REMEDIAL INVESTIGATION REPORT

for

2413 Third Avenue Bronx, New York 10451 Block 2319, Lot 109

Prepared For:

RXR 2413 Third Owner LLC 75 Rockefeller Plaza, Suite 1500 New York, New York 10019

Prepared By:

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

Michael D. Burke, P.G., CHMM Principal/Vice President

February 14, 2020 Langan Project No. 170396002

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com New Jersey • New York • Connecticut • Massachusetts • Pennsylvania • Washington, DC • West Virginia • Ohio • Florida • Texas • Colorado • Arizona • California Abu Dhabi • Athens • Doha • Dubai • London • Panama

TABLE OF CONTENTS

TABLE	OF CONTENTSii		
LIST C	F ACRONYMSv		
CERTI	FICATIONvii		
1.0	INTRODUCTION 1		
2.0	SITE PHYSICAL CHARACTERISTICS		
21	Site Description 2		
2.2	Topography		
2.3	Surface Water and Drainage 4		
2.4.	Geology and Hydrogeology		
3.0	SITE BACKGROUND		
3.1.	Historical Site Use		
3.2.	Development Plan		
3.3.	Previous Environmental Reports and Documents7		
3.4.	Areas of Concern		
4.0	FIELD INVESTIGATION		
4.1.	Geophysical Investigation12		
4.2.	Soil Boring and Test Pit Investigation12		
4.3.	Groundwater Investigation14		
4.4.	Soil Vapor Investigation		
4.5.	Quality Control Sampling		
4.6.	Data Validation		
4.7.	Field Equipment Decontamination20		
4.8.	Investigation-Derived Waste Management20		
5.0	FIELD OBSERVATIONS AND ANALYTICAL RESULTS		
5.1.	Geophysical Survey Findings21		
5.2.	Geology and Hydrogeology22		
5.3.	Soil Findings23		
5.4.	Groundwater Findings27		
5.5.	Sub-Surface Soil Vapor Findings		
5.6.	Quality Control Results		

5.7. 5.8.	Data Usability	1 1
6.0	QUALITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT	3
6.1.	Current Conditions	3
6.2.	Proposed Conditions	3
6.3.	Summary of Environmental Conditions	Э
6.4.	Conceptual Site Model40	С
6.5.	Potential Exposure Pathways – On-Site42	2
6.6.	Potential Exposure Pathways – Off-Site43	3
6.7.	Evaluation of Human Health Exposure44	4
7.0	NATURE AND EXTENT OF CONTAMINATION47	7
7.1.	Soil Contamination47	7
7.2.	Groundwater Contamination48	3
7.3.	Soil Vapor Contamination48	3
8.0	CONCLUSIONS	9
9.0	REFERENCES	1

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Layout Plan
- Figure 3 Groundwater Elevation Contour Map
- Figure 4 Area of Concern Map
- Figure 5 Sample Location Plan
- Figure 6 Soil Sample Analytical Results Map
- Figure 7 Groundwater Sample Analytical Results Map
- Figure 8 Soil Vapor and Ambient Air Sample Analytical Results Map

TABLES

Table 1	Remedial Investigation Sample Summary
Table 2	Groundwater Elevation Data Summary
Table 3	Soil Sample Analytical Results Summary
Table 4A	Groundwater Sample Analytical Results Summary
Table 4B	Groundwater Sample Analytical Results Summary - Emerging Contaminants
Table 5	Soil Vapor and Ambient Air Sample Analytical Results Summary
Table 6	QA/QC Sample Analytical Results Summary

APPENDICES

- Appendix A Development Plans
- Appendix B Previous Environmental Reports
- Appendix C Geophysical Survey Report
- Appendix D Soil Boring and Test Pit Logs
- Appendix E Monitoring Well Construction Logs
- Appendix F Groundwater Sampling Logs
- Appendix G Soil Vapor Sample Point Construction and Sampling Logs
- Appendix H Data Usability Summary Reports
- Appendix I Laboratory Analytical Reports
- Appendix J Fish and Wildlife Resources Impact Analysis Decision Key

LIST OF ACRONYMS

Acronym	Definition			
1,1,1-TCA	TCA 1,1,1-Trichloroethane			
1,1-DCE	1,1-Dichloroethane			
c-1,2-DCE	Cis-1,2-Dichloroethene			
CSM	Conceptual Site Model			
AARCO AARCO Environmental Services Corp.				
AGV	Air Guideline Value			
AOC	Area of Concern			
AST	Aboveground Storage Tank			
ВСА	Brownfield Cleanup Agreement			
ВСР	Brownfield Cleanup Program			
bgs	Below Grade Surface			
BTEX	Benzene, Toluene, Ethylbenzene, and Total Xylenes			
COC	Contaminant of Concern			
	Division of Environmental Remediation Technical Guidance for			
	Site Investigation and Remediation			
DUSR	Data Usability Summary Report			
el	Elevation			
ELAP	Environmental Laboratory Approval Program			
ESA	Environmental Site Assessment			
ESI	Environmental Site Investigation			
FEMA	Federal Emergency Management Agency			
FWRIA Fish and Wildlife Resources Impact Analysis				
GPR	Ground-Penetrating Radar			
HA Health Advisory				
HASP Health and Safety Plan				
HWRL	Hazardous Waste Regulatory Limit			
IDW	Investigation Derived Waste			
MS/MSD	Matrix Spike/Matrix Spike Duplicate			
NAPL	Non-Aqueous Phase Liquid			
NAVD88	North American Vertical Datum of 1988			
NYCRR	New York Codes, Rules, and Regulations			
NYSDOH New York State Department of Health				
NYSDEC New York State Department of Environmental Conser				
NTU Nephelometric Turbidity Units				
PAH	Polycyclic Aromatic Hydrocarbon			
PBS Petroleum Bulk Storage				
РСВ	Polychlorinated Biphenyl			
TCE	Tetrachloroethylene			
PFAS	Per- and Poly-fluoroalkyl Substances			

Acronym	Definition		
PFOA	Perfluorooctanoic acid		
PFOS	Perfluorooctanesulfonic acid		
PID	Photoionization Detector		
PPE	Personal Protective Equipment		
ppm	Parts per million		
ppt	Parts per trillion		
PVC	Polyvinyl Chloride		
QA/QC	Quality Assurance/Quality Control		
RAWP	Remedial Action Work Plan		
REC	Recognized Environmental Condition		
RI	Remedial Investigation		
RIR	Remedial Investigation Report		
RIWP	Remedial Investigation Work Plan		
RURR	Restricted Use – Restricted-Residential		
SCO	Soil Cleanup Objective		
SGV	Standards and Guidance Values		
SVOC	Semivolatile Organic Compound		
TAL	Target Analyte List		
TCE	Trichloroethylene		
TCL	Target Compound List		
TCLP	Toxicity Characteristic Leaching Procedure		
TO-15	Toxic Organics – 15		
TOGS	Technical and Operational Guidance Series		
UN/DOT	United Nations Department of Transportation		
USEPA	United States Environmental Protection Agency		
USGS	United States Geological Survey		
UST	Underground Storage Tank		
UU	Unrestricted Use		
VOC	Volatile Organic Compound		

CERTIFICATION

I, Michael D. Burke, certify that I am currently a Qualified Environmental Professional as defined in Title 6 of the New York Codes, Rules, and Regulations (6 NYCRR) Part 375 and that this Remedial Investigation Report (RIR) was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10).

bruke

Michael D. Burke, P.G., CHMM Principal/Vice President

1.0 INTRODUCTION

This Remedial Investigation Report (RIR) was prepared on behalf of RXR 2413 Third Owner LLC (the "Requestor") for the property located at 2413 Third Avenue in the Mott Haven neighborhood of the Bronx, New York (the "site"). The site is identified on the Bronx Borough Tax Map as Block 2319, Lot 109. The Requestor is in the process of acquiring the site as owner and also in the process of applying to the New York State Brownfield Cleanup Program (BCP) as a Volunteer. This RIR is being submitted concurrently with the BCP application.

This RIR presents environmental data and findings from a remedial investigation (RI) that was implemented by Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan) between June 6 and June 10, 2019, and between September 27 and October 9, 2019. The objective of the RI was to supplement the existing environmental data to determine, to the extent possible, the nature and extent of contamination in soil, groundwater, and soil vapor. Information presented in this RIR will be used to evaluate the appropriate remedial action alternatives, which are presented in the Remedial Action Work Plan (RAWP), which is also submitted with the BCP application.

This RIR is organized as follows:

- Section 2.0 describes the setting and physical characteristics of the site.
- Section 3.0 describes the site background, including results of previous investigations and identified areas of concern (AOCs).
- Section 4.0 presents the investigation field procedures.
- Section 5.0 describes the field observations and analytical results.
- Section 6.0 presents an assessment of the exposure risks of site contaminants to human, fish, and wildlife receptors.
- Section 7.0 presents the nature and extent of contamination in site media as determined through the field investigation and analysis of environmental samples.
- Section 8.0 summarizes the results of the investigation and presents conclusions based on field observations and analytical results.
- Section 9.0 presents the references used in preparation of this report.

2.0 SITE PHYSICAL CHARACTERISTICS

2.1. Site Description

The site is identified on the Bronx Borough Tax Map as Block 2319, Lot 109 in the Mott Haven neighborhood of the Bronx and is located west of the intersection of Third Avenue and Bruckner Boulevard. The approximately 24,700-square-foot site contains a five-story commercial building that was constructed in 1897 and a tenant parking lot. The northwestern portion of the site contains a gravel-graded rectangular extension that is overgrown with vegetation. The building has a partial cellar that contains mechanical equipment and a sump. The ground floor of the building is occupied by a restaurant (Empanology), a boxing gym (SouthBox Gym), and a furniture storage area, and the upper floors of the building are vacant. The site is bordered by a commercial self-storage facility to the north; two multiple-story light industrial and commercial buildings, a dog park, and an access roadway to East 135th Street to the northeast; Third Avenue and the Third Avenue Bridge overpass to the southeast; and a residential development construction site to the west. A Site Location Map is included as Figure 1 and a Site Layout Plan is included as Figure 2.

The gravel-graded rectangular extension that is overgrown with vegetation is herein referenced as the "northwestern" portion of the site. The building and the cobble stone-, asphalt-, and concrete-paved parking area northeast of the building is herein referenced as the "central" portion of the site. The gravel lot underlain by cobble stone bedding southeast of the building is herein referenced as the "southeastern" portion of the site.

2.1.1. Description of Surrounding Properties

Surrounding properties generally consist of light industrial, manufacturing, commercial, residential, and retail buildings. The Harlem River is located about 150 feet southwest of the site. The adjoining and surrounding properties are summarized in the following table:

DIRECTION ADJOINING PROPERTIES		SURROUNDING PROPERTIES	
North	Commercial self-storage facility	East 135th Street followed by industrial warehouses and commercial properties	
Northeast	Two multiple-story light industrial and commercial buildings, a dog park, and an access roadway	Commercial and multiple-family residential buildings	

DIRECTION	ADJOINING PROPERTIES	SURROUNDING PROPERTIES	
Southeast	Third Avenue and the Third Avenue Bridge overpass	Commercial and industrial buildings	
West	Residential development construction site	Commercial freight railway right-of-way and Harlem River	

The nearest ecological receptor is the Harlem River, which is located about 150 feet to the southwest. Sensitive receptors, as defined in DER-10, located within 0.5 miles of the site include those listed in the following table.

NUMBER	NAME (APPROXIMATE DISTANCE FROM SITE)	ADDRESS	
1	Borger High School (approximately 0.2 miles east of the site)	2511 3rd Avenue Bronx, NY 10451	
2	South Bronx Classical Charter School II (approximately 0.3 miles southeast of the site)	333 East 135th Street Bronx, NY 10454	
3	P.S. 154 Jonathan D. Hyatt (approximately 0.3 miles southeast of the site)	333 E 135th Street #4301 Bronx, NY 10454	
4	Bronx Academy of Letters (approximately 0.5 miles northeast of the site)	339 Morris Avenue Bronx, NY 10451	
5	Family Life Academy Charter School II (approximately 0.5 miles southeast of the site)	296 E 140th Street Bronx, NY 10454	
6	P.S. 49 (approximately 0.5 miles southeast of the site)	383 E 139th Street Bronx, NY 10454	

2.2. Topography

According to the topographic and boundary survey prepared by Gallas Surveying Group, dated August 8, 2019, the site is about 10 feet above median sea level. The topography of the site is generally level, and the surrounding area gently slopes to the southwest towards the Harlem River. A Site Location Map is included as Figure 1.

2.3. Surface Water and Drainage

The site is partially covered by impervious surfaces consisting of concrete building slabs and an asphalt- and concrete-paved parking lot in the central portion of the site. The central parking lot is also partially covered with pervious cobble-stone pavement. Other pervious portions of the site include a gravel-graded rectangular extension that is overgrown with vegetation in the northwestern portion of the site and a gravel lot underlain by cobble stone bedding in the southeastern portion of the site. A majority of runoff from the site is expected to drain to the combined city sewers via catch basins along the street curbs to the east and south. Migration of precipitation to groundwater is limited in the central and southeastern portions of the site, due to the presence of impermeable or compacted, graded surface cover.

The site is described within the National Flood Insurance Rate Maps for the City of New York published by the Federal Emergency Management Agency (FEMA); Community Panel No. 3604970091F, effective September 5, 2007. According to the map, the site is zoned "AE" for special flood hazard area and is designated as being located within a regulatory floodway on the banks of the Harlem River.

2.3.1. Wetlands

Wetlands were evaluated by reviewing the National Wetlands Inventory and NYSDEC regulated wetlands map. Wetlands are not located on the site. The nearest wetland is the Harlem River, which is located about 150 feet to the southwest.

2.4. Geology and Hydrogeology

2.4.1. Regional Geology

The site is located near the southern end of the Manhattan Prong, which is one of two southwestward extensions of the New England Upland physiographic province of the Northern Appalachians. The underlying bedrock in this area generally consists of calcite-dolomite marble (Inwood Marble) interlayered with gneiss and schist of the Fordham Gneiss. Bedrock outcrops were not observed at the site. Based on USGS reports, bedrock beneath the site is estimated at about 50 feet below grade surface (bgs).

2.4.2. Site Stratigraphy and Geology

Based on observations during the RI, the subsurface profile generally consists of historic fill material overlying silty and clayey sand or clay with varying amounts of peat and shell material. During the RI, historic fill thickness varied between 5 and 10.5 feet on the northwestern portion of the site, between 1.5 and 9 feet on the central portion of the site, and between 5.5 and 12

feet on the southeastern portion of the site. The fill generally consists of brown fine sand with varying amounts of gravel, silt, brick, coal, concrete, slag, wood, and glass fragments. Native soil consists of fine-grained sand with varying amounts of silt, clay, peat, medium- and coarse-grained sand, and fine gravel. Native clay exhibiting a sulfur-like odor contained organic material, including rootlets and shell fragments intermittently across much the site at depths between 7 and 12 feet bgs. Bedrock was not observed in borings extending to a maximum depth of 16 feet bgs during the RI.

2.4.3. Regional Hydrogeology

The upper surface of the groundwater is marked by the water table surface, which fluctuates seasonally in response to precipitation events and potential tidal effects. The overburden deposits typical to the site can have low to moderate hydraulic conductivities. Preferential flow occurs through the more permeable zones of the soil overburden.

Infiltration of precipitation to the water table is likely minimal to moderate due to the presence of an impervious concrete slab and asphalt within the footprint of the building and portions of the parking lot and pervious areas graded with gravel and cobble stones elsewhere on the site. The majority of runoff drains to combined city sewers, then to one of the several wastewater treatment plants that serve the city. Groundwater in New York City is not used as a potable water source. Potable water provided to the City of New York is derived from surface impoundments in the Croton, Catskill, and Delaware watersheds. Based on the general local and regional topography, groundwater is inferred to flow towards the southwest towards the Harlem River

2.4.4. Site Hydrogeology

Groundwater was observed at depths between 6.62 and 8.15 feet bgs (el. 0.70 and el. 0.80) during synoptic groundwater level measurements taken from three wells in October 2019. Based on these readings, groundwater appears to flow along a shallow gradient towards the southwest. A groundwater contour map is provided as Figure 3.

3.0 SITE BACKGROUND

This section describes historical use of the site, describes the proposed redevelopment, and discusses the findings from previous environmental investigations. AOCs were developed based on data collected during the RI and a review of previous reports, and are summarized in Section 3.4.

3.1. Historical Site Use

By 1891, the central portion of the site was occupied by four 2-story buildings, one 1-story building, and one 6-story building used for cleaning shops operated by an iron works facility. The present 6-story commercial building was constructed in 1897 and was used for manufacturing in 1928. The building contained a wood flooring storage facility between 1935 and 1947, a lubrication oil storage facility between 1935 and 2007, and a commercial storage facility between 1951 and 2007.

The northwestern portion of the site was occupied by a 1-story building containing a motor truck company in 1922. The area formerly occupied by the 1-story building now contains a vacant lot covered with vegetation and gravel.

The southeastern portion of the site was occupied by a 2-story building used as a manufacturing facility in 1928 and a chemical laboratory from 1935 to 1947. The 2-story building was demolished by 1984. A freight railway easement transected the central portion of the site between 1935 and 1951.

3.2. Development Plan

The proposed development will include demolition of the existing commercial building and removal of the concrete and asphalt surface cover; removal of structurally unsuitable material; and removal of contaminated soil to accommodate construction of a 26-story residential building. The building will include affordable and market-rate rental units and will occupy a footprint of about 18,000 square feet. A full cellar will extend to about 16 feet below surface grade and will include parking, storage, and mechanical areas. The ground floor will also include parking and a lobby, and the 2nd floor will contain amenity spaces. Residential units will occupy the 2nd through 26th floors. A narrow area west of the building will be developed at grade for one level of parking. Schematic design drawings are provided in Appendix A.

3.3. Previous Environmental Reports and Documents

Previous environmental reports and documents were reviewed as part of this RIR and are listed in chronological order below:

- Phase I Environmental Site Assessment (ESA) for 2413 Third Avenue, Bronx, New York, prepared by GO Environmental, dated August 14, 2012.
- Limited Subsurface Investigation Report of Findings, prepared by Groundwork, Inc., dated December 30, 2013.
- Phase I ESA Report, 2413 Third Avenue, Bronx, New York, prepared by Langan, dated December 7, 2015.
- Phase II Environmental Site Investigation Report, 2413 Third Avenue, Bronx, New York, prepared by Langan, dated December 10, 2015.

The documents are summarized below and included in Appendix B.

Phase I Environmental Site Assessment, prepared by GO Environmental, dated August 14, 2012

GO Environmental conducted a Phase I ESA on behalf of Gibraltar Private Bank & Trust in accordance with ASTM E1527-13. The Phase I ESA identified the following Recognized Environmental Conditions (RECs):

- Historical use of the site as a cleaning and casting shop for an iron foundry (late 1800s and early 1900s); a steel and motor truck company (1920s); storage and building supply company (mid-1930s); storage facility for lubricating oils (central portion) (mid-1940s to 2005); chemical laboratory (mid- to late 1940s); and a petroleum facility on the southeastern portion of the Subject Property (mid-1950s to 1980s).
- Surrounding property use by industrial and manufacturing facilities since the 1800s.

Limited Subsurface Investigation Report of Findings, prepared by Groundwork, Inc., dated December 30, 2013

Groundwork, Inc. conducted a limited subsurface investigation consisting of the collection of seven soil samples from seven soil borings, and collection of one groundwater sample from one temporary monitoring well. The soil borings were advanced to 15 feet bgs at exterior locations. Soil samples were collected above the groundwater interface from depths of approximately 5.5 to 6 feet bgs and analyzed for Total Petroleum Hydrocarbons (TPH) Diesel Range Organics (DRO). One boring in the central parking lot and southeast of the building was converted into a temporary groundwater monitoring well. The groundwater sample was collected and analyzed for volatile

organic compounds (VOC) and semi-volatile organic compounds (SVOC). Findings of the investigation are as follows:

- Soil generally consisted of light brown, fine-to-medium silty sand. Staining and odors were not observed and organic vapor concentrations were generally 0.0 parts per million (ppm).
- Groundwater was encountered at approximately 6 feet bgs.
- TPH-DRO were not detected in the soil samples.

VOCs and SVOCs were not detected in the groundwater sample.

Phase I Environmental Site Assessment, 2413 Third Avenue, Bronx, New York, prepared by Langan, dated December 7, 2015

Langan prepared a Phase I ESA on behalf of Somerset Partners, LLC. The report identified the following RECs:

REC 1 – Historical Site Use

Historical site occupants included an iron foundry (1891 to 1908), a motor truck company (1922), drug and chemical companies and laboratories (1927; 1935 to 1949), an oil company (1927), manufacturing facilities (1928), and a floor treatment service (1949).

REC 2 – Historical Petroleum Bulk Storage

Sanborn maps indicate the central portion of the site was used to store lubrication oil from 1935 to 2007.

REC 3 – Historical Use of Surrounding Properties

Historical uses of adjoining and surrounding properties between 1891 and 2010 included manufacturing facilities, a machine shop, a steel company, a drug and chemical company, an oil company, and a shoring company containing an open spill and enrolled in the New York State Brownfield Cleanup Program.

Phase II Environmental Site Investigation Report, 2413 Third Avenue, Bronx, New York, prepared by Langan, dated December 10, 2015

A Phase II ESI was conducted to investigate RECs identified during Langan's 2015 Phase I ESA. The scope of the investigation included a geophysical survey, collection of soil samples from five borings, collection of groundwater samples from three monitoring wells, and collection of three soil vapor samples. Groundwater was observed at depths between about 7.3 and 7.5 feet bgs, and an approximately 2- to 5-foot layer of historic fill material underlain by sand, silt, and a discontinuous peat layer was identified in the borings. Samples of historic fill material contained SVOCs, pesticides, and metals at concentrations above the Title 6 of the New York Codes, Rules and Regulations (6 NYCRR) Part 375 Unrestricted Use (UU) Soil Cleanup Objectives (SCOs).

The VOC and gasoline additive methyl tert-butyl ether (MTBE) was detected in two groundwater samples at concentrations above the New York State Department of Environmental Conservation (NYSDEC) Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGVs) for Class GA groundwater. Chlorinated VOCs were not detected in soil vapor samples at concentrations above the minimum threshold at which mitigation is recommended per the NYSDOH Guidance; however, the gasoline constituents n-hexane and heptane were detected in two soil vapor samples at concentrations two orders of magnitude above those detected in the third sample.

3.4. Potential Areas of Concern

Potential Areas of Concern (AOCs) were not previously established for this site. The following potential AOCs were determined based on historical use of the site and conclusions from previous environmental reports, and are shown on Figure 4.

AOC 1: Historical Site Uses

Historical site operations included the following: an iron foundry (1891 to 1908), a motor truck company (1922 to 1956), a drug and chemical corporation (circa 1927), an oil company (circa 1927), manufacturing facilities (circa 1928), a chemical laboratory (1935 to 1949), a freight railway (1935 to 1951), lubricating oil storage (mid-1940s to 2005), and a floor treatment service (circa 1949). Undocumented releases of petroleum products, solvents, or other hazardous substances associated with these former site uses may have impacted soil, groundwater, and/or soil vapor.

AOC 2: Metals- and PCB-impacted Soil

Metals, including copper, lead, mercury, and zinc, were detected at concentrations above the Part 375 Restricted Use Restricted-Residential (RURR) SCOs in the southern and central portions of the site during the 2015 Phase II ESI at depths ranging from 1 to 4 feet bgs. PCBs were detected at a concentration above the UU SCO between 3 and 4 feet bgs on the central portion of the site. The detections may be associated with historical vehicle repair, manufacturing and railway operations, and an iron foundry that occupied the site between 1891 and 1928. The metal impacts are also indicative of potential concentrations above the Resource Conservation and

Recovery Act (RCRA) Maximum Concentration for the Toxicity Characteristic (i.e., characteristic hazardous waste).

AOC 3: Historic Fill Material

Material from an unknown source was used to infill the site during historical development. During the RI, a historic fill layer was identified extending to depths between about 1.5 feet bgs in the central portion of the site to about 12 feet in the southeastern portion of the site (el 7.85 to el - 2.5) and is predominantly comprised of brown fine sand with varying amounts of gravel, silt, brick, coal, concrete, slag, and glass fragments. Samples of historic fill material collected during previous investigations contained concentrations of SVOCs, PCBs, pesticides, and metals above RURR SCOs.

AOC 4: Gasoline-Impacted Groundwater

The gasoline additive MTBE was detected in two groundwater samples at concentrations above the TOGS AGV during the 2015 Phase II ESI. As MTBE was primarily used between the mid-1990s and mid-2000s, potential on-site sources for the MTBE were not identified during the Phase II ESI.

4.0 FIELD INVESTIGATION

The RI was conducted on June 6 through June 10 and September 27 through October 9, 2019. The investigation included soil boring advancement; exploratory test pit excavation; monitoring well installation; soil vapor sample point installation; and collection of soil, groundwater, soil vapor, and ambient air samples. A sample summary is provided in Table 1, and a sample location plan is provided in Figure 5.

The RI consisted of the following activities:

Soil Boring Advancement and Sampling

- Twenty-five soil borings (SB06 through SB28, SB30, and SB31) were advanced between 12 and 16 feet bgs.
- Up to two soil samples were collected from each boring. Three samples were collected from borings SB24 and SB25 to evaluate indications of petroleum impacts. Fifty-three soil samples were submitted for laboratory analysis (including quality assurance/quality control [QA/QC] samples).

Exploratory Test Pit Excavation and Sampling

- Three exploratory test pits (TP01 through TP03) were excavated to about 2.5 feet bgs within the footprint of a former railway easement.
- One soil sample was collected from each test pit.

Monitoring Well Installation and Sampling

- Four temporary and three permanent groundwater monitoring wells were installed. Permanent wells included two 2-inch diameter wells at exterior boring locations (MW18 and MW24) and one one-inch diameter well at an interior boring location (MW19). One groundwater sample was collected from each monitoring well, for a total of seven groundwater samples (including QA/QC samples).
- Permanent groundwater monitoring wells were surveyed and gauged to evaluate groundwater flow direction.

Soil Vapor Sample Point Installation and Sampling

• Five soil vapor sample points (SV06, SV12, SV16, SV22, and SV24) and two sub-slab soil vapor points (SSV10 and SSV11) were installed. Soil vapor sample points were installed at 5 feet bgs and sub-slab soil vapor points were installed at 2 inches bgs. A soil vapor sample was collected from each sample point for a total of seven samples.

• One ambient air sample (AA01) was collected from an exterior location concurrently with the three October 2019 soil vapor samples.

The RI was conducted in accordance with 6 NYCRR Part 375, the May 2010 NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, the May 2004 NYSDEC Draft BCP Guide, and the October 2006 NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (updated May 2017).

4.1. Geophysical Investigation

NOVA Geophysical & Environmental, Inc. of Douglaston, New York conducted a geophysical survey under the supervision of a Langan field scientist on June 6, 2019, prior to intrusive activities. The survey used ground-penetrating radar (GPR) and electromagnetic detection equipment to identify potential USTs and locate buried utilities and other structures. The survey identified municipal electrical, water, sewer, and gas lines entering the property and existing building from Third Avenue. A north-south-trending buried linear structure on the east side of the central portion of the site appears to coincide with the former location of railroad tracks. The survey did not reveal buried anomalies indicative of storage tanks or vaults, but noted the presence of elevated geophysical signal noise, due to the surrounding urban environment and debris covering the ground surface. Elevated signal noise can alter subsurface reflections and inhibit GPR resolution. The geophysical survey report is included in Appendix C.

Prior to advancing soil borings, locations adjacent to utility lines were hand cleared to a minimum depth of 5 feet bgs to identify any potential subsurface utilities. Once the absence of subsurface utilities was confirmed, an adjacent boring location was advanced using a Geoprobe unit.

4.2. Soil Boring and Test Pit Investigation

4.2.1. Investigation Methodology

Soil borings were advanced by AARCO Environmental Services Corp. (AARCO) of Lindenhurst, New York on June 6 through June 7 and September 27 through October 3, 2019 to investigate the AOCs listed in Section 3.4. Exploratory test pits were excavated by Kingdom Associates of Maspeth, New York on June 21, 2019. Soil boring and test pit locations are shown on Figure 5. Exterior soil borings were advanced using a Geoprobe[®] 7730DT or Geoprobe[®] 6610DT directpush track-mounted drill rig, and interior borings were advanced using a Geoprobe[®] 420M directpush limited access drill rig to depths up to 16 feet bgs. Test pits were excavated using a CAT mechanical excavator to 2 feet bgs. Soil was collected from each soil boring into 4-foot dedicated acetate sleeves. Soil samples were taken from the acetate sleeves and were collected directly from the sidewalls of the test pits. Soil was screened for visual, olfactory, and instrumental evidence of environmental impacts, and was visually classified for soil type, grain size, texture, and moisture content. Instrumental screening for the presence of VOCs was performed with a PID equipped with a 10.6 eV lamp. Boring logs and test pit logs documenting these observations are provided in Appendix D. Following sample collection, borings and test pits were backfilled with soil cuttings that did not display evidence of environmental impacts or were converted into permanent groundwater monitoring wells. Excess soil cuttings were placed into sealed and labeled United Nations (UN)/Department of Transportation (DOT)-approved 55-gallon drums for disposal.

4.2.2. Sampling Methodology

Fifty-three soil samples (plus QA/QC samples) were collected from the soil borings and test pits for laboratory analysis. Up to two grab soil samples were collected from most borings from the following depth intervals:

- 0 to 2 feet bgs;
- Groundwater interface or soil exhibiting the greatest degree of impact, if observed, based on the presence of fill, staining, odors, and/or PID readings above background; and
- First underlying depth interval without evidence of impacts, if observed.

One soil sample was collected from each test pit.

Samples were collected using appropriate laboratory-supplied containers for the analyses. Samples collected for VOC analysis were sampled directly from the acetate liner (or directly from the test pits) using laboratory-supplied Terra Core[™] samplers. Sample containers were labeled, placed in a laboratory-supplied coolers, and packed on ice to maintain a temperature of about 4°C. Coolers were retrieved at the end of each day by a laboratory courier and transported under standard chain-of-custody protocol to York Analytical Laboratories, Inc. in Stratford, Connecticut or Alpha Analytical, Inc. of Westborough, Massachusetts. York and Alpha are certified by the NYSDOH Environmental Laboratory Approval Program (ELAP).

Soil samples were analyzed for the following parameters:

- Part 375 /Target Compound List (TCL) VOCs using USEPA Method 8260C;
- Part 375 SVOCs using USEPA Method 8270;
- PCBs using USEPA Method 8082A;
- Part 375 pesticides using USEPA Method 8081B;

- Part 375 herbicides using USEPA Method 8151A;
- Part 375/Target Analyte List (TAL) metals using USEPA Methods 6010, 7473 (Mercury), and 7196A (hexavalent chromium);
- NYSDEC 21-compound list of per- and polyfluoroalkyl substance (PFAS) using Modified USEPA Method 537;
- 1,4-Dioxane using USEPA Method 8270 SIM; and/or
- Toxicity Characteristic Leaching Procedure (TCLP) metals.

Note that the PFAS analytical method, EPA Method 537, was developed and validated for the analysis of finished drinking water from surface water and groundwater sources. Laboratories have modified Method 537 to enable the analysis of groundwater and soil, and to incorporate PFAS analytes not currently addressed by the promulgated method. NYSDOH offers certification for PFOA and PFOS in the drinking water category. Non-potable water and soil certification is not available; however, the method describes acceptable modifications. EPA recommends that modified methods be assessed relative to project goals and data quality objectives.

A sample summary is provided in Table 1.

4.3. Groundwater Investigation

Three permanent groundwater monitoring wells (MW18, MW19, and MW24) and four temporary groundwater monitoring wells (TMW06, TMW08, TMW11, and TMW12) were installed. One groundwater sample was collected from each monitoring well. In total, seven groundwater samples (plus QA/QC samples) were collected. Each well was sampled to characterize groundwater conditions and to investigate potential groundwater impacts. Groundwater monitoring wells are shown on Figure 5.

4.3.1. Monitoring Well Installation and Development Methodology

Three permanent groundwater monitoring wells were installed in borings SB18, SB19, and SB24. Monitoring well MW19 was installed to 15 feet bgs by inserting a 1-inch diameter, Schedule 40 polyvinyl chloride (PVC) well screen (0.020-inch slot) with attached risers into the borehole. The remaining two permanent wells were installed to 16 feet bgs by inserting 2-inch diameter, Schedule 40 PVC well screen (0.020-inch slot) with attached risers into each borehole. Temporary monitoring wells were installed by inserting 10 feet of 1-inch diameter, Schedule 40 PVC well screen (0.020-inch slot). Monitoring wells were installed with 10-foot screens straddling the groundwater table. The annulus of each well was filled with No. 2 clean sand to about two feet above the top of the screen, and about three feet of hydrated bentonite was placed above the filter sand. The overlying annulus was filled with clean sand or unimpacted

soil cuttings, and grout. Each permanent well was finished with a flush-mounted, bolt-down manhole set into a concrete collar.

Following installation, each well was purged with a peristaltic pump and each permanent well was developed using a submersible pump. Development water was placed into sealed and labeled UN/DOT-approved 55-gallon drums. Well construction summary logs are included in Appendix E.

Langan surveyed the top of the permanent groundwater monitoring well casings on November 14, 2019, and a Langan field engineer completed synoptic groundwater gauging of the monitoring wells on October 9, 2019. Groundwater elevations are presented in Table 2, and a groundwater contour map is provided as Figure 3.

4.3.2. Groundwater Sampling

Following installation, temporary monitoring wells were developed by purging a minimum of three well volumes using a peristaltic pump. Permanent monitoring wells were sampled about one week after development in accordance with the USEPA's low-flow groundwater sampling procedure to allow for collection of a representative sample ("Low Stress [Low Flow] Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells", dated July 30, 1996). Prior to sample collection, groundwater was purged from each well until the physical and chemical groundwater parameters (pH, conductivity, turbidity, dissolved oxygen [DO], temperature, and oxidation-reduction potential [ORP]) stabilized and turbidity measurements were below 50 Nephelometric Turbidity Units (NTU), or for a minimum of one hour.

Seven groundwater samples (plus QA/QC samples) were collected into laboratory-supplied glassware. Sample containers were labeled, placed in laboratory-supplied coolers, and packed on ice to maintain a temperature of about 4°C. Coolers were retrieved at the end of each day by a laboratory courier and transported under standard chain-of-custody protocol to York and Alpha. Groundwater samples were analyzed for TCL VOCs and SVOCs, pesticides, herbicides, PCBs, and TAL metals (total and dissolved).

Groundwater samples collected from wells MW18, MW19, and MW24 were also analyzed for the NYSDEC PFAS target analyte list using Modified USEPA Method 537 and 1,4-dioxane using EPA Method 8270 SIM. The PFAS samples were collected in accordance with the NYSDEC June 2016 Collection of Groundwater Samples for Perfluorooctanoic Acid (PFOA) and Perfluorinated Compounds (PFCs) from Monitoring Wells Sample Protocol and February 2018 Guidance for Groundwater Sampling for Emerging Contaminants. The PFAS samples were collected using high-density polyethylene (HDPE) tubing and a peristaltic pump, and placed into HDPE bottleware.

The samples were analyzed for the following PFAS compounds:

- 6:2 Fluorotelomer sulfonate (6:2 FTS);
- 8:2 Fluorotelomer sulfonate (8:2 FTS);
- N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA);
- N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA);
- Perfluorobutanesulfonic acid (PFBS);
- Perfluorobutanoic acid (PFBA);
- Perfluorodecanesulfonic acid (PFDS);
- Perfluorodecanoic acid (PFDA);
- Perfluorododecanoic acid (PFDoA);
- Perfluoroheptanesulfonic acid (PFHpS);
- Perfluoroheptanoic acid (PFHpA);
- Perfluorohexanesulfonic acid (PFHxS);
- Perfluorohexanoic acid (PFHxA);
- Perfluorononanoic acid (PFNA);
- Perfluorooctanesulfonamide (FOSA);
- Perfluorooctanesulfonic acid (PFOS);
- Perfluorooctanoic acid (PFOA);
- Perfluoropentanoic acid (PFPeA);
- Perfluorotetradecanoic acid (PFTA/PFTeDA);
- Perfluorotridecanoic acid (PFTriA/PFTrDA); and
- Perfluoroundecanoic acid (PFUA/PFUnA).

Groundwater sampling logs are included in Appendix F.

4.4. Soil Vapor Investigation

NYSDEC DER-10 requires an assessment of soil vapor for contaminated sites. The assessment is to evaluate the health risk associated with potential exposure to VOCs through vapor intrusion into occupied spaces. Seven soil vapor and one ambient air sample were collected. Sampling locations are presented on Figure 5

4.4.1. Soil Vapor Sample Point Installation

Seven sub-surface soil vapor sampling points were installed by AARCO with a Geoprobe[®] direct push drill rig under the observation of a Langan engineer. The sample points were installed in accordance with the 2006 NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Five sample points (SV06, SV12, SV16, SV22, and SV24) were installed within the vadose zone at about 5 feet bgs and two sample points (SSV10 and SSV11) were installed about 2 inches below the building slab.

The sub-surface sample points were constructed with new, dedicated 1 7/8-inch polyethylene implant installed at the target depth, and connected to 3/16-inch diameter polyethylene tubing that was sealed at grade with hydrated bentonite. Soil vapor sample construction and sampling logs are provided in Appendix G.

4.4.2. Soil Vapor Sampling and Analysis

As a QA/QC measure, an inert tracer gas (i.e., helium) was introduced into an above-grade sampling chamber to ensure that the sample points were properly sealed above the target sampling depth, thereby preventing subsurface infiltration of ambient air. Direct readings of helium of less than 10 percent in the sampling tube were considered sufficient to verify a tight seal. On the same day that soil vapor sampling was conducted, a sufficiently tight seal was verified at each sample point.

Each sample point was purged using a MultiRAE meter at a rate of about 0.2 liters per minute (L/min) to evacuate a minimum of three sample tubing volumes prior to sample collection. The purged soil vapor was also monitored for VOCs. After purging, soil vapor samples were collected into laboratory-supplied, batch-certified, 2.7-liter or 6-liter Summa[®] canisters calibrated for a sampling rate of about 0.02 L/min or 0.05 L/min over 120 minutes (two hours) of sampling. For QA/QC purposes and for comparison to background conditions, one outdoor ambient air sample was collected during the sampling event. The canisters were labeled and transported under standard chain-of-custody protocol to Alpha and York for analysis of VOCs by USEPA Method TO-15.

4.5. Quality Control Sampling

Field blanks, trip blanks, field duplicate samples, and matrix spike/matrix spike duplicate (MS/MSD) samples were collected and submitted for laboratory analysis. QA/QC samples are summarized in Table 1 and included the following:

Soil

- Two field duplicate samples;
- Two MS/MSD samples;
- Two field blank samples; and
- Five trip blank samples.

Groundwater

- One field duplicate sample;
- One MS/MSD sample;
- One field blank sample; and
- One trip blank sample.

Soil Vapor

• One exterior ambient air sample.

Field blanks were collected to determine the effectiveness of the decontamination procedures for the groundwater sampling equipment train and the cleanliness of unused neoprene gloves and acetate liners used to collect soil samples. Field blank samples consisted of deionized, distilled water provided by the laboratory that passed through the sampling apparatus. Field blank samples were analyzed for the same list of analytes as the corresponding sampling event and sample matrix.

MS/MSD samples were collected to assess the effect of the sample matrix on the recovery of target compounds or target analytes. The field duplicates were collected to assess the precision of the analytical methods relative to the sample matrix. Each grab duplicate was collected from the same material as the primary sample by collecting one volume of material and splitting the volume in the field into two discrete aliquots that were placed in separate sample containers.

The trip blank samples were collected to assess the potential for contamination of sample containers and samples during transport between the laboratory and field. Trip blanks contain about 40 milliliters of acidic water (doped with hydrochloric acid). Trip blanks are sealed by the laboratory when the empty sample containers are shipped to the field. The trip blanks are

unsealed and analyzed by the laboratory when the sample shipment is received from the field. The trip blank samples were analyzed for VOCs.

4.6. Data Validation

Data from the RI were validated by a Langan data validator in accordance with USEPA and NYSDEC validation protocols. Copies of the data usability summary reports (DUSR) and the data validator's credentials are provided in Appendix H.

4.6.1. Data Usability Summary Report Preparation

A DUSR was prepared for each sampling matrix. The DUSR presents the results of data validation, including a summary assessment of laboratory data packages, sample-preservation and chain-of-custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method.

For the soil and groundwater samples, the following items were assessed:

- Holding times;
- Sample preservation;
- Sample extraction and digestion;
- Laboratory blanks;
- Laboratory control samples;
- System monitoring compounds;
- MS/MSD recoveries; and
- Field duplicate, trip blank, and field blank sample results.

For the soil vapor samples, the following items were assessed:

- Holding times;
- Canister certification;
- Laboratory blanks;
- Laboratory control samples;
- System monitoring compounds; and
- Target compound identification and qualification.

Based on the results of data validation, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- "U" The analyte was analyzed for but was not detected at a level greater than or equal to the reporting limit (RL) or the sample concentration for results impacted by blank contamination.
- "UJ" The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- "J" The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- "R" The sample results are not useable due to the quality of the data generated (i.e., certain criteria were not met). The analyte may or may not be present in the sample.
- "B" Analyte was found in the associated analysis batch blank.
- "D" Result is from an analysis that required dilution.

After data validation activities were complete, validated data were used to prepare the tables and figures included in this report.

4.7. Field Equipment Decontamination

Handheld sampling equipment, including interface probes and water quality meters were decontaminated by hand using an Alconox[®]-based solution, and triple rinsed with distilled water. Liquids were temporarily contained in five-gallon buckets, and between rinses, equipment was placed such that contact with the ground was avoided. Decontamination wastewater was drummed for disposal.

4.8. Investigation-Derived Waste Management

Investigation-derived wastes (IDW) generated during the RI were properly handled and containerized, as necessary. Impacted soil waste from borings, aqueous waste from monitoring well development and purging, and decontamination water were placed into UN/DOT-approved 55-gallon steel drums with sealed tops. The drums were staged in a secured area on-site for future off-site disposal.

5.0 FIELD OBSERVATIONS AND ANALYTICAL RESULTS

This section summarizes the field observations and laboratory analytical results from the RI. Soil analytical results are compared to the 6 NYCRR Part 375 UU SCOs and Restricted Use – Restricted-Residential (RURR) SCOs. Groundwater analytical results are compared to the NYSDEC Technical and Operational Guidance Series (TOGS) Ambient Water Quality Standards and Guidance Values (SGVs) for Class GA (drinking water). Soil vapor sample results are compared to the May 2017 Decision Matrices issued as an update to the 2006 NYSDOH Soil Vapor Intrusion Guidance, the New York State Department of Health Air Guideline Values (NYSDOH AGVs), and ambient air sample concentrations. The nature and extent of contamination is discussed in Section 7.0.

A summary of the soil, groundwater, soil vapor, and QA/QC samples is provided in Table 1. Copies of the laboratory analytical reports are provided in Appendix I. Summaries of the analytical results for the soil, groundwater, soil vapor, and QA/QC samples are provided in the following tables:

- Table 1: Remedial Investigation Sample Summary
- Table 2: Groundwater Elevation Data Summary
- Table 3: Soil Sample Analytical Results Summary
- Table 4A: Groundwater Sample Analytical Results Summary
- Table 4B: Groundwater Sample Analytical Results Summary Emerging Contaminants
- Table 5: Soil Vapor and Ambient Air Sample Analytical Results Summary
- Table 6: QA/QC Sample Analytical Results Summary

The following sections describe the field observations and analytical data generated during the RI.

5.1. Geophysical Survey Findings

A geophysical survey was conducted on June 6, 2019, prior to intrusive activities. The June 2019 survey identified municipal electrical, water, sewer, and gas lines entering the property and existing building from Third Avenue. A north-south-trending buried linear structure on the east side of the central portion of the site appears to coincide with the former location of railroad tracks. The survey did not reveal buried anomalies indicative of storage tanks or vaults, but noted the presence of elevated geophysical signal noise, due to the surrounding urban environment and debris covering the ground surface. Elevated signal noise can alter subsurface reflections and inhibit GPR resolution. A copy of the June 2019 geophysical survey report is included in Appendix C.

5.2. Geology and Hydrogeology

Geologic and hydrogeologic observations during the RI are described below. An inferred groundwater elevation contour map is provided as Figure 3. Soil boring and test pit logs are provided in Appendix D.

5.2.1. Historic Fill Material

Historic fill material was encountered beneath the surface cover and extends to depths that vary between about 1.5 feet and 12 feet bgs. The thickness of the fill layer varies throughout the site. The fill generally consists of brown fine sand with varying amounts of gravel, silt, brick, coal, concrete, slag, and glass fragments.

5.2.2. Native Soil

The fill material is underlain by native soil generally consisting of medium-grained sand with varying amounts of silt, clay, fine sand, coarse sand, and fine gravel. A discontinuous layer of organic clay was intermittently observed in six soil borings across much of the site between about 7 and 12 feet bgs. A discontinuous layer of peat was observed in three soil borings in the same areas and at similar depths to the clay layer.

5.2.3. Bedrock

Bedrock was not encountered during the RI.

5.2.4. Hydrogeology

Synoptic groundwater-level measurements were collected in June 2019 for the temporary monitoring wells and in October 2019 for the permanent monitoring wells. Langan surveyed the top of casing of each permanent groundwater monitoring well on November 14, 2019. Groundwater was encountered between el. 0.7 (MW19) and el. 0.8 (MW24), and at depths between 6.62 feet bgs (MW19) and 8.50 feet bgs (TMW06). Based on the data, the inferred direction of groundwater flow is to the southwest towards the Harlem River. The inferred direction of regional groundwater flow is also to the southwest towards the Harlem River. A groundwater contour map is provided on Figure 3.

5.3. Soil Findings

5.3.1. Field Observations

Field observations of petroleum-like impacts, based on visual, olfactory and PID readings above background, were apparent in soil borings SB06, SB12, SB13, SB14, SB24, and SB25. A summary of observed impacts is provided in the following table:

BORING	LOCATION	STAINING (FEET BGS)	ODORS (FEET BGS)	MAXIMUM PID READING ABOVE BACKGROUND (PPM)	
SB06	Northwestern	7 to 8	7 to 8	-	
	portion of site				
SB12	Southeastern	-	-	71.1	
5012	portion of site			(3 feet bgs)	
SB13	Southeastern	-	- 10 to 11	_	
5615	portion of site		10 10 11	_	
CR1/	Southeastern	-		_	29.0
5014	portion of site		-	(3 to 4 feet bgs)	
SB24	Northwestern	11 to 15	11 to 15		
3024	portion of site			11 10 15	-
SB25	Northwestern	6 to 8	6 to 8	_	
5025	portion of site		0100	0.00	-

Evidence of petroleum or other hazardous substance impacts was not observed.

5.3.2. Analytical Results

Fifty-three soil samples and two duplicate and MS/MSD samples were collected for laboratory analysis. Soil samples were analyzed for one or more of the Part 375/TCL+30 list VOCs, SVOCs, PCBs, pesticides, herbicides, metals (including hexavalent and trivalent chromium), 1,4-dioxane (via SIM), and NYSDEC-listed PFAS compounds. The target analytical parameters for each sample were specific to the AOC and sample depth and summarized in Table 1.

Summaries of laboratory detections for soil samples collected during the RI are provided in Table 3 with comparisons to the Part 375 UU SCOs and RURR SCOs. Soil sample results that exceed SCOs are shown on Figure 6.

VOCs

Two petroleum-related VOCs (total xylenes and benzene), one chlorinated VOC (cis-1,2dichloroethene) and two other VOCs (acetone and 2-butanone) were detected in soil samples at concentrations exceeding UU SCOs. Total xylenes and cis-1,2-dichloroethene (DCE) were detected at concentrations above the UU SCO in one sample collected from soil boring SB25 between 6 and 8 feet bgs, and benzene was detected at a concentration above the UU SCO in two samples collected from soil borings SB12 between 5 and 6 feet and SB15 between 3 and 4 feet. The total xylene and cis-1,2-DCE detections correspond with staining, petroleum-like odors, and PID detections in boring SB25, which was located on the northwestern portion of the site. The benzene detection in boring SB12, which was located on the southeastern portion of the site, corresponds with a PID detection above background at 3 feet bgs.

Acetone was detected at concentrations above the UU SCO in 10 samples collected at various depth intervals between 1 and 8.5 feet bgs from borings SB06, SB07, SB11, SB12, SB13, SB14, SB16, and SB31. 2-Butanone (methyl ethyl ketone) was detected at concentrations above the UU SCO in samples collected from soil boring SB25 between 6 and 8 feet bgs and SB31 between 0 and 2 feet bgs. Acetone and 2-butanone are common laboratory contaminants that may be laboratory artifacts and not representative of site soil.

The following list identifies VOCs detected above UU SCOs. The list includes the range of concentrations above the SCO for each VOC, followed by the Part 375 SCO in parentheses.

- 2-butanone (methyl ethyl ketone): 0.17 mg/kg in SB31_0-2 to 0.48 mg/kg in SB25_6-8 (UU SCO of 0.12 mg/kg);
- Acetone: 0.051 mg/kg in SB31_6.5-8.5 to 0.27 mg/kg in SB13_3-4 (UU SCO of 0.05 mg/kg);
- Benzene: 0.12 mg/kg in SB12_5-6 and SB15_3-4 (UU SCO of 0.06 mg/kg);
- cis-1,2-dichloroethene: 0.72 mg/kg in SB25_6-8 (UU SCO of 0.25 mg/kg); and
- Xylenes (total): 1.1 mg/kg in SB25_6-8 (UU SCO of 0.26 mg/kg).

SVOCs

Nine SVOCs were detected in 11 soil borings and three test pits at concentrations above the UU and/or RURR SCOs. The samples exceeding the SCOs were collected from historic fill material from depths between surface grade and 8 feet bgs. SVOC concentrations above the SCOs were detected in borings SB06, SB07, SB08, SB13, SB15, SB16, SB17, SB20 (and duplicate sample RISODUP02_100319), SB25, SB26, and SB30, and the three test pits.

The following list identifies SVOCs detected above the SCOs. The list includes the range of concentrations above the SCO for each SVOC, followed by the respective Part 375 SCO in parentheses.

• 2-Methylphenol (o-Cresol): 35 mg/kg in SB15_3-4 (UU SCO of 0.33 mg/kg);

- Benzo(a)anthracene: 1.2 mg/kg in SB07_2-3 to 13.6 mg/kg in SB17_5.5-7.5 (UU and RURR SCO of 1 mg/kg);
- Benzo(a)pyrene: 1.3 mg/kg in TP02_1.5-2 to 13.0 mg/kg in SB17_5.5-7.5 (UU and RURR SCO of 1 mg/kg);
- Benzo(b)fluoranthene: 1.2 mg/kg in SB07_2-3 to 13 mg/kg in SB06_ 1-2 (UU and RURR SCO of 1 mg/kg);
- Benzo(k)fluoranthene: 0.83 mg/kg in SB30_0-2 to 11.2 mg/kg in SB17_5.5-7.5 (UU SCO of 0.8 mg/kg and RURR SCO of 3.9 mg/kg);
- Chrysene: 1.16 mg/kg in SB30_0-2 to 12.90 mg/kg in SB17_5.5-7.5 (UU SCO of 1 mg/kg and RURR SCO of 3.9 mg/kg);
- Dibenz(a,h)anthracene: 0.41 mg/kg in TP03_1-1.5 to 2.84 mg/kg in SB17_5.5-7.5 (UU and RURR SCO of 0.33 mg/kg);
- Indeno(1,2,3-cd)pyrene: 0.514 mg/kg in SB25_6-8 to 8.03 mg/kg in SB17_5.5-7.5 (UU and RURR SCO of 0.5 mg/kg); and
- Phenol: 9.5 mg/kg in SB15_3-4 (UU SCO of 0.33 mg/kg).

PCBs

Total PCBs were detected above the UU SCOs and/or RURR SCOs in seven soil borings, including SB06, SB07, SB14, SB15, SB16, SB25, and SB26, and the three test pits. PCB concentrations ranged from 0.138 mg/kg in SB25_6-8 to 2.59 mg/kg in SB06_7-8 (UU SCO of 0.1 mg/kg and RURR SCO of 1 mg/kg).

Pesticides

Seven pesticides were detected at concentrations above the Part 375 UU SCOs in borings SB07, SB15, SB16, SB17, SB25, and SB26 and the three test pits. The samples were collected from fill material at depths between surface grade and 7.5 feet bgs.

The following list identifies pesticides detected above the SCOs. The list includes the range of concentrations above the SCO for each pesticide.

- 4,4'-DDD: 0.0637 mg/kg in SB15_3-4 to 0.0739 mg/kg in SB07_2-3 (UU SCO of 0.0033 mg/kg);
- 4-4' DDE: 0.00708 mg/kg in SB25_0-2 to 0.0539 mg/kg in TP03_1-1.5 (UU SCO of 0.0033 mg/kg);
- 4-4' DDT: 0.0233 mg/kg in SB07_2-3 to 0.114 mg/kg in SB17_5.5-7.5 (UU SCO of 0.0033 mg/kg);

- Alpha BHC (Alpha Hexachlorocyclohexane): 0.0884 mg/kg in SB15_3-4 (UU SCO of 0.02 mg/kg);
- Beta Bhc (Beta Hexachlorocyclohexane): 0.113 mg/kg in SB15_3-4 to 0.142 mg/kg in TP01_2-2.5 (UU SCO of 0.036 mg/kg);
- Dieldrin: 0.00505 mg/kg in TP03_1-1.5 to 0.00701 mg/kg in TP01_2-2.5 (UU SCO of 0.005 mg/kg); and
- Gamma Bhc (Lindane): 0.113 mg/kg in SB15_3-4 (UU SCO of 0.1 mg/kg).

Herbicides

Herbicides were not detected above the Part 375 UU SCOs.

Metals

Six metals (arsenic, barium, cadmium, copper, lead, and mercury) were detected at concentrations above RURR SCOs, and six additional metals were detected at concentrations above UU SCOs. Metals concentrations above the SCOs were detected in each boring and test pit, with the exception of SB08, SB09, SB10, SB19, and SB23. The metals exceeded the SCOs in samples collected from historic fill material and native soil at depths between surface grade and 16 feet bgs. The deepest sample exceeding the RURR SCOs was collected from 5.5 to 7.5 feet bgs in boring SB17 and contained lead at 969 mg/kg and barium at 624 mg/kg.

The following list identifies metals detected above the SCOs. The list includes the range of concentrations above the SCO for each metal, followed by the respective Part 375 SCOs in parentheses.

- Arsenic: 14.5 mg/kg in SB20_0-2 to 19.9 in RISODUP02_100319 (duplicate sample of SB20_0-2) (UU SCO of 13 mg/kg and RURR SCO of 16 mg/kg);
- Barium: 414 mg/kg in TP02_1.5-2 to 624 mg/kg in SB17_5.5-7.5 (UU SCO of 350 mg/kg and RURR SCO of 400 mg/kg);
- Cadmium: 2.83 mg/kg in SB12_3-4 to 7.14 mg/kg in TP01_2-2.5 (UU SCO of 2.5 mg/kg and RURR SCO: 4.3 mg/kg);
- Chromium (trivalent): 31.5 mg/kg in SB20_0-2 to 45 mg/kg in TP01-2-2.5 (UU SCO of 30 mg/kg);
- Chromium (hexavalent): 2.11 mg/kg in SB24_0-2 (UU SCO of 1 mg/kg);
- Copper: 54.2 mg/kg in SB07_3-4 to 422 mg/kg in TP01_2-2.5 (UU SCO of 50 mg/kg and RURR SCO: 270 mg/kg);
- Lead: 87.5 mg/kg in SB27_0-2 to 7,360 mg/kg in RISODUP02_100319 (duplicate sample of SB20_0-2) (UU SCO of 63 mg/kg and RURR SCO of 400 mg/kg);

- Mercury: 0.183 mg/kg in SB06_1-2 to 4.47 mg/kg in SB13_3-4 (UU SCO of 0.18 mg/kg and RURR SCO: 0.81 mg/kg);
- Nickel: 35.8 mg/kg in SB27_0-2 to 66 mg/kg in SB15_3-4 (UU SCO of 30 mg/kg);
- Selenium: 7.28 mg/kg in SB24_15-16 (UU SCO of 3.9 mg/kg);
- Silver: 15.3 mg/kg in TP01_2-2.5 (UU SCO of 2 mg/kg); and
- Zinc: 134 mg/kg in SB26_6-8 to 2,060 mg/kg in RISODUP02_100319 (duplicate sample of SB20_0-2) (UU SCO of 109 mg/kg).

Based on the total metals concentrations in borings SB06, SB07, SB11, SB13, SB14, SB15, SB16, RISODUP02 (duplicate of SB20), SB26 and in test pit TP01, corresponding soil samples were also analyzed for TCLP arsenic, barium, lead and/or mercury and compared to the Resource Conservation and Recovery Act (RCRA) Maximum Concentration of Contaminants for the Toxicity Characteristic (Toxicity Characteristic Limit). Concentrations of arsenic, barium, and mercury were not indicative of hazardous waste. The concentration of lead in sample RISODUP02_100319 (SB20_0-2) was 74.1 mg/kg, which exceeds the RCRA Toxicity Characteristic Limit of 5 mg/kg. Soil in the central portion of the site therefore contains lead at a concentration indicative of hazardous waste.

PFAS and 1,4-Dioxane

There are currently no soil standards for PFAS compounds in New York State. PFAS compounds were detected in six of the seventeen analyzed soil samples with total PFOA and PFOS concentrations between 936 nanograms per kilogram (ng/kg) in SB18_0-2 to 2,920 ng/kg in SB17_0-2.

1,4-dioxane was not detected in soil samples.

5.4. Groundwater Findings

5.4.1. Field Observations

Monitoring wells were gauged for non-aqueous phase liquid (NAPL) with an oil-water interface probe. The interface probe did not indicate the presence of NAPL, and PID headspace readings were not detected above background levels in the monitoring wells gauged. During the gauging events in June and October 2019, groundwater was encountered between 6.62 and 8.50 feet bgs. The elevations of the three permanent wells were surveyed and groundwater in those wells was encountered between el. 0.7 (6.62 feet bgs) at MW19 and el. 0.8 (8.15 feet bgs) at MW24. The inferred direction of groundwater flow is towards the southwest towards the Harlem River.

5.4.2. Analytical Results

Seven groundwater samples, one duplicate sample, and one MS/MSD sample set were collected for laboratory analysis from the monitoring wells. The samples were analyzed for TCL VOCs and SVOCs, PCBs, pesticides, herbicides, and TAL metals (total and dissolved). Samples from three monitoring wells (MW18, MW19, and MW24) were additionally analyzed for 1,4-dioxane via SIM and NYSDEC-listed PFAS. Analytical detections with comparison to the TOGS SGVs, where applicable, are summarized in Table 4A, and emerging contaminant detections in groundwater are summarized in Table 4B. Groundwater sample locations and results that exceed the TOGS SGVs as follows.

VOCs

VOCs were not detected above the TOGS SGVs.

SVOCs

Three groundwater samples (TMW06, TMW11, and TMW12) contained SVOCs at concentrations above the TOGS SGVs. The following SVOCs were detected above the TOGS SGVs:

- Benzo(a)anthracene: 0.03 micrograms per liter (μg/L) in TMW12 to 0.2 μg/L in TMW06 (TOGS SGV of 0.002 μg/L);
- Benzo(a)pyrene: 0.02 μg/L in TMW11 to 0.19 μg/L in TMW06 (TOGS SGV of non-detect);
- Benzo(b)fluoranthene: 0.06 μg/L in TMW11 to 0.25 μg/L in TMW06 (TOGS SGV of 0.002 μg/L);
- Benzo(k)fluoranthene: 0.02 μg/L in TMW11 to 0.1 μg/L in TMW06 (TOGS SGV of 0.002 μg/L);
- Chrysene: 0.01 µg/L in TMW12 to 0.18 µg/L in TMW06 (TOGS SGV of 0.002 µg/L); and
- Indeno(1,2,3-c,d)pyrene: 0.06 μg/L in TMW11 to 0.16 μg/L in TMW06 (TOGS SGV of 0.002 μg/L).

PCBs, Pesticides, and Herbicides

PCBs, pesticides, and herbicides were not detected above the TOGS SGVs.

Metals

Groundwater samples collected from each monitoring well contained total and dissolved metals at concentrations above the TOGS SGVs.

The following list identifies metals detected above the TOGS SGVs. The list includes the range of concentrations above the standard with the applicable SGVs shown in parentheses.

<u>Total Metals</u>

- Antimony: 6.26 μg/L in TMW06 (TOGS SGV of 3 μg/L);
- Arsenic: 34.05 μg/L in TMW06 (TOGS SGV of 25 μg/L);
- Chromium, Total: 101.6 μg/L in TMW06 (TOGS SGV of 50 μg/L);
- Copper: 372.8 µg/L in TMW06 (TOGS SGV of 200 µg/L);
- Iron: 369 μg/L in RIGWDUP01_100919 (duplicate of MW24) to 83,100 μg/L in TMW06 (TOGS SGV of 300 μg/L);
- Lead: 1,325 μg/L in TMW06 (TOGS SGV of 25 μg/L);
- Magnesium: 37,100 μg/L in MW18 to 124,000 μg/L in TMW06 (TOGS SGV of 35,000 μg/L);
- Manganese: 384.6 µg/L in TMW11 to 4,038 µg/L in TMW06 (TOGS SGV of 300 µg/L);
- Mercury: 1.55 μg/L in TMW06 (TOGS SGV of 0.7 μg/L);
- Nickel: 106.9 μg/L in TMW06 (TOGS SGV of 100 μg/L);
- Selenium: 10.9 μ g/L in TMW06 to 19 μ g/L in MW19 (TOGS SGV of 10 μ g/L); and
- Sodium: 42,400 μg/L in TMW11 to 798,000 μg/L in TMW06 (TOGS SGV of 20,000 μg/L).

Dissolved Metals

- Iron: 688 μg/L in TMW12 (TOGS SGV of 300 μg/L);
- Magnesium: 38,700 µg/L in MW18 to 58,400 µg/L in MW19 (TOGS SGV of 35,000 µg/L);
- Manganese: 331.6 μg/L in TMW12 to 996 μg/L in MW18 (TOGS SGV of 300 μg/L);
- Selenium: 19.7 μ g/L in MW19 to 20.2 μ g/L in MW18 (TOGS SGV of 10 μ g/L); and
- Sodium: 41,700 μg/L in TMW11 to 729,000 μg/L in TMW12 (TOGS SGV of 20,000 μg/L).

PFAS and 1,4-Dioxane

There are currently no groundwater standards for PFAS compounds in New York State. The USEPA has a recommended lifetime health advisory (HA) of 70 nanograms per liter (ng/L) for the combined concentrations of PFOA and PFOS. PFAS compounds were detected in the three sampled monitoring wells with total PFOA and PFOS concentrations between 98.4 ng/L in MW24 and 121 ng/L in MW18. There were no reported detections of 1,4-dioxane in groundwater samples.
5.5. Sub-Surface Soil Vapor Findings

Five sub-surface soil vapor samples, two sub-slab soil vapor samples, and one companion ambient air sample were collected and submitted for laboratory analysis of USEPA TO-15 VOCs. No standard exists for soil vapor in New York State. The samples were evaluated using the NYSDOH Air Guideline Values (AGVs) and Decision Matrices published in the 2006 NYSDOH Soil Vapor Intrusion Guidance, updated in 2017, as comparison criteria for soil vapor concentrations. The matrix evaluation requires both soil vapor and indoor air data. Indoor air samples were not collected; however, the matrices provide a minimum soil vapor concentration above which monitoring and/or mitigation is recommended, regardless of indoor air concentrations.

The analytical results are summarized below.

- Methylene chloride was detected at a concentration (60.8 µg/m³) above the AGV of 60 µg/m³ in sample SV10, which was collected from the central portion of the site. The detected methylene chloride concentrations were below the minimum threshold for which NYSDOH Decision Matrix B recommends mitigation.
- Trichloroethylene (TCE) was detected at concentrations (11.2 and 85 µg/m³) above the AGV of 5 µg/m³ in samples SV06 and SV24, which were collected from the northwestern portion of the site. The recommendations in NYSDOH Decision Matrix A for the detected TCE concentrations were "no further action" and "mitigate".
- Tetrachloroethene (PCE) was detected at a concentration (32 µg/m³) above the AGV of 30 µg/m³ in sample SV16, which was collected from the southeastern portion of the site. Detected PCE concentrations were below the minimum threshold for which NYSDOH Decision Matrix B recommends mitigation.
- Several VOCs were detected in each soil vapor sample. The petroleum-related compounds n-heptane, and n-hexane were detected at anomalously high concentrations in SV12 and SV16 on the southeastern portion of the site, with maximum concentrations of 51,200 µg/m³ (SV12) and 109,000 µg/m³ (SV12), respectively. Other petroleum-related VOCs, including benzene, toluene, ethyl benzene, and xylenes, were either not detected or detected in samples at concentrations below 100 µg/m³. However, the detection limits in SV12 were elevated above 100 µg/m³, due to sample dilution associated with the high n-heptane and n-hexane concentrations.

The analytical results of the sub-surface soil vapor sampling are summarized in Table 5 and shown on Figure 8.

5.6. Quality Control Results

Duplicates, MS/MSD sample pairs, field blanks, and trip blanks collected during the RI are summarized in Table 1. Quality control sample results were evaluated during data validation. The analytical results of field blank and trip blank samples are summarized in Table 6.

Field duplicate and parent sample pairs were collected and analyzed for the parameters described in the preceding sections. For results less than five times the reporting limit, analytes meet the precision criteria if the absolute difference is less than plus or minus two times the reporting limit. For results greater than five times the reporting limit, analytes meet the precision criteria if the relative percent difference is less than or equal to 50 percent. The analytes for the two soil duplicate/parent sample pairs and the analytes for the groundwater duplicate/parent sample pair met the precision criteria.

5.7. Data Usability

New York Analytical Services Protocols (ASP) Category B laboratory reports for the soil, groundwater, and soil vapor samples were provided by Alpha and York and reviewed by a Langan data validator for samples collected during the RI. The soil, groundwater, and soil vapor data were determined to be acceptable. Completeness, defined as the percentage of analytical results that are judged to be valid, is 100% for each sample set. Copies of the DUSRs are provided in Appendix H.

5.8. Evaluation of Potential AOCs

This section discusses the results of the RI and previous investigations with respect to the AOCs described in Section 3.4. The RURR SCOs are the applicable soil standards for comparison, based on the anticipated use of the site as a multiple-unit residential development. The results were also compared to the Part 375 UU SCOs to evaluate whether unrestricted land use is practical. AOC locations are shown on Figure 4. Details of field observations of impacts and associated depths are included in the boring logs in Appendix D

5.8.1. AOC 1: Historical Site Uses

Historical site occupants included an iron foundry (1891-1908), a motor truck company (1922-1956), a drug and chemical corporation (circa 1927), an oil company (circa 1927), manufacturing facilities (circa 1928), a chemical laboratory (1935-1949), lubricating oil storage (mid-1940s to 2005), a freight railroad (1935-1951), and a floor treatment service (circa 1949). Undocumented releases of petroleum products, solvents, or other hazardous substances associated with these former uses may have impacted soil, groundwater, and/or soil vapor.

AOC 1 Findings

Investigation of AOC 1 included the collection of samples from all borings, monitoring wells, and soil vapor probes.

Borings SB06, SB12, SB13, SB14, SB24, and SB25 on the southeastern and northwestern portions of the site contained soil exhibiting staining, petroleum-like odors, and PID readings up to 71 ppm above background concentrations at depths between 3 and 15 feet bgs. Boring SB14 on the southeastern portion of the site contained soil exhibiting a maximum PID reading of about 29 ppm at about 3 to 4 feet bgs. The petroleum-related VOCs benzene and total xylenes were detected at concentrations above the UU SCOs between 3 and 8 feet bgs in boring SB25 and boring SB15. Soil samples collected from borings SB06 (1 to 2 feet bgs), SB20 (0 to 2 feet bgs), SB16 (0 to 2 feet bgs), and SB17 (5.5 to 7.5 feet bgs) also contained SVOCs above the RURR SCOs and at levels potentially indicative of petroleum impacts. Soil vapor samples collected from the southeastern portion of the site (SV12 and SV16) contained the petroleum-related compounds n-heptane and n-hexane. The locations of the VOC and SVOC detections and petroleum nuisance condition observations in soil did not coincide with detections of the gasoline-additive MTBE in groundwater on the central portion of the site during the 2015 Phase II ESI.

Combined PFOA and PFOS concentrations in soil collected from borings SB17, SB18, SB21, SB22, and SB25 ranged from 936 ng/kg to 2,920 ng/kg. Combined PFOA and PFOS concentrations in groundwater samples collected from MW18 and MW24 ranged from 45.7 ng/L to 121 ng/L.

Soil vapor samples collected from the northwestern portion of the site (SV06 and SV24) contained the chlorinated compound TCE; however, corresponding soil and groundwater data did not indicate an on-site source of TCE.

Metals impacts associated with historical site use are discussed under AOC 2.

AOC 1 Conclusions

The RI indicated localized petroleum impacts potentially associated with historical vehicle repair and commercial oil storage on the northwestern portion of the site, railway operations on the central portion of the site, and manufacturing operations throughout the site. Nuisance conditions (i.e., staining, odors, and/or PID readings above background concentrations) were apparent in soil samples collected from the southeastern and northwestern portions of the site. VOCs and SVOCs were also detected in soil samples collected throughout the site at concentrations indicative of potential impacts from historical site use. Evidence of petroleum impacts to groundwater and soil vapor were limited to detections of gasoline additives in two groundwater samples collected from the central portion of the site during the 2015 Phase II ESI, and two soil vapor samples collected from the central portion of the site.

Although PFAS compounds were detected in soil and groundwater samples collected throughout the site, the documented historical site operations are not commonly associated with PFAS usage. Based on the soil and groundwater sampling analytical results, an on-site source for the TCE detected in soil vapor on the northwestern portion of the site was not identified.

5.8.2. AOC 2: Metals- and PCB-impacted Soil

Metals and PCBs were previously detected at concentrations above the SCOs and indicative of potential impacts associated with historical vehicle repair, manufacturing operations, railway operations, and an iron foundry.

AOC 2 Findings

Investigation of AOC 2 included the collection of soil samples from borings SB06, SB07, SB11, SB13, SB14, SB15, SB16, SB17, SB20, SB21, SB22, SB26, SB28, and TP01 through TP03.

Multiple metals, including lead, copper, mercury, arsenic, cadmium, and barium, were detected above the RURR SCOs and at levels potentially indicative of impacts from historical site use. These detections were identified in samples collected at locations throughout the site between surface grade and 4 feet bgs in borings SB11, SB13, SB15, SB16, SB20 (duplicate sample), and SB26, and in test pits TP01 and TP03. The duplicate sample collected from boring SB20 on the central portion of the site contained total lead at a concentration of 7,360 mg/kg and TCLP lead at a concentration of 74.1 mg/L, which exceeds the RCRA Toxicity Characteristic Limit.

Total PCBs were also detected in borings SB06, SB07, SB14, SB15, SB25, and SB26, and in the three test pits excavated along the railway right-of-way at concentrations above the UU and/or RURR SCOs. Maximum PCB concentrations of 2.59 ppm and 2.12 ppm were detected in boring SB06 (1 to 2 feet bgs and 7 to 8 feet bgs) on the northwestern portion of the site.

AOC 2 Conclusions

Metals were detected in the upper four feet of soil at locations throughout the site at concentrations above those commonly associated with background concentrations in urban fill. A lead concentration above the RCRA Toxicity Characteristic Limit was identified in shallow soil on the central portion of the site, and mercury and lead were identified in each test pit sample

along the former railroad right-of-way at concentrations above the RURR SCOs. Potential sources of metal impacts in these areas include historical manufacturing, an iron foundry, and railway operations.

The presence of total PCBs at concentrations above the UU and/or RURR SCOs in soil samples collected throughout the site is indicative of potential impacts from historical oil storage, vehicle repair, manufacturing, and/or railroad operations. Potential sources of the PCBs include releases of waste oil, hydraulic oil, and dielectric fluids (i.e., transformers).

5.8.3. AOC 3: Historic Fill Material

Material from an unknown source was used to infill the site during historical development. The fill extends to depths between 1.5 and 12 feet bgs and varies in thickness throughout the site. Based on the findings of the RI, the historic fill material is impacted with SVOCs and metals at concentrations above the RURR SCOs.

AOC 3 Findings

Investigation of AOC 3 included the collection of samples from all borings, monitoring wells, and soil vapor probes.

Soil Samples

Historic fill material was observed across the site below the surface cover (i.e., concrete slabs, concrete and asphalt pavement, block pavers, and gravel). Shallow fill material was sampled from 0 to 5 feet bgs in all borings, with deeper intervals of fill material sampled in borings SB06, SB08, SB10, SB12, SB13, SB17, SB25, SB26, SB27, and SB28.

Field screening and analytical results from historic fill samples are summarized as follows:

- Historic fill material exhibited PID readings above background in SB12, SB14, and SB25 (3 to 8 feet bgs), and staining and petroleum odors in SB25 (6 to 8 feet bgs).
- The petroleum-related VOCs benzene and total xylenes were detected at concentrations above the UU SCOs between 3 and 8 feet bgs in borings SB15 and SB25.
- Eight SVOCs (2-methylphenol [o-cresol], benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenzo[a,h]anthracene, and indeno[1,2,3-cd]pyrene) were detected at concentrations above the UU and/or RURR SCOs in historic fill samples collected from borings SB06, SB07, SB15, SB17, SB25, and SB30 and the three test pits.

- One or more of the following metals were detected at concentrations above the UU and/or RURR SCOs in historic fill samples collected from all borings, with the exception of SB08: arsenic, barium, cadmium, chromium (trivalent), chromium (hexavalent), copper, lead, mercury, nickel, selenium, silver, and zinc. One metal, selenium, was also detected at a concentration above the UU SCO in a native soil sample collected from 15 to 16 foot bgs in boring SB24. One sample of historic fill material (duplicate of SB20_0-2]) collected from the central portion of the site contained a total lead at a concentration of 7,360 mg/kg and TCLP lead at a concentration of 74.1 mg/L, which exceeds the RCRA Toxicity Characteristic Limit.
- Pesticides were detected above the UU SCOs in samples collected between 0 and 7.5 feet bgs in borings SB07, SB15, SB17, SB25, and SB26 on the southeastern and northwestern portions of the of the site and in the three test pits in the central portion of the site.
- PCBs were detected in historic fill material at concentrations above the UU and/or RURR SCOs in samples collected from borings SB06, SB07, SB14, SB15, SB16, SB25, SB26 and in the three test pits.
- PFOA and PFOS were detected in historic fill material at combined concentrations ranging from 936 ng/kg to 2,920 ng/kg in samples collected from borings SB17, SB18, SB21, SB22, and SB25.

Groundwater and Soil Vapor Samples

Six SVOCs (benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, and indeno[1,2,3-cd]pyrene) were detected above the TOGS SGVs in monitoring wells TMW06, TMW11, and TMW12. Low groundwater recharge in wells TMW06 and TMW12 resulted in the collection of groundwater samples without stabilization of sampling parameters. Therefore, SVOC detections in these wells likely reflect sample interference from entrained historic fill material as these contaminants are relatively insoluble. Five dissolved-phase metals (iron, magnesium, manganese, selenium, and sodium), were detected at concentrations above the TOGS AGVs in multiple groundwater samples. Total PFOA and PFOS compounds were detected at concentrations ranging from 45.7 ng/L to 121 ng/L.

Several VOCs were detected in each soil vapor sample. The gasoline-related compounds n-heptane and n-hexane were detected in two samples (SV12 and SV16) at concentrations of up to 51,200 μ g/m³ and 109,000 μ g/m³, respectively, and up to four orders of magnitude higher than those detected elsewhere on site. The chlorinated solvent TCE was detected at concentrations above the minimum threshold for which the NYSDOH Decision Matrix recommend mitigation (2

 μ g/m³) in two soil vapor samples (SV06 and SV24) collected from the northwestern portion of the site.

AOC 3 Conclusions

The fill material contains VOCs, SVOCs, pesticides, PCBs, and metals at concentrations above the UU and/or RURR SCOs. As discussed for AOC 1, nuisance conditions observed in borings on the northwestern and southeastern portions of the site, petroleum-related VOC detections in borings SB15 and SB25, SVOC concentrations in borings SB06, SB16, SB17, and SB20, and gasoline-related VOC detections in soil vapor samples SV12 and SV16 reflect localized petroleum impacts likely associated with historical use of the site. Releases from historical site operations are also the likely source of PCB detections throughout the site and the source of detections of metals at concentrations above those commonly associated with historic fill material in borings SB11, SB13, SB20, and SB26 (see AOCs 1 and 2).

With the exception of the petroleum-, PCB-, and metal-impacted soil discussed above, the detected SVOC, pesticide, and metals concentrations are typical of fill material throughout New York City. The detection of SVOCs above the TOGS SGVs in monitoring well TMW11 does not correspond with SVOC detections above the SCOs in soil samples collected from the same boring. Based on the absence of documented historical site operations associated with the use of PFAS compounds, historic fill material may be the source of total PFOS and PFOA in the upper two feet of borings SB17, SB18, SB21, SB22, and SB25. PFAS compounds in historic fill material may also be the source of total PFOS and PFOA detected in wells MW18 and MW24.

Historic fill material is not the likely source of TCE detections in soil vapor samples, based on the absence of corresponding detections in soil. The magnesium, manganese, and sodium detections in groundwater samples likely reflect the infiltration of saline water into the local groundwater aquifer from encroachment of tidally influenced brackish water from the Harlem River to the southwest or via vertical infiltration from surface runoff.

5.8.4. AOC 4: Gasoline-Impacted Groundwater

The gasoline additive MTBE was detected in two groundwater samples collected from the central portion of the site at concentrations above the TOGS AGV during the 2015 Phase II ESI. As MTBE was primarily used between the mid-1990s and mid-2000s, potential on-site sources for the MTBE were not identified during the Phase II ESI.

AOC 4 Findings

Investigation of AOC 4 included the collection of groundwater samples from monitoring wells, TMW06, TMW08, TMW11, TMW12, MW18, MW19, and MW24.

MTBE was detected in two groundwater samples (MW18 and TMW11) at concentrations below the TOGS SGV. VOCs and the gasoline-related SVOC naphthalene were not detected in groundwater samples above the TOGS SGVs. Gasoline-impacted groundwater is therefore not considered an AOC.

AOC 4 Conclusions

The groundwater sampling analytical results indicate that gasoline-related impacts are limited to those identified on the central portion of the site during the 2015 Phase II ESI. As discussed for AOC 1, the location of the MTBE detections does not correspond with the locations petroleum impacts identified in soil during the RI. An on-site source for the MTBE has not been identified, and gasoline-impacted groundwater is not considered an AOC.

6.0 QUALITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT

Human health exposure risk was evaluated for both current and future on-site and off-site conditions, in accordance with the NYSDEC DER-10. The assessment includes an evaluation of potential sources and migration pathways of site contamination, potential receptors, exposure media, and receptor intake routes and exposure pathways.

In addition to the human health exposure assessment, NYSDEC DER-10 requires an on-site and off-site Fish and Wildlife Resources Impact Analysis (FWRIA) if certain criteria are met. Based on the requirements stipulated in Section 3.10 and Appendix 3C of DER-10, there was no need to prepare an FWRIA for the site. A completed form of DER-10 Appendix 3C is included in Appendix J.

6.1. Current Conditions

The site is approximately 24,700 square feet and contains a five-story commercial building that was constructed in 1897 and a tenant parking lot. The northwestern portion of the site contains a gravel-graded rectangular extension that is overgrown with vegetation. The building has a partial cellar that contains mechanical equipment and a sump. The ground floor of the building is occupied by a restaurant, a boxing gym, and a furniture storage area, and the upper floors of the building are vacant. The site is bordered by a commercial self-storage facility to the north; two multiple-story light industrial and commercial buildings, a dog park, and an access roadway to East 135th Street to the northeast; Third Avenue and a Third Avenue Bridge overpass to the southeast; and a residential development construction site to the west. A site layout plan is included as Figure 2.

6.2. Proposed Conditions

The proposed development will include demolition of the commercial building and removal of the concrete and asphalt surface cover; removal of structurally unsuitable material; and removal of contaminated soil to accommodate construction of a 26-story residential building. The building will include affordable and market-rate rental units and will occupy a footprint of about 18,000 square feet. A full cellar will extend to a depth of about 16 feet below surface grade and will include parking, storage, and mechanical areas. The ground floor will also include parking and a lobby, and the 2nd floor will contain amenity spaces. Residential units will occupy the 2nd through 26th floors. A narrow area west of the building will be developed at grade for one level of parking. Design drawings are provided in Appendix A.

