22	1	
Tetrachloroethene	160		ug/kg	0.42	0.16	1	
Chlorobenzene	ND		ug/kg	0.42	0.10	1	
Trichlorofluoromethane	ND		ug/kg	3.3	0.58	1	
1,2-Dichloroethane	ND		ug/kg	0.83	0.21	1	
1,1,1-Trichloroethane	11		ug/kg	0.42	0.14	1	
Bromodichloromethane	ND		ug/kg	0.42	0.09	1	
trans-1,3-Dichloropropene	ND		ug/kg	0.83	0.23	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.42	0.13	1	
1,3-Dichloropropene, Total	ND		ug/kg	0.42	0.13	1	
1,1-Dichloropropene	ND		ug/kg	0.42	0.13	1	
Bromoform	ND		ug/kg	3.3	0.20	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.42	0.14	1	
Benzene	ND		ug/kg	0.42	0.14	1	
Toluene	ND		ug/kg	0.83	0.45	1	
Ethylbenzene	ND		ug/kg	0.83	0.12	1	
Chloromethane	ND		ug/kg	3.3	0.77	1	
Bromomethane	ND		ug/kg	1.7	0.48	1	
Vinyl chloride	ND		ug/kg	0.83	0.28	1	
Chloroethane	ND		ug/kg	1.7	0.38	1	
1,1-Dichloroethene	3.0		ug/kg	0.83	0.20	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.2	0.11	1	

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 **Report Date:** 08/09/21

SAMPLE RESULTS

Lab ID: Date Collected: 08/03/21 12:01

Client ID: SB-MIP10_23-24 Date Received: 08/04/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Wes	tborough Lab					
Trichloroethene	22		ug/kg	0.42	0.11	1
1,2-Dichlorobenzene	ND		ug/kg	1.7	0.12	1
1,3-Dichlorobenzene	ND		ug/kg	1.7	0.12	1
1,4-Dichlorobenzene	ND		ug/kg	1.7	0.14	1
Methyl tert butyl ether	ND		ug/kg	1.7	0.17	1
p/m-Xylene	ND		ug/kg	1.7	0.46	1
o-Xylene	ND		ug/kg	0.83	0.24	1
Xylenes, Total	ND		ug/kg	0.83	0.24	1
cis-1,2-Dichloroethene	42		ug/kg	0.83	0.14	1
1,2-Dichloroethene, Total	42		ug/kg	0.83	0.11	1
Dibromomethane	ND		ug/kg	1.7	0.20	1
Styrene	ND		ug/kg	0.83	0.16	1
Dichlorodifluoromethane	ND		ug/kg	8.3	0.76	1
Acetone	ND		ug/kg	8.3	4.0	1
Carbon disulfide	ND		ug/kg	8.3	3.8	1
2-Butanone	ND		ug/kg	8.3	1.8	1
Vinyl acetate	ND		ug/kg	8.3	1.8	1
4-Methyl-2-pentanone	ND		ug/kg	8.3	1.1	1
1,2,3-Trichloropropane	ND		ug/kg	1.7	0.10	1
2-Hexanone	ND		ug/kg	8.3	0.98	1
Bromochloromethane	ND		ug/kg	1.7	0.17	1
2,2-Dichloropropane	ND		ug/kg	1.7	0.17	1
1,2-Dibromoethane	ND		ug/kg	0.83	0.23	1
1,3-Dichloropropane	ND		ug/kg	1.7	0.14	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.42	0.11	1
Bromobenzene	ND		ug/kg	1.7	0.12	1
n-Butylbenzene	ND		ug/kg	0.83	0.14	1
sec-Butylbenzene	ND		ug/kg	0.83	0.12	1
tert-Butylbenzene	ND		ug/kg	1.7	0.10	1
o-Chlorotoluene	ND		ug/kg	1.7	0.16	1
p-Chlorotoluene	ND		ug/kg	1.7	0.09	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.5	0.83	1
Hexachlorobutadiene	ND		ug/kg	3.3	0.14	1
Isopropylbenzene	ND		ug/kg	0.83	0.09	1
p-Isopropyltoluene	ND		ug/kg	0.83	0.09	1
Naphthalene	ND		ug/kg	3.3	0.54	1
Acrylonitrile	ND		ug/kg	3.3	0.96	1

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 **Report Date:** 08/09/21

SAMPLE RESULTS

Lab ID: L2141567-02 Date Collected: 08/03/21 12:01

Client ID: SB-MIP10_23-24 Date Received: 08/04/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low -	Westborough Lab						
n-Propylbenzene	ND		ug/kg	0.83	0.14	1	
1,2,3-Trichlorobenzene	ND		ug/kg	1.7	0.27	1	
1,2,4-Trichlorobenzene	ND		ug/kg	1.7	0.23	1	
1,3,5-Trimethylbenzene	ND		ug/kg	1.7	0.16	1	
1,2,4-Trimethylbenzene	ND		ug/kg	1.7	0.28	1	
1,4-Dioxane	ND		ug/kg	66	29.	1	
p-Diethylbenzene	ND		ug/kg	1.7	0.15	1	
p-Ethyltoluene	ND		ug/kg	1.7	0.32	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	1.7	0.16	1	
Ethyl ether	ND		ug/kg	1.7	0.28	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.2	1.2	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	98	70-130	

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 **Report Date:** 08/09/21

SAMPLE RESULTS

IDI E DECILI TO

Lab ID: L2141567-03 Date Collected: 08/03/21 13:00

Client ID: SB-MIP07_6-7 Date Received: 08/04/21 Sample Location: BRONX, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/06/21 11:41

Analyst: JC Percent Solids: 80%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Lov	w - Westborough Lab						
Methylene chloride	ND		ug/kg	9.6	4.4	1	
1,1-Dichloroethane	ND		ug/kg	1.9	0.28	1	
Chloroform	ND		ug/kg	2.9	0.27	1	
Carbon tetrachloride	ND		ug/kg	1.9	0.44	1	
1,2-Dichloropropane	ND		ug/kg	1.9	0.24	1	
Dibromochloromethane	ND		ug/kg	1.9	0.27	1	
1,1,2-Trichloroethane	ND		ug/kg	1.9	0.51	1	
Tetrachloroethene	ND		ug/kg	0.96	0.38	1	
Chlorobenzene	ND		ug/kg	0.96	0.24	1	
Trichlorofluoromethane	ND		ug/kg	7.7	1.3	1	
1,2-Dichloroethane	ND		ug/kg	1.9	0.49	1	
1,1,1-Trichloroethane	ND		ug/kg	0.96	0.32	1	
Bromodichloromethane	ND		ug/kg	0.96	0.21	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.9	0.52	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.96	0.30	1	
1,3-Dichloropropene, Total	ND		ug/kg	0.96	0.30	1	
1,1-Dichloropropene	ND		ug/kg	0.96	0.30	1	
Bromoform	ND		ug/kg	7.7	0.47	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.96	0.32	1	
Benzene	ND		ug/kg	0.96	0.32	1	
Toluene	ND		ug/kg	1.9	1.0	1	
Ethylbenzene	ND		ug/kg	1.9	0.27	1	
Chloromethane	ND		ug/kg	7.7	1.8	1	
Bromomethane	ND		ug/kg	3.8	1.1	1	
Vinyl chloride	2.6		ug/kg	1.9	0.64	1	
Chloroethane	ND		ug/kg	3.8	0.87	1	
1,1-Dichloroethene	ND		ug/kg	1.9	0.46	1	
trans-1,2-Dichloroethene	ND		ug/kg	2.9	0.26	1	

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 **Report Date:** 08/09/21

SAMPLE RESULTS

Lab ID: L2141567-03 Date Collected: 08/03/21 13:00

Client ID: SB-MIP07_6-7 Date Received: 08/04/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - We	estborough Lab					
Trichloroethene	ND		ug/kg	0.96	0.26	1
1,2-Dichlorobenzene	ND		ug/kg	3.8	0.28	1
1,3-Dichlorobenzene	ND		ug/kg	3.8	0.28	1
1,4-Dichlorobenzene	ND		ug/kg	3.8	0.33	1
Methyl tert butyl ether	ND		ug/kg	3.8	0.39	1
p/m-Xylene	ND		ug/kg	3.8	1.1	1
o-Xylene	ND		ug/kg	1.9	0.56	1
Xylenes, Total	ND		ug/kg	1.9	0.56	1
cis-1,2-Dichloroethene	0.38	J	ug/kg	1.9	0.34	1
1,2-Dichloroethene, Total	0.38	J	ug/kg	1.9	0.26	1
Dibromomethane	ND		ug/kg	3.8	0.46	1
Styrene	ND		ug/kg	1.9	0.38	1
Dichlorodifluoromethane	ND		ug/kg	19	1.8	1
Acetone	190		ug/kg	19	9.2	1
Carbon disulfide	ND		ug/kg	19	8.8	1
2-Butanone	28		ug/kg	19	4.3	1
Vinyl acetate	ND		ug/kg	19	4.1	1
4-Methyl-2-pentanone	ND		ug/kg	19	2.5	1
1,2,3-Trichloropropane	ND		ug/kg	3.8	0.24	1
2-Hexanone	ND		ug/kg	19	2.3	1
Bromochloromethane	ND		ug/kg	3.8	0.39	1
2,2-Dichloropropane	ND		ug/kg	3.8	0.39	1
1,2-Dibromoethane	ND		ug/kg	1.9	0.54	1
1,3-Dichloropropane	ND		ug/kg	3.8	0.32	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.96	0.25	1
Bromobenzene	ND		ug/kg	3.8	0.28	1
n-Butylbenzene	ND		ug/kg	1.9	0.32	1
sec-Butylbenzene	ND		ug/kg	1.9	0.28	1
tert-Butylbenzene	ND		ug/kg	3.8	0.23	1
o-Chlorotoluene	ND		ug/kg	3.8	0.37	1
p-Chlorotoluene	ND		ug/kg	3.8	0.21	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.8	1.9	1
Hexachlorobutadiene	ND		ug/kg	7.7	0.32	1
Isopropylbenzene	ND		ug/kg	1.9	0.21	1
p-Isopropyltoluene	ND		ug/kg	1.9	0.21	1
Naphthalene	ND		ug/kg	7.7	1.2	1
Acrylonitrile	ND		ug/kg	7.7	2.2	1

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 **Report Date:** 08/09/21

SAMPLE RESULTS

Lab ID: L2141567-03 Date Collected: 08/03/21 13:00

Client ID: SB-MIP07_6-7 Date Received: 08/04/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low -	Westborough Lab						
n-Propylbenzene	ND		ug/kg	1.9	0.33	1	
1,2,3-Trichlorobenzene	ND		ug/kg	3.8	0.62	1	
1,2,4-Trichlorobenzene	ND		ug/kg	3.8	0.52	1	
1,3,5-Trimethylbenzene	ND		ug/kg	3.8	0.37	1	
1,2,4-Trimethylbenzene	ND		ug/kg	3.8	0.64	1	
1,4-Dioxane	ND		ug/kg	150	68.	1	
p-Diethylbenzene	ND		ug/kg	3.8	0.34	1	
p-Ethyltoluene	ND		ug/kg	3.8	0.74	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	3.8	0.37	1	
Ethyl ether	ND		ug/kg	3.8	0.66	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	9.6	2.7	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	100	70-130	

L2141567

Project Name: 111 WILLOW

Lab Number:

Project Number: Report Date: 170497201 08/09/21

SAMPLE RESULTS

Lab ID: L2141567-04 Date Collected: 08/03/21 13:01

Client ID: Date Received: 08/04/21 SB-MIP07_18-19 Field Prep: Sample Location: Not Specified BRONX, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 08/06/21 12:07

Analyst: JC 86% Percent Solids:

Wolatile Organics by EPA 5035 Low - Westborub Lab Methylene chloride ND ug/kg 4.8 2.2 1 1,1-Dichloroethane 2,7 ug/kg 0.97 0.14 1 Chloroform ND ug/kg 0.97 0.12 1 Carbon tetrachloride ND ug/kg 0.97 0.22 1 Carbon tetrachloride ND ug/kg 0.97 0.12 1 Carbon tetrachloride ND ug/kg 0.97 0.12 1 Dibromochloromethane ND ug/kg 0.97 0.14 1 1,12-Trichloroethane ND ug/kg 0.97 0.26 1 Chlorobenzene ND ug/kg 0.48 0.19 1 Chlorobenzene ND ug/kg 0.97 0.25 1 1,1-1-Trichloroethane ND ug/kg 0.97 0.26 1 1,1-1-Trichloroethane ND ug/kg 0.48 0.16 1 1,2-Dich	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane 2,7 ug/kg 0,97 0,14 1 Chloroform ND ug/kg 1,4 0,14 1 Carbon tetrachloride ND ug/kg 0,97 0,22 1 1,2-Dichloropropane ND ug/kg 0,97 0,12 1 Dibromochloromethane ND ug/kg 0,97 0,26 1 Tetrachloroethane ND ug/kg 0,48 0,19 1 Tetrachloroethane ND ug/kg 0,48 0,19 1 Chlorobenzene ND ug/kg 0,48 0,19 1 Chlorobenzene ND ug/kg 0,48 0,12 1 Tirchloroethane ND ug/kg 0,97 0,25 1 1,1-1-Trichloroethane ND ug/kg 0,97 0,25 1 Bromodichloromethane ND ug/kg 0,48 0,10 1 teras-1,3-Dichloropropene ND ug/kg 0,48	Volatile Organics by EPA 5035 Low - V	estborough Lab					
1,1-Dichloroethane 2.7 ug/kg 0.97 0.14 1 Chloroform ND ug/kg 1.4 0.14 1 Carbon tetrachloride ND ug/kg 0.97 0.22 1 1,2-Dichloropropane ND ug/kg 0.97 0.12 1 Dibromochloromethane ND ug/kg 0.97 0.26 1 1,1,2-Trichloroethane ND ug/kg 0.97 0.26 1 Chlorobenzene ND ug/kg 0.48 0.19 1 Chlorobenzene ND ug/kg 0.48 0.19 1 Trichloroethane ND ug/kg 0.97 0.26 1 Trichloroethane ND ug/kg 0.99 0.67 1 1,1-1-Trichloroethane ND ug/kg 0.97 0.26 1 Bromodichloromethane ND ug/kg 0.48 0.10 1 trans-1,3-Dichloropropene ND ug/kg 0.48	Methylene chloride	ND		ug/kg	4.8	2.2	1
Carbon tetrachloride ND ug/kg 0.97 0.22 1 1,2-Dichloropropane ND ug/kg 0.97 0.12 1 Dibromochloromethane ND ug/kg 0.97 0.14 1 1,1,2-Trichloroethane ND ug/kg 0.97 0.26 1 Tetrachloroethane ND ug/kg 0.48 0.19 1 Chiorobenzene ND ug/kg 0.48 0.19 1 Chiorobenzene ND ug/kg 0.48 0.12 1 Trichlorofluoromethane ND ug/kg 0.48 0.12 1 1,1,1-Trichloroethane ND ug/kg 0.97 0.25 1 Bromodichloromethane ND ug/kg 0.48 0.16 1 Bromodichloropropene ND ug/kg 0.48 0.15 1 trans-1,3-Dichloropropene ND ug/kg 0.48 0.15 1 1,3-Dichloropropene ND ug/kg	1,1-Dichloroethane	2.7			0.97	0.14	1
1,2-Dichloropropane ND ug/kg 0.97 0.12 1 Dibromochloromethane ND ug/kg 0.97 0.14 1 1,1,2-Trichloroethane ND ug/kg 0.97 0.26 1 Tetrachloroethane 310 E ug/kg 0.48 0.19 1 Chloroethane ND ug/kg 0.48 0.19 1 Trichlorofluoromethane ND ug/kg 0.48 0.12 1 1,2-Dichloroethane ND ug/kg 0.97 0.25 1 1,1-1-Trichloroethane ND ug/kg 0.48 0.16 1 Bromodichloromethane ND ug/kg 0.48 0.10 1 Bromodichloromethane ND ug/kg 0.48 0.10 1 trans-1,3-Dichloropropene ND ug/kg 0.48 0.15 1 trans-1,3-Dichloropropene ND ug/kg 0.48 0.15 1 1,1-1,2-Dichloropropene, Total <td< td=""><td>Chloroform</td><td>ND</td><td></td><td>ug/kg</td><td>1.4</td><td>0.14</td><td>1</td></td<>	Chloroform	ND		ug/kg	1.4	0.14	1
Dibromochloromethane ND ug/kg 0.97 0.14 1 1,1,2-Trichloroethane ND ug/kg 0.97 0.26 1 Tetrachloroethane ND ug/kg 0.48 0.19 1 Chlorobenzene ND ug/kg 0.48 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.67 1 1,2-Dichloropthane ND ug/kg 0.97 0.25 1 1,1,1-Trichloroethane 8.6 ug/kg 0.48 0.16 1 Bromodichloromethane ND ug/kg 0.48 0.16 1 Bromodichloropropene ND ug/kg 0.48 0.10 1 trans-1,3-Dichloropropene ND ug/kg 0.48 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.48 0.15 1 1,1-12,2-Tetrachloroethane ND ug/kg 0.48 0.15 1 Benzene ND ug/kg	Carbon tetrachloride	ND		ug/kg	0.97	0.22	1
1,1,2-Trichloroethane ND ug/kg 0.97 0.26 1 Tetrachloroethene 310 E ug/kg 0.48 0.19 1 Chlorobenzene ND ug/kg 0.48 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.67 1 1,2-Dichloropethane ND ug/kg 0.97 0.25 1 1,1,1-Trichloroethane 8.6 ug/kg 0.48 0.16 1 Bromodichloromethane ND ug/kg 0.48 0.10 1 trans-1,3-Dichloropropene ND ug/kg 0.48 0.10 1 trans-1,3-Dichloropropene ND ug/kg 0.48 0.10 1 1,3-Dichloropropene ND ug/kg 0.48 0.15 1 1,1-Dichloropropene, Total ND ug/kg 0.48 0.15 1 1,1-1-Dichloropropene ND ug/kg 0.48 0.15 1 1,1-1-Z-2-Tetrachloroethane	1,2-Dichloropropane	ND		ug/kg	0.97	0.12	1
Tetrachloroethene 310 E ug/kg 0.48 0.19 1 Chlorobenzene ND ug/kg 0.48 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.67 1 1,2-Dichloroethane ND ug/kg 0.97 0.25 1 1,1,1-Trichloroethane 8.6 ug/kg 0.48 0.16 1 Bromodichloromethane ND ug/kg 0.48 0.10 1 trans-1,3-Dichloropropene ND ug/kg 0.48 0.10 1 trans-1,3-Dichloropropene ND ug/kg 0.48 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.48 0.15 1 1,1-Dichloropropene, Total ND ug/kg 0.48 0.15 1 Bromoform ND ug/kg 0.48 0.15 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.48 0.16 1 Benzene ND	Dibromochloromethane	ND		ug/kg	0.97	0.14	1
Chlorobenzene ND ug/kg 0.48 0.12 1 Trichlorofluoromethane ND ug/kg 3.9 0.67 1 1,2-Dichloroethane ND ug/kg 0.97 0.25 1 1,1,1-Trichloroethane 8.6 ug/kg 0.48 0.16 1 Bromodichloromethane ND ug/kg 0.48 0.10 1 trans-1,3-Dichloropropene ND ug/kg 0.48 0.10 1 trans-1,3-Dichloropropene ND ug/kg 0.48 0.15 1 1,3-Dichloropropene ND ug/kg 0.48 0.15 1 1,3-Dichloropropene ND ug/kg 0.48 0.15 1 1,1-Dichloropropene ND ug/kg 0.48 0.15 1 Bromoform ND ug/kg 0.48 0.15 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.48 0.16 1 Toluene ND ug/kg 0.97	1,1,2-Trichloroethane	ND		ug/kg	0.97	0.26	1
Trichlorofluoromethane ND ug/kg 3.9 0.67 1 1,2-Dichloroethane ND ug/kg 0.97 0.25 1 1,1,1-Trichloroethane 8.6 ug/kg 0.48 0.16 1 Bromodichloromethane ND ug/kg 0.48 0.10 1 trans-1,3-Dichloropropene ND ug/kg 0.48 0.10 1 trans-1,3-Dichloropropene ND ug/kg 0.48 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.48 0.15 1 1,1-Dichloropropene ND ug/kg 0.48 0.15 1 Bromoform ND ug/kg 0.48 0.15 1 1,1-2,2-Tetrachloroethane ND ug/kg 0.48 0.16 1 Benzene ND ug/kg 0.48 0.16 1 Toluene ND ug/kg 0.97 0.52 1 Ethylbenzene ND ug/kg 0.97	Tetrachloroethene	310	E	ug/kg	0.48	0.19	1
1,2-Dichloroethane ND ug/kg 0.97 0.25 1 1,1,1-Trichloroethane 8.6 ug/kg 0.48 0.16 1 Bromodichloromethane ND ug/kg 0.48 0.10 1 trans-1,3-Dichloropropene ND ug/kg 0.97 0.26 1 cis-1,3-Dichloropropene ND ug/kg 0.48 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.48 0.15 1 1,1-Dichloropropene ND ug/kg 0.48 0.15 1 Bromoform ND ug/kg 0.48 0.15 1 Bromoform ND ug/kg 0.48 0.15 1 Benzene ND ug/kg 0.48 0.16 1 Toluene ND ug/kg 0.97 0.52 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Chloromethane ND ug/kg 0.97 0.32 1 Vinyl chloride 0.39 J ug/kg 0.97	Chlorobenzene	ND		ug/kg	0.48	0.12	1
1,1,1-Trichloroethane 8.6 ug/kg 0.48 0.16 1 Bromodichloromethane ND ug/kg 0.48 0.10 1 trans-1,3-Dichloropropene ND ug/kg 0.97 0.26 1 cis-1,3-Dichloropropene ND ug/kg 0.48 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.48 0.15 1 1,1-Dichloropropene ND ug/kg 0.48 0.15 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.48 0.16 1 Benzene ND ug/kg 0.48 0.16 1 Toluene ND ug/kg 0.97 0.52 1 Ethylbenzene ND ug/kg 0.97 0.52 1 Chloromethane ND ug/kg 1.9 0.56 1 Vinyl chloride 0.39 J ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 1.9 <td>Trichlorofluoromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>3.9</td> <td>0.67</td> <td>1</td>	Trichlorofluoromethane	ND		ug/kg	3.9	0.67	1
Bromodichloromethane ND ug/kg 0.48 0.10 1 1 1 1 1 1 1 1 1	1,2-Dichloroethane	ND		ug/kg	0.97	0.25	1
trans-1,3-Dichloropropene ND ug/kg 0.97 0.26 1 cis-1,3-Dichloropropene ND ug/kg 0.48 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.48 0.15 1 1,1-Dichloropropene ND ug/kg 0.48 0.15 1 1,1-Dichloropropene ND ug/kg 0.48 0.15 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.48 0.16 1 Enzene ND ug/kg 0.48 0.16 1 Toluene ND ug/kg 0.48 0.16 1 Toluene ND ug/kg 0.97 0.52 1 Ethylbenzene ND ug/kg 0.97 0.52 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Chloromethane ND ug/kg 3.9 0.90 1 Bromomethane ND ug/kg 3.9 0.90 1 Bromomethane ND ug/kg 1.9 0.56 1 Vinyl chloride 0.39 J ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 0.97 0.32 1	1,1,1-Trichloroethane	8.6		ug/kg	0.48	0.16	1
cis-1,3-Dichloropropene ND ug/kg 0.48 0.15 1 1,3-Dichloropropene, Total ND ug/kg 0.48 0.15 1 1,1-Dichloropropene ND ug/kg 0.48 0.15 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.48 0.16 1 Benzene ND ug/kg 0.48 0.16 1 Toluene ND ug/kg 0.97 0.52 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Chloromethane ND ug/kg 3.9 0.90 1 Bromomethane ND ug/kg 1.9 0.56 1 Vinyl chloride 0.39 J ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 0.97 0.32	Bromodichloromethane	ND		ug/kg	0.48	0.10	1
1,3-Dichloropropene, Total ND ug/kg 0.48 0.15 1 1,1-Dichloropropene ND ug/kg 0.48 0.15 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.48 0.16 1 Benzene ND ug/kg 0.48 0.16 1 Toluene ND ug/kg 0.97 0.52 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Chloromethane ND ug/kg 3.9 0.90 1 Bromomethane ND ug/kg 1.9 0.56 1 Vinyl chloride 0.39 J ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 1.9 0.44 1 1,1-Dichloroethene 3.6 ug/kg 0.97 0.23 1	trans-1,3-Dichloropropene	ND		ug/kg	0.97	0.26	1
1,1-Dichloropropene ND ug/kg 0.48 0.15 1 Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.48 0.16 1 Benzene ND ug/kg 0.48 0.16 1 Toluene ND ug/kg 0.97 0.52 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Chloromethane ND ug/kg 3.9 0.90 1 Bromomethane ND ug/kg 1.9 0.56 1 Vinyl chloride 0.39 J ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 1.9 0.44 1 1,1-Dichloroethene 3.6 ug/kg 0.97 0.23 1	cis-1,3-Dichloropropene	ND		ug/kg	0.48	0.15	1
Bromoform ND ug/kg 3.9 0.24 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.48 0.16 1 Benzene ND ug/kg 0.48 0.16 1 Toluene ND ug/kg 0.97 0.52 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Chloromethane ND ug/kg 3.9 0.90 1 Bromomethane ND ug/kg 1.9 0.56 1 Vinyl chloride 0.39 J ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 1.9 0.44 1 1,1-Dichloroethene 3.6 ug/kg 0.97 0.23 1	1,3-Dichloropropene, Total	ND		ug/kg	0.48	0.15	1
1,1,2,2-Tetrachloroethane ND ug/kg 0.48 0.16 1 Benzene ND ug/kg 0.48 0.16 1 Toluene ND ug/kg 0.97 0.52 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Chloromethane ND ug/kg 3.9 0.90 1 Bromomethane ND ug/kg 1.9 0.56 1 Vinyl chloride 0.39 J ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 1.9 0.44 1 1,1-Dichloroethene 3.6 ug/kg 0.97 0.23 1	1,1-Dichloropropene	ND		ug/kg	0.48	0.15	1
Benzene ND ug/kg 0.48 0.16 1 Toluene ND ug/kg 0.97 0.52 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Chloromethane ND ug/kg 3.9 0.90 1 Bromomethane ND ug/kg 1.9 0.56 1 Vinyl chloride 0.39 J ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 1.9 0.44 1 1,1-Dichloroethene 3.6 ug/kg 0.97 0.23 1	Bromoform	ND		ug/kg	3.9	0.24	1
Toluene ND ug/kg 0.97 0.52 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Chloromethane ND ug/kg 3.9 0.90 1 Bromomethane ND ug/kg 1.9 0.56 1 Vinyl chloride 0.39 J ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 1.9 0.44 1 1,1-Dichloroethene 3.6 ug/kg 0.97 0.23 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	0.48	0.16	1
Ethylbenzene ND ug/kg 0.97 0.14 1 Chloromethane ND ug/kg 3.9 0.90 1 Bromomethane ND ug/kg 1.9 0.56 1 Vinyl chloride 0.39 J ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 1.9 0.44 1 1,1-Dichloroethene 3.6 ug/kg 0.97 0.23 1	Benzene	ND		ug/kg	0.48	0.16	1
Chloromethane ND ug/kg 3.9 0.90 1 Bromomethane ND ug/kg 1.9 0.56 1 Vinyl chloride 0.39 J ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 1.9 0.44 1 1,1-Dichloroethene 3.6 ug/kg 0.97 0.23 1	Toluene	ND		ug/kg	0.97	0.52	1
Bromomethane ND ug/kg 1.9 0.56 1 Vinyl chloride 0.39 J ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 1.9 0.44 1 1,1-Dichloroethene 3.6 ug/kg 0.97 0.23 1	Ethylbenzene	ND		ug/kg	0.97	0.14	1
Vinyl chloride 0.39 J ug/kg 0.97 0.32 1 Chloroethane ND ug/kg 1.9 0.44 1 1,1-Dichloroethene 3.6 ug/kg 0.97 0.23 1	Chloromethane	ND		ug/kg	3.9	0.90	1
Chloroethane ND ug/kg 1.9 0.44 1 1,1-Dichloroethene 3.6 ug/kg 0.97 0.23 1	Bromomethane	ND		ug/kg	1.9	0.56	1
1,1-Dichloroethene 3.6 ug/kg 0.97 0.23 1	Vinyl chloride	0.39	J	ug/kg	0.97	0.32	1
	Chloroethane	ND		ug/kg	1.9	0.44	1
	1,1-Dichloroethene	3.6		ug/kg	0.97	0.23	1
trans-1,2-Dichloroethene ND ug/kg 1.4 0.13 1	trans-1,2-Dichloroethene	ND		ug/kg	1.4	0.13	1