6.3. Summary of Environmental Conditions

Based on field and sampling data obtained during the RI, the following parameters were detected above applicable screening criteria and are considered contaminants of concern (COCs):

- Petroleum-related VOCs, SVOCs, PCBs, pesticides, and metals in soil; and
- Petroleum-related and chlorinated VOCs in soil vapor.

Petroleum-impacted Soil

Localized petroleum impacts were identified in borings on the northwestern (SB06, SB24, and SB25), central (SB20), and southeastern (SB12 through SB17) portions of the site. Petroleum nuisance conditions (i.e., staining, odors, and/or PID readings above background concentrations) were apparent on the southeastern and northwestern portions of the site at various depths between 3 and 15 feet bgs. The petroleum-related VOCs benzene and total xylenes were detected at concentrations above the UU SCOs between 3 and 8 feet bgs, and SVOCs were detected at concentrations above the RURR SCOs and at levels potentially indicative of petroleum impacts between 0 and 7.5 feet bgs.

Soil Impacted with SVOCs, PCBs, Pesticides, and Metals

Several SVOCs, PCBs, pesticides, and metals were detected at concentrations above the UU and/or RURR SCOs in soil samples throughout the site. The impacts were generally detected in historic fill material, which extends to depths between about 1.5 feet and 12 feet bgs. A lead concentration exceeding the RCRA Toxicity Characteristic Limit was detected in a sample collected from 0 to 2 feet bgs on the central portion of the site, and multiple samples collected throughout the site between 0 and 4 feet bgs contained other metals, including copper, mercury, arsenic, cadmium, and barium, and PCBs at concentrations indicative of potential releases from historical site use, which included vehicle repair, manufacturing, an iron foundry, railroad operations, and lubrication oil storage. Elevated metals concentrations were also detected in samples collected from a former railroad right-of-way.

Petroleum-Related and Chlorinated VOCs in Soil Vapor

Soil vapor samples collected from the northwestern portion of the site contained TCE above the minimum concentration for which the NYSDOH Decision Matrix recommends mitigation. An onsite source for TCE has not been identified. The gasoline additives n-heptane and n-hexane were also detected in soil vapor samples collected from the southeastern portion of the site at concentrations up to four orders of magnitude greater than those detected elsewhere. The detections may be associated with localized petroleum impacts identified in soil collected from nearby borings.

6.4. Conceptual Site Model

A conceptual site model (CSM) has been developed based on the findings of the RI. The purpose of the CSM is to develop a simplified framework for understanding the distribution of impacted materials, potential migration pathways, and potentially complete exposure pathways.

6.4.1. Potential Sources of Contamination

Potential sources of contamination include petroleum- and PCB-impacted soil and petroleumimpacted soil vapor resulting from historical site use (AOC 1), metals-impacted soil associated with historical site use, including hazardous lead concentrations (AOC 2), and historic fill material (AOC 3).

The findings of the RI indicate that localized petroleum- and PCB-related soil impacts are present throughout the site. The impacts occur as nuisance conditions between 3 and 15 feet bgs and as VOC, SVOC, and PCB detections above UU and/or RURR SCOs within the upper 8 feet of soil. Petroleum-impacted soil vapor was also identified on the southeastern portion of the site. Historical use of the site for vehicle repair, commercial oil storage, and railroad and manufacturing operations are the probable source of the impacts.

Metals-impacted soil is present in the upper four feet of soil throughout the site, and hazardous lead-impacted soil was identified in the upper two feet of soil on the central portion of the site. Potential sources of metal impacts in these areas include historical manufacturing, an iron foundry, and railway operations.

Historic fill material extending from surface grade to depths varying between 1.5 and 12 feet bgs contains SVOCs, pesticides, and metals above the UU and/or RURR SCOs. Historic fill material may also be the source of localized occurrences of SVOCs (via matrix interference) in groundwater. Off-site historical manufacturing on adjoining properties to the northeast and southwest may be the source of the chlorinated solvent TCE in soil vapor on the northwestern portion of the site.

6.4.2. Exposure Media

The impacted media include soil, groundwater, and soil vapor.

Petroleum-Impacted Soil

Localized petroleum impacts were identified throughout the site. Petroleum nuisance conditions (i.e., staining, odors, and/or PID readings above background concentrations) were apparent on the northwestern and southeastern portions of the site at various depths between 3 and 15 feet bgs. The petroleum-related VOCs benzene and total xylenes were detected at concentrations above the UU SCOs between 3 and 8 feet bgs, and SVOCs were detected at concentrations above the RURR SCOs and at levels potentially indicative of petroleum impacts between 0 and 7.5 feet bgs.

SVOC, PCB, Pesticide, and Metals Impacts in Soil

Several SVOCs, PCBs, pesticides, and metals were detected at concentrations above the UU and/or RURR SCOs in soil throughout the site. The impacts were generally observed in historic fill material, which extends to depths between about 1.5 feet and 12 feet bgs. Lead was detected at a level above the hazardous waste limit between 0 and 2 feet bgs on the central portion of the site, and soil throughout the site between 0 and 4 feet bgs contained copper, mercury, arsenic, cadmium, barium, and PCBs at concentrations indicative of potential releases from historical site use, including a former railroad right-of-way and foundry.

Petroleum-Related and Chlorinated VOCs in Soil Vapor

Soil vapor on the northwestern portion of the site contains the chlorinated solvent TCE above the minimum concentration for which the 2017 NYSDOH Decision Matrix recommends mitigation. Soil vapor on the southeastern portion of the site also contains the gasoline additives n-heptane and n-hexane at concentrations up to four orders of magnitude greater than those detected elsewhere on the site.

6.4.3. Receptor Populations

The site is currently occupied by a restaurant, a boxing gym, and a furniture storage area; the upper floors of the building are vacant. During site redevelopment, human receptors will be limited to construction and remediation workers, authorized guests visiting the site, and the public adjacent to the site. Under future conditions, receptors will include the new building tenants, workers, and visitors to the property, including children.

6.5. Potential Exposure Pathways – On-Site

6.5.1. Current Conditions

The site is partially covered by impervious surfaces consisting of concrete building slabs and an asphalt- and concrete-paved parking lot in the central portion of the site, respectively. Pervious portions of the site include a gravel-graded rectangular extension that is overgrown with vegetation in the northwestern portion of the site; a cobble stone paved parking lot on the central portion of the site; and a gravel lot underlain by cobble stone bedding in the southeastern portion of the site. Soil is exposed in portions of the northwestern extension, which contains dense vegetation and is located in an area that is separated from the utilized portions of the site by the western parking lot. Direct human exposure to contaminated soil is limited in the remaining areas by impermeable and compacted surface cover, and the likelihood of human exposure to contaminated soil through dermal absorption, inhalation, and ingestion is minimal.

Because groundwater in this area of New York City is not used as a potable water source, there is no complete exposure pathway under current site conditions. There is a potential exposure pathway through dermal absorption, inhalation, and ingestion during groundwater sampling associated with site investigation, but it is controlled through implementation of the health and safety plan (HASP).

The potential for soil vapor intrusion exists in the current building. However, portions of the ground floor and the upper floors are vacant, and the occupied portions of the ground floor are utilized during business hours only for a restaurant and boxing gym. The partial cellar is unoccupied and solely used for maintenance.

6.5.2. Construction/Remediation Conditions

Potential exposure pathways exist to site workers and the surrounding community via dermal absorption, inhalation, and ingestion of site contaminants during construction and remediation. These exposure pathways would be avoided through the implementation of a HASP and Community Air Monitoring Plan (CAMP), as well as vapor and dust suppression techniques, when warranted. Construction and remedial activities will include excavation and off-site disposal of hazardous and non-hazardous fill and native material, dewatering, and construction of foundation components.

6.5.3. Proposed Future Conditions

The proposed redevelopment will include residential usage. Upon completion of the new development, a majority of the contaminated soil will be excavated to accommodate a cellar and

allow for grading of the rear parking lot. The central and southeastern portion of the site will be covered by a water/vapor proofing membrane and capped by concrete building slabs and foundations, and the northwestern portion of the site will be covered by an asphalt- or concretepaved parking lot. These barriers will prevent direct human exposure to residual impacted soil and groundwater. A soil vapor intrusion evaluation will be necessary after the remedial action has been completed to determine if the soil vapor pathway has been addressed.

There is no risk of ingesting groundwater COCs, because the site and surrounding area will continue to obtain municipally-supplied drinking water originating from upstate surface water reservoirs. In addition, the site will be capped with concrete building slabs and asphalt or concrete pavement.

6.6. Potential Exposure Pathways – Off-Site

In the absence of CAMP and a HASP, soil can potentially be transported off-site by wind in the form of dust, or on vehicle tires or equipment leaving the site during the remediation, excavation, and foundation construction stage of redevelopment. This could create an exposure risk to the public adjacent to the site. Based on the potential for dewatering during construction activities, there is also a potential for public exposure to groundwater. Soil vapor will primarily migrate vertically through the subsurface and dissipate and dilute with ambient air during the construction phase. Based on concentrations of contaminants detected in soil vapor samples, there is limited potential for exposure to soil vapor intrusion off site.

The potential off-site migration of site soil, groundwater, and/or soil vapor contaminants is not expected to result in a complete exposure pathway for current, construction-phase, or future conditions for the following reasons:

- The site is located in an urban area and mostly covered with impervious and compacted surface material (i.e., concrete building slab and asphalt, concrete, cobble stone, and gravel paving).
- During site excavation, foundation construction, and remediation, the following protective measures will be implemented:
 - Air monitoring will be conducted for particulates (i.e., dust) and VOCs during intrusive activities as part of a CAMP. Dust and/or vapor suppression techniques will be employed to limit the potential for off-site migration of soil and vapors.
 - Vehicle tires and undercarriages will be washed as necessary prior to leaving, to prevent tracking material off-site.

- A soil erosion and sediment control plan will be implemented during construction to control off-site migration of soil.
- A majority of contaminated soil will be excavated to accommodate the proposed building cellar and residual soil will be capped by a continuous impervious surface covering comprised of the proposed building slabs. The new building will include a waterproofing/vapor barrier to be installed beneath the cellar slab. The northwestern area will be capped by an asphalt- or concrete-paved parking lot.
- Groundwater in New York City is not used as a potable water source.

6.7. Evaluation of Human Health Exposure

Based on the CSM and the review of environmental data, complete on-site exposure pathways appear to be present, in the absence of institutional and engineering controls, in construction-phase conditions. The complete exposure pathways indicate there is a risk of exposure to humans from site contaminants via exposure to soil, groundwater, and soil vapor if institutional and engineering controls are not implemented.

Complete exposure pathways have the following five elements: 1) a contaminant source; 2) a contaminant release and transport mechanism; 3) a point of exposure; 4) a route of exposure; and 5) a receptor population. A discussion of the five elements comprising a complete pathway as they pertain to the site is provided below.

6.7.1. Current Conditions

Contaminant sources include:

- Soil containing VOCs, SVOCs, PCBs, pesticides, and metals above Part 375 UU SCOs and/or RURR SCOs.
- Groundwater containing VOCs, SVOCs, and metals above TOGS SGVs.
- Petroleum-related and chlorinated VOCs in soil vapor.

Contaminant release and transport mechanisms include contaminated soil transported as dust, exposure to contaminated groundwater via well purging, and intrusion of contaminated soil vapor.

Under current conditions, the likelihood of exposure to humans is limited due to the following:

- The site is predominantly covered with a building slab and impervious and compacted paving materials, which prevent direct contact with soil and limit vapor intrusion.
- The partial cellar of the building, which presents the greatest potential for exposure to contaminated soil vapor, is unoccupied.

- The northwestern portion of the site, which contains exposed soil, is vacant, covered with gravel and/or vegetation, and not accessed by building tenants or visitors.
- Soil at the site is not being disturbed.
- Groundwater at the site is not a potable water source.
- Management of purge water during any groundwater sampling activities will be conducted in accordance with a HASP.

6.7.2. Construction/Remediation Activities

During remediation and the excavation and foundation construction stage of redevelopment, points of exposure include disturbed and exposed soil during excavation, and dust and potential organic vapors generated during excavation. Groundwater may also be encountered during construction dewatering. Routes of exposure include ingestion and dermal absorption of contaminated soil and groundwater, inhalation of potential organic vapors arising from contaminated soil vapor, and inhalation of dust arising from contaminated soil. The receptor population includes construction and remediation workers and the public adjacent to the site.

All five elements exist; therefore, the potential for completed exposure pathways is present. The risk can be minimized by applying appropriate health and safety measures, such as monitoring the air for organic vapors and dust, using vapor and dust suppression measures, maintaining site security, and wearing the appropriate personal protective equipment (PPE). In accordance with a HASP, a Remedial Action Work Plan (RAWP), and a CAMP, measures such as conducting an air monitoring program, donning PPE, managing groundwater, and applying vapor and dust suppression measures to prevent off-site migration of contaminants during construction will be implemented. Such measures would prevent completion of these potential exposure pathways.

6.7.3. Proposed Future Conditions

For the proposed future conditions, residual contaminants may remain on site, depending on the remedy, and may, to a lesser extent, include those listed under current conditions. If institutional and/or engineering controls are not implemented, points of exposure include potential cracks in the foundation or lowest-level slab and in concrete or asphalt pavement of the proposed development, and exposure during future soil-disturbing activities. Routes of exposure may include inhalation of vapors entering the building. The receptor population includes the building tenants, employees, visitors, and maintenance/utility workers. The possible routes of exposure can be avoided or mitigated by construction and maintenance of a site capping system (i.e., vapor proof membrane and concrete building slab), and implementation of a Site Management Plan. A

soil vapor intrusion evaluation will be necessary after the remedial action has occurred to determine if the soil vapor pathway has been addressed.

6.7.4. Human Health Exposure Assessment Conclusions

- 1. Under current conditions, there is a marginal risk for exposure. The primary exposure pathways are dermal contact, ingestion, and inhalation of soil, groundwater, or soil vapor by site workers. The exposure risks can be avoided or minimized by following the appropriate health and safety and vapor and dust suppression measures during investigation activities.
- 2. In the absence of engineering controls, there is a moderate risk of exposure during the construction-phase activities. The primary exposure pathways, which can be avoided or minimized by performing community air monitoring and by following the appropriate health and safety, vapor and dust suppression, and site security measures, are:
 - A. Dermal contact, ingestion, and inhalation of contaminated soil, groundwater, and soil vapor by construction workers.
 - B. Dermal contact, ingestion, and inhalation of soil (dust) and inhalation of soil vapor by the community in the vicinity of the site.
- 3. The existence of a complete exposure pathway for site contaminants to human receptors during proposed future conditions is unlikely. The site will be remediated and engineering and institutional controls will be in place to mitigate exposure risk related to residual contamination that may remain on site. Further, groundwater is not used as a potable water source in New York City.
- 4. It is possible that a complete exposure pathway exists for the migration of site contaminants to off-site human receptors for current, construction-phase, and/or future conditions. Monitoring and control measures have been and will continue to be used during investigation and construction to prevent completion of this pathway. Under future conditions, the site will be remediated and engineering controls will be implemented as necessary to prevent completion of this pathway.

7.0 NATURE AND EXTENT OF CONTAMINATION

This section evaluates the nature and extent of soil, groundwater, and soil vapor contamination. The nature and extent of the contamination is derived from a combination of field observations and analytical data that were discussed in Section 5.0.

7.1. Soil Contamination

Soil contamination is primarily categorized by localized petroleum, PCB, and metals impacts associated with historical site use at several locations and by historic fill material containing SVOCs, PCBs, pesticides, and metals at concentrations above the UU and RURR SCOs. Soil contamination is generally contained within the historic fill layer, which extends to depths between about 1.5 feet and 12 feet bgs, with the exception of nuisance conditions observed between 11 feet and 15 feet bgs within native soil on the northwestern portion of the site.

7.1.1. Petroleum-impacted Soil

Localized petroleum impacts were identified in borings on the northwestern (SB06, SB24, and SB25), central (SB20), and southeastern (SB12 through SB17) portions of the site. Petroleum nuisance conditions (i.e., staining, odors, and/or PID readings above background concentrations) were apparent on the southeastern and northwestern portions of the site at various depths between 3 and 15 feet bgs. The petroleum-related VOCs benzene and total xylenes were detected at concentrations above the UU SCOs between 3 and 8 feet bgs, and SVOCs were detected above the RURR SCOs and at levels potentially indicative of petroleum impacts between 0 and 7.5 feet bgs. The impacts may be associated with releases during historical activities, including vehicle repair and commercial oil storage on the northwestern portion of the site, railroad operations on the central portion of the site, and manufacturing operations throughout the site.

7.1.2. Metals- and PCB-impacted Soil

PCBs and multiple metals, including lead, copper, mercury, arsenic, cadmium, and barium, were detected in the upper four feet of soil at locations throughout the site above the RURR SCOs and/or UU SCOs and at levels potentially indicative of impacts from historical site use. The metals detections were identified in borings SB11, SB13, SB20 (duplicate sample), and SB26, and in test pits TP01 and TP03. The duplicate sample collected from boring SB20 on the central portion of the site contained total lead at a concentration of 7,360 mg/kg and TCLP lead at a concentration of 74.1 mg/L, which exceeds the RCRA Toxicity Characteristic Limit. Mercury and lead were above the RURR SCOs and PCBs were above the UU SCOs in each test pit sample along the former railroad right-of-way. Total PCBs were also detected in borings SB06, SB07, SB14, SB15,

SB25, and SB26 at concentrations above the UU and/or RURR SCOs. Maximum PCB concentrations of 2.59 mg/kg and 2.12 mg/kg were detected in boring SB06 (1 to 2 feet bgs and 7 to 8 feet bgs) on the northwestern portion of the site.

Potential sources of metal and PCB impacts in these areas include releases during historical site use, including oil storage, vehicle repair, manufacturing, an iron foundry, and railroad operations. The PCB detections may be associated with releases of waste oil, hydraulic oil, and dielectric fluids (i.e., transformers).

7.1.3. Historic Fill Material

Historic fill material predominantly consisting of brown fine sand with varying amounts of gravel, silt, brick, coal, concrete, slag, and glass fragments extends across the site beneath the surface cover to depths that vary between about 1.5 feet and 12 feet bgs. The fill material contains several SVOCs, pesticides, and metals at concentrations above the UU and/or RURR SCOs. The detected concentrations are generally consistent with urban fill in New York City.

7.2. Groundwater Contamination

Detections of dissolved metals and SVOCs in groundwater are likely indicative of matrix interference from historic fill material, infiltration of brackish groundwater originating from the nearby Harlem River, and/or vertical migration of saline surface water into the local aquifer.

7.3. Soil Vapor Contamination

Soil vapor on the northwestern portion of the site (SV06 and SV24) contains TCE at documented concentrations of up to 85 μ g/m³, which is above the minimum concentration for which the NYSDOH Decision Matrix recommends mitigation. An on-site source for TCE has not been identified. The gasoline additives n-heptane and n-hexane were also detected in soil vapor on the southeastern portion of the site (SV12 and SV16) at maximum concentrations of 51,200 μ g/m³ and 109,000 μ g/m³, respectively, which are up to four orders of magnitude greater than those detected elsewhere. The detections may be associated with localized petroleum impacts identified in soil collected from nearby borings.

8.0 CONCLUSIONS

The conclusions are based on RI data collected between June 6 and October 9, 2019 and results from sampling data obtained prior to conducting the RI.

The findings summarized herein are based on qualitative data (field observations and instrumental readings) and laboratory analytical soil, groundwater, and soil vapor sample results. Relevant findings from previous investigations are also referenced.

The findings and conclusions are as follows:

- <u>Stratigraphy</u>: The subsurface profile generally consists of historic fill material extending to depths that vary between about 1.5 feet and 12 feet bgs. The fill layer generally increases in thickness in the northwestern portion of the site and consists of brown fine sand with varying amounts of gravel, silt, brick, coal, concrete, slag, wood, and glass fragments. The fill material is underlain by native soil generally consisting of mediumgrained sand with varying amounts of silt, clay, fine sand, coarse sand, and fine gravel. A discontinuous layer of organic clay was observed in six soil borings between about 7 and 10 feet bgs.
- <u>Hydrogeology</u>: Groundwater was observed at depths between 6.62 and 8.15 feet bgs (el. 0.70 and el. 0.80) during synoptic groundwater level measurements taken from three wells in October 2019. The inferred direction of groundwater flow is to the southwest towards the Harlem River, which is about 150 feet from the site.
- 3. <u>Petroleum-Impacted Soil</u>: Localized petroleum impacts were identified in borings throughout the site. Petroleum nuisance conditions (i.e., staining, odors, and/or PID readings above background concentrations) were apparent on the southeastern and northwestern portions of the site at various depths between 3 and 15 feet bgs. The petroleum-related VOCs benzene and total xylenes were detected at concentrations above the UU SCOs and SVOCs were detected above the RURR SCOs and at levels potentially indicative of petroleum impacts between 0 and 8 feet bgs. The impacts may be associated with releases during historical activities, including vehicle repair and commercial oil storage on the northwestern portion of the site, railroad operations on the central portion of the site, and manufacturing operations throughout the site (i.e., AOC 1).
- 4. <u>Metals- and PCB-Impacted Soil</u>: PCBs and multiple metals, including lead, copper, mercury, arsenic, cadmium, and barium, were detected in the upper four feet of soil at locations throughout the site at levels above the RURR SCOs and/or UU SCOs and

potentially indicative of impacts from historical site use. A sample collected from the upper two feet on the central portion of the site (SB20) contained total lead at a concentration of 7,360 mg/kg and TCLP lead at a concentration of 74.1 mg/L, which exceeds the RCRA Toxicity Characteristic Limit. Mercury and lead concentrations were above the RURR SCOs and total PCB concentrations were above the UU SCOs in each sample from the former railroad right-of-way. A maximum PCB concentration of 2.59 mg/kg, which exceeds the RURR SCO, was detected between 7 and 8 feet bgs on the northwestern portion of the site (SB06). Potential sources of metal and PCB impacts include historical oil storage, vehicle repair, manufacturing, an iron foundry, and railroad operations.

- 5. <u>Historic Fill Material</u>: Historic fill material throughout the site contains several SVOCs, pesticides, and metals at concentrations above the UU and/or RURR SCOs. The detected concentrations are generally consistent with urban fill in New York City.
- 6. <u>Groundwater Impacts</u>: Detections of dissolved metals and SVOCs are likely indicative of matrix interference from historic fill material, infiltration of brackish groundwater originating from the nearby Harlem River, and/or vertical migration of saline surface water into the local aquifer.
- 7. <u>Soil Vapor Impacts</u>: Soil vapor on the northwestern portion of the site contains TCE at concentrations of 11.2 μg/m³ (SV06) and 85 μg/m³ (SV24), which exceed the minimum concentration for which the NYSDOH Decision Matrix recommends mitigation (6 μg/m³). An on-site source for TCE was not identified. The gasoline additives n-heptane and n-hexane were also detected in soil vapor on the southeastern portion of the site (SV12 and SV16) at maximum concentrations of 51,200 μg/m³ and 109,000 μg/m³, respectively, which are up to four orders of magnitude greater than those detected elsewhere. The detections may be associated with localized petroleum impacts identified in soil collected from nearby borings.
- 8. Sufficient analytical data were gathered during the RI to establish soil cleanup levels and to develop a remedy for the site. The remedy will be described and evaluated in a RAWP prepared in accordance with New York State BCP guidelines. The remedy will address impacts to soil, groundwater, and soil vapor described in this RIR.

9.0 REFERENCES

- 1. Go Environmental, Phase I Environmental Site Assessment (ESA) for 2413 Third Avenue, Bronx, New York, dated August 14, 2012.
- Groundwork Inc., Limited Subsurface Investigation Report of Findings, dated December 30, 2013.
- Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C., Phase I ESA, dated December 7, 2015.
- 4. Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C., Phase II ESI, dated December 10, 2015.
- 5. New York State Department of Environmental Conservation, Part 375 of Title 6 of the New York Compilation of Codes, Rules, and Regulations, effective December 14, 2006.
- 6. New York State Department of Environmental Conservation, DER-10 Technical Guidance for Site Investigation and Remediation, issued May 3, 2010; effective June 18, 2010.
- 7. New York State Department of Environmental Conservation, Guidance on Groundwater Sampling for Emerging Contaminants, dated April 2018.
- New York State Department of Environmental Conservation, Guidance on Collection of Groundwater Samples for Perfluorooctanoic Acid and Perfluorinated Compounds from Monitoring Wells Sample Protocol, dated 29 June, 2016.
- 9. New York State Department of Health, Final Guidance for the Evaluation of Soil Vapor Intrusion in the State of New York, dated October 2006, revised May 2017.
- 10. New York State Division of Water TOGS 1.1.1, dated June 1998.
- United States Environmental Protection Agency, Low Flow Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, EQASOP-GW 001, dated January 19, 2010.
- 12. United States Geological Survey (USGS), Bedrock and Engineering Geologic Maps of Bronx County and Parts of New York and Queens Counties, New York, dated 1987.

FIGURES

Filename: \\langan.com\data\NYC\data0\170396002\Project Data\CAD\02\SheetFiles\RIR\Figure 2 - Site Layout Plan.dwg Date: 1/31/2020 Time: 16:46 User: tschiefer Style Table: Langan.stb Layout: ANSIB-BL

7	8

LEGEND:

APPROXIMATE SITE BOUNDARY

EXISTING BUILDING FOOTPRINT

NOTES:

1. BASE MAP FROM TOPOGRAPHIC AND BOUNDARY SURVEY PREPARED BY GALLAS SURVEYING GROUP, DATED 8 AUGUST 2019.

	Figure Title	Project No. 170396002	Figure N	lo.			
UE		Date 11/11/2019		ว			
9	SHE LATOUT PLAN	Drawn By EM		Z			angan
YORK		Checked By SK	Sheet	2	of	8	© 2019

	7		8
END:			
	SITE BOUNDARY		
N24 (80')	MONITORING WELL LOC	ATION (GROU	NDWATER ELEVATION)
0.76 —	GROUNDWATER CONTO	UR ELEVATION	N
	INFERRED GROUNDWAT	ER FLOW DIR	ECTION
'ES:			
BASE MAP F	ROM TOPOGRAPHIC AND	BOUNDARY S	URVEY PREPARED BY
GALLAS SUR	VEYING GROUP, DATED 8	AUGUST 2019	
MONITORING	G WELL LOCATIONS ARE B	ASED ON FIEL	LD MEASUREMENT.
MONITORING	G WELL TOP OF CASING EI	LEVATIONS W	ERE SURVEYED BY
LANGAN ON	NOVEMBER 14, 2019.		
GROUNDWA	TER ELEVATIONS ARE BAS	SED ON A SYN	OPTIC GROUNDWATER
GAUGING ON	NOCTOBER 9, 2019		

5. GROUNDWATER CONTOUR INTERVAL IS 0.02 FOOT

ELEVATIONS ARE REFERENCED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88)

	Figure Title	Project No.	Figure No.	
		170396002		
UE	GROUNDWATER	Date 11/11/2019	С	
	ELEVATION	Drawn By)	5
)9	CONTOUR MAP	JFY		oue -
		Checked By		10
YORK		ŠK	Sheet 3 of 8	000

Filename: \\langan.com\data\NYC\data0\170396002\Project Data\CAD\02\SheetFiles\RIR\Figure 4 - Area of Concern Map.dwg Date: 2/14/2020 Time: 15:47 User: tgoodnough Style Table: Langan.stb Layout: ANSIB-BL

	7 8
	LEGEND:
1	APPROXIMATE SITE BOUNDARY
	AOC 1 - HISTORICAL SITE USE
	AOC 2 - METALS-IMPACTED SOIL
	PAOC 4 - GASOLINE-IMPACTED GROUNDWATER
	NOTES: 1. BASE MAP FROM TOPOGRAPHIC AND BOUNDARY SURVEY PREPARED BY

- GALLAS SURVEYING GROUP, DATED 8 AUGUST 2019.
- 2. AOC = AREA OF CONCERN
- 3. PAOC = POTENTIAL AREA OF CONCERN
- 4. AOC 1 REFERS TO HISTORICAL SITE USES AND EXTENDS THE ENTIRE SITE FOOTPRINT. LOCATIONS OF HISTORICAL SITE USES ARE DOCUMENTED. NOT ALL HISTORICAL USES INCLUDED IN AOC 1 ARE SHOWN.
- 5. AOC 3 REFERS TO THE PRESENCE OF HISTORIC FILL WHICH IS PRESENT THROUGHOUT THE SITE.
- 6. BASED ON THE REMEDIAL INVESTIGATION FINDINGS, PAOC 4 IS NOT CONSIDERED AN AOC.

	Figure Title	Project No. 170396002	Figure	No.			
UE	AREA OF	Date 11/11/2019		Λ			
9	CONCERN MAP	Drawn By TCS		4			
YORK		Checked By SK	Sheet	4	of	8	ļ

Filename: \\langan.com\data\\NY\data0\170396002\Project Data\CAD\02\SheetFiles\RIR\Figure 4 - Sample Location Plan.dwg Date: 2/11/2020 Time: 12:38 User: ssaleh Style Table: Langan.stb Layout: ANSIB-BL

	7		8
LEGEN	<u>D:</u>		
	SITE BOUNDARY		
$\mathbf{\Phi}$	2019 RI SOIL BORING SAM	IPLE	
+	2019 RI SOIL BORING AND SAMPLE	MONITORING	WELL
4	2019 RI SOIL VAPOR SAMI	PLE	
•	2019 RI TEST PIT SAMPLE		
$\mathbf{\Phi}$	2015 PHASE II SOIL BORIN	G SAMPLE	
\blacklozenge	2015 PHASE II MONITORIN	G WELL SAMPI	Æ

2015 PHASE II SOIL VAPOR SAMPLE

NOTES:

- 1. BASE MAP FROM TOPOGRAPHIC AND BOUNDARY SURVEY PREPARED BY GALLAS SURVEYING GROUP, DATED 8 AUGUST 2019.
- 2. ALL LOCATIONS ARE APPROXIMATE.
- 3. RI = REMEDIAL INVESTIGATION.
- 4. THE 2019 REMEDIAL INVESTIGATION WAS CONDUCTED BY LANGAN BETWEEN JUNE 6 AND OCTOBER 9, 2019.
- 5. THE 2015 PHASE II ENVIRONMENTAL SITE INVESTIGATION IS DOCUMENTED IN A REPORT PREPARED BY LANGAN, DATED DECEMBER 10, 2015.

	Figure Title	Project No. 170396002	Figure N	lo.			
UE	SAMPLE LOCATION	Date 11/11/2019		F			
9	PLAN	Drawn By EM		5			Langan
YORK		Checked By SK	Sheet	5	of	8	© 2019

		1			2				٦	
_	Sample ID	SB26_0-2	SB26_6-8	Sar	mple ID mple Date		SB25_0-2 10/1/2019	SB25_6-8	SB25_11-12 10/1/2019	Sample ID
	Sample Date Sample Depth (feet bgs)	10/1/2019 0-2	10/1/2019 6-8	Sar VO	nple Depth (feet bgs) Cs (mg/kg)		0-2	6-8	11-12	Sample Dat Sample De
	VOCs (mg/kg) SVOCs (mg/kg)	NE	NE	Cis- Met	-1,2-Dichloroethene thyl Ethyl Ketone (2-Butano	ne)	ND NE	0.72 0.48	D ND JD NE	VOCs (mg/ SVOCs (mg
	Benzo(a)Anthracene Benzo(a)Pyrene	1.95 D 2.11 D	4.59 D 3.98 D	Tota	al Xylenes OCs (mg/kg)		ND	1.1	JD ND	Benzo(a)Ant Benzo(a)Pyr
	Benzo(b)Fluoranthene Benzo(k)Fluoranthene	1.88 D 1.74 D	2.97 D 2.69 D	Ben Ben	nzo(a)Anthracene nzo(a)Pyrene		1.56 D 1.43 D	3.8 1.35	D ND D ND	Benzo(b)Flue Chrysene
	Chrysene Dibenz(a,h)Anthracene	2.1 D 0.602 D	4.12 D 0.795 D	Ben Ben	nzo(k)Fluoranthene		1.10 D 1.25 D	2.08	D ND ND	Indeno(1,2,3 Pesticides (
	Indeno(1,2,3-c,d)Pyrene Pesticides (mg/kg)	1.14 D	1.64 D	Chr	ysene eno(1 2 3-c d)Pyrene		1.13 D 1.42 D	3.25	D ND ND	PCBs (mg/l Inorganics
А	4,4'-DDT Herbicides (mg/kg)	0.0909 D ND	ND ND	Pes	sticides (mg/kg)		0.00708 DP	ND	ND	
	PCBs (mg/kg) Total PCBs	0.174	0.434	4,4' Her	'-DDT 'bicides (mg/kg)		0.0371 DP	ND ND	ND ND	-
	Inorganics (mg/kg) Copper	97.7 B	NE	PCE	Bs (mg/kg) al PCBs		NE	0.138	ND	
	Lead Mercury	1,400 0.287	93 0.194	Ino	rganics (mg/kg)		83.2 B	NE	NE	-
	Zinc TCLP - Inorganics (mg/L)	350 ND	134 NA	Lea	id rcurv		216 1 09	NE NE	NE	
	PFAS (mg/kg)	ND	NA	Zinc	c AS (mg/kg)		155 DNC	NE NA		-
	Sample ID Sample Date	SB06_1-2 6/6/2019	SB06_7-8 6/6/2019		9.6 8' CL	WBARBED		14/1	11/2 1	1
—	Sample Depth (feet bgs) VOCs (mg/kg)	1-2	7-8		× ×	3	X VVESTERLY			
	Acetone SVOCs (mg/kg)	0.054	0.26	\setminus	9.6	-	-X	¥		
	Benzo(a)Anthracene Benzo(a)Pyrene	12 10	2 1.7		X 20:37	S	B26		V	
	Benzo(b)Fluoranthene Benzo(k)Fluoranthene	13 5.4	2.5 NE			- X#	SB06/T	MW06	92 X CLF WBAR	BTD WIRF
	Chrysene Dibenz(a,h)Anthracene	10 1.6	1.8 NE			- NO AGGRE	Ob CONSTRUCTION FEW CF		/	+ X 9.1*
	Indeno(1,2,3-c,d)Pyrene Pesticides (mg/kg)	6.8 NE	1.2 J ND			/ 0100	°	X - /x	9.5	CDO
_	PCBs (mg/kg) Total PCBs	2.12	2.59 Sample I	D	SB07_2-3 SB07_5-	-6			**	JDZ3
В	Inorganics (mg/kg) Copper	63.1	NE VOCs (m	Depth (feet bgs)	2-3 5-6	9 KL	Y	/	-X-	<i>₽.8</i> -X
	Lead Mercury	234 0.183	107 ND SVOCs (m Acetone	ng/kg)	NE 0.053	·	(10	/ 101 1-		
	Zinc	347	177 Benzo(a)A Benzo(b)E	Anthracene	1.2 NE 1.2 ND			- DEE	D da a	
1			Indeno(1, Pesticide	2,3-c,d)Pyrene s (mg/kg)	0.56 ND	ROA BER	AD RIGHT OF I		~ <i>IR</i>)	\times
1			4,4'-DDD 4 4'-DDF	(0.0739 ND 0.0409 ND		6 PG. 102 /		^{89°45′50} "	
1			4,4'-DDT PCBs (ms	g/kg)	0.0233 ND					L_90.
			Total PCE Inorganic	s (mg/kg)	0.254 NE		/			
			Copper Lead		54.2 NE 234 NE		/			
			Mercury Zinc		0.306 ND 170 NE		/			
Sa Sa	ample ID ample Date	SB24_0-2 10/1/2019	SB24_10-12 10/1/2019	SB24_15-16 10/1/2019			/			
Sa	ample Depth (feet bgs) OCs (mg/kg)	0-2 NE	10-12 NE	15-16 NE	/				,	ROD N/F
S Pe	VOCs (mg/kg) esticides (mg/kg)	NE ND	NE ND	ND ND	/			San	nple ID pple Date	SB20_0
He P(erbicides (mg/kg)	ND ND	ND ND	ND ND	/			San	nple Depth (feet bgs)	0-2
C_{C}^{In}	organics (mg/kg)	2 11	ND	ND				SVC	DCs (mg/kg)	7 75
Le	ead	113 0.185	NE ND	NE ND				Ben	zo(a)Antinacene zo(a)Pyrene zo(b)Eluoranthono	6.68
Se Pl	elenium FAS (mg/kg)	ND DNC	ND NA	7.28 NA				Ben	zo(k)Fluoranthene	4.72
		Dive			/		/	Dibe	enz(a,h)Anthracene	1.28
								Pest	ticides (mg/kg)	ND
	Sample ID Sample Date	SB27_0-2 10/2/2019	SB27_6-8 10/2/2019					PCB	s (mg/kg)	ND
	Sample Depth (feet bgs) VOCs (mg/kg)	0-2 NE	6-8 NE					Arse	enic	14.5
[SVOCs (mg/kg) Pesticides (mg/kg)	NE ND	NE ND	/				Chro	per	31.5
	Herbicides (mg/kg) PCBs (mg/kg)	ND ND	ND ND					Lead	d cury	362 0.367
	Inorganics (mg/kg) Lead	87.5	NE					Zinc	P - Inorganics (mg/L)	388
]	Nickel PFAS (mg/kg)	35.8 NA	NE ND					Leac PFA	<u>l</u> S (mg/kg)	NA ND
	Sample ID								Sample ID	S
	Sample D Sample Date	SB28_0-2 10/2/2019	SB28_5.5-7.5 10/2/2019						Sample Date Sample Depth (feet bgs	3)
	VOCs (mg/kg)	NE NE	5.5-7.5 NE				`		SVOCs (mg/kg)	
D	Pesticides (mg/kg) Horbicides (mg/kg)	NE ND	ND ND		\		\		Benzo(k)Fluoranthene	1.0
	PCBs (mg/kg)	ND ND	ND ND		\setminus		\backslash		Pesticides (mg/kg)	
	Chromium, Trivalent	NE	39.3		\		\backslash		PCBs (mg/kg)	
	PFAS (mg/kg)	NA	ND				\searrow		Copper	6
1	Amplet	<u></u>	NYSDEC Part 375	NYSDEC Part 37 Restricted Use	5 RCRA				PFAS (mg/kg)	2 N
1			Unrestricted Use SCO	s Restricted-Residen SCOs	Hazardous Waste			\searrow		
L	VOCs (mg/kg) Acetone		0.05	100	~	-				
1	Benzene Cis-1,2-Dichloroethene		0.06 0.25	4.8 100	~ ~					
	Methyl Ethyl Ketone (2-Butan Total Xylenes	one)	0.12	100	~		TES:			
1	SVOCs (mg/kg)		0.20	100	~	$\frac{1.01}{1.}$	EXISTING INFORMATI	ON TAKEN FR	COM TOPOGRAPHIC AN	ID BOUNDA
	2-Methylphenol (o-Cresol) Benzo(a)Anthracene		0.33	1	~ ~	2.	ALL SAMPLE LOCATIO	ONS ARE APP	ROXIMATE.	
1	Benzo(a)Pyrene Benzo(b)Fluoranthene		1 1	1	~ ~	3. 4.	VOCs = VOLATILE OR SVOCs = SEMIVOLAT	GANIC COMP	OUNDS COMPOUNDS	
	Benzo(k)Fluoranthene Chrysene		0.8	3.9 3.9	~ ~	5. 6.	PCBs = POLYCHLORII PFAS = PER- AND POL	NATED BIPHE	NYLS KYL SUBSTANCES	
E	Dibenz(a,h)Anthracene Indeno(1,2,3-c,d)Pyrene		0.33 0.5	0.33 0.5	~ ~	7.	MG/HG = MILLIGRAM	S PER KILOGI	RAM	
	Phenol Pesticides (mg/kg)		0.33	100	~	9.	BGS = BELOW GRADI	E SURFACE		
	4,4'-DDD 4 4'-DDF		0.0033	13	~ ~	10. 11.	ND = NOT DETECTED NE = DETECTED AT C	ONCENTRATI	ON(S) NOT EXCEEDING	SCOs.
1	4,4'-DDT Alpha BHC (Alpha U	ocyclohovene)	0.0033	7.9	~	12. 13.	NA = NOT APPLICABL DNC = DETECTED CO	E/NOT ANALY MPOUND BU	ΊΖΕD Γ NO CRITERIA	
1	Beta Bhc (Beta Hexachlorocyc	clohexane)	0.02	0.48	~ ~	14.	P = THIS FLAG IS USE % DIFFERENCE FOR T	D FOR PESTIC	CIDE AND PCB (AROCL INCENTRATIONS THAT	OR) TARGET EXCEED ME
1	Gamma Bhc (Lindane)		0.005	0.2 1.3	~ ~	1	BETWEEN THE TWO (GC COLUMNS	USED FOR ANALYSIS.	
1	PCBs (mg/kg) Total PCBs		0.1	1	~~	15. 16.	D = THE ANALYTE WAD = THE CONCENTRA	TION OF THE	ANALYTE WAS QUANT	LISIS BATCH
-	Inorganics (mg/kg) Arsenic		13	16	~	17.	I = THE LOWER VALU INTERFERENCE.	E OF THE TWO	U COLUMNS HAS BEEI	N REPORTEI
1	Barium Cadmium		350 2.5	400 4.3	~ ~	18.	J = THE ANALYTE WA REPORTING LIMIT (RI	S DETECTED .); THEREFORI	ABOVE THE METHOD . E, THE RESULT IS AN F	DETECTION STIMATED C
	Chromium, Hexavalent Chromium Trivalent		1	110	~	19.	THE SOIL SAMPLE AN	VALYTICAL RE	SULTS ARE COMPARE	D TO THE NI
1	Copper		50	270	~		YORK CODES, RULES	, AND REGUL	ATIONS (6 NYCRR) PAR	T 375 UNRE
1	Mercury Nick -1		0.18	400 0.81	~ ~	20.	USE RESTRICTED-RES NYSDEC PART 375 UN	SIDENTIAL SO	IL CLEANUP OBJECTIV USE SCOS EXCEEDAN	es (SCOS). Ces are in
	INICKEI Selenium		30 3.9	310 180	~ ~	21. 22.	NYSDEC PART 375 RE RCRA CHARACTERIST	STRICTED US	E RESTRICTED-RESIDE RDOUS WASTE EXCEE	NTIAL SCOS
	Silver Zinc		2 109	180 10,000	~	23. 24	ONLY DETECTIONS E	XCEEDING AP	PLICABLE SCOs ARE S	HOWN. CATIONS SP
F	TCLP - Inorganics (mg/L) Lead		~	~	5	~4. 	ARE THEREFORE NOT	SHOWN ON	THIS FIGURE.	21110100 20
	PFCs (mg/kg)		~	~	-]				

	5051_0-2	·	5051_0.0-0.0
	9/27/2019	9	9/27/2019
	0-2		6.5-8.5
	0.19		0.051
	0.17	В	NE
	NE		NE
	ND		ND
	ND		ND
	NE		NE
	185		128
	235		179
	0.631		0.368
	317		180
	ND		NA
			1
ا ما	D		SB14.3.4
)ato		C/7/2010
	onth (foot hos)		0/7/2019
(m	g/kg)		3-4
ne	0 0,		0.11
's (r	ng/kg)		NE
ide	$\frac{g}{s}$ (mg/kg)		NE
(me	(kg)		
	s o [,]		0.156
nic	$rs(m\sigma/k\sigma)$		0.100

Dumpie ib	1100_1-1	
Sample Date	6/21/201	19
Sample Depth (feet bgs)	1-1.5	
VOCs (mg/kg)	ND	
SVOCs (mg/kg)		
Benzo(a)Anthracene	4.1	
Benzo(a)Pyrene	3	
Benzo(b)Fluoranthene	3.5	
Benzo(k)Fluoranthene	1.2	
Chrysene	3.4	
Dibenz(a,h)Anthracene	0.41	
Indeno(1,2,3-c,d)Pyrene	1.9	
Pesticides (mg/kg)		
4,4'-DDE	0.0539	
4,4'-DDT	0.0764	IP
Dieldrin	0.00505	IP
PCBs (mg/kg)		
Total PCBs	0.729	
Inorganics (mg/kg)		
Cadmium	3.53	
Copper	244	
Lead	968	
Mercury	3.62	
Nickel	65.3	
Zinc	687	

Sample ID	TP02_1.5-2
Sample Date	6/21/2019
Sample Depth (feet bgs)	1.5-2
VOCs (mg/kg)	ND
SVOCs (mg/kg)	
Benzo(a)Anthracene	1.3
Benzo(a)Pyrene	1.3
Benzo(b)Fluoranthene	1.5
Chrysene	1.3
Indeno(1,2,3-c,d)Pyrene	0.82
Pesticides (mg/kg)	
4,4'-DDE	0.0292
4,4'-DDT	0.0904
PCBs (mg/kg)	
Total PCBs	0.154 J
Inorganics (mg/kg)	
Barium	414
Copper	190
Lead	686
Mercury	4.13
Nickel	46.1
7ino	099

Course la ID	CD10.0.4	CD10 10 11
Sample ID	SB13_3-4	SB13_10-11
Sample Date	6/7/2019	6/7/2019
Sample Depth (feet bgs)	3-4	10-11
VOCs (mg/kg)		
Acetone	0.27	NE
SVOCs (mg/kg)		
Benzo(a)Anthracene	1.5	NE
Benzo(a)Pyrene	1.5	NE
Benzo(b)Fluoranthene	1.8	NE
Chrysene	1.5	NE
Indeno(1,2,3-c,d)Pyrene	0.87	NE
Pesticides (mg/kg)	ND	NE
PCBs (mg/kg)	ND	NE
Inorganics (mg/kg)		
Cadmium	3.6	ND
Copper	195	NE
Lead	482	NE
Mercury	4.47	ND
Zinc	384	NE
TCLP - Inorganics (mg/kg)	NE	NA

Sample ID SB12_3-4 SB12_5-6 Sample Date 6/6/2019 6/6/2019 Sample Depth (feet bgs) 3-4 5-6 VOCs (mg/kg) 5-6 Acetone 0.064 ND Benzene NE 0.12 SVOCs (mg/kg) NE NE Pesticides (mg/kg) ND ND PCBs (mg/kg) ND NE Inorganics (mg/kg) Za83 3.51			
Sample Date6/6/20196/6/2019Sample Depth (feet bgs)3-45-6VOCs (mg/kg)3-45-6VOCs (mg/kg)NDNDBenzeneNE0.12SVOCs (mg/kg)NENEPesticides (mg/kg)NDNDPCBs (mg/kg)NDNEInorganics (mg/kg)Z.833.51Cadmium2.833.51	Sample ID	SB12_3-4	SB12_5-6
Sample Depth (feet bgs)3-45-6VOCs (mg/kg)Acetone0.064NDBenzeneNE0.12SVOCs (mg/kg)NENEPesticides (mg/kg)NDNDPCBs (mg/kg)NDNEInorganics (mg/kg)Z.833.51Cadmium2.833.51	Sample Date	6/6/2019	6/6/2019
VOCs (mg/kg) 0.064 ND Acetone 0.064 ND Benzene NE 0.12 SVOCs (mg/kg) NE NE Pesticides (mg/kg) ND ND PCBs (mg/kg) ND NE Inorganics (mg/kg) Zamium 2.83 3.51	Sample Depth (feet bgs)	3-4	5-6
Acetone 0.064 ND Benzene NE 0.12 SVOCs (mg/kg) NE NE Pesticides (mg/kg) ND ND PCBs (mg/kg) ND NE Inorganics (mg/kg) ND NE	VOCs (mg/kg)		
Benzene NE 0.12 SVOCs (mg/kg) NE NE Pesticides (mg/kg) ND ND PCBs (mg/kg) ND NE Inorganics (mg/kg) Zamiun 2.83 3.51	Acetone	0.064	ND
SVOCs (mg/kg) NE NE Pesticides (mg/kg) ND ND PCBs (mg/kg) ND NE Inorganics (mg/kg) ND NE Cadmium 2.83 3.51	Benzene	NE	0.12
Pesticides (mg/kg) ND ND PCBs (mg/kg) ND NE Inorganics (mg/kg) Cadmium 2.83 3.51	SVOCs (mg/kg)	NE	NE
PCBs (mg/kg) ND NE Inorganics (mg/kg) Cadmium 2.83 3.51	Pesticides (mg/kg)	ND	ND
Inorganics (mg/kg) Cadmium 2.83 3.51	PCBs (mg/kg)	ND	NE
Cadmium 2.83 3.51	Inorganics (mg/kg)		
	Cadmium	2.83	3.51
Nickel 36.1 47.8	Nickel	36.1	47.8

Sample ID	SB17_0-	-2	SB17_5.5-7.5		
Sample Date	9/27/201	19	9/27/2019		
Sample Depth (feet bgs)	0-2		5.5-7.5		
VOCs (mg/kg)	NE		NE		
SVOCs (mg/kg)					
Benzo(a)Anthracene	5.97	D	13.6	D	
Benzo(a)Pyrene	5.72	D	13	D	
Benzo(b)Fluoranthene	4.95	D	11.2	D	
Benzo(k)Fluoranthene	4.62	D	11.2	D	
Chrysene	5.81	D	12.9	D	
Dibenz(a,h)Anthracene	1.31	D	2.84	D	
Indeno(1,2,3-c,d)Pyrene	3.39	D	8.03	D	
Pesticides (mg/kg)					
4,4'-DDE	0.0111	DP	ND		
4,4'-DDT	0.0889	D	0.114	D	
Herbicides (mg/kg)	ND		ND		
PCBs (mg/kg)	NE	NE			
Inorganics (mg/kg)					
Barium	NE		624		
Copper	151		103		
Lead	488		969		
Mercury	0.457		0.369		
Zinc	457		706		
PFAS (mg/kg)	DNC		NΔ		

Sample ID	SB15_3-4
Sample Date	6/7/2019
Sample Depth (feet bgs)	3-4
VOCs (mg/kg)	
Benzene	0.12
SVOCs (mg/kg)	
2-Methylphenol (o-Cresol)	35
Phenol	9.5
Pesticides (mg/kg)	
4,4'-DDD	0.0637
Alpha BHC (Alpha Hexachlorocyclohexane)	0.0884
Beta Bhc (Beta Hexachlorocyclohexane)	0.113
Gamma Bhc (Lindane)	0.113
PCBs (mg/kg)	
Total PCBs	1.5
Inorganics (mg/kg)	
Copper	159
Lead	473
Mercury	3.7
Nickel	66
Zinc	354
TCLP - Inorganics (mg/kg)	NE

WARNING:
T IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR AN
PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENS
PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

Figure No.

6

Sheet 6 of 8

Filename: \\langan.com\\data\\NY\\data\\170396002\Project Data\CAD\02\SheetFiles\RIR\Figure 5 - Figure 7 (BCP base)\Figure 6 - Groundwater Sample Analysis.dwg Date: 2/14/2020 Time: 10:22 User: ssaleh Style Table: Langan.stb Layout: ANSIB-BL

2.479.5444 www.langan.

 7
 8

 LEGEND:
 SITE BOUNDARY

 SITE BOUNDARY
 RI CO-LOCATED SOIL BORING/PERMANENT MONITORING WELL LOCATION

 SB18/TMW18
 RI CO-LOCATED SOIL BORING/PERMANENT MONITORING WELL LOCATION

NOTES:

- EXISTING INFORMATION TAKEN FROM TOPOGRAPHIC AND BOUNDARY SURVEY PREPARED BY GALLAS SURVEYING GROUP, DATED 8 AUGUST 2019.
 ALL SAMPLE LOCATIONS ARE APPROXIMATE.
- ALL SAMPLE LOCATIONS ARE APPROXIMAT VOCs = VOLATILE ORGANIC COMPOUNDS
- SVOCs = SEMIVOLATILE ORGANIC COMPOUNDS
- PCBs = POLYCHLORINATED BIPHENYLS
- PFAS = PER- AND POLYFLUOROALKYL SUBSTANCES
- PFOA = PERFLOUROOCTANOIC ACID
- PFOS = PERFLUOROOCTANESULFONIC ACID
- $\mu g I = MICROGRAMS PER LITER$
- ng/L = NANOGRAMS PER LITER
- 11. ND = NOT DETECTED
- 12. NE = DETECTED AT CONCENTRATION(S) NOT EXCEEDING SCOS
- 13. $\sim = \text{NOT APPLICABLE}$
- J = THE ANALYTE WAS DETECTED ABOVE THE METHOD DETECTION LIMIT (MDL), BUT BELOW THE REPORTING LIMIT (RL); THEREFORE, THE RESULT IS AN ESTIMATED CONCENTRATION.
 GROUNDWATER SAMPLE ANALYTICAL RESULTS ARE COMPARED TO THE 6 NEW YORK CODES,
- GROUNDWATER SAMPLE ANALYTICAL RESULTS ARE COMPARED TO THE 6 NEW YORK CODES, RULES AND REGULATIONS (NYCRR) PART 703.5 WHICH ARE INCLUDED IN THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVS) FOR CLASS GA WATERS (AS SHOWN IN THE TABLE BELOW).
- 16. NYSDEC TOGS STANDARD AND GUIDANCE VALUE EXCEEDANCES ARE SHADED AND IN BOLD.

Analyte	CAS Number	NYSDEC SGVs	
VOCs (µg/L)			
Tert-Butyl Methyl Ether	1634-04-4	10	
SVOCs (µg/L)			
Benzo(a)Anthracene	56-55-3	0.002	
Benzo(a)Pyrene	50-32-8	ND	
Benzo(b)Fluoranthene	205-99-2	0.002	
Benzo(k)Fluoranthene	207-08-9	0.002	
Chrysene	218-01-9	0.002	
Indeno(1,2,3-c,d)Pyrene	193-39-5	0.002	
Inorganics (µg/L)			
Antimony	7440-36-0	3	
Arsenic	7440-38-2	25	
Chromium, Total	7440-47-3	50	
Copper	7440-50-8	200	
Iron	7439-89-6	300	
Lead	7439-92-1	25	
Magnesium	7439-95-4	35,000	
Manganese	7439-96-5	300	
Mercury	7439-97-6	0.7	
Nickel	7440-02-0	100	
Selenium	7782-49-2	10	
Sodium	7440-23-5	20,000	

	Figure Title	Project No.	Figure	No.			
		170396002					
	GROUNDWATER	Date					
UE	SAMPLE	10/21/2019		7			
		Drawn By					usu
)9	ANALYTICAL	EMM					00
		Checked By					110
YORK	REJULTS MAP	SK	Sheet	7	of	8	0 0

LIVID	•
JUND	•
	_

APPROXIMATE SITE BOUNDARY

SV16

RI SOIL VAPOR SAMPLE POINT

EXISTING INFORMATION TAKEN FROM TOPOGRAPHIC AND BOUNDARY SURVEY PREPARED BY GALLAS SURVEYING GROUP, DATED 8 AUGUST 2019

8

ALL SAMPLE LOCATIONS ARE APPROXIMATE.

VOCs = VOLATILE ORGANIC COMPOUNDS

 $\mu g/m^3 = MICROGRAMS PER CUBIC METER$

SOIL VAPOR SAMPLE ANALYTICAL RESULTS ARE COMPARED TO THE NEW YORK STATE DEPARTMENT OF HEALTH (NYSDOH) DECISION MATRICES MINIMUM CONCENTRATIONS AT WHICH MITIGATION IS RECOMMENDED.

ONLY DETECTED COMPOUNDS ARE SHOWN.

ANALYTES WITH CONCENTRATIONS EXCEEDING NYSDOH DECISION MATRIX VALUES AT WHICH MITIGATION IS RECOMMENDED REGARDLESS OF INDOOR AIR CONCENTRATION ARE SHADED AND IN BOLD.

D = THE CONCENTRATION OF THE ANALYTE WAS QUANTIFIED FROM DILUTED ANALYSIS.

Analyte	CAS Number	NYSDOH Decision Matrices Minimum Concentrations
)Cs (µg/m³)		
,1-Trichloroethane	71-55-6	100
,4-Trimethylbenzene	95-63-6	~
,5-Trimethylbenzene (Mesitylene)	108-67-8	~
Butadiene	106-99-0	~
,4-Trimethylpentane	540-84-1	~
Iexanone	591-78-6	~
Ethyltoluene	622-96-8	~
etone	67-64-1	~
nzene	71-43-2	~
rbon Disulfide	75-15-0	~
rbon Tetrachloride	56-23-5	6
loroform	67-66-3	~
loromethane	74-87-3	~
clohexane	110-82-7	~
hlorodifluoromethane	75-71-8	~
ianol	64-17-5	~
yl Acetate	141-78-6	~
ylbenzene	100-41-4	~
propanol	67-63-0	~
P-Xylene	179601-23-1	~
ethyl Ethyl Ketone (2-Butanone)	78-93-3	~
ethyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	~
ethylene Chloride	75-09-2	100
leptane	142-82-5	~
lexane	110-54-3	~
(1,2-Dimethylbenzene)	95-47-6	~
rene	100-42-5	~
rt-Butyl Alcohol	75-65-0	~
trachloroethene (PCE)	127-18-4	100
trahydrofuran	109-99-9	~
luene	108-88-3	~
chloroethene (TCE)	79-01-6	6
chlorofluoromethane	75-69-4	~

	Figure Title	Project No. 170396002	Figure No.	
UE	SOIL VAPOR SAMPLE	Date 10/18/2019	Q	
)9		Drawn By EMM	0	
YORK	KESULTS MAP	Checked By SK	Sheet 8 of 8	

TABLES

Table 1 Remedial Investigation Sample Summary Remedial Investigation 2413 Third Avenue The Bronx, New York Langan Project No. 170396002

Sample No.	Location/ Parent Sample ID	Sample ID	Sample Depth (feet bgs)	Sample Material	Sample Date	Rationale	Analyses		
Soil									
1		SB06_1-2	1 to 2	Historic Fill		Investigate AOCs 1.	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Metals		
2	SB06	SB06_7-8	7 to 8	Historic Fill	6/6/2019	2, and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Metals		
3		SB07_2-3	2 to 3	Historic Fill		Investigate AOCs 1	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Metals		
4	SB07	SB07_5-6	5 to 6	Native Soil	6/6/2019	2, and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Metals		
5		SB08_1-2	1 to 2	Historic Fill		Investigate AOCs 1	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Metals		
6	SB08	SB08_5-6	5 to 6	Historic Fill	6/6/2019	and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Metals		
7		SB09_2-3	2 to 3	Historic Fill		Inventionte AOCe 1	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Metals		
8	SB09	SB09_5-6	5 to 6	Native Soil	6/6/2019	and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Metals		
9		SB10_1-2	1 to 2	Historic Fill		Inventionte AOCe 1	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Metals		
10	SB10	SB10_7-8	7 to 8	Historic Fill	6/7/2019	and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Metals		
11		SB11 1-2	1 to 2	Historic Fill			Part 375-list VOCs. SVOCs. PCBs. Pesticides. Metals		
12	SB11	SB11_5-6	5 to 6	Native Soil	6/7/2019	Investigate AOCs 1, 2, and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Metals		
13		SB12 3-4	3 to 4	Historic Fill			Part 375-list VOCs. SVOCs. PCBs. Pesticides. Metals		
14	SB12	SB12 5-6	5 to 6	Historic Fill	6/6/2019	Investigate AOCs 1 and 3	Part 375-list VOCs SVOCs PCBs Pesticides Metals		
15		SB13_3-4	3 to 4	Historic Fill			Part 375-list VOCs SVOCs PCBs Pesticides Metals		
16	SB13	SP12 10 11	10 to 11	Historia Fill	6/7/2019	Investigate AOCs 1, 2, and 3	Part 275 list VOCs, SVOCs, PCBs, Posticidas, Mictals		
17	SD14	SP14 2 4	2 to 4	Historia Fill	67/2010	Investigate AOCs 1,	Part 275 list VOCs, SVOCs, FCBs, Festicides, Metals		
10	5014 CD16	0015.0.4	3 10 4	Historie Fill	67/2013	2, and 3 Investigate AOCs 1,	Part 375 list VOCs, SVOCs, FCBs, Festicides, Metals		
10	3815	3815_3-4	3104	Historic Fill	6///2019	2, and 3	Part 375-list VOCs, PCBs, Pesticides, Herbicides, Metals (including hexavalent		
19	SB16	SB16_0-2	0 to 2	Historic Fill	9/27/2019	Investigate AOCs 1, 2, and 3	and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, and Metals (including		
20		SB16_2-4	2 to 4	Historic Fill			hexavalent and trivalent chromium) Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals (including hexavalent		
21	SB17	SB17_0-2	0 to 2	Historic Fill	9/27/2019	Investigate AOCs 1, 2, and 3	and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane Part 375-list VOCs_SVOCs_PCBs_Pesticides_Herbicides_and Metals (including		
22		SB17_5.5-7.5	5.5 to 7.5	Historic Fill		2, 810 5	hexavalent and trivalent chromium) Part 375Jiet VOCe SVOCe PCBs Pasticides Harbicides Matals (including basevalent		
23	SB18	SB18_0-2	0 to 2	Historic Fill	10/1/2019	Investigate AOCs 1	and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane Part 375-list V/Ore SVOCE PCBE Paeticides Harbierides and Matals (includion		
24		SB18_10-12	10 to 12	Native Soil		uid o	hexavalent and trivalent chromium) Part 275 lint VOCs, SVOCs, PRAs Particidas, And Matala (insluding		
25	SB19	SB19_0-2	0 to 2	Historic Fill	10/2/2019	Investigate AOCs 1	hexavalent and trivalent chromium) Part 375 Jiet VOCe SVOCe PCRs Participate Harbinidae Matals (including hexavalent		
26		SB19_8-9	8 to 9	Native Soil		uid o	and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane Part 275 list VOCs. PCPs. Particides, Harbidides, Matela (including how valuent		
27	SB20	SB20_0-2	0 to 2	Historic Fill	10/3/2019	Investigate AOCs 1,	and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane		
28		SB20_13-15	13 to 15	Native Soil		2, and 3	Part 375-list VOCs, SVOCs, FCBs, Pesticides, Herbicides, and Metals (including hexavalent and trivalent chromium) Part 375-list VOCs, CVOCs, CPC, CPC, Particides, Materials (including hexavalent and trivalent chromium)		
29	SB21	SB21_0-2	0 to 2	Historic Fill	9/30/2019	Investigate AOCs 1,	and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane		
30		SB21_5-7	5 to 7	Native Soil		2, and 3	Part 3/5-list VOLS, SVULS, PCBS, Pesticides, Heroicides, and Metais (including hexavalent and trivalent chromium)		
31	SB22	SB22_0-2	0 to 2	Historic Fill	9/30/2019	Investigate AOCs 1,	Part 3/5-list VOLS, SVOLS, PLBS, Pesticides, Heroicides, Metals (including nexavalent and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane		
32		SB22_5-7	5 to 7	Native Soil		2, and 3	Part 3/5-list VOLS, SVULS, PCBS, Pesticides, Herbicides, and Metais (including hexavalent and trivalent chromium)		
33	SB23	SB23_0-2	0 to 2	Historic Fill	9/30/2019	Investigate AOCs 1	Part 3/5-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals (including hexavalent and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane		
34		SB23_5.5-7.5	5.5 to 7.5	Native Soil		and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, and Metals (including hexavalent and trivalent chromium)		
35		SB24_0-2	0 to 2	Historic Fill	_		Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals (including hexavalent and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane		
36	SB24	SB24_10-12	10 to 12	Native Soil	10/1/2019	Investigate AOCs 1 and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, and Metals (including hexavalent and trivalent chromium)		
37		SB24_15-16	15 to 16	Native Soil			Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, and Metals (including hexavalent and trivalent chromium)		
38		SB25_0-2	0 to 2	Historic Fill			Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals (including hexavalent and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane		
39	SB25	SB25_6-8	6 to 8	Historic Fill	10/1/2019	Investigate AOCs 1 and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, and Metals (including hexavalent and trivalent chromium)		
40		SB25_11-12	11 to 12	Native Soil			Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, and Metals (including hexavalent and trivalent chromium)		
41	CDOC	SB26_0-2	0 to 2	Historic Fill	10/1/2010	Investigate AOCs 1,	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals (including hexavalent and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane		
42	3620	SB26_6-8	6 to 8	Historic Fill	10/1/2019	2, and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, and Metals (including hexavalent and trivalent chromium)		
43	0007	SB27_0-2	0 to 2	Historic Fill	40,00040	Investigate AOCs 1	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, and Metals (including hexavalent and trivalent chromium)		
44	5827	SB27_6-8	6 to 8	Historic Fill	10/2/2019	and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals (including hexavalent and trivalent chromium). NY 21-List PFAS, and 1.4-Dioxane		
45	00	SB28_0-2	0 to 2	Historic Fill	4000000	Investigate AOCs 1	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, and Metals (including hexavalent and trivalent chromium)		
46	SB28	SB28_5.5-7.5	5.5 to 7.5	Historic Fill	10/2/2019	2, and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals (including hexavalent and trivalent chromium) NV 21J int PEAS and 1 4-Dinvane		
47		SB30_0-2	0 to 2	Historic Fill		Investigate AOCe 1	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, and Metals (including beyavalent and trivalent chromium)		
48	SB30	SB30_10-12	10 to 12	Native Soil	10/3/2019	and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals (including hexavalent and trivalent chromium) NV 211 ist PEAs and 1.4.Disease		
49		SB31_0-2	0 to 2	Historic Fill		Investigate ACCo 1	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals (including hexavalent and tividat deceming) NV 31 in PCAS, and 1.4 Discussion		
50	SB31	SB31_6.5-8.5	6.5 to 8.5	Native Soil	9/27/2019	and 3	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, and Metals (including because and the second seco		
51	TP01	TP01_2-2.5	2 to 2.5	Historic Fill	6/21/2019	Investigate AOCs 1,	nexavaient and trivalent chromium) Part 375-list VOCs, SVOCs, PCBs, Pesticides, Metals		
52	TP02	TP02_1.5-2	1.5 to 2	Historic Fill	6/21/2019	2, and 3 Investigate AOCs 1,	Part 375-list VOCs, SVOCs, PCBs, Pesticides, Metals		
53	TP03	TP03, 1-1.5	1 to 1.5	Historic Fill	6/21/2019	2, and 3 Investigate AOCs 1,	Part 375-list VOCs, SVOCs. PCBs. Pesticides. Metals		
55						2, and 3			

Table 1 Remedial Investigation Sample Summary Remedial Investigation 2413 Third Avenue The Bronx, New York Langan Project No. 170396002

Sample No.	Location/ Parent Sample ID	Sample ID	Sample Depth (feet bgs)	Sample Material	Sample Date	Rationale	Analyses		
Groundwater									
1	TMW06	TMW06_061019	2 to 12	Groundwater	6/10/2019	Investigate AOCs 1, 3. and 4	TCL VOCs and SVOCs, PCBs, and TAL Metals (total and dissolved)		
2	TMW08	TMW08_061019	2 to 12	Groundwater	6/10/2019	Investigate AOCs 1, 3 and 4	TCL VOCs and SVOCs, PCBs, and TAL Metals (total and dissolved)		
3	TMW11	TMW11_061219	2 to 12	Groundwater	6/12/2019	Investigate AOCs 1, 3, and 4	TCL VOCs and SVOCs, PCBs, and TAL Metals (total and dissolved)		
4	TMW12	TMW12_061019	2 to 12	Groundwater	6/10/2019	Investigate AOCs 1, 3. and 4	TCL VOCs and SVOCs, PCBs, and TAL Metals (total and dissolved)		
5	MW18	MW18_100919	6 to 16	Groundwater	10/9/2019	Investigate AOCs 1, 3 and 4	TCL VOCs and SVOCs, PCBs, Pesticides, Herbicides, TAL Metals (total and dissolved), NY 21-I ist PEAS 1 4-Dioxane, and NYCDEP Discharge Parameters		
6	MW19	MW19_100919	5 to 15	Groundwater	10/9/2019	Investigate AOCs 1, 3. and 4	TCL VOCs and SVOCs, PCBs, Pesticides, Herbicides, TAL Metals (total and dissolved), NY		
7	MW24	MW24_100919	6 to 16	Groundwater	10/9/2019	Investigate AOCs 1, 3 and 4	21-List PFAS and 1,4-Dioxane		
Notes 8. OA/OC = Ouslity Assurance/Ouslity Control 1. Soil samples for VOC analysis were collected using Terra Core sampler kits. 8. OA/OC = Ouslity Assurance/Ouslity Control 2. TCL = Target Compound List 9. NY 211-List FPAS = Per- and polyfluonally substances (21-compound list) 3. TAL = Target Analyse List 10. USEPA = United States Environmental Protection Agency 4. VOCa = Volatile Organic Compounds 11. TO-16 = Compounds shown in EPAR25(R96)010 table 1 5. SVOCa = Samiolatile Organic Compounds 12. Part 375 = Compounds shown in TERe 6 of the New York Codes, Rules and Regulations Part 375-6.8(b) 6. PCBs = Provincinated Dipherwise 13. Objet = Below Grade Suriate							ntrol vyl substances (21-compound list) Protection Agency SRP-89010b table 1 6 of the New York Codes, Rules and Regulations Part 375-8.8(b)		
					Soil Vapor				
1	AA01	AA01_100319	N/A	Outdoor Ambient Air	10/3/2019	N/A			
2	SV06	SV06_060719	5	Soil Vapor	6/7/2019	Investigate AOCs 1 and 3			
3	SSV10	SSV10_060719	0.2	Sub-Slab	6/7/2019	Investigate AOCs 1 and 3			
4	SSV11	SSV11_060719	0.2	Sub-Slab	6/7/2019	Investigate AOCs 1 and 3	VOC- In USERA TO 15		
5	SV12	SV12_060719	5	Soil Vapor	6/7/2019	Investigate AOCs 1 and 3	VOUS BY USEPA TO-TO		
6	SV16	SV16_100319	5	Soil Vapor	10/3/2019	Investigate AOCs 1 and 3	*		
7	SV22	SV22_100319	5	Soil Vapor	10/3/2019	Investigate AOCs 1 and 3			
8	SV24	SV24_100319	5	Soil Vapor	10/3/2019	Investigate AOCs 1 and 3	*		
				Qual	tiy Assurance/Quali	ty Control			
1	SB22_0-2	RISODUP01_093019	0 to 2	Soil	9/30/2019		Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals (including hexavalent and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane		
2	SB20_0-2	RISODUP02_100319	0 to 2	Soil	10/3/2019		Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals (including hexavalent and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane		
3	MW24_100919	GWDUP01_100919	6 to 16	Groundwater	10/9/2019		TCL VOCs and SVOCs, PCBs, Pesticides, Herbicides, TAL Metals (total and dissolved), NY 21-List PFAS and 1,4-Dioxane		
4		RISOFB01_093019	N/A	Deionized Water	9/30/2019		Part 375-list VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals (including hexavalent		
5	Field Blank	RISOFB02_100319	N/A	Deionized Water	10/3/2019		and trivalent chromium), NY 21-List PFAS, and 1,4-Dioxane		
6		GWFB01_100919	N/A	Deionized Water	10/9/2019	NIA	TCL VOCs and SVOCs, PCBs, Pesticides, Herbicides, TAL Metals (total and dissolved), NY 21-List PFAS and 1,4-Dioxane		
7		RITB01_092719	N/A	Deionized Water	9/27/2019	N/A			
8		RITB02_093019	N/A	Deionized Water	9/30/2019				
9	Tria Black	RITB03_100119	N/A	Deionized Water	10/1/2019				
10	пр ыапк	RITB04_100219	N/A	Deionized Water	10/2/2019		TCE VOCS		
11		RITB05_100319	N/A	Deionized Water	10/3/2019				
12		RITB06_100919	N/A	Deionized Water	10/9/2019				

7. N/A = Not Applicable

8. OA/OC = Ouality Assurance/Quality Control
9. NY 21-List FRAS = Per- and polyfluoraily/substances (21-compound list)
10. USEPA = United States Environmental Protection Agency
11. TO-15 = Compounds shown in TEMA025(R490110b table 1
12. Tota = Deroxounds shown in Title 6 of the New York Codes, Rules and Regulations Part 375-6.8(b)
13. Bost = Belox Grade Surace
14. Martix spite and matrix spike duplicate samples were also collected from SB20_0-2 and SB22_0-2 and run for identical analyses
as duplicate samples.

Table 2 Remedial Investigation Report Groundwater Elevation Data Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Date Gauged	Well Location	Well Diameter (inches)	Screened Interval (feet bTOC)	Approximate Elevation of TOC (NAVD88)	Depth to Groundwater (feet bTOC)	Groundwater Elevation (NAVD88)	Total Well Depth (ft bTOC)	Bottom of Well Elevation (NAVD88)
6/10/2019	TMW06	1	2 to 12	NA	8.50	NA	12.00	NA
6/10/2019	TMW08	1	2 to 12	NA	7.40	NA	12.00	NA
6/12/2019	TMW11	1	2 to 12	NA	8.08	NA	12.00	NA
6/10/2019	TMW12	1	2 to 12	NA	7.00	NA	12.00	NA
10/9/2019	MW18	2	6 to 16	8.52	7.78	0.74	16.00	-7.48
10/9/2019	MW19	1	5 to 15	7.32	6.62	0.70	15.00	-7.68
10/9/2019	MW24	2	6 to 16	8.95	8.15	0.80	16.00	-7.05

Notes:

1. NAVD88 - North American Vertical Datum of 1988

2. bTOC = below top of casing

3. Depth to groundwater was measured in feet bTOC.

Table 3 Remedial Investigation Report Soil Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	RCRA Characteristics of Hazardous Waste	SB06 SB06_1-2 L1924067-01 6/6/2019 1-2	SB06 SB06_7-8 L1924067-02 6/6/2019 7-8	SB07 SB07_2-3 L1924067-03 6/6/2019 2-3	SB07 SB07_5-6 L1924067-04 6/6/2019 5-6	SB08 SB08_1-2 L1924067-05 6/6/2019 1-2	SB08 SB08_5-6 L1924067-06 6/6/2019 5-6
Valatile Organic Compounds (mg/kg) 1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Diethyl Benzene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltoluene 4-Ethyltorobenzene 5-1,2-Dichloroethene 5-ymene 1-Butylbenzene 1-Sytylene Methyl ethyl Ketone (2-Butanone) Methylene Chloride Naphthalene n-Propylbenzene 0-Xylene (1,2-Dimethylbenzene) 5ec-Butylbenzene 7-Butylben	\sim \sim 3.6 1.1 8.4 1.8 \sim 0.05 0.06 \sim 1.1 0.25 \sim 1 \sim 0.12 0.05 12 12 12 3.9 \sim 11 5.9 0.93 1.3 0.7 \sim 0.26 0.26 0.47	~ ~ 52 100 52 13 ~ ~ 100 4.8 ~ 100 100 100 100 100 100 100		12 0.0021 U 0.0053 U 0.011 U 0.0011 U 0.0005 U 0.0011 U 0.0011 U 0.0011 U 0.0011 U 0.0011 U 0	0.00076 J 0.0032 U 0.0024 J 0.0015 J 0.0032 U 0.0032 U 0.0045 J 0.0008 U 0.008 U 0.0016 U 0.00032 J 0.00032 J 0.00032 J 0.00032 U 0.00045 J 0.00032 U 0.00032 U 0.00045 J 0.00032 U 0.00032 U 0.0017 J 0.0031 O.0032 0.0016 U 0.0033 J 0.0034 J 0.0035 J 0.0036 U 0.0016 U 0.0016 U 0.0004 J	2-3 0.0028 U 0.0014 U 0.0007 U 0.0014 U 0.0014 U 0.0014 U 0.0014 U 0.0014 U 0.0014	0.0019 U 0.00047 U 0.00094	0.00044 J 0.0021 U 0.0015 J 0.0021 U 0.0021 U 0.0021 U 0.0021 J 0.0021 J 0.0014 J 0.0017 J 0.0018 U 0.0019 J 0.0011 U 0.0011 U 0.0011 U 0.0011 U 0.0011 U 0.0021 U 0.0015 J 0.00015 J 0.00015 J 0.00015 J 0.00015 J 0.00021 U 0.00024 J 0.00034 J 0.00016 J 0.0001 U 0.0001 U 0.0001 U 0.0001 U 0.0001 U 0.0001 U	0.002 U 0.0038 U 0.00038 U 0.00039 U 0.00038 U
Activities of the second secon	~ 1.1 2.4 1.8 ~ 0.33 0.33 20 100 ~ 100 ~ 1 1 100 0.8 ~ ~ 1 0.33 7 ~ 100 0.33 7 ~ 100 0.33 7 ~ 100 0.33 7 ~ 100 0.33 7 ~ 100 0.33 100 0.8 100 0.8 100 0.33 100 0.8 100 0.8 100 0.5 12 100 0.33 100 0.5 12 100 0.33 100 0.5 12 100 0.33 100 0.5 12 100 0.33 100 0.5 12 100 0.33 100 0.5 12 100 0.33 100 0.5 12 100 0.33 100 0.5 12 100 0.33 100 0.5 12 100 0.33 100 0.5 12 100 0.33 100 0.5 12 100 0.33 100 0.5 12 100 0.33 100	~ 100 49 13 ~ 100 100 100 100 100 ~ 1 1 1 100 3.9 ~ ~ 3.9 0.33 59 ~ ~ 100 100 100 100 100 100 10	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.99 U 0.99 U 0.99 U 0.89 U 0.16 J 0.99 U 1.3 0.27 J 0.99 0.33 NA 12 10 13 6.2 5.4 0.99 0.69 J 0.72 J 10 13 0.23 U 0.69 J 0.72 J 10 1.6 0.43 J 0.99 U 20 1 6.8 0.22 10 1 0.23 U 0.99 U 20 1 0.22 J 10 0.99 0.99 U 0.99 U 0.99 U 18 1	1.9 U 1.9 U 1.9 U 1.7 U 0.38 J 1.9 U 2.7 U 0.41 J 0.4 J 1.9 U 0.75 J 1.7 2.5 1.2 J 0.75 J 1.9 U 4.3 U 1.9 U 0.43 J 1.9 U 0.43 J 1.9 U 0.31 J 1.9 U 1.9 U 3.2 J 0.555 J 2 J 0.555 J 2 J 0.555 J 2 J 1.9 U 2.9 U	0.18 U 0.18 U 0.18 U 0.18 U 0.16 U 0.045 J 0.16 U 0.045 J 0.18 U 0.26 U 0.11 J 0.12 J 0.13 U 0.32 NA 1.2 0.386 1.2 0.54 0.54 0.36 0.18 U 0.28 0.16 1 0.13 0.085 J 0.18 U 2.1 0.11 0.56 0.11 1.5 0.18 0.18 U 1.8 U	0.18 U 0.18 U 0.18 U 0.18 U 0.16 U 0.024 J 0.16 U 0.26 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.11 U 0.15 U 0.15 U 0.11 U 0.15 U 0.16 U 0.17 U 0.18 U 0.11 U 0.12 <td>0.17 U 0.17 U 0.17 U 0.17 U 0.17 U 0.16 U 0.18 J 0.17 U 0.18 J 0.17 U 0.042 J 0.47 0.027 0.17 U 0.58 NA 1.8 1.4 1.8 0.85 0.6 0.17 0.057 J 0.17 U 0.33 1.6 0.17 U 0.17 U 0.36 0.24 0.17 U 0.6 0.26 0.89 0.22 0.5 0.17 0.17 U 0.26 0.26 0.89 0.22 0.17 U 0.33 1</td> <td>0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.22 U 0.25 U 0.25 U 0.3 U 0.16 U 0.12 U 0.21 U 0.21 U 0.12 U 0.12 U 0.12 U 0.12 U 0.21 U 0.21 U 0.21 U 0.12 U 0.12 U 0.12 U 0.12 U 0.12 U 0.21 U <</td>	0.17 U 0.17 U 0.17 U 0.17 U 0.17 U 0.16 U 0.18 J 0.17 U 0.18 J 0.17 U 0.042 J 0.47 0.027 0.17 U 0.58 NA 1.8 1.4 1.8 0.85 0.6 0.17 0.057 J 0.17 U 0.33 1.6 0.17 U 0.17 U 0.36 0.24 0.17 U 0.6 0.26 0.89 0.22 0.5 0.17 0.17 U 0.26 0.26 0.89 0.22 0.17 U 0.33 1	0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.22 U 0.25 U 0.25 U 0.3 U 0.16 U 0.12 U 0.21 U 0.21 U 0.12 U 0.12 U 0.12 U 0.12 U 0.21 U 0.21 U 0.21 U 0.12 U 0.12 U 0.12 U 0.12 U 0.12 U 0.21 U <
Pesticides (mg/kg) 4,4'-DDD 4,4'-DDE 4,4'-DDE 4,4'-DDT Alpha BHC (Alpha Hexachlorocyclohexane) Alpha Chlordane Beta Bhc (Beta Hexachlorocyclohexane) Chlordane (alpha and gamma) Delta Bhc (Delta Hexachlorocyclohexane) Dieldrin Gamma Bhc (Lindane) Gamma Bhc (Lindane) Gamma Bhc (Lindane) Gamma Bhc (Lindane) Herbicides (mg/kg) Polychlorinated Biphenyls (mg/kg) PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248)	0.0033 0.0033 0.0033 0.02 0.094 0.036 ~ 0.04 0.005 0.1 ~ ~ ~	13 8.9 7.9 0.48 4.2 0.36 ~ 100 0.2 1.3 ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.00188 U 0.00188 U 0.00353 U 0.000784 U 0.00188 U 0.0153 U 0.00188 U 0.00188 U 0.00188 U 0.00188 U 0.001784 U 0.000784 U 0.00188 U 0.000784 U 0.00188 U 0.00188 U 0.000784 U 0.00188 U 0.000784 U 0.00188 U 0.00188 U 0.00188 U 0.000784 U 0.00188 U 0.000784 U 0.00188 U 0.000784 U 0.00188 U 0.000784 U 0.00393 U 0.0393 U	0.00177 U 0.00177 U 0.00332 U 0.000737 U 0.00221 U 0.00177 U 0.00177 U 0.00177 U 0.00177 U 0.000737 U 0.000737 U 0.000737 U 0.000221 U NA	0.0739 0.0409 0.0233 0.000723 U 0.00217 U 0.00509 0.0141 U 0.00174 U 0.00174 U 0.00173 U 0.000723 U 0.000723 U 0.000601 JIP NA 0.037 U 0.0404	0.00167 U 0.00167 U 0.00313 U 0.000696 U 0.00209 U 0.00167 U 0.00167 U 0.00167 U 0.00167 U 0.00167 U 0.00167 U 0.001696 U 0.000696 U 0.000209 U NA	0.00161 U 0.00161 U 0.000669 U 0.00201 U 0.00161 U 0.00161 U 0.00161 U 0.00161 U 0.00161 U 0.000669 U 0.000669 U 0.000201 U NA 0.034 U 0.034 U	0.00192 U 0.0036 U 0.0036 U 0.000799 U 0.00192 U 0.0192 U 0.00192 U 0.00192 U 0.00192 U 0.00192 U 0.00192 U 0.000799 U 0.0012 U 0.0012 U 0.0012 U 0.00192 U 0.000799 U 0.000799 U 0.00079 U 0.00070 U 0.00070 U 0.000700 U 0.000000 U 0.00000 U 0.00000 U 0.00000 U 0.00000 U 0.00000 U 0
PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260) PCB-1268 (Aroclor 1268) Total PCBs Inorganics (mg/kg) Aluminum	~ ~ 0.1	~ ~ 1	~ ~ ~	1.68 0.435 0.393 U 2.12	0.854 1.29 0.369 U 2.59 9,890	0.0884 0.125 0.037 U 0.254 5,480	0.0345 U 0.0545 0.0345 U 0.0545 7,490	0.034 U 0.034 U 0.034 U 0.034 U 0.034 U	0.04 U 0.04 U 0.04 U 0.04 U 8,490
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium, Hexavalent Chromium, Trivalent Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Vanadium Zinc TCP - Inorganics (mg/L) Arsenic Barium	~ 13 350 7.2 2.5 ~ 1 ~ 30 ~ 50 ~ 63 ~ 1,600 0.18 30 ~ 3.9 2 ~ 109	~ 16 400 72 4.3 ~ 110 ~ 180 ~ 2,000 0.81 310 ~ 180 180 180 180 ~ 180 180 ~ ~ 180 ~ ~ 2,000 0.81 310 ~ ~ 180 ~ ~ 2,000 0.81 310 ~ ~ ~ 180 ~ ~ ~ 2,000 0.81 310 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3,18 J 9,38 214 0,366 J 1,76 35,000 0,967 U 22,1 22 11.9 63.1 30,200 234 4,280 335 0.183 29 868 1,46 J 0,937 U 181 J 50.5 347 NA NA	1.94 J 1.94 J 5.45 87.9 0.412 J 0.679 J 16,100 0.932 0.801 0.932 19.7 20 8.01 29.4 29.4 22,800 107 6,310 240 0.075 U 18.5 1,710 1.03 J 0.896 U 191 32.3 177 NA NA	2,14 J 4,56 65.9 0,248 J 0,885 43,100 0,897 U 13.3 13 5,18 54.2 12,800 234 7,690 247 0,306 12 984 0,672 J 0,885 U 198 23.8 170	1,14 J 1.14 J 1.3 20.6 0.271 J 0.332 J 60,100 0.879 U 15.8 16 5.79 16.2 11,500 4.13 J 37,000 194 0.074 U 13.6 1,560 0.69 J 0.874 U 92.4 J 22.2 28.8	0,430 2 J 3.01 42.2 0.29 J 0.804 J 17,600 0.843 U 13.4 13 7.39 31 21,900 49.8 5.470 386 0.18 15.4 1,010 0.878 J 0.828 U 126 J 23.8 68.8 NA NA	0.756 J 1.96 14.9 0.262 J 0.3 J 1.310 1.01 U 14 14 5.45 11.5 12,800 4.39 J 5.320 228 0.1 U 10.1 645 1.94 U 0.969 U 120 J 27.4 35
Lead Mercury General Chemistry (%) Solids, Percent Per and Polyfluoroalkyl Substances (mg/kg)	~ ~	~ ~	5 0.2	0.035 J NA 82.7	0.096 J NA 85.8	0.057 J NA 89.2	NA NA 91	NA NA 94.9	NA NA 79.3
Perfluorobutanesulfonic Acid (PFBS) Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic Acid (PFOA) Perfluoropentanoic Acid (PFPeA)	~ ~ ~ ~ ~	~ ~ ~ ~	~ ~ ~ ~ ~ ~	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA

Notes provided on Page 11.