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 **Report Date:** 08/09/21

SAMPLE RESULTS

Lab ID: L2141567-04 Date Collected: 08/03/21 13:01

Client ID: SB-MIP07_18-19 Date Received: 08/04/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lo	ow - Westborough Lab					
Trichloroethene	35		ug/kg	0.48	0.13	1
1,2-Dichlorobenzene	0.30	J	ug/kg	1.9	0.14	1
1,3-Dichlorobenzene	ND		ug/kg	1.9	0.14	1
1,4-Dichlorobenzene	ND		ug/kg	1.9	0.16	1
Methyl tert butyl ether	ND		ug/kg	1.9	0.19	1
p/m-Xylene	ND		ug/kg	1.9	0.54	1
o-Xylene	ND		ug/kg	0.97	0.28	1
Xylenes, Total	ND		ug/kg	0.97	0.28	1
cis-1,2-Dichloroethene	39		ug/kg	0.97	0.17	1
1,2-Dichloroethene, Total	39		ug/kg	0.97	0.13	1
Dibromomethane	ND		ug/kg	1.9	0.23	1
Styrene	ND		ug/kg	0.97	0.19	1
Dichlorodifluoromethane	ND		ug/kg	9.7	0.88	1
Acetone	ND		ug/kg	9.7	4.6	1
Carbon disulfide	ND		ug/kg	9.7	4.4	1
2-Butanone	ND		ug/kg	9.7	2.1	1
Vinyl acetate	ND		ug/kg	9.7	2.1	1
4-Methyl-2-pentanone	ND		ug/kg	9.7	1.2	1
1,2,3-Trichloropropane	ND		ug/kg	1.9	0.12	1
2-Hexanone	ND		ug/kg	9.7	1.1	1
Bromochloromethane	ND		ug/kg	1.9	0.20	1
2,2-Dichloropropane	ND		ug/kg	1.9	0.20	1
1,2-Dibromoethane	ND		ug/kg	0.97	0.27	1
1,3-Dichloropropane	ND		ug/kg	1.9	0.16	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.48	0.13	1
Bromobenzene	ND		ug/kg	1.9	0.14	1
n-Butylbenzene	ND		ug/kg	0.97	0.16	1
sec-Butylbenzene	ND		ug/kg	0.97	0.14	1
tert-Butylbenzene	ND		ug/kg	1.9	0.11	1
o-Chlorotoluene	ND		ug/kg	1.9	0.18	1
p-Chlorotoluene	ND		ug/kg	1.9	0.10	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.9	0.96	1
Hexachlorobutadiene	ND		ug/kg	3.9	0.16	1
Isopropylbenzene	ND		ug/kg	0.97	0.10	1
p-Isopropyltoluene	ND		ug/kg	0.97	0.10	1
Naphthalene	ND		ug/kg	3.9	0.63	1
Acrylonitrile	ND		ug/kg	3.9	1.1	1

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 **Report Date:** 08/09/21

SAMPLE RESULTS

Lab ID: L2141567-04 Date Collected: 08/03/21 13:01

Client ID: SB-MIP07_18-19 Date Received: 08/04/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low -	Westborough Lab						
n-Propylbenzene	ND		ug/kg	0.97	0.16	1	
1,2,3-Trichlorobenzene	ND		ug/kg	1.9	0.31	1	
1,2,4-Trichlorobenzene	ND		ug/kg	1.9	0.26	1	
1,3,5-Trimethylbenzene	ND		ug/kg	1.9	0.19	1	
1,2,4-Trimethylbenzene	ND		ug/kg	1.9	0.32	1	
1,4-Dioxane	ND		ug/kg	77	34.	1	
p-Diethylbenzene	ND		ug/kg	1.9	0.17	1	
p-Ethyltoluene	ND		ug/kg	1.9	0.37	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	1.9	0.18	1	
Ethyl ether	ND		ug/kg	1.9	0.33	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.8	1.4	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	91		70-130	
Dibromofluoromethane	95		70-130	

L2141567

Project Name: Lab Number: 111 WILLOW

Project Number: Report Date: 170497201 08/09/21

SAMPLE RESULTS

Lab ID: L2141567-04 Date Collected: 08/03/21 13:01

Client ID: Date Received: 08/04/21 SB-MIP07_18-19 Sample Location: Field Prep: Not Specified BRONX, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 08/07/21 11:34

Analyst: AJK 86% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Hi	igh - Westborough Lab						
Methylene chloride	ND		ug/kg	280	130	1	
1,1-Dichloroethane	ND		ug/kg	57	8.2	1	
Chloroform	8.6	J	ug/kg	85	8.0	1	
Carbon tetrachloride	ND		ug/kg	57	13.	1	
1,2-Dichloropropane	ND		ug/kg	57	7.1	1	
Dibromochloromethane	ND		ug/kg	57	8.0	1	
1,1,2-Trichloroethane	ND		ug/kg	57	15.	1	
Tetrachloroethene	1000		ug/kg	28	11.	1	
Chlorobenzene	ND		ug/kg	28	7.2	1	
Trichlorofluoromethane	ND		ug/kg	230	40.	1	
1,2-Dichloroethane	ND		ug/kg	57	15.	1	
1,1,1-Trichloroethane	23	J	ug/kg	28	9.5	1	
Bromodichloromethane	ND		ug/kg	28	6.2	1	
trans-1,3-Dichloropropene	ND		ug/kg	57	16.	1	
cis-1,3-Dichloropropene	ND		ug/kg	28	9.0	1	
1,3-Dichloropropene, Total	ND		ug/kg	28	9.0	1	
1,1-Dichloropropene	ND		ug/kg	28	9.0	1	
Bromoform	ND		ug/kg	230	14.	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	28	9.4	1	
Benzene	ND		ug/kg	28	9.4	1	
Toluene	ND		ug/kg	57	31.	1	
Ethylbenzene	ND		ug/kg	57	8.0	1	
Chloromethane	ND		ug/kg	230	53.	1	
Bromomethane	ND		ug/kg	110	33.	1	
Vinyl chloride	ND		ug/kg	57	19.	1	
Chloroethane	ND		ug/kg	110	26.	1	
1,1-Dichloroethene	ND		ug/kg	57	14.	1	
trans-1,2-Dichloroethene	ND		ug/kg	85	7.8	1	

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 **Report Date:** 08/09/21

SAMPLE RESULTS

Lab ID: Date Collected: 08/03/21 13:01

Client ID: SB-MIP07_18-19 Date Received: 08/04/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High -	Volatile Organics by EPA 5035 High - Westborough Lab						
Trichloroethene	99		ug/kg	28	7.8	1	
1,2-Dichlorobenzene	ND		ug/kg	110	8.2	1	
1,3-Dichlorobenzene	ND		ug/kg	110	8.4	1	
1,4-Dichlorobenzene	ND		ug/kg	110	9.7	1	
Methyl tert butyl ether	ND		ug/kg	110	11.	1	
p/m-Xylene	ND		ug/kg	110	32.	1	
o-Xylene	ND		ug/kg	57	16.	1	
Xylenes, Total	ND		ug/kg	57	16.	1	
cis-1,2-Dichloroethene	89		ug/kg	57	10.	1	
1,2-Dichloroethene, Total	89		ug/kg	57	7.8	1	
Dibromomethane	ND		ug/kg	110	14.	1	
Styrene	ND		ug/kg	57	11.	1	
Dichlorodifluoromethane	ND		ug/kg	570	52.	1	
Acetone	ND		ug/kg	570	270	1	
Carbon disulfide	ND		ug/kg	570	260	1	
2-Butanone	ND		ug/kg	570	130	1	
Vinyl acetate	ND		ug/kg	570	120	1	
4-Methyl-2-pentanone	ND		ug/kg	570	73.	1	
1,2,3-Trichloropropane	ND		ug/kg	110	7.2	1	
2-Hexanone	ND		ug/kg	570	67.	1	
Bromochloromethane	ND		ug/kg	110	12.	1	
2,2-Dichloropropane	ND		ug/kg	110	12.	1	
1,2-Dibromoethane	ND		ug/kg	57	16.	1	
1,3-Dichloropropane	ND		ug/kg	110	9.5	1	
1,1,1,2-Tetrachloroethane	ND		ug/kg	28	7.5	1	
Bromobenzene	ND		ug/kg	110	8.2	1	
n-Butylbenzene	ND		ug/kg	57	9.5	1	
sec-Butylbenzene	ND		ug/kg	57	8.3	1	
tert-Butylbenzene	ND		ug/kg	110	6.7	1	
o-Chlorotoluene	ND		ug/kg	110	11.	1	
p-Chlorotoluene	ND		ug/kg	110	6.2	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	170	57.	1	
Hexachlorobutadiene	ND		ug/kg	230	9.6	1	
Isopropylbenzene	ND		ug/kg	57	6.2	1	
p-Isopropyltoluene	ND		ug/kg	57	6.2	1	
Naphthalene	ND		ug/kg	230	37.	1	
Acrylonitrile	ND		ug/kg	230	66.	1	

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 **Report Date:** 08/09/21

SAMPLE RESULTS

Lab ID: L2141567-04 Date Collected: 08/03/21 13:01

Client ID: SB-MIP07_18-19 Date Received: 08/04/21 Sample Location: BRONX, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Hig	gh - Westborough Lab						
n-Propylbenzene	ND		ug/kg	57	9.7	1	
1,2,3-Trichlorobenzene	ND		ug/kg	110	18.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	110	15.	1	
1,3,5-Trimethylbenzene	ND		ug/kg	110	11.	1	
1,2,4-Trimethylbenzene	ND		ug/kg	110	19.	1	
1,4-Dioxane	ND		ug/kg	4600	2000	1	
p-Diethylbenzene	ND		ug/kg	110	10.	1	
p-Ethyltoluene	ND		ug/kg	110	22.	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	110	11.	1	
Ethyl ether	ND		ug/kg	110	19.	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	280	81.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	96	70-130	

Project Number: 170497201 **Report Date:** 08/09/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/06/21 06:31

Analyst: MV

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by EPA 5035 Low	- Westboro	ough Lab for sample	(s): 01-04	Batch: WG15	32257-5
Methylene chloride	ND	ug/kg	5.0	2.3	
1,1-Dichloroethane	ND	ug/kg	1.0	0.14	
Chloroform	ND	ug/kg	1.5	0.14	
Carbon tetrachloride	ND	ug/kg	1.0	0.23	
1,2-Dichloropropane	ND	ug/kg	1.0	0.12	
Dibromochloromethane	ND	ug/kg	1.0	0.14	
1,1,2-Trichloroethane	ND	ug/kg	1.0	0.27	
Tetrachloroethene	ND	ug/kg	0.50	0.20	
Chlorobenzene	ND	ug/kg	0.50	0.13	
Trichlorofluoromethane	ND	ug/kg	4.0	0.70	
1,2-Dichloroethane	ND	ug/kg	1.0	0.26	
1,1,1-Trichloroethane	ND	ug/kg	0.50	0.17	
Bromodichloromethane	ND	ug/kg	0.50	0.11	
trans-1,3-Dichloropropene	ND	ug/kg	1.0	0.27	
cis-1,3-Dichloropropene	ND	ug/kg	0.50	0.16	
1,3-Dichloropropene, Total	ND	ug/kg	0.50	0.16	
1,1-Dichloropropene	ND	ug/kg	0.50	0.16	
Bromoform	ND	ug/kg	4.0	0.25	
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.50	0.17	
Benzene	ND	ug/kg	0.50	0.17	
Toluene	ND	ug/kg	1.0	0.54	
Ethylbenzene	ND	ug/kg	1.0	0.14	
Chloromethane	ND	ug/kg	4.0	0.93	
Bromomethane	ND	ug/kg	2.0	0.58	
Vinyl chloride	ND	ug/kg	1.0	0.34	
Chloroethane	ND	ug/kg	2.0	0.45	
1,1-Dichloroethene	ND	ug/kg	1.0	0.24	
trans-1,2-Dichloroethene	ND	ug/kg	1.5	0.14	
Trichloroethene	ND	ug/kg	0.50	0.14	

Project Number: 170497201 **Report Date:** 08/09/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/06/21 06:31

Analyst: MV

arameter	Result	Qualifier Units	RL	MD	L
olatile Organics by EPA 5035 Lo	w - Westbord	ough Lab for sample(s):	01-04	Batch: \	WG1532257-5
1,2-Dichlorobenzene	ND	ug/kg	2.0	0.1	4
1,3-Dichlorobenzene	ND	ug/kg	2.0	0.1	5
1,4-Dichlorobenzene	ND	ug/kg	2.0	0.1	7
Methyl tert butyl ether	ND	ug/kg	2.0	0.2	20
p/m-Xylene	ND	ug/kg	2.0	0.5	6
o-Xylene	ND	ug/kg	1.0	0.2	9
Xylenes, Total	ND	ug/kg	1.0	0.2	9
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.1	8
1,2-Dichloroethene, Total	ND	ug/kg	1.0	0.1	4
Dibromomethane	ND	ug/kg	2.0	0.2	24
Styrene	ND	ug/kg	1.0	0.2	20
Dichlorodifluoromethane	ND	ug/kg	10	0.9	12
Acetone	ND	ug/kg	10	4.	3
Carbon disulfide	ND	ug/kg	10	4.	6
2-Butanone	ND	ug/kg	10	2.:	2
Vinyl acetate	ND	ug/kg	10	2.:	2
4-Methyl-2-pentanone	ND	ug/kg	10	1.3	3
1,2,3-Trichloropropane	ND	ug/kg	2.0	0.1	3
2-Hexanone	ND	ug/kg	10	1.:	2
Bromochloromethane	ND	ug/kg	2.0	0.2	20
2,2-Dichloropropane	ND	ug/kg	2.0	0.2	20
1,2-Dibromoethane	ND	ug/kg	1.0	0.2	18
1,3-Dichloropropane	ND	ug/kg	2.0	0.1	7
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.50	0.1	3
Bromobenzene	ND	ug/kg	2.0	0.1	4
n-Butylbenzene	ND	ug/kg	1.0	0.1	7
sec-Butylbenzene	ND	ug/kg	1.0	0.1	5
tert-Butylbenzene	ND	ug/kg	2.0	0.1	2
o-Chlorotoluene	ND	ug/kg	2.0	0.1	9

Project Number: 170497201 **Report Date:** 08/09/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/06/21 06:31

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 Lov	v - Westboro	ugh Lab fo	r sample(s):	01-04	Batch: WG1532257-5
p-Chlorotoluene	ND		ug/kg	2.0	0.11
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0
Hexachlorobutadiene	ND		ug/kg	4.0	0.17
Isopropylbenzene	ND		ug/kg	1.0	0.11
p-Isopropyltoluene	ND		ug/kg	1.0	0.11
Naphthalene	ND		ug/kg	4.0	0.65
Acrylonitrile	ND		ug/kg	4.0	1.2
n-Propylbenzene	ND		ug/kg	1.0	0.17
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.32
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33
1,4-Dioxane	ND		ug/kg	80	35.
p-Diethylbenzene	ND		ug/kg	2.0	0.18
p-Ethyltoluene	ND		ug/kg	2.0	0.38
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0	0.19
Ethyl ether	ND		ug/kg	2.0	0.34
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0	1.4

	Acceptance
%Recovery C	ualifier Criteria
91	70-130
101	70-130
91	70-130
93	70-130
	91 101 91

Project Number: 170497201 **Report Date:** 08/09/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/07/21 09:24

Analyst: MKS

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 High	- Westboro	ough Lab fo	or sample(s):	04	Batch:	WG1532784-5
Methylene chloride	ND		ug/kg	250		110
1,1-Dichloroethane	ND		ug/kg	50		7.2
Chloroform	ND		ug/kg	75		7.0
Carbon tetrachloride	ND		ug/kg	50		12.
1,2-Dichloropropane	ND		ug/kg	50		6.2
Dibromochloromethane	ND		ug/kg	50		7.0
1,1,2-Trichloroethane	ND		ug/kg	50		13.
Tetrachloroethene	ND		ug/kg	25		9.8
Chlorobenzene	ND		ug/kg	25		6.4
Trichlorofluoromethane	ND		ug/kg	200		35.
1,2-Dichloroethane	ND		ug/kg	50		13.
1,1,1-Trichloroethane	ND		ug/kg	25		8.4
Bromodichloromethane	ND		ug/kg	25		5.4
trans-1,3-Dichloropropene	ND		ug/kg	50		14.
cis-1,3-Dichloropropene	ND		ug/kg	25		7.9
1,3-Dichloropropene, Total	ND		ug/kg	25		7.9
1,1-Dichloropropene	ND		ug/kg	25		8.0
Bromoform	ND		ug/kg	200		12.
1,1,2,2-Tetrachloroethane	ND		ug/kg	25		8.3
Benzene	ND		ug/kg	25		8.3
Toluene	ND		ug/kg	50		27.
Ethylbenzene	ND		ug/kg	50		7.0
Chloromethane	ND		ug/kg	200		47.
Bromomethane	ND		ug/kg	100		29.
Vinyl chloride	ND		ug/kg	50		17.
Chloroethane	ND		ug/kg	100		23.
1,1-Dichloroethene	ND		ug/kg	50		12.
trans-1,2-Dichloroethene	ND		ug/kg	75		6.8
Trichloroethene	ND		ug/kg	25		6.8

Project Number: 170497201 **Report Date:** 08/09/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/07/21 09:24

Analyst: MKS

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 High	- Westboro	ough Lab fo	or sample(s):	04	Batch:	WG1532784-5
1,2-Dichlorobenzene	ND		ug/kg	100		7.2
1,3-Dichlorobenzene	ND		ug/kg	100		7.4
1,4-Dichlorobenzene	ND		ug/kg	100		8.6
Methyl tert butyl ether	ND		ug/kg	100		10.
p/m-Xylene	ND		ug/kg	100		28.
o-Xylene	ND		ug/kg	50		14.
Xylenes, Total	ND		ug/kg	50		14.
cis-1,2-Dichloroethene	ND		ug/kg	50		8.8
1,2-Dichloroethene, Total	ND		ug/kg	50		6.8
Dibromomethane	ND		ug/kg	100		12.
Styrene	ND		ug/kg	50		9.8
Dichlorodifluoromethane	ND		ug/kg	500		46.
Acetone	ND		ug/kg	500		240
Carbon disulfide	ND		ug/kg	500		230
2-Butanone	ND		ug/kg	500		110
Vinyl acetate	ND		ug/kg	500		110
4-Methyl-2-pentanone	ND		ug/kg	500		64.
1,2,3-Trichloropropane	ND		ug/kg	100		6.4
2-Hexanone	ND		ug/kg	500		59.
Bromochloromethane	ND		ug/kg	100		10.
2,2-Dichloropropane	ND		ug/kg	100		10.
1,2-Dibromoethane	ND		ug/kg	50		14.
1,3-Dichloropropane	ND		ug/kg	100		8.4
1,1,1,2-Tetrachloroethane	ND		ug/kg	25		6.6
Bromobenzene	ND		ug/kg	100		7.2
n-Butylbenzene	ND		ug/kg	50		8.4
sec-Butylbenzene	ND		ug/kg	50		7.3
tert-Butylbenzene	ND		ug/kg	100		5.9
o-Chlorotoluene	ND		ug/kg	100		9.6

Project Number: 170497201 **Report Date:** 08/09/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/07/21 09:24

Analyst: MKS

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 High	- Westbord	ough Lab fo	or sample(s):	04	Batch:	WG1532784-5
p-Chlorotoluene	ND		ug/kg	100		5.4
1,2-Dibromo-3-chloropropane	ND		ug/kg	150		50.
Hexachlorobutadiene	ND		ug/kg	200		8.4
Isopropylbenzene	ND		ug/kg	50		5.4
p-Isopropyltoluene	ND		ug/kg	50		5.4
Naphthalene	ND		ug/kg	200		32.
Acrylonitrile	ND		ug/kg	200		58.
n-Propylbenzene	ND		ug/kg	50		8.6
1,2,3-Trichlorobenzene	ND		ug/kg	100		16.
1,2,4-Trichlorobenzene	ND		ug/kg	100		14.
1,3,5-Trimethylbenzene	ND		ug/kg	100		9.6
1,2,4-Trimethylbenzene	ND		ug/kg	100		17.
1,4-Dioxane	ND		ug/kg	4000		1800
p-Diethylbenzene	ND		ug/kg	100		8.8
p-Ethyltoluene	ND		ug/kg	100		19.
1,2,4,5-Tetramethylbenzene	ND		ug/kg	100		9.6
Ethyl ether	ND		ug/kg	100		17.
trans-1,4-Dichloro-2-butene	ND		ug/kg	250		71.

		Α	cceptance	
Surrogate	%Recovery		Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	95		70-130	

Project Name: 111 WILLOW

Project Number: 170497201

Lab Number: L2141567

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - Westh	oorough Lab Asso	ciated sample	e(s): 01-04 Ba	atch: WG1532257-3 WG15	32257-4	
Methylene chloride	86		87	70-130	1	30
1,1-Dichloroethane	90		91	70-130	1	30
Chloroform	94		94	70-130	0	30
Carbon tetrachloride	97		97	70-130	0	30
1,2-Dichloropropane	91		93	70-130	2	30
Dibromochloromethane	105		106	70-130	1	30
1,1,2-Trichloroethane	100		101	70-130	1	30
Tetrachloroethene	110		110	70-130	0	30
Chlorobenzene	105		106	70-130	1	30
Trichlorofluoromethane	105		101	70-139	4	30
1,2-Dichloroethane	95		95	70-130	0	30
1,1,1-Trichloroethane	97		96	70-130	1	30
Bromodichloromethane	96		96	70-130	0	30
trans-1,3-Dichloropropene	100		102	70-130	2	30
cis-1,3-Dichloropropene	99		98	70-130	1	30
1,1-Dichloropropene	94		96	70-130	2	30
Bromoform	102		104	70-130	2	30
1,1,2,2-Tetrachloroethane	98		100	70-130	2	30
Benzene	93		93	70-130	0	30
Toluene	98		98	70-130	0	30
Ethylbenzene	102		102	70-130	0	30
Chloromethane	64		66	52-130	3	30
Bromomethane	95		93	57-147	2	30

Project Name: 111 WILLOW
Project Number: 170497201

Lab Number: L2141567

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - We	estborough Lab Asso	ciated sampl	e(s): 01-04 Bato	ch: WG1532	2257-3 WG153	32257-4	
Vinyl chloride	82		84		67-130	2	30
Chloroethane	97		95		50-151	2	30
1,1-Dichloroethene	88		90		65-135	2	30
trans-1,2-Dichloroethene	93		94		70-130	1	30
Trichloroethene	98		97		70-130	1	30
1,2-Dichlorobenzene	110		111		70-130	1	30
1,3-Dichlorobenzene	114		114		70-130	0	30
1,4-Dichlorobenzene	110		112		70-130	2	30
Methyl tert butyl ether	89		89		66-130	0	30
p/m-Xylene	107		106		70-130	1	30
o-Xylene	108		107		70-130	1	30
cis-1,2-Dichloroethene	95		97		70-130	2	30
Dibromomethane	100		100		70-130	0	30
Styrene	110		109		70-130	1	30
Dichlorodifluoromethane	62		62		30-146	0	30
Acetone	83		86		54-140	4	30
Carbon disulfide	76		77		59-130	1	30
2-Butanone	68	Q	69	Q	70-130	1	30
Vinyl acetate	84		86		70-130	2	30
4-Methyl-2-pentanone	85		88		70-130	3	30
1,2,3-Trichloropropane	96		98		68-130	2	30
2-Hexanone	83		86		70-130	4	30
Bromochloromethane	102		102		70-130	0	30

Project Name: 111 WILLOW

Project Number: 170497201

Lab Number: L2141567

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - We	estborough Lab Asso	ociated sample(s): 01-04 Bat	ch: WG1532257-3 WG153	2257-4	
2,2-Dichloropropane	95	94	70-130	1	30
1,2-Dibromoethane	97	97	70-130	0	30
1,3-Dichloropropane	98	98	69-130	0	30
1,1,1,2-Tetrachloroethane	106	105	70-130	1	30
Bromobenzene	109	109	70-130	0	30
n-Butylbenzene	110	110	70-130	0	30
sec-Butylbenzene	105	106	70-130	1	30
tert-Butylbenzene	105	106	70-130	1	30
o-Chlorotoluene	83	84	70-130	1	30
p-Chlorotoluene	101	102	70-130	1	30
1,2-Dibromo-3-chloropropane	88	91	68-130	3	30
Hexachlorobutadiene	114	115	67-130	1	30
Isopropylbenzene	104	104	70-130	0	30
p-Isopropyltoluene	110	110	70-130	0	30
Naphthalene	105	108	70-130	3	30
Acrylonitrile	77	81	70-130	5	30
n-Propylbenzene	104	105	70-130	1	30
1,2,3-Trichlorobenzene	116	118	70-130	2	30
1,2,4-Trichlorobenzene	122	124	70-130	2	30
1,3,5-Trimethylbenzene	103	105	70-130	2	30
1,2,4-Trimethylbenzene	105	105	70-130	0	30
1,4-Dioxane	79	81	65-136	3	30
p-Diethylbenzene	112	113	70-130	1	30

Project Name: 111 WILLOW

170497201

Project Number:

Lab Number: L2141567

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 Low - Westbo	orough Lab Asso	ociated sample	e(s): 01-04 Ba	tch: WG15	532257-3 WG153	2257-4		
p-Ethyltoluene	106		107		70-130	1		30
1,2,4,5-Tetramethylbenzene	111		113		70-130	2		30
Ethyl ether	88		89		67-130	1		30
trans-1,4-Dichloro-2-butene	95		97		70-130	2		30

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	95	95	70-130	
Toluene-d8	98	98	70-130	
4-Bromofluorobenzene	90	91	70-130	
Dibromofluoromethane	96	96	70-130	

Project Name: 111 WILLOW

Lab Number:

L2141567

Project Number: 170497201

Report Date:

08/09/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 High - Westl	borough Lab Ass	ociated sample	(s): 04 Bato	h: WG1532784-3 WG15327	' 84-4	
Methylene chloride	84		81	70-130	4	30
1,1-Dichloroethane	90		87	70-130	3	30
Chloroform	88		90	70-130	2	30
Carbon tetrachloride	101		96	70-130	5	30
1,2-Dichloropropane	90		88	70-130	2	30
Dibromochloromethane	106		105	70-130	1	30
1,1,2-Trichloroethane	99		99	70-130	0	30
Tetrachloroethene	110		104	70-130	6	30
Chlorobenzene	103		99	70-130	4	30
Trichlorofluoromethane	119		108	70-139	10	30
1,2-Dichloroethane	96		94	70-130	2	30
1,1,1-Trichloroethane	98		94	70-130	4	30
Bromodichloromethane	97		94	70-130	3	30
trans-1,3-Dichloropropene	98		98	70-130	0	30
cis-1,3-Dichloropropene	97		95	70-130	2	30
1,1-Dichloropropene	97		92	70-130	5	30
Bromoform	107		107	70-130	0	30
1,1,2,2-Tetrachloroethane	100		100	70-130	0	30
Benzene	92		88	70-130	4	30
Toluene	95		92	70-130	3	30
Ethylbenzene	101		97	70-130	4	30
Chloromethane	66		64	52-130	3	30
Bromomethane	106		98	57-147	8	30

Project Name: 111 WILLOW
Project Number: 170497201

Lab Number: L2141567

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 High - West	borough Lab Ass	sociated sample	e(s): 04 Batc	h: WG15327	784-3 WG15327	84-4	
Vinyl chloride	88		84		67-130	5	30
Chloroethane	110		101		50-151	9	30
1,1-Dichloroethene	91		87		65-135	4	30
trans-1,2-Dichloroethene	94		89		70-130	5	30
Trichloroethene	98		94		70-130	4	30
1,2-Dichlorobenzene	110		107		70-130	3	30
1,3-Dichlorobenzene	113		109		70-130	4	30
1,4-Dichlorobenzene	110		106		70-130	4	30
Methyl tert butyl ether	87		87		66-130	0	30
p/m-Xylene	106		101		70-130	5	30
o-Xylene	106		103		70-130	3	30
cis-1,2-Dichloroethene	94		90		70-130	4	30
Dibromomethane	98		98		70-130	0	30
Styrene	108		105		70-130	3	30
Dichlorodifluoromethane	64		62		30-146	3	30
Acetone	89		92		54-140	3	30
Carbon disulfide	79		75		59-130	5	30
2-Butanone	63	Q	66	Q	70-130	5	30
Vinyl acetate	85		85		70-130	0	30
4-Methyl-2-pentanone	89		90		70-130	1	30
1,2,3-Trichloropropane	99		100		68-130	1	30
2-Hexanone	86		90		70-130	5	30
Bromochloromethane	100		98		70-130	2	30

Project Name: 111 WILLOW

Project Number: 170497201

Lab Number: L2141567

arameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 High - We	estborough Lab Associat	ed sample(s): 04 Bato	h: WG1532784-3 WG15327	84-4	
2,2-Dichloropropane	97	92	70-130	5	30
1,2-Dibromoethane	95	94	70-130	1	30
1,3-Dichloropropane	96	96	69-130	0	30
1,1,1,2-Tetrachloroethane	106	102	70-130	4	30
Bromobenzene	105	104	70-130	1	30
n-Butylbenzene	110	106	70-130	4	30
sec-Butylbenzene	106	102	70-130	4	30
tert-Butylbenzene	105	101	70-130	4	30
o-Chlorotoluene	99	99	70-130	0	30
p-Chlorotoluene	99	96	70-130	3	30
1,2-Dibromo-3-chloropropane	94	94	68-130	0	30
Hexachlorobutadiene	109	105	67-130	4	30
Isopropylbenzene	102	99	70-130	3	30
p-Isopropyltoluene	110	107	70-130	3	30
Naphthalene	105	106	70-130	1	30
Acrylonitrile	80	79	70-130	1	30
n-Propylbenzene	103	100	70-130	3	30
1,2,3-Trichlorobenzene	115	114	70-130	1	30
1,2,4-Trichlorobenzene	119	116	70-130	3	30
1,3,5-Trimethylbenzene	103	99	70-130	4	30
1,2,4-Trimethylbenzene	104	100	70-130	4	30
1,4-Dioxane	91	94	65-136	3	30
p-Diethylbenzene	113	108	70-130	5	30

Project Name: 111 WILLOW
Project Number: 170497201

Lab Number:

L2141567 08/09/21

170497201 Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Reco Qual Lim	•	RPD Qual Limi	
Volatile Organics by EPA 5035 High - West	oorough Lab Asso	ociated sample	e(s): 04 Batch	: WG1532784-3 V	VG1532784-4		
p-Ethyltoluene	105		102	70-13	3	30	
1,2,4,5-Tetramethylbenzene	110		106	70-13	30 4	30	
Ethyl ether	87		85	67-13	30 2	30	
trans-1,4-Dichloro-2-butene	101		102	70-13	1	30	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qua	l %Recovery Qual	Criteria	
1,2-Dichloroethane-d4	99	99	70-130	
Toluene-d8	97	99	70-130	
4-Bromofluorobenzene	89	89	70-130	
Dibromofluoromethane	99	98	70-130	

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: 111 WILLOW L2141567 **Project Number:** 170497201

Report Date: 08/09/21

SAMPLE RESULTS

Lab ID: Date Collected: L2141567-01 08/03/21 12:00 Client ID: SB-MIP10_9-10 Date Received: 08/04/21 Sample Location: BRONX, NY