Concentrations above Unrestricted Use SCOs are bolded.

Concentrations above Restricted Use Restricted-Residential SCOs are shaded.

Concentrations above RCRA Characteristics of Hazardous Waste are underlined.
Table 3 Remedial Investigation Report Soil Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	RCRA Characteristics of Hazardous Waste	SB09 SB09_2-3 L1924067-07 6/6/2019 2-3	SB09 SB09_5-6 L1924067-08 6/6/2019 5-6	SB10 SB10_1-2 L1924383-01 6/7/2019 1-2	SB10 SB10_7-8 L1924383-02 6/7/2019 7-8	SB11 SB11_1-2 L1924383-03 6/7/2019 1-2	SB11 SB11_5-6 L1924383-04 6/7/2019 5-6
Volatile Organic Compounds (mg/kg) 1,2,4,5-Tetramethylbenzene	~	~	~	0.002 U	0.0021 U	0.0033 U	0.002 U	0.0036 U	0.0021 U
1,2,4-Trichlorobenzene	~	~	~	0.002 U	0.0021 U	0.0033 U	0.002 U	0.0036 U	0.0021 U
1,2-Dichlorobenzene	1.1	100	~	0.002 U	0.0021 U	0.0033 U	0.002 U	0.0036 U	0.0021 U
1,3,5-Trimethylbenzene (Mesitylene) 1,4-Dichlorobenzene	8.4 1.8	52 13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.002 U 0.002 U	0.0021 U 0.0021 U	0.0033 U 0.0033 U	0.002 U 0.002 U	0.0036 U 0.0036 U	0.0021 U 0.0021 U
1,4-Diethyl Benzene	~	~	~	0.002 U	0.0021 U	0.0033 U	0.002 U	0.0036 U	0.0021 U
Acetone	~ 0.05	~ 100	~	0.002 0	0.034	0.042	0.036	0.098	0.031
Benzene Carbon Disulfide	0.06 ~	4.8 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0005 U 0.01 U	0.00052 U 0.01 U	0.00082 U 0.016 U	0.0005 U 0.01 U	0.00052 J 0.018 U	0.00053 U 0.011 U
Chlorobenzene	1.1	100	~	0.0005 U	0.00052 U	0.00082 U	0.0005 U	0.0009 U	0.00053 U
Cymene	~	~	~	0.001 U	0.001 U	0.0016 U	0.001 U	0.0018 U	0.0011 U
Diethyl Ether (Ethyl Ether) Ethylbenzene	~ 1	~ 41	~ ~	0.002 U 0.001 U	0.0021 U 0.001 U	0.0033 U 0.0016 U	0.002 U 0.001 U	0.0036 U 0.0018 U	0.0021 U 0.0011 U
Isopropylbenzene (Cumene)	~	~	~	0.001 U	0.001 U	0.0016 U	0.001 U	0.0018 U	0.0011 U
M,P-Xylene Methyl Ethyl Ketone (2-Butanone)	~ 0.12	~ 100	~ ~	0.002 U 0.01 U	0.0021 U 0.01 U	0.0033 U 0.016 U	0.002 U 0.01 U	0.0036 U 0.018 U	0.0021 U 0.011 U
Methylene Chloride	0.05	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.005 U	0.0052 U 0.0041 U	0.0082 U	0.005 U	0.009 U	0.0053 U
n-Butylbenzene	12	100	~	0.001 U	0.001 U	0.0016 U	0.001 U	0.0018 U	0.0011 U
n-Propylbenzene o-Xylene (1,2-Dimethylbenzene)	3.9	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.001 U 0.001 U	0.001 U 0.001 U	0.0016 U 0.0016 U	0.001 U 0.001 U	0.0018 U 0.0018 U	0.0011 U 0.0011 U
Sec-Butylbenzene T-Butylbenzene	11	100	~	0.001 U	0.001 U	0.0016 U	0.001 U	0.0018 U	0.0011 U
Tert-Butyl Methyl Ether	0.93	100	~	0.002 U	0.0021 U	0.00068 J	0.0004 J	0.00062 J	0.00041 J
Tetrachloroethene (PCE) Toluene	1.3 0.7	19 100	~ ~	0.0005 U 0.001 U	0.00052 U 0.001 U	0.00082 U 0.0016 U	0.0005 U 0.001 U	0.00073 J 0.0018 U	0.0015 0.0011 U
Total 1,2-Dichloroethene (Cis and Trans)	~	~	~	0.001 U	0.001 U	0.0016 U	0.001 U	0.0018 U	0.0011 U
Total Xylenes Trichloroethene (TCE)	0.26 0.47	100 21	~ ~	0.001 U 0.00016 J	0.001 U 0.00052 U	0.0016 U 0.00082 U	0.001 U 0.0005 U	0.0018 U 0.0009 U	0.0011 U 0.00053 U
Semivolatile Organic Compounds (mg/kg)				0.17	0.2	0.17	0.2	0.21	0.2
1,2-Dichlorobenzene	1.1	100	~	0.17 U	0.2 U	0.17 U	0.2 U	0.21 U	0.2 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	2.4 1.8	49 13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.17 U 0.17 U	0.2 U 0.2 U	0.17 U 0.17 U	0.2 U 0.2 U	0.21 U 0.21 U	0.2 U 0.2 U
2,4-Dichlorophenol	~	~	~	0.16 U	0.18 U	0.16 U	0.18 U	0.19 U	0.18 U
2-Methylphenol (o-Cresol)	~ 0.33	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.21 U	0.24 U	0.21 U	0.24 U	0.26 U 0.21 U	0.24 U
3 & 4 Methylphenol (m&p Cresol) Acenaphthene	0.33 20	100 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.25 U 0.14 U	0.28 U 0.16 U	0.25 U 0.14 U	0.29 U 0.16 U	0.31 U 0.17 U	0.28 U 0.16 U
Acenaphthylene	100	100	~	0.14 U	0.16 U	0.14 U	0.16 U	0.17 U	0.16 U
Acetophenone Anthracene	~ 100	~ 100	~ ~	0.17 U	0.2 U	0.17 U	0.2 U 0.12 U	0.21 U	0.12 U
Benzaldehyde Benzo(a)Anthracene	~ 1	~ 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 0.1 U	NA 0.12 U	NA 0.1 U	NA 0.038 J	NA 0.13 U	NA 0.12 U
Benzo(a)Pyrene	1	1	~	0.14 U	0.12 U	0.14 U	0.16 U	0.17 U	0.16 U
Benzo(b)Fluoranthene Benzo(g,h,i)Perylene	1 100	1 100	~	0.1 U 0.14 U	0.12 U 0.16 U	0.1 U 0.14 U	0.12 U 0.16 U	0.13 U 0.17 U	0.12 U 0.16 U
Benzo(k)Fluoranthene	0.8	3.9	~	0.1 U	0.12 U	0.1 U	0.12 U	0.13 U	0.12 U
Biphenyl (Diphenyl)	~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	0.39 U	0.2 U	0.4 U	0.2 0 0.46 U	0.21 0 0.48 U	0.45 U
Bis(2-Ethylhexyl) Phthalate Carbazole	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	0.17 U 0.17 U	0.2 U 0.2 U	0.17 U 0.17 U	0.2 U 0.2 U	0.21 U 0.21 U	0.2 U 0.2 U
Chrysene	1	3.9	~	0.1 U	0.12 U	0.1 U	0.036 J	0.13 U	0.12 U
Dibenz(a,h)Anthracene Dibenzofuran	0.33	0.33 59	~ ~	0.1 U 0.17 U	0.12 U 0.2 U	0.1 U 0.17 U	0.12 U 0.2 U	0.13 U 0.21 U	0.12 U 0.2 U
Diethyl Phthalate	~	~	~	0.17 U	0.2 U	0.17 U	0.2 U	0.21 U	0.2 U
Fluoranthene	100	~ 100	~	0.1 U	0.026 J	0.1 U	0.068 J	0.13 U	0.12 U
Fluorene Indeno(1,2,3-c,d)Pyrene	30 0.5	100 0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.17 U 0.14 U	0.2 U 0.16 U	0.17 U 0.14 U	0.2 U 0.16 U	0.21 U 0.17 U	0.2 U 0.16 U
Naphthalene	12	100	~	0.17 U	0.2 U	0.17 U	0.2 U	0.21 U	0.2 U
Phenol	0.33	100	~ ~	0.1 U	0.12 U	0.1 U	0.081 J 0.2 U	0.13 U 0.21 U	0.12 U 0.2 U
Pyrene Pesticides (ma/ka)	100	100	~	0.1 U	0.024 J	0.1 U	0.057 J	0.13 U	0.12 U
4,4'-DDD	0.0033	13	~	0.00163 U	0.0019 U	0.00169 U	0.00186 U	0.002 U	0.00188 U
4,4 -DDE 4,4'-DDT	0.0033	8.9 7.9	~~~~~	0.00163 U 0.00306 U	0.0019 U 0.00357 U	0.00169 U 0.00318 U	0.00186 U 0.00348 U	0.002 U 0.00375 U	0.00188 U 0.00354 U
Alpha BHC (Alpha Hexachlorocyclohexane) Alpha Chlordane	0.02	0.48	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00068 U 0.00204 U	0.000794 U 0.00238 U	0.000706 U 0.00212 U	0.000773 U 0.00232 U	0.000834 U 0.0025 U	0.000786 U 0.00236 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.036	0.36	~	0.00163 U	0.0019 U	0.00169 U	0.00186 U	0.002 U	0.00188 U
Chlordane (alpha and gamma) Delta Bhc (Delta Hexachlorocyclohexane)	~ 0.04	~ 100	~~~~~	0.00133 U 0.00163 U	0.0155 U 0.0019 U	0.0138 U 0.00169 U	0.0151 U 0.00186 U	0.0163 U 0.002 U	0.0153 U 0.00188 U
Dieldrin Gamma Bhc (Lindane)	0.005	0.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00102 U 0.00068 U	0.00119 U 0.000794 U	0.00106 U	0.00116 U 0.000773 U	0.00125 U 0.000834 U	0.00118 U 0.000786 U
Gamma Chlordane	~	~	~	0.00204 U	0.00238 U	0.00212 U	0.00608 IP	0.00348 IP	0.00236 U
Herbicides (mg/kg) Polychlorinated Biphenyls (mg/kg)	~	~	~	NA	NA	NA	NA	NA	NA
PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248)	~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	0.0332 U 0.0332 U	0.0279 J 0.0398 U	0.0346 U 0.0346 U	0.0394 U 0.0394 U	0.0433 U 0.0433 U	0.0392 U 0.0392 U
PCB-1254 (Aroclor 1254)	~	~	~	0.0332 U	0.00959 J	0.0346 U	0.0394 U	0.0433 U	0.0392 U
PCB-1260 (Aroclor 1260) PCB-1268 (Aroclor 1268)	~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	0.0332 U	0.0398 U	0.0346 U	0.0394 U	0.0433 U	0.0392 U
Total PCBs	0.1	1	~	0.0332 U	0.0375 J	0.0346 U	0.0394 U	0.0433 U	0.0392 U
Aluminum	~	~	~	11,400	6,380	9,720	12,100	8,900	5,850
Anumony Arsenic	~ 13	~ 16	~	2.4 J 0.79 U	0.458 J 1.28	0.684 J 2.98	4.62 U 1.68	2.38 J 4.06	4.69 U 2.61
Barium	350	400	~	141	39.7	29.4	17.5	53.2	25.2
Cadmium	2.5	4.3	~	0.529 J	0.263 J	0.815 U	0.925 U	0.985 U	0.938 U
Calcium Chromium, Hexavalent	~ 1	~ 110	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3,430 0.838 U	967 0.978 U	3,560 0.849 U	1,250 0.98 U	18,000 0.417 J	853 0.254 J
Chromium, Total	~	~	~	21.9	8.99	16	26.4	16.2	9.52
Chromium, Trivalent Cobalt	30	~	~~~~~	13.3	9 4.57	7.03	26 10.9	16 J 8.44	9.3 J 5.1
Copper	50	270	~	24.8	7.4	13.4	24.7	22.2	11.1
Lead	63	400	~	7.09	3.89 J	25.6	7.08	1,280	8.76
Magnesium Manganese	~ 1,600	2,000	~~~~	4,970 118	2,190 202	6,450 271	8,660 217	4,410 618	2,430 311
Mercury	0.18	0.81	~	0.074 U	0.09 U	0.075 U	0.081 U	0.192	0.078 U
Potassium		~	~	7,670	659	860	1,140	1,070	639
Selenium Silver	3.9 2	180 180	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.616 J 0.79 II	0.263 J 0.974 II	1.63 U 0.815 U	1.85 U 0.925 U	1.97 U 0.985 U	1.88 U 0.938 U
Sodium	~	~	~	163	275	94.4 J	147 J	682	44.3 J
vanadium Zinc	~ 1 <u>0</u> 9	~ 10,000	~	29.2 66.5	12.2 25.2	20.7 53.1	34 46.6	19.6 49.3	10.6 28.2
TCLP - Inorganics (mg/L) Arsenic	~	~	5	NA	NA	NA	NA	NA	NA
Barium	~	~	100	NA	NA	NA	NA	NA	NA
Lead Mercury	~	~ ~	5 0.2	NA NA	NA NA	NA NA	NA NA	2.93 NA	NA NA
General Chemistry (%) Solids, Percent	~	~	~	95.4	81.8	94.2	81.6	76.8	82.7
Per and Polyfluoroalkyl Substances (mg/kg)	<u> </u>	I		NIA	NIA	NIA	NIA		NIA
Perfluorooctanesulfonic acid (PFBS)	~	~	~	NA	NA	NA	NA	NA	NA
Pertluorooctanoic Acid (PFOA) Perfluoropentanoic Acid (PFPeA)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	~~~~	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

Notes provided on Page 11.

Concentrations above Unrestricted Use SCOs are bolded.

Concentrations above Restricted Use Restricted-Residential SCOs are shaded.

Table 3 Remedial Investigation Report Soil Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	RCRA Characteristics of Hazardous Waste	SB12 SB12_3-4 L1924067-09 6/6/2019 3-4	SB12 SB12_5-6 L1924067-10 6/6/2019 5-6	SB13 SB13_3-4 L1924383-05 6/7/2019 3-4	SB13 SB13_10-11 L1924383-06 6/7/2019 10-11	SB14 SB14_3-4 L1924383-07 6/7/2019 3-4	SB15 SB15_3-4 L1924383-08 6/7/2019 3-4
Volatile Organic Compounds (mg/kg) 1,2,4,5-Tetramethylbenzene	~	~	~	0.0023 L	J 0.1 U	0.0022 U	0.0018 U	0.0025 U	0.16 U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	~ 3.6	~ 52	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0023 L	J 0.1 U J 0.1 U	0.0022 U 0.0022 U	0.0018 U 0.0018 U	0.0025 U 0.0025 U	0.071 J 0.047 J
1,2-Dichlorobenzene	1.1	100	~	0.0023 L	J 0.1 U	0.0022 U	0.0018 U	0.0025 U	0.023 J
1,3,5-Trimethylbenzene (Wesitylene) 1,4-Dichlorobenzene	8.4 1.8	13	~ ~	0.0023 L	J 0.1 U	0.0022 U	0.0018 U	0.0025 U	0.059 J
1,4-Diethyl Benzene 4-Ethyltoluene	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0023 L 0.0023 L	J 0.1 U J 0.065 J	0.0022 U 0.0022 U	0.0018 U 0.0018 U	0.00029 J 0.0022 J	0.019 J 0.051 J
Acetone	0.05	100	~	0.064	0.52 U	0.27	0.05	0.11	0.79 U
Carbon Disulfide	~	4.6 ~	~~~~~	0.0098	0.12 0.52 U	0.00055 0 0.011 U	0.0089 U	0.012 U	0.79 U
Chlorobenzene Cis-1.2-Dichloroethene	1.1 0.25	100 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00057 U 0.0011 U	J 0.026 U J 0.052 U	0.00055 U 0.0011 U	0.00045 U 0.00089 U	0.00063 U 0.0012 U	0.47 0.079 U
Cymene Dischol Ethan (Ethan)	~	~	~	0.0011 U	J 0.0062 J	0.0011 U	0.00089 U	0.0012 U	0.079 U
Ethylbenzene	~ 1	~ 41	~~~~~	0.00023 0	0.09	0.0022 0 0.0011 U	0.0018 U	0.0025 0	0.075 J
Isopropylbenzene (Cumene) M P-Xvlene	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0011 U	J 0.02 J	0.0011 U 0.0022 U	0.00089 U 0.0018 U	0.00099 J 0.0019 J	0.079 U 0.12 J
Methyl Ethyl Ketone (2-Butanone)	0.12	100	~	0.011 L	0.52 U	0.011 U	0.0038 J	0.012 U	0.79 U
Methylene Chloride Naphthalene	0.05 12	100 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0057 L 0.0045 L	J 0.26 U J 0.21 U	0.0055 U 0.0044 U	0.0045 U 0.0036 U	0.0063 U 0.005 U	0.4 U 0.32 U
n-Butylbenzene	12	100	~	0.0011 U	J 0.023 J	0.0011 U	0.00089 U	0.00057 J	0.079 U
o-Xylene (1,2-Dimethylbenzene)	~	~	~ ~	0.0011 U	J 0.024 J	0.0011 U	0.00089 U	0.0018 0.001 J	0.021 J
Sec-Butylbenzene T-Butylbenzene	11	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0011 L	J 0.019 J	0.0011 U	0.00089 U	0.00046 J	0.079 U
Tert-Butyl Methyl Ether	0.93	100	~	0.0023 L	J 0.1 U	0.0022 U	0.0018 U	0.0025 U	0.16 U
Tetrachloroethene (PCE) Toluene	1.3 0.7	19 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00057 L 0.0011 L	J 0.026 U J 0.14	0.00055 U 0.0011 U	0.00045 U 0.00089 U	0.00063 U 0.0083	0.04 U 0.066 J
Total 1,2-Dichloroethene (Cis and Trans)	~	~	~	0.0011 U	U 0.052 U	0.0011 U	0.00089 U	0.0012 U	0.079 U
Trichloroethene (TCE)	0.26	21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00011 0.00057 0.00057 0.00057	J 0.074 J J 0.026 U	0.00011 U 0.00055 U	0.00089 U 0.00045 U	0.0029 J 0.00063 U	0.17 J 0.04 U
Semivolatile Organic Compounds (mg/kg)				0.18	0.18 11	0.18	0.19	0.032	0.13
1,2-Dichlorobenzene	1.1	100	~	0.18 L	J 0.18 U	0.18 U	0.19 U	0.032 3 0.17 U	0.13 J
1,3-Dichlorobenzene 1.4-Dichlorobenzene	2.4 1.8	49 13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.18 L 0.18 L	J 0.18 U J 0.18 U	0.18 U 0.18 U	0.19 U 0.19 U	0.17 U 0.17 U	0.18 U 0.11 J
2,4-Dichlorophenol	~	~	~	0.16 U	U 0.16 U	0.16 U	0.17 U	0.16 U	0.16 U
∠-ivietnyinaphthalene 2-Methylphenol (o-Cresol)	~ 0.33	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.21 U 0.18 U	U U U U U U U U U U U U U U U U U U U	0.057 J 0.18 U	0.03 J 0.19 U	0.21 U 0.17 U	0.53 35
3 & 4 Methylphenol (m&p Cresol) Acenanhthene	0.33	100	~	0.25 L	U 0.26 U	0.26 U	0.27 U	0.25 U	0.26 U
Acenaphthylene	100	100	~	0.14 L	J 0.14 U	0.094 J	0.06 J	0.14 U	0.032 J
Acetophenone	~ 100	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.18 L	J 0.18 U J 0.11 U	0.18 U 0.44	0.19 U 0.21	0.17 U 0.1 U	0.18 U 0.064 J
Benzaldehyde	~	~	~	NA	NA	NA	NA	NA	NA
Benzo(a)Anthracene Benzo(a)Pyrene	1	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.1 U 0.14 U	J 0.14 J 0.12 J	1.5 1.5	0.7 0.72	0.12 0.13 J	0.17 0.18
Benzo(b)Fluoranthene	1	1	~	0.1 L	J 0.21	1.8	0.89	0.17	0.23
Benzo(g,n,i)Perviene Benzo(k)Fluoranthene	0.8	3.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.14 U	J 0.059 J	0.83	0.42	0.075 J	0.15 0.084 J
Benzyl Butyl Phthalate Biphenyl (Diphenyl)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.18 L	J 0.18 U	0.18 U 0.42 U	0.19 U	0.17 U	0.18 U
Bis(2-Ethylhexyl) Phthalate	~	~	~	0.18 L	J 0.46	0.42 0 0.18 U	0.43 0 0.19 U	0.17 U	0.098 J
Carbazole Chrysene	~ 1	~ 3.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.18 L 0.1 L	J 0.18 U J 0.15	0.17 J 1.5	0.098 J 0.7	0.17 U 0.12	0.022 J 0.18
Dibenz(a,h)Anthracene	0.33	0.33	~	0.1 U	J 0.022 J	0.18	0.1 J	0.1 U	0.028 J
Diethyl Phthalate	~	~	~~~~~	0.18 U	J 0.18 U	0.1 J	0.051 J 0.19 U	0.17 U	0.024 J 0.078 J
Di-N-Butyl Phthalate	~	~ 100	~	0.18 L	J 0.18 U	0.18 U	0.063 J	0.17 U	0.14 J
Fluorene	30	100	~	0.18 L	J 0.18 U	0.17 J	0.076 J	0.17 U	0.022 J
Indeno(1,2,3-c,d)Pyrene Naphthalene	0.5 12	0.5 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.14 U	J 0.099 J J 0.027 J	0.87	0.44 0.061 J	0.082 J 0.17 U	0.14 J 1.7
Phenanthrene	100	100	~	0.039	0.1 J	2.4	1	0.084 J	0.23
Phenol Pyrene	0.33	100 100	~~~~	0.18 U 0.1 U	J 0.18 U J 0.2	0.18 U 3.1	0.19 U 1.4	0.17 U 0.18	9.5 0.33
Pesticides (mg/kg)	0.0033	13	~	0.00172	0.00169	0.0017	0.00176	0.0017	0.0637
4,4'-DE	0.0033	8.9	~	0.00172 L	J 0.00169 U	0.0017 U	0.00107 P	0.0017 U	0.00178 U
4,4'-DDT Alpha BHC (Alpha Hexachlorocyclohexane)	0.0033 0.02	7.9 0.48	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00322 U 0.000715 U	J 0.00316 U J 0.000703 U	0.00319 U 0.00071 U	0.00329 U 0.000731 U	0.00318 U 0.00206	0.00333 U 0.0884
Alpha Chlordane	0.094	4.2	~	0.00214 U	U 0.00211 U	0.00213 U	0.00126 J	0.0028	0.03
Chlordane (alpha and gamma)	0.036	0.36	~ ~	0.0139 L	J 0.0189 U	0.017 U	0.0143 U	0.02 0.0138 U	0.221
Delta Bhc (Delta Hexachlorocyclohexane)	0.04	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00172 U	J 0.00169 U	0.0017 U	0.00176 U	0.0017 U	0.0339
Gamma Bhc (Lindane)	0.1	1.3	~	0.000715 L	J 0.000703 U	0.00071 U	0.000731 U	0.0013	0.113
Gamma Chlordane Herbicides (mg/kg)	~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	0.00214 U NA	U 0.00211 U NA	0.00213 U NA	0.00219 U NA	0.00436 IP NA	0.0211 IP NA
Polychlorinated Biphenyls (mg/kg)				0.0255	0.0252	0.0250	0.0381	0.0242	0.10
PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248)	~	~	~	0.0355 U	J 0.0352 U	0.0358 U	0.0381 U	0.0342 U	0.18 U
PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0355 L 0.0355 L	J 0.0352 U J 0.0456	0.0358 U 0.0358 U	0.0119 J 0.00768 P	0.0342 U 0.156	0.84 0.657
PCB-1268 (Aroclor 1268)	~	~ 1	~	0.0355 L	U 0.0352 U	0.0358 U	0.0381 U	0.0342 U	0.18 U
Inorganics (mg/kg)	0.1	1	~	0.0355 0	0.0456	0.0358 0	0.0196 5	0.156	1.5
Aluminum	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5,540 3.68	4,020	2,420	8,300 4.57	3,440	6,820 8 31
Arsenic	13	16	~	5.46	9.98	5.23	1.24	7.64	7.48
Barium Bervllium	350 7.2	400 72	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	26.1 0.243	28.3 0.152 J	208 0.196 J	8.29 0.219 J	31.2 0.106 J	122 0.322 J
Cadmium	2.5	4.3	~	2.83	3.51	3.6	0.914 U	8.15 U	0.87 U
Calcium Chromium, Hexavalent	~ 1	~ 110	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.866 L	4,180 J 0.861 U	2,810 0.893 U	0.928 U	37,800 0.85 U	0.893 U
Chromium, Total Chromium, Trivelent	~	~	~	17.9 18	19.6	13.2	23.8	12.6	22.4
Cobalt	~	~	~	33.6	43.8	5.65	6.73	12.9	18.3
Copper Iron	50 ~	270 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19.6 114.000	14.5 135.000	195 10.800	13.7 9.400	28.9 56.800	159 44.400
Lead	63	400	~	24.8	19.4	482	4.59	177	473
iviagnesium Manganese	~ 1,600	~ 2,000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	532 769	1,250 907	604 141	5,430 50.9	7,180 408	4,150 549
Mercury Nickel	0.18	0.81	~	0.073 U	J 0.089 U	4.47	0.079 U	0.791	3.7
Potassium	~	~	~	303	5 64	309	866	342	1,080
Selenium Silver	3.9 2	180 180	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.35 0.838	2.7 0.845	0.417 J 0.851 U	1.83 U 0.914 U	1.63 U 0.815 U	1.74 U 1.31
Sodium	~	~	~	432	1,260	998	314	1,230	466
Vanadium Zinc	~ 109	~ 10,000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	45.5 18.8	62 15.4	15.9 384	24 23.5	29.9 22.2	28.7 354
TCLP - Inorganics (mg/L)			F	NA	NIA	NIA	NA	NIA	NA
Barium	~	~	5 100	NA	NA	NA	NA	NA	NA
Lead Mercury	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	5 0 2	NA NA	NA	0.066 J	NA NA	0.027 J NA	0.35 J
General Chemistry (%)	~	~	V.2	11/24	1974	0.001 0			0.001 0
Solids, Percent Per and Polyfluoroalkyl Substances (mg/kg)	l~	l~	~	92.4	92.9	89.6	86.2	94.1	89.6
Perfluorobutanesulfonic Acid (PFBS)	~	~	~	NA	NA	NA	NA	NA	NA
Perfluorooctanoic Acid (PFOA)	~	~	~	NA	NA	NA	NA	NA	NA
Perfluoropentanoic Acid (PFPeA)	~	~	~	NA	NA	NA	NA	NA	NA

Notes provided on Page 11.

Concentrations above Unrestricted Use SCOs are bolded.

Concentrations above Restricted Use Restricted-Residential SCOs are shaded.

Table 3 Remedial Investigation Report Soil Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	RCRA Characteristics of Hazardous Waste	SB16 SB16_0-2 L1927241-04 6/21/2019 0-2	SB16 SB16_0-2_092719 19I1299-01 9/27/2019 0-2	SB16 SB16_2-4 19I1299-02 9/27/2019 2-4	SB17 SB17_0-2 19I1299-03 9/27/2019 0-2	SB17 SB17_5.5-7.5 19l1299-04 9/27/2019 5.5-7.5	SB18 SB18_0-2 19J0068-01 10/1/2019 0-2
Volatile Organic Compounds (mg/kg) 1,2,4,5-Tetramethylbenzene	~	~	~	0.0064 U	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	3.6	~ 52	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0064 U 0.0064 U	NA 0.0027 U	NA 0.0027 U	NA 0.0027 U	NA 0.0024 U	NA 0.0028 U
1,2-Dichlorobenzene	1.1	100	~	0.0064 U	0.0027 U	0.0027 U	0.0027 U	0.0024 U	0.0028 U
1,3,5-I rimethylbenzene (Mesitylene) 1,4-Dichlorobenzene	8.4 1.8	52 13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0064 U 0.0064 U	0.0027 U 0.0027 U	0.0027 U 0.0027 U	0.0027 U 0.0027 U	0.0024 U 0.0024 U	0.0028 U 0.0028 U
1,4-Diethyl Benzene	~	~	~	0.0064 U	NA	NA	NA	NA	NA
4-Ethyltoluene Acetone	~ 0.05	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0064 U 0.03 J	0.038	0.061	0.0053 U	0.0048 U	NA 0.0096 J
Benzene	0.06	4.8	~	0.0016 U	0.0027 U	0.0027 U	0.0027 U	0.0024 U	0.0028 U
Chlorobenzene	~ 1.1	~ 100	~	0.0016 U	0.0027 U	0.0027 U	0.0027 U	0.0024 U	0.0028 U
Cis-1,2-Dichloroethene	0.25	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0032 U	0.0027 U	0.0027 U	0.0027 U	0.0024 U	0.0028 U
Diethyl Ether (Ethyl Ether)	~	~	~	0.0064 U	NA	NA	NA	NA	NA
Ethylbenzene Isopropylbenzene (Cumene)	1 ~	41 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0032 U 0.0032 U	0.0027 U NA	0.0027 U NA	0.0027 U NA	0.0024 U NA	0.0028 U NA
M,P-Xylene	~	~	~	0.0064 U	0.0055 U	0.0054 U	0.0053 U	0.0048 U	0.0055 U
Methyl Ethyl Ketone (2-Butanone) Methylene Chloride	0.12 0.05	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.032 U 0.016 U	0.019 B 0.0083 J	0.032 B 0.0083 J	0.0068 JB 0.0053 U	0.0055 JB 0.0076 J	0.012 B 0.0055 U
Naphthalene	12	100	~	0.013 U	0.0027 U	0.0027 U	0.0027 U	0.0065 J	0.0028 U
n-Butylbenzene n-Propylbenzene	3.9	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0032 U 0.0032 U	0.0027 U 0.0027 U	0.0027 U 0.0027 U	0.0027 U	0.0024 U 0.0024 U	0.0028 U 0.0028 U
o-Xylene (1,2-Dimethylbenzene)	~ 11	~	~	0.0032 U	0.0027 U	0.0027 U	0.0027 U	0.0024 U	0.0028 U
T-Butylbenzene	5.9	100	~	0.0064 U	0.0027 U	0.0027 U	0.0027 U	0.0024 U	0.0028 U
Tert-Butyl Methyl Ether Tetrachloroethene (PCE)	0.93	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0064 U	0.0027 U	0.0027 U	0.0027 U	0.0024 U	0.0028 U
Toluene	0.7	100	~	0.0032 U	0.0027 U	0.0027 U	0.0027 U	0.0024 U	0.0028 U
Total 1,2-Dichloroethene (Cis and Trans) Total Xylenes	0.26	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0032 U 0.0032 U	NA 0.0082 U	NA 0.0081 U	NA 0.008 U	NA 0.0072 U	NA 0.0083 U
Trichloroethene (TCE)	0.47	21	~	0.0016 U	0.0027 U	0.0027 U	0.0027 U	0.0024 U	0.0028 U
Semivolatile Organic Compounds (mg/kg) 1.2 4-Trichlorobenzene	~	~	~	0.19 U	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	1.1	100	~	0.19 U	NA	NA	NA	NA	NA
1,3-Dichlorobenzene 1.4-Dichlorobenzene	2.4 1.8	49 13	~ ~	0.19 U 0.19 U	NA NA	NA NA	NA NA	NA NA	NA NA
2,4-Dichlorophenol	~	~	~	0.18 U	NA	NA	NA	NA	NA
2-Methylnaphthalene 2-Methylphenol (o-Cresol)	~ 0.33	~ 100	~ ~	0.23 U 0.19 U	NA 0.0445 U	NA 0.0433 U	NA 0.0471 U	NA 0.0602 U	NA 0.0453 U
3 & 4 Methylphenol (m&p Cresol)	0.33	100	~	0.28 U	0.0445 U	0.0433 U	0.0585 JD	0.0602 U	0.0453 U
Acenaphthene Acenaphthylene	20 100	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.025 J 0.042 J	0.369 D 2.7 D	0.0433 U 0.0433 U	1.1 D 0.333 D	2.29 D	0.0453 U 0.0453 U
Acetophenone	~	~	~	0.19 U	NA	NA	NA	NA	NA
Anthracene Benzaldehyde	100 ~	100 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.074 J NA	5.96 D NA	0.0433 U NA	2.86 D NA	6.08 D NA	0.0729 JD NA
Benzo(a)Anthracene	1	1	~	0.27	9.63 D	0.0433 U	5.97 D	13.6 D	0.285 D
Benzo(a)Pyrene Benzo(b)Eluoranthene	1	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.23	7.6 D	0.0433 U	5.72 D	13 D	0.27 D
Benzo(g,h,i)Perylene	100	100	~	0.16	3.57 D	0.0433 U	3.9 D	8.62 D	0.172 D
Benzo(k)Fluoranthene	0.8	3.9	~	0.087 J	6.7 D	0.0433 U	4.62 D	11.2 D	0.235 D
Biphenyl (Diphenyl)	~	~	~	0.44 U	NA	NA	NA	NA	NA
Bis(2-Ethylhexyl) Phthalate	~	~	~	0.072 J	NA	NA	NA	NA	NA
Chrysene	~ 1	~ 3.9	~	0.24	8.41 D	0.0433 U	5.81 D	12.9 D	0.264 D
Dibenz(a,h)Anthracene	0.33	0.33	~	0.035 J	1.54 D	0.0433 U	1.31 D	2.84 D	0.0453 U
Diethyl Phthalate	~	~	~	0.19 U	NA D	NA 0	NA D	NA	NA 0
Di-N-Butyl Phthalate	~	~	~	0.051 J	NA	NA 0.0122	NA 17.1 D	NA 25.4 D	NA 0.578
Fluorene	30	100	~ ~	0.48 0.03 J	2.37 D	0.0433 U	1.19 D	1.95 D	0.0453 U
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	~	0.16	3.82 D	0.0433 U	3.39 D	8.03 D	0.206 D
Phenanthrene	12	100	~ ~	0.03 J	19.6 D	0.0433 U 0.0433 U	12.6 D	23.9 D	0.0453 U 0.287 D
Phenol	0.33	100	~	0.19 U	0.0445 U	0.0433 U	0.0471 U	0.0602 U	0.0453 U
Pesticides (mg/kg)	100	100	~	0.51	18 D	0.0433 0	12.2 D	28.4 D	0.523 D
4,4'-DDD	0.0033	13	~	0.00179 U	0.00175 U	0.00173 U	0.00184 U	0.00242 U	0.00179 U
4,4'-DDT	0.0033	7.9	~	0.0448	0.00175 U	0.00173 U	0.0889 D	0.114 D	0.00179 U
Alpha BHC (Alpha Hexachlorocyclohexane)	0.02	0.48	~	0.000746 U	0.00175 U	0.00173 U	0.00184 U	0.00242 U	0.00179 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.036	0.36	~	0.00179 U	0.00175 U	0.00173 U	0.00184 U	0.00242 U	0.00179 U
Chlordane (alpha and gamma)	~	~	~	0.0315 IP	NA 0.00175	NA 0.00172	NA 0.00184 U	NA 0.00242	NA 0.00170
Dieldrin	0.005	0.2	~	0.00112 U	0.00175 U	0.00173 U	0.00184 U	0.00242 U	0.00179 U
Gamma Bhc (Lindane)	0.1	1.3	~	0.000746 U	0.00175 U	0.00173 U	0.00184 U	0.00242 U	0.00179 U
Herbicides (mg/kg)	~	~	~	NA	ND	ND	ND	ND	ND
Polychlorinated Biphenyls (mg/kg)	~	~	~	0.0391	0.0176	0.0174	0.0186	0.0245	0.0181
PCB-1248 (Aroclor 1248)	~	~	~	0.0391 U	0.0176 U	0.0174 U	0.0186 U	0.0245 U	0.0181 U
PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.216	0.0176 U 0.0402	0.0174 U 0.0465	0.0186 U 0.0916	0.0245 U 0.0873	0.0181 U 0.0181 U
PCB-1268 (Aroclor 1268)	~	~	~	0.0391 U	0.0176 U	0.0174 U	0.0186 U	0.0245 U	0.0181 U
Total PCBs Inorganics (mg/kg)	0.1	1	~	0.406	0.0402	0.0465	0.0916	0.0873	0.0181 U
Aluminum	~	~	~	5,700	NA	NA	NA	NA	NA
Anumony Arsenic	~ 13	~ 16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10.4 6.95	NA 1.63 U	NA 1.6 U	NA 10.4	NA 12	NA 10.6
Barium	350	400	~	93.8	24.6	40.9	239	624	219
Beryllium Cadmium	7.2 2.5	4.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.466 U 1.67	0.054 U 0.325 U	0.053 U 0.319 U	0.057 U 1.51	0.074 U 1.15	0.055 U 0.821
Calcium	~	~	~	23,000	NA	NA	NA	NA	NA
Chromium, Hexavalent Chromium, Total	1 ~	110	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.506 J 14.6	0.542 U 5.73	0.532 0	0.567 U 24.3	0.739 U 28.6	0.547 U 27
Chromium, Trivalent	30	180	~	14 J	5.73	11.9	24.3	28.6	27
Cobalt Copper	~ 50	~ 270	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10.4 58.4	NA 13.8	NA 14.3	NA 151	NA 103	NA 96.5 B
Iron	~	~	~	20,300	NA	NA	NA	NA	NA
Lead Magnesium	63 ~	400 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	386 3.070	9.15 NA	21.8 NA	488 NA	969 NA	480 NA
Manganese	1,600	2,000	~	422	195	502	334	391	742
Mercury Nickel	0.18	0.81	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.436 18.5	0.666 9.37	1.2 13.4	0.457 22.8	0.369 19.3	0.674 42 2
Potassium	~	~	~	608	NA	NA	NA	NA	NA
Selenium Silver	3.9	180	~	1.86 U	2.71 U	2.66 U	2.83 U	3.7 U	2.73 U
Sodium	~	~	~	149 J	NA U	NA U	NA	NA	NA U
Vanadium Zinc	~	~	~	24.8 650	NA 53 4	NA 45.9	NA 457	NA 706	NA 156
TCLP - Inorganics (mg/L)		10,000							
Arsenic Barium	~	~	5	0.046 J	NA NA	NA NA	NA	NA NA	NA NA
Lead	~	~	5	0.459 J	NA	NA	NA	NA	NA
Mercury General Chemistry (%)	~	~	0.2	0.0006 J	NA	NA	NA	NA	NA
Solids, Percent	~	~	~	84.9	92.3	94	88.2	67.6	91.4
Per and Polyfluoroalkyl Substances (mg/kg) Perfluorobutanesulfonic Acid (PERS)	~	~	~	NA	0.000741	NA	0.000814	NA	0.000759
Perfluorooctanesulfonic acid (PFOS)	~	~	~	NA	0.000741 U	NA	0.00292	NA	0.000753 U
Perfluorooctanoic Acid (PFOA) Perfluoropentanoic Acid (PFPeA)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	~~~~	NA NA	0.000741 U 0.000741 U	NA NA	0.000814 U 0.000814 U	NA NA	0.000936 0.000753

Notes provided on Page 11.

Concentrations above Unrestricted Use SCOs are bolded.

Concentrations above Restricted Use Restricted-Residential SCOs are shaded.

Table 3 Remedial Investigation Report Soil Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs) Volatile Organic Compounds (mg/kg)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	RCRA Characteristics of Hazardous Waste	SB18 SB18_10-12 19J0068-02 10/1/2019 10-12	SB19 SB19_0-2 19J0144-01 10/2/2019 0-2	SB19 SB19_8-9 19J0144-02 10/2/2019 8-9	SB20 SB20_0-2 19J0216-01 10/3/2019 0-2	SB20 RISODUP02_100319 19J0216-05 10/3/2019 0-2	SB20 SB20_13-15 19J0216-02 10/3/2019 13-15
1,2,4,5-Tetramethylbenzene	~	~	~	NA	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	~ 3.6	~ 52	~	0.0022 U	0.0023 U	0.0023 U	0.0031 U	0.004 U	0.0025 U
1,2-Dichlorobenzene 1,3,5-Trimethylbenzene (Mesitylene)	1.1 8.4	100 52	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0022 U 0.0022 U	0.0023 U 0.0023 U	0.0023 U 0.0023 U	0.0031 U 0.0031 U	0.004 U 0.004 U	0.0025 U 0.0025 U
1,4-Dichlorobenzene	1.8	13	~	0.0022 U	0.0023 U	0.0023 U	0.0031 U	0.004 U	0.0025 U
1,4-Diethyl Benzene 4-Ethyltoluene	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acetone	0.05	100	~	0.0044 U	0.0056 J	0.0047 U	0.0061 U	0.019	0.0085 J
Benzene Carbon Disulfide	0.06	4.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0022 U NA	0.0023 U NA	0.0023 U NA	0.0031 U NA	0.004 U NA	0.0025 U NA
	1.1	100	~	0.0022 U	0.0023 U	0.0023 U	0.0031 U	0.004 U	0.0025 U
Cis-1,2-Dichloroethene Cymene	0.25	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0022 0 NA	0.0023 0 NA	0.0023 0 NA	0.0031 0 NA	0.004 0 NA	0.0025 0 NA
Diethyl Ether (Ethyl Ether)	~ 1	~	~	NA 0.0022	NA 0.0022	NA 0.0022	NA 0.0021	NA 0.004	NA 0.0025
Isopropylbenzene (Cumene)	~	~	~	NA 0.0022 0	NA 0	NA 0	NA	NA 0	NA 0.0023
M,P-Xylene Methyl Ethyl Ketone (2-Butanone)	0 12	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0044 U 0.0042 JB	0.0049 J 0.0028 J	0.0047 U 0.0052 JB	0.0061 U 0.0031 U	0.008 U 0.004 U	0.0051 U 0.0025 U
Methylene Chloride	0.05	100	~	0.0073 J	0.0087 J	0.0054 J	0.0073 J	0.012 J	0.0087 J
Naphthalene n-Butylbenzene	12 12	100 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0022 U 0.0022 U	0.0023 U 0.0023 U	0.0023 U 0.0023 U	0.0031 U 0.0031 U	0.004 U 0.004 U	0.0072 J 0.0025 U
n-Propylbenzene	3.9	100	~	0.0022 U	0.0023 U	0.0023 U	0.0031 U	0.004 U	0.0025 U
o-Xylene (1,2-Dimethylbenzene) Sec-Butylbenzene	~ 11	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0022 U 0.0022 U	0.0023 U 0.0023 U	0.0023 U 0.0023 U	0.0031 U 0.0031 U	0.004 U 0.004 U	0.0025 U 0.0025 U
T-Butylbenzene	5.9	100	~	0.0022 U	0.0023 U	0.0023 U	0.0031 U	0.004 U	0.0025 U
Tetrachloroethene (PCE)	1.3	19	~ ~	0.0022 U	0.0023 U	0.0023 U	0.0031 U	0.004 U	0.0025 U
Toluene	0.7	100	~	0.0022 U	0.0023 U	0.0023 U	0.0031 U	0.004 U	0.0025 U
Total Xylenes	0.26	100	~	0.0065 U	0.0069 U	0.007 U	0.0092 U	0.012 U	0.0076 U
Trichloroethene (TCE) Semivolatile Organic Compounds (mg/kg)	0.47	21	~	0.0022 U	0.0023 U	0.0023 U	0.0031 U	0.004 U	0.0025 U
1,2,4-Trichlorobenzene	~	~	~	NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzene 1.3-Dichlorobenzene	1.1 2.4	100 49	~ ~	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,4-Dichlorobenzene	1.8	13	~	NA	NA	NA	NA	NA	NA
2,4-Dichlorophenol 2-Methylnaphthalene	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA NA	NA	NA NA	NA	NA	NA NA
2-Methylphenol (o-Cresol)	0.33	100	~	0.0469 U	0.0437 U	0.0471 U	0.049 U	0.0482 U	0.0519 U
Acenaphthene	20	100	~ ~	0.0469 U	0.0437 U	0.0471 U	2.17 D	2.31 D	0.0519 U 0.0786 JD
Acenaphthylene	100	100	~	0.0469 U	0.0437 U	0.0471 U	0.467 D	0.398 D	0.0519 U
Anthracene	~ 100	~ 100	~ ~	0.0469 U	0.0437 U	0.0471 U	4.76 D	5.71 D	0.191 D
	~ 1	~ 1	~	NA 0.0460 U	NA 0.0427	NA	NA 7.75	NA 9.61	NA 0.285 D
Benzo(a)Pyrene	1	1	~	0.0469 U	0.0437 U	0.0471 U	6.68 D	8.18 D	0.233 D
Benzo(b)Fluoranthene Benzo(a b.i)Pen/lene	1	1 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0469 U	0.0437 U 0.0437 U	0.0471 U	5.06 D	6.04 D	0.172 D
Benzo(k)Fluoranthene	0.8	3.9	~	0.0469 U	0.0437 U	0.0471 U	4.72 D	5.65 D	0.125 D
Benzyl Butyl Phthalate Biphenyl (Diphenyl)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA NA	NA	NA NA	NA	NA NA	NA NA
Bis(2-Ethylhexyl) Phthalate	~	~	~	NA	NA	NA	NA	NA	NA
Carbazole Chrysene	~ 1	~ 3.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 0.0469 U	NA 0.0437 U	NA 0.0471 U	7.63 D	NA 8.78 D	NA 0.261 D
Dibenz(a,h)Anthracene	0.33	0.33	~	0.0469 U	0.0437 U	0.0471 U	1.28 D	1.59 D	0.0519 U
Dibenzofuran Diethyl Phthalate	7~	59 ~	~ ~	0.0469 U NA	0.0437 U NA	0.0471 U NA	1.11 D NA	0.915 D NA	0.0519 U NA
Di-N-Butyl Phthalate	~	~	~	NA	NA	NA	NA	NA	NA
Fluoranthene Fluorene	100 30	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0469 U 0.0469 U	0.0934 D 0.0437 U	0.04/1 U 0.0471 U	17.6 D 2.09 D	20.3 D 2.19 D	0.569 D 0.091 JD
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	~	0.0469 U	0.0437 U	0.0471 U	3.41 D	3.73 D	0.107 D
Phenanthrene	12	100	~ ~	0.0469 U	0.0437 0 0.114 D	0.0471 U	22.1 D	24.4 D	0.0844 JD 0.704 D
Phenol	0.33	100	~	0.0469 U	0.0437 U	0.0471 U	0.049 U	0.0482 U	0.0519 U
Pesticides (mg/kg)	100	100	~	0.0489 0	0.0746 JD	0.0471 0	18 D	21.9 D	0.604 D
4,4'-DDD 4.4'-DDE	0.0033	13 8 9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00186 U	0.00172 U	0.00186 U	0.00193 U	0.00189 U	0.00204 U
4,4'-DDT	0.0033	7.9	~	0.00186 U	0.00172 U	0.00186 U	0.00193 U	0.00189 U	0.00204 U
Alpha BHC (Alpha Hexachlorocyclohexane) Alpha Chlordane	0.02	0.48	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00186 U 0.00186 U	0.00172 U 0.00172 U	0.00186 U 0.00186 U	0.00193 U 0.00193 U	0.00189 U 0.00189 U	0.00204 U 0.00204 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.036	0.36	~	0.00186 U	0.00172 U	0.00186 U	0.00193 U	0.00189 U	0.00204 U
Chlordane (alpha and gamma) Delta Bhc (Delta Hexachlorocyclohexane)	~ 0.04	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 0.00186 U	NA 0.00172 U	NA 0.00186 U	NA 0.00193 U	NA 0.00189 U	NA 0.00204 U
Dieldrin	0.005	0.2	~	0.00186 U	0.00172 U	0.00186 U	0.00193 U	0.00189 U	0.00204 U
Gamma Bhc (Lindane) Gamma Chlordane	0.1	1.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00186 U NA	0.00172 U NA	0.00186 U NA	0.00193 U NA	0.00189 U NA	0.00204 U NA
Herbicides (mg/kg) Debachteringted Binhands (mg/kg)	~	~	~	ND	ND	ND	ND	ND	ND
PCB-1242 (Aroclor 1242)	~	~	~	0.0188 U	0.0174 U	0.0188 U	0.0195 U	0.0191 U	0.0206 U
PCB-1248 (Aroclor 1248) PCB-1254 (Aroclor 1254)	~	~	~	0.0188 U	0.0174 U	0.0188 U	0.0195 U	0.0191 U	0.0206 U
PCB-1260 (Aroclor 1260)	~	~	~	0.0188 U	0.0174 U	0.0188 U	0.0195 U	0.0191 U	0.0206 U
PCB-1268 (Aroclor 1268) Total PCBs	~ 0 1	~ 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0188 U 0.0188 U	0.0174 U 0.0174 U	0.0188 U 0.0188 U	0.0195 U 0.0195 U	0.0191 U 0.0191 U	0.0206 U 0.0206 U
Inorganics (mg/kg)	0.1			0.0100 0	0.0174 0	0.0100 0	0.0100 0	0.0101 0	0.0200 0
Aluminum Antimony	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Arsenic	13	16	~	1.72 U	1.57 U	1.93	14.5	19.9	6.88
Barium Bervllium	350 7.2	400 72	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	32.4 0.057 U	30.2 0.052 U	30.8 0.058 U	40.9 0.059 U	195 0.058 U	21.6 0.062 U
Cadmium	2.5	4.3	~	0.343 U	0.315 U	0.587	0.618	1.99	0.674
Calcium Chromium, Hexavalent	~ 1	~ 110	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 0.572 U	NA 0.525 U	NA 0.578 U	NA 0.59 U	NA 0.578 U	NA 0.625 U
Chromium, Total	~	~	~	39	21.9	22.1	31.5	15.3	21.2
Cobalt	~	~	~ ~	NA	NA	NA	NA	NA	NA
Copper	50	270	~	32 B	15.3	22.4	112 B	140 B	79.5 B
Lead	~ 63	~ 400	~ ~	2.05	37.2	30.5	362	7,360	106
Magnesium	~	~ 2 000	~	NA 555	NA 376	NA 297	NA 528	NA 285	NA 386
Mercury	0.18	0.81	~	0.0343 U	0.0417	0.0347 U	0.367	1.82	0.0829
Nickel Potassium	30	310	~	22.6 NA	22.9 NA	19.3 NA	10.1 NA	12.1 NA	16.7 NA
Selenium	~ 3.9	~ 180	~ ~	2.86 U	2.62 U	2.89 U	2.95 U	2.89 U	3.12 U
Silver	2	180	~	0.572 U	0.525 U	0.578 U	0.59 U	0.578 U	0.625 U
Vanadium	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~	NA	NA	NA	NA	NA	NA
Zinc TCLP - Inorganics (mg/L)	109	10,000	~	49.9	56.1	106	388 B	2,060 B	239 B
Arsenic	~	~	5	NA	NA	NA	NA	NA	NA
Barium Lead	~	~	100	NA NA	NA NA	NA NA	ΝΑ	NA 74 1	NA NA
Mercury	~	~	0.2	NA	NA	NA	NA	NA	NA
General Chemistry (%) Solids, Percent	~	~	~	87.4	95.3	86.5	84.8	86.5	80
Per and Polyfluoroalkyl Substances (mg/kg)				NIA	NIA	0.000700	0.00400	0.00200	NIA
Perfluorooctanesulfonic acid (PFBS)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~	NA	NA	0.000782 U	0.00429 U 0.00429 U	0.00399 U	NA
Perfluorooctanoic Acid (PFOA) Perfluoropentanoic Acid (PFPeA)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA NA	NA NA	0.000782 U 0.000782 U	0.00429 U 0.00429 U	0.00399 U 0.00399 U	NA NA

Notes provided on Page 11.

Concentrations above Unrestricted Use SCOs are bolded.

Concentrations above Restricted Use Restricted-Residential SCOs are shaded.

Table 3 Remedial Investigation Report Soil Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	RCRA Characteristics of Hazardous Waste	SB21 SB21_0-2 1911369-01 9/30/2019 0-2		SB21 SB21_5-7 19I1369-02 9/30/2019 5-7		SB22_ SB22_0-2 1911369-03 9/30/2019 0-2		SB22 RISODUP01_093 1911369-07 9/30/2019 0-2	019	SB22 SB22_5-7 19I1369-04 9/30/2019 5-7	ŀ	SB23_0-2 SB23_0-2 1911369-09 9/30/2019 0-2	5)
Volatile Organic Compounds (mg/kg) 1,2,4,5-Tetramethylbenzene	~	~	~	NA		NA		NA	Т	NA		NA		NA	
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	~ 3.6	~ 52	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 0.0029	U	NA 0.0022	U	NA 0.0023 U	J	NA 0.0021	U	NA 0.0024	U	NA 0.0024	U
1,2-Dichlorobenzene	1.1	100	~	0.0029	Ū	0.0022	Ū	0.0023 L	J	0.0021	U	0.0024	Ũ	0.0024	U
1,3,5-Trimethylbenzene (Mesitylene) 1,4-Dichlorobenzene	8.4 1.8	52 13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0029 0.0029	U U	0.0022	U U	0.0023 L 0.0023 L	J	0.0021 0.0021	U U	0.0024 0.0024	U U	0.0024 0.0024	U U
1,4-Diethyl Benzene	~	~	~	NA		NA		NA		NA	-	NA	-	NA	
4-Ethyltoluene Acetone	~ 0.05	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.034		NA 0.0044	U	0.0064 J	J	0.0042	U	0.0048	U	NA 0.0048	U
Benzene	0.06	4.8	~	0.0029	U	0.0022	U	0.0023 U	J	0.0021	U	0.0024	U	0.0024	U
Chlorobenzene	~ 1.1	~ 100	~ ~	0.0029	U	0.0022	U	0.0023 L	J	0.0021	U	0.0024	U	0.0024	U
Cis-1,2-Dichloroethene	0.25	100	~	0.0029	U	0.0022	U	0.0023 L	J	0.0021	U	0.0024	U	0.0024	U
Diethyl Ether (Ethyl Ether)	~	~	~	NA		NA		NA		NA		NA		NA	
Ethylbenzene Isopropylbenzene (Cumene)	1 ~	41 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0029 NA	U	0.0022 NA	U	0.0023 U NA	J	0.0021 NA	U	0.0024 NA	U	0.0024 NA	U
M,P-Xylene	~	~	~	0.0058	U	0.0044	U	0.0047 L	J	0.0042	U	0.0048	U	0.0048	U
Methyl Ethyl Ketone (2-Butanone) Methylene Chloride	0.12 0.05	100 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0081 0.0058	U	0.0022 0.0044	UU	0.0023 L 0.0047 L	J	0.0021 0.0042	UU	0.0024 0.0048	UU	0.0024 0.0048	U
Naphthalene	12	100	~	0.0029	U	0.0022	U	0.0023 L	J	0.0021	U	0.0024	U	0.0024	U
n-Butylbenzene n-Propylbenzene	12 3.9	100 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0029 0.0029	U U	0.0022	UU	0.0023 L	J	0.0021 0.0021	UU	0.0024 0.0024	U U	0.0024 0.0024	UU
o-Xylene (1,2-Dimethylbenzene)	~	~	~	0.0029	U	0.0022	U	0.0023 L	J	0.0021	U	0.0024	U	0.0024	U
Sec-Butylbenzene T-Butylbenzene	5.9	100	~ ~	0.0029	U	0.0022	U	0.0023 U	J	0.0021	U	0.0024	U	0.0024	U
Tert-Butyl Methyl Ether	0.93	100	~	0.0029	U	0.0022	U	0.0023 L	J	0.0021	U	0.0024	U	0.0024	U
Toluene	0.7	100	~ ~	0.0029	J	0.0022	U	0.0023 L	J	0.0021	U	0.0024	U	0.0024	U
Total 1,2-Dichloroethene (Cis and Trans)	~	~	~	NA 0.0089		NA 0.0066		NA 0.007		NA 0.0062		NA		NA	
Trichloroethene (TCE)	0.28	21	~ ~	0.0029	U	0.0088	U	0.007 U	J	0.0083	U	0.0073	U	0.0072	U
Semivolatile Organic Compounds (mg/kg)				ΝΔ		ΝΔ		NA	1	NA	1	NA		NA	
1,2-Dichlorobenzene	1.1	100	~	NA		NA		NA		NA		NA		NA	
1,3-Dichlorobenzene 1 4-Dichlorobenzene	2.4	49 13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA NA		NA NA		NA NA		NA NA		NA NA		NA NA	
2,4-Dichlorophenol	~	~	~	NA		NA		NA		NA		NA		NA	
2-Methylnaphthalene 2-Methylphenol (o-Cresol)	0.33	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 0.0443	U	NA 0.0472	u	NA 0.0446 I		NA 0.0453	U	NA 0.0487	U	NA 0.0447	U
3 & 4 Methylphenol (m&p Cresol)	0.33	100	~	0.0443	U	0.0472	U	0.0446 U	J	0.0453	U	0.0487	U	0.0447	U
Acenaphthene Acenaphthylene	20 100	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0443	U	0.0472	U	0.0446 L	J	0.0453	U	0.0487	U	0.0447	U
Acetophenone	~	~	~	NA	0	NA	0	NA	0	NA	0	NA	0	NA	0
Anthracene Benzaldebyde	100	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0443 NA	U	0.0472 NA	U	0.0446 U NA	J	0.0453 NA	U	0.0487 NA	U	0.0499 NA	JD
Benzo(a)Anthracene	1	1	~	0.0565	JD	0.0472	U	0.0847 JI	D	0.0657	JD	0.0487	U	0.168	D
	1	1	~	0.0551	JD	0.0472	U	0.0733 J	D	0.0628	JD	0.0487	U	0.156	D
Benzo(g,h,i)Perylene	100	100	~	0.0443	U	0.0472	U	0.0446 L	J	0.057	JD	0.0487	U	0.0712	JD
Benzo(k)Fluoranthene	0.8	3.9	~	0.0443	U	0.0472	U	0.0577 JI	D	0.0453	U	0.0487	U	0.12	D
Biphenyl (Diphenyl)	~	~	~ ~	NA		NA		NA		NA		NA		NA	
Bis(2-Ethylhexyl) Phthalate	~	~	~	NA		NA		NA		NA		NA		NA	
Carbazole Chrysene	~ 1	~ 3.9	~~~~~	0.0452	JD	0.0472	U	0.0683 JI	D	0.0679	JD	0.0487	U	0.149	D
Dibenz(a,h)Anthracene	0.33	0.33	~	0.0443	U	0.0472	U	0.0446 L	J	0.0453	U	0.0487	U	0.0447	U
Diethyl Phthalate	~	~	~ ~	0.0443 NA	0	0.0472 NA	0	NA	J	0.0453 NA	0	0.0487 NA	0	0.0447 NA	U
Di-N-Butyl Phthalate	~	~	~	NA		NA		NA	_	NA	5	NA		NA	0
Fluoranthene	30	100	~~~~~	0.0933	U	0.0472	U	0.0446 L	J	0.0453	U	0.0487	U	0.311	U
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	~	0.0443	U	0.0472	U	0.0527 JI	D	0.0453	U	0.0487	U	0.0876	JD
Naphthalene Phenanthrene	12 100	100 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0443 0.0473	JD	0.0472 0.0472	UU	0.0446 U 0.0833 JI	J D	0.0453 0.0715	JD	0.0487	U U	0.0447	D
Phenol	0.33	100	~	0.0443	U	0.0472	U	0.0446 L	J	0.0453	U	0.0487	U	0.0447	U
Pesticides (mg/kg)	100	100	~	0.0784	JD	0.0472	0	0.112 L		0.105	D	0.0487	0	0.256	0
4,4'-DDD	0.0033	13	~	0.00178	U	0.00188	U	0.00177 L	J	0.00179	U	0.00194	U	0.00177	U
4,4'-DDT	0.0033	7.9	~	0.00178	U	0.00188	U	0.00177 L	J	0.00179	U	0.00194	U	0.00177	U
Alpha BHC (Alpha Hexachlorocyclohexane)	0.02	0.48	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00178	U	0.00188	U	0.00177 L	J	0.00179	U	0.00194	U	0.00177	U
Beta Bhc (Beta Hexachlorocyclohexane)	0.036	0.36	~	0.00178	U	0.00188	U	0.00177 L	J	0.00179	U	0.00194	U	0.00177	U
Chlordane (alpha and gamma)	~ 0.04	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 0.00178	ш	NA 0.00188		NA 0.00177 I		NA 0.00179		NA 0.00194		NA 0.00177	ш
Dieldrin	0.005	0.2	~	0.00178	U	0.00188	U	0.00177 L	J	0.00179	U	0.00194	U	0.00177	U
Gamma Bhc (Lindane) Gamma Chlordane	0.1	1.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00178 NA	U	0.00188 NA	U	0.00177 L NA	J	0.00179 NA	U	0.00194 NA	U	0.00177 NA	U
Herbicides (mg/kg)	~	~	~	ND		ND		ND		ND		ND		ND	
Polychlorinated Biphenyls (mg/kg) PCB-1242 (Aroclor 1242)	~	~	~	0.018	U	0.019	U	0.0179 L	J	0.0181	U	0.0195	U	0.0179	U
PCB-1248 (Aroclor 1248)	~	~	~	0.018	U	0.019	U	0.0179 U	J	0.0181	U	0.0195	U	0.0179	U
PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.018	U	0.019	U	0.0179 U	J	0.0181	U	0.0195	U	0.0179	U
PCB-1268 (Aroclor 1268)	~ 0 1	~ 1	~	0.018	U	0.019	U	0.0179 U	J	0.0181	U	0.0195	U	0.0179	U
Inorganics (mg/kg)	0.1		~	0.018	0	0.019	0	0.0179 0	J	0.0181	0	0.0195	0	0.0175	0
Aluminum	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA NA		NA		NA NA		NA		NA		NA NA	
Arsenic	13	16	~	3.38		2.33		3.26		4.45		2.9		2.64	
Barium Berdium	350	400	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44.6	ш	53.4 0.057		82.3 0.054 I		35.5		43		42.2	ш
Cadmium	2.5	4.3	~	0.324	U	0.345	Ŭ	0.324 L	J	0.327	U	0.353	U	0.326	Ŭ
Calcium Chromium, Hexavalent	~ 1	~ 110	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 0.541	U	NA 0.574	U	NA 0.539 L	J	NA 0.545	U	NA 0.589	U	NA 0.543	U
Chromium, Total	~	~	~	12.7		9.53	-	11.1		10.2		15.4	-	9.25	
Chromium, Trivalent Cobalt	30 ~	180 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12.7 NA		9.53 NA		11.1 NA		10.2 NA		15.4 NA		9.25 NA	
Copper	50	270	~	27.4		8.27		13.3		19		14.3		16.9	
Iron Lead	~ 63	400	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 48.4		NA 2.88		NA 53.3		NA 43 1		NA 3.29		NA 29.8	
Magnesium	~	~	~	NA		NA		NA		NA		NA		NA	
Manganese	1,600	2,000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	602 0 198		390 0.0345		266 0 233		322		454		379 0.157	
Nickel	30	310	~	19.6		10.8	0	11		11.5		12.1	0	13.8	
Potassium Selenium	~	~	~	NA 2.7		NA 2.87		NA 2.7 I		NA 2 73		NA 2 94		NA 2 72	ш
Silver	2	180	~	0.541	U	0.574	U	0.539 L	J	0.545	U	0.589	U	0.543	U
Sodium	~	~	~	NA		NA		NA		NA		NA		NA	
Zinc	~ 109	~ 10,000	~	42.3		31.5		33.5		42.3		36.2		33.1	
TCLP - Inorganics (mg/L)			~	NA		NIA		NΔ	-	N۸		NA		NIA	
Barium	~	~	100	NA		NA		NA		NA		NA		NA	
Lead	~	~	5	NA		NA		NA		NA		NA		NA	
General Chemistry (%)	~	~	V.2	IVA		I VPA		110		Mr i		INPA		IVA	
Solids, Percent Per and Polyfluoroalkyl Substances (mg/kg)	~	~	~	92.5		87]	92.7		91.7		85		92	
Perfluorobutanesulfonic Acid (PFBS)	~	~	~	0.000803	U	NA		0.000779 L	J	0.000813	U	NA		0.00078	U
Perfluorooctanesulfonic acid (PFOS)	~	~	~	0.00263		NA		0.00125		0.000813	U	NA		0.00078	U
Perfluoropentanoic Acid (PFPeA)	~	~	~	0.000803	Ű	NA		0.000779 L	J	0.000813	Ŭ	NA		0.00078	Ŭ

Notes provided on Page 11.

Concentrations above Unrestricted Use SCOs are bolded.

Concentrations above Restricted Use Restricted-Residential SCOs are shaded.

Table 3 Remedial Investigation Report Soil Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	RCRA Characteristics of Hazardous Waste	SB23 SB23_5.5-7.5 19I1369-06 9/30/2019 5.5-7.5	SB24 SB24_0-2 19J0068-03 10/1/2019 0-2	SB24_ SB24_10-12 19J0068-04 10/1/2019 10-12	SB24 SB24_15-16 19J0068-05 10/1/2019 15-16	SB25 SB25_0-2 19J0068-06 10/1/2019 0-2	SB25 SB25_6-8 19J0068-07 10/1/2019 6-8
Volatile Organic Compounds (mg/kg) 1,2,4,5-Tetramethylbenzene	~	~	~	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	~ 3.6	~ 52	~ ~	NA 0.0022 U	NA 0.0021 U	NA 0.0027 U	NA 0.0023 U	NA 0.0029 U	NA 2.7 D
1,2-Dichlorobenzene	1.1	100	~	0.0022 U	0.0021 U	0.0027 U	0.0023 U	0.0029 U	0.29 U
1,3,5-1 rimethylbenzene (Mesitylene) 1,4-Dichlorobenzene	8.4 1.8	52 13	~ ~	0.0022 U 0.0022 U	0.0021 U 0.0021 U	0.0027 U 0.0027 U	0.0023 U 0.0023 U	0.0029 U 0.0029 U	0.29 U
1,4-Diethyl Benzene	~	~	~	NA	NA	NA	NA	NA	NA
Acetone	~ 0.05	~ 100	~	0.0044 U	0.0042 U	0.014	0.0046 U	0.0063 J	0.59 U
Benzene Carbon Disulfide	0.06	4.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0022 U	0.0021 U	0.0027 U	0.0023 U	0.0029 U	0.29 U
Chlorobenzene	1.1	100	~	0.0022 U	0.0021 U	0.0027 U	0.0023 U	0.0029 U	0.29 U
Cis-1,2-Dichloroethene Cymene	0.25	100 ~	~ ~	0.0022 U NA	0.0021 U NA	0.0027 U NA	0.0023 U NA	0.0029 U NA	0.72 D NA
Diethyl Ether (Ethyl Ether)	~	~	~	NA	NA 0.0001	NA 0.0007	NA	NA	NA
Isopropylbenzene (Cumene)	~	41	~ ~	0.0022 U NA	0.0021 U NA	0.0027 0 NA	0.0023 0 NA	0.0029 0 NA	0.29 U NA
M,P-Xylene Methyl Ethyl Ketone (2-Butanone)	~	~	~	0.0044 U	0.0042 U	0.0055 U	0.0046 U	0.0057 U	0.82 JD
Methylene Chloride	0.05	100	~	0.0044 U	0.0042 U	0.0055 U	0.0074 J	0.011	0.59 U
Naphthalene n-Butvlbenzene	12 12	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0022 U 0.0022 U	0.0021 U 0.0021 U	0.0027 U 0.0027 U	0.0023 U 0.0023 U	0.0029 U 0.0029 U	3.7 D
n-Propylbenzene	3.9	100	~	0.0022 U	0.0021 U	0.0027 U	0.0023 U	0.0029 U	0.29 U
o-Xylene (1,2-Dimethylbenzene) Sec-Butylbenzene	~ 11	~ 100	~ ~	0.0022 U 0.0022 U	0.0021 U 0.0021 U	0.0027 U 0.0027 U	0.0023 U 0.0023 U	0.0029 U 0.0029 U	0.32 JD 0.38 JD
T-Butylbenzene	5.9	100	~	0.0022 U	0.0021 U	0.0027 U	0.0023 U	0.0029 U	0.29 U
Tetrachloroethene (PCE)	1.3	19	~ ~	0.0022 U	0.0021 U	0.0027 U	0.0023 U	0.0029 U	0.29 U 0.83 D
Toluene	0.7	100	~	0.0022 U	0.0021 U	0.0027 U	0.0023 U	0.0029 U	0.29 U
Total Xylenes	0.26	100	~	0.0067 U	0.0063 U	0.0082 U	0.0069 U	0.0086 U	1.1 JD
Trichloroethene (TCE) Semivolatile Organic Compounds (mg/kg)	0.47	21	~	0.0022 U	0.0021 U	0.0027 U	0.0023 U	0.0029 U	0.29 U
1,2,4-Trichlorobenzene	~	~	~	NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzene 1,3-Dichlorobenzene	2.4	49	~ ~	NA NA	NA	NA	NA NA	NA NA	NA NA
1,4-Dichlorobenzene	1.8	13	~	NA	NA	NA	NA	NA	NA
2,4-Dichlorophenol 2-Methylnaphthalene	~ ~	~ ~	~ ~	NA	NA	NA	NA	NA	NA
2-Methylphenol (o-Cresol)	0.33	100	~	0.048 U	0.0453 U	0.0503 U	0.0468 U	0.0434 U	0.0482 U
Acenaphthene	20	100	~ ~	0.048 U	0.0453 U	0.0503 U	0.0468 U	0.136 D	7.26 D
Acenaphthylene	100	100	~	0.048 U	0.0453 U	0.0503 U	0.0468 U	0.0872 D	0.179 D
Anthracene	100	100	~	0.048 U	0.0556 JD	0.0503 U	0.0468 U	0.501 D	10 D
Benzaldehyde Benzo(a)Anthracene	~ 1	~ 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 0.048 U	NA 0.238 D	NA 0.0503 U	NA 0.0468 U	NA 1.56 D	NA 3.8 D
Benzo(a) Pyrene	1	1	~	0.048 U	0.206 D	0.0503 U	0.0468 U	1.43 D	1.35 D
Benzo(b)Fluoranthene Benzo(g,h,i)Perylene	1 100	1 100	~ ~	0.048 U 0.048 U	0.178 D 0.134 D	0.0503 U 0.0503 U	0.0468 U 0.0468 U	1.25 D	2.08 D
Benzo(k)Fluoranthene	0.8	3.9	~	0.048 U	0.185 D	0.0503 U	0.0468 U	1.15 D	1.68 D
Biphenyl (Diphenyl)	~ ~	~ ~	~ ~	NA	NA	NA	NA	NA	NA
Bis(2-Ethylhexyl) Phthalate	~	~	~	NA	NA	NA	NA	NA	NA
Chrysene	~ 1	~ 3.9	~ ~	0.048 U	0.215 D	0.0503 U	0.0468 U	1.42 D	3.25 D
Dibenz(a,h)Anthracene Dibenzofuran	0.33	0.33	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.048 U	0.0453 U	0.0503 U	0.0468 U	0.234 D	0.158 D
Diethyl Phthalate	~	~	~	NA	NA	NA	NA	NA	NA
Di-N-Butyl Phthalate Eluoranthene	~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 0.048 U	NA 0.443 D	NA 0.0503 U	NA 0.0468 U	NA 2.94 D	NA 18.1 D
Fluorene	30	100	~	0.048 U	0.0453 U	0.0503 U	0.0468 U	0.169 D	7.3 D
Indeno(1,2,3-c,d)Pyrene Naphthalene	0.5 12	0.5 100	~ ~	0.048 U 0.048 U	0.149 D 0.0453 U	0.0503 U 0.0503 U	0.0468 U 0.0468 U	1.04 D 0.0776 JD	0.514 D 0.31 D
Phenanthrene	100	100	~	0.048 U	0.241 D	0.0503 U	0.0468 U	1.92 D	5.97 D
Pyrene	100	100	~ ~	0.048 U	0.0453 U 0.387 D	0.0978 JD	0.0468 U	2.71 D	18.4 D
Pesticides (mg/kg)	0.0033	13	~	0.0019	0.0018	0.00198	0.00184	0.0017	0.0019
4,4'-DDE	0.0033	8.9	~	0.0019 U	0.0018 U	0.00198 U	0.00184 U	0.00708 DP	0.0019 U
4,4'-DDT Alpha BHC (Alpha Hexachlorocyclohexane)	0.0033	7.9 0.48	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0019 U 0.0019 U	0.0018 U 0.0018 U	0.00198 U 0.00198 U	0.00184 U 0.00184 U	0.0371 DP 0.0017 U	0.0019 U 0.0019 U
Alpha Chlordane	0.094	4.2	~	0.0019 U	0.0018 U	0.00198 U	0.00184 U	0.00445 DP	0.0019 U
Beta Bhc (Beta Hexachlorocyclohexane) Chlordane (alpha and gamma)	0.036	0.36	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0019 U NA	0.0018 U NA	0.00198 U NA	0.00184 U NA	0.0017 U NA	0.0019 U NA
Delta Bhc (Delta Hexachlorocyclohexane)	0.04	100	~	0.0019 U	0.0018 U	0.00198 U	0.00184 U	0.0017 U	0.0019 U
Gamma Bhc (Lindane)	0.005	1.3	~ ~	0.0019 U	0.0018 U	0.00198 U	0.00184 U	0.0017 U	0.0019 U
Gamma Chlordane	~	~	~	NA	NA ND	NA	NA ND	NA	NA
Polychlorinated Biphenyls (mg/kg)				NB	NB	ND	THE .	ND	nD
PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	0.0191 U 0.0191 U	0.0182 U 0.0182 U	0.02 U 0.02 U	0.0186 U 0.0186 U	0.0172 U 0.0172 U	0.0192 U 0.0192 U
PCB-1254 (Aroclor 1254)	~	~	~	0.0191 U	0.0182 U	0.02 U	0.0186 U	0.0172 U	0.0192 U
PCB-1260 (Aroclor 1260) PCB-1268 (Aroclor 1268)	~ ~	~ ~	~ ~	0.0191 U	0.0182 U	0.02 U	0.0186 U	0.053 0.0172 U	0.0192 U
Total PCBs	0.1	1	~	0.0191 U	0.0182 U	0.02 U	0.0186 U	0.053	0.138
Aluminum	~	~	~	NA	NA	NA	NA	NA	NA
Antimony Arsenic	~ 13	~ 16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 2.01	NA 2.5	NA 4 14	NA 2.93	NA 3.58	NA 3.65
Barium	350	400	~	39.8	41.5	14.7	10.1	103	39.7
Beryllium Cadmium	7.2 2.5	72 4.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.058 U 0.348 U	0.055 U 0.329 U	0.061 U 0.363 U	0.056 U 0.338 U	0.053 U 0.705	0.059 U 0.351 U
Calcium	~	~	~	NA	NA	NA	NA	NA	NA
Chromium, Hexavalent Chromium, Total	1 ~	110	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.58 U 9.49	2.11 16.4	0.605 U 22.4	0.563 U 9.96	0.53 U 19.8	0.586 U 16.2
Chromium, Trivalent	30	180	~	9.49	14.3	22.4	9.96	19.8	16.2
Copper	~ 50	~ 270	~ ~	6.42	30.8 B	12.3 B	12.4 B	83.2 B	14.3 B
Iron	~	~	~	NA 6.04	NA 112	NA 1.59	NA 0.679	NA 216	NA
Magnesium	~	~	~	NA	NA	NA	NA	NA	NA NA
Manganese	1,600	2,000	~	244 0.0348 U	375	208	145 0.0338 U	286	401
Nickel	30	310	~	9.73	16.7	15.8	5.81	16.7	15.8
Potassium Selenium	~ 3.9	~ 180	~ ~	NA 2.9 U	NA 2.74 U	NA 3.03 U	NA 7.28	NA 2.65 U	NA 2.93 U
Silver	2	180	~	0.58 U	0.549 U	0.605 U	0.563 U	0.53 U	0.586 U
Sodium Vanadium	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA NA	NA NA	NA	NA NA	NA NA	NA NA
	109	10,000	~	30.6	86.1	50.3	38	155	63.8
Arsenic	~	~	5	NA	NA	NA	NA	NA	NA
Barium Lead	~	~	100	NA	NA	NA	NA	NA NA	NA
Mercury	~ ~	~ ~	0.2	NA	NA	NA	NA	NA	NA
General Chemistry (%) Solids, Percent	~	~	~	86.2	91.1	82.6	88.8	94.4	85.4
Per and Polyfluoroalkyl Substances (mg/kg)		·	•		0.00100			0.000751	
Perfluorobutanesultonic Acid (PFBS) Perfluorooctanesulfonic acid (PFOS)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA NA	0.00402 U 0.00402 U	NA NA	NA NA	0.000/84 U 0.00096	NA NA
Perfluorooctanoic Acid (PFOA)	~	~	~	NA	0.00402 U	NA	NA	0.000784 U	NA

Notes provided on Page 11.