Not Specified Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	73.9		%	0.100	NA	1	-	08/05/21 09:53	121,2540G	RI

Project Name: Lab Number: 111 WILLOW L2141567 **Project Number:** 170497201

Report Date: 08/09/21

SAMPLE RESULTS

Lab ID: Date Collected: L2141567-02 08/03/21 12:01 Client ID: Date Received: 08/04/21 SB-MIP10_23-24 Not Specified Sample Location: BRONX, NY Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	83.8		%	0.100	NA	1	-	08/05/21 09:53	121,2540G	RI

Project Name: Lab Number: 111 WILLOW L2141567 **Project Number:** 170497201

Report Date: 08/09/21

SAMPLE RESULTS

Lab ID: Date Collected: L2141567-03 08/03/21 13:00 Client ID: SB-MIP07_6-7 Date Received: 08/04/21

Not Specified Field Prep:

Sample Depth:

Matrix: Soil

Sample Location: BRONX, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Solids, Total	79.5		%	0.100	NA	1	-	08/05/21 09:53	121,2540G	RI

Project Name: Lab Number: 111 WILLOW L2141567 **Project Number:** 170497201

Report Date: 08/09/21

SAMPLE RESULTS

Lab ID: Date Collected: L2141567-04 08/03/21 13:01 SB-MIP07_18-19 Client ID: Date Received: 08/04/21 Not Specified Sample Location: BRONX, NY Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - Westborough Lab											
Solids, Total	85.7		%	0.100	NA	1	-	08/05/21 09:53	121,2540G	RI	

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2141567

Report Date:

08/09/21

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01-04	QC Batch ID:	WG1531734-1	QC Sample:	L2141567-01	Client ID:	SB-MIP10_9-10
Solids, Total	73.9		69.3	%	6		20

Project Name:

Project Number: 170497201

111 WILLOW

Lab Number: L2141567

Report Date: 08/09/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

111 WILLOW

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: 170497201

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2141567-01A	Vial MeOH preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260HLW(14)
L2141567-01B	Vial water preserved	Α	NA		4.2	Υ	Absent	05-AUG-21 00:36	NYTCL-8260HLW(14)
L2141567-01C	Vial water preserved	Α	NA		4.2	Υ	Absent	05-AUG-21 00:36	NYTCL-8260HLW(14)
L2141567-01D	Plastic 120ml unpreserved	Α	NA		4.2	Υ	Absent		TS(7)
L2141567-02A	Vial MeOH preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260HLW(14)
L2141567-02B	Vial water preserved	Α	NA		4.2	Υ	Absent	05-AUG-21 00:36	NYTCL-8260HLW(14)
L2141567-02C	Vial water preserved	Α	NA		4.2	Υ	Absent	05-AUG-21 00:36	NYTCL-8260HLW(14)
L2141567-02D	Plastic 120ml unpreserved	Α	NA		4.2	Υ	Absent		TS(7)
L2141567-03A	Vial MeOH preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260HLW(14)
L2141567-03B	Vial water preserved	Α	NA		4.2	Υ	Absent	05-AUG-21 00:36	NYTCL-8260HLW(14)
L2141567-03C	Vial water preserved	Α	NA		4.2	Υ	Absent	05-AUG-21 00:36	NYTCL-8260HLW(14)
L2141567-03D	Plastic 120ml unpreserved	Α	NA		4.2	Υ	Absent		TS(7)
L2141567-04A	Vial MeOH preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260HLW(14),NYTCL-8260H(14)
L2141567-04B	Vial water preserved	Α	NA		4.2	Υ	Absent	05-AUG-21 00:36	NYTCL-8260HLW(14),NYTCL-8260H(14)
L2141567-04C	Vial water preserved	Α	NA		4.2	Υ	Absent	05-AUG-21 00:36	NYTCL-8260HLW(14),NYTCL-8260H(14)
L2141567-04D	Plastic 120ml unpreserved	Α	NA		4.2	Υ	Absent		TS(7)

Project Name: 111 WILLOW Lab Number: L2141567

Project Number: 170497201 Report Date: 08/09/21

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:111 WILLOWLab Number:L2141567Project Number:170497201Report Date:08/09/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:111 WILLOWLab Number:L2141567Project Number:170497201Report Date:08/09/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: 111 WILLOW Lab Number: L2141567
Project Number: 170497201 Report Date: 08/09/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

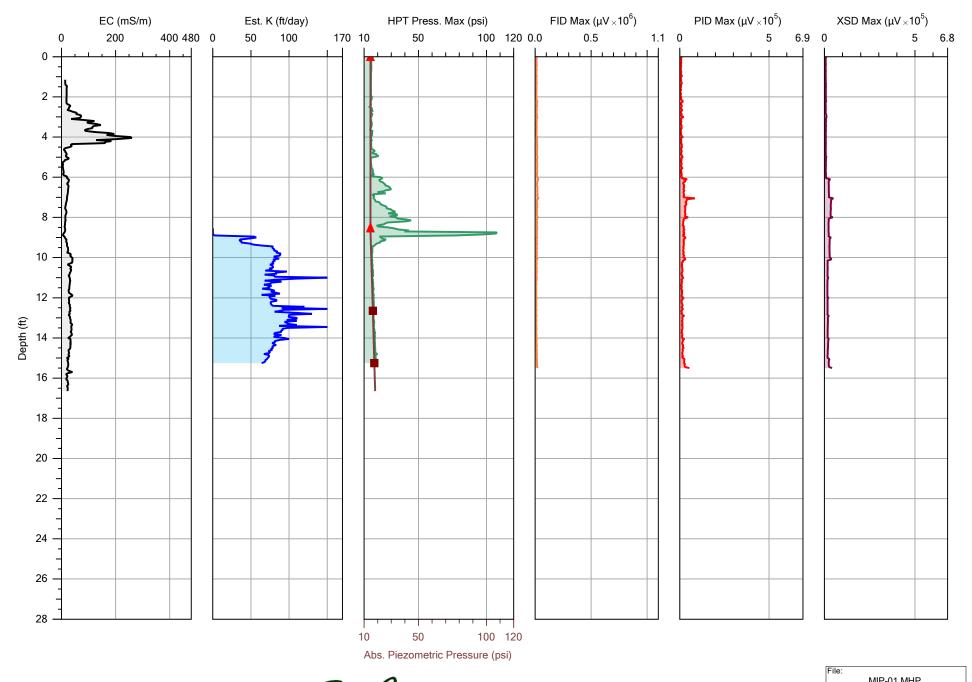
EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

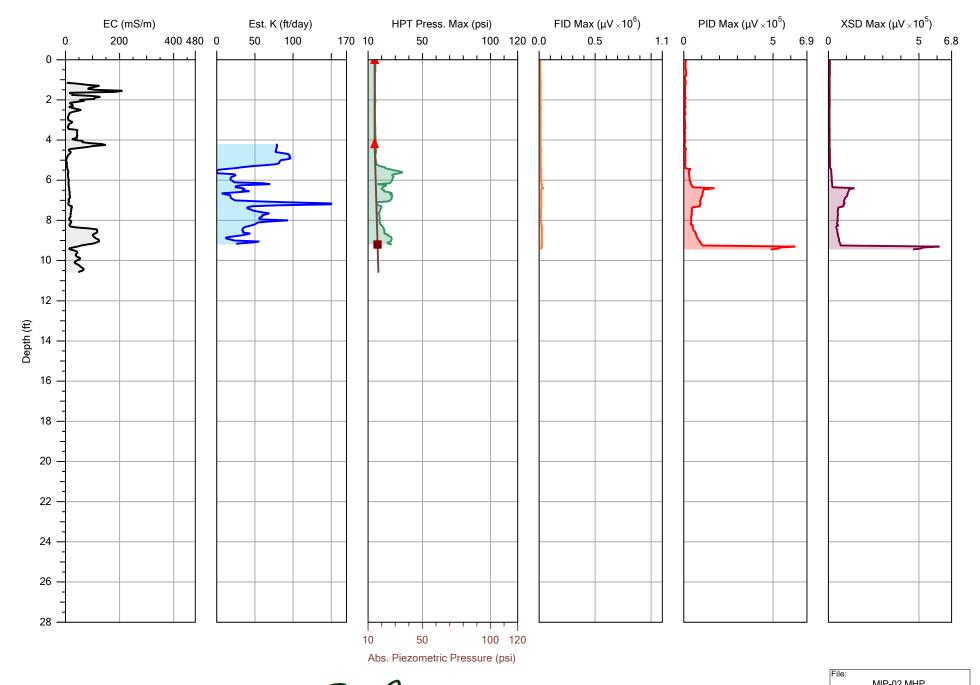
EPA 245.1 Hg

SM2340B

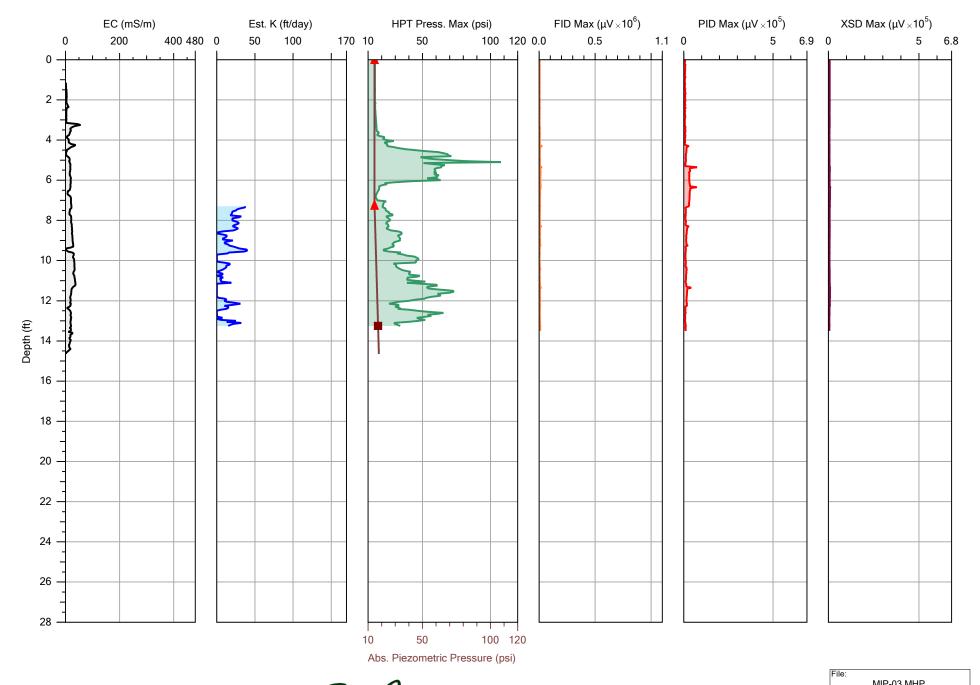
For a complete listing of analytes and methods, please contact your Alpha Project Manager.

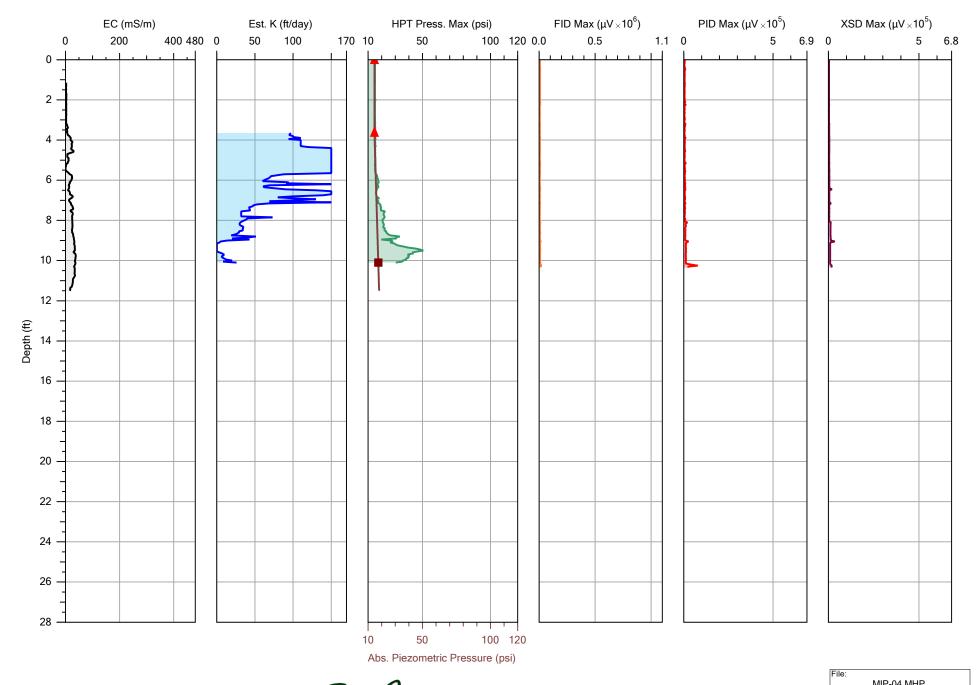

Document Type: Form

Pre-Qualtrax Document ID: 08-113

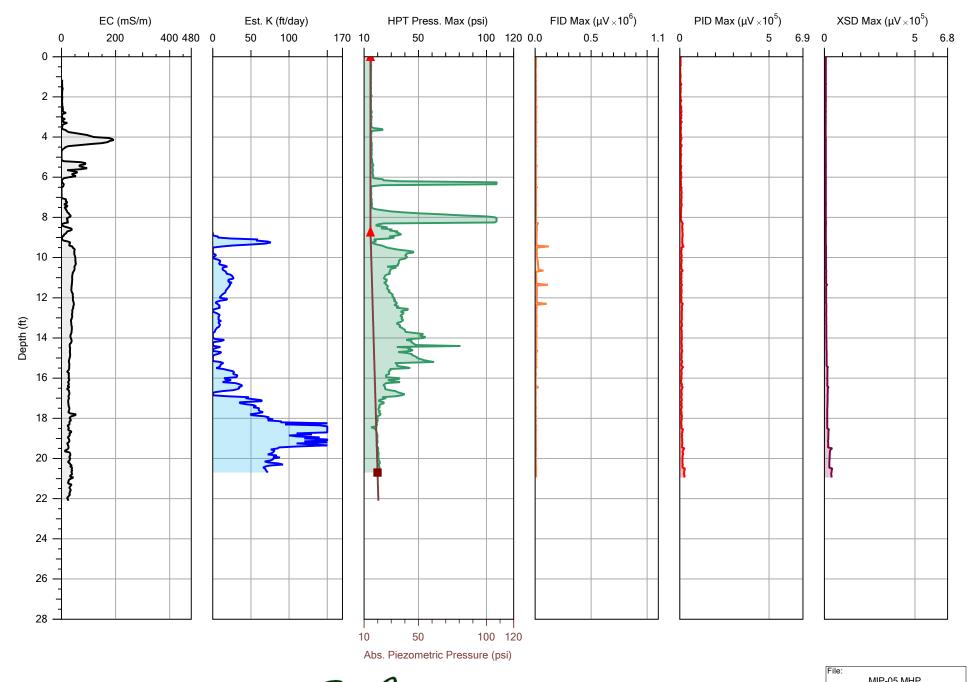

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Con Project Information Project Name: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	oper Ave, Suite 10	95	Page		Deliverable	S	-	21 ASP-B EQUIS (4 File)	ALPHA Job # L2/4/5/07 Billing Information Same as Client Info	
Client Information Client: Lanson Address: 350 W Manhattan Phone: Fax: Email: Spread I These samples have be	angan 10m	Project # 17049 \$2 (Use Project name as Project Manager: \$100) ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved)	oject#) U	Due Date:		5-1	Othe	r Requirement DGS Standards estricted Use nrestricted U Sewer Disch		NY Part 375 NY CP-51 Other	Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other: Sample Filtration	T
Other project specific	requirements/comm Nafement Ol 1+201angan s or TAL.	angan com	Coll-	ection	Sample	Sampler's	Jocs				□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	otal Both
(Lab Use Only) 41567 - 01 -02 -03 -04	SB-MTP10. SB-MTP10. SB-MTP07 SB-MTP07	- 23-24	Date 8/3/2.\	Time 12:00 12:01 1:00	Matrix	Initials	X X X				Sample Specific Comments	е
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification Mansfield: Certification Mansfield: Relinquished	No: MA015	Date: 8 3 2 8 - 4	Time	ntainer Type Preservative	Received B	2 0	Stoyl	Date/Time	Please print clearly, legible and completely. Samples not be logged in and turnaround time clock will start until any ambiguities resolved. BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPITERMS & CONDITIONS	II not s are IG T ES HA'S

APPENDIX D

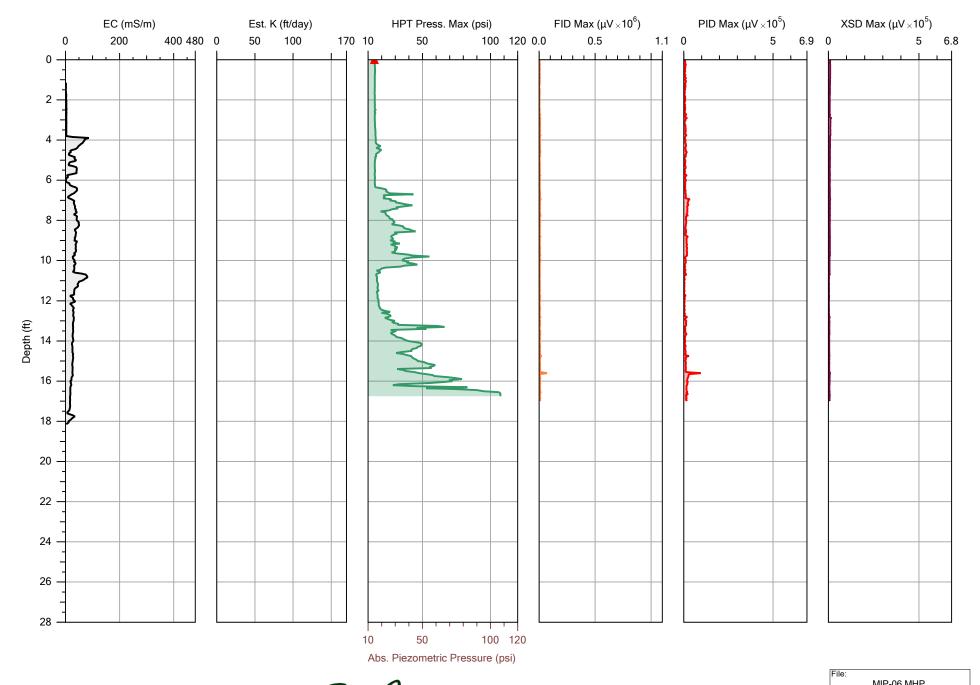

MIP Report and Logs


		IVIIP-U I .IVITP
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-01

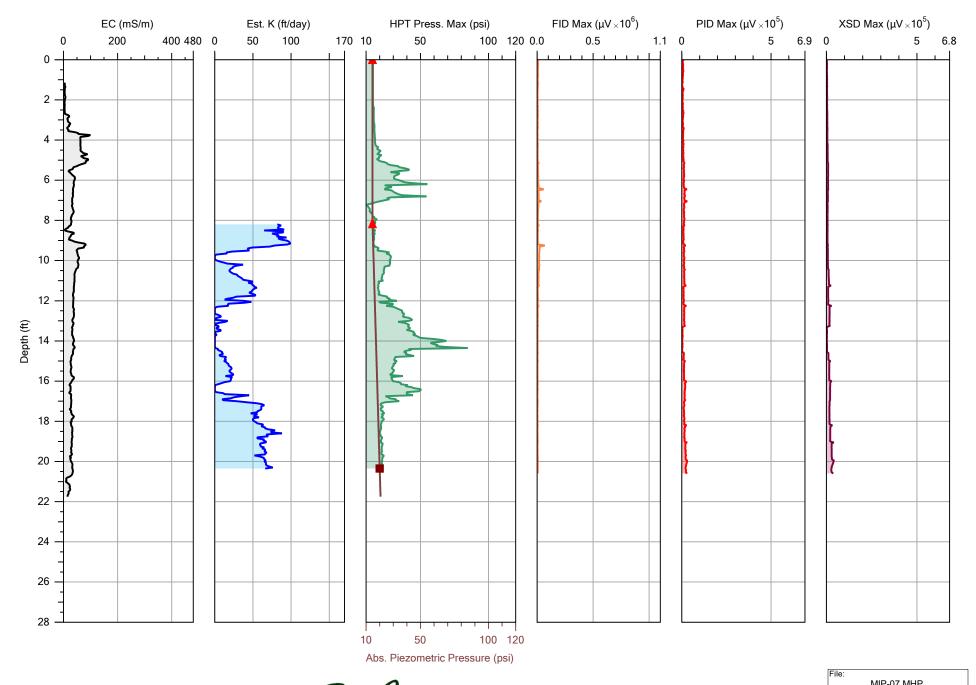
		IVIIF-UZ.IVITIF
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-02

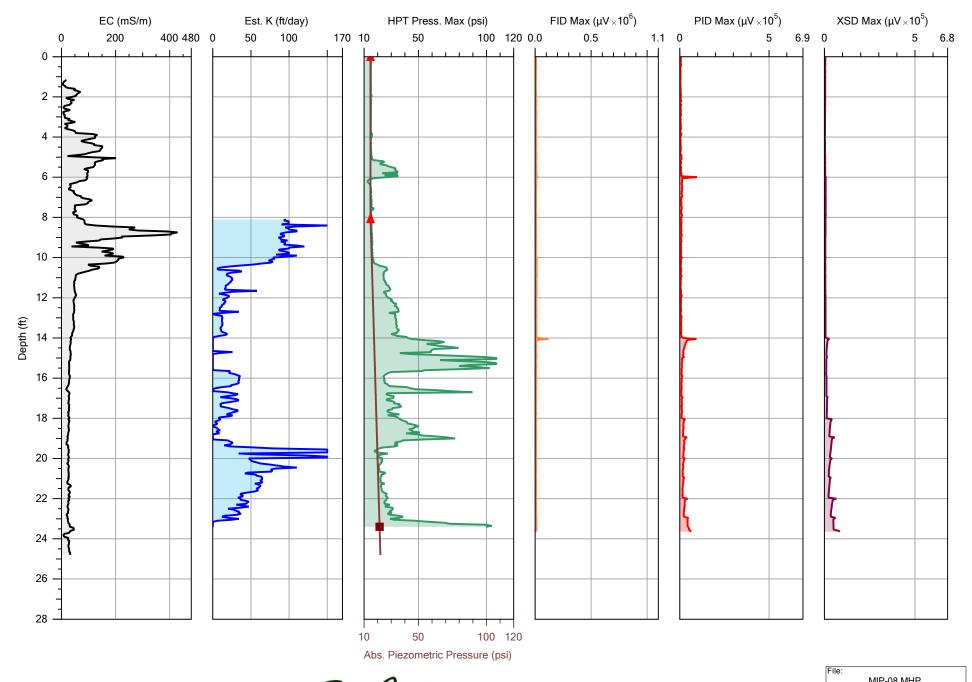


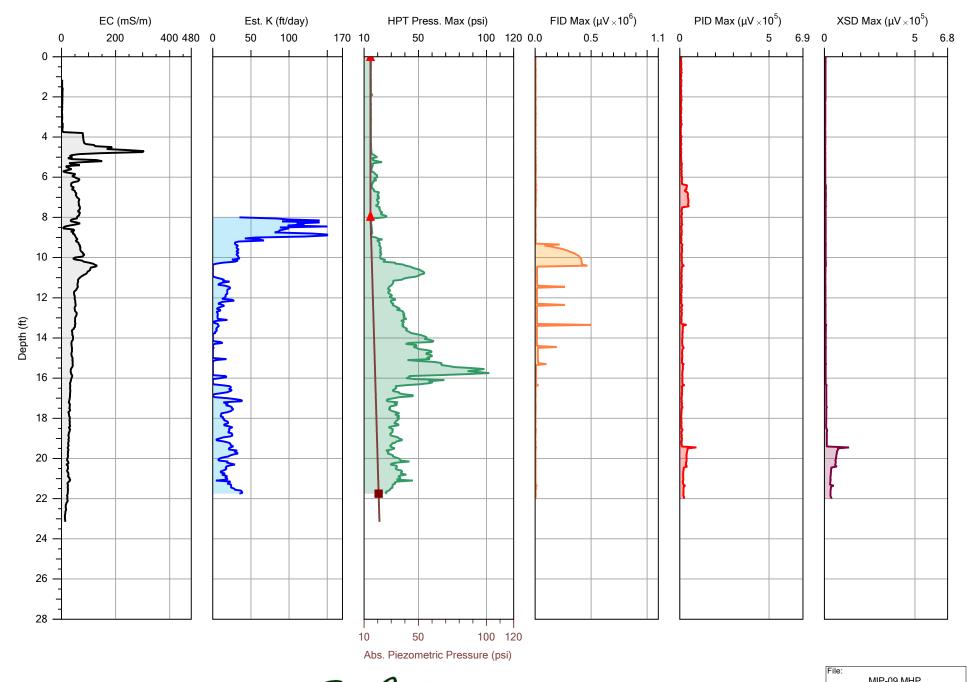
		IVIIF-US.IVITF
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-03

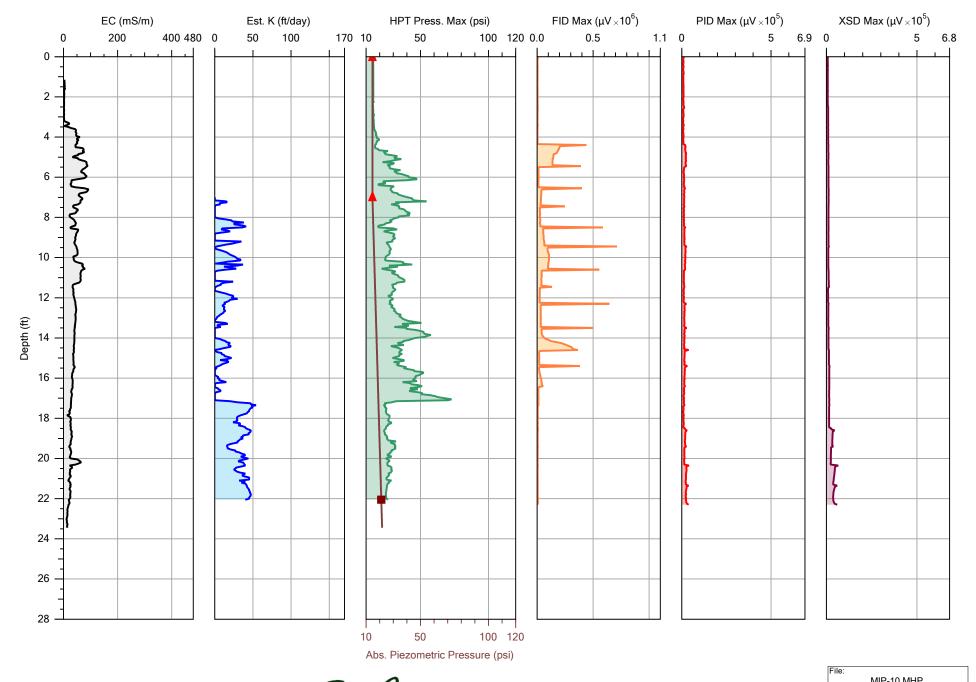


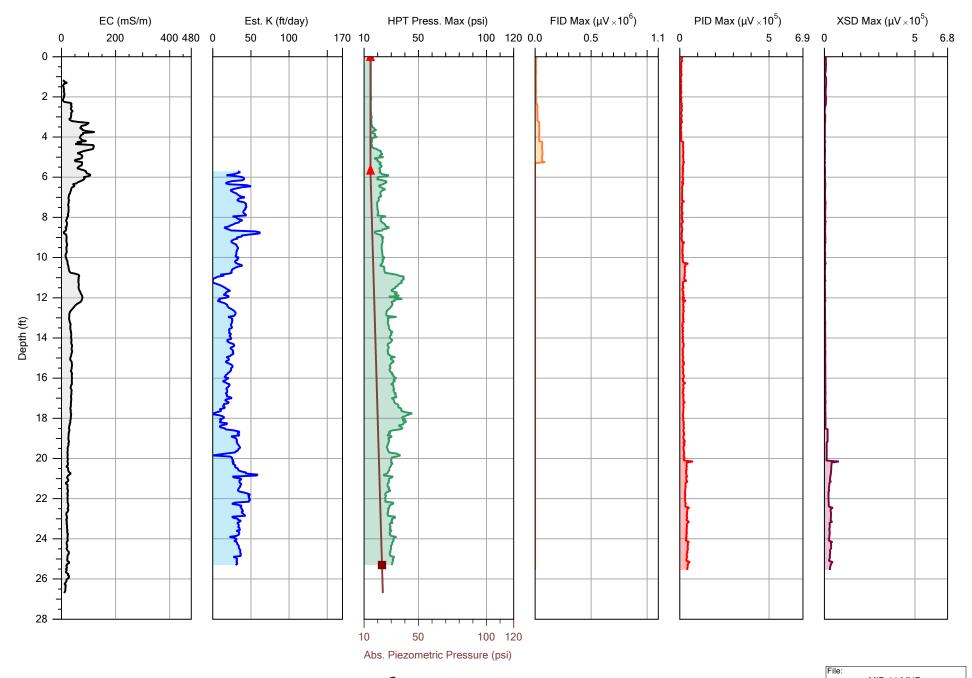
Sz Cz inc.