Concentrations above Unrestricted Use SCOs are bolded.

Concentrations above Restricted Use Restricted-Residential SCOs are shaded.

Table 3 Remedial Investigation Report Soil Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	RCRA Characteristics of Hazardous Waste	SB25 SB25_11-12 19J0068-08 10/1/2019 11-12	SB26 SB26_0-2 19J0068-09 10/1/2019 0-2		SB26 SB26_6-8 19J0068-10 10/1/2019 6-8	SB27 SB27_0-2 19J0144-03 10/2/2019 0-2	SB27 SB27_6-8 19J0144-04 10/2/2019 6-8	SB28 SB28_0-2 19J0144-05 10/2/2019 0-2
Volatile Organic Compounds (mg/kg) 1,2,4,5-Tetramethylbenzene	~	~	~	NA	NA		NA	NA	NA	NA
1,2,4-Trichlorobenzene	3.6	~ 52	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 0.0024 U	NA 0.0026	U	NA 0.0026 U	NA 0.0025 U	NA 0.0026 U	NA 0.0025 U
1,2-Dichlorobenzene	1.1	100	~	0.0024 U	0.0026	U	0.0026 U	0.0025 U	0.0026 U	0.0025 U
1,3,5-Trimethylbenzene (Mesitylene) 1,4-Dichlorobenzene	8.4 1.8	52 13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0024 U 0.0024 U	0.0026 0.0026	U U	0.0026 U 0.0026 U	0.0025 U 0.0025 U	0.0026 U 0.0026 U	0.0025 U 0.0025 U
1,4-Diethyl Benzene	~	~	~	NA	NA		NA	NA	NA	NA
Acetone	~ 0.05	~ 100	~ ~	0.0093 J	0.0051	U	0.0053 U	0.011	0.01 J	0.016
Benzene Carbon Disulfide	0.06	4.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0024 U	0.0026	U	0.0026 U	0.0025 U	0.0026 U	0.0025 U
Chlorobenzene	1.1	100	~	0.0024 U	0.0026	U	0.0026 U	0.0025 U	0.0026 U	0.0025 U
Cis-1,2-Dichloroethene Cymene	0.25	100 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0024 U NA	0.0026 NA	U	0.0026 U NA	0.0025 U NA	0.0026 U NA	0.0025 U NA
Diethyl Ether (Ethyl Ether)	~	~	~	NA 0.0024	NA		NA	NA	NA	NA 0.0005
Isopropylbenzene (Cumene)	~	~	~	NA 0.0024 0	NA	0	NA 0.0020 0	NA 0	NA 0.0020 0	NA 0.0025
M,P-Xylene Methyl Ethyl Ketone (2-Butanone)	0.12	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0049 U 0.0071 JB	0.0051	U JB	0.0053 U 0.0041 JB	0.0052 J 0.0045 J	0.0056 J 0.0047 J	0.0053 J 0.0048 J
Methylene Chloride	0.05	100	~	0.0066 J	0.0051	U	0.0053 J	0.0091 J	0.0084 J	0.0065 J
Naphthalene n-Butylbenzene	12 12	100 100	~ ~	0.0024 U 0.0024 U	0.0026	UU	0.0026 U 0.0026 U	0.0025 U 0.0025 U	0.0026 U 0.0026 U	0.0025 U 0.0025 U
n-Propylbenzene	3.9	100	~	0.0024 U	0.0026	U	0.0026 U	0.0025 U	0.0026 U	0.0025 U
Sec-Butylbenzene	~ 11	~ 100	~	0.0024 U	0.0026	U	0.0026 U	0.0025 U	0.0026 U	0.0025 U
T-Butylbenzene Tert-Butyl Methyl Ether	5.9 0.93	100 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0024 U 0.0024 U	0.0026	U	0.0026 U 0.0026 U	0.0025 U 0.0025 U	0.0026 U 0.0026 U	0.0025 U 0.0025 U
Tetrachloroethene (PCE)	1.3	19	~	0.0024 U	0.0026	U	0.0026 U	0.0025 U	0.0026 U	0.0025 U
Toluene Total 1,2-Dichloroethene (Cis and Trans)	0.7	100 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0024 U NA	0.0026 NA	U	0.0026 U NA	0.0025 U NA	0.0026 U NA	0.0025 U NA
Total Xylenes	0.26	100	~	0.0073 U	0.0077	U	0.0079 U	0.0074 U	0.0079 U	0.0076 U
Semivolatile Organic Compounds (mg/kg)	0.47	21	~	0.0024 0	0.0026	U	0.0026 0	0.0025 0	0.0026 0	0.0025 0
1,2,4-Trichlorobenzene	~ 11	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA NA	NA		NA	NA NA	NA NA	NA NA
1,3-Dichlorobenzene	2.4	49	~	NA	NA		NA	NA	NA	NA
1,4-Dichlorobenzene 2 4-Dichlorophenol	1.8 ~	13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA NA	NA NA		NA	NA	NA NA	NA NA
2-Methylnaphthalene	~	~	~	NA	NA		NA	NA	NA	NA
2-Methylphenol (o-Cresol) 3 & 4 Methylphenol (m&p Cresol)	0.33 0.33	100 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.049 U 0.049 U	0.0433 0.0433	U U	0.0501 U 0.0501 U	0.044 U 0.044 U	0.0495 U 0.0495 U	0.0446 U 0.0446 U
Acenaphthene	20	100	~	0.049 U	0.234	D	1.81 D	0.044 U	0.257 D	0.0577 JD
Acetophenone	~	~	~ ~	0.049 U NA	0.182 NA	D	0.234 D NA	0.044 0 NA	0.0495 0 NA	0.0446 U NA
Anthracene Benzaldebyde	100 ~	100 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.049 U	0.655 NA	D	3 D	0.0666 JD	0.513 D	0.134 D
Benzo(a)Anthracene	1	1	~	0.049 U	1.95	D	4.59 D	0.116 D	0.592 D	0.219 D
Benzo(a)Pyrene Benzo(b)Eluoranthene	1	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.049 U 0.049 U	2.11 1.88	D	3.98 D	0.102 D 0.0821 JD	0.465 D	0.184 D
Benzo(g,h,i)Perylene	100	100	~	0.049 U	1.25	D	1.47 D	0.0617 JD	0.171 D	0.0876 JD
Benzo(k)Fluoranthene Benzyl Butyl Phthalate	0.8	3.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.049 U NA	1.74 NA	D	2.69 D NA	0.0856 JD NA	0.363 D NA	0.144 D NA
Biphenyl (Diphenyl) Bis/2 Ethylboxyl) Bhthalata	~	~	~	NA	NA		NA	NA	NA	NA
Carbazole	~	~	~	NA	NA		NA	NA	NA	NA
Chrysene Dibenz(a h)Anthracene	1	3.9 0.33	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.049 U 0.049 U	2.1	D D	4.12 D 0.795 D	0.112 D 0.044 U	0.491 D 0.0599 JD	0.197 D 0.0446 U
Dibenzofuran	7	59	~	0.049 U	0.104	D	1.46 D	0.044 U	0.224 D	0.0498 JD
Diethyl Phthalate Di-N-Butyl Phthalate	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA
Fluoranthene	100	100	~	0.049 U	4.69	D	11.5 D	0.267 D	1.34 D	0.461 D
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	~ ~	0.049 U	1.14	D	1.64 D	0.0554 JD	0.203 D	0.0826 JD
Naphthalene	12 100	100 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.049 U 0.049 U	0.067	JD D	1.57 D 14.3 D	0.044 U 0.296 D	0.274 D	0.0446 U 0.522 D
Phenol	0.33	100	~	0.049 U	0.0433	U	0.0501 U	0.044 U	0.0495 U	0.0446 U
Pyrene Pesticides (mg/kg)	100	100	~	0.049 U	3.84	D	8.88 D	0.227 D	1.06 D	0.36 D
4,4'-DDD	0.0033	13	~	0.00191 U	0.00169	U	0.00197 U	0.00171 U	0.00194 U	0.00177 U
4,4-DDT	0.0033	7.9	~	0.00191 U	0.0909	D	0.00197 U	0.00171 U	0.00194 U	0.00177 U
Alpha BHC (Alpha Hexachlorocyclohexane) Alpha Chlordane	0.02	0.48	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00191 U 0.00191 U	0.00169	UU	0.00197 U 0.00197 U	0.00171 U 0.00171 U	0.00194 U 0.00194 U	0.00177 U 0.00177 U
Beta Bhc (Beta Hexachlorocyclohexane)	0.036	0.36	~	0.00191 U	0.00169	U	0.00197 U	0.00171 U	0.00194 U	0.00177 U
Chlordane (alpha and gamma) Delta Bhc (Delta Hexachlorocyclohexane)	~ 0.04	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00191 U	0.00169	U	0.00197 U	0.00171 U	0.00194 U	0.00177 U
Dieldrin Gamma Rha (Lindana)	0.005	0.2	~	0.00191 U	0.00169	U	0.00197 U	0.00171 U	0.00194 U	0.00177 U
Gamma Chlordane	~	~	~	NA NA	NA	0	NA 0	NA	NA 0	NA
Herbicides (mg/kg) Polychlorinated Biphenyls (mg/kg)	~	~	~	ND	ND		ND	ND	ND	ND
PCB-1242 (Aroclor 1242)	~	~	~	0.0193 U	0.0171	U	0.0199 U	0.0173 U	0.0196 U	0.0179 U
PCB-1248 (Aroclor 1248) PCB-1254 (Aroclor 1254)	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0193 U	0.0171	U	0.0199 U	0.0173 U	0.0196 U	0.0179 U
PCB-1260 (Aroclor 1260) PCB-1268 (Aroclor 1268)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0193 U	0.174		0.434	0.0173 U	0.0196 U	0.0179 U
Total PCBs	0.1	1	~	0.0193 U	0.174	Ŭ	0.434	0.0173 U	0.0196 U	0.0179 U
Inorganics (mg/kg) Aluminum	~	~	~	NA	NA	Т	NA	NA	NA	NA
Antimony	~ 10	~	~	NA	NA 7.24		NA	NA 1.FO	NA	NA 1.62
Barium	350	400	~	41.6	223		52.8	36.4	24.8	43.1
Beryllium Cadmium	7.2	72	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.059 U	0.052	U	0.06 U	0.053 U	0.06 U	0.054 U
Calcium	~	~	~	NA	NA		NA	NA	NA	NA
Chromium, Hexavalent Chromium. Total	1 ~	110 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.594 U 18.8	0.52 16.5	U	0.601 U 17.6	0.531 U 16.5	0.597 U 24.7	0.541 U 13.7
Chromium, Trivalent	30	180	~	18.8	16.5		17.6	16.5	24.7	13.7
Copper	~ 50	~ 270	~ ~	16.4 B	97.7	в	34.1 B	16.8	15.1	28.9
lron	~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 9.04	NA 1 400		NA 93	NA 87 5	NA 16.1	NA 227
Magnesium	~	~	~	NA	NA		NA	NA	NA	NA
ivianganese Mercury	1,600 0.18	2,000 0.81	~~~~~	223 0.0524	310 0.287		500 0.194	1,020 0.162	285 0.0358 U	561 0.0656
Nickel	30	310	~	15.5	16.5		19.3	35.8	19.9	15.7
Potassium Selenium	~ 3.9	~ 180	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 2.97 U	NA 2.6	U	NA 3 U	NA 2.66 U	NA 2.99 U	NA 2.71 U
Silver	2	180	~	0.594 U	0.52	U	0.601 U	0.531 U	0.597 U	0.541 U
Vanadium	~	~	~	NA	NA		NA	NA	NA	NA
Zinc TCLP - Inorganics (mg/L)	109	10,000	~	49	350		134	35.6	51.4	35
Arsenic	~	~	5	NA	NA	Ι	NA	NA	NA	NA
Barium Lead	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100 5	NA NA	NA 0.125	U	NA NA	NA NA	NA NA	NA NA
Mercury	~	~	0.2	NA	NA		NA	NA	NA	NA
Solids, Percent	~	~	~	84.1	96.1		83.2	94.1	83.7	92.4
Per and Polyfluoroalkyl Substances (mg/kg) Perfluorobutanesulfonic Acid (PERS)	~	~	~	NA	0.00382	υI	NA	NA	0.000846	NA
Perfluorooctanesulfonic acid (PFOS)	~	~	~	NA	0.00382	U	NA	NA	0.000846 U	NA
Perfluoropentanoic Acid (PFPA)	~	~	~	NA	0.00382	U	NA	NA	0.000846 U	NA

Notes provided on Page 11.

Concentrations above Unrestricted Use SCOs are bolded.

Concentrations above Restricted Use Restricted-Residential SCOs are shaded.

Table 3 Remedial Investigation Report Soil Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs) Volatile Organic Compounds (mg/kg)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	RCRA Characteristics of Hazardous Waste	SB28 SB28_5.5-7.5 19J0144-06 10/2/2019 5.5-7.5	SB30 SB30_0-2 19J0216-03 10/3/2019 0-2	SB30 SB30_10-12 19J0216-04 10/3/2019 10-12	SB31 SB31_0-2 1911299-05 9/27/2019 0-2	SB31 SB31_6.5-8.5 19I1299-06 9/27/2019 6.5-8.5	TP01 TP01_2-2.5 L1927241-01 6/21/2019 2-2.5
1,2,4,5-Tetramethylbenzene	~	~	~	NA	NA	NA	NA	NA	0.0017 U
1,2,4-Trimethylbenzene	~ 3.6	~ 52	~ ~	0.0024 U	0.0024 U	0.0032 U	0.0029 U	0.0025 U	0.0017 U
1,2-Dichlorobenzene 1,3 5-Trimethylbenzene (Mesitylene)	1.1	100 52	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0024 U	0.0024 U	0.0032 U	0.0029 U	0.0025 U	0.0017 U
1,4-Dichlorobenzene	1.8	13	~	0.0024 U	0.0024 U	0.0032 U	0.0029 U	0.0025 U	0.0017 U
1,4-Diethyl Benzene	~	~	~	NA	NA	NA	NA	NA	0.0017 U
Acetone	0.05	~ 100	~	0.0053 J	0.0048 U	0.014	0.19	0.051	0.0087 U
Benzene Gratean Disulfida	0.06	4.8	~	0.0024 U	0.0024 U	0.0032 U	0.028	0.0025 U	0.00043 U
Carbon Disulfide Chlorobenzene	~ 1.1	~ 100	~ ~	0.0024 U	0.0024 U	0.0032 U	0.0029 U	0.0025 U	0.0087 U
Cis-1,2-Dichloroethene	0.25	100	~	0.0024 U	0.0024 U	0.0032 U	0.0029 U	0.0025 U	0.00087 U
Cymene Diethyl Ether (Ethyl Ether)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA NA	NA	NA	NA NA	NA NA	0.0008/ U 0.0017 U
Ethylbenzene	1	41	~	0.0024 U	0.0024 U	0.0032 U	0.02	0.0025 U	0.00087 U
Isopropylbenzene (Cumene) M.P-Xylene	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~	NA 0.005 J	NA 0.0048 U	NA 0.0064 U	NA 0.011 J	NA 0.005 U	0.0008/ U 0.0017 U
Methyl Ethyl Ketone (2-Butanone)	0.12	100	~	0.0024 U	0.0024 U	0.0032 U	0.17 B	0.01 B	0.0087 U
Methylene Chloride Naphthalene	0.05	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0076 J 0.0024 U	0.0065 J 0.0024 U	0.0093 J 0.0032 U	0.0058 U 0.0029 U	0.011 0.0025 U	0.0043 U 0.0035 U
n-Butylbenzene	12	100	~	0.0024 U	0.0024 U	0.0032 U	0.0029 U	0.0025 U	0.00087 U
n-Propylbenzene	3.9	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0024 U	0.0024 U	0.0032 U	0.0069	0.0025 U	0.00087 U
Sec-Butylbenzene	11	100	~	0.0024 U	0.0024 U	0.0032 U	0.0029 U	0.0025 U	0.00087 U
T-Butylbenzene	5.9	100	~	0.0024 U	0.0024 U	0.0032 U	0.0029 U	0.0025 U	0.0017 U
Tetrachloroethene (PCE)	1.3	19	~	0.0024 U	0.0024 U	0.0032 U	0.0029 U	0.0025 U	0.00043 U
Toluene	0.7	100	~	0.0024 U	0.0024 U	0.0032 U	0.037	0.0025 U	0.00087 U
Total 1,2-Dichloroethene (CIS and Trans) Total Xylenes	0.26	~ 100	~ ~	0.0071 U	0.0071 U	0.0096 U	0.019	0.0075 U	0.00087 U
Trichloroethene (TCE)	0.47	21	~	0.0024 U	0.0024 U	0.0032 U	0.0029 U	0.0025 U	0.00043 U
1,2,4-Trichlorobenzene	~	~	~	NA	NA	NA	NA	NA	0.19 U
1,2-Dichlorobenzene	1.1	100	~	NA	NA	NA	NA	NA	0.58
1,3-Dichlorobenzene 1.4-Dichlorobenzene	2.4 1.8	49 13	~ ~	NA NA	NA	NA NA	NA NA	NA NA	0.05 J 0.079 J
2,4-Dichlorophenol	~	~	~	NA	NA	NA	NA	NA	0.087 J
2-Methylnaphthalene 2-Methylphenol (o-Cresol)	~ 0.33	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 0.0448 U	NA 0.0456 U	NA 0.05 U	NA 0.0427 U	NA 0.0496 U	0.13 J 0.19 U
3 & 4 Methylphenol (m&p Cresol)	0.33	100	~	0.0448 U	0.0456 U	0.05 U	0.0427 U	0.0496 U	0.053 J
Acenaphthene	20	100	~	0.0448 U	0.404 D	0.05 U	0.0427 U	0.0496 U	0.26
Acetophenone	~	~	~	NA 0	NA 3D	NA	NA	NA 0	0.19 U
Anthracene	100	100	~	0.0448 U	0.959 D	0.0678 JD	0.0715 JD	0.0538 JD	1.4
Benzola)Anthracene	~ 1	~ 1	~ ~	0.0448 U	1.37 D	0.191 D	0.323 D	0.281 D	7.4
Benzo(a)Pyrene	1	1	~	0.0448 U	0.997 D	0.163 D	0.359 D	0.305 D	6.9
Benzo(b)Fluoranthene Benzo(a.h.i)Pervlene	1 100	1 100	~ ~	0.0448 U 0.0448 U	0.801 D 0.423 D	0.129 D 0.0853 JD	0.302 D 0.286 D	0.307 D 0.259 D	4.6
Benzo(k)Fluoranthene	0.8	3.9	~	0.0448 U	0.83 D	0.131 D	0.318 D	0.261 D	2.3
Benzyl Butyl Phthalate Biphenyl (Diphenyl)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	NA NA	NA	NA NA	NA NA	NA NA	0.19 U 0.047 J
Bis(2-Ethylhexyl) Phthalate	~	~	~	NA	NA	NA	NA	NA	0.19 U
Carbazole	~ 1	~	~	NA 0.0448 U	NA 1 16 D	NA 0.163 D	NA 0.336 D	NA 0.271 D	0.34
Dibenz(a,h)Anthracene	0.33	0.33	~	0.0448 U	0.223 D	0.05 U	0.11 D	0.0672 JD	1
Dibenzofuran	7	59	~	0.0448 U	0.361 D	0.05 U	0.0427 U	0.0496 U	0.15 J
Di-N-Butyl Phthalate	~	~ ~	~	NA	NA	NA	NA	NA	0.19 U
Fluoranthene	100	100	~	0.0448 U	2.73 D	0.348 D	0.601 D	0.486 D	12
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	~ ~	0.0448 U	0.454 D	0.0845 JD	0.0427 U 0.227 D	0.0496 U 0.228 D	4.9
Naphthalene	12	100	~	0.0448 U	0.247 D	0.05 U	0.0427 U	0.0496 U	0.27
Phenanthrene Phenol	0.33	100	~ ~	0.0448 U 0.0448 U	3.33 D 0.0456 U	0.179 D 0.05 U	0.219 D 0.0427 U	0.161 D 0.0496 U	3.8 0.19 U
Pyrene	100	100	~	0.0448 U	2.13 D	0.304 D	0.645 D	0.508 D	13
4,4'-DDD	0.0033	13	~	0.00179 U	0.00181 U	0.00198 U	0.00172 U	0.00195 U	0.00182 U
4,4'-DDE	0.0033	8.9	~	0.00179 U	0.00181 U	0.00198 U	0.00172 U	0.00195 U	0.00842 IP
4,4 -DDT Alpha BHC (Alpha Hexachlorocyclohexane)	0.0033	7.9 0.48	~ ~	0.00179 U 0.00179 U	0.00181 U	0.00198 U 0.00198 U	0.00172 U 0.00172 U	0.00195 U 0.00195 U	0.0034 0
Alpha Chlordane	0.094	4.2	~	0.00179 U	0.00181 U	0.00198 U	0.00172 U	0.00195 U	0.021 I
Beta Bhc (Beta Hexachlorocyclohexane) Chlordane (alpha and gamma)	0.036	0.36	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00179 U NA	0.00181 U NA	0.00198 U NA	0.00172 U	0.00195 U NA	0.142 0.0148 U
Delta Bhc (Delta Hexachlorocyclohexane)	0.04	100	~	0.00179 U	0.00181 U	0.00198 U	0.00172 U	0.00195 U	0.00182 U
Dieldrin Gamma Bhc (Lindane)	0.005	0.2	~	0.00179 U	0.00181 U	0.00198 U	0.00172 U	0.00195 U	0.00701 IP
Gamma Chlordane	~	~	~	NA 0	NA	NA	NA 0	NA	0.0164 IP
Herbicides (mg/kg)	~	~	~	ND	ND	ND	ND	ND	NA
PCB-1242 (Aroclor 1242)	~	~	~	0.0181 U	0.0182 U	0.02 U	0.0174 U	0.0197 U	0.0932
PCB-1248 (Aroclor 1248)	~	~	~	0.0181 U	0.0182 U	0.02 U	0.0174 U	0.0197 U	0.0371 U
PCB-1260 (Aroclor 1260)	~	~	~	0.0181 U	0.0182 U	0.02 U	0.0272	0.0211	0.0917
PCB-1268 (Aroclor 1268)	~ 0 1	~ 1	~	0.0181 U	0.0182 U	0.02 U	0.0174 U	0.0197 U	0.0149 J
Inorganics (mg/kg)	0.1		~	0.0181 0	0.0182 0	0.02 0	0.0272	0.0211	0.374 5
Aluminum	~	~	~	NA	NA	NA	NA	NA	5,040
Arsenic	~ 13	~ 16	~	1.65 U	8.14	5.51	5.99	5.57	11.6
Barium	350	400	~	23.8	45.1	31	87.6	65.6	346
Cadmium	7.2 2.5	4.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.055 0	0.055 U 0.329 U	0.06 U 0.362 U	0.052 0	0.06 0	0.082 J
Calcium	~	~	~	NA	NA	NA	NA	NA	12,300
Chromium, Hexavalent Chromium, Total	1 ~	110	~	0.548 U 39.3	0.549 0	0.604 U 23.8	0.524 U 14.9	0.595 U 21.7	0.936 U 45.2
Chromium, Trivalent	30	180	~	39.3	15.2	23.8	14.9	21.7	45
Copper	~	~ 270	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NA 25.1	NA 60.8 B	NA 30.7 B	NA 185	NA 128	16.8 422
Iron	~	~	~	NA	NA	NA	NA	NA	41,000
Lead	63	400	~	32	265	54.8	235	179	1,380
Manganese		~ 2,000	~ ~	341	360	283	430	575	390
Mercury	0.18	0.81	~	0.0329 U	0.163	0.0664	0.631	0.368	2.81
Potassium	~	~	~ ~	NA NA	NA	NA	NA	24.9 NA	655
Selenium	3.9	180	~	2.74 U	2.75 U	3.02 U	2.62 U	2.98 U	0.991 J
Silver Sodium	2	180 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.548 U NA	0.549 U NA	0.604 U NA	0.524 U	0.595 U NA	15.3
Vanadium	~	~	~	NA	NA	NA	NA	NA	38.2
Zinc TCLP - Inorganics (mg/L)	109	10,000	~	63.4	65.6 B	67.5 B	317	180	1,120
Arsenic	~	~	5	NA	NA	NA	NA	NA	NA
Barium Lead	~	~	100	NA	NA	NA	NA	NA	NA 2 12
Mercury	~	~	0.2	NA	NA	NA	NA	NA	NA
General Chemistry (%)				91.2	Q1 1	82.8	95.4	84	<u>85 5</u>
Per and Polyfluoroalkyl Substances (mg/kg)	~		~	91.2	51.1	02.0		04	00.0
Perfluorobutanesulfonic Acid (PFBS)	~	~	~	0.000762 U	NA	0.0043 U	0.000779 U	NA	NA
Perfluorooctanoic Acid (PFOA)	~	~	~	0.000762 U	NA	0.0043 U	0.000779 U	NA	NA
Perfluoropentanoic Acid (PFPeA)	~	~	~	0.000762 U	NA	0.0043 U	0.000779 U	NA	NA

Notes provided on Page 11.

Concentrations above Unrestricted Use SCOs are bolded.

Concentrations above Restricted Use Restricted-Residential SCOs are shaded.

Table 3 Remedial Investigation Report Soil Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bos)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	RCRA Characteristics of Hazardous Waste	TP02 TP02_1.5-2 L1927241-02 6/21/2019 1.5-2	TP03 TP03_1-1.5 L1927241-03 6/21/2019 1-1.5
Volatile Organic Compounds (mg/kg)				0.0004	0.0017
1,2,4,5-1etrametnyibenzene 1,2,4-Trichlorobenzene	~ ~	~ ~	~ ~	0.0024 U	0.0017 U
1,2,4-Trimethylbenzene	3.6	52 100	~	0.0024 U	0.0017 U
1,3,5-Trimethylbenzene (Mesitylene)	8.4	52	~	0.0024 U	0.0017 U
1,4-Dichlorobenzene	1.8	13	~	0.0024 U	0.0017 U
4-Ethyltoluene	~ ~	~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0024 U 0.0024 U	0.0017 U 0.0017 U
Acetone	0.05	100	~	0.012 U	0.0084 U
Benzene Carbon Disulfide	0.06	4.8 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.00059 U 0.012 U	0.00042 U 0.0084 U
Chlorobenzene	1.1	100	~	0.00059 U	0.00042 U
Cis-1,2-Dichloroethene	0.25	100	~	0.0012 U	0.00084 U
Diethyl Ether (Ethyl Ether)	~	~	~	0.0024 U	0.0017 U
Ethylbenzene	1	41	~	0.0012 U	0.00084 U
M,P-Xylene	~ ~	~ ~	~ ~	0.0012 U 0.0024 U	0.0017 U
Methyl Ethyl Ketone (2-Butanone)	0.12	100	~	0.012 U	0.0084 U
Nethylene Chloride Naphthalene	0.05	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0059 U 0.0047 U	0.0042 U 0.0033 U
n-Butylbenzene	12	100	~	0.0012 U	0.00084 U
n-Propylbenzene o-Xylene (1.2-Dimethylbenzene)	3.9	100	~	0.0012 U 0.0012 U	0.00084 U 0.00084 U
Sec-Butylbenzene	11	100	~	0.0012 U	0.00084 U
T-Butylbenzene Tert-Butyl Methyl Ether	5.9 0.93	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0024 U 0.0024 U	0.0017 U 0.0017 U
Tetrachloroethene (PCE)	1.3	19	~	0.00059 U	0.00042 U
Toluene	0.7	100	~	0.0012 U	0.00084 U
Total Xylenes	0.26	~ 100	~	0.0012 U	0.00084 U
Trichloroethene (TCE)	0.47	21	~	0.00059 U	0.00042 U
1,2,4-Trichlorobenzene	~	~	~	0.18 U	0.18 U
1,2-Dichlorobenzene	1.1	100	~	0.18 U	0.18 U
ارمان العامي الماني الماني 1,4-Dichlorobenzene	2.4 1.8	49 13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.18 U 0.18 U	0.18 U 0.18 U
2,4-Dichlorophenol	~	~	~	0.16 U	0.16 U
2-Methylnaphthalene 2-Methylphenol (o-Cresol)	0.33	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.041 J	0.14 J
3 & 4 Methylphenol (m&p Cresol)	0.33	100	~	0.26 U	0.26 U
Acenaphthene	20	100	~	0.11 J	0.46
Acetophenone	~	~	~ ~	0.14 0.18 U	0.5 0.18 U
Anthracene	100	100	~	0.36	1.5
Benzaldehyde Benzo(a)Anthracene	~ 1	~ 1	~	NA 1.3	NA 4.1
Benzo(a)Pyrene	1	1	~	1.3	3
Benzo(b)Fluoranthene	1	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.5	3.5
Benzo(k)Fluoranthene	0.8	3.9	~	0.46	1.2
Benzyl Butyl Phthalate	~	~	~	0.18 U	0.18 U
Bis(2-Ethylhexyl) Phthalate	~	~	~	0.18 U	0.42 0 0.18 U
Carbazole	~	~	~	0.13 J	0.42
Chrysene Dibenz(a,h)Anthracene	0.33	0.33	~ ~	0.18	0.41
Dibenzofuran	7	59	~	0.041 J	0.13 J
Diethyl Phthalate Di-N-Butyl Phthalate	~ ~	~ ~	~ ~	0.18 U 0.11 J	0.1 J 0.18 U
Fluoranthene	100	100	~	2.2	5.6
Fluorene	30	100	~	0.09 J	0.41
Naphthalene	12	100	~	0.07 J	0.18
Phenanthrene	100	100	~	1.1	5.2
Pyrene	100	100	~ ~	2.5	8.8
Pesticides (mg/kg)	0.0022	10		0.00171	0.00171
4,4 -DDD 4,4 -DDE	0.0033	8.9	~ ~	0.0292	0.0539
4,4'-DDT	0.0033	7.9	~	0.0904	0.0764 IP
Alpha BHC (Alpha Hexachlorocyclohexane) Alpha Chlordane	0.02	0.48	~ ~	0.000713 U 0.00256 IP	0.00438 IP 0.0197 I
Beta Bhc (Beta Hexachlorocyclohexane)	0.036	0.36	~	0.00171 U	0.0092
Chlordane (alpha and gamma) Delta Bhc (Delta Heyachlorocycloheyane)	~ 0.04	~ 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0139 U	0.112 IP
Dieldrin	0.005	0.2	~	0.000792 JIP	0.00505 IP
Gamma Bhc (Lindane)	0.1	1.3	~	0.000713 U	0.00174
Herbicides (mg/kg)	~	~	~	NA	NA
Polychlorinated Biphenyls (mg/kg)			r	0.0264	0.192
PCB-1248 (Aroclor 1248)	~	~	~	0.0364 U	0.183 U
PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260)	~	~	~	0.0957	0.521
PCB-1268 (Aroclor 1268)	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	0.040 0.0102 J	0.183 U
Total PCBs	0.1	1	~	0.154 J	0.729
Aluminum	~	~	~	4,230	3,570
Antimony	~	~	~	49	25.2
Barium	350	400	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9.48 414	8.89 284
Beryllium	7.2	72	~	0.438 U	0.441 U
Cadmium Calcium	2.5	4.3 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.05 8.370	3.53 14.800
Chromium, Hexavalent	1	110	~	0.883 U	0.894 U
Chromium, Total Chromium, Trivalent	~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	16.8 17	18.6 19
Cobalt	~	~	~	69	25.9
Copper	50	270	~	190	244
Lead	~ 63	~ 400	~ ~	686	968
Magnesium	~	~	~	3,400	3,720
Mercury	0.18	2,000 0.81	~	4.13	320
Nickel	30	310	~	46.1	65.3
Potassium Selenium	~ 3.9	~ 180	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	439 0.894	554 0,679
Silver	2	180	~	0.631 J	0.538 J
Sodium Vapadium	~	~	~	385	1,490
Zinc	109	~ 10,000	~	823	687
TCLP - Inorganics (mg/L)			Ā	ΝΑ	NA
Barium	~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100	NA	NA
Lead	~	~	5	NA	NA
General Chemistry (%)	~	~	0.2	INA	INA
Solids, Percent	~	~	~	90.6	89.5
Perfluorobutanesulfonic Acid (PFBS)	~	~	~	NA	NA
Perfluorooctanesulfonic acid (PFOS)	~	~	~	NA	NA
Perfluoropentanoic Acid (PFPeA)	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	NA	NA

Notes provided on Page 11.

Concentrations above Unrestricted Use SCOs are bolded.

Concentrations above Restricted Use Restricted-Residential SCOs are shaded.

Table 3 Remedial Investigation Report Soil Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Notes:

1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Restricted-Residential Soil Cleanup Objectives (SCO) and to the 6 New York Codes, Rules and Regulations (NYCRR) Part 371.3 and 40 CFR 261 Subpart C and Table 1 of 40 CFR 261.24 - Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) Characteristics of Hazardous Waste.

2. Criterion comparisons for 3- & 4-methylphenol (m&p cresol) are provided for reference. Promulgated SCOs are for 3-methylphenol (m-cresol) and 4-methylphenol (p-cresol).

3. Only detected analytes are shown in the table.

- 4. Detected analytical results above Unrestricted Use SCOs are bolded.
- 5. Detected analytical results above Restricted Use Restricted-Residential SCOs are shaded.
- 6. Detected analytical results above RCRA Maximum Concentration of Contaminants for the Toxicity Characteristic are underlined.
- 7. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.
- 8. Sample RISODUP01_093019 is a duplicate sample of SB22_0-2 and sample RISODUP02_100319 is a duplicate sample of SB20_0-2.
- 9. ~ = Regulatory limit for this analyte does not exist
- 10. bgs = below grade surface
- 11. mg/kg = milligrams per kilogram

12. mg/L = milligrams per liter

13. % = percent

14. NA = Not analyzed

15. ND = Not detected

Qualifiers:

D = The concentration reported is a result of a diluted sample.

I = The lower value for the two columns has been reported due to obvious interference.

- J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- P = The relative percent difference (RPD) between the results for the two columns exceeds the method-specified criteria.
- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

B = The analyte was found in the associated analysis batch blank.

Table 4A Remedial Investigation Report Groundwater Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Location Sample ID Laboratory ID	NYSDEC SGVs	MW18 MW18_100919 19J0468-01	I	MW19 MW19_100919 19J0468-02		MW24 MW24_100919 19J0468-03	I	MW24 RIGWDUP01_10 19J0468-04	0919
Sample Date		10/9/2019		10/9/2019		10/9/2019		10/9/2019	
Volatile Organic Compounds (µg/L)		-		r		1			
1,2-Dichlorobenzene	3	0.2	U	0.2	U	0.2	U	0.2	U
Acetone	50	1	U	1	U	1	U	1	U
Chloroform	5	0.2	0	0.2	0	0.2	0	0.2	0
M P-Xylene	5	0.23	U	0.2	Ŭ	0.2	U	0.2	U
Methyl Ethyl Ketone (2-Butanone)	50	0.2	U	0.2	Ŭ	0.2	U	0.2	Ű
o-Xylene (1.2-Dimethylbenzene)	5	0.2	Ŭ	0.2	Ŭ	0.2	Ŭ	0.2	Ŭ
MethylTert-Butyl Ether	10	0.28	J	0.2	U	0.2	U	0.2	U
Tetrachloroethene (PCE)	5	0.54		0.2	U	0.2	U	0.2	U
Semivolatile Organic Compounds (µg/L)				•					
2-Methylnaphthalene	~	2.78	U	2.7	U	2.78	U	2.86	U
3 & 4 Methylphenol (m&p Cresol)	~	2.78	U	2.7	U	2.78	U	2.86	U
4-Chloroaniline	5	2.78	U	2.7	U	2.78	U	2.86	U
Acenaphthene	20	0.0556	U	0.0541	U	0.0556	U	0.0571	
Anthracene Renze (a) Anthracene	50	0.0556	U	0.0541	0	0.0556		0.0571	0
Benzo(a)Pyrene	0.002	0.0556	0	0.0541	11	0.0556	0	0.0571	11
Benzo(b)Eluoranthene	0 002	0.0556	11	0.0541	11	0.0556	11	0.0571	11
Benzo(g,h,i)Pervlene	~	0.0556	Ŭ	0.0541	Ŭ	0.0556	Ŭ	0.0571	Ű
Benzo(k)Fluoranthene	0.002	0.0556	Ŭ	0.0541	Ŭ	0.0556	Ŭ	0.0571	Ŭ
Benzoic Acid	~	27.8	U	27	U	27.8	U	28.6	U
Bis(2-Ethylhexyl) Phthalate	5	0.556	U	0.541	U	0.556	U	0.571	U
Chrysene	0.002	0.0556	U	0.0541	U	0.0556	U	0.0571	U
Dibenz(a,h)Anthracene	~	0.0556	U	0.0541	U	0.0556	U	0.0571	U
Diethyl Phthalate	50	2.78	U	2.7	U	2.78	U	2.86	U
Dimethyl Phthalate	50	2.78	U	2.7	U	2.78	U	2.86	U
Fluoranthene	50	0.0556	U	0.0541	U	0.0667		0.0686	
Indeno(1,2,3-c,d)Pyrene	0.002	0.0556	U	0.0541	U	0.0556	U	0.0571	U
Naphthalene	10	0.0556	U	0.0541	U	0.0556	U	0.0571	
Phenanthrene	50	0.0556	U	0.0541	U	0.189		0.194	
Pyrene Pesticides (ug/L)	50	0.0550	0	0.0541	0	0.0667		0.0080	
Herbicides (µg/L)	~	ND		ND		ND		ND	
Polychlorinated Binhenvis (ug/L)	~	ND		ND		ND		ND	
Inorganics (ug/L)		110				110			
Aluminum	~	200		299		149		207	
Aluminum (Dissolved)	~	55.6	U	58.1		87.2		55.6	U
Antimony	3	1.11	U	1.11	U	1.11	U	1.11	U
Antimony (Dissolved)	3	1.11	U	1.11	U	1.11	U	1.11	U
Arsenic	25	1.11	U	1.11	U	1.11	U	1.11	U
Arsenic (Dissolved)	25	1.11	U	1.11	U	1.11	U	1.11	U
Barium	1,000	62.6		52.9		27.8	U	27.8	U
Barium (Dissolved)	1,000	66.8		49.9		27.8	U	27.8	U
Cadmium	5	0.555	11	0.555	11	0.555	11	0.555	11
Calcium	~	104.000	0	155.000	0	73.500	0	79.200	0
Calcium (Dissolved)	~	110.000		150,000		75.600		73,700	
Chromium, Hexavalent	50	NA		NA		NA		NA	
Chromium, Total	50	5.56	U	5.56	U	5.56	U	5.56	U
Chromium, Total (Dissolved)	50	5.56	U	5.56	U	5.56	U	5.56	U
Chromium, Trivalent	~	NA		NA		NA		NA	
Cobalt	~	4.44	U	4.44	U	4.44	U	4.44	U
Cobalt (Dissolved)	~	4.44	U	4.44	U	4.44	U	4.44	U
Copper	200	61.8		22.2	U	22.2	U	22.2	U
Copper (Dissolved)	200	22.2	U	22.2	U	22.2	U	22.2	U
Iron Iron (Dissolved)	300	278	0	480 270		402		309	- II.
Lead	25	5 56	0	5 56	11	5 56	0	5 56	11
Lead (Dissolved)	25	5.56	11	5.56	11	5.56	11	5.56	11
Magnesium	35.000	37.100	Ŭ	62,900	Ŭ	29.600	0	32,300	0
Magnesium (Dissolved)	35,000	38,700		58,400		30,700		29,500	
Manganese	300	978		188		419		426	
Manganese (Dissolved)	300	996		134		423		412	
Mercury	0.7	0.2	U	0.2	U	0.2	U	0.2	U
Nickel	100	11.1	U	11.1	U	11.1	U	11.1	U
Nickel (Dissolved)	100	11.1	U	11.1	U	11.1	U	11.1	U
Potassium	~	18,700		30,700		12,000		12,500	
Potassium (Dissolved)	~	19,400		30,300		12,500		12,100	
Selenium	10	14.9		19		4.15		3.73	
Selenium (Dissolved)	10	20.2		19.7		4.92		2.36	
Soliver	20,000	5.50 260.000	U	5.50	U	5.50 82 100	U	5.50 84 100	U
Sodium (Dissolved)	20,000	260,000		267,000		84 600		92 800	
Thallium	0.5	1 11	11	1 11	LI.	1 11	11	1 11	- II-
Thallium (Dissolved)	0.5	1.11	ü	1.11	ŭ	1.11	ü	1.11	IJ
Vanadium	~	11.1	Ū	11.1	Ū	11.1	Ū	11.1	Ŭ
Vanadium (Dissolved)	~	11.1	U	11.1	U	11.1	U	11.1	U
Zinc	2,000	27.8	U	27.8	U	27.8	U	27.8	U
Zinc (Dissolved)	2,000	27.8	U	27.8	U	27.8	U	27.8	U

Table 4A Remedial Investigation Report Groundwater Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Location Sample ID Laboratory ID Sample Date	NYSDEC SGVs	TMW06 TMW06_061019 L1924686-01 6/10/2019	TMW08 TMW08_061019 L1924686-02 6/10/2019	TMW11 TMW11_061219 L1926329-01 6/12/2019	TMW12 TMW12_061019 L1924686-03 6/10/2019
Volatile Organic Compounds (ug/L)					
1,2-Dichlorobenzene	3	2.5 U	2.5 U	2.5 U	2.5 U
Acetone	50	36	4 J	2.2 J	14
Chlorobenzene	5	2.5 U	2.5 U	2.5 U	2.5 U
Chloroform	7	2.5 U	2.5 U	2.5 U	2.5 U
M,P-Xylene	5	2.5 U	2.5 U	2.5 U	2.5 U
Methyl Ethyl Ketone (2-Butanone)	50	4.8 J	5 U	5 U	5 U
o-Xylene (1,2-Dimethylbenzene)	5	2.5 U	2.5 U	2.5 U	2.5 U
Methyllert-Butyl Ether	10	2.5 U	2.5 U	2.5 U	2.5 U
Semivolatile Organic Compounds (ug/L)	5	0.5 0	0.5 0	0.5	0.5 0
2-Methylnaphthalene	~	01 U	01 U	0.1 U	01 U
3 & 4 Methylphenol (m&p Cresol)	~	0.72 J	5 U	5 U	5 U
4-Chloroaniline	5	5 U	5 U	5 U	5 U
Acenaphthene	20	0.1 U	0.1 U	0.1 U	0.1 U
Anthracene	50	0.1	0.1 U	0.1 U	0.02 J
Benzo(a)Anthracene	0.002	0.2	0.1 U	0.1 U	0.03 J
Benzo(a)Pyrene	0	0.19	0.1 U	0.02 J	0.1 U
Benzo(b)Fluoranthene	0.002	0.25	0.1 U	0.06 J	0.1 U
Benzo(g,h,i)Perylene	~	0.14	0.1 U	0.05 J	0.1 U
Benzo(K)Fluorantnene	0.002	17	0.1 U	0.02 J	0.1 U
Bis(2-Ethylbeyyl) Phthalate	~ 5	3 11	3 11	38	26
Chrysene	0.002	0.18	0.1 1	0.1 U	0.01
Dibenz(a,h)Anthracene	~	0.1 U	0.1 U	0.01 J	0.1 U
Diethyl Phthalate	50	5 U	5 U	5 U	4.5 J
, Dimethyl Phthalate	50	5 U	5 U	2.4 J	5 U
Fluoranthene	50	0.38	0.1 U	0.1 U	0.02 J
Indeno(1,2,3-c,d)Pyrene	0.002	0.16	0.1 U	0.06 J	0.1 U
Naphthalene	10	0.1 U	0.1 U	0.1 U	0.1 U
Phenanthrene	50	0.22	0.1 U	0.1 U	0.04 J
Pyrene	50	0.37	0.1 U	0.02 J	0.02 J
Pesticides (µg/L)	~	NA	NA	ND	NA
Herbicides (µg/L)	~	NA NA	NA	NA ND	NA ND
Inorganics (ug/L)	~	INA	ND	ND	ND
Aluminum	~	32 600	352	2 330	9.620
Aluminum (Dissolved)	~	NA	27	13.7	18.5
Antimony	3	6.26 J	1.11 J	1.82 J	1.08 J
Antimony (Dissolved)	3	NA	0.72 J	1.89 J	1.53 J
Arsenic	25	34.05	0.57	1.58	2.64
Arsenic (Dissolved)	25	NA	0.34 J	0.46 J	1.2
Barium	1,000	759.7	22.06	22.27	44.13
Barium (Dissolved)	1,000	NA	20.04	6.8	28.55
Beryllium	3	2.14	0.5 U	0.23 J	0.61
Calcium	5	426.000	63.000	26.200	76 300
Calcium (Dissolved)	~	420,000 NA	61 200	24,500	77,000
Chromium, Hexavalent	50	NA	10 U	4 J	10 U
Chromium, Total	50	101.6	0.98 J	6.46	21.22
Chromium, Total (Dissolved)	50	NA	0.29 J	1.23	1.91
Chromium, Trivalent	~	NA	10 U	10 U	21
Cobalt	~	66	0.37 J	5.08	4.65
Cobalt (Dissolved)	~	NA	0.5 U	0.5 U	0.6
	200	372.8	2.27	13.98	11.54
Copper (Dissolved)	200	NA 92 100	649	0.78 J	0.79 J
Iron (Dissolved)	300	NA	29.1	25.7	5,350
Lead	25	1.325	0.66 J	5.92	10.47
Lead (Dissolved)	25	NA	1 U	1 U	1 U
Magnesium	35,000	124,000	11,600	11,100	32,800
Magnesium (Dissolved)	35,000	NA	11,500	9,280	32,400
Manganese	300	4,038	79	384.6	424.9
Manganese (Dissolved)	300	NA	69.38	0.96 J	331.6
Mercury	0.7	1.55	0.2 U	0.2 U	0.2 U
Nickel	100	106.9	0.68 J	5.6	11.78
Nickel (Dissolved)	100	NA of Zoo	2 U	2 U	3.86
Potassium (Discoluted)	~	UU , CO	11,700	0,15U 7,610	20,000
Selenium	~ 10	10.9	5 11	7,010 2111 I	20,000 2.63 I
Selenium (Dissolved)	10	NA	5 11	1.81 J	2.05 J
Silver	50	1.24	0.4 U	0.4 U	0.4 1
Sodium	20,000	798,000	103,000	42,400	682,000
Sodium (Dissolved)	20,000	NA	103,000	41,700	729,000
Thallium	0.5	0.5 J	0.5 U	0.5 U	0.5 U
Thallium (Dissolved)	0.5	NA	0.5 U	0.5 U	0.5 U
Vanadium	~	136.5	2.55 J	8.92	48.91
Vanadium (Dissolved)	~	NA	1.77 J	5 U	10.54
Zinc Zinc (Dissolved)	2,000	1,060	10 U	10.50	24.93
LING (DISSUIVED)	∠,000	INA	10 0	10 0	10 U

Table 4A Remedial Investigation Report Groundwater Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Notes:

1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (herein collectively referenced as "NYSDEC SGVs").

- 2. Only detected analytes are shown in the table.
- 3. Detected analytical results above NYSDEC SGVs are bolded and shaded.
- 4. Analytical results with reporting limits (RL) above NYSDEC SGVs are italicized.
- 5. Sample RIGWDUP01_100919 is a duplicate sample of MW24_100919.
- 6. ~ = Regulatory limit for this analyte does not exist
- 7. μ g/L = micrograms per liter
- 8. NA = Not analyzed
- 9. ND = Not detected

Qualifiers:

J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.

Table 4B Remedial Investigation Report Groundwater Sample Analytical Results Summary - Emerging Contaminants

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Location	USEPA Health	MW18	MW19	MW24	MW24
Sample ID	Advisory for	MW18_100919	MW19_100919	MW24_100919	RIGWDUP01_100919
Laboratory ID	Emerging	19J0468-01	19J0468-02	19J0468-03	19J0468-04
Sample Date	Contaminants	10/9/2019	10/9/2019	10/9/2019	10/9/2019
Semivolatile Organic Compounds (µg/L)		ND	ND	ND	ND
Per and Polyfluoroalkyl Substances (µg/L)					
Perfluorobutanesulfonic Acid (PFBS)	~	0.0151	0.00609	0.00742	0.0071
Perfluorobutanoic acid (PFBA)	~	0.049	0.0165	0.00688	0.00668
Perfluoroheptanoic acid (PFHpA)	~	0.0419	0.00839	0.00475	0.00501
Perfluorohexanesulfonic Acid (PFHxS)	~	0.0261	0.00261	0.0039	0.00367
Perfluorohexanoic Acid (PFHxA)	~	0.0828	0.012	0.00563	0.00576
Perfluorononanoic Acid (PFNA)	~	0.00276	0.002 U	0.0079	0.00819
Perfluorooctanesulfonic acid (PFOS)	0.07	0.0542	0.016	0.0753	0.0761
Perfluorooctanoic Acid (PFOA)	0.07	0.0669	0.0297	0.0231	0.0227
Perfluoropentanoic Acid (PFPeA)	~	0.0858	0.0141	0.00779	0.0075
Total PFOA and PFOS	0.07	0.121	0.0457	0.0984	0.0988

Notes:

1. Regulatory criteria do not exist for per- and polyfluoroalkyl substances (PFAS) and 1,4-Dioxane in New York State. Perflourooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are compared to the United States Environmental Protection Agency (USEPA) health advisory limit of 70 parts per trillion (ppt). 1,4-Dioxane is compared to the USEPA health

2. Only detected analytes are shown in the table.

3. Detected analytical results above the USEPA Health Advisory Limit are bolded and shaded.

4. Analytical results with reporting limits (RL) above USEPA Health Advisory Limit are italicized.

5. Sample RIGWDUP01_100919 is a duplicate

sample of MW24_100919.

6. ~ = Regulatory limit for this analyte does not exist

7. μ g/L = micrograms per liter

8. ND = Not detected

Qualifiers:

Table 4B

Remedial Investigation Report Groundwater Sample Analytical Results Summary - Emerging Contaminants

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Notes:

1. Regulatory criteria do not exist for per- and polyfluoroalkyl substances (PFAS) and 1,4-Dioxane in New York State. Perflourooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are compared to the United States Environmental Protection Agency (USEPA) health advisory limit of 70 parts per trillion (ppt). 1,4-Dioxane is compared to the USEPA health advisory limit of 35 ppt.

2. Only detected analytes are shown in the table.

3. Detected analytical results above the USEPA Health Advisory Limit are bolded and shaded.

4. Analytical results with reporting limits (RL) above USEPA Health Advisory Limit are italicized.

5. Sample RIGWDUP01_100919 is a duplicate sample of MW24_100919.

6. ~ = Regulatory limit for this analyte does not exist

7. μ g/L = micrograms per liter

8. ND = Not detected

Qualifiers:

Table 5 **Remedial Investigation Report** Soil Vapor Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

location		۵۵۵1		SV06		SV10		SV11		SV12		SV16		SV22		SV24	
Sample ID	NVSDOH Decision	ΔΔ01 100	319	SV06 0607	19	SV10 060	719	SV11 0607	719	SV12 0607	19	SV16 1003	19	SV22 1003	19	SV24 100	319
Laboratory ID	Matrices Minimum	19,10219-	04	L1924604-	01	L1924604-	03	L1924604-	.04	L1924604-	02	19,10219-0	1	19,10219-0	2	19,10219-	-03
Sample Date	Concentrations	10/3/201	9	6/7/2019	•	6/7/2019	 7	6/7/2019	9	6/7/2019	-	10/3/2019	a	10/3/201	9	10/3/20	19
Sample Type	•••••••	AA		SV		SV	-	SV		SV		SV		SV		SV	
Volatile Organic Compounds (ug/m³)		7.0.1		•••	-	•••	-	•••		•••		•••		0.		•••	
1.1.1-Trichloroethane	100	0.47	U	4.12		1.09	U	3.64		49.6	U	8.6	U	9	U	8.6	U
1.2.4-Trimethylbenzene	~	0.55	D	14.5		13.2		8.5		447	U	12	D	11	D	12	D
1,3,5-Trimethylbenzene (Mesitylene)	~	0.42	U	4.51		3.83		2.99		447	U	7.7	U	8.1	U	7.7	U
1,3-Butadiene	~	0.57	U	1.11		0.85		1.53		201	U	10	U	15	D	10	U
2,2,4-Trimethylpentane	~	NA		16.6		4.48		10.5		425	U	NA		NA		NA	
2-Hexanone	~	0.7	U	16.2		0.82	U	9.38		373	U	13	U	14	U	13	U
4-Ethyltoluene	~	0.5	D	0.983	U	1.82		1.54		447	U	11	D	9.7	D	10	D
Acetone	~	5.1	D	48.7		58		344		1080	U	12	D	82	D	36	D
Benzene	~	1.1	D	23.2		2.71		11.8		290	U	5	U	5.3	U	5	U
Carbon Disulfide	~	0.27	U	8.07		9.56		17.3		283	U	4.9	U	16	D	7.4	D
Carbon Tetrachloride	6	0.48	D	1.26	U	1.26	U	1.26	U	57.2	U	2.5	U	2.6	U	2.5	U
Chloroform	~	0.42	U	1.69		13.2		23		444	U	7.7	U	8.1	U	7.7	U
Chloromethane	~	0.9	D	0.413	U	0.448		1.39		188	U	3.2	U	3.4	U	3.3	U
Cyclohexane	~	0.38	D	4.23		11.3		2.54		313	U	5.4	U	5.7	U	5.4	U
Dichlorodifluoromethane	~	1.6	D	3.84		2.21		2.12		449	U	7.8	U	8.2	U	7.8	U
Ethanol	~	NA		10.6		25.1		73.5		4280	U	NA		NA		NA	
Ethyl Acetate	~	2.7	D	1.8	U	1.8	U	1.8	U	818	U	11	U	12	U	11	U
Ethylbenzene	~	0.93	D	7.21		2.93		4.52		395	U	6.8	U	7.2	U	6.8	U
Isopropanol	~	1.5	D	1.23	U	2.13		11		558	U	7.7	U	8.1	U	7.7	U
M,P-Xylene	~	3.1	D	24.9		13.3		16.9		791	U	21	D	22	D	18	D
Methyl Ethyl Ketone (2-Butanone)	~	0.63	D	38.3		5.99		29.3		669	U	4.6	U	51	D	4.6	U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	~	0.35	U	2.05	U	2.05	U	3.79		930	U	6.4	U	6.8	U	6.4	U
Methylene Chloride	100	2.4	D	1.74	U	60.8		5.49		789	U	11	U	11	U	11	U
n-Heptane	~	0.67	D	24.9		6.31		19.8		51,200		40,000	D	1,500	D	2,100	D
n-Hexane	~	0.84	D	74.7		11.8		52.2		109,000		84,000	D	2,600	D	2,000	D
o-Xylene (1,2-Dimethylbenzene)	~	0.85	D	16		6.25		7.99		395	U	9.5	D	11	D	9.6	D
Styrene	~	0.36	U	3.44		1.69		1.83		387	U	6.7	U	7	U	6.7	U
Tert-Butyl Alcohol	~	NA		4.27		5.49		7.34		688	U	NA		NA		NA	
Tetrachloroethene (PCE)	100	0.64	D	13.8		3.17		14		61.6	U	32	D	15	D	29	D
Tetrahydrofuran	~	0.5	U	4.22		2.55		1.47	U	669	U	9.3	U	9.7	U	9.3	U
Toluene	~	5.7	D	72.7		7.57		17.8		343	U	13	D	20	D	8.9	D
Trichloroethene (TCE)	6	0.11	U	11.2		1.07	U	1.07	U	48.9	U	2.1	U	2.2	U	85	D
Trichlorofluoromethane	~	1.2	D	5.2		1.17		1.12	U	511	U	8.8	U	9.3	U	13	D

Notes: 1. Soil vapor sample analytical results are compared to the minimum soil vapor concentrations recommending mitigation as set forth in the New York State Department of Health (NYSDOH) October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York Decision Matrices for Sub-Slab Vapor and Indoor Air and

subsequent updates (2017).

2. Ambient air sample analytical results are shown for

reference only.

3. Only detected analytes are shown in the table.

4. Detected analytical results above the minimum soil vapor concentrations recommending mitigation are bolded and shaded.

5. Analytical results with reporting limits (RL) above the minimum soil vapor concentrations recommending mitigation are italicized.

6. ~ = Regulatory limit for this analyte does not exist

7. μ g/m³ = micrograms per cubic meter

8. AA = Ambient Air

9. SV = Soil Vapor

Qualifiers:

 \overline{D} = The concentration reported is a result of a diluted sample.

Table 5

Remedial Investigation Report Soil Vapor Sample Analytical Results Summary

2413 Third Avenue Bronx, New York Langan Project No.: 170396002

Notes:

1. Soil vapor sample analytical results are compared to the minimum soil vapor concentrations recommending mitigation as set forth in the New York State Department of Health (NYSDOH) October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York Decision Matrices for Sub-Slab Vapor and Indoor Air and subsequent updates (2017).

2. Ambient air sample analytical results are shown for reference only.

3. Only detected analytes are shown in the table.

4. Detected analytical results above the minimum soil vapor concentrations recommending mitigation are bolded and shaded.

5. Analytical results with reporting limits (RL) above the minimum soil vapor concentrations recommending mitigation are italicized.

6. ~ = Regulatory limit for this analyte does not exist

7. μ g/m³ = micrograms per cubic meter

8. AA = Ambient Air

9. SV = Soil Vapor

Qualifiers:

D = The concentration reported is a result of a diluted sample.

Table 6 QAQC Summary Report QAQC Sample Analytical Results

2413 Third Avenue The Bronx, New York Langan Project No.: 170396002

Sample ID	RIGWFB01_100919		RISOFB01_09	RISOFB01 093019		RISOFB02 100319		RITB02_0930	19	RITB03_1001	RITB04_1002	19	RITB05_10031	19	RITB06_100	919	
Laboratory ID	19J0468-0	19J0468-05		1911369-08			1911299-07	19 1369-09	1911369-09		19J0068-11		19J0144-07			19J0468-06	
Sample Date	10/9/201	9	9/30/201	9	10/3/2019		9/27/2019	9/30/2019	9/30/2019		10/1/2019		10/2/2019			10/9/201	9
Volatile Organic Compounds (µg/L)																	
1,2,4-Trimethylbenzene	0.2	U	0.2	U	0.2	U	0.4 J	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Carbon Disulfide	0.49	J	NA		NA		NA	NA		NA		NA		NA		0.2	U
Chloromethane	0.2	U	NA		NA		NA	NA		NA		NA		NA		0.28	J
Naphthalene	NA		1	U	1	U	3.19	1	U	1	U	1	U	1	U	NA	
Semivolatile Organic Compounds (µg/L)																	
Bis(2-Ethylhexyl) Phthalate	0.831	В	NA		NA		NA	NA		NA		NA		NA		NA	
Pesticides (µg/L)	ND		ND		ND		NA	NA		NA		NA		NA		NA	
Herbicides (µg/L)	ND		ND		ND		NA	NA		NA		NA		NA		NA	
Polychlorinated Biphenyls (µg/L)	ND		ND		ND		NA	NA		NA		NA		NA		NA	
Inorganics (µg/L)																	
Aluminum	80.4		NA		NA		NA	NA		NA		NA		NA		NA	
Calcium	87		NA		NA		NA	NA		NA		NA		NA		NA	
Calcium (Dissolved)	135		NA		NA		NA	NA		NA		NA		NA		NA	
Magnesium (Dissolved)	96		NA		NA		NA	NA		NA		NA		NA		NA	
Zinc	86.9		77.1	В	28.7		NA	NA		NA		NA		NA		NA	
Zinc (Dissolved)	55.7		NA		NA		NA	NA		NA		NA		NA		NA	
Per and Polyfluoroalkyl Substances (µg/L)	ND		ND		ND		NA	NA		NA		NA		NA		NA	-

 Notes:

 1. Only detected analytes are shown in the table.

 2. μg/L = micrograms per liter

3. FB = Field Blank

4. TB = Trip Blank

5. NA = Not Analyzed 6. ND = Not Detected

Qualifiers:

J = The analyte was detected above the Method Detection Limit (MDL), but below the Reporting Limit (RL); therefore, the result is an estimated concentration. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

B = The analyte was found in the associated analysis batch blank.

APPENDIX A Architectural Development Plans

APPROVED DESIGN 2413 3rd Ave

EAST ELEVATION 2413 3rd Ave

SOUTH WEST ELEVATION 2413 3rd Ave

WEST ELEVATION 2413 3rd Ave

SOUTH ELEVATION

OPTION 1 FULL DISTRIBUTION TOTAL = 114 BALCONIES

NOTE: PLANS ARE PRELIMINARY AND SUBJECT TO FURTHER DEVELOPMENT, MODIFICATION, AND CHANGE ONCE A MORE THROUGH REVIEW OF MUNICIPAL CODES, LAND SURVEY, AND ON-SITE CONDITIONS IS COMPLETED.

BALCONY DISTRIBUTION STRATEGY

2413 3rd Ave

EAST ELEVATION

OPTION 2 CLUSTERED DISTRIBUTION TOTAL = 59 BALCONIES 51 %

SOUTH ELEVATION

PLANS

UNIT /BALCONY STRATEGY

2413 3rd Ave

CELLAR

2413 3rd Ave

CHEF'S KITCHEN W/ DINING/ CONF ROOM

2ND FLOOR PLAN

2413 3rd Ave

PRELIMINARY

PLANS ARE PRELIMINARY AND SUBJECT TO FURTHER DEVELOPMENT, MODIFICATION, AND CHANGE ONCE A MORE THROUGH REVIEW OF MUNICIPAL CODES, LAND SURVEY, AND ON-SITE CONDITIONS IS COMPLETED.

3-6 TH FLOOR PLAN

2413 3rd Ave

CETRARUDDY

PLANS ARE PRELIMINARY AND SUBJECT TO FURTHER DEVELOPMENT, MODIFICATION, AND CHANGE ONCE A MORE THROUGH REVIEW OF MUNICIPAL CODES, LAND SURVEY, AND ON-SITE CONDITIONS IS COMPLETED.

7TH FLOOR PLAN

2413 3rd Ave

PLANS ARE PRELIMINARY AND SUBJECT TO FURTHER DEVELOPMENT, MODIFICATION, AND CHANGE ONCE A MORE THROUGH REVIEW OF MUNICIPAL CODES, LAND SURVEY, AND ON-SITE CONDITIONS IS COMPLETED.

8-16TH FLOOR PLAN A

PLANS ARE PRELIMINARY AND SUBJECT TO FURTHER DEVELOPMENT, MODIFICATION, AND CHANGE ONCE A MORE THROUGH REVIEW OF MUNICIPAL CODES, LAND SURVEY, AND ON-SITE CONDITIONS IS COMPLETED.

8-16TH FLOOR PLAN B

2413 3rd Ave

4

PLANS ARE PRELIMINARY AND SUBJECT TO FURTHER DEVELOPMENT, MODIFICATION, AND CHANGE ONCE A MORE THROUGH REVIEW OF MUNICIPAL CODES, LAND SURVEY, AND ON-SITE CONDITIONS IS COMPLETED.

17-22ND FLOOR PLAN

2413 3rd Ave

PLANS ARE PRELIMINARY AND SUBJECT TO FURTHER DEVELOPMENT, MODIFICATION, AND CHANGE ONCE A MORE THROUGH REVIEW OF MUNICIPAL CODES, LAND SURVEY, AND ON-SITE CONDITIONS IS COMPLETED.

RXR - 2413 THIRD AVENUE, BRONX, NY (CURRENT OPTION)

CETRARUDDY ARCHITECTURE

		Floor Area by Use							Pecid	ontial													
								Resider	ntial					Accesso	ry	Comm	unity	Comme	rcial	Total Bui	ldina	Effici	iency
Program	Floor	Flevation	Height	Fin		1		(UG2 - Multi	-family)					Parkin	g	Faci	lity						-
riogram	11001	Lievation	neight	CLG	CSE		MECH		QН		STAIR	ZONE GREEN	765	CSE	765	CSE	765	CSE	765	CSE	765	SSE	EEE
					GSF		DEDUCTIONS	DEDU	JCTIONS		WIDTH	DEDUCTION	235	GSF	235	GSF	235	GSF	235	GSF	235	335	
						Amenity /																	
					Residential	BOH	MECH	CORRIDOR	TRASH	REC		4"											
MEP	С	-4.00	16.00		2,055	2,859	1,665		584				0	11,538	0					18,701	0		
Lobby & Parking	1	8.00	12.00		7,169	2,776	1,355	0	12		30	215	8,333	6,982	0			611	605	17,538	8,938		
Amenity & Mechanical	2	20.00	12.00		3,329	7,345	1,707	0	12	4,644	30	198	4,083							10,674	4,083		
Residential Base	3	32.00	9.67	9.00	9,447		189	518	12		30	160	8,539							9,447	8,539	7,539	80%
Residential Base	4	41.67	9.67	9.00	9,447		189	518	12		30	160	8,539							9,447	8,539	7,539	80%
Residential Base	5	51.34	9.67	9.00	9,447		189	518	12		30	160	8,539							9,447	8,539	7,539	80%
Residential Base	6	61.01	10.67	10.00	9,447		189	518	12		30	160	8,539							9,447	8,539	7,539	80%
Residential Tower	7	71.68	9.67	9.00	6,246	598	125	713	12		30	91	5,873							6,844	5,873	5,359	78%
Residential Tower	8	81.35	10.67	10.00	6,995		140	709	12		30	91	6,013							6,995	6,013	5,452	78%
Residential Tower	9	92.02	9.67	9.00	6,995		140	709	12		30	91	6,013							6,995	6,013	5,520	79%
Residential Tower	10	101.69	9.67	9.00	6,995		140	709	12		30	91	6,013							6,995	6,013	5,520	79%
Residential Tower	11	111.36	9.67	9.00	6,995		140	709	12		30	91	6,013							6,995	6,013	5,520	79%
Residential Tower	12	121.03	9.67	9.00	6,995		140	709	12		30	91	6,013							6,995	6,013	5,520	79%
Residential Tower	13	130.70	9.67	9.00	6,995		140	709	12		30	91	6,013							6,995	6,013	5,520	79%
Residential Tower	14	140.37	9.67	9.00	6,995		140	709	12		30	91	6,013							6,995	6,013	5,520	79%
Residential Tower	15	150.04	9.67	9.00	6,995		140	709	12		30	91	6,013							6,995	6,013	5,520	79%
Residential Tower	16	159.71	10.67	10.00	6,995		140	709	12		30	91	6,013							6,995	6,013	5,452	78%
Residential Tower	17	170.38	9.67	9.00	6,991		140	709	12		30	91	6,010							6,991	6,010	5,503	79%
Residential Tower	18	180.05	9.67	9.00	6,991		140	702	12		30	91	6,017							6,991	6,017	5,536	79%
Residential Tower	19	189.72	9.67	9.00	6,991		140	702	12		30	91	6,017							6,991	6,017	5,536	79%
Residential Tower	20	199.39	9.67	9.00	6,991		140	702	12		30	91	6,017							6,991	6,017	5,536	79%
Residential Tower	21	209.06	9.67	9.00	6,991		140	702	12		30	91	6,017							6,991	6,017	5,536	79%
Residential Tower	22	218.73	10.67	9.00	6,991		140	702	12		30	91	6,017							6,991	6,017	5,536	79%
Residential Penthouse	23	229.40	9.67	9.00	5,897		118	283	12		30	82	5,373							5,897	5,373	4,549	77%
Residential Penthouse	24	239.07	9.67	9.00	5,897		118	283	12		30	82	5,373							5,897	5,373	4,549	77%
Residential Penthouse	25	248.74	9.67	9.00	5,897		118	283	12		30	82	5,373							5,897	5,373	4,549	77%
Residential Penthouse	26	258.41	10.60	9.00	5,897		118	283	12		30	82	5,373							5,897	5,373	4,549	77%
Bulkhead Mechanical	BH	269.01	33.75										0							0	0		
	R	302.76																					
														<u> </u>									<u> </u>
	PROPO	SED FLOOR	AREA		185,076	13,578	8,178	14,515	312	4,644	780	2,830	164,146	18,520	0	0	0	611	605	220,034	164,751	136,438	78%
	AVAILA	BLE FLOOR	AREA										165,869				179,095		1,723		165,869		
	EFFECT	IVE FAR											5.96										

Density Regulations	
Max Number of Dwelling Units Permitted Per ZR 23-22-	244
Proposed Dwelling Unit:	192

Required parking - ZR25-23							
40% of DU	77	Required					
cellar	10						
1st	74						
	84	Provided - complies					

11/7/2019 ALL AREAS ARE PRELIMINARY, AND SUBJECT TO CHANGE

AREA CHART 26 FLOORS

2413 3rd Ave

CETRARUDDY
RXR - 2413 THIRD AVENUE, BRONX, NY (27 FLOOR OPTION)

CETRARUDDY ARCHITECTURE

												Floor Area	a by Use									Resid	ential
								Resider	ntial					Accessor	У	Commun	ity	Commer	cial	Total Bui	ldina	Effici	iency
Program	Floor	Elevation	Height	Fin			(U	<u>G2 - Multi</u>	i-family)					Parking		Facility	1						
riogram	11001	Lievation	neight	CLG		-	MECH		QH		STAIR	ZONE GREEN											1
					GS	F	DEDUCTIONS	DED	UCTIONS	5	WIDTH	DEDUCTION	ZSF	GSF	ZSF	GSF	ZSF	GSF	ZSF	GSF	ZSF	SSF	EFF
																							1
					Residential	Amenity / BOH	месн	R R	TRASH	REC		8"/4"											
MEP	С	-4.00	16.00		2,055	2,859	1,665		584				0	11,538	0					18,701	0		Í
Lobby & Parking	1	8.00	10.58	9.91	7,169	2,776	1,355	0	12		30	215	8,333	6,982	0			611	605	17,538	8,938		1
Amenity & Mechanical	2	18.58	10.00	9.33	3,329	7,345	1,707	0	12	4,644	30	395	3,885							10,674	3 <i>,</i> 885		
Residential Base	3	28.58	9.42	8.80	9,447		189	1,036	12		30	319	7,861							9,447	7,861	7,539	80%
Residential Base	4	38.00	9.42	8.80	9,447		189	1,036	12		30	319	7,861							9,447	7,861	7,539	80%
Residential Base	5	47.42	9.42	8.80	9,447		189	1,036	12		30	319	7,861							9,447	7,861	7,539	80%
Residential Base	6	56.84	10.42	9.80	9,447		189	1,036	12		30	319	7,861							9,447	7,861	7,539	80%
Residential Tower	7	67.26	9.42	8.80	6,995		140	713	12		30	197	5,903							6,995	5,903	5,359	77%
Residential Tower	8	76.68	10.42	9.80	6,995		140	709	12		30	197	5,907							6,995	5,907	5,452	78%
Residential Tower	9	87.10	9.42	8.80	6,995		140	709	12		30	197	5,907							6,995	5,907	5,520	79%
Residential Tower	10	96.52	9.42	8.80	6,995		140	709	12		30	197	5,907							6,995	5,907	5,520	79%
Residential Tower	11	105.94	9.42	8.80	6,995		140	709	12		30	197	5,907							6,995	5,907	5,520	79%
Residential Tower	12	115.36	9.42	8.80	6,995		140	709	12		30	197	5,907							6,995	5,907	5,520	79%
Residential Tower	13	124.78	9.42	8.80	6,995		140	709	12		30	197	5,907							6,995	5,907	5,520	79%
Residential Tower	14	134.20	9.42	8.80	6,995		140	709	12		30	197	5,907							6,995	5,907	5,520	79%
Residential Tower	15	143.62	9.42	8.80	6,995		140	709	12		30	197	5,907							6,995	5,907	5,520	79%
Residential Tower	16	153.04	9.42	8.80	6,995		140	709	12		30	197	5,907							6,995	5,907	5,520	79%
Residential Tower	17	162.46	10.42	9.80	6,995		140	709	12		30	197	5,907							6,995	5,907	5,452	78%
Residential Tower	18	172.88	9.42	8.80	6,991		140	702	12		30	196	5,911							6,991	5,911	5,503	79%
Residential Tower	19	182.30	9.42	8.80	6,991		140	702	12		30	196	5,911							6,991	5,911	5,536	79%
Residential Tower	20	191.72	9.42	8.80	6,991		140	702	12		30	196	5,911							6,991	5,911	5,536	79%
Residential Tower	21	201.14	9.42	8.80	6,991		140	702	12		30	196	5,911							6,991	5,911	5,536	79%
Residential Tower	22	210.56	9.42	8.80	6,991		140	702	12		30	196	5,911							6,991	5,911	5,536	79%
Residential Tower	23	219.98	10.42	9.80	6,991		140	702	12		30	196	5,911							6,991	5,911	5,536	79%
Residential Penthouse	24	230.40	9.42	8.80	5,897		118	283	12		30	178	5,277							5,897	5,277	4,549	77%
Residential Penthouse	25	239.82	9.42	8.80	5,897		118	283	12		30	178	5,277							5,897	5,277	4,549	77%
Residential Penthouse	26	249.24	9.42	8.80	5,897		118	283	12		30	178	5,277							5,897	5,277	4,549	77%
Residential Penthouse	27	258.66	10.42	9.80	5,897		118	283	12		30	178	5,277							5,897	5,277	4,549	77%
Bulkhead Mechanical	BH	269.08	33.75										0							0	0		(
	R	302.83																					(
																							í
	PROPO	SED FLOOR A	REA		192,820	12,980	8,333	17,289	324	4,644	810	5,941	165,210	18,520	0	0	0	611	605	227,180	165,815	141,958	77%
	AVAILA	BLE FLOOR A	REA			-	· · · ·					-	165,869			17	79,095		659		165,869		
	EFFECT	IVE FAR				<u>I</u>							6.00										

Density Regulations	
Max Number of Dwelling Units Permitted Per ZR 23-22-	244
Proposed Dwelling Unit:	202

Required park	ing - ZR25-23		
40% of DU	81	Required	
cellar	66		
1st	15		
	81	Provided - complies	(pending review)

11/7/2019 ALL AREAS ARE PRELIMINARY, AND SUBJECT TO CHANGE

NOTE: PLANS ARE PRELIMINARY AND SUBJECT TO FURTHER DEVELOPMENT, MODIFICATION, AND CHANGE ONCE A MORE THROUGH REVIEW OF MUNICIPAL CODES, LAND SURVEY, AND ON-SITE CONDITIONS IS COMPLETED.