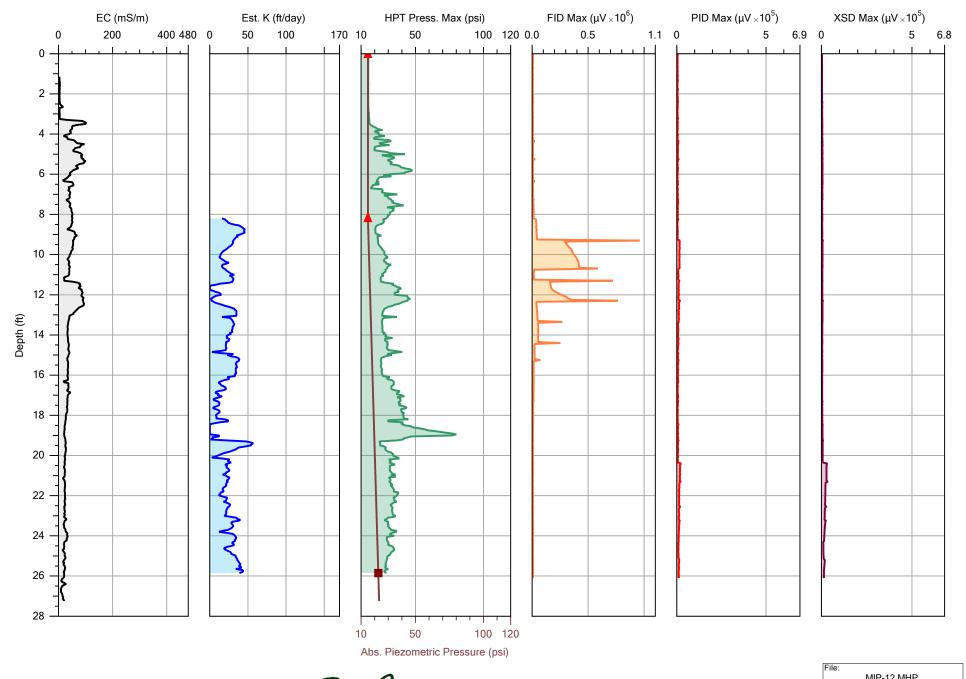

		IVIIF-U4.IVIF
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-04


		IVIIP-US.IVITP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-05

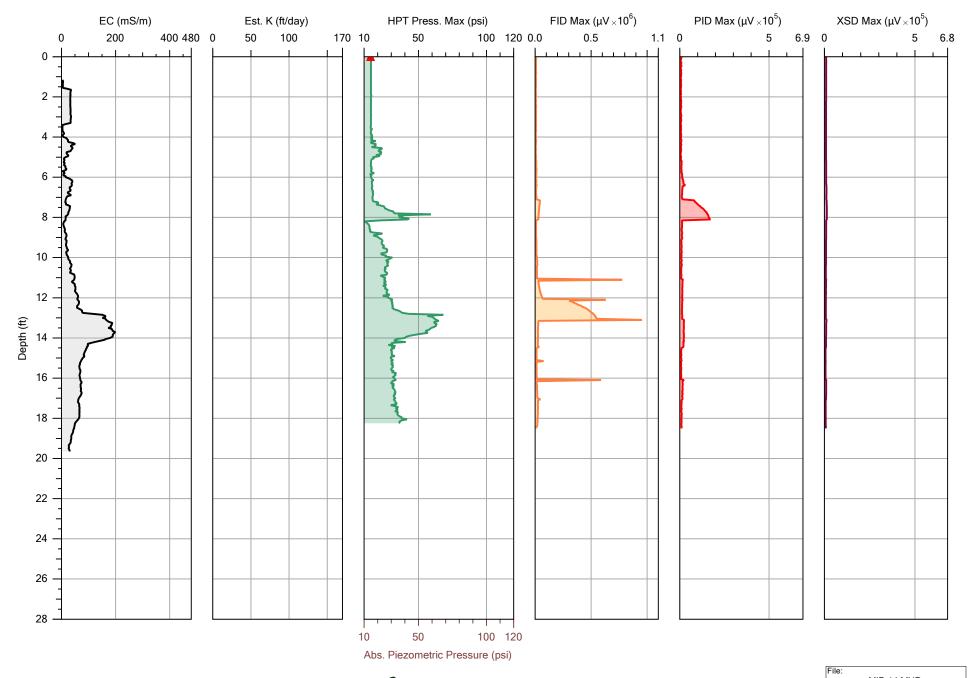

		IVIIF-UU.IVITE
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-06

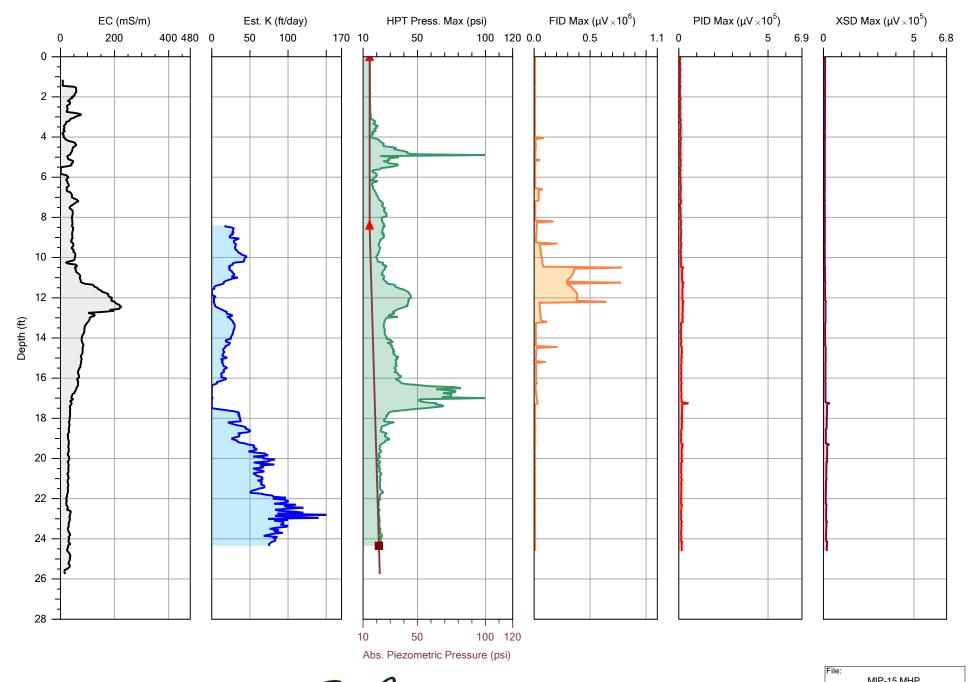

		IVIIP-U7.IVIPP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-07


		IVIIP-UO.IVITP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-08


		IVIIP-09.IVITP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-09


		IVIIP-TU.IVITP
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-10


		IVIIP-11.WITH
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-11


		IVIIP-12.IVIPP
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-12

		IVIIF-13.IVIF
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-13

		IVIIP-14.IVITP
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-14

		IVIIP-15.IVIPP
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-15

Streamlined Site Characterization & Closure

High-Resolution Subsurface Characterization Using the Combination Membrane Interface Probe-Hydraulic Profiling Tool (MiHPT)

767 East 133rd Street Block 2562, Lot 49 Bronx, New York 10454

August 10, 2021

PREPARED FOR

Langan Engineering and Environmental Services 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

PREPARED BY

S2C2, Inc. 5 Johnson Drive, Suite 12 Raritan, New Jersey 08869 (908) 253-3200 www.s2c2inc.com

Se Ceinc.

TABLE OF CONTENTS

Introduction/Objectives	1
Equipment Description	1
MiHPT Quality Assurance and Quality Control	2
Summary of Field Investigation.	3
Direct Sensing Log Interpretation	3

List of Figures

Figure 1: XSD Pre and Post Response Tests (2 ppm PCE) Figure 2: MiHPT Locations

Appendices

Appendix A: MiHPT Logs

Introduction/Objectives

Langan Engineering and Environmental Services (Langan) contracted S2C2 Inc. (S2C2) to conduct a High-Resolution Site Characterization (HRSC) of subsurface chlorinated volatile organic compound (cVOC) impacts on the property located at 767 East 133rd Street, Bronx, New York (Site). Previous investigations conducted at the Site revealed the presence of dissolved cVOCs in soil and groundwater. The HRSC program was accomplished with the application of Geoprobe®'s combination Membrane Interface-Hydraulic Profiling Tool (MiHPT) and electrical conductivity (EC) technologies. Field work was conducted over two days from July 28 to August 3, 2021.

Equipment Description

The MIP coupled with an EC sensor provides continuous stratigraphic information of the soil as well as a semi-quantitative indicator of total VOC concentrations. The MIP is effective in both saturated and unsaturated materials to detect VOCs in the gaseous, sorbed, dissolved, or free phases. The membrane of the MIP acts as an interface between the VOCs present in the subsurface and gas phase detectors located at the ground surface. The membrane is semi-permeable and is comprised of a thin film polymer impregnated into a stainless-steel screen for support. The membrane is approximately 6.35 millimeters (mm) in diameter and is placed in a heated block attached to the probe. This block is heated to approximately 120 degrees Centigrade (°C) and is raised at the leading edge to help protect the membrane from damage when being pushed through the geologic matrix. Heating the block helps accelerate diffusion of the VOCs through the membrane. Diffusion occurs due to a concentration gradient between the impacted matrix and the clean carrier gas (e.g., nitrogen) behind the membrane. A constant gas flow of 30-45 milliliters per minute (mL/min) sweeps behind the membrane and carries the diffused VOCs to the gas phase detectors at the ground surface via a trunkline. Travel time from the membrane interface to the detector(s) is approximately 45-90 seconds (depending on the length of the trunkline, flow rate, and ambient air temperature).

The HPT system uses a sensitive, downhole transducer to measure the pressure response of the sub-surface to a constant, monitored injection of clean water. As the probe is advanced at 20 millimeters per second (mm/s), water is injected through a stainless-steel screen on the side of the probe at a flow rate of approximately 200-300 mL/min. Injection pressure is monitored and plotted with depth along with the injection flow rate. A low pressure is indicative of higher subsurface permeability while high pressure is indicative of lower permeability. Once the HPT probe has been advanced below the water table, dissipation testing can be performed to estimate the static water level and provide an estimate of hydraulic conductivity (Est. K). The operator will pause advancement of the probe and shut-off the flow of water to the HPT probe. The HPT pressure will then dissipate and once it has stabilized, the operator will return water flow to the HPT and continue advancement of the probe. Upon completion of the log, the operator can utilize equations integrated in the Geoprobe® Direct Image Viewer software to calculate static water level, depth of water table, and Est K. in feet per day (ft/day). To refine the precision of the calculations, multiple dissipation tests can be run in the same log.

The EC sensor of the MiHPT probe consists of an electric dipole near the lead-end of the probe

that sends a current into the soil formation which is measured along with the voltage that results. The conductivity is a ratio of current to voltage times a constant and is read in milli-Siemens per meter (mS/m). The electrical conductivity of consolidated soils and sediments is a function of grainsize. Other factors that influence conductivity are chemical composition, moisture content and salinity of pore fluids (brines), but grain size is the dominant factor. In general, coarse-grained soils such as gravel and coarse sands have the lowest values (typically 0-20 mS/m) and clay has the greatest values (typically greater than 80 mS/m).

S2C2 used a MH6534 MiHPT probe, FI6000 field instrument, K6300 HPT flow module, MP6500 MIP controller coupled with a Hewlett-Packard 5890 gas chromatograph and a field laptop with Direct Image Acquisition software to log all MiHPT data. S2C2 utilized three detectors during this project: a Flame Ionization Detector (FID), a Photo-Ionization Detector (PID) and a Halogen-Specific Detector (XSD). The FID/PID detect total VOCs with the PID more sensitive to aromatic compounds. The XSD only detects halogen-containing hydrocarbons (i.e., chlorinated VOCs). Typical MIP configurations will generally have a detectable response in the presence of VOCs at concentrations as low as 250 parts per billion (ppb) to 1 part per million (ppm). Output from the detectors was displayed on the field laptop in real-time, displaying: conductivity, push-rate, detector response, carrier gas pressure and flow and temperature data. These data were viewed continuously during each MIP logging run and digitally recorded. S2C2 utilized a custom support vehicle with all the MiHPT componentry to conduct the field work.

MiHPT Quality Assurance and Quality Control

S2C2 follows a strict quality assurance/quality control (QA/QC) program following Geoprobe®'s MIP Standard Operating Procedure (SOP) Technical Bulletin No. MK 3010, revised January 2015. Accordingly, S2C2 performs a response test before and after each MIP location. The response test is an important quality control test in that it tests the integrity of the complete system. S2C2 performs the response test by preparing a known concentration of a standard in water and then exposing the membrane to that solution. After 45 seconds of exposure, the solution is removed from the membrane and the maximum MIP response is measured. The standards used for this investigation was tetrachloroethene at a concentration of 2 mg/L (ppm). Performing a response test before and after each run measures the integrity of the system and checks for degradation of the membrane. If the post-run results are not similar to pre-run results, then corrective action (replacement of membrane, checking for leaks in the system) may be necessary. Some degradation of the membrane is expected, and replacement of the membrane is considered a routine maintenance task. Without adhering to these QA/QC checks, MIP data from one hole cannot accurately be compared to MIP data from other locations. It should be noted that these response tests are not conducted to calibrate the MIP system nor to build a calibration curve but rather as an overall check on the system. For this and other reasons (matrix effects, varying response of different compounds, system settings, etc.) the MIP response cannot be reliably used to predict resulting soil or groundwater concentrations for individual compounds and therefore remains a semi-quantitative tool. For this project, all the pre-test responses were within expected ranges for the XSD detector. A histogram of pre- and post-test responses for the XSD detector is provided in Figure 1.

To check the EC dipole, an EC dipole tester configured with high and low EC materials on either

end is applied across the EC dipole and the isolated steel body of the probe. If the EC response is within +/- 5% of the target value, the EC test is passed. If either the high or low EC test fails, corrective action (typically opening the probe and reconnecting the EC wires) must be taken.

S2C2 also follows a strict QA/QC program following Geoprobe®'s HPT SOP Technical Bulletin No. MK 3137, prepared January 2015. S2C2 performs a transducer response test before and after each HPT location. The response test is an important quality control test in that it tests the integrity of the complete system. S2C2 performs the response test by inserting the HPT probe into the HPT reference tube with the valve open and the water pump running. The pressure is captured in this scenario. Then the valve is closed, and the reference tube is filled until water runs out of the top. Again, this pressure is captured by the Direct Image Acquisition software. The pump is then shut off and pressure is captured. The valve is then opened, and the water is drained. Once the water is at equilibrium, the pressure is captured. Ideally, the pressure difference observed between the upper and lower water level both with and without flow is 0.217 pounds per square inch (psi). If the pressure differences deviate significantly from this value, then corrective action (i.e., replacing the screen or transducer) may be necessary. Without adhering to these QA/QC checks, static water level and Est. K cannot be accurately calculated.

Summary of Field Investigation

The field investigation consisted of logging a total of 15 MiHPT borings. All borings were advanced to refusal, defined as the slowing of the push rate to less than 1 ft/min over an interval of a few inches. The average total depth of MiHPT borings was approximately 19 feet below ground surface (ft bgs) with a minimum of 9.45 ft bgs and a maximum of 26.1 ft bgs.

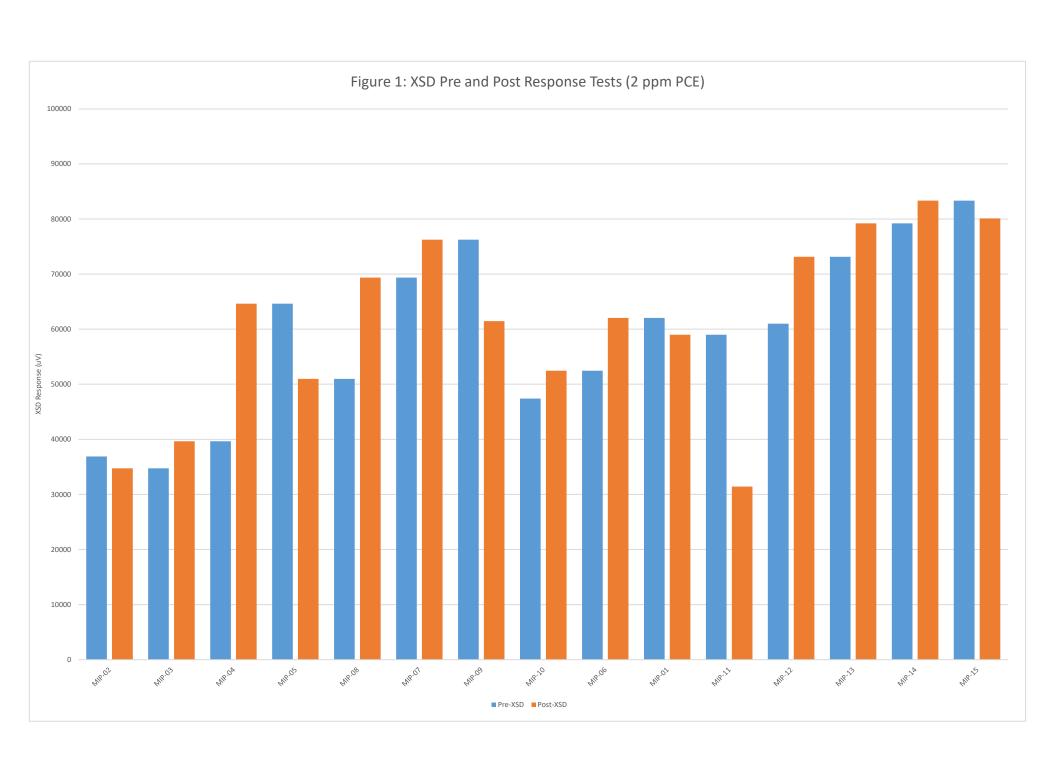
Figure 2 displays the approximate locations of all MiHPT borings.

Direct Sensing Log Interpretation

Each MiHPT log has the following six graphs of data displayed with depth:

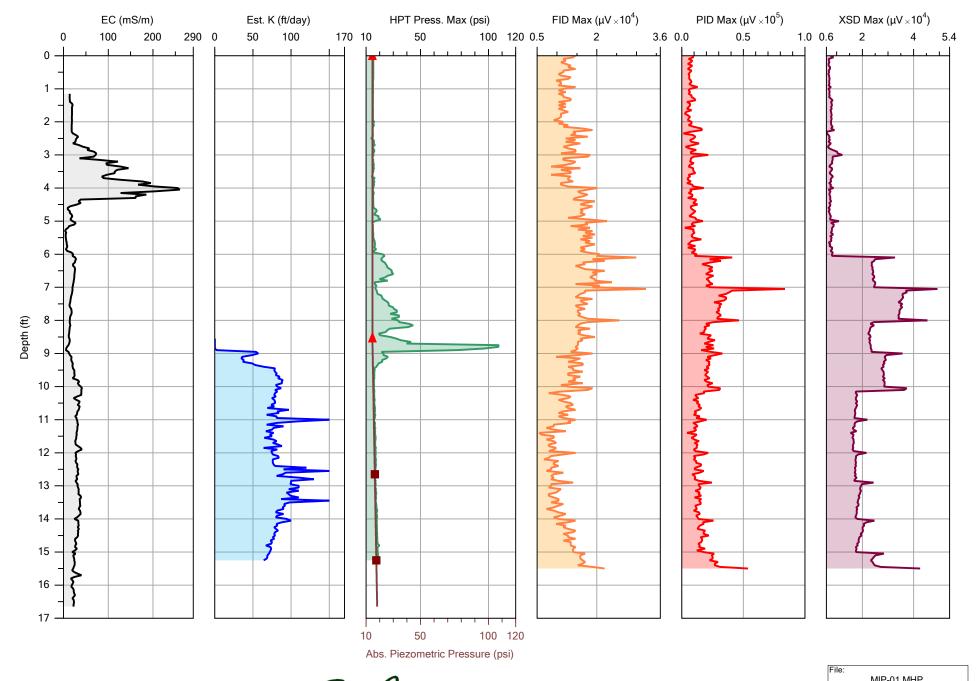
- EC is on the left and is displayed in mS/m. Coarse-grained materials generally have lower EC values while higher values indicate finer-grained materials.
- Next is Est. K given in ft/day. Only locations with successful dissipation tests are include a log of Est. K. There is no data above the water table.
- The next graph is the HPT transducer pressure maximum overlaid with the absolute piezometric pressure graph, both in psi. An increase in HPT pressure indicates lower permeability while lower HPT pressures near the piezometric pressure graph indicate higher permeability zones. The piezometric pressure graph is only present for locations with successful dissipation tests. The red triangle plotted on the piezometric pressure graph is the estimate of the water table.
- The next three graphs display the FID, PID and XSD signals, respectively, in microvolts (uV). The MIP response is dependent on many factors including: lithologic properties, chemical constituents, and the concentration within the formation. MIP response also varies as a result of membrane degradation. The MIP response provides a gross semi-quantitative response to VOCs in the subsurface

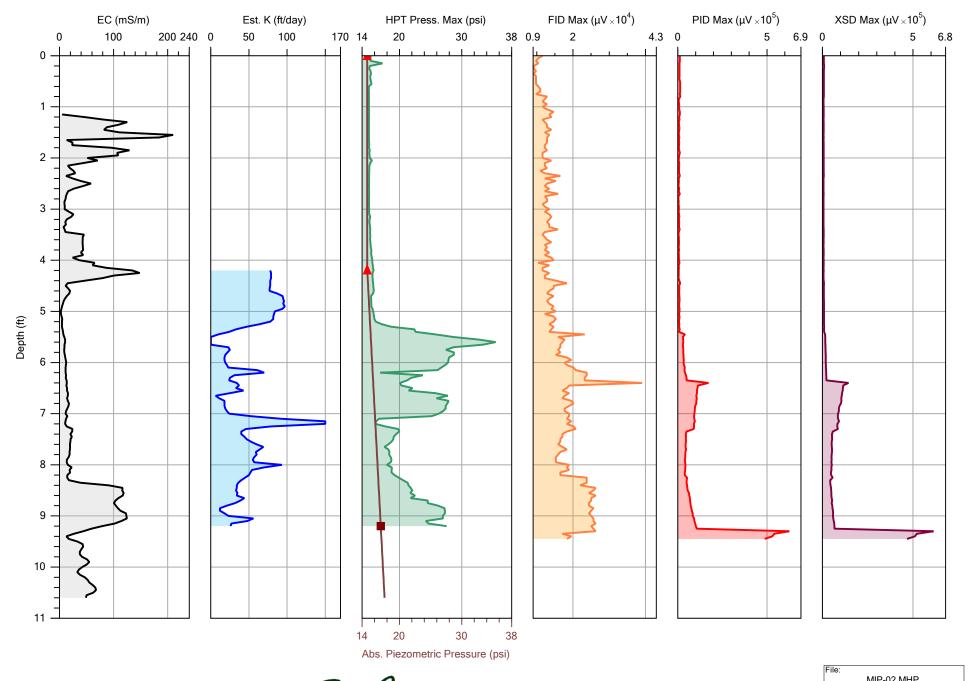

and can be correlated to known concentrations of specific VOCs in the subsurface by comparing soil and/or groundwater confirmation sampling results to the MIP response. If successful dissipation tests were run for the location, corrected HPT pressure is displayed. This is simply the piezometric pressure subtracted from the raw HPT pressure.


MiHPT direct-sensing logs are provided in Appendix A of this report and include the following:

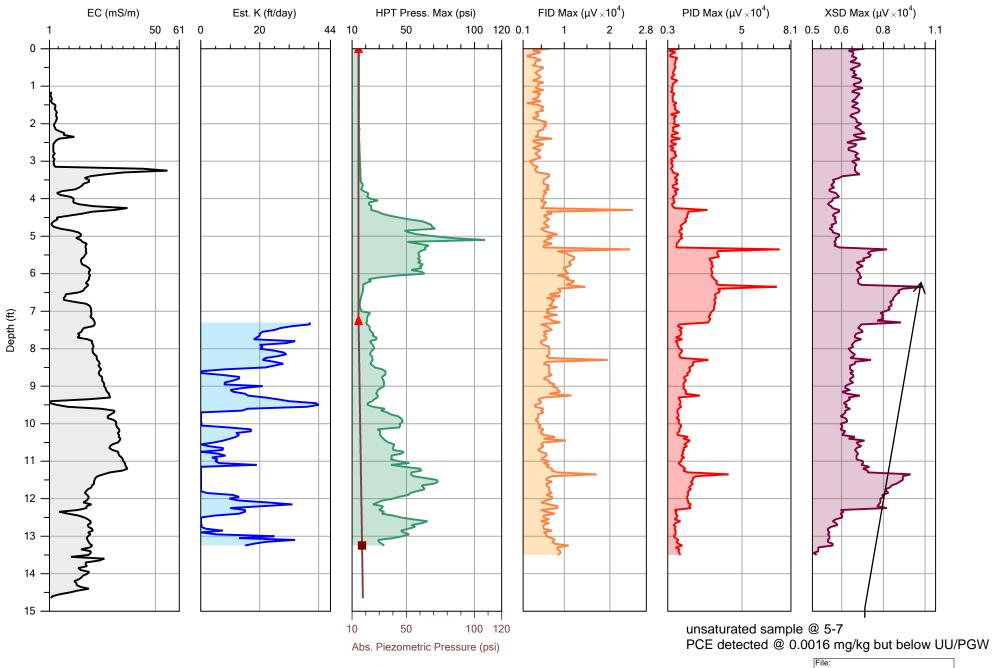
- Best-Fit Scale
- Scaled Alike
- Scaled Alike (1e5 uV Detector Scale)

S2C2 recommends reviewing the scaled alike logs for log-to-log comparison and the best-fit scale logs for comparison of impacts within individual borings.

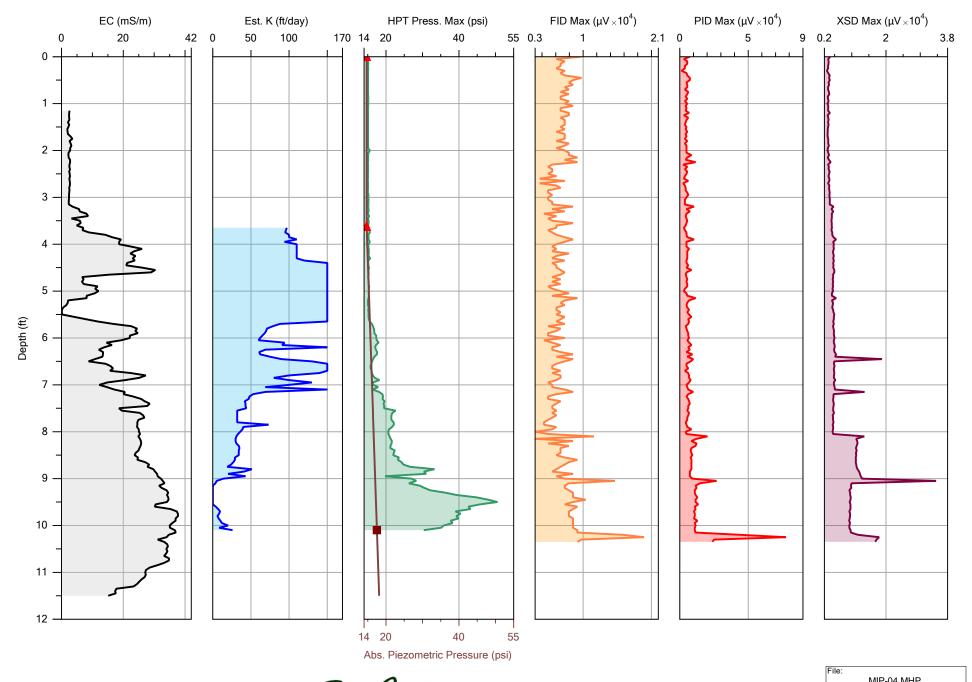

In addition to the provided logs, Geoprobe®'s Direct Image Viewer Software can be used to evaluate all direct-sensing logs and is available at https://geoprobe.com/downloads/direct-image-viewer-32 A user tutorial can also be downloaded at http://geoprobe.com/di-viewer-technical-documents and provides users an overview of available features. This software package automatically opens and displays all types of Geoprobe® direct-image logs and can display single logs or multiple logs in either cross-section or overlay formats. The software also allows for printing and exporting of log graphics for use in many applications.