AREA CHART FOR 27 FLOORS

CETRARUDDY

		APARTMENT TYPES/ NUMBER OF UNITS							NET FLOOR AREA/	TOTAL UNITS/				
FLOOK NO.	3BED/ 2 BA	TH.	2BED/ 2 BAT	Ή	2BED/1BATH	4	1 BED+/ 1 BA	ГН	1BED/ 1 BAT	Η	JR1/1 BATH	ł	FLOOR	FLOOR
3		-	1,947	2		-	754	1	1,974	3	2,811	5	7,486	11
4		-	1,947	2		-	754	1	1,974	3	2,811	5	7,486	11
5		-	1,947	2		-	754	1	1,974	3	2,811	5	7,486	11
6		-	1,947	2		-	754	1	1,974	3	2,811	5	7,486	11
7		1	1,008			-	720	1	1,951	3	1,084	2	4,763	7
8	1,129	1				-		-	2,644	4	1,679	3	5,452	8
9	1,129	1				-	716	1	1,996	3	1,679	3	5,520	8
10	1,129	1				-	716	1	1,996	3	1,679	3	5,520	8
11	1,129	1				-	716	1	1,996	3	1,679	3	5,520	8
12	1,129	1				-	716	1	1,996	3	1,679	3	5,520	8
13	1,129	1				-	716	1	1,996	3	1,679	3	5,520	8
14	1,129	1				-	716	1	1,996	3	1,679	3	5,520	8
15	1,129	1				-	716	1	1,996	3	1,679	3	5,520	8
16	1,129	1				-		-	2,644	4	1,679	3	5,452	8
17		-	990	1		-		-	3,975	6	537	1	5,502	8
18		-	990	1		-		-	3,975	6	537	1	5,502	8
19		-	990	1		-		-	3,975	6	537	1	5,502	8
20		-	990	1		-		-	3,975	6	537	1	5,502	8
21		-	990	1		-		-	3,975	6	537	1	5,502	8
22		-	990	1		-		-	3,975	6	537	1	5,502	8
23	1,123	1	1,739	2		-		-	629	1	1,090	2	4,581	6
24	1,123	1	1,739	2		-		-	629	1	1,090	2	4,581	6
25	1,123	1	1,739	2		-		-	629	1	1,090	2	4,581	6
26	1,123	1	1,739	2		-		-	629	1	1,090	2	4,581	6
TOTALS	14,653	14	21,692	22	-	-	8,748	12	55,473	84	35,021	63		
PERCENTAGES	10.8%	7.2%	16.0%	11.3%	0.0%	0.0%	6.5%	6.2%	40.9%	43.1%	25.8%	32.3%	135,587	195
AVERAGE UNIT SIZE	1046.6428	57	986		0		729		660		556		69	95

SUMMARY							
Туре	Count	Total SF	Average SF				
JR1/1 BATH	63	35,021	556				
1BED/ 1 BATH	84	55,473	660				
1 BED+/ 1 BATH	12	8,748	729				
2BED/1BATH							
2BED/ 2 BATH	22	21,692	986				
3BED/ 2 BATH	14	14,653	1,047				
	195	135,587	695				

UNIT TYPE	FLOORS	# OF UNITS
B: 579	3 TO 6	4
C: 572	3 TO 6	4
E: 535	3 TO 6	4
G: 583	3 TO 6	4
J: 542	3 TO 6	4
C:531	7	1
H: 502	7	1
E: 582	7	1
D: 534	8 TO 16	9
H: 540	8 TO 16	9
H: 537	17 TO 22	6
B: 543	23 TO 26	4
C: 581	23 TO 26	4
TO	55	

UNIT TYPE	FLOORS	# OF UNITS
A: 676	3 TO 6	4
H: 683	3 TO 6	4
l: 615	3 TO 6	4
G: 649	7	1
F: 656	7	1
E: 648	8 TO 16	2
F: 605	8 TO 16	9
I: 681	8 TO 16	9
G: 686	8 TO 16	9
K: 629	8 TO 16	9
D: 646	17 TO 22	6
F: 711	17 TO 22	6
E: 610	17 TO 22	6
G: 676	17 TO 22	6
I: 682	17 TO 22	6
K: 614	17 TO 22	6
E: 617	23 TO 26	4
TO	TAL	92

1 BED+/ 1 BATH							
UNIT TYPE	FLOORS	# OF UNITS					
F: 754	3 TO 6	4					
D: 720	7	1					
E: 716	9 TO 15	7					

	OP	Т 3	
Туре	Count	Total SF	Average SF
JR 1	55	19,190	349
1 Bed/1 Bath A	92	56,350	613
1 Bed +	12	18,144	1,512
2 Bed/1 Bath A	22	32,938	1,497
3 Bed/2 Bath A	14	10,659	761
	195	137,281	704

_		
	TOTAL	12
_		

	2BED/ 2 BATH	
UNIT TYPE	FLOORS	# OF UNITS
D: 964	3 TO 6	2
K: 983	3 TO 6	2
C: 1024	17 TO 22	E
D: 847	23 TO 26	2
F: 922	23 TO 26	2
TO	TAL	22

3BED/ 2 BATH								
FLOORS	# OF UNITS							
7	1							
8 TO 16	9							
23 TO 26	4							
TAL	14							
	3BED/ 2 BATHFLOORS78 TO 1623 TO 26TAL							

UNIT MIX - 26 FLOORS

PRELIMINARY

					APARTMENT	TYPES/ I	NUMBER OF UNITS						NET FLOOR AREA/	TOTAL UNITS/
FLOOK NO.	3BED/ 2 BA	TH	2BED/ 2 BAT	Н	2BED/1BATH	ł	1 BED+/ 1 BA	ГΗ	1BED/ 1 BAT	Н	JR1/1 BATH	ł	FLOOR	FLOOR
3		-	3,827	4		-	754	1	1,298	2	1,660	3	7,539	10
4		-	3,827	4		-	754	1	1,298	2	1,660	3	7,539	10
5		-	3,827	4		-	754	1	1,298	2	1,660	3	7,539	10
6		-	3,827	4		-	754	1	1,298	2	1,660	3	7,539	10
7	1,131	1		-		-	720	1	1,305	2	2,203	4	5,359	8
8	1,129	1		-		-	-	-	3,249	5	1,074	2	5,452	8
9	1,129	1		-		-	716	1	2,601	4	1,074	2	5,520	8
10	1,129	1		-		-	716	1	2,601	4	1,074	2	5,520	8
11	1,129	1		-		-	716	1	2,601	4	1,074	2	5,520	8
12	1,129	1		-		-	716	1	2,601	4	1,074	2	5,520	8
13	1,129	1		-		-	716	1	2,601	4	1,074	2	5,520	8
14	1,129	1		-		-	716	1	2,601	4	1,074	2	5,520	8
15	1,129	1		-		-	716	1	2,601	4	1,074	2	5,520	8
16	1,129	1		-		-	716	1	2,601	5	1,074	3	5,520	10
17	1,129	1		-		-	-	-	3,249	5	1,074	2	5,452	8
18		-	1,024	1		-		-	3,942	6	537	1	5,503	8
19		-	1,024	1		-		-	3,975	6	537	1	5,536	8
20		-	1,024	1		-		-	3,975	6	537	1	5,536	8
21		-	1,024	1		-		-	3,975	6	537	1	5,536	8
22		-	1,024	1		-		-	3,975	6	537	1	5,536	8
23		-	1,024	1		-		-	3,975	6	537	1	5,536	8
24	1,123	1	1,722	2		-		-	620	1	1,084	2	4,549	6
25	1,123	1	1,722	2		-		-	620	1	1,084	2	4,549	6
26	1,123	1	1,722	2		-		-	620	1	1,084	2	4,549	6
27	1,123	1	1,722	2		-		-	620	1	1,084	2	4,549	6
TOTALS	16,913	15	28,340	30	-	-	9,464	13	60,100	93	27,141	51		
PERCENTAGES	11.9%	7.4%	20.0%	14.9%	0.0%	0.0%	6.7%	6.4%	42.3%	46.0%	19.1%	25.2%	141,958	202
AVERAGE UNIT SIZE	1,128		945		0		728		646		532		70)3

	SUMMA	RY	
Туре	Count	Total SF	Average SF
JR1/1 BATH	51	27,141	532
1BED/ 1 BATH	93	60,100	646
1 BED+/ 1 BATH	13	9,464	728
2BED/1BATH			
2BED/ 2 BATH	30	28,340	945
3BED/ 2 BATH	15	16,913	1,128
	202	141,958	703

EAST ELEVATION 2413 3rd Ave

APPENDIX B Previous Environmental Reports

APPENDIX C Geophysical Survey Report

GEOPHYSICAL ENGINEERING SURVEY REPORT

Commercial Site 2413 3rd Avenue, Bronx, New York 10451

NOVA PROJECT NUMBER:

19-1303

DATED:

June 12, 2019

PREPARED FOR: LANGAN

21 Penn Plaza 360 West 31st Street, 8th Floor 4th Floor New York, New York 10001-2727

PREPARED BY:

NOVA GEOPHYSICAL SERVICES

SUBSURFACE MAPPING SOLUTIONS 56-01 Marathon Parkway #765, Douglaston, New York 11362 Ph. 347-556-7787 Fax. 718-261-1527 www.novagsi.com

June 12, 2019

Kimberly Del Col, PE Project Engineer *LANGAN* 21 Penn Plaza 360 West 31st Street, 8th Floor 4th Floor New York, New York 10001-2727 P: 212.479.5444 | E: <u>kdelcol@langan.com</u>

> Re: Geophysical Engineering Survey (GES) Report Commercial Site 2413 3rd Avenue, Bronx, New York 10451

Dear Ms. Del Col,

Nova Geophysical Services (NOVA) is pleased to provide the findings of the geophysical engineering survey (GES) at the above referenced project site: 2413 3rd Avenue, Bronx, New York 10451 (the "Site").

INTRODUCTION TO GEOPHYSICAL ENGINEERING SURVEY (GES)

NOVA performed a geophysical engineering survey (GES) consisting of a Ground Penetrating Radar (GPR) and Electromagnetic (EM) survey at the site. The purpose of this survey is to locate and identify utilities, underground storage tanks and other substructures on June 6th, 2019.

The equipment selected for this investigation was a Sensors and Software Noggin 250 MHz ground penetrating radar (GPR) with a shielded antenna and a Radio Detection RD7100 Electromagnetic utility locator.

A GPR system consists of a radar control unit, control cable, and transducer (antenna). The control unit transmits a trigger pulse at a normal repetition rate of 250 MHz. The trigger pulse is sent to the transmitter electronics in the transduce via the control cable. The transmitter electronics amplify the trigger pulse into bipolar pulses that are radiated to the surface. The transformed pulses vary in shape and frequency according to the transducer used. In the subsurface, variations of the signal occur at boundaries where there is a dielectric contrast (void,

steel, soil type, etc.). Signal reflections travel back to the control unit and are represented as color graphic images for interpolation.

A typical electromagnetic (EM) utility locating system consists of a transmitter unit and a receiver unit. The receiver unit can be used independently of the transmitter unit in order to detect utility lines with an inherent EM signature (electric utility lines, water lines, etc.). If needed a current at a specific frequency can also be placed on a utility that is being located. This can be done via the transmitter unit by either direct connection or induction via an EM field varying at specific frequency. The receiver unit is then set to the selected frequency and the electromagnetic field created by the current running through the utility can be located allowing the utility to be marked.

GEOPHYSICAL METHODS

The project site was screened using GPR to search the specified area and inspected for reflections, which could be indicative of substructures and utilities within the subsurface. An EM utility locator was used to help determine the locations of utilities within the survey area.

EM data was collected and interpreted on site and suspected utilities marked as needed. GPR data profiles were collected for the areas of the Site specified by the client and processed as specified below.

DATA PROCESSING

In order to improve the quality of the results and to better identify anomalies NOVA processed the collected data. The processing work flow is briefly described in this section.

Step 1. Import Raw RAMAC data to standard processing format

Step 2. Remove instrument noise (dewow)

Step 4. Remove static from bottom of profile (time cut)

Step 5. Mute horizontal ringing/noise (subtracting average)

The above example shows the significance of data processing. The last image (step 5) has higher resolution than the starting image (raw data – step 1) and represents the subsurface anomalies much more accurately.

PHYSICAL SETTINGS

NOVA observed the following physical conditions at the time of the survey.

Weather: Partly Cloudy

Temperature: 65° F

Surface: Concrete, Asphalt, Fill, Cobblestone

Geophysical Noise Level (GNL): The GNL was high at the site. The noise was a result of the site being located in an urban environment, thick concrete foundations, and the presence of fill material in the subsurface.

RESULTS

The results of the geophysical engineering survey (GES) identified the following at the project site:

- Anomalies resembling potential subsurface utilities (such as sewer, water, gas and electric) were identified during the GES. A geophysical anomaly resembling a potential utility was identified, but couldn't be correlated with known utilities. The approximate locations are shown in the survey plan.
- Two capped pipes were identified along with a geophysical anomaly resembling subsurface piping. Shown in the survey plan. NOVA could not verify any large geophysical anomalies resembling an underground storage tanks (UST) during the GES due to excessive geophysical noise levels.
- All detected subsurface anomalies were marked in the onsite mark out.
- All cleared boring locations were marked in the onsite mark out.

If you have any questions, please do not hesitate to contact the undersigned.

Sincerely,

NOVA Geophysical Services

Sweet Call

Levent Eskicakit, P.G., E.P. Project Engineer

Attachments:

Location Map Survey Plan Geophysical Images

		SURVEY PLAN	LEGEND
Geophysical	SITE:	Commercial Site 2413 3rd Avenue, Bronx, New York 10451	 Survey Area Capped Pipe Water Anomaly
Services	CLIENT:	Langan	Electric
Subsurface Mapping Solutions 56-01 Marathon Parkway, # 765 Douglaston, New York 11362 Phone (347) 556-7787 * Fax (718) 261-1527 www.novagsi.com	DATE: AUTH:	June 6 th , 2019 Chris Steinley	Sewer Unknown Gas

GEOPHYSICAL IMAGES Commercial Site

2413 3rd Avenue, Bronx, New York 10451 June 6th, 2019

GEOPHYSICAL IMAGES

Commercial Site 2413 3rd Avenue, Bronx, New York 10451 June 6th, 2019

APPENDIX D Soil Boring Logs

L	4		La/	4 /V		Log) of E	Boring]	SI	B06	6/TMW)6		Sheet	1	of	1
Project							Pr	oject N	lo.									
Location		2413 Thir	d Ave				E	evation	and D	Datu	1 [*] m	70396002	2					
		Bronx, NY	/								N	/A						
Drilling (Compa	any					Da	ate Sta	rted					Date	Finished			
Drillina E	Eauipn	AARCO E	Environmen	tal Services Corp.			C	ompleti	on De	pth		6/6/19		Rock	Depth	6/6/	19	
	- 11	Geoprobe	7730 DT									12 ft				N	/A	
Size and	Туре	of Bit 2-inch Dir	ect Push				Nu	umber	of San	nple	s C	isturbed	2	Ur	ndisturbed N/A	Core	; N	ι/Δ
Casing [Diame	ter (in) N/A			(Casing Depth (ft) N/A	w	ater Le	evel (ft)	F	irst ⊻	7	Co	ompletion N/A	24 H	IR. N	J/A
Casing H	lamm	^e ľv/A		Weight (lbs)	N/A	Drop (in) N/A	Dr	illing F	orema	In								
Sampler		2-inch by	4-foot Mac	crocore			Fi	eld Eng	gineer		Juli	o Galarza						
Sampler	Hamı	mer	N/A	Weight (lbs)	N/A	Drop (in) N/A					Pat	rick Stova						
	Flov							Dent	b 5			Sample D	ata		Re	marks		
MATER	(ft)			Sample Desc	ription			Scal	e Numbe	Ê	Recov	(in) Penetr resist BL/6in	Pi Rea (pp	D ding m)	(Drilling Fluid Fluid Loss, Dril	I, Depth o ling Resis	of Casin stance,	g, etc.)
		R1 (0-2 [FILL]	4") Brown	fine SAND, some	fine gra	/el, brick (dry)		- 0	-				0.	0				
								- 1	-				0.	0	Collected S	B06 1-	2 at 1'	2.10
								-	-	щ			0	0	Collected O	500_1-2	2 at 12	2.10
								Ē	-	COR	-	49	0.	0				
								Ēź	_ ~	ACRO		74	0.	0				
								-	_	Σ								
								- 3	-									
								F	-									
								- 4	+	-		_						
								E]									
								- 5	_									
								Ę	-									
								-		CORI		<u>φ</u>						
		R2 (0-2	8") Brown	fine SAND, brick,	trace fin	e gravel (moist)		- 6	- <u> </u> 22	CRO		787	0.	4				
		[FILL]						F	-	MA			0.	4				
							$\overline{\Delta}$	- 7	-				3.	6	Collected S	B06_7-	8 at 12	2:00
								L	_				1.	6	Slight netro	– leum-lik	e odo	r and
								- 8	-						staining fro	m 7 to 8	8 feet l	ogs
								-	-									
									-									
			<u> </u>	01.411				E										
		R3 (0-3	2") Soft gro	ey CLAY, trace pe	at, shells	s (moist)		Ē]	ORE			0.	1				
								- 10	- <u> </u> 82	ROC		32/4	0.	1				
								F		MAC	Ì		0.	3				
								⊨ 11	_				0	1				
								Ę	-				о. О	1				
							_	Ē 40	_				0.	1				
								E 12	-						End of borin	ng at 12	feet k	ogs. ell
								F	_						TMW06 ins	talled.	Soil va	por
								- 13	-						location.	Installe	u at of	ISEL
5								F										
1								上 ₁₄	_									

			1 /V		Log	of E	Boring			SB	807			Sheet 1		of	1
Project		2412 Third Ave				Pr	oject No.			170	206001	, ,					
Locatior	ı	2413 11110 Ave				El	evation ar	nd Da	atum	170	390002	<u></u>					
Drillina	Compa	Bronx, NY				Da	ate Starte	d		N/A			Date F	Finished			
5		AARCO Environment	tal Services Corp.								6/6/19				6/6/	19	
rilling	Equipr	nent				Co	ompletion	Dep	th		10 ft		Rock	Depth	N	/ •	
ize and	d Type	of Bit				NI	umber of s	Sam	oles	Dist	urbed		Un	disturbed	Core	/A	
asing l	Diame	2-inch Direct Push ter (in)		C	Casing Depth (ft)		atar Lava	I /#)		First	t	2	Co	N/A mpletion	24 H	IR.	N/A
asinal	Hamm	N/A er	Weight (lbs)		N/A Drop (in)	Dr	illing Fore	emar	1	$ \nabla$		10.5		N/A	Ţ		N/A
ample	r	[°] N/A		N/A	N/A		0		Jı	ulio G	Galarza						
ample	r Ham	2-inch by 4-foot Macr	Weight (lbs)	NI/A	Drop (in)	Fie	eld Engine	eer	П	otrial	(Ctoy o	л					
		N/A		N/A	N/A				P	Sa	nple D	ill ata					
MATERIA SYMBOI	Elev. (ft)		Sample Descr	ription			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PII Read (ppr) ing n)	Re (Drilling Fluid Fluid Loss, Drill	marks , Depth o ing Resis	of Casir stance,	ng, etc.)
		R1 (0-24") Light bro	own medium SAN	ND, some	e fine sand, brick,							0.0)				
	×××											0.0)				
	×××						- 1 -	1				0.0)				
	₹ ₹								ORE	ω		0.0)				
	₹ ₹						- 2 -	Ē	CROC	24/4		0.0)	Collected SE	307_2-	3 at 1	2:30
									MA								
	<u> </u>						- 3 -	-									
	Ì																
	×××						- 4 -										
	×××																
	∀						- 5 -					0.0	`		07 F	0 - 4 4	0.05
		R2 (0-36") Light bro	own fine SAND, ti	race silt ((moist)				ш			0.0	, ,	Collected St	507_5-	o at 1	2:35
								2	COR	48		0.0)				
								2	ACRO	36/		0.0)				
									Σ			0.0)				
	1						- 7 -	1		Í		0.0)				
]							1				0.0)				
							- 8 -	\vdash	+								
							F :	1									
							- 9 -	1		Í							
		R3 (0-32") Light bro	own fine SAND, t	race silt ((wet)		Ē		ЧË	Í		0.0)				
							- 10 -	8	3000	2/48		0.0)				
	1					$\overline{\Delta}$]	MACF	ŝ		0.0)				
]						- 11 -					0.0	N				
							⊧ '' : ¦	1		Í		0.0	,				
· · · · · · · · · · · · · · · · · · ·						_		1		L		0.0	,				
	1						12 -							End of borin Borehole ba	g at 12 ckfilled	feet with	bgs. clean
								1						soil cuttings	•		
							- 13 - -	1									
							E -]									
							L 14 -	1									

LA	4	NLAA	4 / V		Log	of E	Boring		SB	08/1	MWC)8		Sheet	0	of 1
Project		2412 Third Avo				Pr	oject No.			170	306002	, ,				
Location		2413 Mild Ave				Ele	evation a	nd Da	atum	170.	390002	2				
Drilling Co	ompa	Bronx, NY				Da	ite Starte	d		N/A			Date I	Finished		
		AARCO Environmen	tal Services Corp.								6/6/19				6/6/19	9
Drilling Eq	lnibu	nent				Co	mpletior	l Dep	th		10 f t		Rock	Depth	N1//	•
Size and T	Гуре	of Bit				NI	imber of	Sam	nles	Dist	urbed		Un	disturbed	Core	•
Casing Dia	amet	2-inch Direct Push ter (in)		C	Casing Depth (ft)				pico	First	t	2	Co	N/A mpletion	24 HR	N/A
	mm	N/A	Weight (lbs)		N/A Drop (in)	Dr	illing For	emar	<u>ו</u>	$ \underline{\nabla}$		7		N/A	<u> </u>	N/A
Sampler		<u>N/A</u>	5 ()	N/A	N/A		5		J	ulio C	Galarza					
Sampler H	lamr	2-Inch by 4-foot Mac	Veight (lbs)	NI/A	Drop (in)	_Fi€	eld Engin	eer		otrial	Ctovo					
		N/A		IN/A	IN/A					Sa	mple Da	n ata		De	marka	
MATERIA SYMBO	lev. (ft)		Sample Desci	ription			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PI Read (pp	D ding m)	CPrilling Fluid Fluid Loss, Drill	, Depth of (ing Resiste	Casing, ance, etc.)
		R1 (0-28") Light br [FILL]	own medium SAN	ND, trace	fine sand (dry)		— 0 — -					0.	0			
							- 1 -					0.	4	Collected S	308 1-2	at 11:30
									RE			1.	6		_	
							- 2 -	2	ROCC	8/48		0.	3			
							_		MAC	2						
							- 3 -									
							-									
							- 4 -									
							_ `									
							- 5 -									
									щ							
								3	DCOR	/48		0	0			
		R2a (0-12") Light b	prown medium SA	ND, trac	e fine sand (dry)		_		ACR	22		0.	0	Collected S	308_6-7	at 11:35
		[FILL]				∇			2			0.	0			
		R2b (12-22") Dark	brown fine SAND	, some s	ilt (moist)	-						0.	0			
												0.	0			
							- 8 -									
							- 9 -									
COLEC							_		CORE	œ						
44/20							- 10 -	18	CROC	10/4						
03960									MA	Í						
A0/1/			black find SAND	como a	ilt (moist)		- 11 -			Í		0.	0			
			-DIACK TITLE SAIND	, some s	in (moist)					Í		0.	0			
							- 12 -	_						End of borir	ig at 12 f	eet bgs.
														Temporary TMW08 ins	nonitorin talled.	ig well
N.COM							- 13 -									
NGAL							-									
							L 14 -									

					Log	of E	Boring			SB	809			Sheet 1	0	f	1
Project		2413 Third Avo				Pro	oject No.			170	30600,	2					
Location		2413 mind Ave				Ele	evation ar	nd Da	atum	170	390002	2					
Drilling (Comps	Bronx, NY				Da	te Starte	d		N/A			Date I	Finished			
, initial c	Joinpe	AARCO Environment	tal Services Corp.					u.			6/6/19		Dato	, monou	6/6/19	9	
Drilling E	quipn	nent	· · ·			Co	mpletion	Dep	th		10.6		Rock	Depth			
Size and	Туре	of Bit				NI	mbor of	Som		Dist	12 ft urbed		Un	disturbed	N/A Core	4	
Casing D	Diame	2-inch Direct Push ter (in)			Casing Depth (ft)			Sam	pies	First	t	2	Co	N/A mpletion	24 HR	N//	Α
		N/A	Woight (lba)		N/A	W	ater Leve	l (ft.)		∇	-	5.5		N/A	Ţ	N//	Α
	lamm	^e N/A		N/A	N/A			FIIIdi	ı Ji	ulio G	Galarza	ı					
	Homr	2-inch by 4-foot Macr	rocore Weight (lbs)		Drop (in)	Fie	eld Engin	eer			2011011 201						
	папп	N/A	thoight (100)	N/A	N/A				P	atrick Sa	< Stova	all ata					
MATERIAL SYMBOL	Elev. (ft)		Sample Desc	ription			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	Pll Read (ppi	D ling m)	Re (Drilling Fluid Fluid Loss, Drill	marks , Depth of (ing Resista	Casing, ince, etc	c.)
		R1a (0-6") BRICK					- 0 -	-				0.0	0				
जूर्य		R1b (6-32") Greyis	h-black schist CC	BBLES	(dry)			1				0.0	C				
U°4							- 1 -					0.0	C				
204									ORE	~		0.0	D				
D°2							- 2 -	2	ROC	32/48		0.0	C	Collected SE	309_2-3	at 10:	.30
201									MAC								
\sim							- 3 -	1									
õđ							- 4 -										
N°4																	
\tilde{O}													.				
		R2a (0-12") Brown	micaceous fine S	SAND (m	oist)	∇						0.0	5	Collected SE	309_5-6	at 10:	40
						-			COR	48		0.0	0				
		R2b (12-30") Dark	brown fine SAND), trace si	It (wet)		- 6 -	Ĩ	ACRO	36/		0.0	D				
								1	Ŵ			0.0	C				
							- 7 -	1				0.0	C				
<u></u>		R2c (30-36") Dark	brown PEAT (we	t)				1				0.0	D				
<u></u>		R3a (0-12") Greyis	h-black fine SAN	D, trace s	silt (wet)		8 -	-	+			0.0	D				
								1				0.0	C				
<u>, , , , , ,</u>		R3b (12-24") Black	PEAT				9 -	1				0.0	D				
<u> ~~ ~</u>									RE			0.0	C				
<u> </u>			brown fing CAND	trace e	It (moist)		- 10 -	8	ROCC	8/48		0.0	D				
		130 (24-40) Dark		, uace si	n (moist)				MACF	4		0.0	D				
							L . - 11 -						n				
							- '' - - '	1					5				
								1				0.0	J				
							- 12 -							End of borin Borehole ba	g at 12 fo ckfilled w	eet bg /ith cle	ıs. ean
							 	1						soil cuttings			-
							- 13 - -	1									
							F :	1									

					Log	g of E	Boring			SE	810			Sheet 1	of	1
Project		2412 Third Ave				Pr	oject No.			170	206001	, ,				
Location		2413 11110 Ave				El	evation a	nd Da	atum	170	390002	2				
Drilling (Compa	Bronx, NY				Da	ite Starte	d		N/A			Date F	Finished		
Drining	Joinpe	AARCO Environment	tal Services Corp.					u.			6/7/19		Dutor	inicitod	6/7/19	
Drilling E	Equipn	nent	· ·			Co	mpletior	l Dep	th		10.5		Rock	Depth		
Size and	Туре	of Bit				N	mbor of	Som		Dist	12 ft urbed		Un	disturbed	N/A Core	
Casing [Diame	2-inch Direct Push ter (in)		0	Casing Depth (ft)			Sam	pies	Firs	t	2	Co	N/A mpletion	24 HR.	N/A
		NÀ	Woight (lbs)		N/A	W	ater Leve	el (ft.)		$ $ ∇	-	8.5		N/A	Ţ	N/A
Casing F	amm	^e N/A		N/A	N/A		ining i oi	cmai	' S	ergio	Magai	na				
Sampler	Hamr	2-inch by 3-foot Mac	rocore Weight (lbs)		Drop (in)	Fi	eld Engin	eer								
	- Iaiiii	N/A	5 ()	N/A	N/A				P	atricl Sa	k Stova mple Da	ll ata				
ATERIA SYMBOL	Elev. (ft)		Sample Desc	ription			Depth Scale	umber	ype	ecov. (in)	enetr. esist L/6in	PII Read) ling	(Drilling Fluid, I	narks Depth of Ca	asing,
≥ . ₽		CONCRETE SLAB	}				<u> </u>	ž		£ ₽	<u> </u>	(ppr 0.0	n))		gricolotan	
		R1a (3-7") BRICK					-					0.0)			
		R1b (7-30") Reddis (dry) [FILL]	sh-brown fine SA	ND, trace	e coal, fine grave		- - 1 -		RE			0.0)	Collected SB	10 1-2 a	t 8 [.] 45
							_	2	soco	0/36		0.0)			
							- 2 -		MACF	õ		0.0)			
							-					0.0)			
							- 3 -					0.0	,			
							-									
		R2 (0-26") Reddish	h-brown fine SAN	D trace	coal fine gravel				ш							
		(dry) [FILL]		2,	,e ge.			~~~	DCOR	36		0.0)			
							-	- 22	ACRO	26/		0.0)			
							- 5 -		Σ			0.0)			
							-					0.0)			
							- 6 -									
		R2 (0-24") Reddish	n-brown to dark br	rown fine	e SAND, some fi	ne	- 7 -		ORE	9		0.0)	Collected SB	10_7-8 a	t 8:55
		gravel, trace coarse	e sand, coal (mois	st-wet)			-	R3	CROC	24/3		0.0)			
							- 8 -		MAG			0.0)			
						$\overline{\Delta}$	- -					0.0)			
							- 9 -									
							-									
							- 10 -		RE							
							-	4	socol	3/36						
		R4 (0-16") Brown f	ine SAND, trace	medium	gravel (wet)		 11 -	1	MACF	1		0.0)			
							-					0.0)			
							[- 12 -					0.0	-	End of hereit	-1 40 5	- t -
							- '2							End of boring Borehole bac	at 12 tee kfilled wit	et ogs. Ih clean
							-							soil cuttings. point SSV10	Sub-slab installed	vapor at offset
							- 13 - - -							location.		
							F		1							

L	4	NBA	A/V		Log	of E	Boring		SB	11/	TMW1	1		Sheet 1 of 1
Project						Pr	oject No.							
Location		2413 Third Ave				El	evation ar	nd Da	atum	170	396002	2		
		Bronx, NY								N/A				
Drilling (Compa	any				Da	ate Starteo	d			~ ~ ~ ~ ~		Date F	Finished
Drilling E	Equipn	AARCO Environmenta	al Services Corp.			Co	mpletion	Dep	th		6/7/19		Rock	6/7/19 Depth
		Geoprobe 420M					•				12 ft			N/A
Size and	Туре	of Bit 2-inch Direct Push				Nu	umber of S	Sam	oles	Dist	turbed	2	Un	disturbed Core N/A N/A
Casing [Diame	ter (in) N/A	1	Ca	asing Depth (ft) N/A	w	ater Leve	l (ft.)		Firs	t -	9	Co	mpletion 24 HR. N/A V/A
Casing	lamm	^e N/A	Weight (Ibs)	N/A	Drop (in) N/A	Dr	illing Fore	emar	ו ר	oraio	Maga			
Sampler		2-inch by 3-foot Macro	ocore			Fie	eld Engine	eer	3	ergic) iviagai	la		
Sampler	Hamı	^{mer} N/A	Weight (Ibs)	N/A	Drop (in) N/A				Ρ	atric	k Stova			
RIAL 30L	Elev.						Depth	┕		Sa	imple Da	ata PI	П	Remarks
MATE SYME	(ft)		Sample Descrip	otion			Scale	quup	Type	(in)	^D enet resis BL/6i	Rea	ding m)	(Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.)
		CONCRETE SLAB					- 0 -	2			<u> </u>	(PP 0.	0	
		R1 (6-20") Brown fi	ine SAND trace co	al, brick	slag, concrete			1				0.	0	
		(dry) [FILL]			, slug, contracto		- 1 -		ШШ			0.	0	Slight chemical-like odor from
							E -	2	000	1/36		٥	0	1 to 2 feet bgs.
									ACR	20		0.	0	Collected SB11_1-2 at 10:40
									2			0.	0	
							- 3 -							
		R2 (0-21") Roddich	brown fine SAND				- 4 -		끮			0.	0	
							E -	2	soco	1/36		0.	0	
							- 5 -		MACF	5		0	0	
												0.	0	10:50
												0.	0	
							- 6 -							
							-							
							- 7 -		ORE					
								R3	2002	0/36				
							- 8 -		MACF	-		0.	0	
		R3 (0-10") Reddish	-brown fine SAND									0	٥	
						∇		1		L		0.	0	
				- 6			- 9 -							
		R4 (0-32") Brown m	neaium SAND, trac	e tine gr	avel (wet)		<u> </u>			Í		0.	0	
							- 10 -		ORE	6		0.	0	
								8	ROC	32/3(0.	0	
							- 11 -	1	MAC			0.	0	
							-					0.	0	
							- 12 -							End of basings at 40 footbase
							-	1						End of boring at 12 feet bgs. Temporary monitoring well
								1						TMW11 installed. Sub-slab vapor point SSV11 installed at
							- 13 -	1						offset location.
							E -]						
							۔ _ 14 _]						

L	A	NL	4 /V		Log	of E	Boring		SB	12/	r mw 1	12		Sheet	1	of	1
Project						Pr	oject No										
Location		2413 Third Ave				-			<u></u>	170	396002	2					
Location	1	Brony NV					evation a	ina D	aturi	ι Ν/Δ							
Drilling	Compa	any				Da	te Starte	ed					Date	Finished			
		AARCO Environmen	tal Services Corp.								6/6/19				6/6/	/19	
Drilling	Equipn	nent				Co	mpletio	n Dep	oth				Rock	Depth			
Size and	d Type	Geoprobe 7730 DT				<u> </u>				Dist	12 ft urbed		Un	ndisturbed		N/A e	
O a aire ar l		2-inch Direct Push				Nu	imber of	Sam	ples	Fire		2		N/A	- 041	N	/A
Casing	Diame	N/A			Asing Depth (it) N/A	w	ater Leve	el (ft.))	$ \Gamma$		7		N/A		N.	/A
Casing	Hamm	^{ier} N/A	Weight (Ibs)	N/A	Drop (in) N/A	Dr	illing Fo	remai	n					_			
Sample	r	2-inch by 4-foot Mac	rocore			Fi	eld Engir	heer	J	ulio (Galarza						
Sample	r Hamı	mer N/A	Weight (Ibs)	N/A	Drop (in)		sia Erigii	1001	F	Patric	< Stova	11					
			- I			-				Sa	mple Da	ata		- _D	omorka		
VMBC	Elev.		Sample Descr	iption			Depth Scale	mber	ype	v C	netr. sist /6in	P Rea	D ding	Drilling Flu	d, Depth o	of Casing] ,
	Ĺ						L 0 -	ⁿ Z	Ē.	Re	Bra Pe	(pp	m)	Fluid Loss, Dr	Iling Resis	stance, e	etc.)
		R1 (0-40") Brown t brick (drv) [FILL]	to reddish-brown fi	ne grave	elly fine SAND,		Ļ	-				0.	<i>'</i>				
	∛						-	-				2	6				
							- 1 -	1				1.	1				
	∛						-	-	DRE			2	1				
							- 2 -	12	SOCO	0/48		3.	0				
							-	-	MACF	4		1	0				
								-				-					
							- 3 -	-				71	.1	Collected S	3B12_3-	4 at 8:	50
	∛						E]									
							- 4 -	}									
	∛						E]									
							- 5 -	-				1	1				~ ~
	₹	R2a (0-12") Brown (drv) [FILL]	n to reddish-brown	fine SAN	ND, some coal			-				1.	1	Collected S	;B12_5-	·6 at 9:2	20
							F	-	ORE	ω		0.	1				
		R2b (12-36") Redo	dish-brown fine SA	ND, som	ne silt (wet)		6 -	-122	CROC	36/4		0.	2				
							-	-	MAG			1.	1				
						Σ	- 7 -	4				0	2				
]						-	1				0	4				
							-	1				0.	I				
		R3a (0-12") Soft d	ary brown CLAY, t	race pea	at (moist)		- 8 -	-				0.	1				
							E]				0.	1				
NI NI	1	R3b (12-24") PEA	т				- 9 -	-				0.	2				
			-				L	-	ЧE			0.	2				
							- 10 -	3	100C	/48		0	2				
		R3c (24-48") Olive	e to brown fine SAN	ND, trace	e silt, clay (mosit))		1	ACR	48		U.	2				
]						F	-	ž			0.	2				
							- 11 - -	-				0.	0				
							F	1				0.	0				
	•						- 12 -	1						End of bori	na et 1°) feat h	as
							+	-						Temporary	monitor	ring we	93.
							- 	1						TMW12 in point SV12	stalled. S	Soil vap d at off	oor set
5							- 13 - -	1						location.			
							F	-									
]							Ľ 14 –	1									

			- 1 / V		Log	of E	Boring			SB	13			Sheet 1	of	1
Project		2/13 Third Ave				Pr	oject No.			1703	206002)				
Location	1					El	evation ar	nd Da	atum	1700	50002					
Drilling (Compa	Bronx, NY				D	te Starte	d		N/A			Date F	Finished		
2	oompe	AARCO Environment	tal Services Corp.							(6/7/19		Duito	interiod	6/7/19	
Drilling I	Equipn	nent				Co	ompletion	Dep	th		40.4		Rock I	Depth	N1/A	
Size and	І Туре	of Bit				NI	imber of s	Sami		Distu	urbed		Un	disturbed	Core	
Casing [Diame	2-inch Direct Push ter (in)		0	Casing Depth (ft)					First		2	Co	N/A mpletion	24 HR.	N/A
Casing I	Hamm	N/A er	Weight (lbs)		N/A Drop (in)	Dr	illing Fore	emar	1	$ \underline{\nabla}$		8.5		N/A	Ţ	N/A
Sampler		<u>~N/A</u>	5 ()	N/A	'`´N/A		5		S	ergio	Maga	าล				
Sampler	Hamr	2-inch by 4-foot Maci	Weight (Ibs)	N1/A	Drop (in)	- Fi	eld Engine	eer	-	-						
بار		N/A		N/A	N/A				P	atrick Sar	nple D	ll ata				
MATERIA SYMBOI	Elev. (ft)		Sample Descr	ription			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PII Read (ppr) ling n)	Crilling Fluid, Fluid Loss, Drilli	MARKS Depth of Ca ng Resistan	asing, ce, etc.)
		R1 (0-42") Light br	own to black fine	SAND, b	rick (dry) [FILL]							0.0)			
												0.0)			
							- 1 -					0.0)			
								_	CORE	8		0.0)			
							- 2 -	È	ACRO	42/4		0.6	6			
									Ŵ			0.2	2			
							- 3 -	1				0.2	2	Collected SE	813_3-4 a	t 9:50
												0.1	1			
							- 4 -	-								
							- 5 -									
XXXX									ORE			0.1	1			
		R2 (0-28") BRICK,	trace brown fine	sand			6 -	22	ROCO	28/48		0.1	1			
									MAG			0.1	1			
							- 7 -					0.2	2			
												0.1	1			
							- 8 -									
						$\overline{\Delta}$										
							- 9 -									
									ÄE			0.1	1			
		R3 (0-28") Brown f	ine SAND, trace s	silt, fibrou	us material, brick		 - - 10	22	to COF	3/48		0.4	1	Slight potrol	um liko c	dor from
								1	MACF	28		0.4	1	10 to 11 feet	bgs.	
							 - 11					0. 0.	1	Collected SE	813_10-1 ⁻	1 at 9:55
							⊧ ⊦ .	1				0.	1			
							- 12 -	1				U.				
														End of boring Borehole bac	g at 12 fe ckfilled wi	et bgs. th clean
								1						soil cuttings.		
							┝ -	1								

					Log	of E	Boring			SB	514			Sheet 1	of	1
Project		2412 Third Avo				Pr	oject No.			170	206001	5				
ocation		2413 Mild Ave				El	evation ar	nd Da	atum	1703	590002	2				
Drilling (Comp	Bronx, NY				Da	te Starter	1		N/A			Date F	Finished		
5	20.11PC	AARCO Environmer	ntal Services Corp.					-			6/7/19		Duito		6/7/19	
Drilling E	Equipn	nent				Co	mpletion	Dept	th		10 ft		Rock I	Depth	NI/A	
Size and	Туре	of Bit				N	umber of S	Samr	oles	Dist	urbed		Un	disturbed	Core	
Casing D	Diame	2-inch Direct Push ter (in)		0	Casing Depth (ft)	1.07		(ft)		First	t	1	Co	N/A mpletion	24 HR.	N/A
Casing F	lamm	N/A er	Weight (Ibs)		N/A Drop (in)	Dr	illing Fore	eman	ľ	ΙŸ		8.5		N/A	<u> </u>	N/A
Sampler		⁻ N/A		N/A	N/A				S	ergio	Magar	na				
Sampler	Ham	2-IICIT by 4-100t Mac mer N/A	Weight (lbs)	N/A	Drop (in)	1	eld Engine	er	P	atrick	Stova					
OL				14/7 (14/7		D			Sar	mple Da	ata		Ren	narks	
AATER SYMB0	elev. (ft)		Sample Desc	ription			Scale	umbei	Type	(in)	enetr. resist 3L/6in	PII Read	D ling	(Drilling Fluid, Fluid Loss, Drillin	Depth of Ca g Resistant	asing, ce. etc.)
~		R1 (0-42") Brown	to reddish-brown f	ine SAN	D, trace coal,		0 -	z		œ	с-ш	(pp) 1.3	n) 3		5	
		concrete, brick (dr	y) [FILL]									1.1	1			
							- 1 -					1.1	1			
									DRE			8.4	1			
							- 2 -	ž	ROCO	2/48		1.3	3			
									MAC	4		7.6	6			
							- 3 -					29.	0	Collected SB	14 3-4 at	t 11:50
												18.	8			
							- 4 -									
							- 5 -									
									щ							
~~~~~		R2 (0-28") Reddis	h-brown fine SAN	D, trace :	silt (moist)		- 6 -	2	OCOF	/48		0.0	h			
									MACR	28		0.0	, ר			
									-			0.0	, ,			
												0.0	2			
												0.0	J			
		R3 (0-48") Dark bi material (wet)	rown to grey CLAY	/, trace fi	ne sand, fibrous	$\nabla$										
							- 9 -									
								~ ~	CORE	48						
							- 10 -	Ŕ	ACRO	48/		0.0	)			
							 		Σ			0.0	)			
							- 11 -					0.0	)			
							 					0.0	)			
							- 12 -							End of boring	at 12 fee	et bgs. h clean
														soil cuttings.		
							- 13 - -									
							-	1								

L	A		A/V		Log	of E	Boring			SB	15			Sheet 1	of	1
Project		Oddo Third Area				Pr	oject No.			4700	20000	<u> </u>				
Location	า	2413 Third Ave				El	evation a	nd Da	atum	1703	396002	2				
Drilling	Comp	Bronx, NY					to Storto	4		N/A			Data I	Finished		
Drining	Compa	AARCO Environment	tal Services Corp.					u			6/7/19		Dater	Finished	6/7/19	
Drilling	Equipn	nent				Co	mpletior	Dep	th			1	Rock I	Depth		
Size and	d Type	Geoprobe 6610 DT of Bit								Distu	12 ft urbed		Un	disturbed	N/A Core	
Casing	Diame	2-inch Direct Push		C	asing Depth (ft)		Imper of	Sam	oles	First	•	1	Co	N/A moletion	24 HR	N/A
		N/A	Maight (lba)		N/A	W	ater Leve	el (ft.)		$\nabla$		8.5		N/A	Ţ	N/A
Casing	Hamm	^e N/A		N/A	N/A		illing For	emai	' S	eraio	Madai	na				
Sample	r Hami	2-inch by 4-foot Macr	ocore Weight (lbs)		Drop (in)	Fie	eld Engin	eer		3						
Sample		N/A	11 o.g.n (120)	N/A	N/A				Р	atrick Sar	CStova	ll ata				
MATERIAI SYMBOL	Elev. (ft)		Sample Descr	ription			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PIE Read (ppn	) ing n)	Rer (Drilling Fluid, Fluid Loss, Drillin	marks Depth of C ng Resistar	asing, nce, etc.)
	X	R1 (0-24") Dark bro	own fine gravelly f	fine SANI	D, trace coal,		0 					0.2				
	XXX	concrete, brick (dry	/[['''==]									0.8	8			
	XXX						- 1 -	-				0.1				
	XXX								CORE	œ		0.1				
	XXX						- 2 -	5	CROC	28/4		0.1				
	XXX								MA							
	× ×						- 3 -							Collected SE	315_3-4 a	at 12:27
	XXX															
	XXX	R2 (0-24") Dark bro	own fine gravelly ⁺	fine SANI	D, trace coal,		- 4 -	-								
	XXX	concrete, brick (dry	') [FILL]													
	XXX						- 5 -									
	X								RE							
	X						- 6 -	22	2005	4/48		0.9	)			
	Š								MACI	2		0.1				
	Š						- 7 -					0.0	)			
							- 1	-				0.0	)			
							- 8 -							End of boring	n at 0 faa	theo
						$\Sigma$								Borehole bad	ckfilled wi	ith clean
-														soil cuttings.		
							-									
							- 10 -									
							-									
							- 11 -  -									
							Ē									
							- 12 -									
							Ē									
							- 13 -									
							L 14 -									

			<b>-1 / V</b>		Log	of E	Boring			SE	316			Sheet 1	of	1
Project		2413 Third Avenue				Pr	oject No.			170	39600	2				
Location	1					Ele	evation a	nd Da	atum							
Drilling (	Comna	The Bronx, New Yor	rk			Da	te Starte	h		TBI	2		Date F	Finished		
Diming	Jompa	AARCO Environmer	ntal Services, Cc	orp.				,a		g	)/27/19	ľ	Dutor	linonou	9/27/19	
Drilling E	Equipm	ent				Co	mpletior	Dept	th				Rock [	Depth		
Size and	1 Type	Geoprobe 7730 DT				-				Dist	16 ft		Lin	disturbed	NA	
	лурс	2in. Direct Push				Nu	Imber of	Samp	oles		arbea	4		NA	N	A
Casing L	Diamet	er (in) 2in		C	asing Depth (ft)	W	ater Leve	el (ft.)		Firs	it 7 	7.5	Col	mpletion	24 HR.	
Casing H	lamme	^{er} NA	Weight (lbs)	NA	Drop (in) NA	Dr	illing For	eman					. –			
Sampler		4ft Macrocore				Fie	eld Engin	eer	S	Sergi	o M.					
Sampler	Hamm	ner NA	Weight (lbs)	NA	Drop (in) NA		5		A	nde	w Nesc	i				
OL	Floy						Dopth	-		Sa	ample Da	ata		Re	marks	
AATEF	(ft)		Sample Descr	ription			Scale	umbe	Type	(in)	enetr resist 3L/6in	PIE Read	) ing	(Drilling Fluid, Fluid Loss, Drilli	Depth of Casing,	c.)
~~~~~		R1a (0-48") Brown	n silty GRAVEL · ·	with slag	u brick coal (drv	)	- 0 -	- Z		œ	<u>е</u> – ш	(ppr 0.0	n) )			,
	$\langle \cdot \rangle$	[FILL].	· ···· , · · · · · · · · · · · ,		,,, ()	,	Ë.	1				0.0)			
	\mathbf{k}						- 1 · -	-	ШЧ			0.0)	Sample SB	16_0-2 collec	cted.
							- 2 -	32	SOCO)/48		0.0)			
	× ×						Ē	-	MACF	ы		0.0)			
	₹ ₹						- 3 -	3						Sample SB	16_2-4 collec	cted.
	× × ×						Ē,	-				0.4				
							5	-				0.0)			
	₹	R2a (0-33") Browr	n, fine SAND (we	t) [FILL].			- 5 -	-				0.0)			
							E		CORE	œ		0.0)			
							6	12	CRO	36/4		0.0)			
	₹						- 7.	-	MA			0.0)			
	V V V	R2b (33-36") Dark	Gray sandy CL/	AY (wet)	[FILL].	Ţ		1				0.0)			
\times		R3a (0-6") Brown,	, fine SAND (wet))			- 8 -	-				0.0)			
							Ē	=				0.0)			
				_			F 9 .	-	DRE			0.0)			
]	R3b (6-24") Dark l trace silt (wet).	Brown, fine SAN	D, some	fine gravel,		- - 10 -	32	SOCO	2/48		0.0	,)			
		()					E	3	MACF	ŝ		0.0)			
							- 11 -	-				0.0)			
		R3c (24-32") Dark	GBrown, medium	SAND,	trace fine gravel		- - 12 -	-				0.0)			
		(wei).					- '2	-				0.0)			
		R4a (0-28") Browr	nish-Olive fine S	AND tra	ace fine gravel		- 13 -	-				0.0)			
		(wet).		, a (D), a (loo into graver		-	1_	CORE	8		0.0)			
							- 14 ·	12	CRO	36/4		0.0)	End of borir	ig at 16 feet l	bgs.
							- 15 -	-	MA			0.0)	clean soil ci	uttings, bento	onite
]	P4b (29.26") Light	t Prown find SAL				Ę	-				0.0)	chips, and o to grade	old patch as	phalt
	-	1140 (20-30) LIGN		יר (wet)			- 16	1				0.0)			
								-								
							F 1/ -	-								
							- 18 -	-								
							E	-								
							- 19 - E	-								
							È an	4								

roject					Log	of E	Boring oject No.			SB	17			Sheet 1	of	1			
		2413 Third Avenue	9				,		4.	170	396002	2							
ocation			ork				evation ar	nd Da	itum	TRD)								
rilling C	ompa	ny				Da	ate Starteo	ł		TDD	,	C	Date F	inished					
rilling E	auinm	AARCO Environme	ental Services, Co	orp.		C	moletion	Dent	h	9/	27/19	R	Pock [Denth	9/27/19				
rilling L	quipin	Geoprobe 7730 DT	г				mpiction	Dopt			16 ft			Jopin	NA				
ize and	Туре	of Bit 2in Direct Push				Nu	umber of S	Samp	les	Distu	urbed	4	Und		Core	ΝΔ			
asing D	iamet	er (in)		(Casing Depth (ft)	w	ater Leve	(ft.)		First		75	Cor	mpletion	24 HR.				
asing H	lamme		Weight (lbs)		Drop (in)	Dr	illing Fore	man		<u> </u>		7.5		<u>-</u>	<u> </u>				
ampler		Aft Macrocore		INA		-	- Isl En sins		S	ergic	о M.								
ampler	Hamm	her NA	Weight (lbs)	NA	Drop (in) NA	F#	eia Engine	er	Δ	ndev	v Nesc	i							
ЧЧ										Sa	mple Da	ata		Ren	arke				
MATERI SYMBC	Elev. (ft)		Sample Desc	ription			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PID Readir (ppm	ng)	(Drilling Fluid, I Fluid Loss, Drilling	Depth of Casi g Resistance	ing, , etc.)			
		R1a (0-20") Brow (dry) [FILL].							0.0 0.0										
				- 1 -		щ			0.0		Sample SB1	7_0-2 coll	lecte						
								5	DCOR	48		0.0 0.0							
		R1b (20-23") Red	d, fine GRAVEL; \	with bric	k (dry) [FILL].				IACR	23									
							- 3 -		≥										
							- 4 -												
		P22 (0 12") Prov		5 -					0.0										
		rza (U-12) BrOW		Ē		CORE	œ	o	0.0										
		R2b (12-30") Red	k (wet) [FILL].		- 6 - ²	22	CROC	36/4	36/4	1.0		Sample SB17_5.5-7.5		i					
							- 7 -		MA			1.0 0 3		collected.					
\bigotimes		R2c (30-36") Dar	rk Grav to black C	LAY (we	et).	<u> </u>						0.3							
					/•		- 8 -	-	\vdash			0.0							
		R3a (0-6") Dark E	Brown CLAY, son	ne fine g	ravel lenses		- 9 -				0	0.0							
\square		(wer). R3b (6-30") Dark	k Brown, organic (CLAY (w	et).				ORE	_		0.0 0.2							
							- 10 -	R3	ROC	12/4£		0.3							
									MAC			0.2							
		R3c (30-42") Gra	ay, fine SAND, tra	ce fine g	gravel, trace							0.1 0.1							
		R4a (0-48") Grav	um sand. trace		- 12 -	-	\vdash			0.0		End of boring	g at 16 fee	et bg					
		organics (wet).			1				0.0		Borehole bad	ckfilled wit	th ntonii						
							E 13 -]	JRE			0.0		chips, and co	old patch a	asph			
							- 14 -	2	3000	8/48		0.0		to grade.					
									MACH	4		0.0							
							- 15 -					0.0							
• • • •							- - 16 -					0.0 0.0							
												0.0							
							- 17 -												
							L 10												
							- 19 -												
							£ :	1											
Pr	niert						Logic		Johning				010			Sheet 1	01		1
--------------	--------------	--------	-------------------	------------------------------	---------------------	--	---------------------	-----	-------------	-------	-------	---------------	-------------------------	--------------	---------------	--	---------------------------	---------------------	----------
	ojeot		2413	Third Avenue	9			Pro	oject No.			170	396002	2					
Lo	cation							Ele	evation ar	nd Da	atum								
Dr	illing C	ompar	Ihe E	fronx, New Yo	ork			Da	te Starteo	ł		IBL)		Date F	Finished			
	illing [AARC	CO Environme	ental				mulation	Dent	h	1	0/1/19		Deals	Death	10/1/19		
	illing E	quipm	Geop	robe 7730 D1	г				mpletion	Dept	n		16 ft		ROCK	Depth	NA		
Siz	ze and	Туре	of Bit 2in Γ	irect Push				Nu	mber of S	Samp	les	Dist	urbed	4	Un	disturbed	Core	NZ	Δ
Ca	asing D	iamete	2in. D er (in)			0	Casing Depth (ft)	Wa	ater Level	(ft.)		Firs	ţ	10 5	Co	mpletion	24 HR.	117	<u> </u>
, Ca	asing H	lamme	^r NA		Weight (lbs)	NA	Drop (in) NA	Dri	illing Fore	man		<u> </u>	-	10.5		<u>L</u>	<u> </u>		
Sa	mpler		4ft Ma	acrocore				Fie	ld Engine	er	S	ergio	о M.						
Sa	mpler	Hamm	er	NA	Weight (lbs)	NA	Drop (in) NA				А	nde	w Nesc	i					
	RIAL 30L	Elev.							Depth	er		Sa	imple Da	ata Dir		Rei	narks		
	MATE SYME	(ft)			Sample Desci	ription			Scale	Numb	Type	Recov (in)	Penet resis BL/6i	Read (ppr	ling n)	(Drilling Fluid, Fluid Loss, Drilli	Depth of C ng Resistar	asing, ice, etc.	.)
\boxtimes	***		R1a	a (0-15") Dark	K Brown, fine SAN	D, some	e fine gravel; with		- 0 -					0.0)				
\bigotimes			coa	i blick (dry) [r	FILLJ.				- 1 -					0.2	<u>-</u> 1	Sample SB	18 0-2 c	ollect	ied
\bigotimes			R1k	o (15-30") Bro	own, fine SAND; w	ith coal,	brick (dry)				CORE	48		0.0)				
\bigotimes			[· · ·	· -]·					- 2 -	Ŕ	ACRO	30/		0.0)				
\bigotimes									3 -		Ň			0.0					
\bigotimes																			
×									- 4 -										
\otimes									5 -		щ								
\otimes										2	OCOR	/48							
$ \otimes$	***		R2a drv (a (0-6") Browr ⁄) [FILL].	n, fine SAND, som	e fine g	ravel; with brick				ACRO	24		0.0)				
	•		R2	(6-18") Brov	wn, fine SAND (dry	/). — — —		_	- 7 -		2			0.0)				
			R2c	: (18-24") Bro	own, gravely fine S	AND (d	ry).		- 8 -					0.0)				
														0.0	,				
									- 9 -		Ë								
									- 10 -	33	IOCOI	t/48		0.0)				
			(mc	ist to wet).	wh, gravely line SP	IND, SO	me medium sand	Ā		-	MACF	5		0.0)				
									- 11 -					0.0)	Sample SB	18_10-12	2	
									- 12 -					0.0)	concered.			
									- 13 -		DRE								
			R4a	a (0-24") Orar	naish-brown arave	ellv SAN	ID trace medium		- 14 -	2	ROCO	1/48		0.0)	End of borin	g at 16 1	feet b	gs.
			SAI	ND (wet).		, <u>,</u> , , , , , , , , , , , , , , , , ,					MAC			0.0)	Boring com	oleted wi 2-inch P	ith a VC	•
									- 15 -					0.0 0.0)	monitroing v	vell scre	ened	
F	····								16 -	1			$\left - \right $	0.0)				
									- 17 -										
									- 18 -										
									- 19 -										

L	./	4		4/V		Log	of E	Boring			SE	819			Sheet 1	0	f	1
Proje	ect		2413 Third Avenue				Pr	oject No.			170	396002	2					
Locat	tion						Ele	evation an	nd Da	atum			-					
Drillir	ng C	ompar	<u>The Bronx, New Yo</u> ^{ny}	ork			Da	ate Starteo	d		TBL)		Date I	Finished			
D '			AARCO ENvironme	ental							1	0/2/19			D //	10/2/19	9	
Drillir	ng Eo	quipm	Geoprobe 420 M					ompletion	Dept	n		15 ft		ROCK	Depth	NA	4	
Size	and	Туре	of Bit				Nu	umber of S	Samp	les	Dist	urbed	5	Un	disturbed	Core		•
Casir	ng D	iamete	er (in)		C	Casing Depth (ft)	w	ater Level	(ft.)		Firs	ţ		Co		24 HR		<u>~</u>
⊴ ل Casir	ng H	amme	2m ^{er} NA	Weight (lbs)	NA	Drop (in)	Dr	illing Fore	man		<u> </u>	-	8			<u> </u>		
Sam	pler		3ft Macrocore				- Fié	eld Engine	or	S	ergio	о M.						
Sam	pler	Hamm	ner NA	Weight (lbs)	NA	Drop (in) NA				А	nde	<i>w</i> Nesc	i					
	CL.	Flev						Depth	-	1	Sa	Imple Da	ita Di	D	Rei	marks		
MATEI		(ft)		Sample Descr	ription			Scale	Numbe	Type	Recov	Peneti resist BL/6ir	Read Read	ding m)	(Drilling Fluid, Fluid Loss, Drilli	Depth of 0 ng Resista	Casing, nce, etc	c.)
	\otimes		R1a (0-7") Light E	Brown, medium S	AND; wi	th brick (dry)		- 0 -	-				0.	6				
	\bigotimes		R1b (7-30") Dark	Brown, silty SAN	D, trace	fine gravel; with		- 1 -		ORE	6		0. 0.	o 8	Sample SB	19 0-2 0	collec	ted
	\bigotimes		coal (dry) [FILL].						ĸ	CROC	30/3		0.	7				
	\bigotimes							- 2 -		MAG			0. 0	6 6				
	\bigotimes							- 3 -		+			0.	•				
₹ XXX	\bigotimes		R2a (0-20") Dark	Brown, silty SAN	D, trace	fine gravel; with				RE			0.	7				
	\bigotimes		coal, brick (moist))[FILL].					22	ROCO)/36		0. 0.	7 7				
Ž	\bigotimes		R2b (20-36") Darl	k Brown, medium	SAND,	some fine grave	I	5 -		MACF	ĕ		0.	7				
	\bigotimes		(moist) [FILL].					- 6 -					0.	6 6				
			R3a (0-9") Dark B	3rown, gravelly SA	AND (we	et).							0.	0				
2/2413								- 7 -	6	COR	36							
							Ā	, 8 -	2	IACRO	;/6			0				
										2			0. 0.	8	Sample SB	19_8-9 0	collec	ted.
								- 9 -					0.	8				
MON			R4a (0-10") Dark	Brown coarse S	AND so	me fine gravel		- 10 -		ORE	9		0.	8				
			(wet).	t Tan acaraa SA		•			R4	CROC	24/3		0.	8				
			1140 (10-24) Ligh	it ran, coarse SA	wei (wei	. <i>.</i>				MA			0. 0.	' 7				
			R5a (0-12") Brow	n to tan, coarse ۶/	SAND, tr	ace fine gravel		- 12 -		-			0.	7				
			(wet).					- 13 -		DRE			0. 0	7 7				
			R5b (12-25") Blac	ck, fine SAND, tra	ace fine g	gravel (wet).			R5	ROCO	36/36		0.	7				
			R5c (25-36") Ligh	nt Tan, coarse SA	ND (wet	.).		- 14 -		MAC	(1)		0.	7	End of borin	ng at 15	feet k	ogs.
								- 15 -					0. 0.	7 7	permanent	1-inch P	VC	
1/039													0.	7	from 5 to 15	i feet bg	s.	
I NO								E 16 -					0.	7				
								- 17 -										
NNO O								- 10 -										
NIADI.								- 19 -										
								Ĕ <u></u>	1									

					Log o	of E	Boring			SB	320			Sheet 1	of	1
Project		2412 Third Avenue				Pr	oject No.			170	20600	n				
Location		2413 Mild Avenue				Ele	evation an	d Da	tum	170	39000	2				
Drilling C	omnai	The Bronx, New Yo	rk			Da	ite Started	1		TBD)		Date F	Finished		
Drining O	ompa	AARCO Environme	ntal							1	0/3/19	ľ	Date I	i miorica	10/3/19	
Drilling E	quipm	ent				Co	mpletion [Dept	h				Rock	Depth		
Size and	Туре	Geoprobe 7730 DT				NI	mbor of C		100	Dist	16 ft urbed		Un	disturbed	NA Core	
Casing D	iamet	2in. Direct Push		0	Casing Depth (ft)			amp	les	First	:	4	Co	NA	24 HR.	NA
		2in	Maight (lba)		NA Drop (in)	W	ater Level	(ft.)		∇		14		Ľ	Ţ	
Casing H	lamme	PrNA		NA	NA		IIIIII Y FOI EI	Ildi i	s	eraic	M.					
Sampler	Hamm	4ft Macrocore	Weight (lbs)		Drop (in)	Fie	eld Engine	er		0						
Jampier	namin	NA NA	1101911 (100)	NA	NA				A	ndev Sa	v Nesc mple Da	ata				
MATERIAL SYMBOL	Elev. (ft)		Sample Desc	ription			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PIE Read (ppr) ing n)	(Drilling Fluid, I Fluid Loss, Drilling	narks Depth of Casin g Resistance,	g, etc.)
		R1a (0-31") Brow	n to tan, silty SA	ND, trac	e fine gravel;			_				0.0)			
		with drick, coal (d	ry) [FILL].				- 1 -					0.0)	Sample SB2	0 0-2 colle	octod
									CORE	<u>®</u>		0.0)		0_0-2 0010	Joicu.
							- 2 -	ĸ	CRO	31/4		0.0)			
			n to gray fino SA			.—	3 -		MA			0.0)			
		(dry).	n to gray, line SP	(ND, 50)	IE MEUIUM SANL	,										
							- 4 -									
							- 5 -									
									CORE	®.		0.0)			
							6 -	R	CRO	28/4		0.0)			
							- 7 -		MA			0.0)			
												0.0)			
							- 8 -					0.0)			
							9 -									
								_	CORE	85						
							- 10 -	Ř	ACRO	15/2						
		R3a (0-15") Dark	brown fine SAN) enmo	fine gravel (drv)		- 11 -		Ŷ	ĺ		0.0)			
				2, 30110	o graver (ury).					ĺ		0.0)			
							- 12 - - -					0.0)			
							- 13 -			ĺ						
						∇		4	CORE	48						
		R4a (0-6") Dark b	rown, fine SAND	(wet).		<u> </u>	- 14 -	Ř	ACRO	24/4		0.0)	Sample SB2	0_13-15	
		R4b (6-16") Brow	n, fine GRAVEL,	some co	parse sand (wet).		- 15 -		Ϋ́			0.0	,)			
		R4c (16-24") Ligh	t Tan, coarse SA	ND, trac	e fine gravel							0.0)			
		(wet).					16 -					0.0)	End of boring Borehold fille	g at 16 fee d with clea	t bgs. an soil
							- 17 -							cuttings, No.	2 sand, ar	nd rade
															paton to gi	
							- 19 -									
							E E							1		

					Log	of E	Boring			SE	821			Sheet 1	of 1
Project						Pr	oject No.			170	30600	2			
Location		2413 Third Avenue				El	evation ar	nd Da	atum	170	33000	2			
Drilling (Compa	The Bronx, New Yo	rk			Da	ate Starter	4		TBD)	1	Date F	Finished	
2	rempa	AARCO Environme	ntal					-		9	/30/19		Julio I		9/30/19
Drilling E	quipm	nent				Co	ompletion	Dept	h		40.6	f	Rock I	Depth	N14
Size and	І Туре	of Bit				NI	umber of 9	Samr		Dist	urbed		Un	disturbed	Core
Casing E	Diamet	2in. Direct Push er (in)		0	Casing Depth (ft)			Jann	165	Firs	t	4	Co	NA mpletion	24 HR.
Casing	Jomm	2in	Weight (lbs)		NA Drop (in)	Dr	illing Fore	man		$ \underline{\nabla}$		6.5		Ľ	Ī
Sampler	lamin	"NA		NA	NA		grore		S	ergio	о M.				
Sampler	Hamn	4ft Macrocore	Weight (lbs)	NIA	Drop (in)	Fie	eld Engine	er				.:			
י די		NA		NA	NA				A	Inde\ Sa	mple D	ata			
MATERIA SYMBOI	Elev. (ft)		Sample Desc	ription			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PID Readi (ppn	ng 1)	Corilling Fluid, E Fluid Loss, Drilling	IAIKS Depth of Casing, g Resistance, etc.)
		R1a (0-6") Dark B	Brown, fine SAND (drv) [FII I 1), some i	medium sand,							0.0			
		R1b (6-23") Brow	n fine SAND so	me med	ium sand some		- 1 -		ш			1.4		Sample SB2	1 0-2 collected
		fine gravel; with c	oal (dry) [FILL].					-	COR	48		2.4			-
		R1c (23-36") Ligh	st).		E 2 -	ц К	ACRC	36/		0.2					
]						- 3 -		X			0.0			
		R2a (0-27") Light	t to wet).	Ā	4	R2	MACROCORE	36/48		0.0 0.0 0.0 0.0		Sample SB2	1_5-7 collected		
		R2b (27-36") Gray	y, organic CLAY	(wet).								0.0			
		R3a (0-24") Dark	Gray, clayey SAI	ND (wet)).		8 -					0.0			
		R3b (24-36") Brov	wnish-Gray, med	ium SAN	ID (wet).		9 - 10 - 11 - 12 - 12 - 12 - 12 - 12 - 12	R3	MACROCORE	36/48		0.0 0.0 0.0 0.0 0.0			
		R4a (0-12") Gray,	tine SAND (wet)).								0.0			
		R4b (12-48") Brov	wn, medium SAN	ID (wet).			13 - 14 - 15 - 16 - 16 - 17 - 17 - 17 - 17 - 17 - 17	R4	MACROCORE	48/48		0.C 0.C 0.C 0.C 0.C 0.C 0.C		End of boring Borehole bac clean soil cu sand, and co to grade.	g at 16 feet bgs kfilled with tings, No. 2 Id asphalt patcl
							- 17 - - 18 - - 19 -								

					Log	of E	Boring			SE	322			Sheet 1	of	1
Project		2/13 Third Avenue	2			Pr	oject No.			170	30600,	2				
Location			5			Ele	evation an	id Da	atum	170	330002	2				
Drilling C	omnar	The Bronx, New Y	ork			Da	te Starter	1		TBD)		Date I	Finished		
Driming O	ompa	AARCO Environm	ental					4		9	/30/19		Bator		9/30/19	
Drilling E	quipm	ent	.			Co	ompletion	Dept	h		40.6		Rock	Depth	NIA	
Size and	Туре	of Bit	1			NI	umber of S	Samr		Dist	urbed		Un	ndisturbed	Core	
Casing D	Jiamete	2in. Direct Push er (in)		(Casing Depth (ft)				103	Firs	t	4	Co	NA mpletion	24 HR.	NA
Casing		2in	Weight (lbs)		NA Drop (in)		illing Fore	(π.) man		$ \Sigma$	-	7		Ľ	Ţ	
Sampler	anne	"NA		NA	NA	-	illing i oro	man	s	ergio	о M.					
Sampler	Hamm	4ft Macrocore	Weight (lbs)		Drop (in)	Fie	eld Engine	er								
		NA		NA	NA NA				A	Inde\ Sa	w Nesc Imple Da	ata		_		
MATERIA SYMBOL	Elev. (ft)		Sample Desc	ription			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PII Read (ppr) ing n)	Ren (Drilling Fluid, I Fluid Loss, Drillin	n arks Depth of Casi g Resistance	ing, , etc.)
		R1a (0-30") Brow	wn, fine SAND, so		ium sand, trace							0.0)			
		inte gravei, with	coal, slag, blick (c	ary) [r īcī	-].		- 1 -					0.0)	Sample SB2	2 0-2 col	lected.
								_	CORE	48		0.1	I			
							- 2 -	Ŕ	ACRC	36/		0.0)			
		R1b (30-36") Bro	own, fine SAND (d	lry).			- 3 -		Ŵ			0.0	,			
							- 4 -									
							- 5 -									
		R2a (0-25") Brov	wn, fine SAND, tra	ice fine d	gravel (moist to				CORE	œ		0.0)			
		wet).					6 -	Ř	CRO	28/4		0.0)	Sample SB2	2_5-7 col	lected.
						$\overline{\Delta}$, - 7 -		MA			0.0)			
///		R2b (25-28") Da	rk Brown, organic	CLAY (wet).							0.0)			
		. ,	-				- 8 -					0.0)			
							- 9 -									
							Ē	_	CORE	ᅇ						
		R3a (0-8") Grayi	sh-Brown, fine SA	ND (we	t).		10 -	Ř	CRO	22/4		0.0				
		D2b (9, 19") Croy		omo fin	aroual (wat)		- 11 -		Μ			0.0)	Organic mat	erial obse	rved
		R3c (18-22") Lig	ht Gray, medium	SAND (v	vet).							0.0)	organio mat		ived.
							- 12 -					0.0)			
		R4a (0-9") Gray,	tine SAND, trace	fine gra	vel (wet).		- 13 -					0.0	,)			
		R4b (9-42") Gray	y to light brown, m	iedium S	SAND (wet).			+	CORE	48		0.0)			
							F 14 -	Ř	ACRO	42/4		0.0)	End of boring	g at 16 fee ckfilled wit	et bgs. th
							- 15 -		Ý			0.0	,)	clean soil cu	ttings, No	. 2 t patch
												0.0)	to grade.	na aspiral	, paion
							- 16 -					0.0)			
							- 17 -									
							E 18 -									
							- 19 -									
							È E									