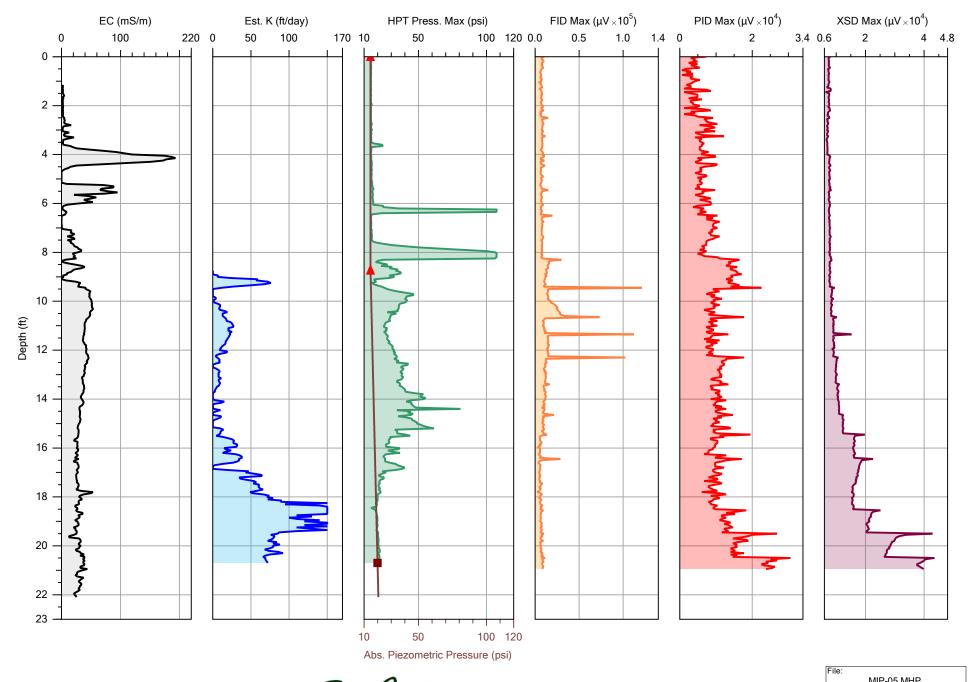
(S2C2 inc.)\Projects\Langan\767 E 133rd St\767 East 133rd St MiHPT Locations.mxd


Appendix A: MiHPT Logs (Best-Fit)

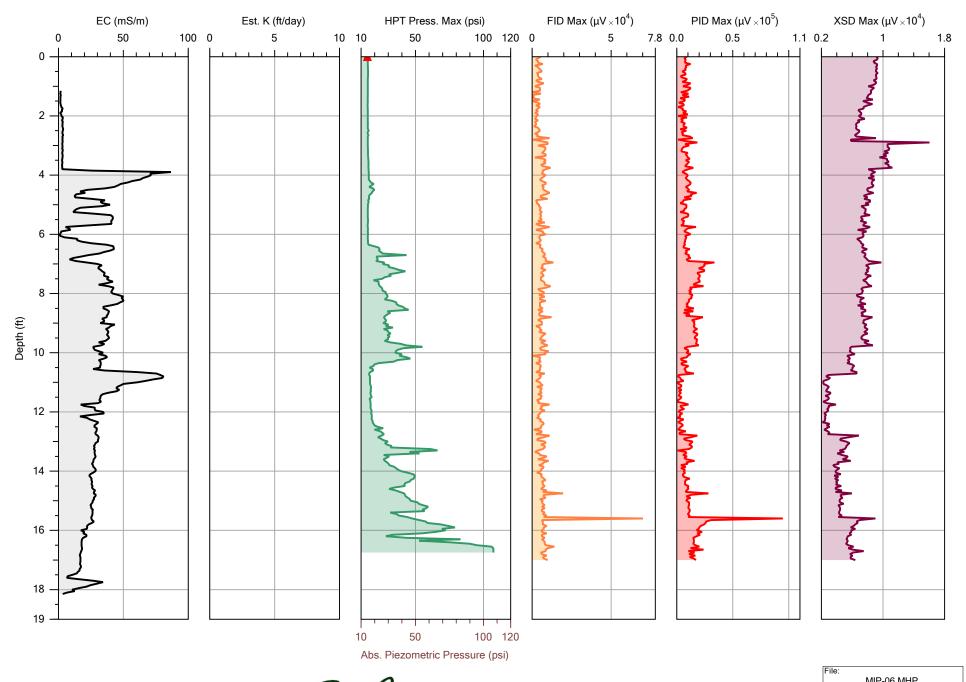
		IVIIF-U I .IVIF
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-01

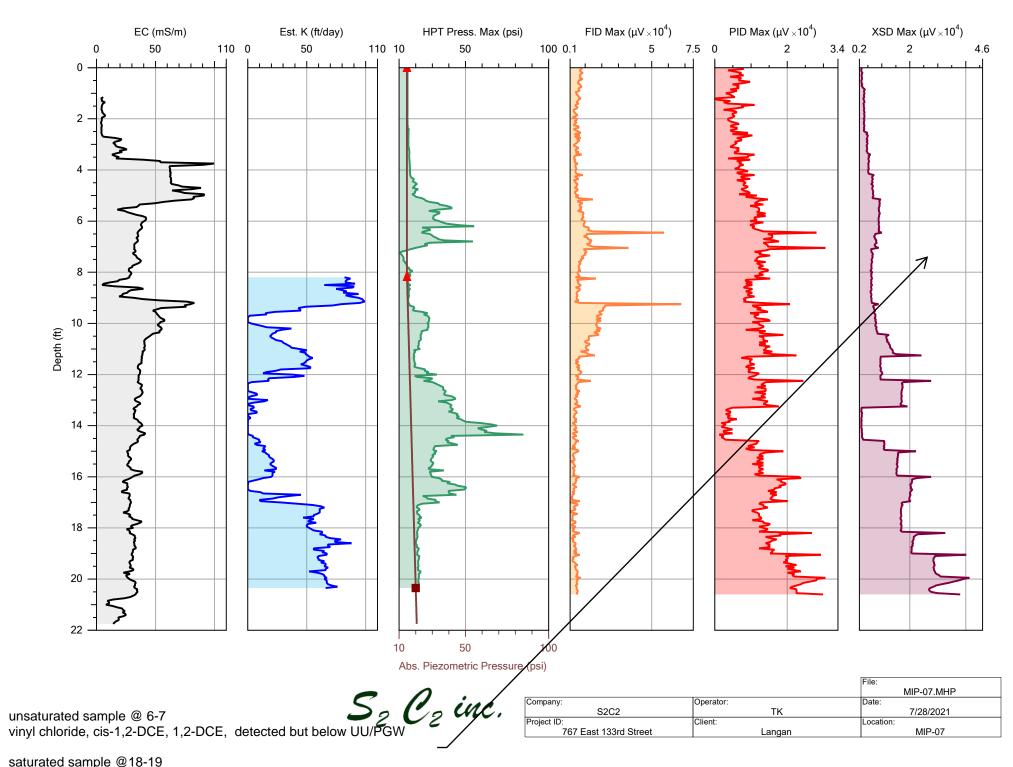


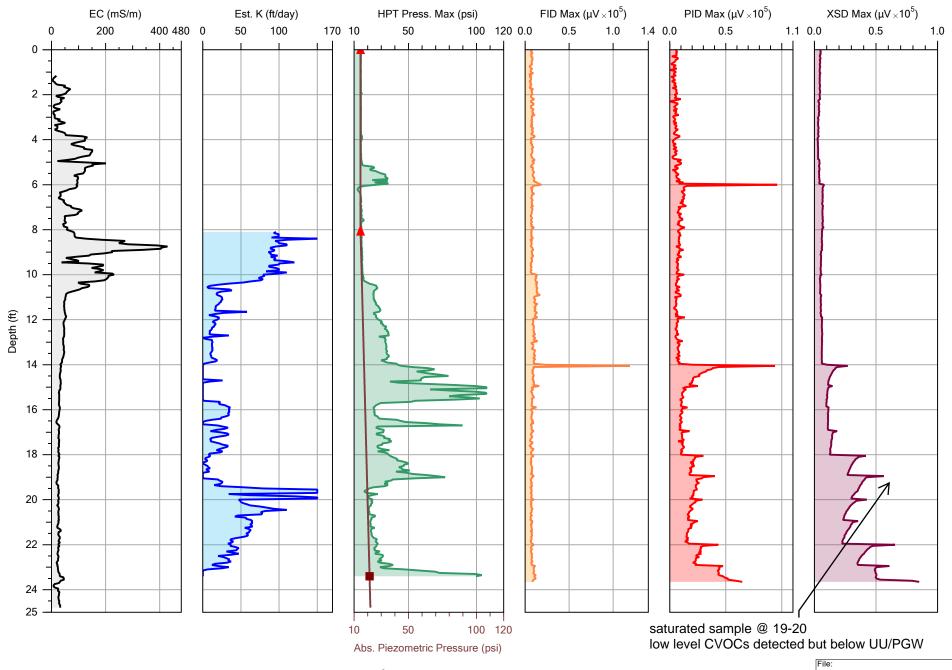
		IVIIF-UZ.IVITIF
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-02



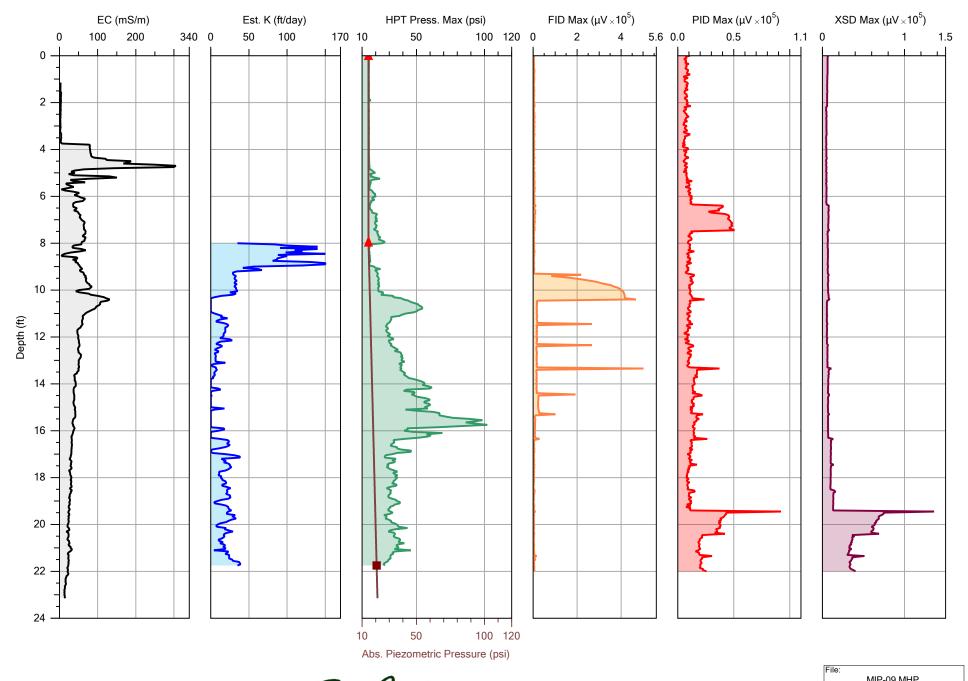
Sz Cz inc.


		MIP-03.MHP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-03

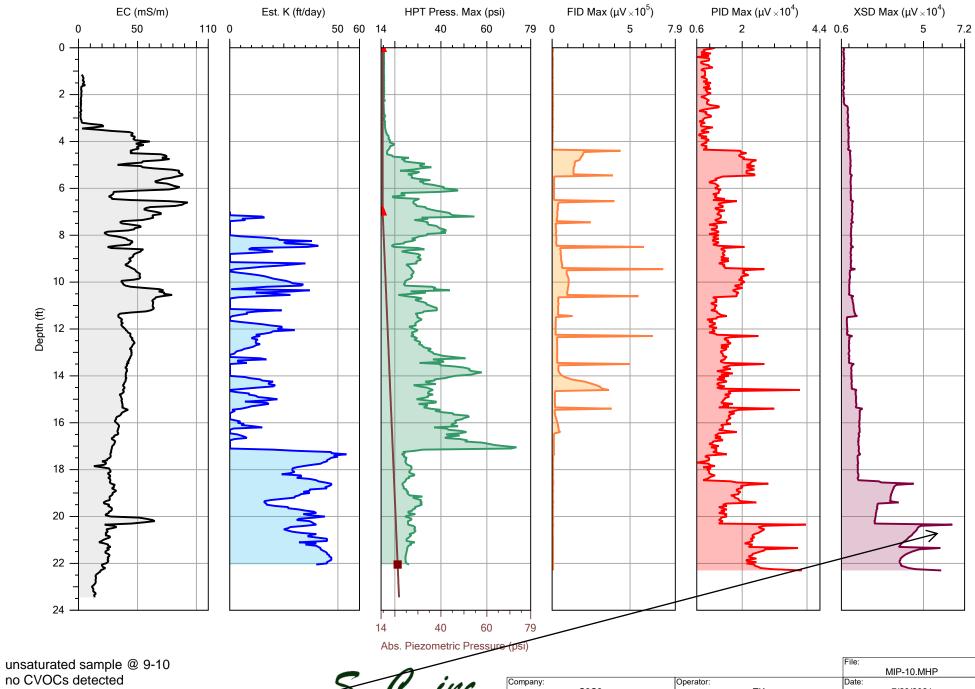

		IVIIP-U4.IVITP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-04



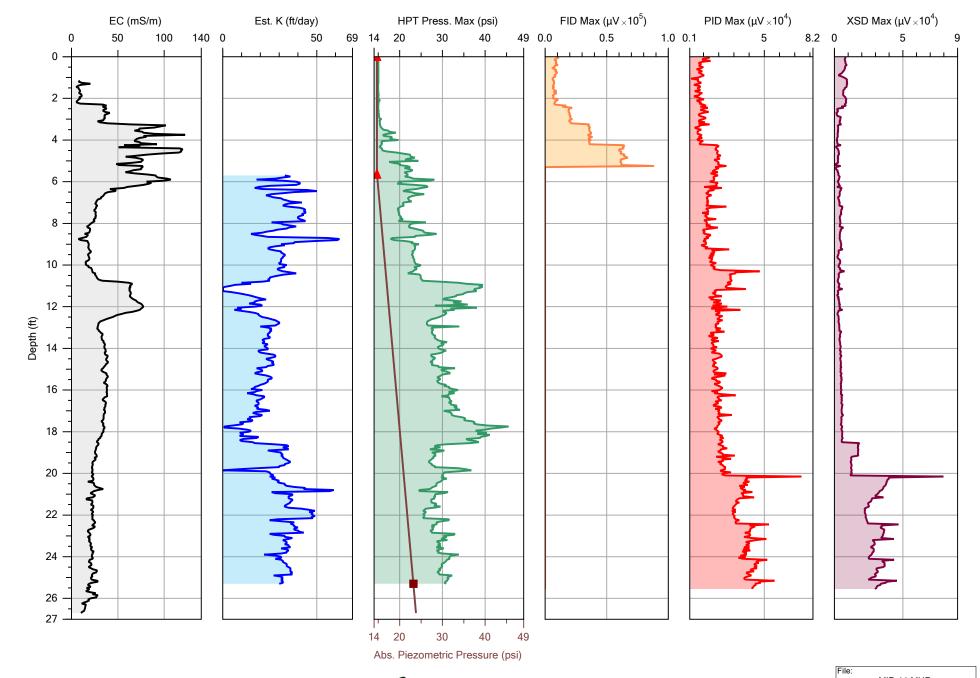
		IVIIP-US.IVIAP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-05



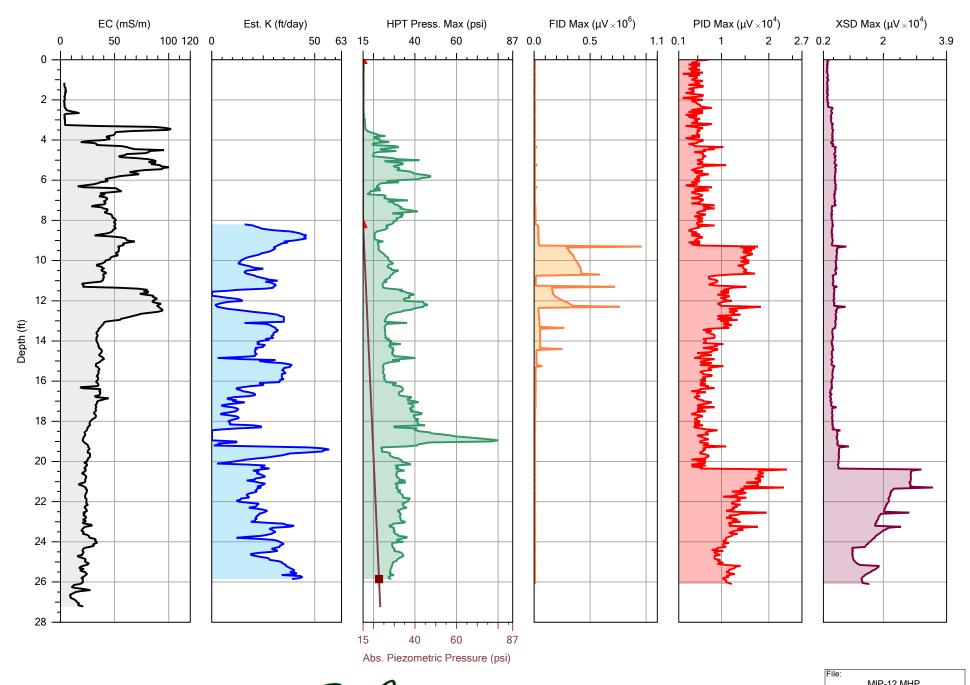
		IVIIP-UO.IVITP
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-06



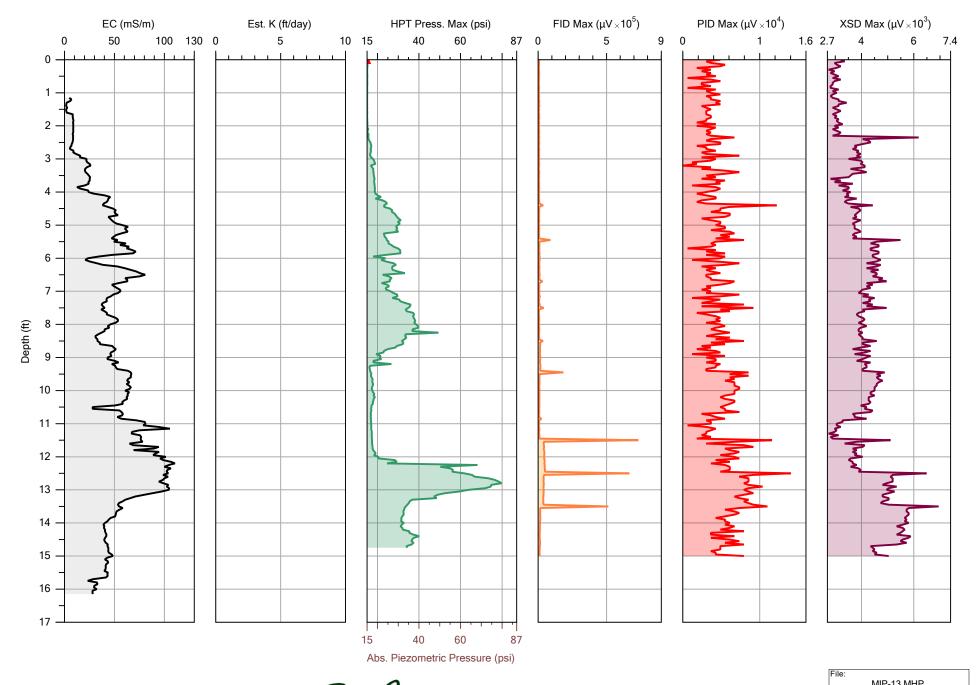
		MIP-08.MHP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-08

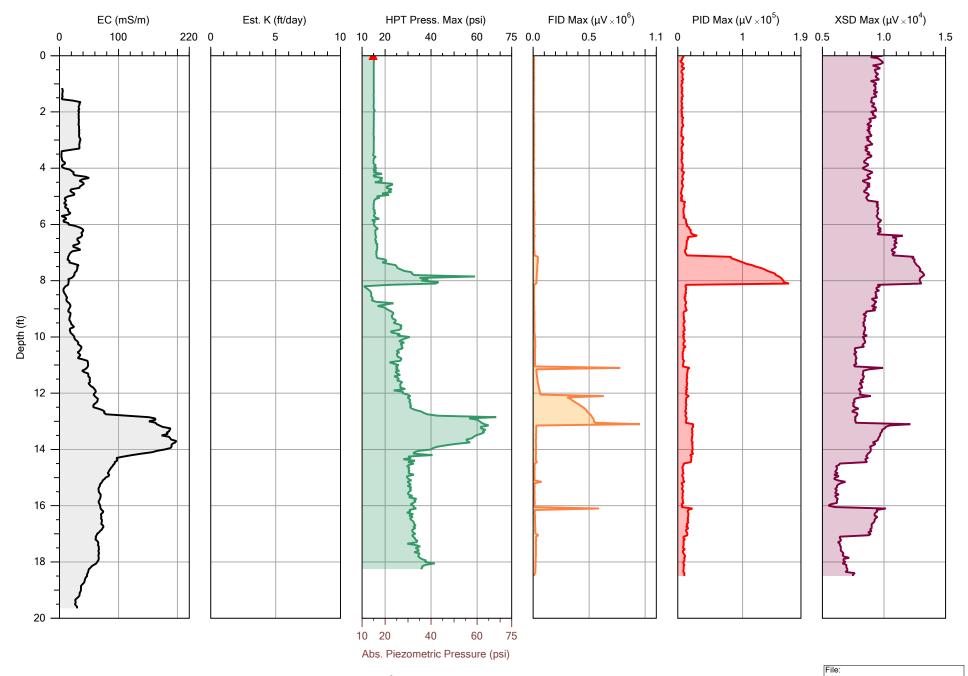


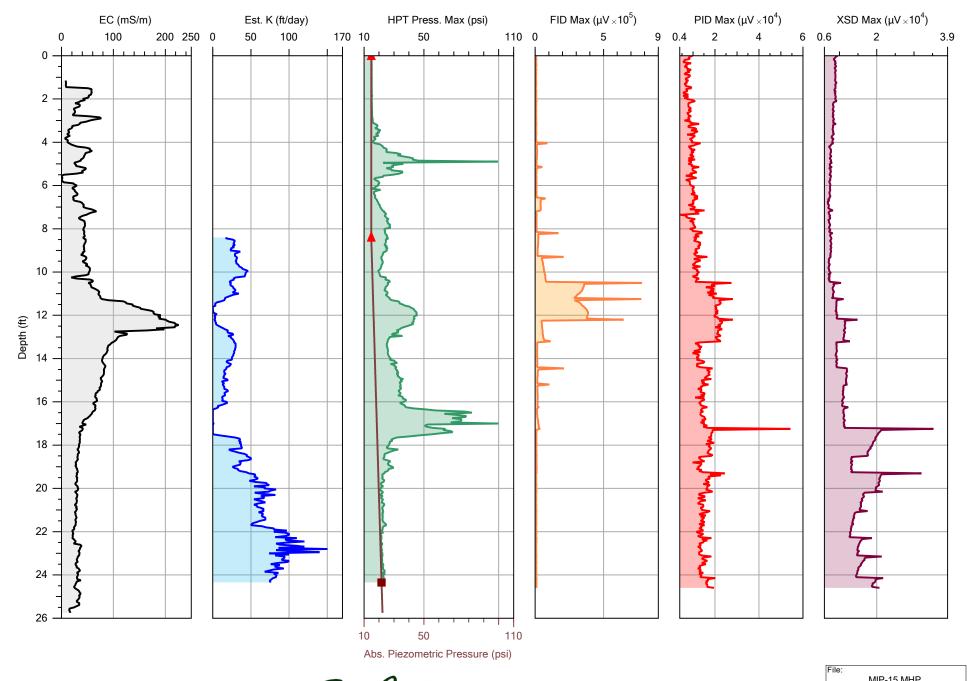
		IVIIP-09.IVITP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-09

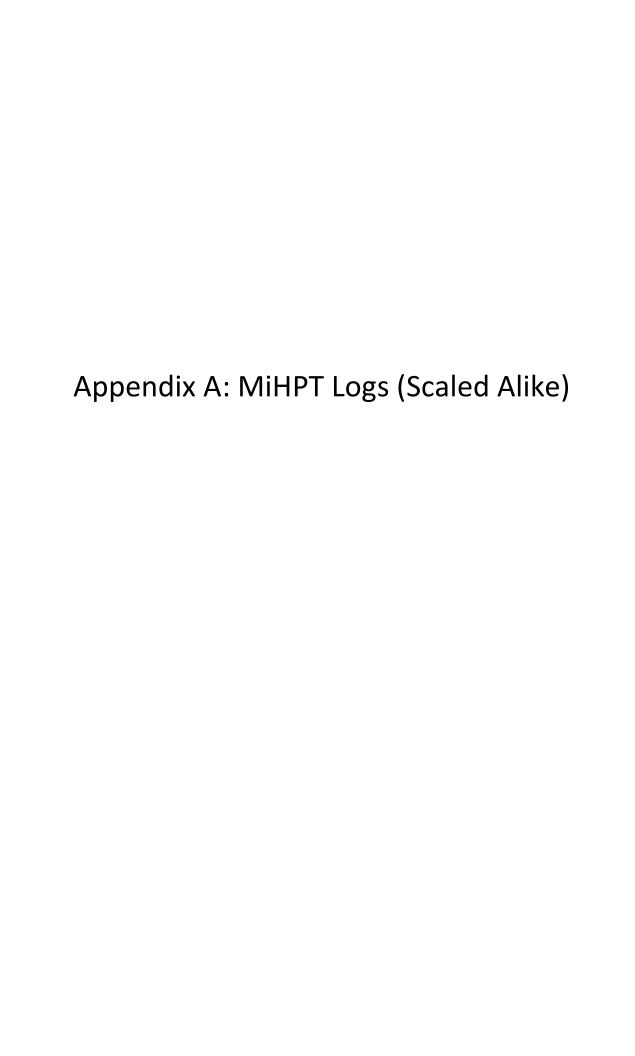


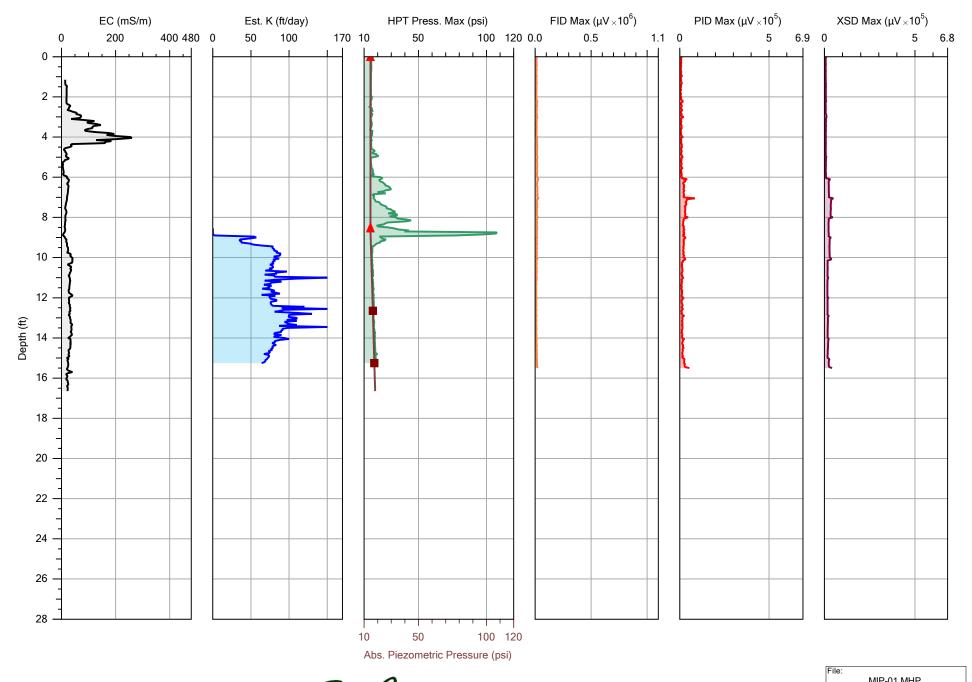
saturated sample @ 23-24 low level CVOCs detected but below UU/PGW


		MIP-10.MHP
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-10

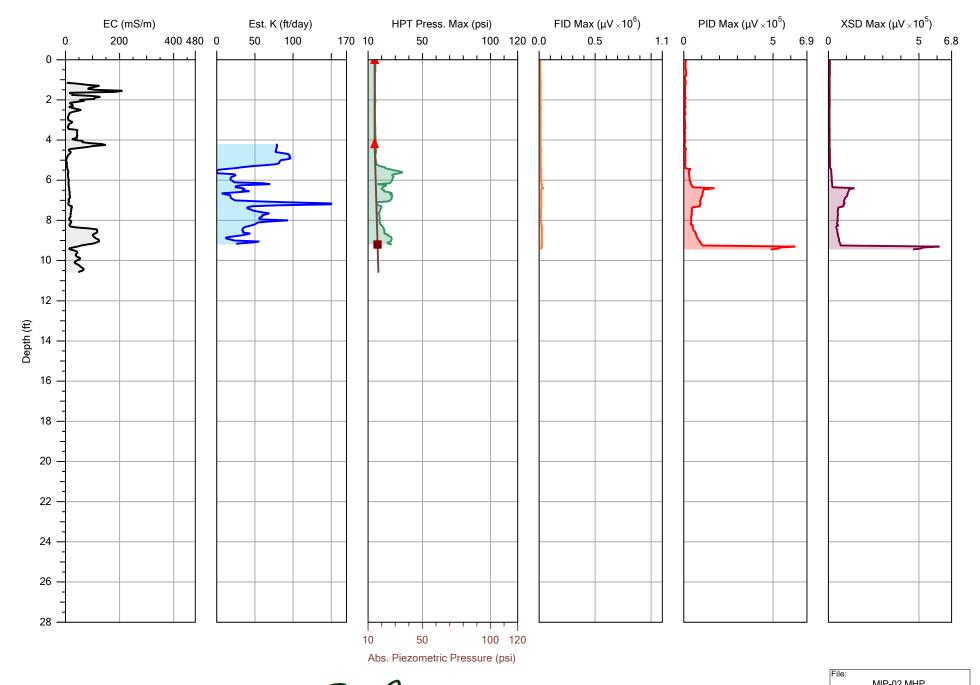

		IVIIF-I I.IVIF
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-11


		IVIIP-12.IVIPP
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-12

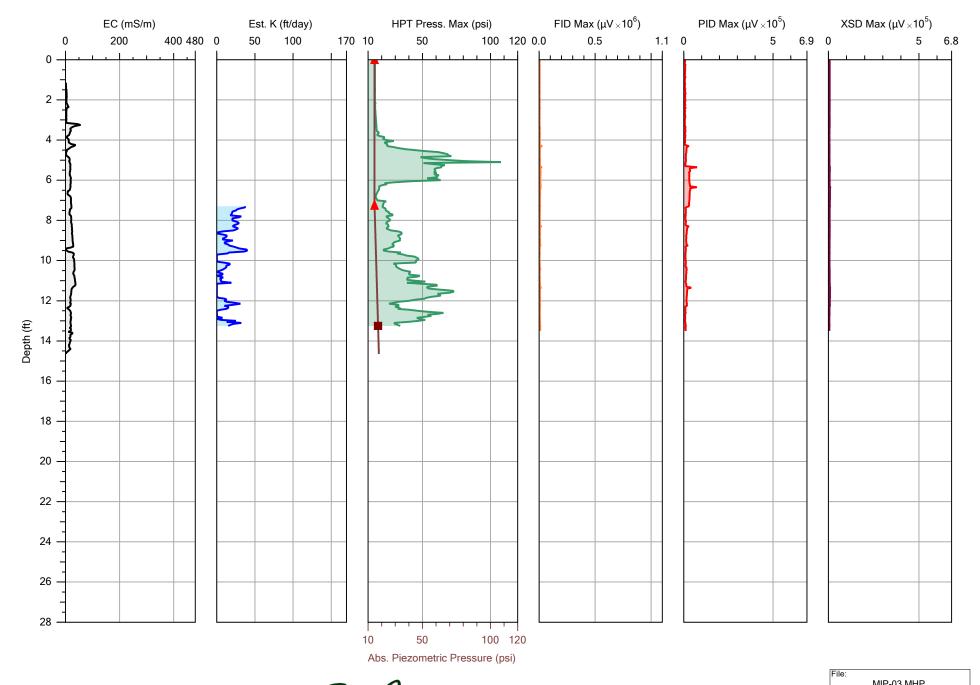

		IVIIF-13.IVIF
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-13

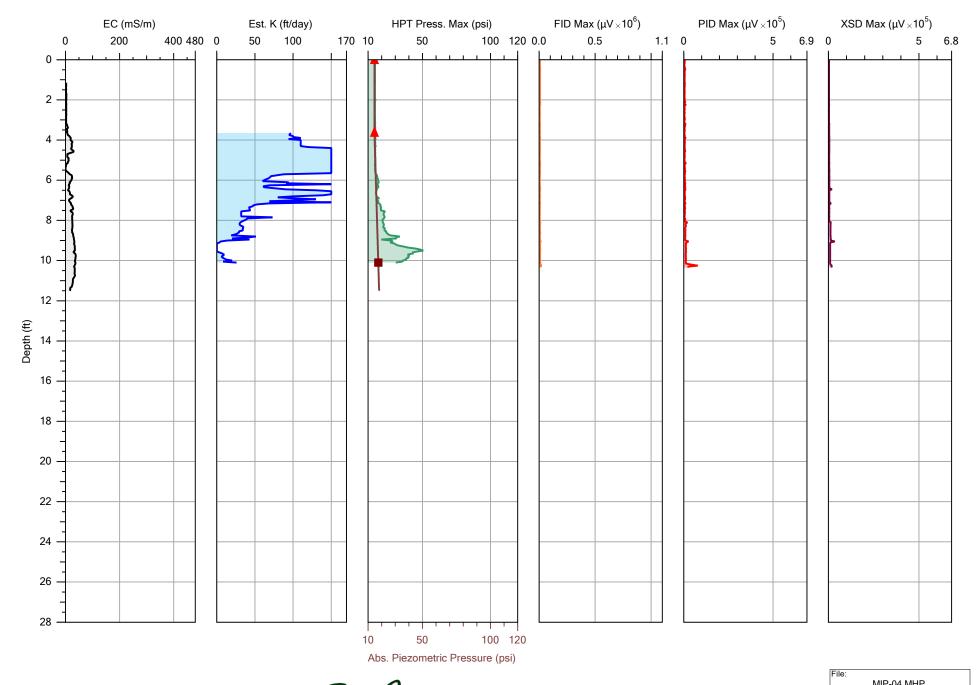


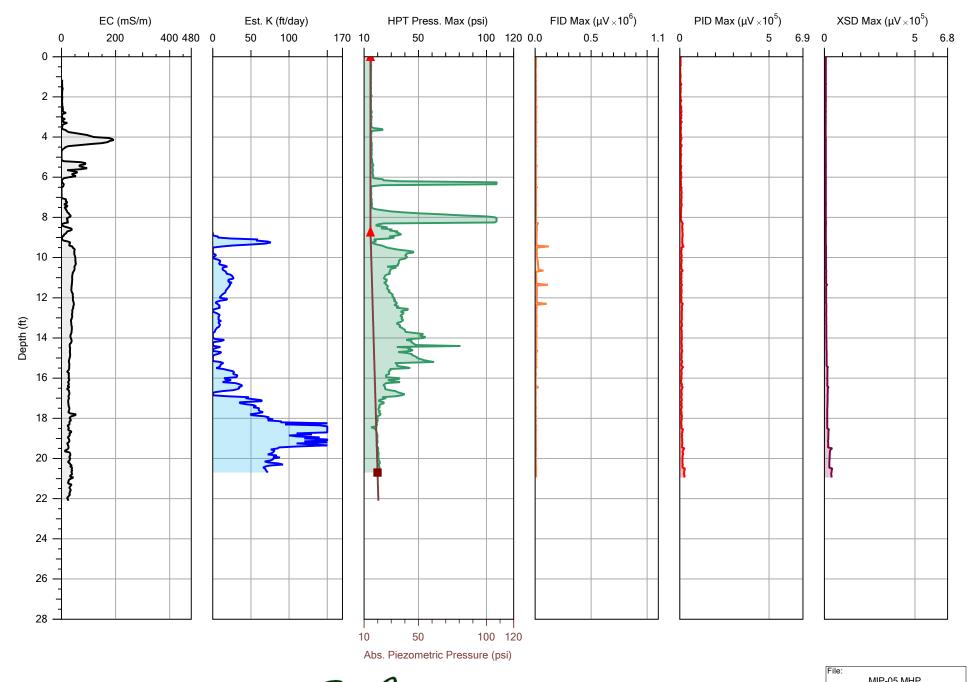
		IVIIP-14.IVITP
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-14

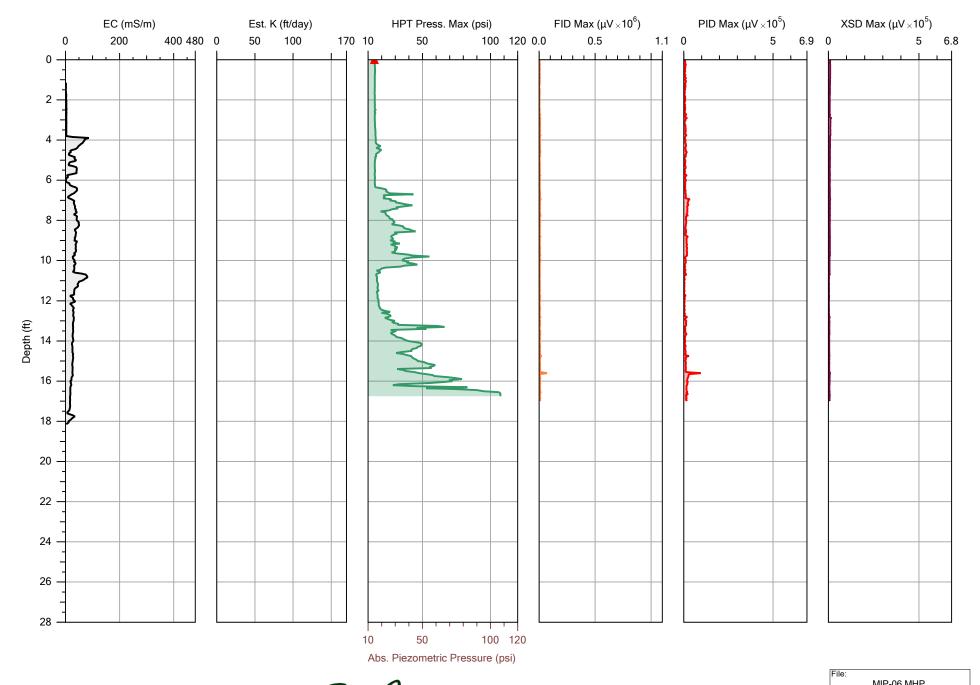


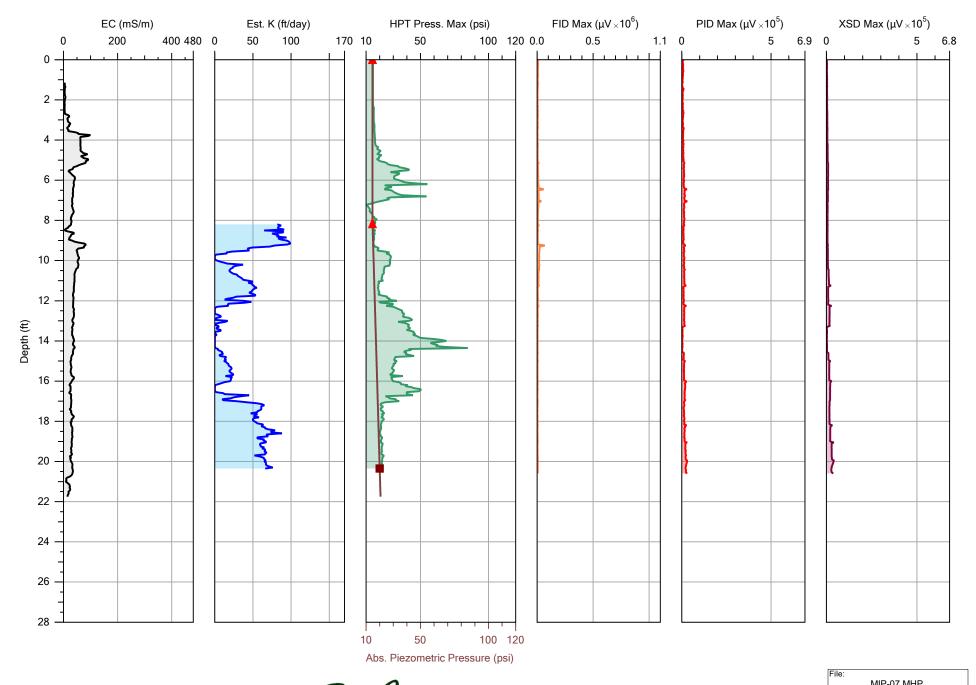
		IVIIP-15.IVIPP
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-15

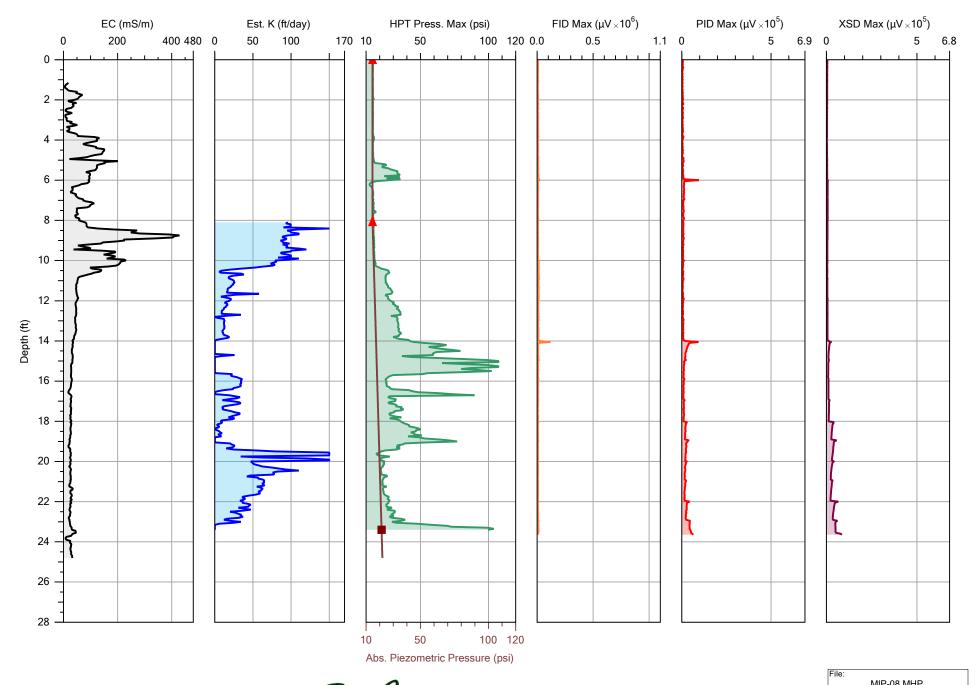


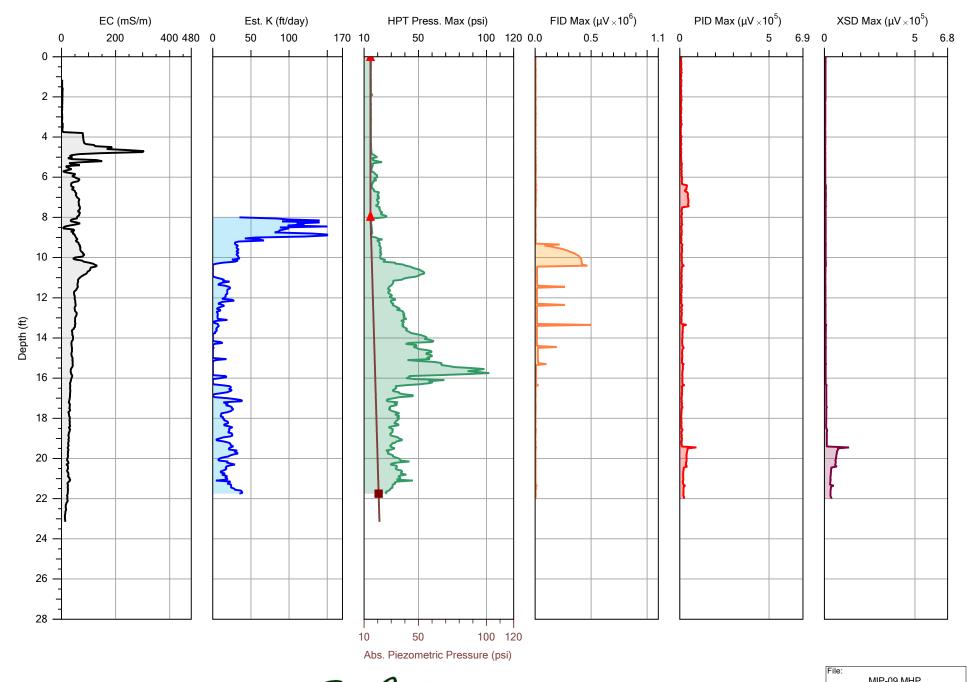

		IVIIP-U I .IVITP
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-01

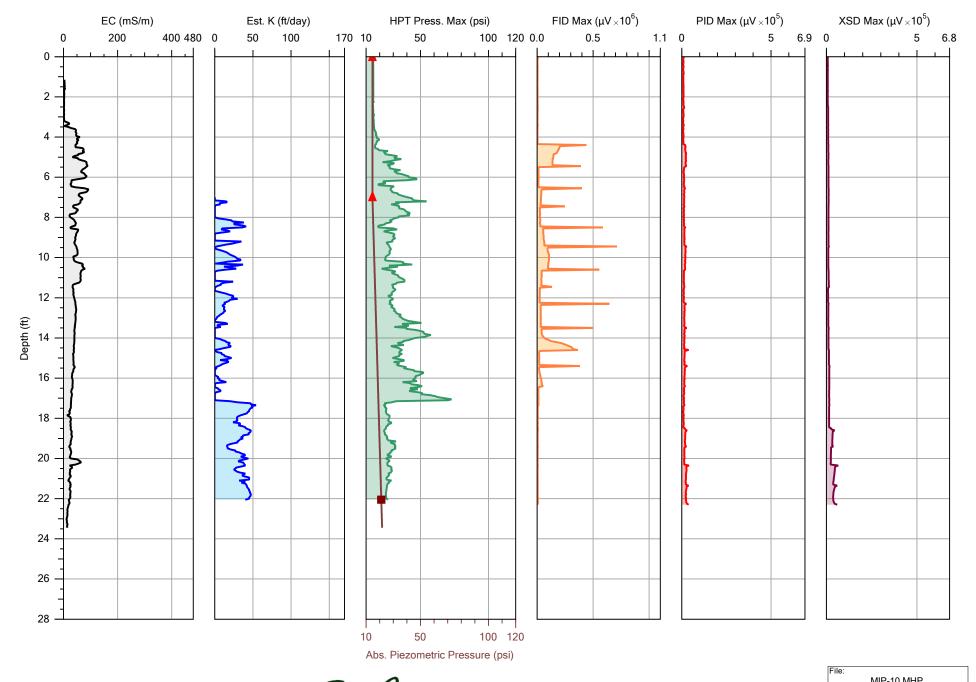

		IVIIF-UZ.IVIFF
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-02

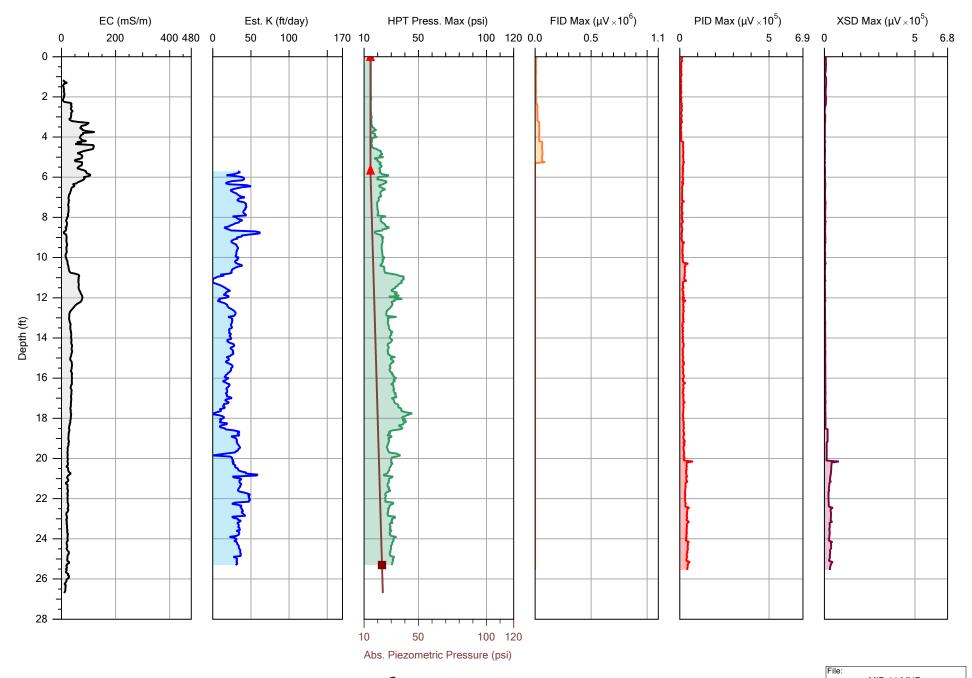

		IVIIF-US.IVITE
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-03

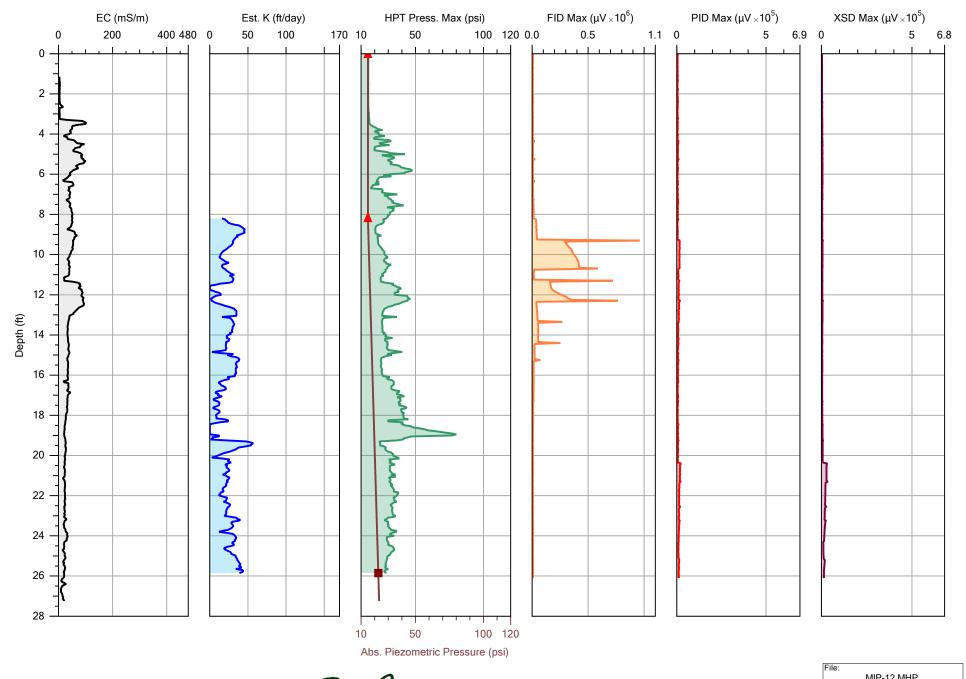

		IVIIF-U4.IVITIF
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-04


		IVIIP-US.IVITP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-05

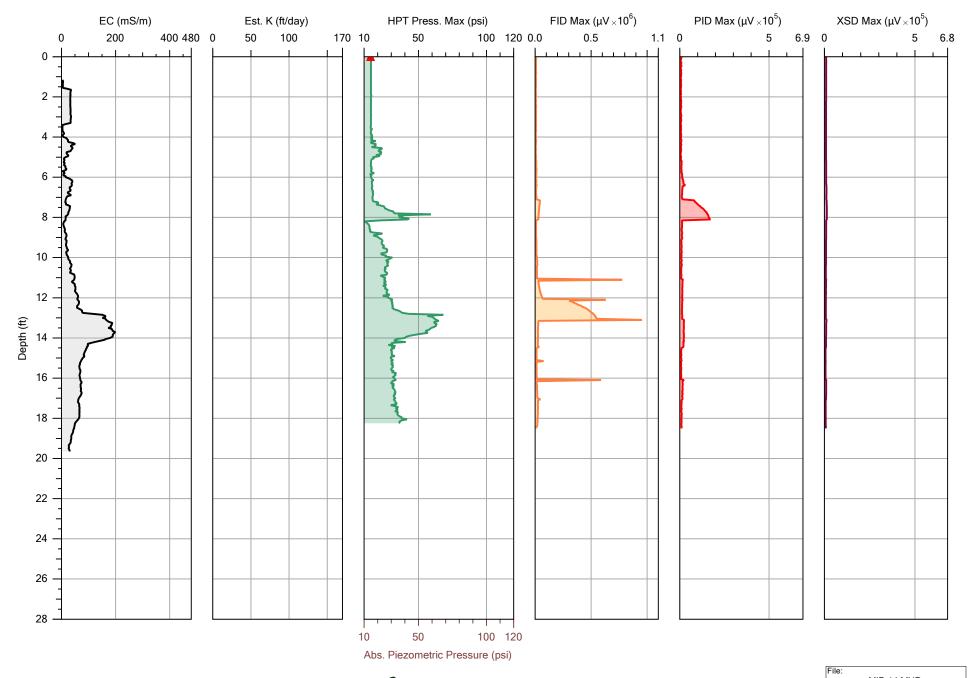

		IVIIF-UU.IVITE
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-06

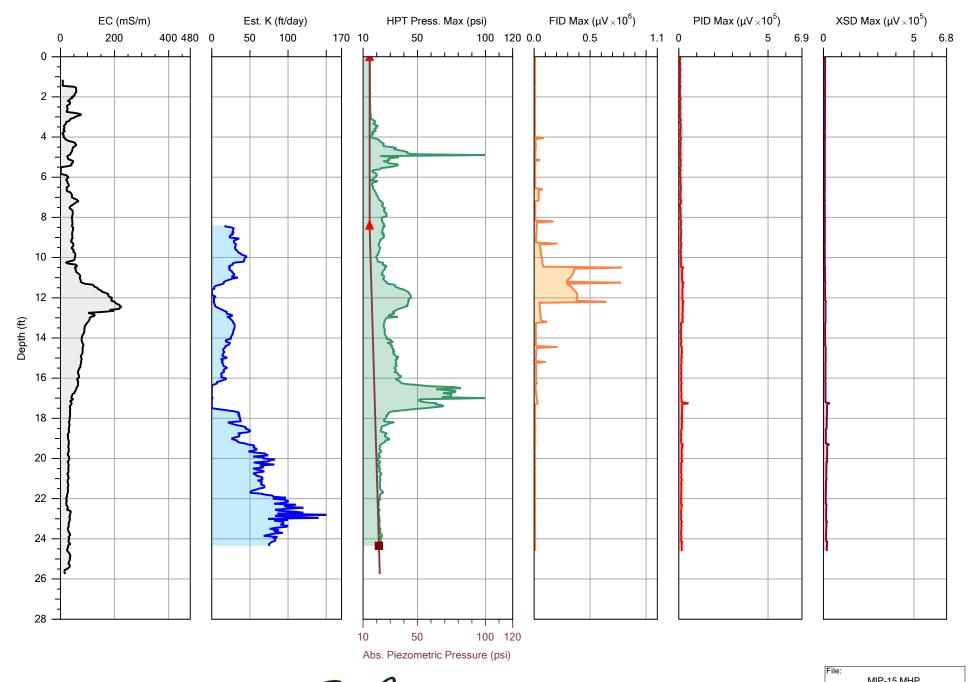

		IVIIF-U7.IVIF
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-07


		IVIIF-UO.IVITE
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-08

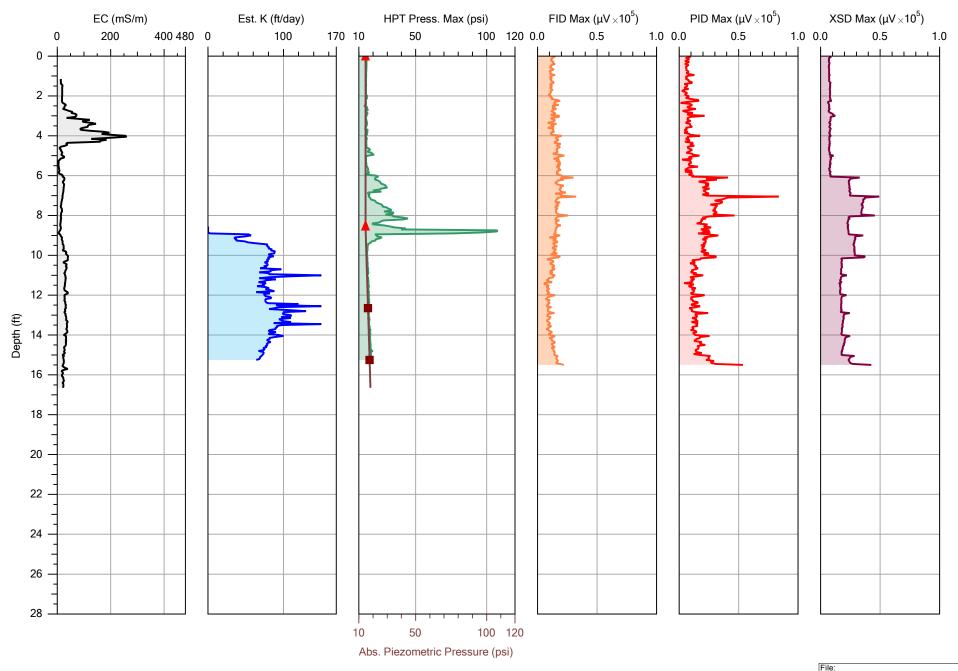

		IVIIP-09.IVITP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-09


		IVIIP-TU.IVITIP
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-10

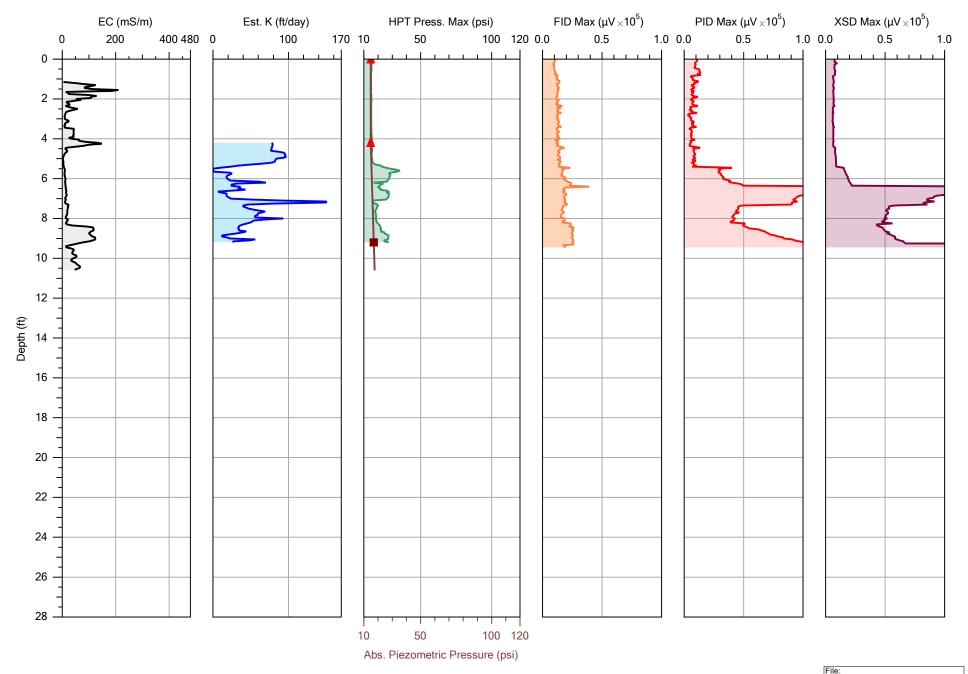

		IVIIP-11.IVITP
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-11


		IVIIP-12.IVIPP
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-12

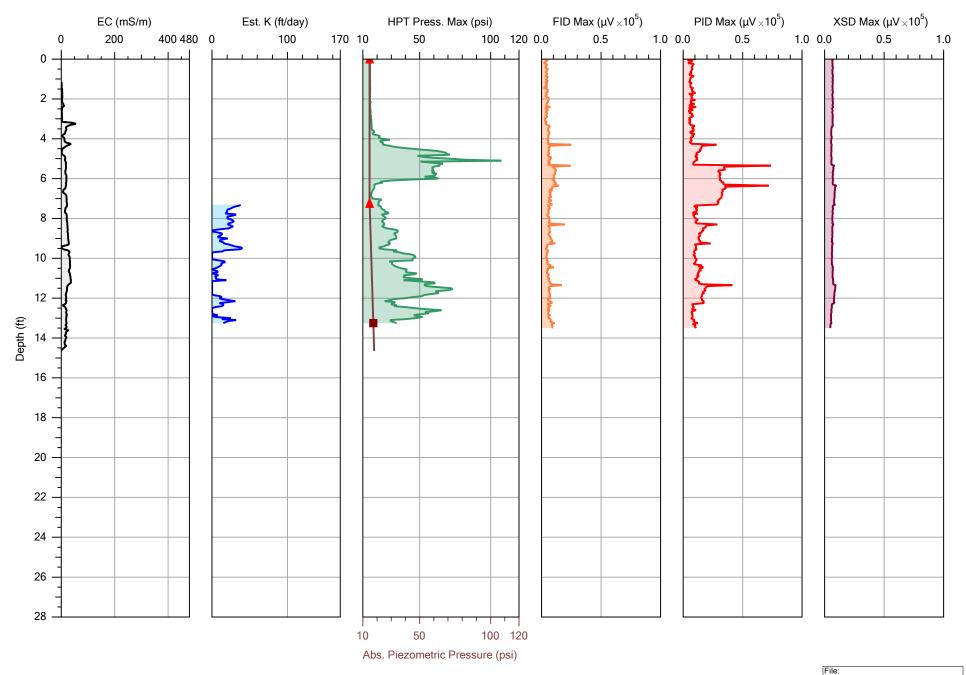
		IVIIF-13.IVIF
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-13