Drojoot					Log	of E	Boring			SB	323			Sheet 1	(of	1
Project		2413 Third Avenue	9			Pr	oject No.			170	396002	2					
Location						El	evation ar	nd Da	atum								
Drilling C	ompa	<u>The Bronx, New Yo</u> ny	ork			Da	ate Starteo	ł		TBD)		Date F	inished			
		AARCO Environme	ental							9,	/30/19				9/30/1	9	
Drilling E	quipm	nent	-			Co	ompletion	Dept	h		10 5		Rock [Depth		•	
Size and	Туре	of Bit	l				umbor of 9	Some		Distu	urbed		Und	disturbed	Core	A	
Casing D	iamet	2in. Direct Push			Casing Depth (ft)			barrip	165	First	:	4	Cor	NA mpletion	24 HF	N/ R.	۹
		2in			NA	W	ater Level	(ft.)		$\overline{\nabla}$		6.5		<u>_</u>	Ţ		
Casing H	lamme	^{er} NA		NA	NA		illing Fore	man	S	eraic	м						
		4ft Macrocore	Woight (lbs)		Dron (in)	Fi	eld Engine	er		orgie							
Sampler	Hamn	ner NA		NA	NA			1	A	ndev		i ata					
MATERIAL SYMBOL	Elev. (ft)		Sample Desci	ription			Depth Scale	Number	Type	Recov.	Penetr. resist BL/6in	PII Read (ppr) ing n)	Re (Drilling Fluid Fluid Loss, Drilli	marks , Depth of ing Resist	Casing, ance, etc.)
		R1a (0-30") Brown, silty SAND, trace coarse sand, trac fine gravel; with brick, coal (dry) [FILL].										0.0)				
		fine gravel; with brick, coal (dry) [FILL].					- 1 -					0.0)	Sample SB	23 0-2	collect	hed
									ORE	8		0.1			25_0-2	CONECT	eu.
		P1b (20.26") Prown fing SAND (dr.)					2 -	Ř	CROC	36/4		0.0)				
~~~~		R1b (30-36") Bro					MA			0.0	)						
							- 4 -	_									
							- 5 -		RE			0.0	<b>`</b>				
		R2a (0-24") Brow	vn, fine SAND (mo	pist to w	et).		- 6 -	22	10CO	)/48		0.0	)	Sampla SP	22 5 5	75	
						$\overline{\Delta}$			AACR	30		0.0	)	collected.	23_0.0	-7.5	
							- 7 -		2			0.0	)				
		R2b (24-30") Gra	ay, organic CLAY	(wet).								0.0	)				
							- 9 -		ш								
		R3a (0-12") Brow	vn, fine SAND, tra	ce fine g	gravel (wet).				COR	48		0.0	)				
							- 10 -	Ř	ACRC	30/		0.0	)				
		R3b (12-24") Dar (wet).	rk Gray, clayey SA	AND, tra	ce fine gravel		- 11 -		Ŵ			0.0	, )				
		R3c (24-30") Bro	wnish-Olive, medi	ium SAI	ND, trave fine							0.0	)				
		gravel (wet).	e to brown mediu	m SANI	) (wet)		- 12 -					0.0	)				
					o (wor).		- 13 -					0.0	)				
									ORE	ß		0.0	)				
							- 14 -	2	CROC	48/4		0.0	)	End of borir	ng at 16	feet b	igs.
									MAC			0.0	)	Borehole ba	ackfilleo uttinas	l with No. 2	
		R4b (36-42") Tar	n, fine SAND (wet)	).			- 13 -					0.0 0.0	)	sand, and o	old asp	halt pa	atch
		R4c (42-48") Bro	own, coarse SAND	(wet).			- 16 -	1				0.0		to grade.			
								1									
							- 17 -	1									
							- 18 -										
							E	]									
							- 19 -										
							÷	1									

					Log	of E	Boring			SE	324			Sheet 1	of	1
Project		2413 Third Avenue				Pr	oject No.			170	39600	2				
Location	ı					Ele	evation a	nd Da	atum							
Drilling (	Compa	The Bronx, New Yo	ork			Da	ate Starte	d		TBE	)		Date I	Finished		
	eepu	AARCO Environme	ental					<b>u</b>		1	0/1/19		Dato .		10/1/19	
Drilling I	Equipm	nent	_			Co	ompletion	Dept	h				Rock	Depth		
Size and	d Type	Geoprobe 7730 DT of Bit				+				Dist	16 ft urbed		Un	disturbed	NA Core	
Casing	Diamot	2in. Direct Push			asing Depth (ft)	NU	imper of	Samp	les	Fire	+	4		NA	24 HR	NA
Casing	Diamet	2in			NA	W	ater Leve	el (ft.)		$ \underline{\nabla}$	7	10.5			<u> </u>	
Casing	Hamme	^{er} NA	Weight (lbs)	NA	Drop (in) NA	Dr	illing For	eman	9	orai	o M					
Sample	r 	4ft Macrocore			Draw (in)	Fie	eld Engin	eer		ergi	5 101.					
Sample	r Hamn	NA NA	vveight (ibs)	NA	Drop (in) NA		1	_	Α	Inde		ci ete		1		
MATERIAL SYMBOL	Elev. (ft)		Sample Desc	ription			Depth Scale	lumber	Type	Recov.	Penetr. resist BL/6in	PII Read	) ling m)	(Drilling Fluid, Fluid Loss, Drilli	marks , Depth of Casir ng Resistance,	ng, etc.)
		R1a (0-12") Light	gray, silty SAND	, some fi	ne gravel; with		- 0 -	-				(pp) 0.1	1			,
	X X X	slag (dry) [FILL].			- 1 -					0.1	1					
	×××	R1b (12-34") Brown, silty SAND, trace fine gravel; wit brick, coal (dry) [FILL].					- '	-	ORE	_		0.0	)	Sample SB	24_0-2 coll	ected.
	X				- 2 -	<u>-</u> 2	CROC	34/4		0.0	)					
	X				- 3 -		MAG			0.0	)					
	X							-								
	Ŷ						- 4 -	-		_						
	×						-	-								
	×××							_	ORE							
	× ·	R2a (0-24") Brow	n. fine SAND. tra	ice fine a	ravel, trace		- 6	22	ROCO	24/48		0.0	)			
		medium sand (mo	oist).		,		- - 	-	MAC			0.0	)			
								-				0.0	) 1			
							- 8 -	-								
							E o	-								
				- 4)			E 9 -	-	ORE			0.0	)			
		R3b (6-18") Light	Brown, fine SAND (mo	ISI). ID. some	fine gravel	~	- 10 -	8	ROC	30/48		0.1	1			
		(wet).	,	,	Ū	<u> </u>		-	MAC			0.0	)			
				<b>D</b>	<b>f</b>			-				0.0	) 1	Sample SB: collected.	24_10-12	
		10-30 ) Dari	r Gray, ine SAN	ט, some	me gravel (wet)		- 12 -	1-						Petroleum-l	ike odor an served	d dark
							- 12	-				~				
		R4a (0-24") Dark gravel (wet).	Olive to gray, me	edium SA	ND, trace fine				ORE	~		0.1	1			
		<u></u>					- 14 -	2	ROC	36/48		0.1	1			
								-	MAC			0.2	2			
		R4b (24-36") Tan	, medium SAND	, trace fin	ie gravel (wet).		- 15 -	-				0.2	<u>~</u> 3	Sample SP	24 15 16	
i							- 16	-						collected.	2-7_10-10	there
							- 17	-						Boring com	pleted with	a ugs.
								-						well compris	2-inch mon sed of PVC	itoring and
							- 18 -	-						screened from bgs. See m	om 6 to 16 onitorina w	feet ell
							E 10							construction	n log for etail	
							E	-							ciaii.	
							L 20 -	-								

L	A		<b>4/V</b>		Log	of E	Boring			SE	825			Sheet 1		of	1
Project		2413 Third Avenue				Pr	oject No.			170	396002	>					
Locatio	n	2413 Third Avenue				El	evation ar	id Da	itum	170	330002	-					
Drilling	Compa	The Bronx, New Yo	ork			Da	ate Starter	1		TBD	)		Date	Finished			
Diming	Compe	AARCO Environme	ental					4		1	0/1/19		Duto		10/1/1	19	
Drilling	Equipn					Co	ompletion	Dept	h		40.5		Rock	Depth			
Size an	d Type	of Bit				NI.	umbor of G	Comp	loo	Dist	12 ft urbed		Un	disturbed	Core	IA	
Casing	Diame	2in. Direct Push ter (in)			Casing Depth (ft)				165	Firs	t	3	Co	NA mpletion	24 HI	<u>N</u> R.	IA
Casing	Llamm	2in	Weight (lbs)		NA Drop (in)		illing Fore	(ft.)		$  \Sigma$	-	7		Ľ	Ī		
Sample	ramm	^{er} NA		NA	NA		ining i ore	man	s	ergio	о M.						
Sample	r Hamr	4ft Macrocore	Weight (lbs)		Drop (in)	Fie	eld Engine	er									
		NA NA	,	NA	NA NA				A	nde\ Sa	v Nesc mple Da	i ita		_			
MATERIA SYMBOL	Elev. (ft)		Sample Desc	ription			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PII Read (ppi	D ling m)	Re (Drilling Fluid Fluid Loss, Drilli	marks , Depth of ing Resist	f Casing, tance, etc	c.)
	8	R1a (0-9") Light C	Gray, silty SAND,	some fi	ne gravel (dry)		E 0 -					0.2	2 1				
	8	R1b (9-30") Brow	n, silty SAND, tra	ice fine	gravel; with brick,	,	- 1 -		ш			0.1	1	Sample SB	25_0-2	collec	ted.
	8							-	DCOR	48		0.0	0				
	X							R R	ACRO	30/		0.0	0				
	X						- 3 -		Σ								
	X																
	8				ana sala saith		- 4 -					0.0	D				
i Kanala kata kata kata kata kata kata kata k	8	wood, brick, coal	(moist) [FILL].	me line	gravel; with		- 5 -		ш			0.	D				
	8							2	DCOR	48		0.0	0				
	8		Charle Fine CAN	D				R R	ACRO	42		0.0	0	Petroleum-l staining obs	ike odo served.	or and	dark
	8	R20 (24-42 ) Dan	k Gray, line SAN	D, with v	wood (wei) [FILL]	· Ā	7-7-		Z			4.9	9	Sample SB	25_6-8	collec	ted.
	8											0.4	4				
	8																
	X						- 9 -		щ								
	X							5	DCOR	/48		0.1	2				
je ka	X	R3a (0-6") Black, [FILL].	medium SAND,	some fir	ne gravel (wet)	_			IACRO	24		0.3	2 3				
		R3b (6-21") Olive	e, fine SAND, trac	e fine g	ravel (wet).		- 11 -		2			0.2	2				
		R3c (21-24") Gray	y, organic CLAY	(wet).			- - - 12 -					0.3	2	Sample SB	25_11-	12	
														End of borin	ng at 12	2 feet k	bgs.
Ś							- 13 -							clean soil c	uttings	and N	o. 2
							- 14 -							sand to gra	ae.		
								1									
00000							- 15 -										
							- 16 -	1									
							E										
							- 17 -										
							- 18 -										
							- 19 -										
							<u>E_20</u>										

					Log	of E	Boring			SE	826			Sheet 1	of	1
Project		2413 Third Avenue				Pro	oject No.			170	396002	2				
Location						Ele	evation a	nd Da	tum							
Drillina C	ompar	The Bronx, New You	rk			Da	te Starte	d		TBE	)		ate F	Finished		
g -		AARCO Environme	ntal					_		1	0/1/19				10/1/19	
Drilling E	quipm	ent				Co	mpletion	Dept	h		40.6	R	lock [	Depth		
Size and	Туре	of Bit				NI	mbor of	Somn	loc	Dist	12 π urbed		Und	disturbed	Core	
Casing D	iamete	2in. Direct Push er (in)		(	Casing Depth (ft)			Jamp	103	First	t	3	Cor	MA mpletion	24 HR.	NA
<u> </u>		2in	Woight (lbs)		NA Drop (in)	Wa	ater Leve	(ft.)		$  \underline{\nabla}$		7		<u>Ľ</u>	Ţ	
Sampler	lamme	rNA		NA	NA		ining i ore	anan	s	ergio	оM.					
Sampler	Hamm	4ft Macrocore	Weight (lbs)		Drop (in)	Fie	eld Engin	eer								
		NA	110.9.11 (120)	NA	NA				A	ndev Sa	v Nesc mple Da	si ata				
MATERIAL SYMBOL	Elev. (ft)		Sample Descr	iption			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PID Readir (ppm)	ng )	Ren (Drilling Fluid, I Fluid Loss, Drilling	<b>Tarks</b> Depth of Casir g Resistance,	ng, etc.)
		R1a (0-30") Brown	nish-Gray, silty S	AND, so	ome fine gravel;		- 0 - F	-				0.2				
		with blick, coal, gl	ass, woou (ury) [	· 'LL].			E - 1 -					0.0		Sample SR2	6 0-2 colle	ected.
									CORE	48		0.0				
							- 2 - -	È	ACRO	30/		0.0				
							- 3 -		M/			0.0				
		R2a (0-12") Brown	nish-Gray, silty S	AND, so	ome fine gravel;		- 4 -					0.0				
		B2b (12, 18") Bloc	ury) [FILL]. .k. fina SAND tra	oo fino	aroval: with alog		- 5 -					0.3				
		coal (dry) [FILL].			giavei, with siay,				CORE	ထ္		0.0				
		with brick, coal (m	vn to tan, fine SA noist to wet) [FILL	ND, trav .].	ve fine gravel;		- 6 -	5	CRO	41/2		0.3				
						$\overline{\Delta}$	- 7 -		M			0.2		Sample SB2	6_6-8 colle	ected.
		R2d (42-48") Brov	vn, fine SAND; w	ith brick	, glass (wet)		E					0.2				
		[FILL] R3a (0-12") Browr	n. aravellv SAND	some	medium sand:		- 8 -	-				0.2				
		with brick, coal (w	ret) [FILL].	D CANF	) como fino		- 9 -					0.3				
///		$\sim$ gravel (wet).	igish-tan, medlur	II SANL	, some line			-	CORE	81		0.3				
		R3c (16-48") Gray	/, CLAY, trace fin	e grave	l (wet).		⊢ 10 - F	Ř	<b>\CRO</b>	48/4		1.5		Sulfur-like or	lor observ	ed.
							E - 11 -		₩			14.5 6.2				
												7.5				
							⊢ 12 - F							End of boring	g at 12 fee	et bgs. h
							- - 13 -							clean soil cu	ttings and	No. 2
							Ľ E							sand to grad	e.	
							- 14 -									
							- - 15 -									
							E									
							- 16 -									
							- - 17 -									
							E									
							- 18 -									
							- - 19 -									
							⊢ .°	-	1	1	I					

	A		<b>4/V</b>		Log	of E	Boring			SB	327			Sheet 1	C	of	1
Project		2413 Third Avenue				Pr	oject No.			170	396002	2					
Locatio	n					Ele	evation ar	id Da	atum								
Drilling	Compa	The Bronx, New Yo	rk			Da	ate Starteo	1		TBD	)		Date F	Finished			
		AARCO Environme	ntal							10	0/2/19				10/2/1	9	
Drilling	Equipm	Cooprobe 420 M				Co	ompletion	Dept	h		15 ft		Rock	Depth	N	٨	
Size ar	nd Type	of Bit				NL	umber of S	Samp	les	Distu	urbed		Un	disturbed	Core	<u>~</u>	
Casing	Diamet	er (in)		C	Casing Depth (ft)		ator Lova	(fft )		First	:	5	Co	NA mpletion	24 HF	<u>٦</u>	IA
Casing	Hamm	2in	Weight (lbs)		Drop (in)	Dr	illing Fore	man		ΙŢ		7.5			<u> </u>		
Sample	er	^{SI} NA		NA	· · · / NA		0		S	ergic	ο М.						
Sample	er Hamn	3tt Macrocore	Weight (lbs)	NIA	Drop (in)	_ Fie	eld Engine	er	۸	ndou							
				INA	INA				A	Sa	mple Da	ı ıta					
MATERIA	Elev. (ft)		Sample Descr	ription			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PII Read (ppr	) ling n)	CDrilling Fluid, Fluid Loss, Drillin	Depth of ng Resista	Casing, ance, et	, ic.)
		R1a (Light Brown brick (dry) [FILL]. R1b (Brown, silty (dry) [FILL].	, medium SAND, SAND, trace fine	trace fir	ne gravel; with with coal, brick			R1	MACROCORE	30/36		0.4 0.4 0.6 0.6	5 4 5 6	Sample SB2	27_0-2	collec	cted.
		R2a (0-20") Brown medium sand; wit R2b (20-28") Brown brick (moist) [FILL R3a (0-6") Dark B	n, silty SAND, tra h coal (moist) [Fl wn, medium SAN _]. irown, fine SAND	ice coars ILL]. D, some	se gravel, trace e fine gravel; with oarse gravel;	ı	4	R2	MACROCORE	28/36		0.0 0.0 0.9 0.9	6 6 5 5				
		With brick (moist) R3b (6-25") Brown [FILL]. R3c (25-30") Dark wood, coal (wet) [	gravel (wet) fine gravel; with	Ā	7 -	R3	MACROCORE	30/36		0.6 0.6 0.6 0.6	5 5 5 5	Sample SB2	27_6-8	collec	cted.		
		R4a (0-20") Brown R4b (20-28") Ligh	n, medium SAND It Tan, medium S	), trace fi AND (we	ine gravel (wet). et).		- 10 -	R4	MACROCORE	28/36		0.6 0.6	5 5				
		R5a (0-30") Olive gravel (wet).	to light brown, cc	oarse SA	ND, trace fine		13 -	R5	MACROCORE	30/36		0.7 0.7 0.6 0.6	7 7 6 6	End of borin Borehole ba clean soil cu	ig at 15 ickfillec	5 feet   I with No. 2	bgs.
							- 16 - 17 - 18 - 19 19 							sand, and c to grade.	old asp	halt p	patch

L	A	NLa/	<b>4</b> /V		Log	of E	Boring			SB28			Sheet 1	o	of 1	1
Project		2412 Third Avenue				Pr	oject No.			17020600	12					
Locatio	n	2413 Third Avenue				Ele	evation an	id Da	tum	17039000	12					
Drilling	Compa	The Bronx, New Yo	ork				ata Starter	4		TBD		Data F	Finished			
Drining	Compa	AARCO Environme	ental					4		10/2/19	)	Date I	manea	10/2/19	9	
Drilling	Equipm	ent				Co	ompletion	Dept	h			Rock	Depth			
Size an	d Type	Geoprobe 420 M of Bit				NI.	umber of C			15 f Disturbed	t	Un	disturbed	N/ Core	4	
Casing	Diamet	2in. Direct Push			Casing Denth (ft)		umper or a	samp	les	First	5	Co	NA moletion	24 HR	NA	
		2in	\A(-;		NA	W	ater Level	(ft.)		<u> </u>	7.5		L	Ţ	•	
Casing	Hamme	^{er} NA	weight (bs)	NA	NA		liling Fore	man	s	eraio M.						
Somple	r Homn	3ft Macrocore	Weight (lbs)		Drop (in)	Fie	eld Engine	er								
Sample		NA NA		NA	NA			<u> </u>	A	ndew Nes Sample D	ci ata		1			
MATERIAL	Elev. (ft)		Sample Desc	ription			Depth Scale	Number	Type	Recov. (in) Penetr. resist BL/6in	PII Read (ppi	) ling n)	Rer (Drilling Fluid, Fluid Loss, Drillir	narks Depth of ( ng Resista	Casing, nce, etc.)	
		R1a (0-25") Dark [FILL].	Brown, silty SAN	ID; with	brick, coal (dry)			R1	MACROCORE	25/36	0. 0. 0.	1 5 1 1	Sample SB2	28_0-2 (	collected	1.
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	R2a (0-24") Dark [FILL].	coal (moist)		4	R2	MACROCORE	24/36	0.: 0 0 0	3 1 1 1						
		R3a (0-24") Brow (moist to wet( [FIL	n, fine SAND, so LL].	me fine	gravel; with coal	Ā		R3	MACROCORE	24/36	0.4 0.4 0.1	4 6 6	Sample SB2 collected.	28_5.5-7	7.5	
		R4a (0-12") Dark (wet). R4b (12-24") Brov R4c (24-36") Brov	Brown, coarse S wn, fine SAND (w wn, coarse SANE	AND, so vet). ), trace f	ome fine gravel fine gravel (wet).			R4	MACROCORE	36/36	0.1 0.1 0.1 0.2 0.2	5 5 5 7 7				
		R5a (0-26") Tanni gravel (wet). R5b (26-36") Ligh (wet).	ish-Brown, coars nt Tan, coarse SA	e SAND	), some fine ce fine gravel		- 12 - - 13 - - 14 -	R5	MACROCORE	36/36	0. 0. 0. 0. 0. 0.	7 7 0 0 0	End of borin Borehole ba	g at 15 ckfilled	feet bgs with	5.
	4						15 16 17 18 19				-		tiean son cu sand, and co to grade.	nungs, bld aspl	אסי, ב	h

	A		<b>4/V</b>		Log	of E	Boring			SB	30			Sheet	c	of 1	1
Project		2413 Third Avenue				Pro	oject No.			170	396002	2					
Location	1					Ele	evation an	d Da	itum								
Drilling	Compa	The Bronx, New Yo	ork			Da	te Started	1		TBD	)		Date F	Finished			
		AARCO Environme	ental							1(	0/3/19				10/3/1	9	
Drilling I	Equipm	Cooprohe 420 M				Co	mpletion I	Dept	h		1E f4		Rock [	Depth	N	٨	
Size an	і Туре	of Bit				Nu	imber of S	amn	les	Distu	urbed		Uno	disturbed	Core	A	
Casing	Diamet	2in. Direct Push er (in)			Casing Depth (ft)			<u>, (# )</u>		First	:	5	Со	NA mpletion	24 HR	NA R.	
Casing	Jamme	2in	Weight (lbs)		NA Drop (in)	Dr	illing Fore	(il.) man		$  \underline{\nabla}$		10.5			Ţ		
Sample		^s 'NA		NA	NA				S	ergic	ο М.						
Sample	Hamn	3ft Macrocore	Weight (lbs)		Drop (in)	Fie	eld Engine	er									
		NA NA		NA	NA NA				A	ndev Sa	v Nesc mple Da	ata		_			
MATERIA	Elev. (ft)		Sample Descr	ription			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PII Read (ppr	D ling m)	Re (Drilling Fluid Fluid Loss, Drill	marks , Depth of ing Resista	Casing, ince, etc.)	
	$\mathbf{A}$	R1a (0-18") Dark	Brown, silty SAN	D, trace	e fine gravel; with		E - 0 -					0.0	<u>ן</u> ו				
	×××				- 1 -		CORE	9		0.0	5	Sample SB	30 0-2	collected	d.		
		R1b (18-24") Bro	e sand (dry).			ĸ	CROC	24/3		0.0	D		-				
									MA								
							- 3 -										
									ЯË				_				
		R2a (0-24") Brow	/n, silty SAND, so	me fine	sand (dry).			2	ROCO	1/36		0.0	)				
							- 5 -		MACR	57		0.0	)				
									_			0.0	D				
							E 0 -										
							- 7 -		ORE	<i>(</i>							
								R3	CROC	6/36							
									MA			0.0	כ ר				
		R3a (0-6") Dark E	Brown, fine SAND	, some	fine gravel (dry).		- 9 -					0.0	5				
									ĥ								
		R4a (0-9") Brown	n, fine SAND, trace	e fine gi	ravel (moist).	$\nabla$	- 10 -  -  -	2	OCOF	/36		0.0	) L				
		R4h (9-24") Dark	Olive fine SAND	some	fine gravel (wet)		- 11 -	Ľ.	ACR	24		0.0	5	Sample SB	30 10-1	2	
		140 (0-24 ) Daik		, some	inte graver (wer).				2			0.0	)	collected.			
		R5a (0-24") Dark	Olive, coarse SA	ND, sor	me fine gravel		- 12					0.0	) ר				
	]	(wei).					- 13 -		ORE	G		0.0	5				
								R5	CROC	36/3		0.0	C				
		R5b (24-36") Oliv	ve, fine SAND, tra	ce fine	gravel (wet).		- 14  -  -		MA			0.0	C C	End of bori	ng at 15 ackfilled	feet bgs with	S.
							15 -					0.0		clean soil c	uttings,	No. 2	-h
														to grade.	Joiu asp	nan pato	11
							– 16 – E										
							- 17 -										
							E 18 -										
							- 19 -										

L	A		<b>4/V</b>		Log	of E	Boring			SE	31			Sheet 1	of	1
Project		0440 Third Avenue				Pr	oject No.			170	20000	n				
Location	I	2413 Third Avenue				Ele	evation an	d Da	atum	170	39600.	2				
Drilling	Compo	The Bronx, New Yo	ork				to Stortod	1		TBD	)		Data I	Finished		
Drinning C	Joinpa	AARCO Environme	ental					1		9	/27/19		Jale I	i illisileu	9/27/19	
Drilling E	Equipm	ent				Co	ompletion I	Dept	h			1	Rock Depth			
Size and	І Туре	Geoprobe 7730 DT of Bit	- 							Dist	16 ft urbed		Un	disturbed	NA Core	
, Casing [	Diamet	2in. Direct Push er (in)		C	asing Depth (ft)			amp	nes	First		4	Co	NA	24 HR.	۹
		2in	Woight (lbs)		NA Drop (in)	W	ater Level	(ft.)		$  \underline{\nabla}$		7.5		Ľ	Ī	
Sampler	lamme	^{er} NA	weight (ibs)	NA	NA		IIIII y Forei	IIIaII	S	ergio	оM.					
Sampler	Hamn	4ft Macrocore	Weight (lbs)		Drop (in)	Fie	eld Engine	er		0						
		NA NA		NA	NA				A	ndev Sa	v Nesc mple Da	si ata				
MATERIA	Elev. (ft)		Sample Desci	ription			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PIE Read (ppn	) ing 1)	(Drilling Fluid, Fluid Loss, Drillir	<b>narks</b> Depth of Casing, ng Resistance, etc.	.)
		R1a (0-15") Dark coal (dry) [FILL].	Brown, fine SAN	D, some	fine gravel; with			R1	MACROCORE	15/48		15. 215	0	Sample SB3	31_0-2 collect	ed.
		R2a (0-12") Gray, R2b (12-22") Brov R2c (22-33") Blac	, fine SAND, som wn, fine SAND (w ck, clayey SAND,	e fine gr et). trace fin	avel (dry) [FILL]. e gravel (wet).	Ā		R2	MACROCORE	33/58		2.7 1.9 1.4 4.5 3.7 2.5	, , ,	Sample SB3 collected.	31_6.5-8.5	
		R3a (0-12") Brow R3b (12-26") Blac	n, fine SAND (we ck, clayey SAND,	t). some fir	ne gravel (wet).		9	R3	MACROCORE	26/48		2.2 1.9 1.8 1.9	- 			
		R4a (0-13") Black	<, clayey SAND (v	vet).			13	R4	MACROCORE	13/48		1.5 1.2	i 2	End of borin Borehole ba clean soil cu sand, and co to grade.	g at 16 feet b ckfilled with ittings, No. 2 old asphalt pa	gs. atch



# APPENDIX E Monitoring Well Construction Logs



r								
PROJECT				PROJECT N	0.			
2413 Third Ave	enue			170396	5002			
				ELEVATION	I AND DA	тим		
Bronx, NY				IN/A				
	nmontal Sorvic	os Corp		G/G/20	10			
		es corp.			19		0/0/2019	
Geoprobe 773	0DT			Julio Ga	alarza			
SIZE AND TYPE OF BIT	001			LANGAN R	EP.			
2-inch Direct P	ush			Patrick	Stova	11		
METHOD OF INSTALLA	TION							
1. Boring was o	drilled to 12' w	ith Geoprobe	7730DT.					
2. AARCO insta	alled 10' of 1" 2	0-slot PVC scr	een and 2' of	PVC ris	er.			
3. AARCO back	filled the bore	hole annulus v	with clean sau	nd to the	e grad	e surface.		
METHOD OF WELL DEV	/ELOPMENT							
Pumped until o	dry and allowe	d to recharge.						
TYPE OF CASING				Filmro	Sand			
						PIAI		
PVC		2"		N/A				
BOREHOLE DIAMETER		-		TYPE OF FIL	LTER MAT	ERIAL		
		2"		Filpro S	Sand			
TOP OF CASING	ELEVATION		DEPTH (ft)		WELL	DETAILS		DEPTH
			N/A				SUMMARY SOIL	(FT)
							CLASSIFICATION	
TOP OF SEAL	ELEVATION		DEPTH (ft)	-	•			0.0
			N/A			Sand Pack	See boring log	
TOP OF FILTER	ELEVATION		DEPTH (ft)					
			0'	Riser				
TOP OF SCREEN	ELEVATION		DEPTH (ft)					
			2'					
BOTTOM OF BORING	ELEVATION		DEPTH (ft)					
			12'					
SCREEN LENGTH								
			10'					
SLOT SIZE						Sand Pack		
			20-slot					2.0
GROU	NDWATER ELE	VATIONS						
ELEVATION	DATE	DEPTH TO WATER						
	6/10/2019	8.5'						
				PVC				
				Screen				
						Sand		
						Pack		
								12.0
1								-



r													
PROJECT				PROJECT N	0.								
2413 Third Ave	enue			170396	5002								
				ELEVATION	I AND DA	тим							
Bronx, NY				IN/A									
	amontal Sorvic	os Corp		G/G/20	10								
		es corp.			19		0/0/2019						
Geonrobe 773					alarza								
SIZE AND TYPE OF BIT	001			LANGAN R	FP.								
2-inch Direct P	ush			Patrick	Stova	Ш							
METHOD OF INSTALLA	TION												
1. Boring was o	drilled to 12' w	ith Geoprobe	7730DT.										
2. AARCO insta	alled 10' of 1" 2	0-slot PVC scr	een and 2' of	PVC ris	er.								
3. AARCO back	filled the bore	hole annulus v	vith clean sau	nd to the	e grad	e surface.							
					- 5144	e surrace.							
METHOD OF WELL DEV	/ELOPMENT												
Pumped until o	drv and allowe	d to recharge.											
TYPE OF CASING		DIAMETER		TYPE OF BA	CKFILL M	IATERIAL							
		N/A		Filpro S	Sand								
TYPE OF SCREEN		DIAMETER		TYPE OF SE	AL MATE	RIAL							
PVC		2"		N/A									
BOREHOLE DIAMETER				TYPE OF FIL	TER MAT	ERIAL							
		2"		Filpro S	Sand								
TOP OF CASING	ELEVATION		DEPTH (ft)		WELL	DETAILS		DEPTH					
			N/A				SUMMARY SOIL	(FT)					
							CLASSIFICATION						
TOP OF SEAL	ELEVATION		DEPTH (ft)	-	•			0.0					
			N/A			Sand Pac	k See boring log						
TOP OF FILTER	ELEVATION		DEPTH (ft)	1									
			0'	Riser									
TOP OF SCREEN	ELEVATION		DEPTH (ft)	1									
			2'										
BOTTOM OF BORING	ELEVATION		DEPTH (ft)	1									
			12'										
SCREEN LENGTH				1									
			10'										
				1		Sand Pac	k						
			20-slot				n	2.0					
GROU	NDWATER FLF	VATIONS	20 5/00	1				2.0					
	DATE			1									
	6/10/2019	7 4'											
	0,10,2015	7.4		DVC									
				Screen									
						San	d						
						Pac	k						
								40.0					
								12.0					
				[				-					
1				I			1	1					



				<b></b>				
PROJECT	2010			PROJECT N	0.			
2415 THILD AVE	inue			170390		<b>T</b> 115.4		
Brony NV					I AND DA			
DRULING AGENCY				DATE STAR	TED			
AARCO Enviror	mental Service	es Corn		6/6/20	19		6/6/2019	
DRILLING EQUIPMENT				DRILLER	15		0,0,2015	
Geoprobe 7730	TDC			Julio Ga	alarza			
SIZE AND TYPE OF BIT				LANGAN RE	EP.			
2-inch Direct P	ush			Patrick	Stova	II		
METHOD OF INSTALLAT	TION							
1. Boring was d	Irilled to 12' wi	th Geoprobe 7	7730DT.					
2. AARCO insta	lled 10' of 1" 2	0-slot PVC scr	een and 2' of	PVC ris	er.			
3. AARCO back	filled the borel	nole annulus v	vith clean sar	nd to the	e grad	e surface.		
METHOD OF WELL DEV	ELOPMENT							
Pumped until c	Iry and allowed	d to recharge.						
TYPE OF CASING		DIAMETER		TYPE OF BA	ACKFILL M	IATERIAL		
		N/A		Filpro S	Sand			
TYPE OF SCREEN		DIAMETER		TYPE OF SE	AL MATE	RIAL		
PVC		2"		N/A				
BOREHOLE DIAMETER		2"		TYPE OF FIL	LTER MAT	ERIAL		
		2		Flipro S	sand			1
TOP OF CASING	ELEVATION		DEPTH (ft) NI / A		WELL	DETAILS		DEPTH
			N/A				SUMMARY SOIL	(F1)
							CLASSIFICATION	
TOP OF SEAL	ELEVATION		DEPTH (ft)	-	> 	1		0.0
			N/A	-		Sand Pa	ck See boring log	
TOP OF FILTER	ELEVATION		DEPTH (ft)	_	->			
			0.	Riser				
TOP OF SCREEN	ELEVATION		DEPTH (ft)					
			2'					
BOTTOM OF BORING	ELEVATION		DEPTH (ft)					
			12'					
SCREEN LENGTH								
			10'					
SLOT SIZE						Sand Pa	ck	
			20-slot					2.0
GROUM	NDWATER ELE	VATIONS						
ELEVATION	DATE	DEPTH TO WATER						
	6/10/2019	8.08'						
				PVC				
				Screen				
						Sar	ıd	
						Pa	ck	
								12.0
						•		
				'				



1											
PROJECT	2010			PROJECT NO.	02						
2415 THILD AVE	inue			1703900		1154					
Brony NV				$N/\Lambda$	ND DAT	UM					
DRULING AGENCY				DATE STARTE	D						
AARCO Enviror	mental Servic	es Corp		6/6/2019	а Э		6/6/2019				
DRILLING EQUIPMENT				DRILLER	,		0,0,2013				
Geoprobe 7730	TDC			Julio Gala	arza						
SIZE AND TYPE OF BIT				LANGAN REP.							
2-inch Direct P	ush			Patrick St	toval	I					
METHOD OF INSTALLAT	TION										
1. Boring was d	Irilled to 12' wi	th Geoprobe	7730DT.								
2. AARCO insta	lled 10' of 1" 2	0-slot PVC scr	een and 2' of	PVC riser	·.						
3. AARCO back	filled the bore	hole annulus v	vith clean sar	nd to the g	grade	e surface.					
METHOD OF WELL DEV	ELOPMENT										
Pumped until c	iry and allowed	d to recharge.									
TYPE OF CASING				Eiloro Sou	rill MA	ATERIAL					
PVC		2"		N/A	WATER	IAL					
BOREHOLE DIAMETER		2				RIAI					
		2"		Filpro Sa	nd						
TOP OF CASING	FIEVATION		DEPTH (ft)		WELLD	ΟΕΤΔΙΙ S		DEPTH			
			N/A				SUMMARY SOIL	(FT)			
							CLASSIFICATION				
TOP OF SEAL	ELEVATION		DEPTH (ft)	-				0.0			
			N/A			Sand Pack	See boring log				
TOP OF FILTER	ELEVATION		DEPTH (ft)								
			0'	Riser							
TOP OF SCREEN	ELEVATION		DEPTH (ft)								
			2'								
BOTTOM OF BORING	ELEVATION		DEPTH (ft)								
			12'								
SCREEN LENGTH											
			10'								
						Sand Pack					
			20-slot					2.0			
GROUI	NDWATER ELE	VATIONS	20 500					210			
	6/10/2019	7 0'									
	0,10,2015	7.0		DVC							
				Caroon	_						
				Screen							
						Gand					
						Sand Back					
						Pack					
								12 0			
								12.0			

	WEL	L CONSTRU	CTION AND	DEVE	LOPN	1ENT	SUMM	ARY				
		Wel	l No.		M	W18						
PROJECT				PROJECT	NO.							
2413 Third Avenue				17039	6002							
LOCATION				ELEVATIO	ON AND	DATUM						
The Bronx, New Yor	.k					el. NA	۱	NAVD88				
DRILLING AGENCY				DATE ST	ARTED			DATE FINISHED				
AARCO Environmer	tal Services, Co	rp.		10/1/2	019			10/1/2019				
DRILLING EQUIPMENT				DRILLER								
Geoprobe® 7730 D	Г			Sergio M.								
SIZE AND TYPE OF BIT				INSPECTOR								
3.75-inch Steel Casing	IS			Eric Monfort								
BOREHOLE DIAMETER				TYPE OF WELL (OVERBURDEN / BEDROCK)								
3.75-inch				Overburden								
RISER MATERIAL		DIAMETER		TYPE OF BACKFILL MATERIAL								
PVC		2-inch		Clean	Cuttin	gs						
TYPE OF SCREEN		DIAMETER		TYPE OF	WELL PA	СК		TYPE OF SEAL MATERIAL				
PVC No. 10 Slot		2-inch		No. 2 \$	Sand			Bentonite				
METHOD OF INSTALLATION												
Geoprobe 7730 DT well was installed winstalled from approx	was used to adv hich consisted c ximately 6 to 16	ance the bori of 10' of 10 sl feet bgs with	ng to appro> ot (0.010-inc n riser from (	kimately ch) well 6 feet b	/ 16 fe scree ogs to	eet bg: n, anc grade	s. A per a solid surface	manent 2-inch (2") PVC 2" PVC riser. Well scree	monitoring en was			
SUBGE BLOCK DIAMETER		N/A				Subm	ersible	DEVELOPMENT CONFIRMATION				
		Driller				1 GPM			h aubmaraible			
DIRECTION	RILLER OR LANGAN Driller MAX PUMP							whale pump until purged groun	dwater was no			
NUMBER OF SURGE CYCLES		N/A	TOTAL VOLUME	15 Gal			l	longer turbid.				
TOP OF CASING	ELEVATION		DEPTH (ft)									
	I		0.0		WELL	DETAILS	;	SUMMARY SOIL	DEPTH (FT)			
				G				CLASSINGATION	0.0			
TOP OF SEAL	ELEVATION			Cover -				Soo Soil Poring Log	0.0			
			0.0	-			Grout	See Son Boring Log				
TOP OF FILTER	ELEVATION		<b>DEPTH (ft)</b> 4.0	Riser	*							
TOP OF SCREEN	ELEVATION		DEPTH (ft) 6.0									
BOTTOM OF BORING	ELEVATION		DEPTH (ft)									
SCREEN LENGTH			10.0									
			TUT	- 1					4.0			
SLUT SIZE			010				_ Seal		4.0			
		NO. TU SIOT; C	iu inches	-	::				6.0			
GROU	INDWATER EL	EVATIONS			::H	::						
ELEVATION	DATE	DEPTH TO WATEF	ł									
ELEVATION	DATE	DEPTH TO WATEF	ł	PVC Screen								
ELEVATION	DATE	DEPTH TO WATER	1									
ELEVATION	DATE	DEPTH TO WATEF	1									
ELEVATION	DATE	DEPTH TO WATEF	1		H				16.0			
ELEVATION	DATE	DEPTH TO WATEF	1		<u></u>	<u> </u>						
LANG	GAN Engineering	J, Environmer	ntal, Surveyii	ng, Land	dscape	e Arch	itecture,	, and Geology D.P.C.				
	21 -	-enn Plaza, 3	bU VVest 31s	st Stree	t, 8th	⊢loor,	New Yo	Ork				

	WEL	L CONSTRU	CTION AND	DEVELOPN		ARY						
		Wel	l No.	M	W19							
				PRO JECT NO								
2413 Third Avenue				170396002								
					DATUM							
The Brony, Now Ye	ork.			ELEVATION AND								
THE BIORX, NEW TO	ЛК				ei. NA							
	ntal Canviaga Cr			10/2/2010								
	ntal Services, Co	orp.		10/2/2019 10/2/2019								
				DRILLER								
Geoprobe® 420 M				Sergio M.								
SIZE AND TYPE OF BIT				INSPECTOR								
2-inch Direct Push				Eric Montor	t							
BOREHOLE DIAMETER				TYPE OF WELL (O	VERBURDEN / BED	ROCK)						
2-inch				Overburden								
RISER MATERIAL		DIAMETER		TYPE OF BACKFIL	L MATERIAL							
PVC		1-inch		Clean Cuttin	ngs							
TYPE OF SCREEN		DIAMETER		TYPE OF WELL PA	АСК	TYPE OF SEAL MATERIAL						
PVC No. 10 Slot		1-inch		No. 2 Sand		Bentonite						
METHOD OF INSTALLATION												
Geoprobe 420M w	- as used to advar	ce the horing	to approxim	ately 15 feet	thas A perma	nent 1-inch (1") P\/C m	onitorina					
	which consisted		$\frac{1}{10}$ approxim	b) well corec		1" P\/C ricor \//oll coror						
Installed from appro	oximately 5 to 18	b teet bgs with	n riser from :	o teet bgs to	grade surface							
WELL DEVELOPMENT DATA	4		1									
SURGE BLOCK DIAMETER		N/A	TYPE PUMP		Check Valve	DEVELOPMENT CONFIRMATION	1					
DRILLER OR LANGAN	-	Driller	MAX PUMP RAT	E	1 GPM	Well developed with check value	e until purged					
NUMBER OF SURGE CYCLE	S	N/A	TOTAL VOLUME		7 Gai	groundwater was no longer tur	010.					
TOP OF CASING	ELEVATION		DEPTH (ft)	WELL	DETAILS	SUMMARY SOIL	DEPTH (FT)					
			0.0		-	CLASSIFICATION						
TOP OF SEAL	ELEVATION		DEPTH (ft)	Cover			0.0					
			0.0		Grout	See Soil Boring Log						
TOP OF FILTER	ELEVATION		DEPTH (ft)									
			3.0	Riser								
TOP OF SCREEN	ELEVATION		DEPTH (ft)									
			5.0									
DOTTOM OF DODING			DEBTU (ft)									
BUTTOW OF BURING	ELEVATION											
			15.0									
SCREEN LENGTH												
			10 ft									
SLOT SIZE					Seal		3.0					
		No. 10 Slot; C	0.010 Inches				5.0					
GRO	UNDWATER EL	EVATIONS										
ELEVATION	DATE	DEPTH TO WATER	8	1   [								
				:								
ELEVATION	DATE	DEPTH TO WATER	1	PVC								
				Screen								
ELEVATION	DATE	DEPTH TO WATER	1									
	DATE	DEDT::			]							
ELEVATION	DATE	DEPTH TO WATER	ł									
ELEVATION	DATE	DEPTH TO WATER	ł		<u>t :  </u>							
				[:::::	•:•		15.0					
ELEVATION	DATE	DEPTH TO WATEF	8									
1 4 4	GAN Engineerin		tal Currout	a Londooo-	a Architaatura	and Gaplogy D.P.C						
LAN		y, Environmer	nai, Surveyli	iy, Lanuscap		, and Geology D.P.C.						
	21	Penn Plaza, 3	60 VVest 31s	st Street, 8th	Floor, New Yo	ork						

	WEL	L CONSTRU	CTION AND	DEVE		IENT :	SUMM	ARY					
		Wel	l No.		M	W24							
PROJECT				PROJECT	ſ NO.								
2413 Third Avenue				17039	6002								
LOCATION				ELEVATI	ON AND	DATUM							
The Bronx, New Yor	k					el. NA	<u>۱</u>	NAVD88					
DRILLING AGENCY				DATE ST	ARTED			DATE FINISHED					
AARCO Environmen	tal Services, Co	rp.		10/1/2	019			10/1/2019					
DRILLING EQUIPMENT	· · ·			DRILLER									
Geoprobe® 7730 D	Г			Sergio M.									
SIZE AND TYPE OF BIT				INSPECTOR									
3.75-inch Steel Casing	S			Eric Monfort									
BOREHOLE DIAMETER				TYPE OF WELL (OVERBURDEN / BEDROCK)									
3.75-inch				Overburden									
RISER MATERIAL		DIAMETER		TYPE OF BACKFILL MATERIAL									
PVC		2-inch		Clean	Cuttin	gs							
TYPE OF SCREEN		DIAMETER		TYPE OF	WELL PA	АСК		TYPE OF SEAL MATERIAL					
PVC No. 10 Slot		2-inch		No. 2	Sand			Bentonite					
METHOD OF INSTALLATION				1									
Geoprobe 7730 DT well was installed winstalled from approx	was used to adv hich consisted c ximately 6 to 16	ance the bori of 10' of 10 sl feet bgs with	ng to appro> ot (0.010-inc n riser from (	kimatel ^y ch) well 6 feet b	y 16 fe scree ogs to	eet bgs n, and grade	s. A per a solid surface	manent 2-inch (2") PVC 2" PVC riser. Well scree	monitoring en was				
SURGE BLOCK DIAMETER		N/A	TYPE PUMP			Subm	ersible	DEVELOPMENT CONFIRMATION	4				
		Driller		F		1 GPM		Well developed and surged wit	h submorsible				
DILLELI	RILLER OR LANGAN Driller MAX PUMP							whale pump until purged groun	idwater was no				
NUMBER OF SURGE CYCLES		N/A	TOTAL VOLUME	10 Gal				longer turbid.					
TOP OF CASING	ELEVATION		DEPTH (ft)										
	1		0.0		WELL	DETAILS		SUMMARY SOIL	DEPTH (FT)				
				Court				CERCON IOA HON	0.0				
IOI OI SERE	LEVATION		0.0	Cover -			Creat	Soo Soil Boring Log	0.0				
			0.0				Giout	See Son Doning Log					
TOP OF FILTER	ELEVATION		4.0	Riser	*								
TOP OF SCREEN	ELEVATION		DEPTH (ft) 6.0										
BOTTOM OF BORING	ELEVATION		DEPTH (ft)										
SCREEN LENGTH			10.0										
			τυτι	-									
SLOT SIZE		1001				-	- Seal		4.0				
		No. 10 Slot; 0	0.010 Inches						6.0				
GROU	INDWATER ELI	EVATIONS											
ELEVATION	DATE	DEPTH TO WATER	1										
ELEVATION	DATE	DEPTH TO WATER	1	PVC Screen									
ELEVATION	DATE	DEPTH TO WATER	ł										
ELEVATION	DATE	DEPTH TO WATER	1										
ELEVATION	DATE	DEPTH TO WATER	1		H				16.0				
ELEVATION	DATE	DEPTH TO WATER	1			1			-				
LANG	GAN Engineering	, Environmer	ntal, Surveyiı	ng, Lan	dscape	e Archi	tecture	, and Geology D.P.C.	<u> </u>				
	21 6	Penn Plaza, 3	60 West 31s	st Stree	et, 8th	Floor,	New Yo	ork					

APPENDIX F Groundwater Sampling Logs

Project In	Project Information Well Information		Eq	uipment Informati	ion	S	ampling Condition	s	Sampling Information		
Project Name:	2413 Third Ave	Well No:	TMW06	Water Qua	lity Device Model:	Horiba		Weather:	Rain		TMW06_061019
Project Number:	170396002	Well Depth:	12		Pine Number:	14597	Back	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Bronx, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peri Pump	PID Beneath	n Inner Cap (ppm):	0.0		
Sampling	Patrick Stovall	Well Screen	2 feet bgs		Pine Number:	29851	Pu	Imp Intake Depth:	10 feet bgs	Sample Date:	6/10/2019
Personnel:		Interval:	12 feet bgs		<b>Tubing Diameter:</b>	3/8-inch	Depth to W	ater Before Purge:	8.5 feet	Sample Time:	12:10
				STABILIZATION =	= 3 successive read	lings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Volume (Gal)		otabilizou.
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN P	URGING					
11:35	13.42	6.86	-7	3.96	800.0	8.75	8.50		0.25	Grey, no odor	N/A
11:40	14.32	6.89	10	4.01	800.00	8.79			0.4		N/A
											N
		-	MW06_061019 w	as collected for VO(	Cs and SVOCs due t	to noor recharge. W	ell dry after samplin	a			N
								9			N
											N
											N
											N
											N
											N
											N
											N
											<u>N</u>
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
Notes: 1. Well depths and 2. Well and tubing 3. PID = Photoioniz	groundwater depth diameters are meas ation Detector	s were measured ir ured in inches.	feet below the top	o of well casing.							

PID = Protoionization Detector
 PPM = Parts per million
 pH = Hydrogen ion concentration
 ORP = Oxidation-reduction potential, measured in millivolts (mV)
 DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
 DTW = Depth to water
 mS/cm = milli-Siemans per centimeter
 NTU = Nephelometric Turbidity Unit

Project In	formation	Well Info	rmation	Equipment Information		ion	S	ampling Condition	s	Sampling	nformation
Project Name:	2413 Third Ave	Well No:	TMW06	Water Quality Device Model:		Horiba		Weather:	Rain		TMW08_061019
Project Number:	170396002	Well Depth:	12		Pine Number:	14597	Back	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Bronx, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peri Pump	PID Beneat	h Inner Cap (ppm):	0.0	]	
Sampling	Patrick Stovall	Well Screen	2 feet bgs		Pine Number:	29851	P	ump Intake Depth:	10 feet bgs	Sample Date:	6/10/2019
Personnel:		Interval:	12 feet bgs		<b>Tubing Diameter:</b>	3/8-inch	Depth to W	ater Before Purge:	7.40 feet bgs	Sample Time:	10:50
				STABILIZATION =	= 3 successive read	dings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Dischargo		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Volume (Gel)		Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	volume (Gal)	color, odor etc.	
-					BEGIN I	PURGING					
9:50	14.54	7.07	18	0.25	800.0	1.99	7.40		0.25	Light brown	N/A
9:55	14.41	7.00	56	0.26	800.00	6.10	7.40	0.05	0.5	no odor	N/A
10:00	14.44	7.04	27	0.25	800.00	6.00	7.40	0.05	0.75		N
10:05	14.42	7.05	46	0.25	800.00	5.95	7.40	0.03	0.9		N
10:10	14.46	7.02	117	0.25	466.00	7.48	7.40	0.04	1.1		N
10:15	14.49	6.99	139	0.50	343.00	7.55	7.40	0.03	1.25		N
10:20	14.64	6.90	142	0.50	179.00	7.97	7.40	0.03	1.4		N
10:25	14.44	6.78	74	0.51	86.8	8.23	7.40	0.04	1.6		N
10:30	14.53	6.77	75	0.51	72.6	8.30	7.40	0.03	1.75		N
10:35	14.40	6.73	84	0.51	70.5	8.20	7.40	0.03	1.9		N
10:40	14.47	6.77	127	0.51	69.2	8.07	7.40	0.04	2.1		N
10:45	14.54	6.78	131	0.51	81.6	8.15	7.40	0.04	2.3		N
								0.46			N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N N
											N N
											N N
											N
											N

 Notes:

 1. Well depths and groundwater depths were measured in feet below the top of well casing.

 2. Well and tubing diameters are measured in inches.

 3. PID = Photoionization Detector

4. PPM = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water 9. mS/cm = milli-Siemans per centimeter

10. NTU = Nephelometric Turbidity Unit

Project Inf	formation	Well Info	rmation	Equipment Information		S	ampling Condition	s	Sampling Information		
Project Name:	2413 Third Ave	Well No:	TMW11	Water Quality Device Model: Horiba			Weather:	Rain		TMW11_061219	
Project Number:	170396002	Well Depth:	12		Pine Number:	14597	Back	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Bronx, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peri Pump	PID Beneat	h Inner Cap (ppm):	0.0		
Sampling	Patrick Stovall	Well Screen	2 feet bgs		Pine Number:	29851	P	ump Intake Depth:	10 feet bgs	Sample Date:	6/12/2019
Personnel:		Interval:	12 feet bgs		<b>Tubing Diameter:</b>	3/8-inch	Depth to W	ater Before Purge:	8.08 feet bgs	Sample Time:	15:50
				STABILIZATION =	3 successive read	lings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulativa	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Discharge		Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	volume (Gal)	color, odor etc.	
					BEGIN F	VRGING		1 1			
14:55	14.54	7.07	18	0.25	800.0	1.99	7.40		0.25	Light brown	N/A
15:00	14.41	7.00	56	0.26	800.00	6.10	7.40	0.05	0.5	no odor	N/A
15:05	14.44	7.04	27	0.25	800.00	6.00	7.40	0.05	0.75		N
15:10	14.42	7.05	46	0.25	800.00	5.95	7.40	0.03	0.9		N
15:15	14.46	7.02	117	0.25	466.00	7.48	7.40	0.04	1.1		N
15:20	14.49	6.99	139	0.50	343.00	7.55	7.40	0.03	1.25		N
15:25	14.64	6.90	142	0.50	179.00	7.97	7.40	0.03	1.4		N
15:30	14.44	6.78	74	0.51	86.8	8.23	7.40	0.04	1.6		N
15:35	14.53	6.77	75	0.51	72.6	8.30	7.40	0.03	1.75		N
15:40	14.40	6.73	84	0.51	70.5	8.20	7.40	0.03	1.9		N
15:45	14.47	6.77	127	0.51	69.2	8.07	7.40	0.04	2.1		N
15:50	14.54	6.78	131	0.51	81.6	8.15	7.40	0.04	2.3		N
								0.46			N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N

### Notes:

1. Well depths and groundwater depths were measured in feet below the top of well casing.

Well and tubing diameters are measured in inches.
 PID = Photoionization Detector

4. PPM = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV)

7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water 9. mS/cm = milli-Siemans per centimeter

10. NTU = Nephelometric Turbidity Unit

Project In	formation	Well Info	rmation	Eq	uipment Informati	on	S	ampling Condition	s	Sampling I	nformation
Project Name:	2413 Third Ave	Well No:	TMW12	Water Qua	lity Device Model:	Horiba		Weather:	Rain		TMW12_061019
Project Number:	170396002	Well Depth:	12		Pine Number:	14597	Back	ground PID (ppm):	0.0	Sample(s):	
Site Location:	Bronx, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peri Pump	PID Beneath	n Inner Cap (ppm):	0.0		
Sampling	Patrick Stovall	Well Screen	2 feet bgs		Pine Number:	29851	Ρι	Imp Intake Depth:	10 feet bgs	Sample Date:	6/10/2019
Personnel:		Interval:	12 feet bgs		<b>Tubing Diameter:</b>	3/8-inch	Depth to Wa	ater Before Purge:	7 feet	Sample Time:	13:20
				STABILIZATION =	= 3 successive read	lings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Dischargo		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Volume (Gol)		Stabilizeu
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	volume (Gal)	color, odor etc.	
					BEGIN P	URGING					
											N/A
			TM/M/12 06	1019 was sampled	without stabilizing r	parameters due to k	w recharge				N/A
			11010012_00	nono was sampleu	without stabilizing p		ow recharge.				N
											N
											N
											N
											N
											N
											N
											N
											N
											<u>N</u>
											<u>N</u>
											N N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
Notes: 1. Well depths and	groundwater depth	s were measured in	feet below the tor	o of well casing.							

Viell depths and groundwater depths were measured in feet below
 Well and tubing diameters are measured in inches.
 PID = Photoionization Detector
 PPM = Parts per million
 pH = Hydrogen ion concentration
 ORP = Oxidation-reduction potential, measured in millivolts (mV)
 DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
 DRDM: Death durates

8. DTW = Depth to water 9. mS/cm = milli-Siemans per centimeter 10. NTU = Nephelometric Turbidity Unit

Project	Information	Well Info	rmation	E	Equipment Information		Sampling Conditions			Sampling Information	
Project Name:	2413 Third Avenue	Well No:	MW18	Water Qua	ality Device Model:	Horiba U-52		Weather:	Rain		
Project Number:	170396002	Well Depth:	16 ft		Pine Number:	51666	Back	ground PID (ppm):	0.0	Sample(s):	See COC
Site Location:	The Bronx	Well Diameter:	2-inch	Pump	Make and Model:	Peristaltic	PID Beneath Inner Cap (ppm):		0.0		
Sampling	Eria Monfort	Well Screen	6 ft		Pine Number:	51860	Ρι	ump Intake Depth:	13 ft	Sample Date:	10/9/2019
Personnel:	Encimonitori	Interval:	16 ft		Tubing Diameter:	1/4" ID x 3/8" OD	Depth to W	ater Before Purge:	7.78 ft	Sample Time:	11:30
			1	STABILIZATION =	3 successive readin	gs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulativa	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Volume (Gel)		Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	volume (Gal)	color, odor etc.	
					BEGIN PU	RGING					
10:30	17.00	6.80	159	2.28	313.00	0.00	7.78	0.1	0.5	Cloudy	N/A
10:35	17.00	6.79	160	2.28	257.00	0.00	7.79	0.1	1	Cloudy	N/A
10:40	17.05	6.77	156	2.28	214.00	0.00	7.79	0.1	1.5	Cloudy	N
10:45	17.06	6.76	156	2.28	168.00	0.00	7.80	0.1	2	Clearing	N
10:50	17.02	6.80	107	2.26	145.00	0.00	7.82	0.1	2.25	Clearing	N
10:55	17.00	6.82	195	2.26	135.00	0.00	7.82	0.1	2.8	Clearing	N
11:00	17.00	6.83	112	2.25	56.80	0.00	7.82	0.1	3.2	Clear	N
11:05	17.00	6.83	85	2.25	42.1	0.00	7.82	0.1	3.6	Clear	N
11:10	17.00	6.83	72	2.25	21.6	0.00	7.82	0.1	4.2	Clear	N
11:15	17.00	6.83	65	2.23	22.3	0.00	7.82	0.1	5	Clear	N
11:20	16.97	6.84	63	2.20	21.2	0.00	7.85	0.1	5.5	Clear	Y
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N

Notes: 1. Well depths and groundwater depths were measured in feet below the top of well casing.

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. PPM = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV)

7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mS/cm = milli-Siemans per centimeter

10. NTU = Nephelometric Turbidity Unit

Project	Information	Well Info	rmation	E	quipment Informat	ion	Sampling Conditions			Sampling Information	
Project Name:	2413 Third Avenue	Well No:	MW19	Water Qua	ality Device Model:	Horiba U-52		Weather:	Indoors		
Project Number:	170396002	Well Depth:	15 ft		Pine Number:	51666	Back	ground PID (ppm):	0.0	Sample(s):	See COC
Site Location:	The Bronx	Well Diameter:	1-inch	Pump	Make and Model:	Peristaltic	PID Beneath Inner Cap (ppm):		0.0		
Sampling	Erio Monfort	Well Screen	5 ft		Pine Number:	51860	Pu	ump Intake Depth:	10 ft	Sample Date:	10/9/2019
Personnel:	Encimonit	Interval:	15 ft		Tubing Diameter:	1/4" ID x 3/8" OD	Depth to W	ater Before Purge:	6.62 ft	Sample Time:	16:00
			1	STABILIZATION =	3 successive readin	gs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulativa	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Ctabilized
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Volume (Col)		Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	volume (Gal)	color, odor etc.	
					BEGIN PU	RGING	•				
15:30	18.09	7.08	121	3.09	897.0	2.35	6.63	0.1	0.5	Brown/Cloudy	N/A
15:35	18.10	7.04	120	3.08	665.00	2.32	6.65	0.1	1	Brown/Cloudy	N/A
15:40	18.54	7.03	112	3.12	342.00	2.35	6.65	0.1	1.5	Clearing	N
15:45	18.60	7.01	93	3.42	98.00	2.01	6.68	0.1	2	Clearing	N
15:50	18.59	7.01	95	3.38	47.90	1.58	6.69	0.1	2.5	Clearing	N
15:55	18.60	7.00	96	3.41	48.90	1.52	6.70	0.1	3	Clear	N
16:00	18.60	7.01	94	3.42	48.80	1.53	6.70	0.1	3.5	Clear	Y
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N

Notes: 1. Well depths and groundwater depths were measured in feet below the top of well casing.

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. PPM = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV)

7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mS/cm = milli-Siemans per centimeter

10. NTU = Nephelometric Turbidity Unit

Project	Information	Well Info	rmation	E	quipment Informat	tion	Sampling Conditions			Sampling Information	
Project Name:	2413 Third Avenue	Well No:	MW24	Water Qua	ality Device Model:	Horiba U-52		Weather:	Rain		
Project Number:	170396002	Well Depth:	16 ft		Pine Number:	51666	Back	ground PID (ppm):	0.0	Sample(s):	See COC
Site Location:	The Bronx	Well Diameter:	2-inch	Pump	Make and Model:	Peristaltic	PID Beneath Inner Cap (ppm):		0.0		
Sampling	Eric Monfort	Well Screen	6 ft		Pine Number:	51860	Pu	ump Intake Depth:	13 ft	Sample Date:	10/9/2019
Personnel:	LIC MOIIOIT	Interval:	16 ft		Tubing Diameter:	1/4" ID x 3/8" OD	Depth to W	ater Before Purge:	8.15 ft	Sample Time:	14:15
				STABILIZATION =	3 successive readin	igs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulativo	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Volume (Gal)		Stabilizeu
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	volume (Gai)	color, odor etc.	
					BEGIN PU	RGING					
13:00	17.58	7.40	-83	0.62	176.0	0.00	8.16	0.1	0.5	Clearing	N/A
13:05	17.57	7.40	-83	0.62	154.00	0.00	8.16	0.1	1	Clear	N/A
13:10	17.57	7.40	-83	0.62	123.00	0.00	8.16	0.1	1.5	Clear	N
13:15	17.56	7.40	-83	0.62	98.40	0.00	8.16	0.1	1.75	Clear	N
13:20	17.53	7.39	-83	0.62	86.10	0.00	8.16	0.1	2	Clear	N
13:25	17.53	7.30	-80	0.60	33.90	0.00	8.20	0.1	2.5	Clear	N
13:30	17.53	7.25	-80	0.65	12.20	0.00	8.21	0.1	3	Clear	N
13:35	17.53	7.16	-80	0.65	8.0	0.00	8.21	0.1	3.5	Clear	N
13:40	17.49	7.14	-80	0.65	7.4	0.00	8.21	0.1	4	Clear	N
13:45	17.47	7.10	-77	0.65	7.2	0.00	8.21	0.1	4.5	Clear	Y
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
				-							N
											N
											IN N
											IN N
											IN N
											N
											IN N
											N
											N

Notes: 1. Well depths and groundwater depths were measured in feet below the top of well casing.

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. PPM = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV)

7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mS/cm = milli-Siemans per centimeter

10. NTU = Nephelometric Turbidity Unit

# APPENDIX G Soil Vapor Point and Indoor Air Construction and Sampling Logs

Sample Number: SV06

PROJECT:	PROJECT NO.:						
2413 Third Ave	170396002	170396002					
LOCATION:	SURFACE ELEVATION AND DATUM:						
Bronx, NY	NA						
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:					
AARCO Environmental Solutions Corp.	6/6/2019	6/6/2019					
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:					
Julio Galarza	6/7/2019	6/7/2019					
INSTALLATION EQUIPMENT:	QUIPMENT: TYPE OF SAMPLING DEVICE:						
Geoprobe 7730 DT	2.7-Liter	2.7-Liter Summa Canister					
INSPECTOR:	SAMPLER:						
Patrick Stovall	Pat	rick Stovall					
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PR	ESS., WIND SPEED AND DIR.):					
None	Temp: 68 - 72 F						
	Wind: N 0-3 mph						
	Precipitation: N/A						
	Pressure: 29.92 in Hg						

# METHOD OF INSTALLATION AND PURGING:

Advance Geoprobe 7730 DT to 5 feet below grade surface (bgs) install 2-inch soil vapor probe backfill with FilPro #2 Sand and seal with bentonite to surface grade.

TUBING TYPE/DIAMETER:		Г	TYPE OF MA	TERIAL	ABOVE SEAL:			
1/4-inch polyethylene tubing		E	Bentonite					
IMPLANT SCREEN TYPE/LENGTH/DIAMETI	ER:	s	SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):					
none		E	Bentonite					
BOREHOLE DIAMETER:		F	FILTER PACK MATERIAL (Sand or Glass Beads):					
2-inches		F	Filpro #2 sand					
PURGE VOLUME (L):	0.02			IT/PRO	DBE DETAILS	DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	200		(SEAL, FILTER, ETC.)			(FEET FROM		
PID AFTER PURGE (PPM):	0	s	URFACE		SURFACE	SURFACE)		
HELIUM TEST IN BUCKET(%):	20.8%	17.8%						
HELIUM TEST IN TUBE (PPM):	0.0%	0.0%						
SAMPLE START DATE/TIME:	6/7/2019 8:21							
SAMPLE STOP DATE/TIME:	6/7/2019 10:23							
TOTAL SAMPLE TIME (MIN):	122							
FLOW RATE (L/MIN):	0.022				Top of Seal	0		
VOLUME OF SAMPLE (LITERS):	2.7							
PID AFTER SAMPLE (PPM):	0.0							
SAMPLE MOISTURE CONTENT:	None							
CAN SERIAL NUMBER:	418				Top of Pack			
REGULATOR SERIAL NUMBER:	1034							
CAN START VACUUM PRESS. (" HG):	-30.08							
CAN STOP VACUUM PRESS. (" HG):	-5.81							
SAMPLE LOCATION SE	(ETCH					5		
See sample location plan.				ł				
						NOTES		
		Γ						
Langan Enginee	ering, Environmental, S	Surve	eving and	l Lan	dscape Archi	tecture, D.P.C.		
21 Penn Plaza.	360 West 31st Street	. 8th	Floor, N	ew `	York. New Yo	rk 10001-2727		

Sample Number: SSV10

PROJECT:	PROJECT NO.:					
2413 Third Ave	170396002					
LOCATION:	SURFACE ELEVATION AND DATUM:					
Bronx, NY	NA					
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:				
AARCO Environmental Solutions Corp.	6/6/2019	6/6/2019				
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:				
Sergio Magana	6/7/2019	6/7/2019				
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:					
Geoprobe 420M	2.7-Liter	2.7-Liter Summa Canister				
INSPECTOR:	SAMPLER:					
Patrick Stovall	Pat	rick Stovall				
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PR	ESS., WIND SPEED AND DIR.):				
None	Temp: 68 - 72 F					
	Wind: N 0-3 mph					
	Precipitation: N/A					
	Pressure: 29.92 in Hg					

# METHOD OF INSTALLATION AND PURGING:

Advance Geoprobe 420M to 2-inches below grade surface (bgs) install 2-inch soil vapor probe backfill with FilPro #2 Sand and seal with bentonite to surface grade.

TUBING TYPE/DIAMETER:			TYPE OF MAT	reria	L ABOVE SEAL:			
1/4-inch polyethylene tubing			Bentonite					
IMPLANT SCREEN TYPE/LENGTH/DIAMETE	R:		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):					
none			Bentonite					
BOREHOLE DIAMETER:			FILTER PACK MATERIAL (Sand or Glass Beads):					
2-inch			Filpro #2 sand					
PURGE VOLUME (L): 0.02			IMPLAN	IMPLANT/PROBE DETAILS DEPTH NOT				
PURGE FLOW RATE (ML/MIN):	200		(SE/	AL, FIL	TER, ETC.)	(FEET FROM		
PID AFTER PURGE (PPM):	0.0		SURFACE		SURFACE	SURFACE)		
HELIUM TEST IN BUCKET(%):	18.7%	18.0%						
HELIUM TEST IN TUBE (PPM):	0.0%	0.0%						
SAMPLE START DATE/TIME:	6/7/2019 11:30							
SAMPLE STOP DATE/TIME:	6/7/2019 13:25							
TOTAL SAMPLE TIME (MIN):	115							
FLOW RATE (L/MIN):	0.0235				Top of Seal	0		
VOLUME OF SAMPLE (LITERS):	2.7							
PID AFTER SAMPLE (PPM):	0.0							
SAMPLE MOISTURE CONTENT:	None							
CAN SERIAL NUMBER:	125				Top of Pack			
REGULATOR SERIAL NUMBER:	1167							
CAN START VACUUM PRESS. (" HG):	-29.55							
CAN STOP VACUUM PRESS. (" HG):	-6.75							
SAMPLE LOCATION SK	(ETCH					0.17		
See sample location plan.			L	ł				
						NOTES		
Langan Enginee	ering, Environmental.	Surv	veving and	La	ndscape Archi	tecture, D.P.C.		
21 Penn Plaza.	360 West 31st Stree	et, 8t	h Floor, N	ew	York, New Yo	rk 10001-2727		

Sample Number: SSV11

PROJECT:	PROJECT NO .:					
2413 Third Ave	170396002					
LOCATION:	SURFACE ELEVATION AND DATUM:					
Bronx, NY	NA					
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATI	E FINISHED:				
AARCO Environmental Solutions Corp.	6/6/2019	6/6/2019				
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE	E FINISHED:				
Sergio Magana	6/7/2019	6/7/2019				
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:					
Geoprobe 420M	2.7-Liter Summa Can	2.7-Liter Summa Canister				
INSPECTOR:	SAMPLER:					
Patrick Stovall	Patrick Stovall					
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED	AND DIR.):				
None	Temp: 68 - 72 F					
	Wind: N 0-3 mph					
	Precipitation: N/A					
	Pressure: 29.92 in Hg					

## METHOD OF INSTALLATION AND PURGING:

Advance Geoprobe 420M to 2-inches below grade surface (bgs) install 2-inch soil vapor probe backfill with FilPro #2 Sand and seal with bentonite to surface grade.

TUBING TYPE/DIAMETER:		TYPE OF	MATERI	IAL ABOVE	SEAL:			
1/4-inch polyethylene tubing		Bentor	Bentonite					
IMPLANT SCREEN TYPE/LENGTH/DIAMETE	R:	SEAL MA	SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):					
none		Bentor	Bentonite					
BOREHOLE DIAMETER:		FILTER P	FILTER PACK MATERIAL (Sand or Glass Beads):					
2-inch		Filpro #	Filpro #2 sand					
PURGE VOLUME (L):	0.02			IMPLANT/PROBE DETAILS			NOTES	
PURGE FLOW RATE (ML/MIN):	200		(SEAL, F	ILTER, ETC.)		(FEET FROM		
PID AFTER PURGE (PPM):	0	SURFACE		SURFACI	E	SURFACE)		
HELIUM TEST IN BUCKET(%):	19.6% 1	8.2%						
HELIUM TEST IN TUBE (PPM):	0.0%	0.0%						
SAMPLE START DATE/TIME:	6/7/2019 11:37							
SAMPLE STOP DATE/TIME:	6/7/2019 13:39							
TOTAL SAMPLE TIME (MIN):	122							
FLOW RATE (L/MIN):	0.0221			Тор	of Seal	0		
VOLUME OF SAMPLE (LITERS):	2.7							
PID AFTER SAMPLE (PPM):	0							
SAMPLE MOISTURE CONTENT:	None							
CAN SERIAL NUMBER:	2301			Тор	of Pack			
REGULATOR SERIAL NUMBER:	1036							
CAN START VACUUM PRESS. (" HG):	-29.98							
CAN STOP VACUUM PRESS. (" HG):	-6.71							
SAMPLE LOCATION SK	ETCH					0.17		
See sample location plan.				-				
						NOTES		
Langan Enginee	ring, Environmental, S	urveying a	and La	andscap	e Archi	tecture, D.P.C.		
21 Penn Plaza, 3	360 West 31st Street,	8th Floor	, Nev	۔ V York, I	New Yo	ork 10001-2727		

Sample Number: SV12

PROJECT:	PROJECT NO.:					
2413 Third Ave	170396002					
LOCATION:	SURFACE ELEVATION AND DATUM:					
Bronx, NY	NA					
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED:	DATE FINISHED:				
AARCO Environmental Solutions Corp.	6/6/2019	6/6/2019				
INSTALLATION FOREMAN:	SAMPLE DATE STARTED:	DATE FINISHED:				
Julio Galarza	6/7/2019	6/7/2019				
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:	TYPE OF SAMPLING DEVICE:				
Geoprobe 7730 DT	2.7-Liter	2.7-Liter Summa Canister				
INSPECTOR:	SAMPLER:					
Patrick Stovall	Pat	rick Stovall				
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PR	ESS., WIND SPEED AND DIR.):				
None	Temp: 68 - 72 F					
	Wind: N 0-3 mph					
	Precipitation: N/A					
	Pressure: 29.92 in Hg					

# METHOD OF INSTALLATION AND PURGING:

Advance Geoprobe 7730 DT to 5 feet below grade surface (bgs) install 2-inch soil vapor probe backfill with FilPro #2 Sand and seal with bentonite to surface grade.

TUBING TYPE/DIAMETER:		TYPE OF N	MATERIA	AL ABOVE SEAL:				
1/4-inch polyethylene tubing		Benton	Bentonite					
IMPLANT SCREEN TYPE/LENGTH/DIAMET	ER:	SEAL MAT	SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):					
none		Benton	Bentonite					
BOREHOLE DIAMETER:		FILTER PA	FILTER PACK MATERIAL (Sand or Glass Beads):					
2-inch		Filpro #	2 sanc	k				
PURGE VOLUME (L):	PURGE VOLUME (L): 0.02			IMPLANT/PROBE DETAILS DEPTH NC				
PURGE FLOW RATE (ML/MIN):	200		(SEAL, FII	LTER, ETC.)	(FEET FROM			
PID AFTER PURGE (PPM):	0	SURFACE		SURFACE	SURFACE)			
HELIUM TEST IN BUCKET(%):	18.7% 17	9%						
HELIUM TEST IN TUBE (PPM):	0.0% 0	.0%						
SAMPLE START DATE/TIME:	6/7/2019 8:10							
SAMPLE STOP DATE/TIME:	6/7/2019 9:58							
TOTAL SAMPLE TIME (MIN):	168							
FLOW RATE (L/MIN):	0.0161			Top of Seal	0			
VOLUME OF SAMPLE (LITERS):	2.7							
PID AFTER SAMPLE (PPM):	0							
SAMPLE MOISTURE CONTENT:	None							
CAN SERIAL NUMBER:	175			Top of Pack				
REGULATOR SERIAL NUMBER:	401							
CAN START VACUUM PRESS. (" HG):	-29.67							
CAN STOP VACUUM PRESS. (" HG):	-6.61							
SAMPLE LOCATION SH	KETCH				5			
See sample location plan.								
					NOTES			
Langan Enginee	ering, Environmental, Su	irveying a	nd La	ndscape Archi	tecture, D.P.C.			
21 Penn Plaza,	360 West 31st Street,	8th Floor,	New	York, New Yo	ork 10001-2727			

## AMBIENT AIR SAMPLING LOG SHEET

Sample Number: AA01

PROJECT:	<b>PROJECT NO</b> .:	<b>РКОЈЕСТ NO</b> .:				
2413 Third Avenue	170396002	170396002				
<b>Lосатіол</b> :	SURFACE ELEVATION AND DATUM:	SURFACE ELEVATION AND DATUM:				
The Bronx, New York	NA	NA				
sampler: Eric Monfort	SAMPLE DATE STARTED: 10/3/2019	SAMPLE DATE STARTED:         DATE FINISHED:           10/3/2019         10/3/2019				
INSPECTOR:	<b>TYPE OF SAMPLING DEVICE</b> :	TYPE OF SAMPLING DEVICE:				
Eric Monfort	6-Liter Summa Canister	6-Liter Summa Canister				
POTENTIAL SAMPLE INTERFERENCES: NA	WEATHER CONDITIONS (PRECIP., TEMP., PR Temp: Wind: Precipitation: Pressure:	iess., wind speed and dir.): 60 to 70 Degrees F ENE @ 10 mph Light Rain 29 98 in Ho				

### METHOD OF INSTALLATION AND SAMPLING:

Langan field screened the sample location with a MultiRAE photoionization detector (PID) prior to sampling. Sample consisted of 6-liter Summa canister fitted with a 2-hour flow control valve. The flow controller was zeroed and valve opened to initiate the 2-hour sample collection. The sample and flow controller were checked approximately each half-hour during sampling to ensure proper operation.

SAMPLE DETAILS		SAMPLE LOCATION SKETCH
HEIGHT ABOVE GROUND (FT):	4 to 5	
PID BEFORE SAMPLE (PPM):	0.0	
SAMPLE START TIME:	10:41	
SAMPLE STOP TIME:	12:41	
TOTAL SAMPLE TIME (MIN):	120	See Sample Location Plan
REGULATOR FLOW RATE (L/MIN):	0.05	
VOLUME OF SAMPLE (LITERS):	6	
PID AFTER SAMPLE (PPM):	0.0	
SAMPLE MOISTURE CONTENT:	NA	
CAN SERIAL NUMBER:	24254	
REGULATOR SERIAL NUMBER:	Y24	
CAN START VACUUM PRESS. (" HG):	-29.08	
CAN STOP VACUUM PRESS. (" HG):	-4.98	
		NOTES
Langan En	gineering, Environment	al, Surveying, Landscape Architecture, and Geology D.P.C.
21 Femily Flaza, 300 West 31st Street, oth Floor, New York, New York 10001-2727		
### SOIL VAPOR SAMPLING LOG SHEET

Sample Number:	SV1	6	
PROJECT:	PROJECT NO.:		-
	170396002		
LOCATION:	SURFACE ELEVATIO	N AND DATUM:	
The Bronx, New York	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE	E STARTED:	DATE FINISHED:
AARCO	10/3/2019		10/3/2019
INSTALLATION FOREMAN:	SAMPLE DATE STAR	TED:	DATE FINISHED:
Sergio M.	10/3/2019		10/3/2019
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING	DEVICE:	
Geoprobe® 7720 DT	6-Liter Summa	Canister	
INSPECTOR:	SAMPLER:		
Eric Monfort	Eric Monfort		
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIO	NS (PRECIP., TEMP	., PRESS., WIND SPEED AND DIR.):
NA	Temp:	60 to 70 De	grees F
	Wind:	ENE @ 10 m	nph
	Precipitation:	Light Rain	
	Pressure:	29.98 in Hg	

#### METHOD OF INSTALLATION AND PURGING:

Advanced soil vapor boring to 5 ft below grade surface (bgs), installed inert, polyethylene tubing to 5 ft bgs, backfill with No. 2 sand to 4.5 feet bgs, seal to surface with hydrated bentonite.

TUBING TYPE/DIAMETER:			TYPE OF MATER	RIAL	ABOVE SEAL:		
3/16-inch ID, 1/4-inch OD Teflon-Lined Po	lyethylene Tub	ing	NA				
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:			SEAL MATERIA	L (Be	ntonite, Beeswax,	Modeling Clay, etc.):	
2-Inch Polyethylene Probe			Bentonite				
BOREHOLE DIAMETER:			FILTER PACK M	ATER	RIAL (Sand or Glas	s Beads):	
2-Inch			Sand				
PURGE VOLUME (L):	1.	00	IMPLANT/	/PRO	BE DETAILS	DEPTH	NOTES
PURGE FLOW RATE (ML/MIN):	20	00	(SEAL,	, FILTE	ER, ETC.)	FEET FROM	
PID AFTER PURGE (PPM):	48	3.8	SURFACE		SURFACE	SURFACE)	
HELIUM TESTS	Pre-sampling	Post-sampling					
HELIUM TEST IN BUCKET(%):	30.0%	NA	_				
HELIUM TEST IN TUBE (PPM):	0.0%	NA					
SAMPLE START TIME:	10	:38					
SAMPLE STOP TIME:	12	:38					
TOTAL SAMPLE TIME (MIN):	12	20					
REGULATOR FLOW RATE (L/MIN):	0.	05			Top of Seal	0.00	
VOLUME OF SAMPLE (LITERS):	(	6					
PID AFTER SAMPLE (PPM):	0	.3					
SAMPLE MOISTURE CONTENT:	Ν	A					
	239	995			Top of Pack	4.50	
REGULATOR SERIAL NUMBER:	Y	17					
CAN START VACUUM PRESS. (" HG):	-28	.92	1				
CAN STOP VACUUM PRESS. (" HG):	4.	98					
SAMPLE LOCATIO	N SKETCH		7				
			7   1	ł		F 00	
					Probe Depth	5.00	
						NOTEO	
						NOTES	
			Elevated PIL	D va	lues possibly	impacted by high	n moisture content in soil
			due to rain.				
See Sample Location	n Plan						
Langan Engineeri	na. Environme	ental. Survevir	ng, Landscar	oe A	rchitecture.	and Geology D.F	P.C.
21 Penn Plaz	a. 360 West 3	1st Street 8t	h Floor. New	v Yo	ork. New You	k 10001-2727	
	.,				,		

### SOIL VAPOR SAMPLING LOG SHEET

Sample Number:	SV2	2	
PROJECT:	PROJECT NO.:		-
	170396002		
LOCATION:	SURFACE ELEVATIO	N AND DATUM:	
The Bronx, New York	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE	E STARTED:	DATE FINISHED:
AARCO	10/3/2019		10/3/2019
INSTALLATION FOREMAN:	SAMPLE DATE STAR	TED:	DATE FINISHED:
Sergio M.	10/3/2019		10/3/2019
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING	DEVICE:	
Geoprobe® 7720 DT	6-Liter Summa	Canister	
INSPECTOR:	SAMPLER:		
Eric Monfort	Eric Monfort		
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIO	NS (PRECIP., TEMP	., PRESS., WIND SPEED AND DIR.):
NA	Temp:	60 to 70 De	grees F
	Wind:	ENE @ 10 m	hbh
	Precipitation:	Light Rain	
	Pressure:	29.98 in Hg	

#### METHOD OF INSTALLATION AND PURGING:

Advanced soil vapor boring to 5 ft below grade surface (bgs), installed inert, polyethylene tubing to 5 ft bgs, backfill with No. 2 sand to 4.5 feet bgs, seal to surface with hydrated bentonite.

TUBING TYPE/DIAMETER:		TYPE OF MATERIAL ABOVE SEAL:					
3/16-inch ID, 1/4-inch OD Teflon-Lined Po	lyethylene Tub	ing	NA				
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:			SEAL MATERIAL	. (Ber	ntonite, Beeswax,	Modeling Clay, etc.):	
2-Inch Polyethylene Probe			Bentonite				
BOREHOLE DIAMETER:			FILTER PACK MA	ATER	IAL (Sand or Glas	s Beads):	
2-Inch			Sand				1
PURGE VOLUME (L):	1.0	00	IMPLANT/	PRO	BE DETAILS	DEPTH	NOTES
PURGE FLOW RATE (ML/MIN):	20	00	(SEAL,	FILTE	R, ETC.)	FEET FROM	
PID AFTER PURGE (PPM):	6.	7	SURFACE		SURFACE	SURFACE)	
HELIUM TESTS	Pre-sampling	Post-sampling					
HELIUM TEST IN BUCKET(%):	34.0%	NA					
HELIUM TEST IN TUBE (PPM):	0.0%	NA					
SAMPLE START TIME:	11:	05					
SAMPLE STOP TIME:	13:	05					
TOTAL SAMPLE TIME (MIN):	12	20					
REGULATOR FLOW RATE (L/MIN):	0.0	)5			Top of Seal	0.00	
VOLUME OF SAMPLE (LITERS):	6	3					
PID AFTER SAMPLE (PPM):	3.	9					
SAMPLE MOISTURE CONTENT:	N	A					
CAN SERIAL NUMBER:	241	28			Top of Pack	4.50	
REGULATOR SERIAL NUMBER:	73	60					
CAN START VACUUM PRESS. (" HG):	-29	.47	]	-			
CAN STOP VACUUM PRESS. (" HG):	-4.	99					
SAMPLE LOCATION	I SKETCH		]   [				
				4	Probe Depth	5.00	
					Tiobe Deptil	0.00	
						NOTES	
			clevaled Fil	Jva	iues possibly	impacted by high	
			uue to rain.				
See Sample Location	Plan						
Langan Engineerii	ng, Environme	ntal, Surveyir	ng, Landscap	e A	rchitecture,	and Geology D.F	P.C.
21 Penn Plaza	a, 360 West 3	1st Street, 8tl	n Floor, New	/ Yo	ork, New Yor	k 10001-2727	

### SOIL VAPOR SAMPLING LOG SHEET

Sample Number:	SV2	4	
PROJECT:	PROJECT NO.:		
2413 Inira Avenue	170396002		
LOCATION:	SURFACE ELEVATIO	N AND DATUM:	
The Bronx, New York	NA		
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE	E STARTED:	DATE FINISHED:
AARCO	10/3/2019		10/3/2019
INSTALLATION FOREMAN:	SAMPLE DATE STAR	TED:	DATE FINISHED:
Sergio M.	10/3/2019		10/3/2019
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING	DEVICE:	
Geoprobe® 7720 DT	6-Liter Summa	Canister	
INSPECTOR:	SAMPLER:		
Eric Monfort	Eric Monfort		
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIO	NS (PRECIP., TEMP	., PRESS., WIND SPEED AND DIR.):
NA	Temp:	60 to 70 De	grees F
	Wind:	ENE @ 10 m	nph
	Precipitation:	Light Rain	
	Pressure:	29.98 in Hg	

#### METHOD OF INSTALLATION AND PURGING:

Advanced soil vapor boring to 5 ft below grade surface (bgs), installed inert, polyethylene tubing to 5 ft bgs, backfill with No. 2 sand to 4.5 feet bgs, seal to surface with hydrated bentonite.

TUBING TYPE/DIAMETER:			TYPE OF MATER	RIAL A	ABOVE SEAL:			
3/16-inch ID, 1/4-inch OD Teflon-Lined Po	lyethylene Tub	ng	NA					
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:			SEAL MATERIAL	L (Ber	ntonite, Beeswax,	Modeling Clay, etc.):		
2-Inch Polyethylene Probe			Bentonite					
BOREHOLE DIAMETER:			FILTER PACK MA	ATER	IAL (Sand or Glas	s Beads):		
2-Inch			Sand				ſ	
PURGE VOLUME (L):	1.0	00	IMPLANT/	PRO	BE DETAILS	DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	20	00	(SEAL,	FILTE	R, ETC.)	FEET FROM		
PID AFTER PURGE (PPM):	7.	1	SURFACE		SURFACE	SURFACE)		
HELIUM TESTS	Pre-sampling	Post-sampling						
HELIUM TEST IN BUCKET(%):	34.0%	NA						
HELIUM TEST IN TUBE (PPM):	0.0%	NA						
SAMPLE START TIME:	11:	19						
SAMPLE STOP TIME:	1:	19						
TOTAL SAMPLE TIME (MIN):	12	20						
REGULATOR FLOW RATE (L/MIN):	0.0	)5			Top of Seal	0.00		
VOLUME OF SAMPLE (LITERS):	6	6						
PID AFTER SAMPLE (PPM):	5.	3						
SAMPLE MOISTURE CONTENT:	N	A						
CAN SERIAL NUMBER:	288	801			Top of Pack	4.50		
REGULATOR SERIAL NUMBER:	Υí	1						
CAN START VACUUM PRESS. (" HG):	-29	9.5	]					
CAN STOP VACUUM PRESS. (" HG):	-4.	97						
SAMPLE LOCATION	I SKETCH		]	-				
					Probe Depth	5.00		
					-			
						NOTES		
			Elevated PID values possibly impacted by high moisture content in soi					
			due to rain.		, ,	, , ,		
See Semple Location	Plan							
	i i iaii							
Langan Engineerii	ng, Environme	ntal, Surveyir	ng, Landscap	e A	rchitecture,	and Geology D.F	P.C.	
21 Penn Plaza	a, 360 West 3	1st Street, 8tl	n Floor, New	v Yo	ork, New Yor	k 10001-2727		

APPENDIX H Data Usability Summary Reports



### 2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To:	Sherief Saleh, Langan Senior Staff Scientist
From:	Emily Strake, Langan Senior Project Chemist
Date:	January 13, 2020
Re:	Data Usability Summary Report For 2413 3 rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of groundwater samples collected in June and October 2019 by Langan Engineering and Environmental Services ("Langan") at the 2413 3rd Avenue site ("the site"). The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 1148) and York Analytical Laboratories, Inc. (NYSDOH NELAP registration # 10854) for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), per- and polyfluoroalkyl substances (PFAS), herbicides, polychlorinated biphenyls (PCBs), pesticides, metals including mercury (Hg), hexavalent chromium (CrVI), and trivalent chromium (CrIII) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D and 8270D SIM
- 1,4-Dioxane by SW-846 Method 8270D SIM
- PFAS by USEPA Method 537M
- Herbicides by SW-846 Method 8151A
- PCBs by SW-846 Method 8082A
- Pesticides by SW-846 Method 8081B
- Metals by SW-846 Method 6020B and 6010D
- Mercury by SW-846 Method 7470A and 7473
- Hexavalent Chromium by SW-846 Method 7196A
- Trivalent Chromium (calculated)

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

### TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1924686	L1924686-01	TMW06_061019	6/10/2019	VOCs, SVOCs, PCBs, Metals, Hg, CrVI, CrIII
L1924686	L1924686-02	TMW08_061019	6/10/2019	VOCs, SVOCs, PCBs, Metals, Hg, CrVI, CrIII
L1924686	L1924686-03	TMW12_061019	6/10/2019	VOCs, SVOCs, PCBs, Metals, Hg, CrVI, CrIII
L1926329	L1926329-01	TMW11_061219	6/12/2019	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg, CrVI, CrIII
19J0468	19J0468-01	MW18_100919	10/9/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg
19J0468	19J0468-02	MW19_100919	10/9/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg
19J0468	19J0468-03	MW24_100919	10/9/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg
19J0468	19J0468-04	RIGWDUP01_100919	10/9/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg
19J0468	19J0468-05	RIGWFB01_100919	10/9/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg
19J0468	19J0468-06	RITB06_100919	10/9/2019	VOCs

### Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-17, "Validating Chlorinated Herbicides" (December 2010, Revision 3.1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) PCB Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region II SOP #HW-36A, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36, "ICP-MS Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36, "ICP-MS Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36, "ICP-MS Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36, "ICP-MS Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36, "Mercury and Cyanide Data



Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

EPA Method 537 was developed and validated for the analysis of finished drinking water from surface water and groundwater sources. Laboratories have modified Method 537 to enable the analysis of groundwater and soil, and to incorporate PFAS analytes not currently addressed by the promulgated method. NYSDOH offers certification for PFOA and PFOS in the drinking water category. Non-potable water and soil certification is not available; however, the method describes acceptable modifications. EPA recommends that modified methods be assessed relative to project goals and data quality objectives.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, isotope dilution recoveries, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, field blank, and trip blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.



If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW18_100919	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
MW18_100919	8260C	76-13-1	1,1,2-Trichloro-1,2,2- Trifluoroethane	UJ
MW18_100919	8260C	75-34-3	1,1-Dichloroethane	UJ
MW18_100919	8260C	96-18-4	1,2,3-Trichloropropane	UJ
MW18_100919	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
MW18_100919	8270D	51-28-5	2,4-Dinitrophenol	UJ
MW18_100919	8260C	591-78-6	2-Hexanone	UJ
MW18_100919	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
MW18_100919	8260C	67-64-1	Acetone	UJ
MW18_100919	8270D	98-86-2	Acetophenone	UJ
MW18_100919	8260C	107-02-8	Acrolein	UJ
MW18_100919	8270D	62-53-3	Aniline (Phenylamine, Aminobenzene)	UJ
MW18_100919	6020	7440-36-0	Antimony	UJ
MW18_100919	6020	7440-36-0	Antimony	UJ
MW18_100919	8270D	100-52-7	Benzaldehyde	UJ
MW18_100919	8260C	71-43-2	Benzene	UJ
MW18_100919	8270D	92-87-5	Benzidine	UJ
MW18_100919	6020	7440-41-7	Beryllium	UJ
MW18_100919	6020	7440-41-7	Beryllium	UJ
MW18_100919	8270D	111-44-4	Bis(2-Chloroethyl) Ether (2- Chloroethyl Ether)	UJ
MW18_100919	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
MW18_100919	8260C	74-83-9	Bromomethane	UJ
MW18_100919	6020	7440-43-9	Cadmium	UJ

### TABLE 2: VALIDATOR-APPLIED QUALIFICATION

# LANGAN

Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 5 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW18_100919	6010B	7440-70-2	Calcium	J
MW18_100919	6010B	7440-70-2	Calcium	J
MW18_100919	8260C	56-23-5	Carbon Tetrachloride	UJ
MW18_100919	8260C	108-90-7	Chlorobenzene	UJ
MW18_100919	8260C	67-66-3	Chloroform	J
MW18_100919	8260C	156-59-2	Cis-1,2-Dichloroethene	UJ
MW18_100919	6010B	7440-48-4	Cobalt	UJ
MW18_100919	8260C	75-71-8	Dichlorodifluoromethane	UJ
MW18_100919	6010B	7439-89-6	Iron	UJ
MW18_100919	6010B	7439-89-6	Iron	UJ
MW18_100919	6010B	7439-92-1	Lead	UJ
MW18_100919	6010B	7439-95-4	Magnesium	J
MW18_100919	6010B	7439-95-4	Magnesium	J
MW18_100919	6010B	7439-96-5	Manganese	J
MW18_100919	6010B	7439-96-5	Manganese	J
MW18_100919	6010B	7440-02-0	Nickel	UJ
MW18_100919	8270D	621-64-7	n-Nitrosodi-N-Propylamine	UJ
MW18_100919	8270DSIM	87-86-5	Pentachlorophenol	UJ
MW18_100919	6010B	7440-09-7	Potassium	J
MW18_100919	6010B	7440-09-7	Potassium	J
MW18_100919	6020	7782-49-2	Selenium	J
MW18_100919	6010B	7440-22-4	Silver	UJ
MW18_100919	6010B	7440-23-5	Sodium	J
MW18_100919	6010B	7440-23-5	Sodium	J
MW18_100919	8260C	1634-04-4	Tert-Butyl Methyl Ether	J
MW18_100919	8260C	127-18-4	Tetrachloroethene (PCE)	J
MW18_100919	8260C	156-60-5	Trans-1,2-Dichloroethene	UJ
MW18_100919	8260C	75-69-4	Trichlorofluoromethane	UJ
MW18_100919	8260C	75-01-4	Vinyl Chloride	UJ
MW18_100919	6010B	7440-66-6	Zinc	UJ
MW18_100919	6010B	7440-66-6	Zinc	UJ
MW19_100919	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ



Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 6 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW19_100919	8260C	76-13-1	1,1,2-Trichloro-1,2,2- Trifluoroethane	UJ
MW19_100919	8260C	75-34-3	1,1-Dichloroethane	UJ
MW19_100919	8260C	96-18-4	1,2,3-Trichloropropane	UJ
MW19_100919	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
MW19_100919	8270D	51-28-5	2,4-Dinitrophenol	UJ
MW19_100919	8260C	591-78-6	2-Hexanone	UJ
MW19_100919	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
MW19_100919	8260C	67-64-1	Acetone	UJ
MW19_100919	8270D	98-86-2	Acetophenone	UJ
MW19_100919	8260C	107-02-8	Acrolein	UJ
MW19_100919	8270D	62-53-3	Aniline (Phenylamine, Aminobenzene)	UJ
MW19_100919	6020	7440-36-0	Antimony	UJ
MW19_100919	6020	7440-36-0	Antimony	UJ
MW19_100919	8270D	100-52-7	Benzaldehyde	UJ