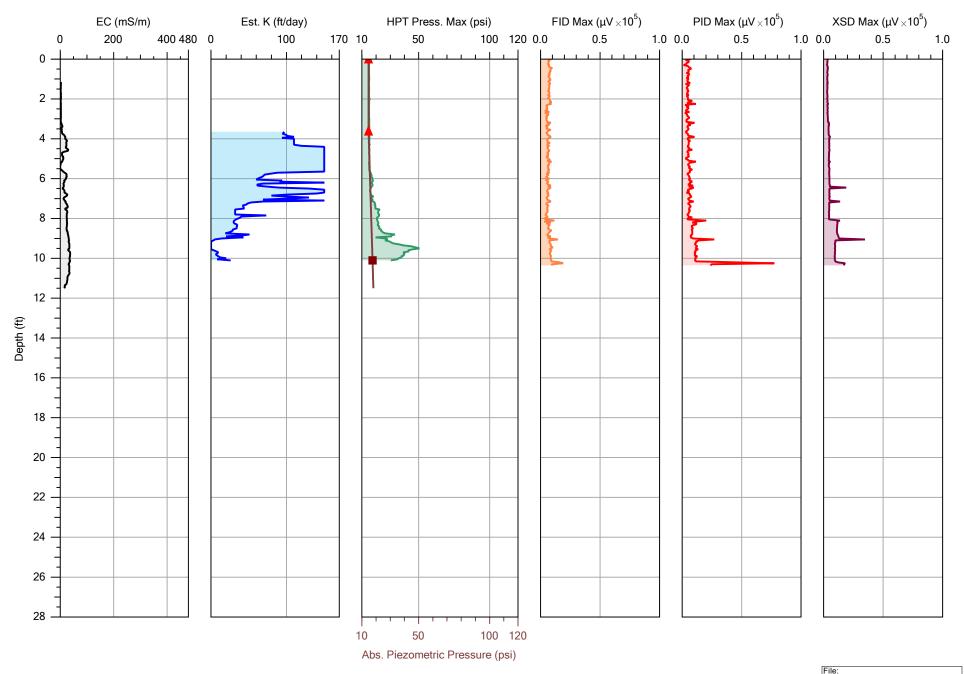
		IVIIP-14.IVITP
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-14

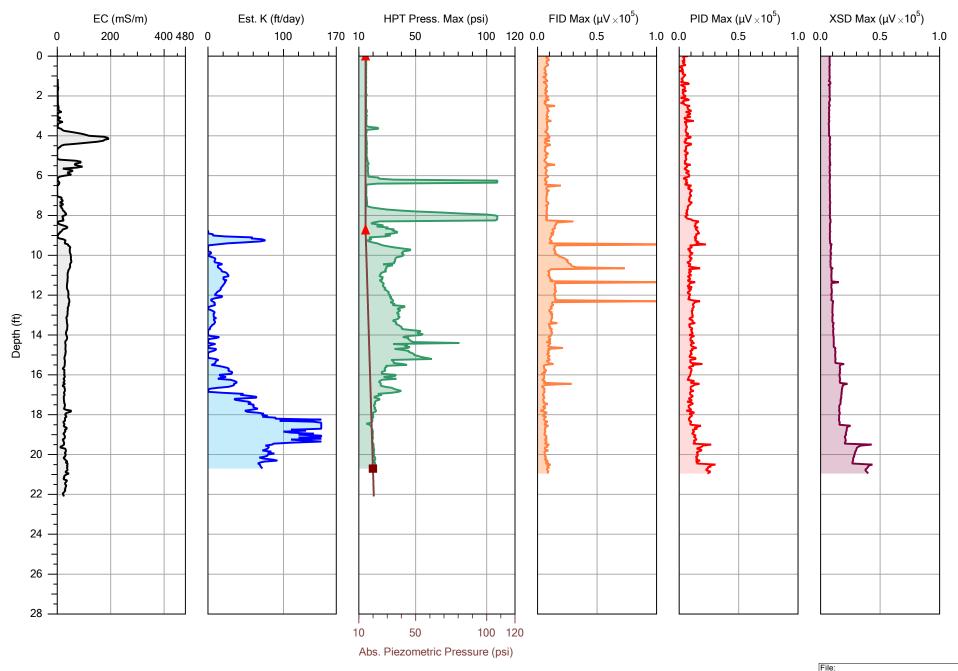


		IVIIP-15.IVIPP
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-15

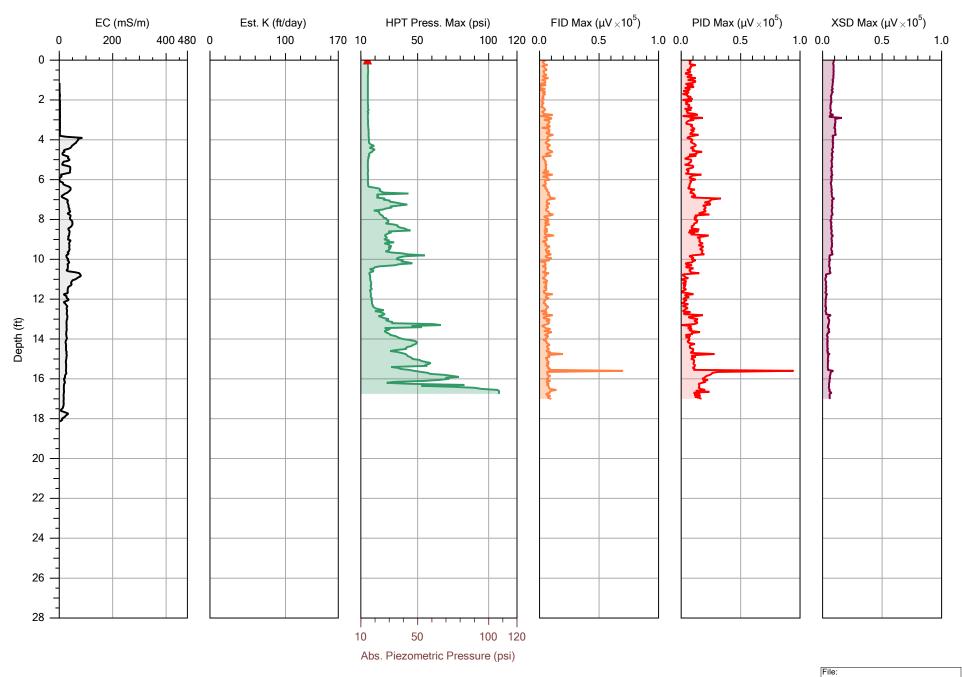

Appendix A: MiHPT Logs (Scaled Alike 1e5 uV Detector Scale)

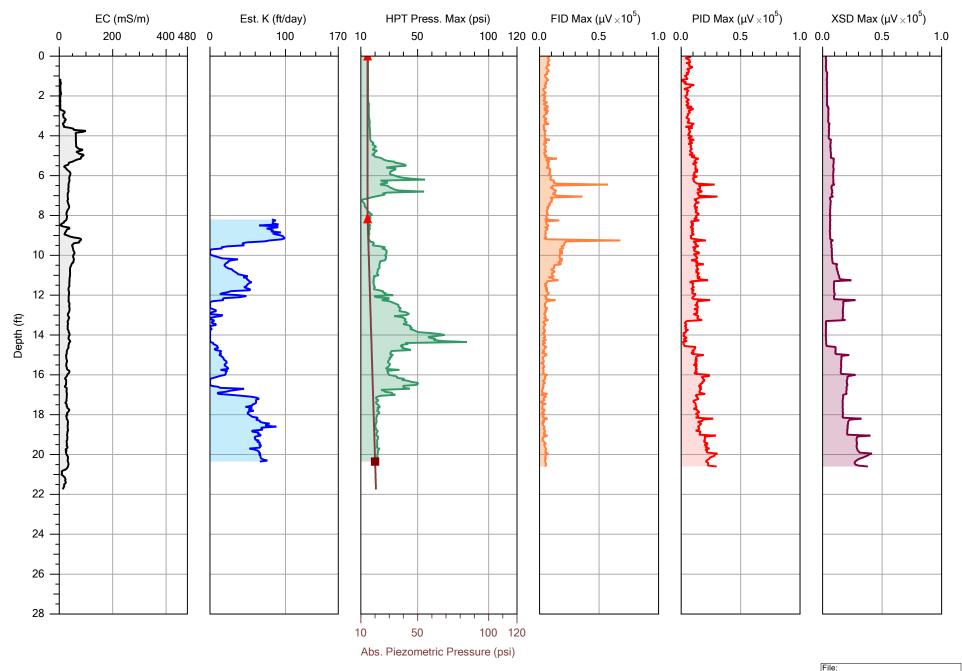
Company: Operato	r:	Date:
0000		
S2C2	TK	7/29/2021
Project ID: Client:		Location:
767 East 133rd Street	Langan	MIP-01

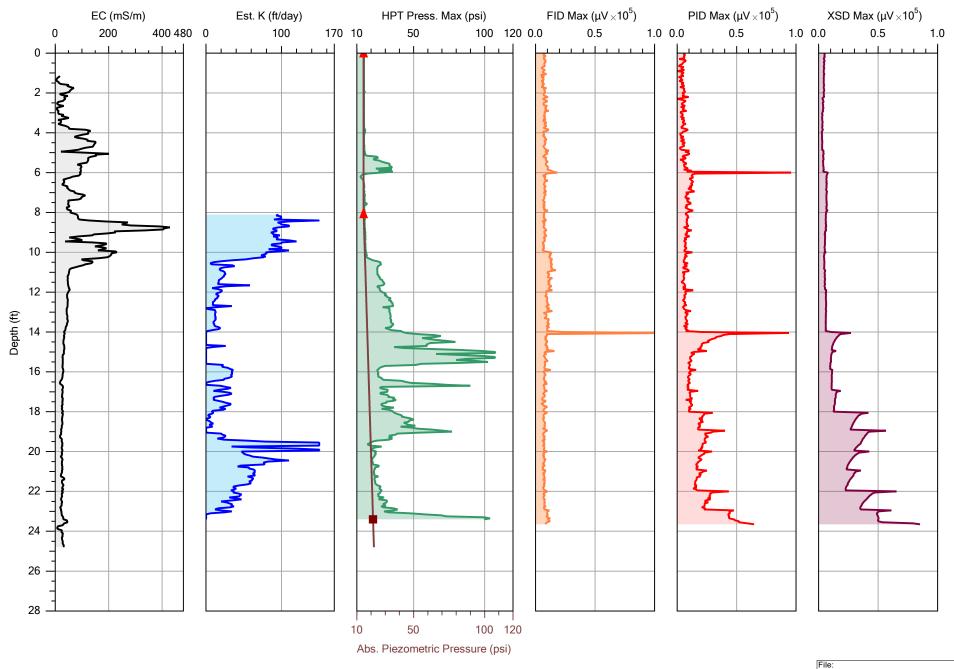

		MIP-02.MHP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-02

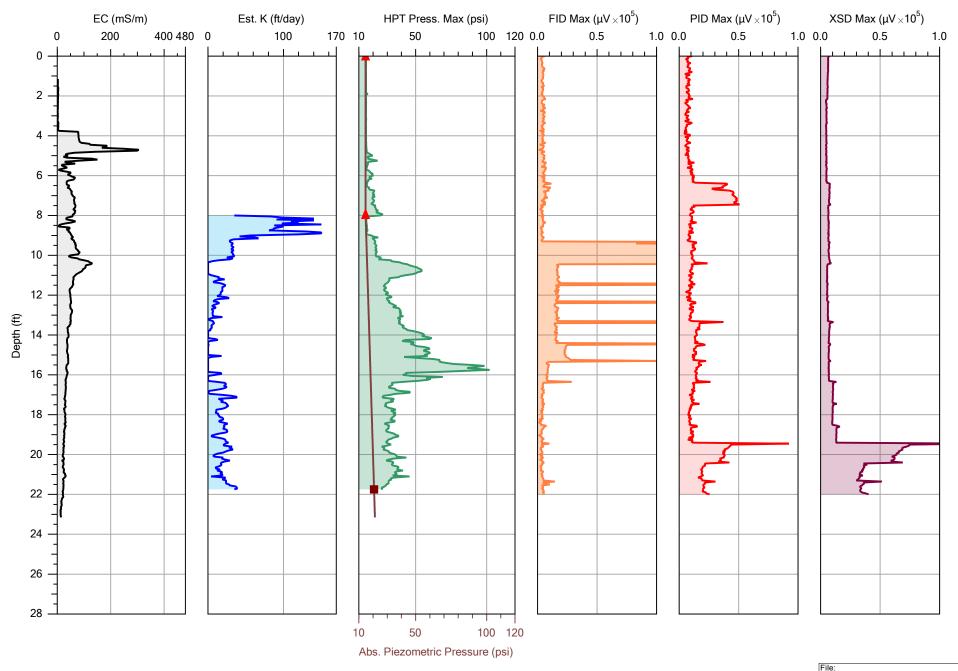

 S_2 C_2 inc.

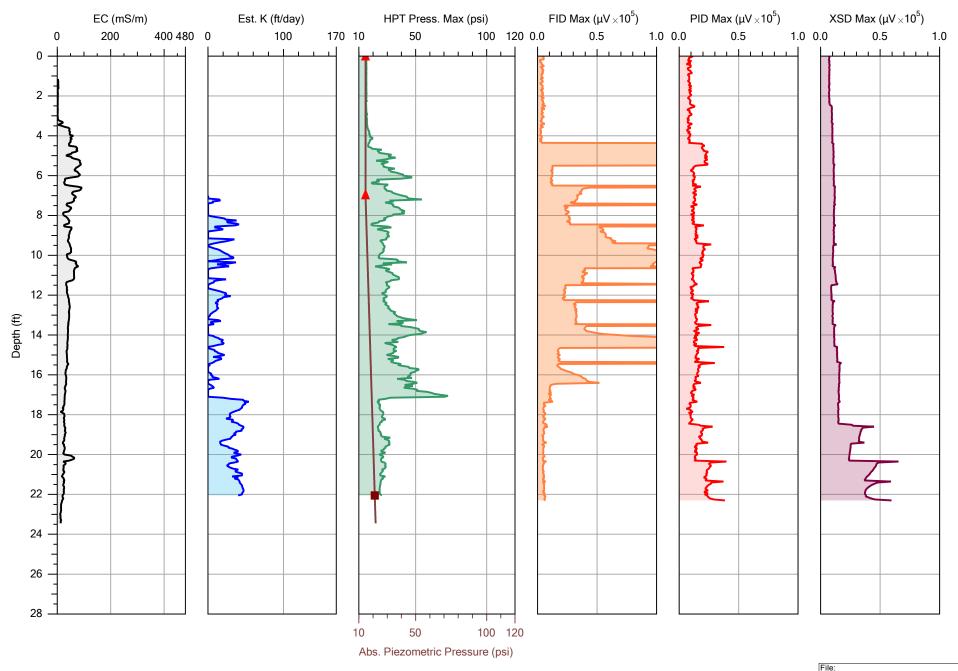
Direct-Push • Direct-Sensing • Data Visualization

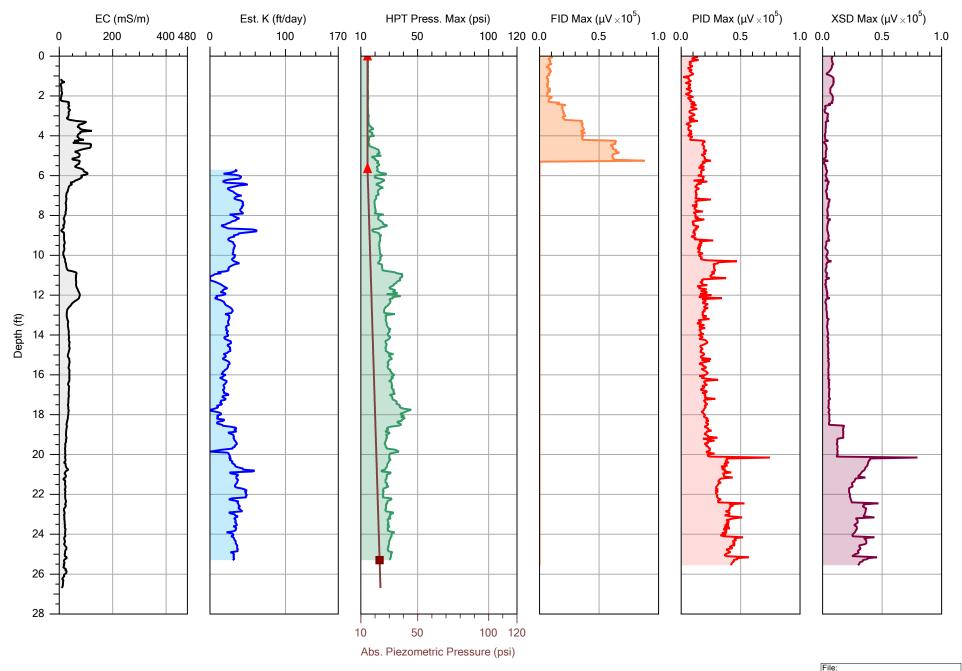

		MIP-03.MHP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-03

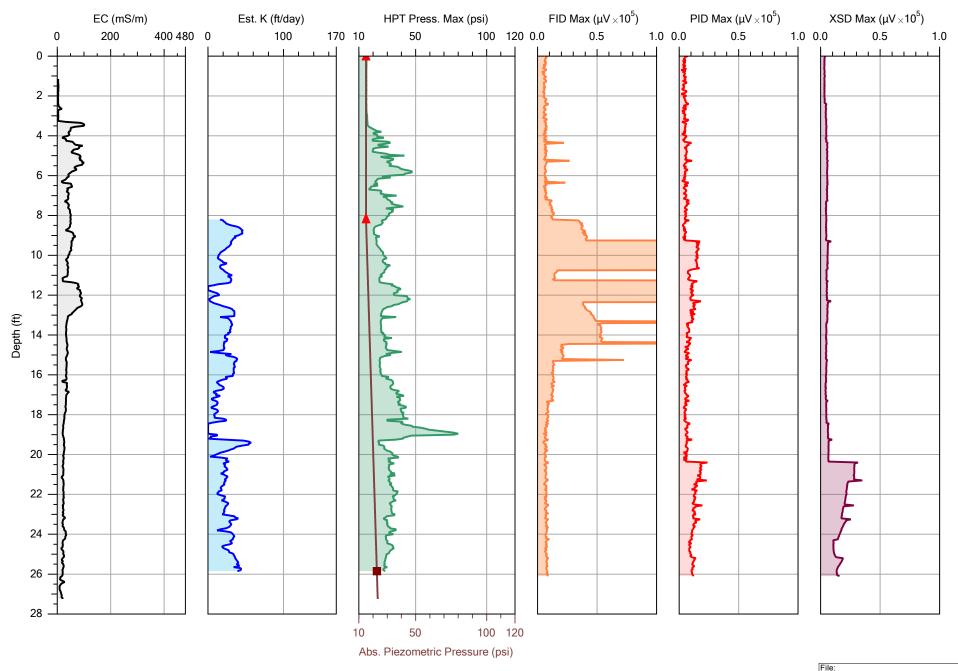

		MIP-04.MHP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-04

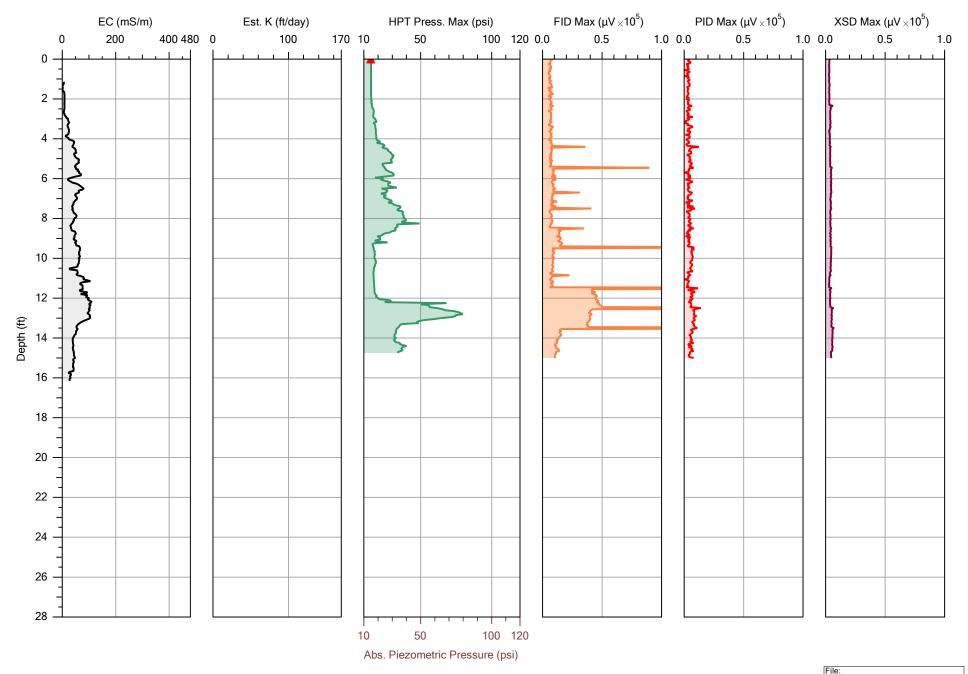

		MIP-05.MHP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-05

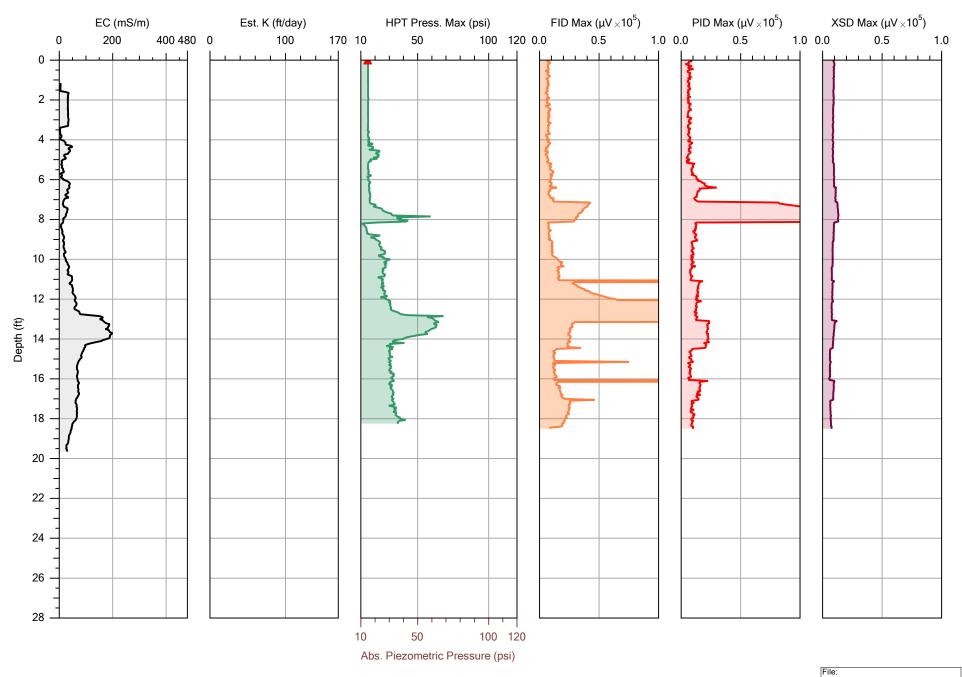

		MIP-06.MHP
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-06

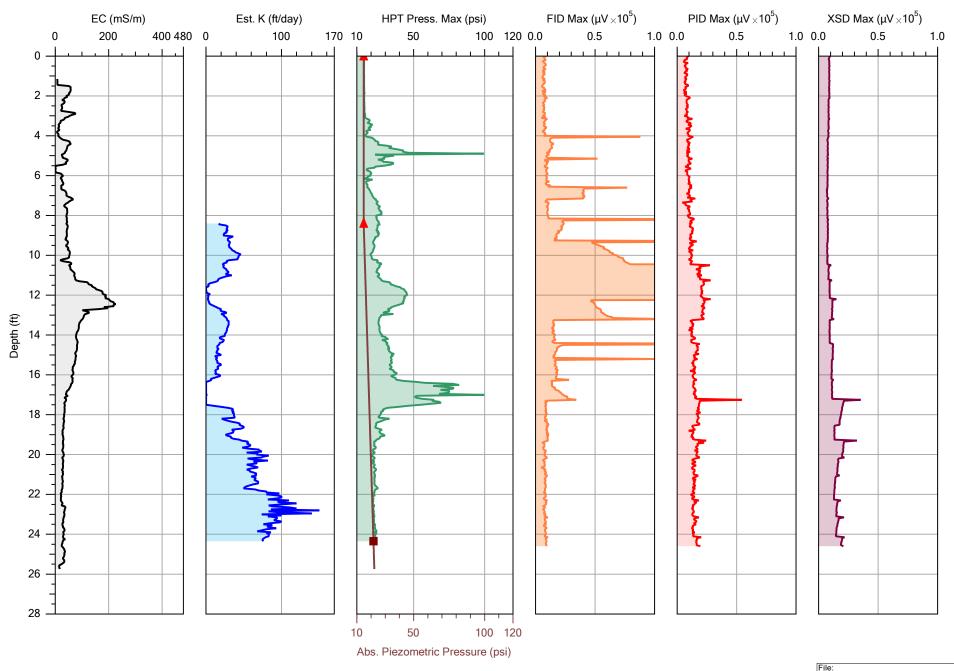

		MIP-07.MHP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-07


		MIP-08.MHP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-08


		MIP-09.MHP
Company:	Operator:	Date:
S2C2	TK	7/28/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-09


		MIP-10.MHP
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-10

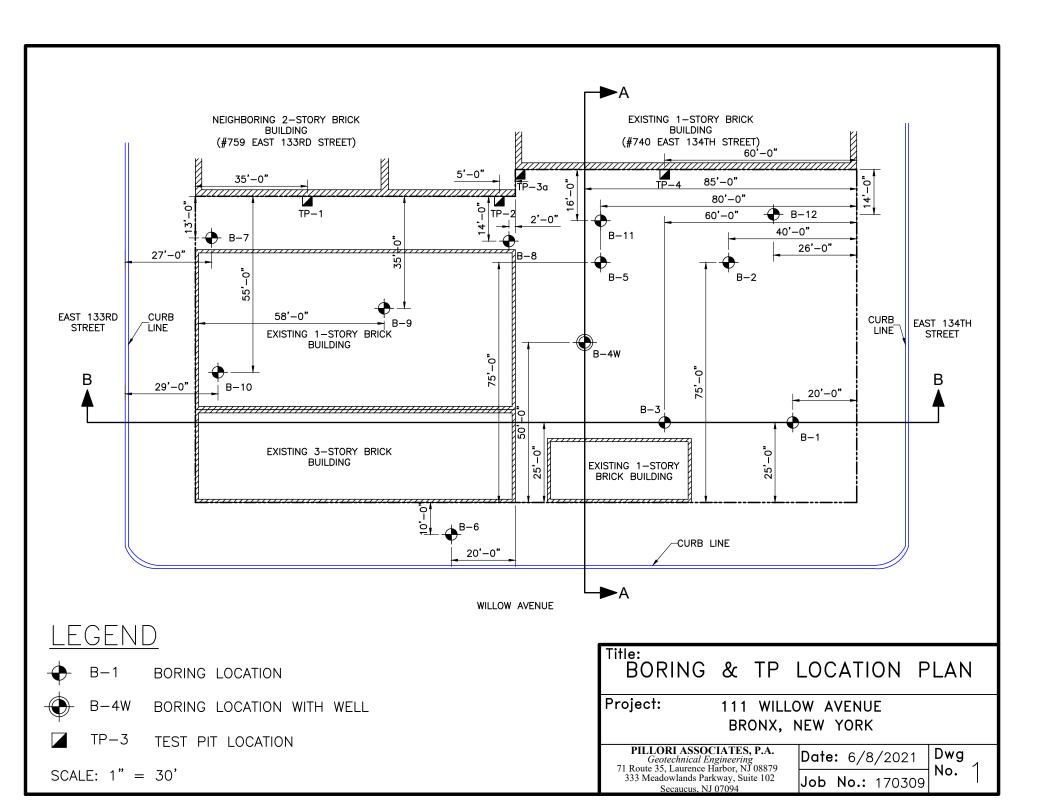

		MIP-11.MHP
Company:	Operator:	Date:
S2C2	TK	7/29/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-11

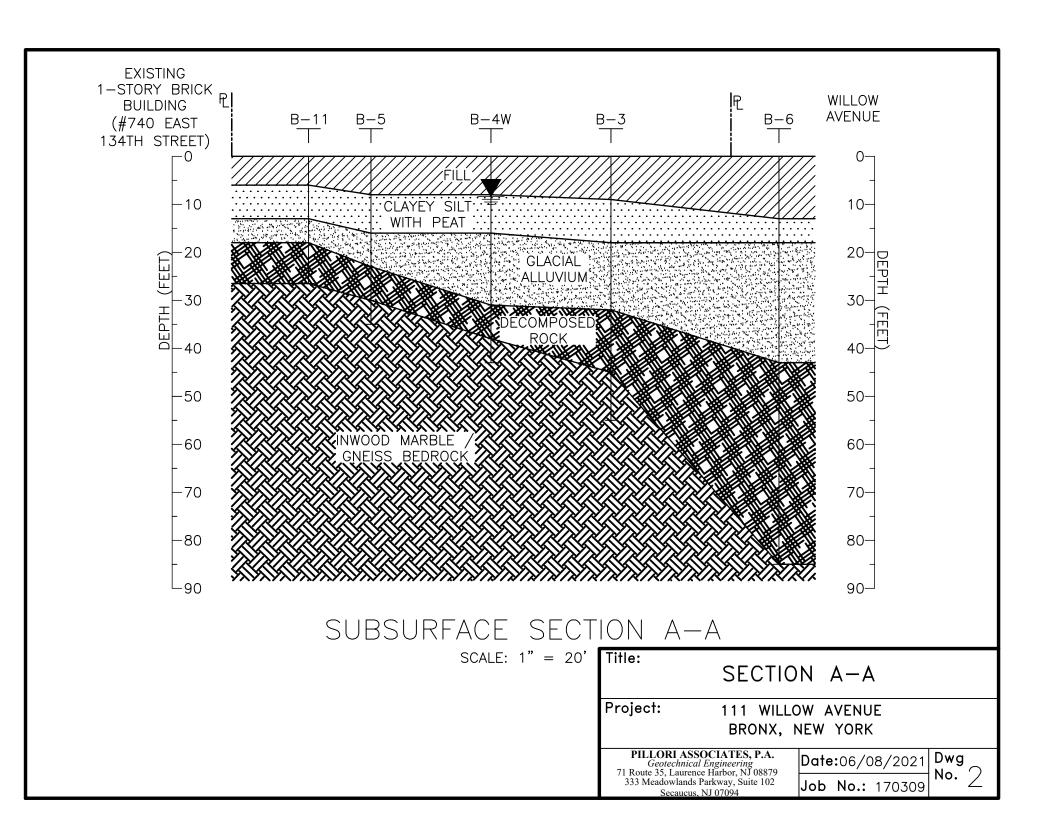

		MIP-12.MHP
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-12

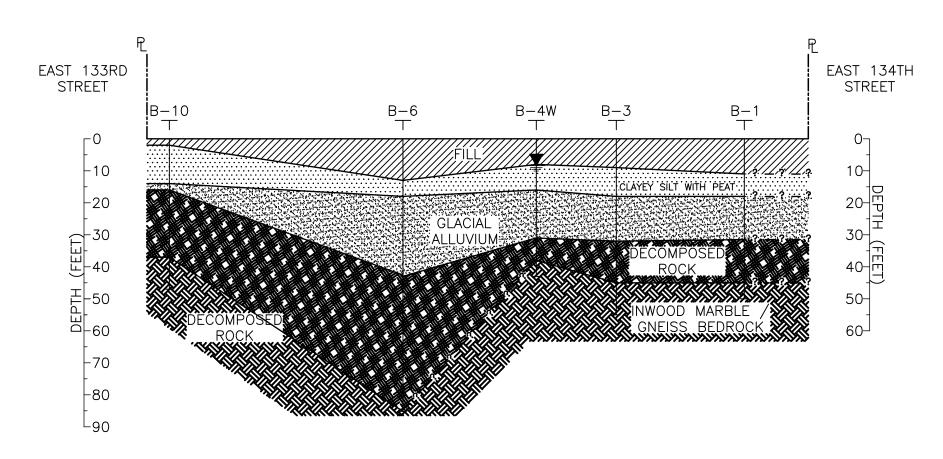
		MIP-13.MHP
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-13

		MIP-14.MHP
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-14

		MIP-15.MHP
Company:	Operator:	Date:
S2C2	TK	8/3/2021
Project ID:	Client:	Location:
767 East 133rd Street	Langan	MIP-15


APPENDIX E


Excerpt from Certified Copies of Important Maps appertaining to the 23rd and 24th Wards, City of New York, published by E. Robinson in 1888



APPENDIX F

Geotechnical boring location plan, cross-sections, and boring logs

SUBSURFACE SECTION B-B

SCALE: 1" = 30'

Title:	SECTIO	N	B-E	3	
Project: 111 WILLOW AVENUE BRONX, NEW YORK					
PILLORI ASSOCIATES, P.A. Geotechnical Engineering 71 Route 35, Laurence Harbor, NJ 08879		Date	:06/0	08/2021 170309	Dwg _
333 Meadowla	ands Parkway, Suite 102 ucus, NJ 07094	Job	No.:	170309	NO. 5

Project: 111 Willow Avenue Bronx, New York Date: 10-30-2017 to 10-31-2017 Contractor: Warren George, Inc.

Boring No.: B-1

Sheet: 1 of 1 Ground El: NA Groundwater Depth: NA

Depth	SAMPLES Number Blows / 6" Strata			COIL DECODIDATION	Classification
Feet			Strata	SOIL DESCRIPTION	<u>Depth</u> Elevation
	S-1	1-2-1-1			Elevation
5	S-2	3-1-1-1	F	Brown coarse to fine Sand w/brick, concrete fragments, & miscellaneous debris	FILL (7)
10	S-3	16-13-8-3		Gray clayey Silt, little fine Sand, with black	11'-0"
15	S-4	WOR-2-3-6	Es	Peat Gray clayey Silt, trace fine Sand, with black Peat	MH (6)
20	S-5	10-13-14-50/4"		Brown fine Sand, some Silt	SM (3b)
25	S-6	(8-2-2-2)* Disturbed	Ga	Boulder from 23.0' to 24.0' Brown coarse to fine Sand, some Silt, little medium to fine Gravel	SM
30	S-7	5-3-8-100/5"		Brown coarse to fine Sand, some Silt, some coarse to fine Gravel	SM 31'-6" ^(3b)
35 40	R-1 S-8	RUN = 60" 35.0' - 40.0' REC = 50% RQD = 0% 53-89-50/1"	DR	Decomposed Rock	(1d)
45					45'-0"
	R-2	RUN = 60" 45.0' - 50.0' REC = 50% RQD = 15%	R >	Inwood Marble Bedrock: Soft, weathered	(1d)
50				End of Boring	
		l		Duois	of No. 170200

Project No.: 170309

Project: 111 Willow Avenue Bronx, New York Date: 10/31/2017 to 11/01/2017

Contractor: Warren George, Inc.

Boring No.: B-2

Sheet: 1 of 1 Ground El: NA

Groundwater Depth: NA

Depth Feet	Nussals	SAMPLES Blows / 6"	Cturt	SOIL DESCRIPTION	Classification <u>Depth</u>
reet	Number S-1	7-5-8-5	Strata	Brown coarse to fine Sand, little Silt, trace fine	Elevation FILL
5	S-2	4-7-11-9		Gravel with brick fragments	(7)
10	S-3	26-10-7-8	Es	Gray-brown clayey Silt, little fine Sand	ML (5b)
15	UT-1	PUSH = 24"			17'-0"
20	S-4	9-22-10-12	GA	Brown coarse to fine Sand, trace Silt	SW (3a) 20'-6"
25	S-5 S-6	80-50/0" 80-100/2"	Rs/	Brown medium to fine Sand, trace Silt with decomposed rock fragments	GP (2a)
30				End of Boring	28'-6"
35					
40					
50					
				huisal Eusinssuins Proje	ot No · 170300

Project: 111 Willow Avenue Bronx, New York Date: 11-01-2017 to 11-02-2017

Contractor: Warren George, Inc.

Boring No.: B-3

Sheet: 1 of 2

Ground El: NA

Depth		SAMPLES		COIL DECODINGION	Classification	1
Feet	Number	Blows / 6"	Strata	SOIL DESCRIPTION	<u>Depth</u> Elevation	
			///		Elevation	
	S-1	7-7-5-4				
		, , , .				
5	S-2	6-2-5-11	\mathbf{F}	Gray coarse to fine Sand, trace Silt, trace fine	FILL	
	S-2	0-2-3-11		Gravel, with asphalt fragments		
	S-3	1-2-2-1		, 1 8	9'-0" (7)	
					9-0	
10	S-4	2-3-4-4				
	3-4	2-3-4-4				
			Tra	Gray clayey Silt, little fine Sand, with black	MH	
			Es:	Peat	(6)	
15	UT-1	PUSH = 24"				
		1 0 0 11 2 1			101.011	
	S-5	5-8-13-15			18'-0"	
20	_				SM _	
20	S-6	(7-3-3-4)*		Brown coarse to fine Sand, little Silt	(3b)	
		Disturbed			23'-0"	
					23-0	
25			GA		sw -	
	S-7	(4-5-6-8)* Disturbed		Brown coarse to fine Sand, trace Silt, trace fine	(3b)	
		Disturbed		Gravel	28'-0"	
				Brown coarse to fine Sand, trace Silt, trace fine		
30				Gravel	$\frac{SW}{(3a)}$	
	S-8	5-16-51-100/4"		Graver	32'-0"	
			XXX		52 -0	
			XX XX			
35	_				_	
		RUN = 60"				
	R-1	35.0' - 40.0' REC = 100%	X///X	D 1D 1	(1d)	
		RQD = 0%	DR	Decomposed Rock	(10)	
40			XXX		-	
	S-8	13-33-63-88				
			XXX.			
			XXX		45' 0"	
45	7	DIDI (0"			45'-0"	
		RUN = 60" 45.0' - 50.0'				
	R-2	REC = 40%		Inwood Marble Bedrock: Soft, weathered	(1d)	
		RQD = 15%			50'-0"	
50	4					
					(1c)	

Project: 111 Willow Avenue Bronx, New York Date: 11-01-2017 to 11-02-2017

Contractor: Warren George, Inc.

Boring No.: B-3

Sheet: 2 of 2 Ground El: NA

Contract	or. warren George, mc.		······································	Glouidwater Deptil. NA		
Depth Feet	Number	SAMPLES Blows / 6"	Strata	SOIL DESCRIPTION	Classification <u>Depth</u> Elevation	
1.661	Number		Strata		Elevation	
	R-3	RUN = 60" 50.0' - 55.0' REC = 92% RQD = 36%	R	Gneiss Bedrock: intermediate Hard, slightly weathered, mediumly jointed	(1c)	
55	11			End of Boring	33'-0"	
				End of Borning		
]					
60						
]					
					_	
65]					
]					
	-				_	
70						
75						
80						
	-				_	
	-					
85]					
	-				_	
90						
95]					
93						
]					
	.					
100						
					24 No. 170200	

Project: 111 Willow Avenue Bronx, New York Date: 11-02-2017 to 11-03-2017

Contractor: Warren George, Inc.

Boring No.: B-4W

Sheet: 1 of 1

Ground El: NA

Groundwater Depth: 8'-5"

Depth		SAMPLES		COIL DECODIDATION	Classification
Feet	Number	Blows / 6"	Strata	SOIL DESCRIPTION	<u>Depth</u> Elevation
5	S-1	11-12-15-10	F	Gray coarse to fine Sand, trace Silt, trace fine Gravel, with brick fragments	FILL (7)
10	S-2	8-6-4-3			8'-0"
	S-3	7-4-5-8		Gray clayey Silt, and fine Sand, with black Peat	MH (6)
15	S-4	4-4-7-8	Es		16'-0"
20	S-5	WOH-WOH-2-3* Disturbed		Brown medium to fine Silt, some fine Sand	SM
25	S-6	(4-2-3-4)* Disturbed	GA	Brown coarse to fine Sand, little Silt, trace fine Gravel	SM
30	S-7	7-11-78-50/0"		Brown coarse to fine Sand, trace Silt, little fine Gravel	31'-0"(3b)
35	S-8	28-100/3"	DR	Decomposed Rock	(1d)
40	R-2	RUN = 60" 38.0' - 43.0' REC = 73% RQD = 50%	R	Gneiss Bedrock: intermediate Hard, slightly weathered, mediumly jointed	(1c)
	4	·	<i>Y</i> // <i>Y</i>	End of Boring	43'-0"
45					
50				hnical Enginooring Proje	ect No · 170309

Project: 111 Willow Avenue Bronx, New York Date: 11-03-2017

Contractor: Warren George, Inc.

Boring No.: B-5

Sheet: 1 of 1

Ground El: NA

Depth		SAMPLES		SOIL DESCRIPTION	Classification Depth
Feet	Number	Blows / 6"	Strata	SOIL DESCRIPTION	Elevation
	S-1	6-9-16-13	F	Gray coarse to fine Sand, trace Silt, trace fine	FILL
5	S-2	4-3-3-2		Gravel, with asphalt fragments	8'-0"
10	S-3	3-1-1-2	Es	Gray clayey Silt, little fine Sand, with black Peat	MH (6)
15	S-4	(7-10-5-3)* Disturbed			16'-0"
20	S-5	13-8-13-58	GA	Brown coarse to fine Sand, trace Silt, trace fine Gravel	SW (3b) 23'-0"
25	S-6	100/4"	Rs/ DR	Brown coarse to fine Sand, trace Silt, trace fine Gravel with decomposed rock fragments	
30	R-1	RUN = 60" 30.0' - 25.0'	R	Gneiss Bedrock: medium Hard, unweathered,	30'-0"
35		REC = 100% RQD = 83%		closely jointed End of Boring	35'-0"
40					
45					
50					
		MATEC DA	Castas		et No · 170300

Project: 111 Willow Avenue Bronx, New York Date: 11-06-2017 to 11-07-2017

Contractor: Warren George, Inc.

Boring No.: B-6

Sheet: 1 of 2

Ground El: NA Groundwater Depth: NA

Depth		SAMPLES		COIL DECODIDATION	Classification
Feet	Number	Blows / 6"	Strata	SOIL DESCRIPTION	<u>Depth</u> Elevation
	S-1	13-14-8-7			
5	S-2	3-2-90-27	F	Gray coarse to fine Sand, trace Silt, trace fine Gravel, with asphalt fragments	FILL (7)
10	S-3				13'-0"
15	S-4	2-2-7-11	Es :	Gray clayey Silt, little fine Sand	ML (6)
20	S-5	17-28-28-17			
25	S-6	15-16-22-21			
30	S-7	15-29-44-26	Ga	Brown coarse to fine Sand, little Silt, little coarse to fine Gravel	SM (3a)
35	S-8	13-15-19-22			
40	S-9	20-31-24-36			43'-0"
45	S-10	38-37-30-38	DR	Decomposed Rock	(1d)
50	S-11	39-100/4"		Ducie	

Project: 111 Willow Avenue Bronx, New York Date: 11-06-2017 to 11-07-2017

Contractor: Warren George, Inc.

Boring No.: B-6

Sheet: 2 of 2 Ground El: NA

Depth		SAMPLES		COIL DECODIDATION	Classification
Feet	Number	Blows / 6"	Strata	SOIL DESCRIPTION	<u>Depth</u> Elevation
55	S-11 S-12	39-100/4"			
65	S-13	100/2"	DR	Decomposed Rock	(1d)
75	S-14	100/1"			
85	R-1 S-15	RUN = 60" 80.0' - 85.0' REC = 0% RQD = 0% 100/2"			85'-2"
90				End of Boring	
95					
100				huisal Eusin sering Proje	at No : 170300

Project: 111 Willow Avenue Bronx, New York Date: 5-26-2021 to 5-27-2021 Contractor: Warren George, Inc.

Boring No.: B-7

Sheet: 1 of 1 Ground El: NA

Groundwater Depth: NA

Depth		SAMPLES		SOIL DESCRIPTION	Classification Depth	n
Feet	Number	Blows / 6"	Strata	SOIL DESCRIPTION	Elevation	
	S-1	1-2-50-25		6" Concrete Slab		
	S-2	6-8-17-60	F	Coarse to fine Gravel and coarse to fine Sand with concrete and brick fragments and residual	FILL (7)	
5	S-3	10-100/5"		soil	_	-
		10 100/6			7'-0"	
	S-4	2-2-3-4	Es	Tan brown Silt and fine Sand	MH	
10					10'-0" (6)	_
	S-5	3-4-5-9		Brown coarse to fine Sand, some Silt, little		
	-			medium to fine Gravel	CM	
15			GA		SM (6) -	
	S-6	7-3-4-6		No Pagayary	(0)	
				No Recovery	18'-0"	
20		/			18'-0"	
20	S-7	5-50/3"	ND 2		GW	
			X D K	No Recovery	(2a)	
_	-				25'-0"	
25		RUN = 60" 25'-30'				
	R-1	REC = 79%	R	Fordham Gneiss bedrock, hard to soft, highly weathered, medium to closely jointed	(1c)	
		RQD = 18%		weatherea, mearain to closely jointed	30'-0"	
30					30-0	
	-					
]					
35	-				_	-
]					
]					
40	-				_	
45	1				_	
	-					
50]				_	
50]				_	
				huisal Enginessing Proje	ot No • 17030	

Project: 111 Willow Avenue Bronx, New York Date: 5-28-2021 to 6-1-2021

Contractor: Warren George, Inc.

Boring No.: B-8

Sheet: 1 of 1 Ground El: NA

Groundwater Depth: NA

Depth		SAMPLES		COIL DECODINGION	Classification
Feet	Number	Blows / 6"	Strata	SOIL DESCRIPTION	<u>Depth</u> Elevation
	S-1 S-2	8-7-5-7 9-18-12-5	F	6" Concrete Slab Gray coarse to fine Sand and medium to fine Gravel with wood and concrete fragments	FILL (7) -
5	S-3 S-4	7-4-5-8 7-7-4-3	 - E s -	Brown coarse to fine Sand, some Silt, little medium to fine Gravel	MH
10	S-5	1-1-4-4		Gray Silt, some fine Sand with trace black peat roots	(6)
15	S-6	6-6-7-7	GA	Tan coarse to fine Sand, little medium to fine Gravel, little Silt	SM (3b)
20	S-7	10-51-100/5"			21'-6"
25	S-8	100/2"	DR	Decomposed Gneiss bedrock	GW (2a) –
30	R-1	RUN = 60" 27'-32' REC = 88% RQD = 15%		Fordham Gneiss bedrock, hard, highly weathered, closely jointed	(1c)
35	R-2	RUN = 60" 32'-37' REC = 98% RQD = 92%	R	Fordham Gneiss bedrock, hard, weathered, widely jointed	(1a)
40					
45					
50				hnical Engineering Proje	ct No · 170309

Project: 111 Willow Avenue Bronx, New York Date: 5-27-2021 to 5-28-2021

Contractor: Warren George, Inc.

Boring No.: B-9

Sheet: 1 of 1 Ground El: NA

Contractor: Warren George, Inc.			· · · · · · · · · · · · · · · · · · ·	Glossification			
Depth Feet	Number	SAMPLES Blows / 6"	Strata	SOIL DESCRIPTION	Classification Depth		
rect			Suata		Elevation		
	S-1	4-5-50/0"	F	Gray brown coarse to fine Sand, some Silt, little medium to fine Gravel with brick fragments	FILL (7)		
5	S-2	6-7-5-5		mediani to fine Graver with offer fragments	6'-0"		
	S-3 S-4	7-7-6-8 5-3-3-3		Black gray Silt, some medium to fine Sand, little medium to fine Gravel, trace peat roots			
10			E s:	Brown gray Silt, little coarse to fine Sand, little fine Gravel Cored boulder 10'-13'	MH (6)		
15	S-5	5-7-7-12		Gray fine Sand and Silt	18'-0"		
20	S-6	14-13-8-12	GA	Brown fine Sand, some Silt Brown medium to fine Gravel, some coarse to	SM (3b)		
25	S-7	100/4"	DR	fine Sand, trace Silt Residual soil	GW (2a)		
30	S-8	100/2"		No recovery	31'-0"		
35	R-1	RUN = 60" 31'-36' REC = 100% RQD = 37%	R	Inwood Marble bedrock, medium hard, weathered, medium to closely jointed	(1c)		
					36-0"		
40							
45							
50							
		_			of No . 170200		

Project: 111 Willow Avenue Bronx, New York Date: 6-1-2021 to 6-2-2021

Contractor: Warren George, Inc.

Boring No.: B-10

Sheet: 1 of 1 Ground El: NA

Depth		SAMPLES		Groundwater Dep	Classification
Feet	Number	Blows / 6"	Strata	SOIL DESCRIPTION	<u>Depth</u> Elevation
	S-1	5-6-6-5	/F /	Tan coarse to fine Sand, little Silt, little medium to fine Gravel with brick fragments	FILL
	S-2	3-4-6-6		Tan coarse to fine Sand, some Silt, little coarse to fine Gravel	
5	S-3	8-8-8-9		Gray medium to fine Sand, some Silt, trace fine Gravel	
			Es	Graver	MH (6)
10	S-4	1-1-3-2		Gray medium to fine Sand, some Silt with peat roots	
			• • • • • •		14'-0"
15	S-5	4-3-4-55	GA	Tan coarse to fine Sand, little Silt, some medium to fine Gravel	SM 16'-0"(3b)
20 —	S-6	57-100/4"		Drilled boulder 17'-20'	
25	S-7	22-100/3"			GW
30	S-8	42-79-100/3"	DR	Residual soil	(2a)
35	S-9	100/2"			37'-0"
40	R-1	RUN = 60" 37'-42' REC = 55% RQD = 28%		Inwood Marble bedrock, medium hard, weathered, medium to closely jointed	(1c)
45	R-2	RUN = 60" 42'-47' REC = 100% RQD = 88%	R	Inwood Marble bedrock, hard, slightly weathered, widely jointed	(1a) 47'-0"
50					

Project: 111 Willow Avenue Bronx, New York Date: 6-3-2021

Contractor: Warren George, Inc.

Boring No.: B-11

Sheet: 1 of 1 Ground El: NA

Groundwater Depth: NA

Depth		SAMPLES		Groundwater Dep	Classification	1
Feet	Number	Blows / 6"	Strata	SOIL DESCRIPTION	<u>Depth</u> Elevation	
	S-1	1-2-3-2		Brown coarse to fine Sand, little Silt, little	-	
	S-2	2-2-9-7	F	medium to fine Gravel with asphalt fragments	FILL (7)	
5	S-3	2-2-2-1		Tan coarse to fine Sand and Silt	6'-0"	
	S-4	2-1-2-1				
10	S-5	1-1-2-6	Es	Gray Silt and fine Sand, trace organic roots	MH (6)	
15	S-6	11-7-3-3	GA	Tan coarse to fine Sand, little SIlt, little medium to fine Gravel		
20	S-7	100/4"	DR	Decomposed rock	GW	
25	S-7	100/2"			(2a) 	
30					_	
35					_	
40					_	
45						
50					- N. 150200	

Project: 111 Willow Avenue Bronx, New York Date: 6-2-2021 to 6-3-2021

Contractor: Warren George, Inc.

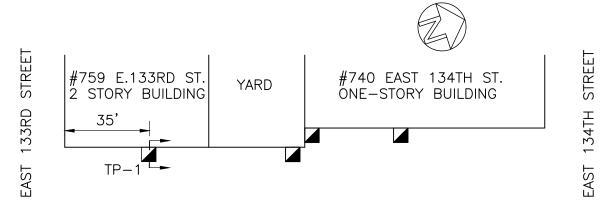
Boring No.: B-12

Sheet: 1 of 1 Ground El: NA

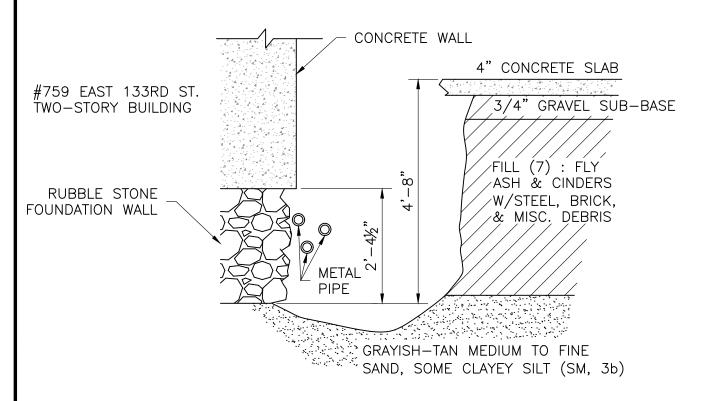
Depth SAMPLES				Classification		
Feet	Number	Blows / 6"	Strata	SOIL DESCRIPTION	<u>Depth</u> Elevation	on
5	S-1 S-2 S-3	10-6-4-7 7-2-3-5 6-4-3-3	F	6" Asphalt Gray coarse to fine Sand, little Silt, fine Gravel with concrete fragments Gray coarse to fine Sand, trace Silt, some medium to fine Gravel	FILL (7)	
10	S-4	3-3-5-7		Brown medium to fine Sand, little Silt, little medium to fine Gravel	SM (6)	
15	S-5 S-6	3-3-5-11	GA	Tan coarse to fine Sand, some Silt, trace fine Gravel	13'-0" SM 17'-0" (3b)	
20	S-7	100/1"	DR	Decomposed Rock	GW (2a)	
25	S-7	61-100/2" RUN = 60"			27'-0"	
30	R-1	25'-30' REC = 79% RQD = 18%	R	Forhdam Gneiss bedrock, hard to soft, weathered, closely to widely jointed	(1c) 32'-0"	
35						
40						
45						
50				hnical Engineering Proje	ect No · 170	

Project: 767 East 133rd Street Bronx, New York

Date: 5/10/2021


Contractor: Demolition Contractor

Test Pit No.: TP-1


Sheet: 1 of 1

Ground El: 0.0

Groundwater Depth: NA

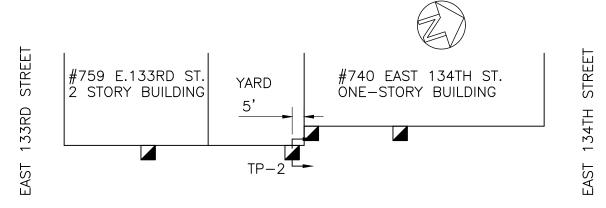
LOCATION PLAN SCALE: NTS

SECTION LOOKING EAST

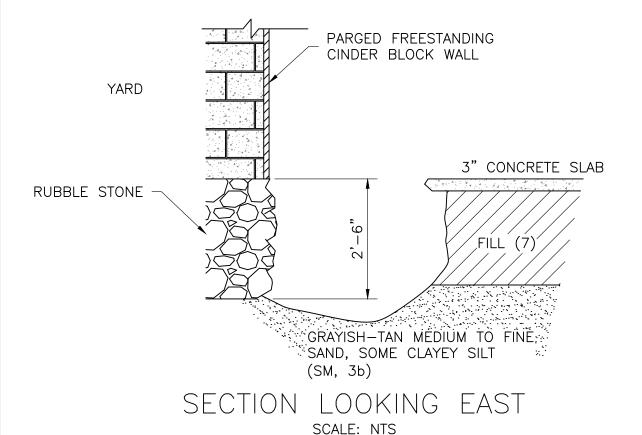
SCALE: NTS

Project: 767 East 133rd Street Bronx, New York

Date: 5/10/2021

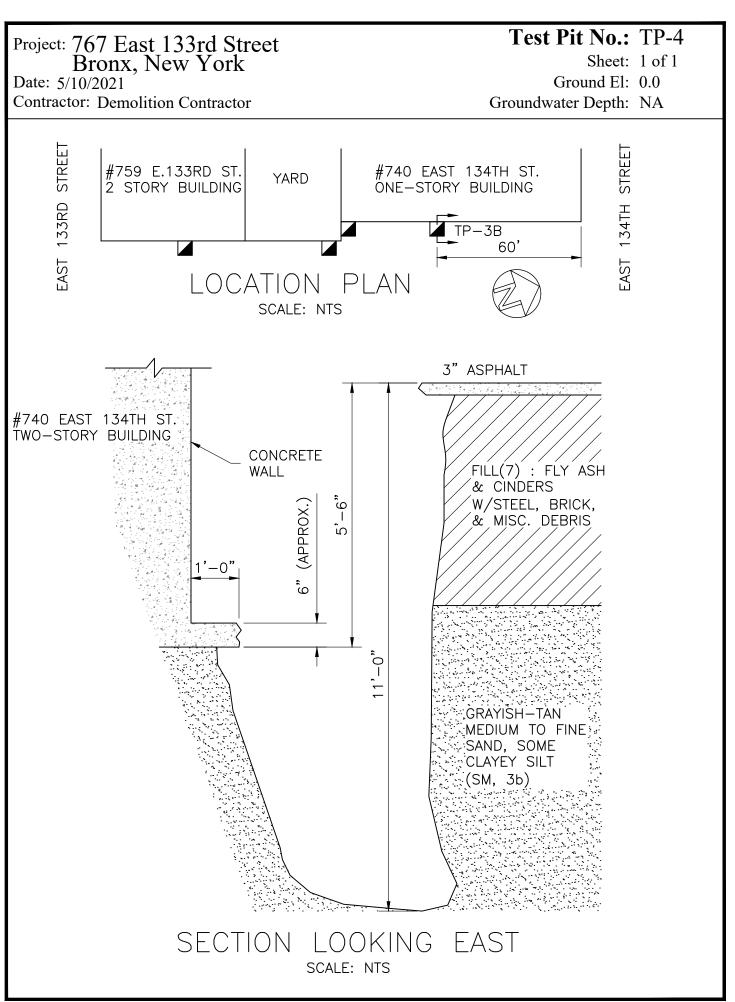

Contractor: Demolition Contractor

Test Pit No.: TP-2


Sheet: 1 of 1

Ground El: 0.0

Groundwater Depth: NA



LOCATION PLAN SCALE: NTS

Test Pit No.: TP-3a Project: 767 East 133rd Street Bronx, New York Sheet: 1 of 1 Date: 5/10/2021 Ground El: 0.0 Contractor: Demolition Contractor Groundwater Depth: NA STREET EAST 134TH STREET #759 E.133RD ST. 2 STORY BUILDING #740 EAST 134TH ST. YARD ONE-STORY BUILDING 133RD TP-3A LOCATION PLAN SCALE: NTS 4" CONCRETE SLAB #759 EAST 133RD ST. TWO-STORY BUILDING CONCRETE WALL ´FILĹ(Ź) ´: ´FLÝ ´AŚH & CINDERS .,9 W/STEEL, BRICK, & MISC. DEBRIS 2'-0" GRAYISH-TAN MEDIUM TO FINE SAND, SOME CLAYEY SILT (SM, 3b) **BOULDER** SECTION LOOKING EAST

SCALE: NTS