MW19_100919	8260C	71-43-2	Benzene	UJ
MW19_100919	8270D	92-87-5	Benzidine	UJ
MW19_100919	6020	7440-41-7	Beryllium	UJ
MW19_100919	6020	7440-41-7	Beryllium	UJ
MW19_100919	8270D	111-44-4	Bis(2-Chloroethyl) Ether (2- Chloroethyl Ether)	UJ
MW19_100919	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
MW19_100919	8260C	74-83-9	Bromomethane	UJ
MW19_100919	6020	7440-43-9	Cadmium	UJ
MW19_100919	6010B	7440-70-2	Calcium	J
MW19_100919	6010B	7440-70-2	Calcium	J
MW19_100919	8260C	56-23-5	Carbon Tetrachloride	UJ
MW19_100919	8260C	108-90-7	Chlorobenzene	UJ
MW19_100919	8260C	67-66-3	Chloroform	UJ
MW19_100919	8260C	156-59-2	Cis-1,2-Dichloroethene	UJ
MW19_100919	6010B	7440-48-4	Cobalt	UJ
MW19_100919	8260C	75-71-8	Dichlorodifluoromethane	UJ



Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 7 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW19_100919	6010B	7439-89-6	Iron	UJ
MW19_100919	6010B	7439-89-6	Iron	J
MW19_100919	6010B	7439-92-1	Lead	UJ
MW19_100919	6010B	7439-95-4	Magnesium	J
MW19_100919	6010B	7439-95-4	Magnesium	J
MW19_100919	6010B	7439-96-5	Manganese	J
MW19_100919	6010B	7439-96-5	Manganese	J
MW19_100919	6010B	7440-02-0	Nickel	UJ
MW19_100919	8270D	621-64-7	n-Nitrosodi-N-Propylamine	UJ
MW19_100919	8270DSIM	87-86-5	Pentachlorophenol	UJ
MW19_100919	6010B	7440-09-7	Potassium	J
MW19_100919	6010B	7440-09-7	Potassium	J
MW19_100919	6020	7782-49-2	Selenium	J
MW19_100919	6010B	7440-22-4	Silver	UJ
MW19_100919	6010B	7440-23-5	Sodium	J
MW19_100919	6010B	7440-23-5	Sodium	J
MW19_100919	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
MW19_100919	8260C	127-18-4	Tetrachloroethene (PCE)	UJ
MW19_100919	8260C	156-60-5	Trans-1,2-Dichloroethene	UJ
MW19_100919	8260C	75-69-4	Trichlorofluoromethane	UJ
MW19_100919	8260C	75-01-4	Vinyl Chloride	UJ
MW19_100919	6010B	7440-66-6	Zinc	UJ
MW19_100919	6010B	7440-66-6	Zinc	UJ
MW24_100919	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
MW24_100919	8260C	76-13-1	1,1,2-Trichloro-1,2,2- Trifluoroethane	UJ
MW24_100919	8260C	75-34-3	1,1-Dichloroethane	UJ
MW24_100919	8260C	96-18-4	1,2,3-Trichloropropane	UJ
MW24_100919	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
MW24_100919	8270D	51-28-5	2,4-Dinitrophenol	UJ
MW24_100919	8260C	591-78-6	2-Hexanone	UJ
MW24_100919	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
MW24_100919	8260C	67-64-1	Acetone	UJ



Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 8 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW24_100919	8270D	98-86-2	Acetophenone	UJ
MW24_100919	8260C	107-02-8	Acrolein	UJ
MW24_100919	6010B	7429-90-5	Aluminum	J
MW24_100919	8270D	62-53-3	Aniline (Phenylamine, Aminobenzene)	UJ
MW24_100919	6020	7440-36-0	Antimony	UJ
MW24_100919	6020	7440-36-0	Antimony	UJ
MW24_100919	8270D	100-52-7	Benzaldehyde	UJ
MW24_100919	8260C	71-43-2	Benzene	UJ
MW24_100919	8270D	92-87-5	Benzidine	UJ
MW24_100919	6020	7440-41-7	Beryllium	UJ
MW24_100919	6020	7440-41-7	Beryllium	UJ
MW24_100919	8270D	111-44-4	Bis(2-Chloroethyl) Ether (2- Chloroethyl Ether)	UJ
MW24_100919	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
MW24_100919	8260C	74-83-9	Bromomethane	UJ
MW24_100919	6020	7440-43-9	Cadmium	UJ
MW24_100919	6010B	7440-70-2	Calcium	J
MW24_100919	6010B	7440-70-2	Calcium	J
MW24_100919	8260C	56-23-5	Carbon Tetrachloride	UJ
MW24_100919	8260C	108-90-7	Chlorobenzene	UJ
MW24_100919	8260C	67-66-3	Chloroform	UJ
MW24_100919	8260C	156-59-2	Cis-1,2-Dichloroethene	UJ
MW24_100919	6010B	7440-48-4	Cobalt	UJ
MW24_100919	8260C	75-71-8	Dichlorodifluoromethane	UJ
MW24_100919	6010B	7439-89-6	Iron	UJ
MW24_100919	6010B	7439-89-6	Iron	J
MW24_100919	6010B	7439-92-1	Lead	UJ
MW24_100919	6010B	7439-95-4	Magnesium	J
MW24_100919	6010B	7439-95-4	Magnesium	J
MW24_100919	6010B	7439-96-5	Manganese	J
MW24_100919	6010B	7439-96-5	Manganese	J
MW24_100919	6010B	7440-02-0	Nickel	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW24_100919	8270D	621-64-7	n-Nitrosodi-N-Propylamine	UJ
MW24_100919	8270DSIM	87-86-5	Pentachlorophenol	UJ
MW24_100919	6010B	7440-09-7	Potassium	J
MW24_100919	6010B	7440-09-7	Potassium	J
MW24_100919	6020	7782-49-2	Selenium	J
MW24_100919	6020	7782-49-2	Selenium	J
MW24_100919	6010B	7440-22-4	Silver	UJ
MW24_100919	6010B	7440-23-5	Sodium	J
MW24_100919	6010B	7440-23-5	Sodium	J
MW24_100919	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
MW24_100919	8260C	127-18-4	Tetrachloroethene (PCE)	UJ
MW24_100919	8260C	156-60-5	Trans-1,2-Dichloroethene	UJ
MW24_100919	8260C	75-69-4	Trichlorofluoromethane	UJ
MW24_100919	8260C	75-01-4	Vinyl Chloride	UJ
MW24_100919	6010B	7440-66-6	Zinc	UJ
MW24_100919	6010B	7440-66-6	Zinc	UJ
RIGWDUP01_100919	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
RIGWDUP01_100919	8260C	76-13-1	1,1,2-Trichloro-1,2,2- Trifluoroethane	UJ
RIGWDUP01_100919	8260C	75-34-3	1,1-Dichloroethane	UJ
RIGWDUP01_100919	8260C	96-18-4	1,2,3-Trichloropropane	UJ
RIGWDUP01_100919	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
RIGWDUP01_100919	8270D	51-28-5	2,4-Dinitrophenol	UJ
RIGWDUP01_100919	8260C	591-78-6	2-Hexanone	UJ
RIGWDUP01_100919	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
RIGWDUP01_100919	8260C	67-64-1	Acetone	UJ
RIGWDUP01_100919	8270D	98-86-2	Acetophenone	UJ
RIGWDUP01_100919	8260C	107-02-8	Acrolein	UJ
RIGWDUP01_100919	6010B	7429-90-5	Aluminum	J
RIGWDUP01_100919	8270D	62-53-3	Aniline (Phenylamine, Aminobenzene)	UJ
RIGWDUP01_100919	6020	7440-36-0	Antimony	UJ
RIGWDUP01_100919	6020	7440-36-0	Antimony	UJ



Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 10 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
RIGWDUP01_100919	8270D	100-52-7	Benzaldehyde	UJ
RIGWDUP01_100919	8260C	71-43-2	Benzene	UJ
RIGWDUP01_100919	8270D	92-87-5	Benzidine	UJ
RIGWDUP01_100919	6020	7440-41-7	Beryllium	UJ
RIGWDUP01_100919	6020	7440-41-7	Beryllium	UJ
RIGWDUP01_100919	8270D	111-44-4	Bis(2-Chloroethyl) Ether (2- Chloroethyl Ether)	UJ
RIGWDUP01_100919	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
RIGWDUP01_100919	8260C	74-83-9	Bromomethane	UJ
RIGWDUP01_100919	6020	7440-43-9	Cadmium	UJ
RIGWDUP01_100919	6010B	7440-70-2	Calcium	J
RIGWDUP01_100919	6010B	7440-70-2	Calcium	J
RIGWDUP01_100919	8260C	56-23-5	Carbon Tetrachloride	UJ
RIGWDUP01_100919	8260C	108-90-7	Chlorobenzene	UJ
RIGWDUP01_100919	8260C	67-66-3	Chloroform	UJ
RIGWDUP01_100919	8260C	156-59-2	Cis-1,2-Dichloroethene	UJ
RIGWDUP01_100919	6010B	7440-48-4	Cobalt	UJ
RIGWDUP01_100919	8260C	75-71-8	Dichlorodifluoromethane	UJ
RIGWDUP01_100919	6010B	7439-89-6	Iron	UJ
RIGWDUP01_100919	6010B	7439-89-6	Iron	J
RIGWDUP01_100919	6010B	7439-92-1	Lead	UJ
RIGWDUP01_100919	6010B	7439-95-4	Magnesium	J
RIGWDUP01_100919	6010B	7439-95-4	Magnesium	J
RIGWDUP01_100919	6010B	7439-96-5	Manganese	J
RIGWDUP01_100919	6010B	7439-96-5	Manganese	J
RIGWDUP01_100919	6010B	7440-02-0	Nickel	UJ
RIGWDUP01_100919	8270D	621-64-7	n-Nitrosodi-N-Propylamine	UJ
RIGWDUP01_100919	8270DSIM	87-86-5	Pentachlorophenol	UJ
RIGWDUP01_100919	6010B	7440-09-7	Potassium	J
RIGWDUP01_100919	6010B	7440-09-7	Potassium	J
RIGWDUP01_100919	6020	7782-49-2	Selenium	J
RIGWDUP01_100919	6010B	7440-22-4	Silver	UJ
RIGWDUP01_100919	6010B	7440-23-5	Sodium	J

LANGAN

Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 11 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
RIGWDUP01_100919	6010B	7440-23-5	Sodium	J
RIGWDUP01_100919	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
RIGWDUP01_100919	8260C	127-18-4	Tetrachloroethene (PCE)	UJ
RIGWDUP01_100919	8260C	156-60-5	Trans-1,2-Dichloroethene	UJ
RIGWDUP01_100919	8260C	75-69-4	Trichlorofluoromethane	UJ
RIGWDUP01_100919	8260C	75-01-4	Vinyl Chloride	UJ
RIGWDUP01_100919	6010B	7440-66-6	Zinc	UJ
RIGWDUP01_100919	6010B	7440-66-6	Zinc	UJ
RIGWFB01_100919	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
RIGWFB01_100919	8260C	76-13-1	1,1,2-Trichloro-1,2,2- Trifluoroethane	UJ
RIGWFB01_100919	8260C	75-34-3	1,1-Dichloroethane	UJ
RIGWFB01_100919	8260C	96-18-4	1,2,3-Trichloropropane	UJ
RIGWFB01_100919	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
RIGWFB01_100919	8270D	51-28-5	2,4-Dinitrophenol	UJ
RIGWFB01_100919	8260C	591-78-6	2-Hexanone	UJ
RIGWFB01_100919	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
RIGWFB01_100919	8260C	67-64-1	Acetone	UJ
RIGWFB01_100919	8270D	98-86-2	Acetophenone	UJ
RIGWFB01_100919	8260C	107-02-8	Acrolein	UJ
RIGWFB01_100919	8270D	62-53-3	Aniline (Phenylamine, Aminobenzene)	UJ
RIGWFB01_100919	6020	7440-36-0	Antimony	UJ
RIGWFB01_100919	6020	7440-36-0	Antimony	UJ
RIGWFB01_100919	8270D	100-52-7	Benzaldehyde	UJ
RIGWFB01_100919	8260C	71-43-2	Benzene	UJ
RIGWFB01_100919	8270D	92-87-5	Benzidine	UJ
RIGWFB01_100919	6020	7440-41-7	Beryllium	UJ
RIGWFB01_100919	6020	7440-41-7	Beryllium	UJ
RIGWFB01_100919	8270D	111-44-4	Bis(2-Chloroethyl) Ether (2- Chloroethyl Ether)	UJ
RIGWFB01_100919	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
RIGWFB01_100919	8270DSIM	117-81-7	Bis(2-Ethylhexyl) Phthalate	U (0.831)

Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 12 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
RIGWFB01_100919	8260C	74-83-9	Bromomethane	UJ
RIGWFB01_100919	6020	7440-43-9	Cadmium	UJ
RIGWFB01_100919	6010B	7440-70-2	Calcium	J
RIGWFB01_100919	6010B	7440-70-2	Calcium	J
RIGWFB01_100919	8260C	56-23-5	Carbon Tetrachloride	UJ
RIGWFB01_100919	8260C	108-90-7	Chlorobenzene	UJ
RIGWFB01_100919	8260C	67-66-3	Chloroform	UJ
RIGWFB01_100919	8260C	156-59-2	Cis-1,2-Dichloroethene	UJ
RIGWFB01_100919	6010B	7440-48-4	Cobalt	UJ
RIGWFB01_100919	8260C	75-71-8	Dichlorodifluoromethane	UJ
RIGWFB01_100919	6010B	7439-89-6	Iron	UJ
RIGWFB01_100919	6010B	7439-89-6	Iron	UJ
RIGWFB01_100919	6010B	7439-92-1	Lead	UJ
RIGWFB01_100919	6010B	7439-95-4	Magnesium	UJ
RIGWFB01_100919	6010B	7439-95-4	Magnesium	J
RIGWFB01_100919	6010B	7439-96-5	Manganese	UJ
RIGWFB01_100919	6010B	7439-96-5	Manganese	UJ
RIGWFB01_100919	6010B	7440-02-0	Nickel	UJ
RIGWFB01_100919	8270D	621-64-7	n-Nitrosodi-N-Propylamine	UJ
RIGWFB01_100919	8270DSIM	87-86-5	Pentachlorophenol	UJ
RIGWFB01_100919	6010B	7440-09-7	Potassium	UJ
RIGWFB01_100919	6010B	7440-09-7	Potassium	UJ
RIGWFB01_100919	6010B	7440-22-4	Silver	UJ
RIGWFB01_100919	6010B	7440-23-5	Sodium	UJ
RIGWFB01_100919	6010B	7440-23-5	Sodium	UJ
RIGWFB01_100919	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
RIGWFB01_100919	8260C	127-18-4	Tetrachloroethene (PCE)	UJ
RIGWFB01_100919	8260C	156-60-5	Trans-1,2-Dichloroethene	UJ
RIGWFB01_100919	8260C	75-69-4	Trichlorofluoromethane	UJ
RIGWFB01_100919	8260C	75-01-4	Vinyl Chloride	UJ
RIGWFB01_100919	6010B	7440-66-6	Zinc	J
RIGWFB01_100919	6010B	7440-66-6	Zinc	J



Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 13 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
RITB06_100919	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
RITB06_100919	8260C	76-13-1	1,1,2-Trichloro-1,2,2- Trifluoroethane	UJ
RITB06_100919	8260C	75-34-3	1,1-Dichloroethane	UJ
RITB06_100919	8260C	96-18-4	1,2,3-Trichloropropane	UJ
RITB06_100919	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
RITB06_100919	8260C	591-78-6	2-Hexanone	UJ
RITB06_100919	8260C	67-64-1	Acetone	UJ
RITB06_100919	8260C	107-02-8	Acrolein	UJ
RITB06_100919	8260C	71-43-2	Benzene	UJ
RITB06_100919	8260C	74-83-9	Bromomethane	UJ
RITB06_100919	8260C	56-23-5	Carbon Tetrachloride	UJ
RITB06_100919	8260C	108-90-7	Chlorobenzene	UJ
RITB06_100919	8260C	67-66-3	Chloroform	UJ
RITB06_100919	8260C	156-59-2	Cis-1,2-Dichloroethene	UJ
RITB06_100919	8260C	75-71-8	Dichlorodifluoromethane	UJ
RITB06_100919	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
RITB06_100919	8260C	127-18-4	Tetrachloroethene (PCE)	UJ
RITB06_100919	8260C	156-60-5	Trans-1,2-Dichloroethene	UJ
RITB06_100919	8260C	75-69-4	Trichlorofluoromethane	UJ
RITB06_100919	8260C	75-01-4	Vinyl Chloride	UJ
SB06_1-2	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB06_1-2	8270D	88-75-5	2-Nitrophenol	UJ
SB06_1-2	8260C	67-64-1	Acetone	J
SB06_1-2	6010D	7440-38-2	Arsenic	J
SB06_1-2	6010D	7440-39-3	Barium	J
SB06_1-2	8260C	74-83-9	Bromomethane	UJ
SB06_1-2	6010D	7440-43-9	Cadmium	J
SB06_1-2	8260C	74-87-3	Chloromethane	UJ
SB06_1-2	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB06_1-2	6010D	7440-47-3	Chromium, Total	J
SB06_1-2	6010D	7440-48-4	Cobalt	J
SB06_1-2	6010D	7440-50-8	Copper	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB06_1-2	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB06_1-2	8081B	5103-74-2	Gamma Chlordane	J
SB06_1-2	8260C	87-68-3	Hexachlorobutadiene	UJ
SB06_1-2	6010D	7439-89-6	Iron	J
SB06_1-2	6010D	7439-92-1	Lead	J
SB06_1-2	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB06_1-2	8260C	91-20-3	Naphthalene	UJ
SB06_1-2	6010D	7440-28-0	Thallium	UJ
SB06_1-2	8260C	75-69-4	Trichlorofluoromethane	UJ
SB06_1-2	6010D	7440-62-2	Vanadium	J
SB06_1-2	8260C	108-05-4	Vinyl Acetate	UJ
SB06_1-2	6010D	7440-66-6	Zinc	J
SB06_7-8	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB06_7-8	8270D	100-02-7	4-Nitrophenol	UJ
SB06_7-8	8260C	67-64-1	Acetone	J
SB06_7-8	6010D	7440-39-3	Barium	J
SB06_7-8	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB06_7-8	8260C	74-83-9	Bromomethane	UJ
SB06_7-8	8260C	74-87-3	Chloromethane	UJ
SB06_7-8	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB06_7-8	6010D	7440-50-8	Copper	J
SB06_7-8	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB06_7-8	8270D	117-84-0	Di-N-Octylphthalate	UJ
SB06_7-8	8260C	87-68-3	Hexachlorobutadiene	UJ
SB06_7-8	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB06_7-8	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	J
SB06_7-8	8260C	91-20-3	Naphthalene	J
SB06_7-8	8270D	87-86-5	Pentachlorophenol	UJ
SB06_7-8	6010D	7440-28-0	Thallium	UJ
SB06_7-8	8260C	75-69-4	Trichlorofluoromethane	UJ
SB06_7-8	8260C	108-05-4	Vinyl Acetate	UJ

Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 15 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB07_2-3	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB07_2-3	8270D	100-02-7	4-Nitrophenol	UJ
SB07_2-3	8260C	67-64-1	Acetone	J
SB07_2-3	6010D	7440-39-3	Barium	J
SB07_2-3	8081B	33213-65-9	Beta Endosulfan	UJ
SB07_2-3	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB07_2-3	8260C	74-83-9	Bromomethane	UJ
SB07_2-3	8260C	74-87-3	Chloromethane	UJ
SB07_2-3	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB07_2-3	6010D	7440-50-8	Copper	J
SB07_2-3	8081B	319-86-8	Delta Bhc (Delta Hexachlorocyclohexane)	UJ
SB07_2-3	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB07_2-3	8270D	117-84-0	Di-N-Octylphthalate	UJ
SB07_2-3	8081B	5103-74-2	Gamma Chlordane	J
SB07_2-3	8260C	87-68-3	Hexachlorobutadiene	UJ
SB07_2-3	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB07_2-3	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB07_2-3	8260C	91-20-3	Naphthalene	UJ
SB07_2-3	8270D	87-86-5	Pentachlorophenol	UJ
SB07_2-3	6010D	7440-28-0	Thallium	UJ
SB07_2-3	8260C	75-69-4	Trichlorofluoromethane	UJ
SB07_2-3	8260C	108-05-4	Vinyl Acetate	UJ
SB07_5-6	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB07_5-6	8270D	100-02-7	4-Nitrophenol	UJ
SB07_5-6	8260C	67-64-1	Acetone	J
SB07_5-6	6010D	7440-36-0	Antimony	U (4.37)
SB07_5-6	6010D	7440-39-3	Barium	J
SB07_5-6	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB07_5-6	8260C	74-83-9	Bromomethane	UJ
SB07_5-6	8260C	74-87-3	Chloromethane	UJ
SB07_5-6	7196A	18540-29-9	Chromium, Hexavalent	UJ

Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 16 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB07_5-6	6010D	7440-50-8	Copper	J
SB07_5-6	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB07_5-6	8270D	117-84-0	Di-N-Octylphthalate	UJ
SB07_5-6	8260C	87-68-3	Hexachlorobutadiene	UJ
SB07_5-6	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB07_5-6	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB07_5-6	8260C	91-20-3	Naphthalene	UJ
SB07_5-6	8270D	87-86-5	Pentachlorophenol	UJ
SB07_5-6	6010D	7440-28-0	Thallium	UJ
SB07_5-6	8260C	75-69-4	Trichlorofluoromethane	UJ
SB07_5-6	8260C	108-05-4	Vinyl Acetate	UJ
SB08_1-2	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB08_1-2	8270D	100-02-7	4-Nitrophenol	UJ
SB08_1-2	8260C	67-64-1	Acetone	J
SB08_1-2	6010D	7440-39-3	Barium	J
SB08_1-2	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB08_1-2	8260C	74-83-9	Bromomethane	UJ
SB08_1-2	8260C	74-87-3	Chloromethane	UJ
SB08_1-2	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB08_1-2	6010D	7440-50-8	Copper	J
SB08_1-2	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB08_1-2	8270D	117-84-0	Di-N-Octylphthalate	UJ
SB08_1-2	8260C	87-68-3	Hexachlorobutadiene	UJ
SB08_1-2	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB08_1-2	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB08_1-2	8260C	91-20-3	Naphthalene	UJ
SB08_1-2	8270D	87-86-5	Pentachlorophenol	UJ
SB08_1-2	6010D	7440-28-0	Thallium	UJ
SB08_1-2	8260C	75-69-4	Trichlorofluoromethane	UJ
SB08_1-2	8260C	108-05-4	Vinyl Acetate	UJ
SB08_5-6	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ



Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 17 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB08_5-6	8270D	100-02-7	4-Nitrophenol	UJ
SB08_5-6	6010D	7440-36-0	Antimony	U (4.85)
SB08_5-6	6010D	7440-39-3	Barium	J
SB08_5-6	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB08_5-6	8260C	74-83-9	Bromomethane	UJ
SB08_5-6	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB08_5-6	6010D	7440-50-8	Copper	J
SB08_5-6	8270D	117-84-0	Di-N-Octylphthalate	UJ
SB08_5-6	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB08_5-6	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB08_5-6	8270D	87-86-5	Pentachlorophenol	UJ
SB08_5-6	8260C	100-42-5	Styrene	UJ
SB08_5-6	6010D	7440-28-0	Thallium	UJ
SB08_5-6	8260C	110-57-6	Trans-1,4-Dichloro-2-Butene	UJ
SB08_5-6	8260C	75-69-4	Trichlorofluoromethane	UJ
SB09_2-3	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB09_2-3	8270D	100-02-7	4-Nitrophenol	UJ
SB09_2-3	6010D	7440-39-3	Barium	J
SB09_2-3	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB09_2-3	8260C	74-83-9	Bromomethane	UJ
SB09_2-3	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB09_2-3	6010D	7440-50-8	Copper	J
SB09_2-3	8270D	117-84-0	Di-N-Octylphthalate	UJ
SB09_2-3	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB09_2-3	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB09_2-3	8270D	87-86-5	Pentachlorophenol	UJ
SB09_2-3	8260C	100-42-5	Styrene	UJ
SB09_2-3	6010D	7440-28-0	Thallium	UJ
SB09_2-3	8260C	110-57-6	Trans-1,4-Dichloro-2-Butene	UJ
SB09_2-3	8260C	75-69-4	Trichlorofluoromethane	UJ
SB09_5-6	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ

# LANGAN

Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 18 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB09_5-6	8270D	100-02-7	4-Nitrophenol	UJ
SB09_5-6	6010D	7440-36-0	Antimony	U (4.87)
SB09_5-6	6010D	7440-39-3	Barium	J
SB09_5-6	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB09_5-6	8260C	74-83-9	Bromomethane	UJ
SB09_5-6	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB09_5-6	6010D	7440-50-8	Copper	J
SB09_5-6	8270D	117-84-0	Di-N-Octylphthalate	UJ
SB09_5-6	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB09_5-6	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB09_5-6	8270D	87-86-5	Pentachlorophenol	UJ
SB09_5-6	8260C	100-42-5	Styrene	UJ
SB09_5-6	6010D	7440-28-0	Thallium	UJ
SB09_5-6	8260C	110-57-6	Trans-1,4-Dichloro-2-Butene	UJ
SB09_5-6	8260C	75-69-4	Trichlorofluoromethane	UJ
SB12_3-4	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB12_3-4	8270D	100-02-7	4-Nitrophenol	UJ
SB12_3-4	6010D	7440-39-3	Barium	J
SB12_3-4	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB12_3-4	8260C	74-83-9	Bromomethane	UJ
SB12_3-4	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB12_3-4	6010D	7440-50-8	Copper	J
SB12_3-4	8270D	117-84-0	Di-N-Octylphthalate	UJ
SB12_3-4	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB12_3-4	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB12_3-4	8270D	87-86-5	Pentachlorophenol	UJ
SB12_3-4	8260C	100-42-5	Styrene	UJ
SB12_3-4	6010D	7440-28-0	Thallium	UJ
SB12_3-4	8260C	110-57-6	Trans-1,4-Dichloro-2-Butene	UJ
SB12_3-4	8260C	75-69-4	Trichlorofluoromethane	UJ
SB12_5-6	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ

# LANGAN

Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 19 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB12_5-6	8260C	591-78-6	2-Hexanone	UJ
SB12_5-6	8270D	100-02-7	4-Nitrophenol	UJ
SB12_5-6	6010D	7440-39-3	Barium	J
SB12_5-6	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB12_5-6	8260C	75-15-0	Carbon Disulfide	UJ
SB12_5-6	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB12_5-6	6010D	7440-50-8	Copper	J
SB12_5-6	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB12_5-6	8270D	117-84-0	Di-N-Octylphthalate	UJ
SB12_5-6	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB12_5-6	8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB12_5-6	8270D	87-86-5	Pentachlorophenol	UJ
SB12_5-6	6010D	7440-28-0	Thallium	UJ
SB10_1-2	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB10_1-2	8270D	51-28-5	2,4-Dinitrophenol	UJ
SB10_1-2	8260C	591-78-6	2-Hexanone	UJ
SB10_1-2	8270D	88-75-5	2-Nitrophenol	UJ
SB10_1-2	8270D	99-09-2	3-Nitroaniline	UJ
SB10_1-2	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB10_1-2	8270D	100-01-6	4-Nitroaniline	UJ
SB10_1-2	8270D	65-85-0	Benzoic Acid	UJ
SB10_1-2	8260C	75-15-0	Carbon Disulfide	UJ
SB10_1-2	8260C	74-87-3	Chloromethane	UJ
SB10_1-2	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB10_1-2	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB10_1-2	8081B	7421-93-4	Endrin Aldehyde	UJ
SB10_1-2	8081B	72-43-5	Methoxychlor	UJ
SB10_1-2	8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB10_1-2	8260C	1634-04-4	Tert-Butyl Methyl Ether	U (3.3)
SB10_1-2	8260C	75-01-4	Vinyl Chloride	UJ
SB10_7-8	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ



Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 20 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB10_7-8	8270D	51-28-5	2,4-Dinitrophenol	UJ
SB10_7-8	8260C	591-78-6	2-Hexanone	UJ
SB10_7-8	8270D	88-75-5	2-Nitrophenol	UJ
SB10_7-8	8270D	99-09-2	3-Nitroaniline	UJ
SB10_7-8	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB10_7-8	8270D	100-01-6	4-Nitroaniline	UJ
SB10_7-8	8270D	65-85-0	Benzoic Acid	UJ
SB10_7-8	8260C	75-15-0	Carbon Disulfide	UJ
SB10_7-8	8260C	74-87-3	Chloromethane	UJ
SB10_7-8	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB10_7-8	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB10_7-8	8081B	7421-93-4	Endrin Aldehyde	UJ
SB10_7-8	8081B	5103-74-2	Gamma Chlordane	J
SB10_7-8	8081B	72-43-5	Methoxychlor	UJ
SB10_7-8	8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB10_7-8	8260C	1634-04-4	Tert-Butyl Methyl Ether	U (2)
SB10_7-8	8260C	75-01-4	Vinyl Chloride	UJ
SB11_1-2	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB11_1-2	8270D	51-28-5	2,4-Dinitrophenol	UJ
SB11_1-2	8260C	591-78-6	2-Hexanone	UJ
SB11_1-2	8270D	88-75-5	2-Nitrophenol	UJ
SB11_1-2	8270D	99-09-2	3-Nitroaniline	UJ
SB11_1-2	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB11_1-2	8270D	100-01-6	4-Nitroaniline	UJ
SB11_1-2	8270D	65-85-0	Benzoic Acid	UJ
SB11_1-2	8260C	75-15-0	Carbon Disulfide	UJ
SB11_1-2	8260C	74-87-3	Chloromethane	UJ
SB11_1-2	7196A	18540-29-9	Chromium, Hexavalent	J
SB11_1-2	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB11_1-2	8081B	7421-93-4	Endrin Aldehyde	UJ
SB11_1-2	8081B	5103-74-2	Gamma Chlordane	J
SB11_1-2	8081B	72-43-5	Methoxychlor	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB11_1-2	8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB11_1-2	8260C	1634-04-4	Tert-Butyl Methyl Ether	U (3.6)
SB11_1-2	8260C	75-01-4	Vinyl Chloride	UJ
SB11_5-6	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
SB11_5-6	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB11_5-6	8270D	51-28-5	2,4-Dinitrophenol	UJ
SB11_5-6	8260C	591-78-6	2-Hexanone	UJ
SB11_5-6	8270D	88-75-5	2-Nitrophenol	UJ
SB11_5-6	8270D	99-09-2	3-Nitroaniline	UJ
SB11_5-6	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB11_5-6	8270D	100-01-6	4-Nitroaniline	UJ
SB11_5-6	8270D	65-85-0	Benzoic Acid	UJ
SB11_5-6	8260C	75-15-0	Carbon Disulfide	UJ
SB11_5-6	7196A	18540-29-9	Chromium, Hexavalent	J
SB11_5-6	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB11_5-6	8081B	7421-93-4	Endrin Aldehyde	UJ
SB11_5-6	8081B	72-43-5	Methoxychlor	UJ
SB11_5-6	8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB11_5-6	6010D	7440-23-5	Sodium	U (188)
SB11_5-6	8260C	75-01-4	Vinyl Chloride	UJ
SB13_3-4	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB13_3-4	8270D	51-28-5	2,4-Dinitrophenol	UJ
SB13_3-4	8270D	88-75-5	2-Nitrophenol	UJ
SB13_3-4	8270D	99-09-2	3-Nitroaniline	UJ
SB13_3-4	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB13_3-4	8270D	100-01-6	4-Nitroaniline	UJ
SB13_3-4	8260C	107-13-1	Acrylonitrile	UJ
SB13_3-4	8270D	65-85-0	Benzoic Acid	UJ
SB13_3-4	8260C	74-83-9	Bromomethane	UJ
SB13_3-4	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB13_3-4	8081B	7421-93-4	Endrin Aldehyde	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB13_3-4	8081B	72-43-5	Methoxychlor	UJ
SB13_3-4	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB13_3-4	8260C	75-09-2	Methylene Chloride	UJ
SB13_3-4	8260C	100-42-5	Styrene	UJ
SB13_3-4	8260C	75-69-4	Trichlorofluoromethane	UJ
SB13_10-11	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB13_10-11	8270D	51-28-5	2,4-Dinitrophenol	UJ
SB13_10-11	8260C	591-78-6	2-Hexanone	UJ
SB13_10-11	8270D	88-75-5	2-Nitrophenol	UJ
SB13_10-11	8270D	99-09-2	3-Nitroaniline	UJ
SB13_10-11	8081B	72-55-9	4,4'-DDE	J
SB13_10-11	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB13_10-11	8270D	100-01-6	4-Nitroaniline	UJ
SB13_10-11	8081B	5103-71-9	Alpha Chlordane	J
SB13_10-11	8270D	65-85-0	Benzoic Acid	UJ
SB13_10-11	8260C	75-15-0	Carbon Disulfide	UJ
SB13_10-11	8260C	74-87-3	Chloromethane	UJ
SB13_10-11	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB13_10-11	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB13_10-11	8081B	7421-93-4	Endrin Aldehyde	UJ
SB13_10-11	8081B	5103-74-2	Gamma Chlordane	UJ
SB13_10-11	8081B	72-43-5	Methoxychlor	UJ
SB13_10-11	8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB13_10-11	8082A	11096-82-5	PCB-1260 (PCB 1260)	J
SB13_10-11	8260C	75-01-4	Vinyl Chloride	UJ
SB14_3-4	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB14_3-4	8270D	51-28-5	2,4-Dinitrophenol	UJ
SB14_3-4	8260C	591-78-6	2-Hexanone	UJ
SB14_3-4	8270D	88-75-5	2-Nitrophenol	UJ
SB14_3-4	8270D	99-09-2	3-Nitroaniline	UJ
SB14_3-4	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ

Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 23 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB14_3-4	8270D	100-01-6	4-Nitroaniline	UJ
SB14_3-4	8270D	65-85-0	Benzoic Acid	UJ
SB14_3-4	8260C	75-15-0	Carbon Disulfide	UJ
SB14_3-4	8260C	74-87-3	Chloromethane	UJ
SB14_3-4	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB14_3-4	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB14_3-4	8081B	7421-93-4	Endrin Aldehyde	UJ
SB14_3-4	8081B	5103-74-2	Gamma Chlordane	J
SB14_3-4	8081B	72-43-5	Methoxychlor	UJ
SB14_3-4	8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB14_3-4	8260C	75-01-4	Vinyl Chloride	UJ
SB15_3-4	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
SB15_3-4	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB15_3-4	8270D	51-28-5	2,4-Dinitrophenol	UJ
SB15_3-4	8260C	591-78-6	2-Hexanone	UJ
SB15_3-4	8270D	88-75-5	2-Nitrophenol	UJ
SB15_3-4	8270D	99-09-2	3-Nitroaniline	UJ
SB15_3-4	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB15_3-4	8270D	100-01-6	4-Nitroaniline	UJ
SB15_3-4	8270D	65-85-0	Benzoic Acid	UJ
SB15_3-4	8260C	75-15-0	Carbon Disulfide	UJ
SB15_3-4	7196A	18540-29-9	Chromium, Hexavalent	UJ
SB15_3-4	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB15_3-4	8081B	7421-93-4	Endrin Aldehyde	UJ
SB15_3-4	8081B	5103-74-2	Gamma Chlordane	J
SB15_3-4	8081B	72-43-5	Methoxychlor	UJ
SB15_3-4	8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB15_3-4	8260C	75-01-4	Vinyl Chloride	UJ
TMW06_061019	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
TMW06_061019	8270DSIM	91-58-7	2-Chloronaphthalene	UJ
TMW06_061019	8260C	591-78-6	2-Hexanone	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
TMW06_061019	8270DSIM	91-57-6	2-Methylnaphthalene	UJ
TMW06_061019	8270DSIM	83-32-9	Acenaphthene	UJ
TMW06_061019	8270DSIM	208-96-8	Acenaphthylene	UJ
TMW06_061019	8260C	67-64-1	Acetone	J
TMW06_061019	8260C	107-13-1	Acrylonitrile	UJ
TMW06_061019	6020	7440-36-0	Antimony	U (0.008)
TMW06_061019	8270D	85-68-7	Benzyl Butyl Phthalate	UJ
TMW06_061019	8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	UJ
TMW06_061019	8260C	75-71-8	Dichlorodifluoromethane	UJ
TMW06_061019	8270D	117-84-0	Di-N-Octylphthalate	UJ
TMW06_061019	8270DSIM	87-68-3	Hexachlorobutadiene	UJ
TMW06_061019	8270DSIM	67-72-1	Hexachloroethane	UJ
TMW06_061019	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	J
TMW06_061019	8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
TMW06_061019	8270DSIM	91-20-3	Naphthalene	UJ
TMW06_061019	8270DSIM	87-86-5	Pentachlorophenol	UJ
TMW08_061019	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
TMW08_061019	8270DSIM	91-58-7	2-Chloronaphthalene	UJ
TMW08_061019	8260C	591-78-6	2-Hexanone	UJ
TMW08_061019	8270DSIM	91-57-6	2-Methylnaphthalene	UJ
TMW08_061019	8270DSIM	83-32-9	Acenaphthene	UJ
TMW08_061019	8270DSIM	208-96-8	Acenaphthylene	UJ
TMW08_061019	8260C	67-64-1	Acetone	J
TMW08_061019	8260C	107-13-1	Acrylonitrile	UJ
TMW08_061019	6020	7440-36-0	Antimony	U (0.004)
TMW08_061019	6020	7440-36-0	Antimony	U (0.004)
TMW08_061019	8270D	85-68-7	Benzyl Butyl Phthalate	UJ
TMW08_061019	8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	UJ
TMW08_061019	8260C	75-71-8	Dichlorodifluoromethane	UJ
TMW08_061019	8270D	117-84-0	Di-N-Octylphthalate	UJ
TMW08_061019	8270DSIM	87-68-3	Hexachlorobutadiene	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
TMW08_061019	8270DSIM	67-72-1	Hexachloroethane	UJ
TMW08_061019	6020	7439-89-6	Iron	U (0.05)
TMW08_061019	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
TMW08_061019	8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
TMW08_061019	8270DSIM	91-20-3	Naphthalene	UJ
TMW08_061019	8082A	11096-82-5	PCB-1260 (PCB 1260)	UJ
TMW08_061019	8270DSIM	87-86-5	Pentachlorophenol	UJ
TMW12_061019	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
TMW12_061019	8270DSIM	91-58-7	2-Chloronaphthalene	UJ
TMW12_061019	8260C	591-78-6	2-Hexanone	UJ
TMW12_061019	8270DSIM	91-57-6	2-Methylnaphthalene	UJ
TMW12_061019	8270DSIM	83-32-9	Acenaphthene	UJ
TMW12_061019	8270DSIM	208-96-8	Acenaphthylene	UJ
TMW12_061019	8260C	67-64-1	Acetone	J
TMW12_061019	8260C	107-13-1	Acrylonitrile	UJ
TMW12_061019	6020	7440-36-0	Antimony	U (0.004)
TMW12_061019	6020	7440-36-0	Antimony	U (0.004)
TMW12_061019	8270DSIM	56-55-3	Benzo(a)Anthracene	U (0.1)
TMW12_061019	8270D	85-68-7	Benzyl Butyl Phthalate	UJ
TMW12_061019	8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	J
TMW12_061019	8260C	75-71-8	Dichlorodifluoromethane	UJ
TMW12_061019	8270D	117-84-0	Di-N-Octylphthalate	UJ
TMW12_061019	8270DSIM	87-68-3	Hexachlorobutadiene	UJ
TMW12_061019	8270DSIM	67-72-1	Hexachloroethane	UJ
TMW12_061019	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
TMW12_061019	8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
TMW12_061019	8270DSIM	91-20-3	Naphthalene	UJ
TMW12_061019	8082A	11096-82-5	PCB-1260 (PCB 1260)	UJ
TMW12_061019	8270DSIM	87-86-5	Pentachlorophenol	UJ
TMW11_061219	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ

Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 26 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
TMW11_061219	8260C	594-20-7	2,2-Dichloropropane	UJ
TMW11_061219	8270D	105-67-9	2,4-Dimethylphenol	UJ
TMW11_061219	8270D	51-28-5	2,4-Dinitrophenol	UJ
TMW11_061219	8270D	121-14-2	2,4-Dinitrotoluene	UJ
TMW11_061219	8270D	606-20-2	2,6-Dinitrotoluene	UJ
TMW11_061219	8270DSIM	91-57-6	2-Methylnaphthalene	UJ
TMW11_061219	8270D	88-75-5	2-Nitrophenol	UJ
TMW11_061219	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
TMW11_061219	8270DSIM	83-32-9	Acenaphthene	UJ
TMW11_061219	8260C	67-64-1	Acetone	J
TMW11_061219	6020	7429-90-5	Aluminum	J
TMW11_061219	8270DSIM	120-12-7	Anthracene	UJ
TMW11_061219	6020	7440-36-0	Antimony	U (0.004)
TMW11_061219	6020	7440-36-0	Antimony	U (0.004)
TMW11_061219	8270DSIM	56-55-3	Benzo(a)Anthracene	UJ
TMW11_061219	8270DSIM	50-32-8	Benzo(a)Pyrene	J
TMW11_061219	8270DSIM	205-99-2	Benzo(b)Fluoranthene	J
TMW11_061219	8270DSIM	191-24-2	Benzo(g,h,i)Perylene	J
TMW11_061219	8270DSIM	207-08-9	Benzo(k)Fluoranthene	J
TMW11_061219	8260C	74-83-9	Bromomethane	UJ
TMW11_061219	6020	7440-70-2	Calcium	J
TMW11_061219	6020	7440-70-2	Calcium	J
TMW11_061219	8260C	74-87-3	Chloromethane	UJ
TMW11_061219	8270DSIM	218-01-9	Chrysene	UJ
TMW11_061219	8270DSIM	53-70-3	Dibenz(a,h)Anthracene	J
TMW11_061219	8081B	53494-70-5	Endrin Ketone	UJ
TMW11_061219	8270DSIM	86-73-7	Fluorene	UJ
TMW11_061219	8270DSIM	118-74-1	Hexachlorobenzene	UJ
TMW11_061219	8270DSIM	87-68-3	Hexachlorobutadiene	UJ
TMW11_061219	8270DSIM	193-39-5	Indeno(1,2,3-c,d)Pyrene	J
TMW11_061219	6020	7439-89-6	Iron	U (0.05)
TMW11_061219	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
TMW11_061219	8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
TMW11_061219	8082A	11100-14-4	PCB-1268 (PCB 1268)	UJ
TMW11_061219	8270DSIM	87-86-5	Pentachlorophenol	UJ
TMW11_061219	8270DSIM	85-01-8	Phenanthrene	UJ
TMW11_061219	8270DSIM	129-00-0	Pyrene	U (0.1)
TMW11_061219	6020	7440-62-2	Vanadium	J
TP01_2-2.5	8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
TP01_2-2.5	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
TP01_2-2.5	8260C	591-78-6	2-Hexanone	UJ
TP01_2-2.5	8081B	72-54-8	4,4'-DDD	UJ
TP01_2-2.5	8081B	72-55-9	4,4'-DDE	J
TP01_2-2.5	8260C	67-64-1	Acetone	UJ
TP01_2-2.5	6010D	7440-36-0	Antimony	J
TP01_2-2.5	6010D	7440-38-2	Arsenic	J
TP01_2-2.5	6010D	7440-39-3	Barium	J
TP01_2-2.5	6010D	7440-43-9	Cadmium	J
TP01_2-2.5	8260C	74-87-3	Chloromethane	UJ
TP01_2-2.5	6010D	7440-47-3	Chromium, Total	J
TP01_2-2.5	6010D	7440-48-4	Cobalt	J
TP01_2-2.5	6010D	7440-50-8	Copper	J
TP01_2-2.5	8260C	75-71-8	Dichlorodifluoromethane	UJ
TP01_2-2.5	8081B	60-57-1	Dieldrin	J
TP01_2-2.5	8081B	5103-74-2	Gamma Chlordane	J
TP01_2-2.5	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
TP01_2-2.5	6010D	7439-89-6	Iron	J
TP01_2-2.5	6010D	7439-92-1	Lead	J
TP01_2-2.5	8081B	72-43-5	Methoxychlor	UJ
TP01_2-2.5	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
TP01_2-2.5	6010D	7440-02-0	Nickel	J
TP01_2-2.5	6010D	7440-09-7	Potassium	J
TP01_2-2.5	6010D	7440-22-4	Silver	J



Data Usability Summary Report For 2413 3rd Avenue June and October 2019 Groundwater Samples Langan Project No.: 170396002 January 13, 2020 Page 28 of 42

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
TP01_2-2.5	6010D	7440-62-2	Vanadium	J
TP01_2-2.5	6010D	7440-66-6	Zinc	J
TP02_1.5-2	8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
TP02_1.5-2	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
TP02_1.5-2	8081B	72-54-8	4,4'-DDD	UJ
TP02_1.5-2	8260C	67-64-1	Acetone	UJ
TP02_1.5-2	8081B	5103-71-9	Alpha Chlordane	J
TP02_1.5-2	6010D	7440-39-3	Barium	J
TP02_1.5-2	8081B	319-85-7	Beta Bhc (Beta Hexachlorocyclohexane)	UJ
TP02_1.5-2	6010D	7440-43-9	Cadmium	J
TP02_1.5-2	6010D	7440-47-3	Chromium, Total	J
TP02_1.5-2	8260C	75-71-8	Dichlorodifluoromethane	UJ
TP02_1.5-2	8081B	60-57-1	Dieldrin	J
TP02_1.5-2	8081B	5103-74-2	Gamma Chlordane	J
TP02_1.5-2	8081B	72-43-5	Methoxychlor	UJ
TP02_1.5-2	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
TP02_1.5-2	6010D	7440-02-0	Nickel	J
TP03_1-1.5	8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
TP03_1-1.5	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
TP03_1-1.5	8081B	72-54-8	4,4'-DDD	UJ
TP03_1-1.5	8081B	50-29-3	4,4'-DDT	J
TP03_1-1.5	8260C	67-64-1	Acetone	UJ
TP03_1-1.5	8081B	319-84-6	Alpha BHC (Alpha Hexachlorocyclohexane)	J
TP03_1-1.5	6010D	7440-39-3	Barium	J
TP03_1-1.5	6010D	7440-43-9	Cadmium	J
TP03_1-1.5	8081B	57-74-9	Chlordane (alpha and gamma)	J
TP03_1-1.5	6010D	7440-47-3	Chromium, Total	J
TP03_1-1.5	8260C	75-71-8	Dichlorodifluoromethane	UJ
TP03_1-1.5	8081B	60-57-1	Dieldrin	J
TP03_1-1.5	8081B	5103-74-2	Gamma Chlordane	J



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
TP03_1-1.5	8081B	72-43-5	Methoxychlor	UJ
TP03_1-1.5	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
TP03_1-1.5	6010D	7440-02-0	Nickel	J
SB16_0-2	8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
SB16_0-2	8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB16_0-2	8081B	72-54-8	4,4'-DDD	UJ
SB16_0-2	8260C	67-64-1	Acetone	UJ
SB16_0-2	6010D	7440-38-2	Arsenic	U (1)
SB16_0-2	6010D	7440-39-3	Barium	J
SB16_0-2	6010D	7440-39-3	Barium	J
SB16_0-2	8081B	319-85-7	Beta Bhc (Beta Hexachlorocyclohexane)	UJ
SB16_0-2	6010D	7440-43-9	Cadmium	UJ
SB16_0-2	6010D	7440-43-9	Cadmium	J
SB16_0-2	8081B	57-74-9	Chlordane (alpha and gamma)	J
SB16_0-2	6010D	7440-47-3	Chromium, Total	J
SB16_0-2	6010D	7440-47-3	Chromium, Total	UJ
SB16_0-2	8260C	75-71-8	Dichlorodifluoromethane	UJ
SB16_0-2	8081B	5103-74-2	Gamma Chlordane	J
SB16_0-2	8081B	72-43-5	Methoxychlor	UJ
SB16_0-2	8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB16_0-2	6010D	7440-02-0	Nickel	J

### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

### MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

### VOCs by SW-846 Method 8260C:

### L1924686:

The initial calibration (ICAL) for instrument VOA122 exhibited response factors (RFs) below the control limit for acetone (0.033), acrylonitrile (0.041), 2-butanone (0.049), 1,4-dioxane (0.001), 4-methyl-2-pentanone (0.062), and 2-hexanone (0.100). The associated results in sample TMW06_061019, TMW08_061019, and TMW12_061019 are qualified as "J" or "UJ" based on potential indeterminate bias.

The initial calibration verification (ICV) analyzed on 6/11/2019 at 19:02 exhibited a percent difference (%D) above the control limit for dichlorodifluoromethane (-25.6%). The associated results in sample TMW06_061019, TMW08_061019, and TMW12_061019 are qualified as "UJ" based on potential indeterminate bias.

### <u>L1926329:</u>

The ICAL for instrument ELAINE exhibited RFs below the control limit for acetone (0.054), 2butanone (0.073), 1,4-dioxane (0.002), and 4-methyl-2-pentanone (0.070). The associated results in sample TMW11_061219 are qualified as "J" or "UJ" based on potential indeterminate bias.

The continuing calibration verification (CCV) analyzed on 6/17/2019 at 07:06 exhibited %Ds above the control limit for chloromethane (30.0%), bromomethane (50.2%), and 2,2-dichloropropane (-24.0%). The associated results in sample TMW11_061219 are qualified as "UJ" based on potential indeterminate bias.

### <u>19J0468:</u>

The laboratory control sample and duplicate (LCS/LCSD) for batch BJ90897 exhibited percent recoveries below the lower control limit (LCL) for chlorobenzene (87.7%), tetrachloroethylene (80.2%), cis-1,2-dichloroethylene (78%), trans-1,2-dichloroethene (78.8%), tert-butyl methyl ether (74.2%), chloroform (81.9%, 77%), benzene (83.5%, 77%), and 1,1-dichloroethane (81.9%, 76.3%). The associated results in sample MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, RIGWFB01_100919, and RITB06_100919 are qualified as "J" or "UJ" based on potential low bias.

The ICV analyzed on 10/7/2019 at 17:57 exhibited %Ds above the control limit for acetone (-31.8%) and acrolein (-42.1%). The associated results in sample MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, RIGWFB01_100919, and RITB06_100919 are qualified as "UJ" based on potential indeterminate bias.



The CCV analyzed on 10/15/2019 at 10:21 exhibited %Ds above the control limit for 1,1,2,2-tetrachloroethane (-23.2%), 1,1,2-trichloro-1,2,2-trifluoroethane (21.0%), 1,2,3-trichloropropane (-21.3%), 1,2-dibromo-3-chloropropane (-22.9%), 2-hexanone (-23.5%), bromomethane (20.5%), carbon tetrachloride (21.7%), dichlorodifluoromethane (26.0%), trichlorofluoromethane (31.3%), and vinyl chloride (20.2%). The associated results in sample MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, RIGWFB01_100919, and RITB06_100919 are qualified as "UJ" based on potential indeterminate bias.

### SVOCs by SW-846 Method 8270D and 8270D SIM:

### L1924686:

The ICV analyzed on 6/2/2019 at 12:59 exhibited %Ds above the control limit for butyl benzyl phthalate (20.0%) and di-n-octylphthalate (23.4%). The associated results in sample TMW06_061019, TMW08_061019, and TMW12_061019 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 6/16/2019 at 14:54 exhibited a %D above the control limit for bis(2-ethylhexyl)phthalate (35.2%). The associated results in sample TMW06_061019, TMW08_061019, and TMW12_061019 are qualified as "J" or "UJ" based on potential indeterminate bias.

The method blank (MB) for batch WG1248650 exhibited a detection of benzo(a)anthracene (0.02 ug/L). The associated results in sample TMW12_061019 are qualified as "U" at the reporting limit based on potential blank contamination.

The LCS/LCSD for batch WG1248650 exhibited relative percent differences (RPDs) above the control limit for 2-chloronaphthalene (47%), 2-methylnaphthalene (54%), acenaphthene (42%), acenaphthylene (42%), hexachlorobutadiene (64%), hexachloroethane (64%), and naphthalene (62%). The associated results in sample TMW06_061019, TMW08_061019, and TMW12_061019 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 6/16/2019 at 17:07 exhibited a %D above the control limit for pentachlorophenol (33.1%). The associated results in sample TMW06_061019, TMW08_061019, and TMW12_061019 are qualified as "UJ" based on potential indeterminate bias.

### <u>L1926329:</u>

The CCV analyzed on 6/20/2019 at 10:49 exhibited %Ds above the control limit for 2-nitrophenol (-26.7%), 2,4-dimethylphenol (35.4%), 2,6-dinitrotoluene (-21.2%), 2,4-dinitrophenol (-46.9%),



2,4-dinitrotoluene (-25.2%), and 4,6-dinitro-o-cresol (-47.7%). The associated results in sample TMW11_061219 are gualified as "UJ" based on potential indeterminate bias.

The MB for batch WG1248886 exhibited a detection of pyrene (0.02 ug/L). The associated results in sample TMW11_061219 are qualified as "U" at the reporting limit based on potential blank contamination.

The LCS/LCSD for batch WG1248886 exhibited RPDs above the control limit for 2methylnaphthalene (42%), acenaphthene (45%), anthracene (47%), benzo(a)anthracene (52%), benzo(a)pyrene (49%), benzo(b)fluoranthene (49%), benzo(ghi)perylene (62%), benzo(k)fluoranthene (47%), chrysene (50%), dibenzo(a,h)anthracene (59%), fluorene (42%), hexachlorobenzene (46%), indeno(1,2,3-cd)pyrene (63%), and phenanthrene (48%). The associated results in sample TMW11_061219 are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 6/17/2019 at 13:05 exhibited %Ds above the control limit for hexachlorobutadiene (21.6%) and pentachlorophenol (40.5%). The associated results in sample TMW11_061219 are qualified as "UJ" based on potential indeterminate bias.

### <u>19J0468:</u>

The CCV analyzed on 10/14/2019 at 08:25 exhibited %Ds above the control limit for 2,4dinitrophenol (30.4%), 4,6-dinitro-2-methylphenol (40.9%), acetophenone (-26.0%), aniline (-23.9%), benzaldehyde (-42.6%), benzidine (-41.8%), bis(2-chloroethyl)ether (-22.2%), bis(2chloroisopropyl)ether (-33.2%), and n-nitroso-di-n-propylamine (-20.7%). The associated results in sample MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, and RIGWFB01_100919 are qualified as "UJ" based on potential indeterminate bias.

The MB for batch BJ90749 exhibited a detection of bis(2-ethylhexyl)phthalate (1.3 ug/L). The associated results in sample RIGWFB01_100919 are qualified as "U" at the sample concentration based on potential blank contamination.

The CCV analyzed on 10/14/2019 at 08:59 exhibited a %D above the control limit for pentachlorophenol (-47.1%). The associated results in sample MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, and RIGWFB01_100919 are qualified as "UJ" based on potential indeterminate bias.

# LANGAN
### PCBs by SW-846 Method 8082A:

### <u>L1924686:</u>

The LCS/LCSD for batch WG1248400 exhibited a RPD above the control limit for PCB 1260 (56%). The associated results in sample TMW08_061019 and TMW12_061019 are qualified as "UJ" based on potential indeterminate bias.

#### <u>L1926329:</u>

The CCV analyzed on 6/18/2019 at 04:34 exhibited a %D above the control limit for PCB 1268 (26.7%). The associated results in sample TMW11_061219 are qualified as "UJ" based on potential indeterminate bias.

### Pesticides by SW-846 Method 8081B:

#### L1926329:

The CCV analyzed on 6/18/2019 at 16:34 exhibited a %D above the control limit for endrin ketone (-31.0%). The associated results in sample TMW11_061219 are qualified as "UJ" based on potential indeterminate bias.

### Metals by SW-846 Method 6020B and 6010D:

### <u>L1924686:</u>

The MB for batch WG1249156 exhibited a detection of antimony, total (0.00088 mg/L). The associated results in sample TMW06_061019, TMW08_061019, and TMW12_061019 are qualified as "U" at the reporting limit based on potential blank contamination.

The MB for batch WG1249325 exhibited a detection of antimony, dissolved (0.00094 mg/L). The associated results in sample TMW08_061019 and TMW12_061019 are qualified as "U" at the reporting limit based on potential blank contamination.

The MB for batch WG1249325 exhibited a detection of iron, dissolved (0.0209 mg/L). The associated results in sample TMW08_061019 are qualified as "U" at the reporting limit based on potential blank contamination.

#### L1926329:

The MB for batch WG1250346 exhibited a detection of dissolved antimony (0.00116 mg/L). The associated results in sample TMW11_061219 are qualified as "U" at the reporting limit based on potential blank contamination.

The MS for batch WG1250346 exhibited a percent recovery above the UCL for dissolved calcium (128%). The associated results in sample TMW11_061219 are qualified as "J" based on potential high bias.

The MB for batch WG1250347 exhibited a detection of total antimony (0.00062 mg/L). The associated results in sample TMW11_061219 are qualified as "U" at the reporting limit based on potential blank contamination.

The matrix spike (MS) for batch WG1250347 exhibited a percent recovery above the upper control limit (UCL) for total calcium (131%). The associated results in sample TMW11_061219 are qualified as "J" based on potential high bias.

The laboratory duplicate and parent sample (TMW11_061219) exhibited RPDs above the control limit for total aluminum (23%) and total vanadium (21%). The associated results are qualified as "J" based on potential indeterminate bias.

The continuing calibration blank (CCB) analyzed on 6/19/2019 at 15:22 exhibited a detection of dissolved iron (28.8 ug/L). The associated results in sample TMW11_061219 are qualified as "U" at the reporting limit based on potential blank contamination.

### <u> 19J0468:</u>

The LCS for batch BJ90783 exhibited percent recoveries below the LCL for total potassium (75.9%), total silver (77.6%), and total calcium (79.9%). The associated results in sample MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, and RIGWFB01_100919 are qualified as "J" or "UJ" based on potential low bias.

The field duplicate and parent sample (RIGWDUP01_100919 and MW24_100919) exhibited absolute differences above the RL for total aluminum (0.058 mg/L) and dissolved selenium (0.00256 mg/L). The associated results are qualified as "J" based on potential indeterminate bias.

The CCV analyzed on 10/15/2019 at 15:23 exhibited percent recoveries below the LCL for total cobalt (89.2%), total iron (89.4%), total lead (87.4%), total magnesium (88.3%), total nickel (89.5%), and total zinc (86.5%). The associated results in sample MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, and RIGWFB01_100919 are qualified as "J" or "UJ" based on potential low bias.

The CCV analyzed on 10/15/2019 at 16:32 exhibited a percent recovery below the LCL for dissolved potassium (89.4%). The associated results in sample MW18_100919, MW19_100919, and MW24_100919 are qualified as "J" based on potential low bias.

The CCV analyzed on 10/15/2019 at 17:08 exhibited percent recoveries below the LCL for dissolved calcium (88.9%), dissolved iron (89.5%), dissolved magnesium (89.6%), and dissolved zinc (89.1%). The associated results in sample MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, and RIGWFB01_100919 are qualified as "J" or "UJ" based on potential low bias.

The LCS for batch BJ90782 exhibited a percent recovery below the LCL for total antimony (76.6%). The associated results in sample MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, and RIGWFB01_100919 are qualified as "UJ" based on potential low bias.

The laboratory duplicate and parent sample (MW24_100919) exhibited a RPD above the control limit for total selenium (38.9%). The associated results are qualified as "J" based on potential indeterminate bias.

The MS for batch BJ90782 exhibited a percent recovery below the LCL for total beryllium (53.8%). The associated results in sample MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, and RIGWFB01_100919 are qualified as "UJ" based on potential low bias.

The LCS for batch BJ90922 exhibited percent recoveries below the LCL for dissolved antimony (78.9%) and dissolved beryllium (78.0%). The associated results in sample MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, and RIGWFB01_100919 are qualified as "UJ" based on potential low bias.

The CCV analyzed on 10/16/2019 at 18:36 exhibited a percent recovery below the LCL for dissolved cadmium (85.2%). The associated results in sample MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, and RIGWFB01_100919 are qualified as "UJ" based on potential low bias.

The CCV analyzed on 10/16/2019 at 18:36 exhibited a percent recovery above the UCL for dissolved selenium (111%). The associated results in sample MW18_100919 and MW19_100919 are qualified as "J" based on potential high bias.

The serial dilution for batch BJ90783 exhibited %Ds above the control limit for total manganese (31.5%) and total sodium (17.5%). The associated results in samples MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, and RIGWFB01_100919 are qualified as "J" or "UJ" based on potential indeterminate bias.

The serial dilution for batch BJ90921 exhibited %Ds above the control limit for dissolved manganese (45.8%) and dissolved sodium (31.8%). The associated results in samples



MW18_100919, MW19_100919, MW24_100919, RIGWDUP01_100919, and RIGWFB01_100919 are gualified as "J" or "UJ" based on potential indeterminate bias.

The serial dilution for batch BJ90921 exhibited a %D above the control limit for dissolved potassium (31.8%). The associated results in samples RIGWDUP01_100919 and RIGWFB01_100919 are qualified as "J" or "UJ" based on potential indeterminate bias.

### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

### VOCs by SW-846 Method 8260C:

### <u>L1924686:</u>

The ICV analyzed on 6/11/2019 at 19:02 exhibited a %D above the control limit for acetone (- 30.3%). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 6/13/2019 at 08:30 exhibited %Ds above the control limit for acetone (-21.2%) and 1,4-dioxane (-33.7%). The associated results were previously qualified. No further action is necessary.

### <u>L1926329:</u>

The CCV analyzed on 6/17/2019 at 07:06 exhibited a %D above the control limit for 1,4-dioxane (25.8%). The associated results were previously qualified. No further action is necessary.

### <u> 19J0468:</u>

The field blank (RIGWFB01_100919) exhibited a detection of carbon disulfide (0.49 ug/L). The associated results are non-detections. No qualification is necessary.

The trip blank (RITB06_100919) exhibited a detection of chloromethane (0.28 ug/L). The associated results are non-detections. No qualification is necessary.

The CCV analyzed on 10/15/2019 at 10:21 exhibited a %D above the control limit for acetone (- 30.8%). The associated results were previously qualified. No further action is necessary.

### SVOCs by SW-846 Method 8270D and 8270D SIM:

#### L1924686:

The sample TMW08_061019 exhibited a percent recovery above the UCL for the surrogate nitrobenzene-d5 (131%). The other two base/neutral extractable surrogates were recovered within the control limits. No qualification is necessary.

The LCS/LCSD for batch WG1248646 exhibited percent recoveries above the UCL for 1,2,4-trichlorobenzene (118%, 117%), 1,4-dichlorobenzene (114%, 116%), 2,4-dichlorophenol (137%, 136%), 2-chlorophenol (131%, 136%), 4-nitrophenol (109%, 106%), acenaphthene (129%, 129%), acenaphthylene (137%, 136%), acetophenone (131%, 133%), benzo(a)anthracene (143%, 144%), benzo(ghi)perylene (160%, 156%), benzyl alcohol (120%, 124%), dibenzo(a,h)anthracene (142%, 144%), n-nitrosodi-n-propylamine (140%, 147%), p-chloro-m-cresol (138%, 135%), and 2-nitrophenol (137%). The associated results are non-detections. No qualification is necessary.

The CCV analyzed on 6/16/2019 at 14:54 exhibited a %D above the control limit for di-noctylphthalate (35.3%). The associated results were previously qualified. No further action is necessary.

### <u>L1926329:</u>

The LCS/LCSD for batch WG1248885 exhibited percent recoveries above the UCL for 1,2,4-trichlorobenzene (100%), 4-nitrophenol (99%, 105%), and p-chloro-m-cresol (110%, 113%). The associated results are non-detections. No qualification is necessary.

The MB for batch WG1248886 exhibited detections of anthracene (0.03 ug/L), fluoranthene (0.02 ug/L), fluorene (0.02 ug/L), and phenanthrene (0.04 ug/L). The associated results are nondetections. No qualification is necessary.

The CCV analyzed on 6/17/2019 at 13:05 exhibited %Ds above the control limit for hexachlorobenzene (22.0%) and dibenzo(a,h)anthracene (-27.4%). The associated results were previously qualified. No further action is necessary.

#### <u>19J0468:</u>

The MS and matrix spike duplicate (MSD) for batch BJ90749 exhibited RPDs above the control limit for 4-nitrophenol (34.5%), 2,4-dimethylphenol (26.6%), bis(2-chloroethoxy)methane (28.6%), 2,4-dichlorophenol (33.1%), dimethyl phthalate (45.7%), 2,6-dinitrotoluene (46.5%), hexachlorocyclopentadiene (34.7%), 2,4,6-trichlorophenol (32.2%), 2-nitroaniline (34%), 1,2,4,5-

tetrachlorobenzene (30.1%), 2,4,5-trichlorophenol (32.2%), and 3-nitroaniline (27.1%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The MS/MSD for batch BJ90749 exhibited percent recoveries below the LCL for benzoic acid (0%) and caprolactam (0%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The field blank (RIGWFB01_100919) exhibited a detection of bis(2-ethylhexyl)phthalate (0.831 ug/L). The associated results are non-detections. No qualification is necessary.

### PFAS by USEPA Method 537M:

### <u>19J0468:</u>

The MS for batch BJ90667 exhibited a percent recovery above the UCL for perfluorooctanesulfonic acid (150%, 151%). Organic results are not qualified on the basis of MS recoveries alone. No qualification is necessary.

The sample MW24_100919 exhibited a percent recovery above the UCL for the surrogate sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (177%). The associated results are non-detections. No qualification is necessary.

The sample RIGWDUP01_100919 exhibited a percent recovery above the UCL for the surrogate sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (182%). The associated results are non-detections. No qualification is necessary.

### Herbicides by SW-846 Method 8151A:

### <u> 19J0468:</u>

The MS/MSD for batch BJ90892 exhibited percent recoveries below the LCL for 2,4,5-tp (24.4%, 18.8%), 2,4,5-t (19.4%, 15%), and 2,4-d (25.6%, 19.4%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The CCV analyzed on 10/15/2019 at 17:21 exhibited a %D above the control limit for 2,4,5-t (-24.7%). No associated results are reported from the corresponding column. No qualification is necessary.

### PCBs by SW-846 Method 8082A:

### <u>L1924686:</u>

The MB for batch WG1248400 exhibited detections of PCB 1260 (0.035 ug/L) and PCBs, total (0.035 ug/L). The associated results are non-detections. No qualification is necessary.



### <u>19J0468:</u>

The sample MW18_100919 exhibited a percent recovery above the UCL for the surrogate tetrachloro-m-xylene (124%). No associated results are reported from the corresponding column. No qualification is necessary.

The sample MW19_100919 exhibited a percent recovery above the UCL for the surrogate tetrachloro-m-xylene (126%). No associated results are reported from the corresponding column. No qualification is necessary.

### Pesticides by SW-846 Method 8081B:

### <u>19J0468:</u>

The LCS for batch BJ90704 exhibited percent recoveries above the UCL for p,p'-DDT (154%) and methoxychlor (177%). The associated results are non-detections. No qualification is necessary.

The MS for batch BJ90704 exhibited a percent recovery above the UCL for methoxychlor (189%, 206%). Organic results are not qualified on the basis of MS recoveries alone. No qualification is necessary.

The MS/MSD for batch BJ90704 exhibited a RPD above the control limit for p,p'-DDT (21%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

### Metals by SW-846 Method 6020B and 6010D:

### <u>L1924686:</u>

The MB for batch WG1249156 exhibited a detection of iron, total (0.0236 mg/L). The associated results are >10X the contamination. No qualification is necessary.

The CCB analyzed on 6/17/2019 at 17:28 exhibited a detection of total antimony (2.21 ug/L). The associated results were previously qualified. No further action is necessary.

The CCB analyzed on 6/17/2019 at 17:28 exhibited a detection of total iron (26.6 ug/L). The associated results are >10X the contamination. No qualification is necessary.

The CCB analyzed on 6/17/2019 at 16:32 exhibited a detection of dissolved iron (29.3 ug/L). The associated results were previously qualified. No further action is necessary.

The CCB analyzed on 6/17/2019 at 16:32 exhibited a detection of dissolved antimony (2.17 ug/L). The associated results were previously qualified. No further action is necessary.

The CCB analyzed on 6/17/2019 at 17:28 exhibited a detection of dissolved antimony (2.21 ug/L). The associated results were previously qualified. No further action is necessary.

### <u>L1926329:</u>

The MS/MSD for batch WG1250346 exhibited a percent recovery below the LCL for dissolved sodium (54%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS for batch WG1250347 exhibited a percent recovery above the UCL for total antimony (132%). The associated results were previously qualified. No further action is necessary.

The MS/MSD for batch WG1250347 exhibited a percent recovery below the LCL for total iron (70%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The CCB analyzed on 6/19/2019 at 16:19 exhibited detections of dissolved antimony (3.86 ug/L) and dissolved thallium (0.158 ug/L). The associated results were previously qualified or are non-detections. No further action or qualification is necessary.

The CCB analyzed on 6/19/2019 at 16:19 exhibited detections of total antimony (3.86 ug/L) and total thallium (0.158 ug/L). The associated results were previously qualified or are non-detections. No further action or qualification is necessary.

The CCB analyzed on 6/19/2019 at 17:14 exhibited a detection of total iron (29.9 ug/L). The associated results are >10X the contamination. No qualification is necessary.

### <u>19J0468:</u>

The MS/MSD for batch BJ90783 exhibited percent recoveries above the UCL for total magnesium (572%), total potassium (128%), total sodium (566%), and total calcium (833%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The post digestion spike for batch BJ90783 exhibited percent recoveries above the UCL for total magnesium (323%) and total calcium (275%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The post digestion spike for batch BJ90783 exhibited percent recoveries below the LCL for total potassium (28.6%) and total sodium (-160%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The post digestion spike for batch BJ90921 exhibited percent recoveries below the LCL for dissolved magnesium (-224%), dissolved potassium (-113%), dissolved sodium (-955%), and dissolved calcium (-862%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The field blank (RIGWFB01_100919) exhibited detections of total aluminum (0.0804 mg/L), total zinc (0.0869 mg/L), total calcium (0.087 mg/L), dissolved magnesium (0.096 mg/L), dissolved zinc (0.0557 mg/L), and dissolved calcium (0.135 mg/L). The associated results are >10X the contamination or non-detections. No qualification is necessary.

The CCV analyzed on 10/15/2019 at 15:23 exhibited percent recoveries below the LCL for total calcium (87.4%) and total potassium (87.3%). The associated results were previously qualified. No further action is necessary.

The laboratory duplicate and parent sample (MW24_100919) exhibited a RPD above the control limit for dissolved selenium (35.0%). The associated results were previously qualified. No further action is necessary.

The MS for batch BJ90922 exhibited a percent recovery below the LCL for dissolved beryllium (58.4%). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 10/16/2019 at 17:32 exhibited percent recoveries below the LCL for total antimony (86.0%) and total beryllium (86.4%). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 10/16/2019 at 18:36 exhibited percent recoveries below the LCL for dissolved antimony (77.9%) and dissolved beryllium (78.4%). The associated results were previously qualified. No further action is necessary.

The serial dilution for batch BJ90783 exhibited a %D above the control limit for total aluminum (318%). The parent sample concentration is <50X the MDL. No qualification is necessary.

The serial dilution for batch BJ90783 exhibited %Ds above the control limit for total calcium (19.8%), total magnesium (29.5%), and total potassium (14.8%). The associated results are previously qualified. No further action is necessary.

The serial dilution for batch BJ90921 exhibited a %D above the control limit for dissolved aluminum (592%). The parent sample concentration is <50X the MDL. No qualification is necessary.

The serial dilution for batch BJ90921 exhibited %Ds above the control limit for dissolved calcium (28.0%) and dissolved magnesium (34.8%). The associated results are previously qualified. No further action is necessary.

### Mercury by SW-846 Method 7470A and 7473:

### L1926329:

The MB for batch WG1250013 exhibited a detection of dissolved mercury (0.00009 mg/L). The associated results are non-detections. No qualification is necessary.

### COMMENTS:

A field duplicate and parent sample pairs were collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than ±1X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 30%. The following field duplicate and parent sample pairs were compared to the precision criteria:

• RIGWDUP01_100919 and MW24_100919: total aluminum, dissolved selenium

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified, with the exception of the rejected results. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%. Signed:

Emily Strake, CEP Senior Project Chemist



#### 2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To:	Sherief Saleh, Langan Senior Staff Scientist
From:	Emily Strake, Langan Senior Project Chemist
Date:	January 14, 2020
Re:	Data Usability Summary Report For 2413 Third Avenue June through October 2019 Soil Samples Langan Project No.: 170396002

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of soil samples collected in June through October 2019 by Langan Engineering and Environmental Services ("Langan") at the 2413 Third Avenue site ("the site"). The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) and York Analytical Laboratories, Inc. (NYSDOH NELAP registration # 10854) for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), 1,4-dioxane, per- and polyfluoroalkyl substances (PFAS), herbicides, polychlorinated biphenyls (PCBs), pesticides, metals including mercury (Hg), TCLP lead and mercury, hexavalent chromium (CrVI), trivalent chromium (CrIII), and total solids (%S) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D and 8270D SIM
- 1,4-Dioxane by SW-846 Method 8270D SIM
- PFAS by USEPA Method 537M
- Herbicides by SW-846 Method 8151A
- PCBs by SW-846 Method 8082A
- Pesticides by SW-846 Method 8081B
- Metals by SW-846 Method 6010D and 6020B
- Mercury by SW-846 Method 7470A and 7473
- Hexavalent Chromium by SW-846 Method 7196A
- Trivalent Chromium (calculated)
- Total Solids by Standard Method 2540G

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

### TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1927257	L1927257-01	SB06_1-2	6/6/2019	TCLP Lead, %S
L1927257	L1927257-02	SB06_7-8	6/6/2019	TCLP Lead, %S
L1927257	L1927257-03	SB07_2-3	6/6/2019	TCLP Lead, %S
L1924067	L1924067-01	SB06_1-2	6/6/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924067	L1924067-02	SB06_7-8	6/6/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924067	L1924067-03	SB07_2-3	6/6/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924067	L1924067-04	SB07_5-6	6/6/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924067	L1924067-05	SB08_1-2	6/6/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924067	L1924067-06	SB08_5-6	6/6/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924067	L1924067-07	SB09_2-3	6/6/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924067	L1924067-08	SB09_5-6	6/6/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924067	L1924067-09	SB12_3-4	6/6/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924067	L1924067-10	SB12_5-6	6/6/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1927257	L1927257-04	SB13_3-4	6/7/2019	TCLP Lead, %S
L1927257	L1927257-05	SB14_3-4	6/7/2019	TCLP Lead, %S
L1927257	L1927257-06	SB15_3-4	6/7/2019	TCLP Lead, %S
L1926266	L1926266-01	SB11_1-2	6/7/2019	TCLP Lead, %S
L1926266	L1926266-02	SB13_3-4	6/7/2019	TCLP Mercury, %S
L1926266	L1926266-03	SB15_3-4	6/7/2019	TCLP Mercury, %S
L1924383	L1924383-01	SB10_1-2	6/7/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924383	L1924383-02	SB10_7-8	6/7/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924383	L1924383-03	SB11_1-2	6/7/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924383	L1924383-04	SB11_5-6	6/7/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S



SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1924383	L1924383-05	SB13_3-4	6/7/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924383	L1924383-06	SB13_10-11	6/7/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924383	L1924383-07	SB14_3-4	6/7/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1924383	L1924383-08	SB15_3-4	6/7/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1927636	L1927636-01	TP01_2-2.5	6/21/2019	TCLP Lead, %S
L1927241	L1927241-01	TP01_2-2.5	6/21/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1927241	L1927241-02	TP02_1.5-2	6/21/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1927241	L1927241-03	TP03_1-1.5	6/21/2019	VOCs, SVOCs, Pesticides, PCBs, Metals, CrVI, CrIII, %S
L1927241	L1927241-04	SB16_0-2	6/21/2019	TCLP Lead, %S
19 1299	19 1299-01	SB16_0-2	9/27/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19 1299	19 1299-02	SB16_2-4	9/27/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19 1299	19 1299-03	SB17_0-2	9/27/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19 1299	19 1299-04	SB17_5.5-7.5	9/27/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19 1299	19 1299-05	SB31_0-2	9/27/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19 1299	19 1299-06	SB31_6.5-8.5	9/27/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19 1299	19 1299-07	RITB01_092719	9/27/2019	VOCs, %S
19 1369	19 1369-01	SB21_0-2	9/30/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19 1369	19 1369-02	SB21_5-7	9/30/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19 1369	19 1369-03	SB22_0-2	9/30/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
19 1369	19 1369-04	SB22_5-7	9/30/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19 1369	19 1369-05	SB23_0-2	9/30/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19 1369	19 1369-06	SB23_5.5-7.5	9/30/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19 1369	19 1369-07	RISODUP01_09301 9	9/30/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19 1369	19 1369-08	RISOFB01_093019	9/30/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19 1369	19 1369-09	RITB02_093019	9/30/2019	VOCs, %S
19J0068	19J0068-01	SB18_0-2	10/1/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0068	19J0068-02	SB18_10-12	10/1/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0068	19J0068-03	SB24_0-2	10/1/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0068	19J0068-04	SB24_10-12	10/1/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII
19J0068	19J0068-05	SB24_15-16	10/1/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0068	19J0068-06	SB25_0-2	10/1/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0068	19J0068-07	SB25_6-8	10/1/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0068	19J0068-08	SB25_11-12	10/1/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0068	19J0068-09	SB26_0-2	10/1/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0068	19J0068-10	SB26_6-8	10/1/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0068	19J0068-11	RITB03_100119	10/1/2019	VOCs, %S
19J0144	19J0144-01	SB19_0-2	10/2/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S



SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
19J0144	19J0144-02	SB19_8-9	10/2/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0144	19J0144-03	SB27_0-2	10/2/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0144	19J0144-04	SB27_6-8	10/2/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0144	19J0144-05	SB28_0-2	10/2/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0144	19J0144-06	SB28_5.5-7.5	10/2/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0144	19J0144-07	RITB04_100219	10/2/2019	VOCs, %S
19J0216	19J0216-01	SB20_0-2	10/3/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0216	19J0216-02	SB20_13-15	10/3/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0216	19J0216-03	SB30_0-2	10/3/2019	VOCs, SVOCs, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0216	19J0216-04	SB30_10-12	10/3/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0216	19J0216-05	RISODUP02_10031 9	10/3/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S
19J0216	19J0216-06	RITB05_100319	10/3/2019	VOCs, %S
19J0216	19J0216-07	RISOFB02_100319	10/3/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, Pesticides, PCBs, Herbicides, Metals, CrVI, CrIII, %S

### Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Validating Chlorinated Herbicides" (December 2010, Revision 3.1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor



Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region II SOP #HW-3a, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017) and the specifics of the methods employed.

EPA Method 537 was developed and validated for the analysis of finished drinking water from surface water and groundwater sources. Laboratories have modified Method 537 to enable the analysis of groundwater and soil, and to incorporate PFAS analytes not currently addressed by the promulgated method. NYSDOH offers certification for PFOA and PFOS in the drinking water category. Non-potable water and soil certification is not available; however, the method describes acceptable modifications. EPA recommends that modified methods be assessed relative to project goals and data quality objectives.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, isotope dilution recoveries, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, field blank, and trip blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.



**NJ** – The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB16_0-2_092719	SW6010B	7439-92-1	Lead	J
SB16_0-2_092719	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.019)
SB16_0-2_092719	SW6010B	7440-22-4	Silver	UJ
SB16_0-2_092719	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB16_0-2_092719	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB16_0-2_092719	SW8260C	75-01-4	Vinyl Chloride	UJ
SB16_0-2_092719	SW6010B	7440-66-6	Zinc	J
SB16_2-4	SW6010B	7439-92-1	Lead	J
SB16_2-4	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.032)
SB16_2-4	SW6010B	7440-22-4	Silver	UJ
SB16_2-4	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB16_2-4	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB16_2-4	SW8260C	75-01-4	Vinyl Chloride	UJ
SB16_2-4	SW6010B	7440-66-6	Zinc	J
SB17_0-2	SW8081B	72-55-9	4,4'-DDE	J
SB17_0-2	SW6010B	7439-92-1	Lead	J
SB17_0-2	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.011)
SB17_0-2	E537M	754-91-6	Perfluorooctanesulfonamide	UJ
SB17_0-2	SW6010B	7440-22-4	Silver	J
SB17_0-2	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ

### **TABLE 2: VALIDATOR-APPLIED QUALIFICATION**



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB17_0-2	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB17_0-2	SW8260C	75-01-4	Vinyl Chloride	UJ
SB17_0-2	SW6010B	7440-66-6	Zinc	J
SB17_5.5-7.5	SW6010B	7439-92-1	Lead	J
SB17_5.5-7.5	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.0096)
SB17_5.5-7.5	SW8260C	91-20-3	Naphthalene	U (0.0096)
SB17_5.5-7.5	SW6010B	7440-22-4	Silver	J
SB17_5.5-7.5	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB17_5.5-7.5	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB17_5.5-7.5	SW8260C	75-01-4	Vinyl Chloride	UJ
SB17_5.5-7.5	SW6010B	7440-66-6	Zinc	J
SB31_0-2	SW6010B	7439-92-1	Lead	J
SB31_0-2	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	J
SB31_0-2	SW6010B	7440-22-4	Silver	UJ
SB31_0-2	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB31_0-2	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB31_0-2	SW8260C	75-01-4	Vinyl Chloride	UJ
SB31_0-2	SW6010B	7440-66-6	Zinc	J
SB31_6.5-8.5	SW6010B	7440-43-9	Cadmium	J
SB31_6.5-8.5	SW6010B	7440-50-8	Copper	J
SB31_6.5-8.5	SW6010B	7439-92-1	Lead	J
SB31_6.5-8.5	SW6010B	7439-96-5	Manganese	J
SB31_6.5-8.5	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.010)
SB31_6.5-8.5	SW6010B	7440-22-4	Silver	UJ
SB31_6.5-8.5	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB31_6.5-8.5	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB31_6.5-8.5	SW8260C	75-01-4	Vinyl Chloride	UJ
SB31_6.5-8.5	SW6010B	7440-66-6	Zinc	J
SB21_0-2	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
SB21_0-2	SW8260C	95-50-1	1,2-Dichlorobenzene	UJ



Data Usability Summary Report For 2413 Third Avenue June through October 2019 Soil Samples Langan Project No.: 170396002 January 14, 2020 Page 9 of 53

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB21_0-2	SW8260C	108-67-8	1,3,5-Trimethylbenzene (Mesitylene)	UJ
SB21_0-2	SW8260C	541-73-1	1,3-Dichlorobenzene	UJ
SB21_0-2	SW8260C	106-46-7	1,4-Dichlorobenzene	UJ
SB21_0-2	SW6010B	7440-41-7	Beryllium	UJ
SB21_0-2	SW8270D	118-74-1	Hexachlorobenzene	UJ
SB21_0-2	SW8270D	193-39-5	Indeno(1,2,3-c,d)Pyrene	UJ
SB21_0-2	SW8260C	91-20-3	Naphthalene	UJ
SB21_0-2	SW8260C	104-51-8	n-Butylbenzene	UJ
SB21_0-2	SW8260C	103-65-1	n-Propylbenzene	UJ
SB21_0-2	SW8270D	87-86-5	Pentachlorophenol	UJ
SB21_0-2	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB21_0-2	SW8260C	98-06-6	T-Butylbenzene	UJ
SB21_5-7	SW6010B	7440-41-7	Beryllium	UJ
SB21_5-7	SW8270D	118-74-1	Hexachlorobenzene	UJ
SB21_5-7	SW8270D	193-39-5	Indeno(1,2,3-c,d)Pyrene	UJ
SB21_5-7	SW8082A	12674-11-2	PCB-1016 (Aroclor 1016)	UJ
SB21_5-7	SW8082A	11104-28-2	PCB-1221 (Aroclor 1221)	UJ
SB21_5-7	SW8082A	11141-16-5	PCB-1232 (Aroclor 1232)	UJ
SB21_5-7	SW8082A	53469-21-9	PCB-1242 (Aroclor 1242)	UJ
SB21_5-7	SW8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
SB21_5-7	SW8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
SB21_5-7	SW8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ
SB21_5-7	SW8082A	37324-23-5	PCB-1262 (Aroclor 1262)	UJ
SB21_5-7	SW8082A	11100-14-4	PCB-1268 (Aroclor 1268)	UJ
SB21_5-7	SW8270D	87-86-5	Pentachlorophenol	UJ
SB21_5-7	SW8082A	1336-36-3	Total PCBs	UJ
SB22_0-2	SW8260C	67-64-1	Acetone	J
SB22_0-2	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
SB22_0-2	SW8260C	95-50-1	1,2-Dichlorobenzene	UJ
SB22_0-2	SW8260C	108-67-8	1,3,5-Trimethylbenzene (Mesitylene)	UJ
SB22_0-2	SW8260C	541-73-1	1,3-Dichlorobenzene	UJ

Data Usability Summary Report For 2413 Third Avenue June through October 2019 Soil Samples Langan Project No.: 170396002 January 14, 2020 Page 10 of 53

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB22_0-2	SW8260C	106-46-7	1,4-Dichlorobenzene	UJ
SB22_0-2	SW6010B	7440-39-3	Barium	J
SB22_0-2	SW6010B	7440-41-7	Beryllium	UJ
SB22_0-2	SW8270D	118-74-1	Hexachlorobenzene	UJ
SB22_0-2	SW8270D	193-39-5	Indeno(1,2,3-c,d)Pyrene	J
SB22_0-2	SW8260C	91-20-3	Naphthalene	UJ
SB22_0-2	SW8260C	104-51-8	n-Butylbenzene	UJ
SB22_0-2	SW8260C	103-65-1	n-Propylbenzene	UJ
SB22_0-2	SW8270D	87-86-5	Pentachlorophenol	UJ
SB22_0-2	SW8260C	135-98-8	Sec-Butylbenzene	UJ
SB22_0-2	SW8260C	98-06-6	T-Butylbenzene	UJ
SB22_5-7	SW6010B	7440-41-7	Beryllium	UJ
SB22_5-7	SW8270D	118-74-1	Hexachlorobenzene	UJ
SB22_5-7	SW8270D	193-39-5	Indeno(1,2,3-c,d)Pyrene	UJ
SB22_5-7	SW8270D	87-86-5	Pentachlorophenol	UJ
SB23_0-2	SW6010B	7440-41-7	Beryllium	UJ
SB23_0-2	SW8270D	118-74-1	Hexachlorobenzene	UJ
SB23_0-2	SW8270D	193-39-5	Indeno(1,2,3-c,d)Pyrene	J
SB23_0-2	SW8270D	87-86-5	Pentachlorophenol	UJ
SB23_5.5-7.5	SW6010B	7440-41-7	Beryllium	UJ
SB23_5.5-7.5	SW8270D	118-74-1	Hexachlorobenzene	UJ
SB23_5.5-7.5	SW8270D	193-39-5	Indeno(1,2,3-c,d)Pyrene	UJ
SB23_5.5-7.5	SW8270D	87-86-5	Pentachlorophenol	UJ
RISODUP01_093019	SW6010B	7440-39-3	Barium	J
RISODUP01_093019	SW6010B	7440-41-7	Beryllium	UJ
RISOFB01_093019	SW8260C	67-64-1	Acetone	UJ
RISOFB01_093019	SW8260C	91-20-3	Naphthalene	UJ
RISOFB01_093019	SW8260C	104-51-8	n-Butylbenzene	UJ
RISOFB01_093019	SW8270DSIM	87-86-5	Pentachlorophenol	UJ
RITB02_093019	SW8260C	67-64-1	Acetone	UJ
RITB02_093019	SW8260C	91-20-3	Naphthalene	UJ
RITB02_093019	SW8260C	104-51-8	n-Butylbenzene	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB18_0-2	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB18_0-2	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
SB18_0-2	SW6010B	7440-41-7	Beryllium	UJ
SB18_0-2	SW8270D	87-86-5	Pentachlorophenol	UJ
SB18_0-2	SW8260C	67-64-1	Acetone	J
SB18_0-2	SW6010B	7439-92-1	Lead	J
SB18_0-2	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.012)
SB18_0-2	SW6010B	7440-66-6	Zinc	J
SB18_0-2	SW8260C	127-18-4	Tetrachloroethene (PCE)	J
SB18_0-2	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB18_10-12	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB18_10-12	SW6010B	7440-41-7	Beryllium	UJ
SB18_10-12	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
SB18_10-12	SW8270D	87-86-5	Pentachlorophenol	UJ
SB18_10-12	SW8260C	67-64-1	Acetone	UJ
SB18_10-12	SW6010B	7439-92-1	Lead	J
SB18_10-12	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.0087)
SB18_10-12	SW6010B	7440-66-6	Zinc	J
SB18_10-12	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB18_10-12	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB24_0-2	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB24_0-2	SW6010B	7440-41-7	Beryllium	UJ
SB24_0-2	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
SB24_0-2	SW8260C	67-64-1	Acetone	UJ
SB24_0-2	SW8270D	87-86-5	Pentachlorophenol	UJ
SB24_0-2	SW6010B	7439-92-1	Lead	J
SB24_0-2	E537M	754-91-6	Perfluorooctanesulfonamide	UJ
SB24_0-2	E537M	2706-90-3	Perfluoropentanoic Acid	J
SB24_0-2	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.0084)
SB24_0-2	SW6010B	7440-66-6	Zinc	J

Data Usability Summary Report For 2413 Third Avenue June through October 2019 Soil Samples Langan Project No.: 170396002 January 14, 2020 Page 12 of 53

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB24_0-2	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB24_0-2	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB24_10-12	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB24_10-12	SW6010B	7440-41-7	Beryllium	UJ
SB24_10-12	SW8260C	67-64-1	Acetone	J
SB24_10-12	SW6010B	7440-50-8	Copper	U (12.3)
SB24_10-12	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
SB24_10-12	SW8270D	87-86-5	Pentachlorophenol	UJ
SB24_10-12	SW6010B	7439-92-1	Lead	J
SB24_10-12	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.011)
SB24_10-12	SW6010B	7440-66-6	Zinc	J
SB24_10-12	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB24_10-12	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB24_15-16	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB24_15-16	SW6010B	7440-41-7	Beryllium	UJ
SB24_15-16	SW8260C	67-64-1	Acetone	UJ
SB24_15-16	SW6010B	7440-50-8	Copper	U (12.4)
SB24_15-16	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
SB24_15-16	SW8270D	87-86-5	Pentachlorophenol	UJ
SB24_15-16	SW6010B	7439-92-1	Lead	J
SB24_15-16	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.0092)
SB24_15-16	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB24_15-16	SW6010B	7440-66-6	Zinc	J
SB24_15-16	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB25_0-2	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB25_0-2	SW6010B	7440-41-7	Beryllium	UJ
SB25_0-2	SW8260C	67-64-1	Acetone	J
SB25_0-2	SW8081B	5103-71-9	Alpha Chlordane	J
SB25_0-2	SW8081B	72-55-9	4,4'-DDE	J
SB25_0-2	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
SB25_0-2	SW6010B	7439-92-1	Lead	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB25_0-2	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.011)
SB25_0-2	SW8270D	87-86-5	Pentachlorophenol	UJ
SB25_0-2	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB25_0-2	SW6010B	7440-66-6	Zinc	J
SB25_0-2	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB25_6-8	SW6010B	7440-41-7	Beryllium	UJ
SB25_6-8	SW6010B	7439-92-1	Lead	J
SB25_6-8	SW8260C	91-20-3	Naphthalene	J
SB25_6-8	SW6010B	7440-50-8	Copper	U (14.3)
SB25_6-8	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
SB25_6-8	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
SB25_6-8	SW8081B	309-00-2	Aldrin	UJ
SB25_6-8	SW8081B	319-84-6	Alpha BHC (Alpha Hexachlorocyclohexane)	UJ
SB25_6-8	SW8081B	319-85-7	Beta Bhc (Beta Hexachlorocyclohexane)	UJ
SB25_6-8	SW8081B	319-86-8	Delta Bhc (Delta Hexachlorocyclohexane)	UJ
SB25_6-8	SW8081B	33213-65-9	Beta Endosulfan	UJ
SB25_6-8	SW8081B	50-29-3	4,4'-DDT	UJ
SB25_6-8	SW8081B	5103-71-9	Alpha Chlordane	UJ
SB25_6-8	SW8081B	58-89-9	Gamma Bhc (Lindane)	UJ
SB25_6-8	SW8081B	60-57-1	Dieldrin	UJ
SB25_6-8	SW8081B	72-20-8	Endrin	UJ
SB25_6-8	SW8081B	72-54-8	4,4'-DDD	UJ
SB25_6-8	SW8081B	72-55-9	4,4'-DDE	UJ
SB25_6-8	SW8081B	76-44-8	Heptachlor	UJ
SB25_6-8	SW8081B	959-98-8	Alpha Endosulfan	UJ
SB25_6-8	SW8260C	98-06-6	T-Butylbenzene	UJ
SB25_6-8	SW8270D	87-86-5	Pentachlorophenol	UJ
SB25_6-8	SW6010B	7440-66-6	Zinc	J
SB25_11-12	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB25_11-12	SW6010B	7440-41-7	Beryllium	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB25_11-12	SW8260C	67-64-1	Acetone	J
SB25_11-12	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.0097)
SB25_11-12	SW6010B	7439-92-1	Lead	J
SB25_11-12	SW6010B	7440-50-8	Copper	U (16.4)
SB25_11-12	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
SB25_11-12	SW8270D	87-86-5	Pentachlorophenol	UJ
SB25_11-12	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB25_11-12	SW6010B	7440-66-6	Zinc	J
SB25_11-12	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB26_0-2	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB26_0-2	SW6010B	7440-41-7	Beryllium	UJ
SB26_0-2	SW8260C	67-64-1	Acetone	UJ
SB26_0-2	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.01)
SB26_0-2	SW6010B	7439-92-1	Lead	J
SB26_0-2	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
SB26_0-2	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB26_0-2	SW8270D	87-86-5	Pentachlorophenol	UJ
SB26_0-2	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB26_0-2	SW6010B	7440-66-6	Zinc	J
SB26_6-8	SW8260C	71-55-6	1,1,1-Trichloroethane	UJ
SB26_6-8	SW8260C	67-64-1	Acetone	UJ
SB26_6-8	SW6010B	7440-41-7	Beryllium	UJ
SB26_6-8	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.011)
SB26_6-8	SW6010B	7439-92-1	Lead	J
SB26_6-8	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB26_6-8	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
SB26_6-8	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB26_6-8	SW8270D	87-86-5	Pentachlorophenol	UJ
SB26_6-8	SW6010B	7439-96-5	Manganese	J
SB26_6-8	SW6010B	7440-66-6	Zinc	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
RITB03_100119	SW8260C	67-64-1	Acetone	UJ
RITB03_100119	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
RITB03_100119	SW8260C	91-20-3	Naphthalene	UJ
RITB03_100119	SW8260C	98-06-6	T-Butylbenzene	UJ
SB19_0-2	SW8260C	179601-23-1	M,P-Xylene	U (0.0092)
SB19_0-2	SW8260C	75-09-2	Methylene Chloride	J
SB19_0-2	SW6010B	7440-41-7	Beryllium	UJ
SB19_0-2	SW8081B	50-29-3	4,4'-DDT	UJ
SB19_0-2	SW8270D	87-86-5	Pentachlorophenol	UJ
SB19_0-2	SW6010B	7440-47-3	Chromium, Total	J
SB19_0-2	SW6010B	7439-92-1	Lead	J
SB19_0-2	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB19_0-2	SW6010B	7440-22-4	Silver	UJ
SB19_8-9	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SB19_8-9	SW6010B	7440-41-7	Beryllium	UJ
SB19_8-9	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB19_8-9	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	U (0.0093)
SB19_8-9	SW8081B	50-29-3	4,4'-DDT	UJ
SB19_8-9	SW8260C	67-64-1	Acetone	UJ
SB19_8-9	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
SB19_8-9	SW8270D	87-86-5	Pentachlorophenol	UJ
SB19_8-9	SW6010B	7440-47-3	Chromium, Total	J
SB19_8-9	SW8260C	108-90-7	Chlorobenzene	UJ
SB19_8-9	SW6010B	7439-92-1	Lead	J
SB19_8-9	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB19_8-9	SW8260C	79-01-6	Trichloroethene (TCE)	UJ
SB19_8-9	SW6010B	7440-22-4	Silver	UJ
SB19_8-9	SW8260C	75-01-4	Vinyl Chloride	UJ
SB27_0-2	SW6010B	7440-41-7	Beryllium	UJ
SB27_0-2	SW6010B	7440-47-3	Chromium, Total	J
SB27_0-2	SW8081B	50-29-3	4,4'-DDT	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB27_0-2	SW8270D	87-86-5	Pentachlorophenol	UJ
SB27_0-2	SW6010B	7439-92-1	Lead	J
SB27_0-2	SW6010B	7440-22-4	Silver	UJ
SB27_6-8	SW6010B	7440-41-7	Beryllium	UJ
SB27_6-8	SW6010B	7440-47-3	Chromium, Total	J
SB27_6-8	SW6010B	7439-92-1	Lead	J
SB27_6-8	SW6010B	7440-22-4	Silver	UJ
SB28_0-2	SW6010B	7440-41-7	Beryllium	UJ
SB28_0-2	SW6010B	7440-47-3	Chromium, Total	J
SB28_0-2	SW6010B	7439-92-1	Lead	J
SB28_0-2	SW6010B	7440-22-4	Silver	UJ
SB28_5.5-7.5	SW6010B	7440-41-7	Beryllium	UJ
SB28_5.5-7.5	SW6010B	7440-47-3	Chromium, Total	J
SB28_5.5-7.5	SW8260C	127-18-4	Tetrachloroethene (PCE)	UJ
SB28_5.5-7.5	SW6010B	7439-92-1	Lead	J
SB28_5.5-7.5	SW8260C	179601-23-1	M,P-Xylene	U (0.0095)
SB28_5.5-7.5	SW8260C	75-09-2	Methylene Chloride	J
SB28_5.5-7.5	SW6010B	7440-22-4	Silver	UJ
SB20_0-2	SW6010B	7440-39-3	Barium	J
SB20_0-2	SW6010B	7440-43-9	Cadmium	J
SB20_0-2	SW6010B	7440-47-3	Chromium, Total	J
SB20_0-2	CALC_METAL S	16065-83-1	Chromium, Trivalent	J
SB20_0-2	SW6010B	7439-92-1	Lead	J
SB20_0-2	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
SB20_0-2	SW6010B	7439-96-5	Manganese	J
SB20_0-2	SW8270D	87-86-5	Pentachlorophenol	UJ
SB20_0-2	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB20_0-2	SW7473	7439-97-6	Mercury	J
SB20_0-2	SW6010B	7440-50-8	Copper	J
SB20_0-2	SW6010B	7440-66-6	Zinc	J
SB20_13-15	SW6010B	7440-47-3	Chromium, Total	J
SB20_13-15	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB20_13-15	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB20_13-15	SW8270D	87-86-5	Pentachlorophenol	UJ
SB20_13-15	SW6010B	7440-50-8	Copper	J
SB30_0-2	SW6010B	7440-47-3	Chromium, Total	J
SB30_0-2	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB30_0-2	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
SB30_0-2	SW8270D	87-86-5	Pentachlorophenol	UJ
SB30_0-2	SW6010B	7440-50-8	Copper	J
SB30_10-12	SW6010B	7440-47-3	Chromium, Total	J
SB30_10-12	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB30_10-12	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
SB30_10-12	SW8270D	87-86-5	Pentachlorophenol	UJ
SB30_10-12	SW6010B	7440-50-8	Copper	J
RISODUP02_100319	SW6010B	7440-39-3	Barium	J
RISODUP02_100319	SW6010B	7440-43-9	Cadmium	J
RISODUP02_100319	SW6010B	7440-47-3	Chromium, Total	J
RISODUP02_100319	SW8151(S)	93-72-1	Silvex (2,4,5-Tp)	UJ
RISODUP02_100319	SW8270D	87-86-5	Pentachlorophenol	UJ
RISODUP02_100319	CALC_METAL S	16065-83-1	Chromium, Trivalent	J
RISODUP02_100319	SW6010B	7439-92-1	Lead	J
RISODUP02_100319	SW6010B	7439-96-5	Manganese	J
RISODUP02_100319	SW7473	7439-97-6	Mercury	J
RISODUP02_100319	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
RISODUP02_100319	SW6010B	7440-50-8	Copper	J
RISODUP02_100319	SW6010B	7440-66-6	Zinc	J
RITB05_100319	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
RITB05_100319	SW8260C	108-67-8	1,3,5-Trimethylbenzene (Mesitylene)	UJ
RITB05_100319	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
RITB05_100319	SW8260C	67-64-1	Acetone	UJ
RITB05_100319	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
RISOFB02_100319	SW8260C	95-63-6	1,2,4-Trimethylbenzene	UJ
RISOFB02_100319	SW8260C	108-67-8	1,3,5-Trimethylbenzene (Mesitylene)	UJ
RISOFB02_100319	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
RISOFB02_100319	SW8260C	67-64-1	Acetone	UJ
RISOFB02_100319	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
RISOFB02_100319	SW8270DSIM	87-86-5	Pentachlorophenol	UJ
SB06_1-2	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB06_1-2	SW8270D	88-75-5	2-Nitrophenol	UJ
SB06_1-2	SW8260C	67-64-1	Acetone	J
SB06_1-2	SW6010D	7440-38-2	Arsenic	J
SB06_1-2	SW6010D	7440-39-3	Barium	J
SB06_1-2	SW8260C	74-83-9	Bromomethane	UJ
SB06_1-2	SW6010D	7440-43-9	Cadmium	J
SB06_1-2	SW8260C	74-87-3	Chloromethane	UJ
SB06_1-2	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB06_1-2	SW6010D	7440-47-3	Chromium, Total	J
SB06_1-2	SW6010D	7440-48-4	Cobalt	J
SB06_1-2	SW6010D	7440-50-8	Copper	J
SB06_1-2	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB06_1-2	SW8081B	5103-74-2	Gamma Chlordane	J
SB06_1-2	SW8260C	87-68-3	Hexachlorobutadiene	UJ
SB06_1-2	SW6010D	7439-89-6	Iron	J
SB06_1-2	SW6010D	7439-92-1	Lead	J
SB06_1-2	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB06_1-2	SW8260C	91-20-3	Naphthalene	UJ
SB06_1-2	SW6010D	7440-28-0	Thallium	UJ
SB06_1-2	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB06_1-2	SW6010D	7440-62-2	Vanadium	J
SB06_1-2	SW8260C	108-05-4	Vinyl Acetate	UJ
SB06_1-2	SW6010D	7440-66-6	Zinc	J



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB06_7-8	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB06_7-8	SW8270D	100-02-7	4-Nitrophenol	UJ
SB06_7-8	SW8260C	67-64-1	Acetone	J
SB06_7-8	SW6010D	7440-39-3	Barium	J
SB06_7-8	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB06_7-8	SW8260C	74-83-9	Bromomethane	UJ
SB06_7-8	SW8260C	74-87-3	Chloromethane	UJ
SB06_7-8	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB06_7-8	SW6010D	7440-50-8	Copper	J
SB06_7-8	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB06_7-8	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SB06_7-8	SW8260C	87-68-3	Hexachlorobutadiene	UJ
SB06_7-8	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB06_7-8	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	J
SB06_7-8	SW8260C	91-20-3	Naphthalene	J
SB06_7-8	SW8270D	87-86-5	Pentachlorophenol	UJ
SB06_7-8	SW6010D	7440-28-0	Thallium	UJ
SB06_7-8	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB06_7-8	SW8260C	108-05-4	Vinyl Acetate	UJ
SB07_2-3	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB07_2-3	SW8270D	100-02-7	4-Nitrophenol	UJ
SB07_2-3	SW8260C	67-64-1	Acetone	J
SB07_2-3	SW6010D	7440-39-3	Barium	J
SB07_2-3	SW8081B	33213-65-9	Beta Endosulfan	UJ
SB07_2-3	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB07_2-3	SW8260C	74-83-9	Bromomethane	UJ
SB07_2-3	SW8260C	74-87-3	Chloromethane	UJ
SB07_2-3	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB07_2-3	SW6010D	7440-50-8	Copper	J
SB07_2-3	SW8081B	319-86-8	Delta Bhc (Delta Hexachlorocyclohexane)	UJ
SB07_2-3	SW8260C	75-71-8	Dichlorodifluoromethane	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB07_2-3	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SB07_2-3	SW8081B	5103-74-2	Gamma Chlordane	J
SB07_2-3	SW8260C	87-68-3	Hexachlorobutadiene	UJ
SB07_2-3	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB07_2-3	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB07_2-3	SW8260C	91-20-3	Naphthalene	UJ
SB07_2-3	SW8270D	87-86-5	Pentachlorophenol	UJ
SB07_2-3	SW6010D	7440-28-0	Thallium	UJ
SB07_2-3	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB07_2-3	SW8260C	108-05-4	Vinyl Acetate	UJ
SB07_5-6	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB07_5-6	SW8270D	100-02-7	4-Nitrophenol	UJ
SB07_5-6	SW8260C	67-64-1	Acetone	J
SB07_5-6	SW6010D	7440-36-0	Antimony	U (4.37)
SB07_5-6	SW6010D	7440-39-3	Barium	J
SB07_5-6	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB07_5-6	SW8260C	74-83-9	Bromomethane	UJ
SB07_5-6	SW8260C	74-87-3	Chloromethane	UJ
SB07_5-6	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB07_5-6	SW6010D	7440-50-8	Copper	J
SB07_5-6	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB07_5-6	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SB07_5-6	SW8260C	87-68-3	Hexachlorobutadiene	UJ
SB07_5-6	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB07_5-6	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB07_5-6	SW8260C	91-20-3	Naphthalene	UJ
SB07_5-6	SW8270D	87-86-5	Pentachlorophenol	UJ
SB07_5-6	SW6010D	7440-28-0	Thallium	UJ
SB07_5-6	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB07_5-6	SW8260C	108-05-4	Vinyl Acetate	UJ
SB08_1-2	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB08_1-2	SW8270D	100-02-7	4-Nitrophenol	UJ
SB08_1-2	SW8260C	67-64-1	Acetone	J
SB08_1-2	SW6010D	7440-39-3	Barium	J
SB08_1-2	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB08_1-2	SW8260C	74-83-9	Bromomethane	UJ
SB08_1-2	SW8260C	74-87-3	Chloromethane	UJ
SB08_1-2	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB08_1-2	SW6010D	7440-50-8	Copper	J
SB08_1-2	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB08_1-2	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SB08_1-2	SW8260C	87-68-3	Hexachlorobutadiene	UJ
SB08_1-2	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB08_1-2	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB08_1-2	SW8260C	91-20-3	Naphthalene	UJ
SB08_1-2	SW8270D	87-86-5	Pentachlorophenol	UJ
SB08_1-2	SW6010D	7440-28-0	Thallium	UJ
SB08_1-2	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB08_1-2	SW8260C	108-05-4	Vinyl Acetate	UJ
SB08_5-6	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB08_5-6	SW8270D	100-02-7	4-Nitrophenol	UJ
SB08_5-6	SW6010D	7440-36-0	Antimony	U (4.85)
SB08_5-6	SW6010D	7440-39-3	Barium	J
SB08_5-6	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB08_5-6	SW8260C	74-83-9	Bromomethane	UJ
SB08_5-6	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB08_5-6	SW6010D	7440-50-8	Copper	J
SB08_5-6	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SB08_5-6	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB08_5-6	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB08_5-6	SW8270D	87-86-5	Pentachlorophenol	UJ
SB08_5-6	SW8260C	100-42-5	Styrene	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB08_5-6	SW6010D	7440-28-0	Thallium	UJ
SB08_5-6	SW8260C	110-57-6	Trans-1,4-Dichloro-2-Butene	UJ
SB08_5-6	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB09_2-3	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB09_2-3	SW8270D	100-02-7	4-Nitrophenol	UJ
SB09_2-3	SW6010D	7440-39-3	Barium	J
SB09_2-3	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB09_2-3	SW8260C	74-83-9	Bromomethane	UJ
SB09_2-3	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB09_2-3	SW6010D	7440-50-8	Copper	J
SB09_2-3	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SB09_2-3	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB09_2-3	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB09_2-3	SW8270D	87-86-5	Pentachlorophenol	UJ
SB09_2-3	SW8260C	100-42-5	Styrene	UJ
SB09_2-3	SW6010D	7440-28-0	Thallium	UJ
SB09_2-3	SW8260C	110-57-6	Trans-1,4-Dichloro-2-Butene	UJ
SB09_2-3	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB09_5-6	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB09_5-6	SW8270D	100-02-7	4-Nitrophenol	UJ
SB09_5-6	SW6010D	7440-36-0	Antimony	U (4.87)
SB09_5-6	SW6010D	7440-39-3	Barium	J
SB09_5-6	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB09_5-6	SW8260C	74-83-9	Bromomethane	UJ
SB09_5-6	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB09_5-6	SW6010D	7440-50-8	Copper	J
SB09_5-6	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SB09_5-6	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB09_5-6	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB09_5-6	SW8270D	87-86-5	Pentachlorophenol	UJ
SB09_5-6	SW8260C	100-42-5	Styrene	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB09_5-6	SW6010D	7440-28-0	Thallium	UJ
SB09_5-6	SW8260C	110-57-6	Trans-1,4-Dichloro-2-Butene	UJ
SB09_5-6	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB12_3-4	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB12_3-4	SW8270D	100-02-7	4-Nitrophenol	UJ
SB12_3-4	SW6010D	7440-39-3	Barium	J
SB12_3-4	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB12_3-4	SW8260C	74-83-9	Bromomethane	UJ
SB12_3-4	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB12_3-4	SW6010D	7440-50-8	Copper	J
SB12_3-4	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SB12_3-4	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB12_3-4	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB12_3-4	SW8270D	87-86-5	Pentachlorophenol	UJ
SB12_3-4	SW8260C	100-42-5	Styrene	UJ
SB12_3-4	SW6010D	7440-28-0	Thallium	UJ
SB12_3-4	SW8260C	110-57-6	Trans-1,4-Dichloro-2-Butene	UJ
SB12_3-4	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB12_5-6	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB12_5-6	SW8260C	591-78-6	2-Hexanone	UJ
SB12_5-6	SW8270D	100-02-7	4-Nitrophenol	UJ
SB12_5-6	SW6010D	7440-39-3	Barium	J
SB12_5-6	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SB12_5-6	SW8260C	75-15-0	Carbon Disulfide	UJ
SB12_5-6	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB12_5-6	SW6010D	7440-50-8	Copper	J
SB12_5-6	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB12_5-6	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SB12_5-6	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SB12_5-6	SW8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB12_5-6	SW8270D	87-86-5	Pentachlorophenol	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB12_5-6	SW6010D	7440-28-0	Thallium	UJ
SB10_1-2	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB10_1-2	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB10_1-2	SW8260C	591-78-6	2-Hexanone	UJ
SB10_1-2	SW8270D	88-75-5	2-Nitrophenol	UJ
SB10_1-2	SW8270D	99-09-2	3-Nitroaniline	UJ
SB10_1-2	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB10_1-2	SW8270D	100-01-6	4-Nitroaniline	UJ
SB10_1-2	SW8270D	65-85-0	Benzoic Acid	UJ
SB10_1-2	SW8260C	75-15-0	Carbon Disulfide	UJ
SB10_1-2	SW8260C	74-87-3	Chloromethane	UJ
SB10_1-2	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB10_1-2	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB10_1-2	SW8081B	7421-93-4	Endrin Aldehyde	UJ
SB10_1-2	SW8081B	72-43-5	Methoxychlor	UJ
SB10_1-2	SW8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB10_1-2	SW8260C	1634-04-4	Tert-Butyl Methyl Ether	U (3.3)
SB10_1-2	SW8260C	75-01-4	Vinyl Chloride	UJ
SB10_7-8	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB10_7-8	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB10_7-8	SW8260C	591-78-6	2-Hexanone	UJ
SB10_7-8	SW8270D	88-75-5	2-Nitrophenol	UJ
SB10_7-8	SW8270D	99-09-2	3-Nitroaniline	UJ
SB10_7-8	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB10_7-8	SW8270D	100-01-6	4-Nitroaniline	UJ
SB10_7-8	SW8270D	65-85-0	Benzoic Acid	UJ
SB10_7-8	SW8260C	75-15-0	Carbon Disulfide	UJ
SB10_7-8	SW8260C	74-87-3	Chloromethane	UJ
SB10_7-8	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB10_7-8	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB10_7-8	SW8081B	7421-93-4	Endrin Aldehyde	UJ
SB10_7-8	SW8081B	5103-74-2	Gamma Chlordane	J



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB10_7-8	SW8081B	72-43-5	Methoxychlor	UJ
SB10_7-8	SW8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB10_7-8	SW8260C	1634-04-4	Tert-Butyl Methyl Ether	U (2)
SB10_7-8	SW8260C	75-01-4	Vinyl Chloride	UJ
SB11_1-2	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB11_1-2	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB11_1-2	SW8260C	591-78-6	2-Hexanone	UJ
SB11_1-2	SW8270D	88-75-5	2-Nitrophenol	UJ
SB11_1-2	SW8270D	99-09-2	3-Nitroaniline	UJ
SB11_1-2	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB11_1-2	SW8270D	100-01-6	4-Nitroaniline	UJ
SB11_1-2	SW8270D	65-85-0	Benzoic Acid	UJ
SB11_1-2	SW8260C	75-15-0	Carbon Disulfide	UJ
SB11_1-2	SW8260C	74-87-3	Chloromethane	UJ
SB11_1-2	SW7196A	18540-29-9	Chromium, Hexavalent	J
SB11_1-2	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB11_1-2	SW8081B	7421-93-4	Endrin Aldehyde	UJ
SB11_1-2	SW8081B	5103-74-2	Gamma Chlordane	J
SB11_1-2	SW8081B	72-43-5	Methoxychlor	UJ
SB11_1-2	SW8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB11_1-2	SW8260C	1634-04-4	Tert-Butyl Methyl Ether	U (3.6)
SB11_1-2	SW8260C	75-01-4	Vinyl Chloride	UJ
SB11_5-6	SW8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
SB11_5-6	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB11_5-6	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB11_5-6	SW8260C	591-78-6	2-Hexanone	UJ
SB11_5-6	SW8270D	88-75-5	2-Nitrophenol	UJ
SB11_5-6	SW8270D	99-09-2	3-Nitroaniline	UJ
SB11_5-6	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB11_5-6	SW8270D	100-01-6	4-Nitroaniline	UJ
SB11_5-6	SW8270D	65-85-0	Benzoic Acid	UJ



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB11_5-6	SW8260C	75-15-0	Carbon Disulfide	UJ
SB11_5-6	SW7196A	18540-29-9	Chromium, Hexavalent	J
SB11_5-6	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB11_5-6	SW8081B	7421-93-4	Endrin Aldehyde	UJ
SB11_5-6	SW8081B	72-43-5	Methoxychlor	UJ
SB11_5-6	SW8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB11_5-6	SW6010D	7440-23-5	Sodium	U (188)
SB11_5-6	SW8260C	75-01-4	Vinyl Chloride	UJ
SB13_3-4	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB13_3-4	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB13_3-4	SW8270D	88-75-5	2-Nitrophenol	UJ
SB13_3-4	SW8270D	99-09-2	3-Nitroaniline	UJ
SB13_3-4	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB13_3-4	SW8270D	100-01-6	4-Nitroaniline	UJ
SB13_3-4	SW8260C	107-13-1	Acrylonitrile	UJ
SB13_3-4	SW8270D	65-85-0	Benzoic Acid	UJ
SB13_3-4	SW8260C	74-83-9	Bromomethane	UJ
SB13_3-4	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB13_3-4	SW8081B	7421-93-4	Endrin Aldehyde	UJ
SB13_3-4	SW8081B	72-43-5	Methoxychlor	UJ
SB13_3-4	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB13_3-4	SW8260C	75-09-2	Methylene Chloride	UJ
SB13_3-4	SW8260C	100-42-5	Styrene	UJ
SB13_3-4	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SB13_10-11	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB13_10-11	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB13_10-11	SW8260C	591-78-6	2-Hexanone	UJ
SB13_10-11	SW8270D	88-75-5	2-Nitrophenol	UJ
SB13_10-11	SW8270D	99-09-2	3-Nitroaniline	UJ
SB13_10-11	SW8081B	72-55-9	4,4'-DDE	J
SB13_10-11	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ


Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB13_10-11	SW8270D	100-01-6	4-Nitroaniline	UJ
SB13_10-11	SW8081B	5103-71-9	Alpha Chlordane	J
SB13_10-11	SW8270D	65-85-0	Benzoic Acid	UJ
SB13_10-11	SW8260C	75-15-0	Carbon Disulfide	UJ
SB13_10-11	SW8260C	74-87-3	Chloromethane	UJ
SB13_10-11	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB13_10-11	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB13_10-11	SW8081B	7421-93-4	Endrin Aldehyde	UJ
SB13_10-11	SW8081B	5103-74-2	Gamma Chlordane	UJ
SB13_10-11	SW8081B	72-43-5	Methoxychlor	UJ
SB13_10-11	SW8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB13_10-11	SW8082A	11096-82-5	PCB-1260 (Aroclor 1260)	J
SB13_10-11	SW8260C	75-01-4	Vinyl Chloride	UJ
SB14_3-4	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB14_3-4	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB14_3-4	SW8260C	591-78-6	2-Hexanone	UJ
SB14_3-4	SW8270D	88-75-5	2-Nitrophenol	UJ
SB14_3-4	SW8270D	99-09-2	3-Nitroaniline	UJ
SB14_3-4	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB14_3-4	SW8270D	100-01-6	4-Nitroaniline	UJ
SB14_3-4	SW8270D	65-85-0	Benzoic Acid	UJ
SB14_3-4	SW8260C	75-15-0	Carbon Disulfide	UJ
SB14_3-4	SW8260C	74-87-3	Chloromethane	UJ
SB14_3-4	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB14_3-4	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB14_3-4	SW8081B	7421-93-4	Endrin Aldehyde	UJ
SB14_3-4	SW8081B	5103-74-2	Gamma Chlordane	J
SB14_3-4	SW8081B	72-43-5	Methoxychlor	UJ
SB14_3-4	SW8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB14_3-4	SW8260C	75-01-4	Vinyl Chloride	UJ
SB15_3-4	SW8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB15_3-4	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB15_3-4	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SB15_3-4	SW8260C	591-78-6	2-Hexanone	UJ
SB15_3-4	SW8270D	88-75-5	2-Nitrophenol	UJ
SB15_3-4	SW8270D	99-09-2	3-Nitroaniline	UJ
SB15_3-4	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SB15_3-4	SW8270D	100-01-6	4-Nitroaniline	UJ
SB15_3-4	SW8270D	65-85-0	Benzoic Acid	UJ
SB15_3-4	SW8260C	75-15-0	Carbon Disulfide	UJ
SB15_3-4	SW7196A	18540-29-9	Chromium, Hexavalent	UJ
SB15_3-4	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB15_3-4	SW8081B	7421-93-4	Endrin Aldehyde	UJ
SB15_3-4	SW8081B	5103-74-2	Gamma Chlordane	J
SB15_3-4	SW8081B	72-43-5	Methoxychlor	UJ
SB15_3-4	SW8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SB15_3-4	SW8260C	75-01-4	Vinyl Chloride	UJ
TP01_2-2.5	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
TP01_2-2.5	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
TP01_2-2.5	SW8260C	591-78-6	2-Hexanone	UJ
TP01_2-2.5	SW8081B	72-54-8	4,4'-DDD	UJ
TP01_2-2.5	SW8081B	72-55-9	4,4'-DDE	J
TP01_2-2.5	SW8260C	67-64-1	Acetone	UJ
TP01_2-2.5	SW6010D	7440-36-0	Antimony	J
TP01_2-2.5	SW6010D	7440-38-2	Arsenic	J
TP01_2-2.5	SW6010D	7440-39-3	Barium	J
TP01_2-2.5	SW6010D	7440-43-9	Cadmium	J
TP01_2-2.5	SW8260C	74-87-3	Chloromethane	UJ
TP01_2-2.5	SW6010D	7440-47-3	Chromium, Total	J
TP01_2-2.5	SW6010D	7440-48-4	Cobalt	J
TP01_2-2.5	SW6010D	7440-50-8	Copper	J
TP01_2-2.5	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
TP01_2-2.5	SW8081B	60-57-1	Dieldrin	J



Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
TP01_2-2.5	SW8081B	5103-74-2	Gamma Chlordane	J
TP01_2-2.5	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
TP01_2-2.5	SW6010D	7439-89-6	Iron	J
TP01_2-2.5	SW6010D	7439-92-1	Lead	J
TP01_2-2.5	SW8081B	72-43-5	Methoxychlor	UJ
TP01_2-2.5	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
TP01_2-2.5	SW6010D	7440-02-0	Nickel	J
TP01_2-2.5	SW6010D	7440-09-7	Potassium	J
TP01_2-2.5	SW6010D	7440-22-4	Silver	J
TP01_2-2.5	SW6010D	7440-62-2	Vanadium	J
TP01_2-2.5	SW6010D	7440-66-6	Zinc	J
TP02_1.5-2	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
TP02_1.5-2	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
TP02_1.5-2	SW8081B	72-54-8	4,4'-DDD	UJ
TP02_1.5-2	SW8260C	67-64-1	Acetone	UJ
TP02_1.5-2	SW8081B	5103-71-9	Alpha Chlordane	J
TP02_1.5-2	SW6010D	7440-39-3	Barium	J
TP02_1.5-2	SW8081B	319-85-7	Beta Bhc (Beta Hexachlorocyclohexane)	UJ
TP02_1.5-2	SW6010D	7440-43-9	Cadmium	J
TP02_1.5-2	SW6010D	7440-47-3	Chromium, Total	J
TP02_1.5-2	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
TP02_1.5-2	SW8081B	60-57-1	Dieldrin	J
TP02_1.5-2	SW8081B	5103-74-2	Gamma Chlordane	J
TP02_1.5-2	SW8081B	72-43-5	Methoxychlor	UJ
TP02_1.5-2	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
TP02_1.5-2	SW6010D	7440-02-0	Nickel	J
TP03_1-1.5	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
TP03_1-1.5	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
TP03_1-1.5	SW8081B	72-54-8	4,4'-DDD	UJ
TP03_1-1.5	SW8081B	50-29-3	4,4'-DDT	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
TP03_1-1.5	SW8260C	67-64-1	Acetone	UJ
TP03_1-1.5	SW8081B	319-84-6	Alpha BHC (Alpha Hexachlorocyclohexane)	J
TP03_1-1.5	SW6010D	7440-39-3	Barium	J
TP03_1-1.5	SW6010D	7440-43-9	Cadmium	J
TP03_1-1.5	SW8081B	57-74-9	Chlordane (alpha and gamma)	J
TP03_1-1.5	SW6010D	7440-47-3	Chromium, Total	J
TP03_1-1.5	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
TP03_1-1.5	SW8081B	60-57-1	Dieldrin	J
TP03_1-1.5	SW8081B	5103-74-2	Gamma Chlordane	J
TP03_1-1.5	SW8081B	72-43-5	Methoxychlor	UJ
TP03_1-1.5	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
TP03_1-1.5	SW6010D	7440-02-0	Nickel	J
SB16_0-2	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
SB16_0-2	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SB16_0-2	SW8081B	72-54-8	4,4'-DDD	UJ
SB16_0-2	SW8260C	67-64-1	Acetone	UJ
SB16_0-2	SW6010D	7440-38-2	Arsenic	U (1)
SB16_0-2	SW6010D	7440-39-3	Barium	J
SB16_0-2	SW6010D	7440-39-3	Barium	J
SB16_0-2	SW8081B	319-85-7	Beta Bhc (Beta Hexachlorocyclohexane)	UJ
SB16_0-2	SW6010D	7440-43-9	Cadmium	UJ
SB16_0-2	SW6010D	7440-43-9	Cadmium	J
SB16_0-2	SW8081B	57-74-9	Chlordane (alpha and gamma)	J
SB16_0-2	SW6010D	7440-47-3	Chromium, Total	J
SB16_0-2	SW6010D	7440-47-3	Chromium, Total	UJ
SB16_0-2	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SB16_0-2	SW8081B	5103-74-2	Gamma Chlordane	J
SB16_0-2	SW8081B	72-43-5	Methoxychlor	UJ
SB16_0-2	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SB16_0-2	SW6010D	7440-02-0	Nickel	J



#### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

#### **MINOR DEFICIENCIES:**

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

#### VOCs by SW-846 Method 8260C:

#### <u> 19|1299:</u>

The method blank (MB) for batch BI91615 exhibited a detection of 2-butanone (0.0057 mg/kg). The associated results in sample SB16_0-2, SB16_2-4, SB17_0-2, SB17_5.5-7.5, SB31_0-2, and SB31_6.5-8.5 are qualified as "U" at the higher of the sample concentration and the reporting limit based on potential blank contamination.

The trip blank (RITB01_092719) exhibited a detection of naphthalene (3.19 ug/L). The associated results in sample SB17_5.5-7.5 are qualified as "U" at the reporting limit based on potential blank contamination.

The initial calibration (ICAL) for instrument QVOA4 exhibited response factors (RFs) below the control limit for tetrachloroethylene (0.198) and trichloroethylene (0.195). The associated results in sample SB16_0-2, SB16_2-4, SB17_0-2, SB17_5.5-7.5, SB31_0-2, and SB31_6.5-8.5 are qualified as "UJ" based on potential indeterminate bias.

The continuing calibration verification (CCV) analyzed on 10/1/2019 at 08:15 exhibited a percent difference (%D) above the control limit for 2-butanone (20.3%). The associated results in sample SB31_0-2 are qualified as "J" based on potential indeterminate bias.

The CCV analyzed on 10/1/2019 at 08:15 exhibited a %D above the control limit for vinyl chloride (-21.5%). The associated results in sample SB16_0-2, SB16_2-4, SB17_0-2, SB17_5.5-7.5, SB31_0-2, and SB31_6.5-8.5 are qualified as "UJ" based on potential indeterminate bias.

#### <u> 19|1369:</u>

The laboratory control sample duplicate (LCSD) for batch BJ90097 exhibited a percent recovery below the lower control limit (LCL) for n-butylbenzene (78.7%). The associated results in sample RISOFB01_093019 and RITB02_093019 are qualified as "UJ" based on potential low bias.

The sample SB22_0-2 exhibited percent recoveries above the upper control limit (UCL) for the surrogates toluene-d8 (124%) and p-bromofluorobenzene (165%). The associated results are qualified as "J" based on potential high bias.

The CCV analyzed on 10/2/2019 at 09:04 exhibited %Ds above the control limit for acetone (34.9%) and naphthalene (-21.1%). The associated results in sample RISOFB01_093019 and RITB02_093019 are qualified as "UJ" based on potential indeterminate bias.

#### <u> 19J0068:</u>

The MB for batch BJ90128 exhibited a detection of 2-butanone (0.0064 mg/kg). The associated results in sample SB18_0-2, SB18_10-12, SB24_0-2, SB24_10-12, SB24_15-16, SB25_0-2, SB25_11-12, SB26_0-2, and SB26_6-8 are qualified as "U" at the higher of the sample concentration and the reporting limit based on potential blank contamination.

The laboratory control sample (LCS) and LCSD for batch BJ90132 exhibited percent recoveries below the LCL for naphthalene (75.6%, 83.7%) and t-butylbenzene (75.8%). The associated results in sample SB25_6-8 are qualified as "J" or "UJ" based on potential low bias.

The LCSD for batch BJ90380 exhibited a percent recovery below the LCL for t-butylbenzene (76.6%). The associated results in sample RITB03_100119 are qualified as "UJ" based on potential low bias.

The sample SB24_10-12 exhibited a percent recovery above the UCL for the surrogate pbromofluorobenzene (144%). The associated results are qualified as "J" based on potential high bias.

The ICAL for instrument QVOA4 exhibited RFs below the control limit for tetrachloroethylene (0.198) and trichloroethylene (0.195). The associated results in sample SB18_0-2, SB18_10-12, SB24_0-2, SB24_10-12, SB24_15-16, SB25_0-2, SB25_11-12, SB26_0-2, and SB26_6-8 are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 10/3/2019 at 09:05 exhibited %Ds above the control limit for 1,1,1-trichloroethane (20.5%) and acetone (-34.2%). The associated results in sample SB18_0-2, SB18_10-12, SB24_0-2, SB24_10-12, SB24_15-16, SB25_0-2, SB25_11-12, SB26_0-2, and SB26_6-8 are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 10/9/2019 at 10:45 exhibited %Ds above the control limit for 2-butanone (22.6%), acetone (30.2%), and naphthalene (87.0%). The associated results in sample RITB03_100119 are qualified as "UJ" based on potential indeterminate bias.

#### <u>19J0144:</u>

The MB for batch BJ90131 exhibited a detection of m,p-xylene (0.0052 mg/kg). The associated results in sample SB19_0-2 and SB28_5.5-7.5 are qualified as "U" at the reporting limit based on potential blank contamination.

The LCS/LCSD for batch BJ90131 exhibited a percent recovery above the UCL for methylene chloride (139%, 137%). The associated results in sample SB19_0-2 and SB28_5.5-7.5 are qualified as "J" based on potential high bias.

The MB for batch BJ90136 exhibited a detection of 2-butanone (0.0063 mg/kg). The associated results in sample SB19_8-9 are qualified as "U" at the reporting limit based on potential blank contamination.

The LCS for batch BJ90136 exhibited percent recoveries below the LCL for vinyl chloride (64.1%), 1,1-dichloroethene (66.6%), and 1,2,4-trimethylbenzene (82.9%). The associated results in sample SB19_8-9 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch BJ90136 exhibited a RPD above the control limit for 1,4-dioxane (45.9%). The associated results in sample SB19_8-9 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for instrument QVOA4 exhibited RFs below the control limit for tetrachloroethylene (0.198) and trichloroethylene (0.195). The associated results in sample SB19_8-9 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 10/4/2019 at 10:06 exhibited a %D above the control limit for tetrachloroethylene (34.8%). The associated results in sample SB19_0-2 and SB28_5.5-7.5 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 10/7/2019 at 09:40 exhibited a %D above the control limit for acetone (-24.5%). The associated results in sample SB19_8-9 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 10/7/2019 at 09:40 exhibited a RF below the control limit for chlorobenzene (0.466). The associated results in sample SB19_8-9 are qualified as "UJ" based on potential indeterminate bias.

#### <u>19J0216:</u>

The LCSD for batch BJ90297 exhibited percent recoveries below the LCL for 1,3,5trimethylbenzene (78.7%) and 1,2,4-trimethylbenzene (79.5%). The associated results in sample RITB05_100319 and RISOFB02_100319 are qualified as "UJ" based on potential low bias.

The CCV analyzed on 10/4/2019 at 09:33 exhibited %Ds above the control limit for 1,4-dioxane (-25.3%), 2-butanone (31.0%), and acetone (37.7%). The associated results in sample RITB05_100319 and RISOFB02_100319 are qualified as "UJ" based on potential indeterminate bias.

#### <u>L1924067:</u>

The ICAL for instrument VOA110 exhibited a RF below the control limit for 1,4-dioxane (0.005). The associated results in sample SB06_1-2, SB06_7-8, SB07_2-3, SB07_5-6, and SB08_1-2 are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 3/27/2019 at 04:29 exhibited %Ds above the control limit for chloromethane (-20.1%) and bromomethane (-25.7%). The associated results in sample SB06_1-2, SB06_7-8, SB07_2-3, SB07_5-6, and SB08_1-2 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for instrument VOA104 exhibited RFs below the control limit for 2-butanone (0.083) and 1,4-dioxane (0.002). The associated results in sample SB08_5-6, SB09_2-3, SB09_5-6, and SB12_3-4 are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 5/7/2019 at 06:16 exhibited a %D above the control limit for styrene (-20.7%). The associated results in sample SB08_5-6, SB09_2-3, SB09_5-6, and SB12_3-4 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for instrument VOA117 exhibited RFs below the control limit for 1,4-dioxane (0.001), 4methyl-2-pentanone (0.063), and 2-hexanone (0.097). The associated results in sample SB12_5-6 are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 6/2/2019 at 13:43 exhibited %Ds above the control limit for dichlorodifluoromethane (22.0%) and carbon disulfide (20.1%). The associated results in sample SB12_5-6 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 6/11/2019 at 10:39 exhibited %Ds above the control limit for dichlorodifluoromethane (26.1%), trichlorofluoromethane (27.9%), acetone (-38.5%), vinyl acetate (-36.2%), 2-butanone (-23.7%), hexachlorobutadiene (22.8%), and naphthalene (21.9%).

The associated results in sample SB06_1-2, SB06_7-8, SB07_2-3, SB07_5-6, and SB08_1-2 are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 6/11/2019 at 17:07 exhibited %Ds above the control limit for bromomethane (-33.6%), trichlorofluoromethane (-22.0%), and trans-1,4-dichloro-2-butene (20.2%). The associated results in sample SB08_5-6, SB09_2-3, SB09_5-6, and SB12_3-4 are qualified as "UJ" based on potential indeterminate bias.

#### <u>L1924383:</u>

The MB for batch WG1248022 exhibited a detection of methyl tert butyl ether (0.21 ug/kg). The associated results in sample SB10_1-2, SB10_7-8, and SB11_1-2 are qualified as "U" at the reporting limit based on potential blank contamination.

The ICAL for instrument VOA104 exhibited RFs below the control limit for 2-butanone (0.083) and 1,4-dioxane (0.002). The associated results in sample SB13_3-4 are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 5/7/2019 at 06:16 exhibited a %D above the control limit for styrene (-20.7%). The associated results in sample SB13_3-4 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for instrument VOA117 exhibited RFs below the control limit for 1,4-dioxane (0.001), 4methyl-2-pentanone (0.063), and 2-hexanone (0.097). The associated results in sample SB10_1-2, SB10_7-8, SB11_1-2, SB13_10-11, SB14_3-4, and SB11_5-6 are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 6/2/2019 at 13:43 exhibited %Ds above the control limit for dichlorodifluoromethane (22.0%) and carbon disulfide (20.1%). The associated results in sample SB10_1-2, SB10_7-8, SB11_1-2, SB13_10-11, SB14_3-4, and SB11_5-6 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 6/12/2019 at 18:06 exhibited %Ds above the control limit for chloromethane (-25.0%) and vinyl chloride (-26.0%). The associated results in sample SB10_1-2, SB10_7-8, SB11_1-2, SB13_10-11, and SB14_3-4 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 6/13/2019 at 07:13 exhibited %Ds above the control limit for vinyl chloride (-21.2%) and 1,2-dibromo-3-chloropropane (21.4%). The associated results in sample SB15_3-4 and SB11_5-6 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 6/13/2019 at 07:17 exhibited %Ds above the control limit for bromomethane (-33.6%), trichlorofluoromethane (-30.5%), methylene chloride (23.2%), and acrylonitrile (25.8%). The associated results in sample SB13_3-4 are qualified as "UJ" based on potential indeterminate bias.

#### <u>L1927241:</u>

The ICAL for instrument VOA100 exhibited RFs below the control limit for acetone (0.065), 2butanone (0.093), and 1,4-dioxane (0.002). The associated results in sample TP01_2-2.5, TP02_1.5-2, TP03_1-1.5, and SB16_0-2 are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 6/17/2019 at 12:22 exhibited %Ds above the control limit for dichlorodifluoromethane (23.8%) and 1,2,4-trichlorobenzene (-20.6%). The associated results in sample TP01_2-2.5, TP02_1.5-2, TP03_1-1.5, and SB16_0-2 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 6/24/2019 at 05:05 exhibited %Ds above the control limit for chloromethane (23.5%) and 2-hexanone (23.3%). The associated results in sample TP01_2-2.5 are qualified as "UJ" based on potential indeterminate bias.

#### SVOCs by SW-846 Method 8270D and 8270D SIM:

#### <u> 19|1369:</u>

The CCV analyzed on 10/3/2019 at 15:08 exhibited a RF below the control limit for hexachlorobenzene (0.095). The associated results in sample SB21_0-2, SB21_5-7, SB22_0-2, SB22_5-7, SB23_0-2, and SB23_5.5-7.5 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 10/3/2019 at 15:08 exhibited %Ds above the control limit for indeno(1,2,3-cd)pyrene (24.9%) and pentachlorophenol (25.7%). The associated results in sample SB21_0-2, SB21_5-7, SB22_0-2, SB22_5-7, SB23_0-2, and SB23_5.5-7.5 are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 10/2/2019 at 09:35 exhibited a %D above the control limit for pentachlorophenol (-43.0%). The associated results in sample RISOFB01_093019 are qualified as "UJ" based on potential indeterminate bias.

#### <u>19J0068:</u>

The CCV analyzed on 10/4/2019 at 14:47 exhibited a %D above the control limit for pentachlorophenol (28.9%). The associated results in sample SB25_11-12, SB26_0-2, and SB26_6-8 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 10/4/2019 at 09:02 exhibited a %D above the control limit for pentachlorophenol (22.6%). The associated results in sample SB18_0-2, SB18_10-12, SB24_0-2, SB24_10-12, SB24_15-16, SB25_0-2, and SB25_6-8 are qualified as "UJ" based on potential indeterminate bias.

#### <u>19J0144:</u>

The CCV analyzed on 10/8/2019 at 08:57 exhibited a %D above the control limit for pentachlorophenol (26.8%). The associated results in sample SB19_0-2, SB19_8-9, and SB27_0-2 are qualified as "UJ" based on potential indeterminate bias.

#### <u>19J0216:</u>

The CCV analyzed on 10/9/2019 at 08:18 exhibited a %D above the control limit for pentachlorophenol (34.5%). The associated results in sample SB20_0-2, SB20_13-15, SB30_0-2, SB30_10-12, and RISODUP02_100319 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 10/4/2019 at 09:53 exhibited a %D above the control limit for pentachlorophenol (-43.3%). The associated results in sample RISOFB02_100319 are qualified as "UJ" based on potential indeterminate bias.

#### L1924067:

The CCV analyzed on 6/10/2019 at 01:14 exhibited %Ds above the control limit for bis(2-chloroisopropyl)ether (-66.0%), hexachlorocyclopentadiene (36.1%), 4-nitrophenol (-26.7%), pentachlorophenol (28.6%), and di-n-octylphthalate (-23.1%). The associated results in sample SB06_1-2, SB06_7-8, SB07_2-3, SB07_5-6, SB08_1-2, SB08_5-6, SB09_2-3, SB09_5-6, SB12_3-4, and SB12_5-6 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 6/13/2019 at 09:04 exhibited a %D above the control limit for 2-nitrophenol (-20.4%). The associated results in sample SB06_1-2 are qualified as "UJ" based on potential indeterminate bias.

#### <u>L1924383:</u>

The ICV analyzed on 5/29/2019 at 10:53 exhibited a %D above the control limit for benzoic acid (21.1%). The associated results in sample SB10_1-2, SB10_7-8, SB11_1-2, SB11_5-6, SB13_3-4, SB13_10-11, SB14_3-4, and SB15_3-4 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 6/10/2019 at 23:33 exhibited %Ds above the control limit for 2-nitrophenol (-43.6%), 3-nitroaniline (-23.4%), 2,4-dinitrophenol (-54.2%), 4-nitroaniline (-25.2%), and 4,6-dinitro-o-cresol (-45.1%). The associated results in sample SB10_1-2, SB10_7-8, SB11_1-2, SB11_5-6, SB13_3-4, SB13_10-11, SB14_3-4, and SB15_3-4 are qualified as "UJ" based on potential indeterminate bias.

#### <u>L1927241:</u>

The CCV analyzed on 6/24/2019 at 08:50 exhibited a %D above the control limit for hexachlorocyclopentadiene (45.9%). The associated results in sample TP01_2-2.5 are qualified as "UJ" based on potential indeterminate bias.

#### PFAS by USEPA Method 537M:

#### <u> 19|1299:</u>

The sample SB17_0-2 exhibited a percent recovery below the LCL for the standard isotope perfluoro-1-[13c8]octanesulfonamide (1.83%). The associated results are qualified as "UJ" based on potential low bias.

#### <u> 19J0068:</u>

The sample SB24_0-2 exhibited a percent recovery below the LCL for the standard isotope perfluoro-1-[13c8]octanesulfonamide (0%). The associated results are qualified as "UJ" based on potential low bias.

The sample SB24_0-2 exhibited a percent recovery above the UCL for the standard isotope perfluoro-n-[13c5]pentanoic acid (153%). The associated results are qualified as "J" based on potential high bias.

#### Herbicides by SW-846 Method 8151A:

#### <u> 19J0068:</u>

The CCV analyzed on 10/7/2019 at 09:01 exhibited a %D above the control limit for 2,4,5-TP (25.8%). The associated results in sample SB18_0-2, SB18_10-12, SB24_0-2, SB24_10-12,

SB24_15-16, SB25_0-2, SB25_6-8, SB25_11-12, SB26_0-2, and SB26_6-8 are qualified as "UJ" based on potential indeterminate bias.

#### <u>19J0216:</u>

The CCV analyzed on 10/8/2019 at 19:00 exhibited a %D above the control limit for 2,4,5-TP (29.5%). The associated results in sample SB20_0-2, SB20_13-15, SB30_0-2, SB30_10-12, and RISODUP02_100319 are qualified as "UJ" based on potential indeterminate bias.

#### PCBs by SW-846 Method 8082A:

#### <u> 19|1369:</u>

The sample SB21_5-7 exhibited a percent recovery below the LCL for the surrogate decachlorobiphenyl (28.0%, 25.5%). The associated results are qualified as "UJ" based on potential low bias.

#### <u>L1924383:</u>

The sample SB13_10-11 exhibited a RPD above the control limit between the primary and secondary GC columns for PCB 1260 (44%). The associated results are qualified as "J" based on potential indeterminate bias.

#### Pesticides by SW-846 Method 8081B:

#### <u> 19|1299:</u>

The sample SB17_0-2 exhibited a RPD above the control limit between the primary and secondary GC columns for 4,4'-DDE (71%). The associated results are qualified as "J" based on potential indeterminate bias.

#### <u>19J0068:</u>

The sample SB25_6-8 exhibited a percent recovery below the LCL for the surrogate decachlorobiphenyl (0%). The associated results are qualified as "UJ" based on potential low bias.

The sample SB25_0-2 exhibited RPDs above the control limit between the primary and secondary GC columns for 4,4'-DDE (68%) and alpha-chlordane (49%). The associated results are qualified as "J" based on potential indeterminate bias.

#### <u>19J0144:</u>

The CCV analyzed on 10/9/2019 at 16:51 exhibited a %D above the control limit for 4,4'-DDT (46.5%, 64.1%). The associated results in sample SB19_0-2, SB19_8-9, and SB27_0-2 are qualified as "UJ" based on potential indeterminate bias.



#### <u>L1924067:</u>

The sample SB06_1-2 exhibited a RPD above the control limit between the primary and secondary GC columns for trans-chlordane (186%). The associated results are qualified as "J" based on potential indeterminate bias.

The sample SB07_2-3 exhibited RPDs above the control limit between the primary and secondary GC columns for trans-chlordane (183%), endosulfan II (162%), and delta BHC (127%). The associated results are qualified as "UJ" based on potential indeterminate bias.

#### <u>L1924383:</u>

The sample SB13_10-11 exhibited a percent recovery above the UCL for the surrogate 2,4,5,6-tetrachloro-m-xylene (267%). The associated results are qualified as "J" based on potential high bias.

The sample SB10_7-8 exhibited a RPD above the control limit between the primary and secondary GC columns for trans-chlordane (199%). The associated results are qualified as "J" based on potential indeterminate bias.

The sample SB11_1-2 exhibited a RPD above the control limit between the primary and secondary GC columns for trans-chlordane (199%). The associated results are qualified as "J" based on potential indeterminate bias.

The sample SB13_10-11 exhibited a RPD above the control limit between the primary and secondary GC columns for trans-chlordane (182). The associated results are qualified as "UJ" based on potential indeterminate bias.

The sample SB14_3-4 exhibited a RPD above the control limit between the primary and secondary GC columns for trans-chlordane (200%). The associated results are qualified as "J" based on potential indeterminate bias.

The sample SB15_3-4 exhibited a RPD above the control limit between the primary and secondary GC columns for trans-chlordane (76%). The associated results are qualified as "J" based on potential indeterminate bias.

The CCV analyzed on 6/13/2019 at 08:36 exhibited %Ds above the control limit for endrin aldehyde (20.5%) and methoxychlor (28.1%). The associated results in sample SB10_1-2, SB10_7-8, SB11_1-2, SB11_5-6, SB13_3-4, SB13_10-11, SB14_3-4, and SB15_3-4 are qualified as "UJ" based on potential indeterminate bias.

#### <u>L1927241:</u>

The sample TP01_2-2.5 exhibited RPDs above the control limit between the primary and secondary GC columns for 4,4'-DDE (113%), dieldrin (86%), and trans-chlordane (96%). The associated results are qualified as "J" based on potential indeterminate bias.

The sample TP02_1.5-2 exhibited RPDs above the control limit between the primary and secondary GC columns for dieldrin (143%), cis-chlordane (43%), and trans-chlordane (198%). The associated results are qualified as "J" based on potential indeterminate bias.

The sample TP03_1-1.5 exhibited RPDs above the control limit between the primary and secondary GC columns for 4,4'-DDT (55%), alpha-BHC (50%), chlordane (119%), dieldrin (79%), and trans-chlordane (154%). The associated results are qualified as "J" based on potential indeterminate bias.

The sample SB16_0-2 exhibited RPDs above the control limit between the primary and secondary GC columns for chlordane (184%) and trans-chlordane (196%). The associated results are qualified as "J" based on potential indeterminate bias.

The CCV analyzed on 6/23/2019 at 17:04 exhibited a %D above the control limit for beta BHC (20.5%). The associated results in sample TP02_1.5-2 and SB16_0-2 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 6/23/2019 at 17:04 exhibited %Ds above the control limit for 4,4'-DDD (20.7%) and methoxychlor (29.4%). The associated results in sample TP01_2-2.5, TP02_1.5-2, TP03_1-1.5, and SB16_0-2 are qualified as "UJ" based on potential indeterminate bias.

#### Metals by SW-846 Method 6010D and 6020B:

#### <u> 19|1299:</u>

The laboratory duplicate and parent sample (SB31_6.5-8.5) exhibited RPDs above the control limit for manganese (66.7%), cadmium (87.3%), and copper (51.7%). The associated results are qualified as "J" based on potential indeterminate bias.

The matrix spike (MS) for batch BI91617 exhibited percent recoveries below the LCL for lead (-8.94%) and zinc (26.7%). The associated results in sample SB16_0-2, SB16_2-4, SB17_0-2, SB17_5.5-7.5, SB31_0-2, and SB31_6.5-8.5 are qualified as "J" based on potential low bias.

The LCS for batch BI91617 exhibited a percent recovery below the LCL for silver (57.2%). The associated results in sample SB16_0-2, SB16_2-4, SB17_0-2, SB17_5.5-7.5, SB31_0-2, and SB31_6.5-8.5 are qualified as "J" or "UJ" based on potential low bias.

#### <u> 19|1369:</u>

The MS for batch BJ90042 exhibited a percent recovery below the LCL for beryllium (68.6%). The associated results in sample SB21_0-2, SB21_5-7, SB22_0-2, SB22_5-7, SB23_0-2, SB23_5.5-7.5, and RISODUP01_093019 are qualified as "UJ" based on potential low bias.

The field duplicate and parent sample (RISODUP01_093019 and SB22_0-2) exhibited a RPD above the control limit for barium (80%). The associated results are qualified as "J" based on potential indeterminate bias.

#### <u> 19J0068:</u>

The MB for batch BJ90119 exhibited a detection of copper (2.68 mg/kg). The associated results in sample SB24_10-12, SB24_15-16, SB25_6-8, and SB25_11-12 are qualified as "U" at the sample concentration based on potential blank contamination.

The laboratory duplicate and parent sample (SB26_6-8) exhibited a RPD above the control limit for manganese (60.9%). The associated results are qualified as "J" based on potential indeterminate bias.

The MS for batch BJ90119 exhibited percent recoveries above the UCL for lead (191%) and zinc (136%). The associated results in sample SB18_0-2, SB18_10-12, SB24_0-2, SB24_10-12, SB24_15-16, SB25_0-2, SB25_6-8, SB25_11-12, SB26_0-2, and SB26_6-8 are qualified as "J" based on potential high bias.

The MS for batch BJ90119 exhibited a percent recovery below the LCL for beryllium (63.7%). The associated results in sample SB18_0-2, SB18_10-12, SB24_0-2, SB24_10-12, SB24_15-16, SB25_0-2, SB25_6-8, SB25_11-12, SB26_0-2, and SB26_6-8 are qualified as "UJ" based on potential low bias.

#### <u>19J0144:</u>

The MS for batch BJ90216 exhibited a percent recovery above the UCL for lead (170%). The associated results in sample SB19_0-2, SB19_8-9, SB27_0-2, SB27_6-8, SB28_0-2, and SB28_5.5-7.5 are qualified as "J" based on potential high bias.

The MS for batch BJ90216 exhibited percent recoveries below the LCL for silver (48.4%), beryllium (14.9%), and chromium (52.3%). The associated results in sample SB19_0-2, SB19_8-9, SB27_0-2, SB27_6-8, SB28_0-2, and SB28_5.5-7.5 are qualified as "J" or "UJ" based on potential low bias.

#### <u>19J0216:</u>

The MS for batch BJ90306 exhibited percent recoveries below the LCL for copper (74.9%) and chromium (54%). The associated results in sample SB20_0-2, SB20_13-15, SB30_0-2, SB30_10-12, and RISODUP02_100319 are qualified as "J" based on potential low bias.

The field duplicate and parent sample (RISODUP02_100319 and SB20_0-2) exhibited RPDs above the control limit for barium (131%), lead (181%), manganese (60%), and zinc (137%). The associated results are qualified as "J" based on potential indeterminate bias.

The field duplicate and parent sample (RISODUP02_100319 and SB20_0-2) exhibited an absolute difference above the RL for cadmium (1.372 mg/kg). The associated results are qualified as "J" based on potential indeterminate bias.

#### L1924067:

The MB for batch WG1247080 exhibited a detection of antimony (0.156 mg/kg). The associated results in sample SB07_5-6, SB08_5-6, and SB09_5-6 are qualified as "U" at the reporting limit based on potential blank contamination.

The MS for batch WG1247080 exhibited percent recoveries above the UCL for barium (139%) and copper (283%). The associated results in sample SB06_1-2, SB06_7-8, SB07_2-3, SB07_5-6, SB08_1-2, SB08_5-6, SB09_2-3, SB09_5-6, SB12_3-4, and SB12_5-6 are qualified as "J" based on potential high bias.

The MS for batch WG1247080 exhibited a percent recovery below the LCL for thallium (73%). The associated results in sample SB06_1-2, SB06_7-8, SB07_2-3, SB07_5-6, SB08_1-2, SB08_5-6, SB09_2-3, SB09_5-6, SB12_3-4, and SB12_5-6 are qualified as "UJ" based on potential low bias.

The laboratory duplicate and parent sample (SB06_1-2) exhibited RPDs above the control limit for arsenic (27%), cadmium (23%), chromium (22%), cobalt (39%), iron (34%), lead (83%), vanadium (24%), and zinc (46%). The associated results are qualified as "J" based on potential indeterminate bias.

#### <u>L1924383:</u>

The MB for batch WG1247619 exhibited a detection of sodium (4.72 mg/kg). The associated results in sample SB11_5-6 are qualified as "U" at the reporting limit based on potential blank contamination.

#### <u>L1927241:</u>

The MS for batch WG1252228 exhibited percent recoveries below the LCL for barium (67%), cadmium (74%), chromium (43%), and nickel (63%). The associated results in sample TP01_2-2.5, TP02_1.5-2, TP03_1-1.5, and SB16_0-2 are qualified as "J" or "UJ" based on potential low bias.

The laboratory duplicate and parent sample (TP01_2-2.5) exhibited RPDs above the control limit for antimony (52%), arsenic (44%), cobalt (30%), copper (33%), iron (40%), lead (49%), potassium (32%), silver (101%), vanadium (27%), and zinc (28%). The associated results are qualified as "J" based on potential indeterminate bias.

The MB for batch WG1252235 exhibited a detection of TCLP arsenic (0.033 mg/l). The associated results in sample SB16_0-2 are qualified as "U" at the reporting limit based on potential blank contamination.

#### Mercury by SW-846 Method 7470A and 7473:

#### <u> 19J0216:</u>

The field duplicate and parent sample (RISODUP02_100319 and SB20_0-2) exhibited a RPD above the control limit for mercury (133%). The associated results are qualified as "J" based on potential indeterminate bias.

#### Hexavalent Chromium by SW-846 Method 7196A:

#### <u> 19J0216:</u>

The MS for batch BJ90629 exhibited a percent recovery below the LCL for hexavalent chromium (15%). The associated results in sample SB20_0-2, SB20_13-15, SB30_0-2, SB30_10-12, and RISODUP02_100319 are qualified as "UJ" based on potential low bias.

#### <u>L1924067:</u>

The MS for batch WG1247173 exhibited a percent recovery below the LCL for hexavalent chromium (0%). The associated results in sample SB06_1-2, SB06_7-8, SB07_2-3, SB07_5-6, SB08_1-2, SB08_5-6, SB09_2-3, SB09_5-6, SB12_3-4, and SB12_5-6 are qualified as "UJ" based on potential low bias.

#### <u>L1924383:</u>

The MS for batch WG1247175 exhibited a percent recovery below the LCL for hexavalent chromium (22%). The associated results in sample SB10_1-2, SB10_7-8, SB11_1-2, SB11_5-6,

SB13_3-4, SB13_10-11, SB14_3-4, and SB15_3-4 are qualified as "J" or "UJ" based on potential low bias.

#### Trivalent Chromium (calculated):

#### <u>19J0216:</u>

The field duplicate and parent sample (RISODUP02_100319 and SB20_0-2) exhibited a RPD above the control limit for trivalent chromium (69%). The associated results are qualified as "J" based on potential indeterminate bias.

#### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

#### VOCs by SW-846 Method 8260C:

#### <u> 19|1299:</u>

The MB for batch BI91609 exhibited a detection of 2-butanone (0.43 ug/L). The associated results are non-detections. No qualification is necessary.

The trip blank (RITB01_092719) exhibited a detection of 1,2,4-trimethylbenzene (0.4 ug/L). The associated results are non-detections. No qualification is necessary.

#### <u> 19|1369:</u>

The sample SB21_0-2 exhibited a percent recovery below the LCL for the internal standard 1,2dichlorobenzene-d4 (39%). The associated results are qualified as "UJ" based on potential loss of instrument sensitivity.

The sample SB22_0-2 exhibited a percent recovery below the LCL for the internal standard 1,2dichlorobenzene-d4 (24%). The associated results are qualified as "UJ" based on potential loss of instrument sensitivity.

#### <u>19J0068:</u>

The MB for batch BJ90132 exhibited a detection of m,p-xylene (0.0053 mg/kg). The associated results are >10X the contamination. No qualification is necessary.

LANGAN

#### <u>19J0144:</u>

The LCS/LCSD for batch BJ90131 exhibited a percent recovery above the UCL for secbutylbenzene (128%, 129%). The associated results are non-detections. No qualification is necessary.

#### L1924067:

The LCS/LCSD for batch WG1246984 exhibited percent recoveries above the UCL for acrylonitrile (132%), chloromethane (141%, 139%), and vinyl acetate (136%, 138%). The associated results are non-detections. No qualification is necessary.

The MB for batch WG1246984 exhibited a detection of methylene chloride (2.9 ug/kg). The associated results are non-detections. No qualification is necessary.

The MB for batch WG1247394 exhibited a detection of methyl tert-butyl ether (11 ug/kg). The associated results are non-detections. No qualification is necessary.

The CCV analyzed on 6/11/2019 at 10:39 exhibited a %D above the control limit for chloromethane (-40.6%). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 6/11/2019 at 17:07 exhibited a %D above the control limit for 2-butanone (22.9%). The associated results were previously qualified. No further action is necessary.

#### L1924383:

The CCV analyzed on 6/13/2019 at 07:17 exhibited a %D above the control limit for 2-butanone (22.9%). The associated results were previously qualified. No further action is necessary.

#### L1927241:

The CCV analyzed on 6/24/2019 at 05:05 exhibited a %D above the control limit for acetone (26.2%). The associated results were previously qualified. No further action is necessary.

#### SVOCs by SW-846 Method 8270D and 8270D SIM:

#### <u> 19|1299:</u>

The sample SB17_5.5-7.5 (reanalysis 2) exhibited a percent recovery below the LCL for the surrogate 2,4,6-tribromophenol (15%). The other two acid extractable surrogates were recovered within the control limits. No qualification is necessary.

The sample SB17_5.5-7.5 (reanalysis 2) exhibited a percent recovery below the LCL for the surrogate terphenyl-d14 (0%). The other two base neutral extractable surrogates were recovered within the control limits. No gualification is necessary.

#### <u> 19J0068:</u>

The sample SB25_6-8 exhibited a percent recovery below the LCL for the surrogate 2-fluorobiphenyl (3.20%). The other two base neutral extractable surrogates were recovered within the control limits. No qualification is necessary.

#### <u> 19J0216:</u>

The MS and matrix spike duplicate (MSD) for batch BJ90496 exhibited percent recoveries below the LCL for anthracene (-177%, -90.7%), acenaphthene (-71.7%), fluorene (-53.7%, 2.39%), pyrene (-428%, -156%), fluoranthene (-451%, -138%), benzo(k)fluoranthene (-108%, 8.46%), phenanthrene (-584%, -276%), and pentachlorophenol (9.36%, 9.76%). Organic results are not qualified on the basis of MS/MSD recoveries alone. No qualification is necessary.

The MS/MSD for batch BJ90496 exhibited RPDs above the control limit for dibenzofuran (33.2%), dibenz(a,h)anthracene (33.3%), acenaphthene (36.1%), naphthalene (42.1%), 2-methylphenol (30.3%), benzo(g,h,i)perylene (30%), indeno(1,2,3-c,d)pyrene (35.6%), benzo(b)fluoranthene (36%), chrysene (32.8%), benzo(a)pyrene (34.4%), and benzo(a)anthracene (33.2%). Organic results are not qualified on the basis of MS/MSD RPDs alone. No qualification is necessary.

#### L1924067:

The LCS/LCSD for batch WG1245970 exhibited percent recoveries above the UCL for 4nitrophenol (115%, 119%) and phenol (94%, 97%). The associated results are non-detections. No qualification is necessary.

#### <u>L1924383:</u>

The LCS for batch WG1246368 exhibited a percent recovery above the UCL for 4,6-dinitro-ocresol (132%). The associated results are non-detections. No qualification is necessary.

#### PFAS by USEPA Method 537M:

#### <u> 19|1299:</u>

The sample SB16_0-2 exhibited a percent recovery above the UCL for the standard isotope sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (196%). The associated results are non-detections. No qualification is necessary.



The sample SB17_0-2 exhibited percent recoveries above the UCL for the standard isotopes sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (316%) and sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (515%). The associated results are non-detections. No qualification is necessary.

The sample SB31_0-2 exhibited percent recoveries above the UCL for the standard isotopes sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (159%) and sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (264%). The associated results are non-detections. No qualification is necessary.

#### <u> 19|1369:</u>

The sample SB21_0-2 exhibited percent recoveries above the UCL for the standard isotopes sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (177%) and sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (437%). The associated results are non-detections. No qualification is necessary.

The sample SB22_0-2 exhibited percent recoveries above the UCL for the standard isotopes sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (152%) and sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (378%). The associated results are non-detections. No qualification is necessary.

The sample SB23_0-2 exhibited a percent recovery above the UCL for the standard isotope sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (183%). The associated results are non-detections. No qualification is necessary.

#### <u>19J0068:</u>

The sample SB18_0-2 exhibited a percent recovery above the UCL for the standard isotope sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (172%). The associated results are non-detections. No qualification is necessary.

The sample SB25_0-2 exhibited percent recoveries above the UCL for the standard isotopes sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (231%) and sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (551%). The associated results are non-detections. No qualification is necessary.

The sample SB24_0-2 exhibited percent recoveries above the UCL for the standard isotopes 13c3-perfluorobutane sulfonate (151%), 13c4-perfluoroheptanoic acid (170%), perfluoro-n-[13c4]butanoic acid (155%), sodium 1h,1h,2h,2h-

perfluoro-1-[1,2-13c2]-octane sulfonate (248%), sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]decane sulfonate (291%), and 13c9-perfluorononanoic acid (159%). The associated results are non-detections. No qualification is necessary.

The sample SB26_0-2 exhibited percent recoveries above the UCL for the standard isotopes 13c4-perfluoroheptanoic acid (157%), n-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid (158%), n-deuterioethylperfluoro-1-octanesulfonamidoacetic acid (180%), sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (225%), sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (348%), and 13c9-perfluorononanoic acid (156%). The associated results are non-detections. No qualification is necessary.

#### <u>19J0216:</u>

The sample SB20_0-2 exhibited percent recoveries above the UCL for the standard isotopes 13c3-perfluorobutane sulfonate (176%), 13c5-perfluorohexanoic acid (166%), 13c4perfluoroheptanoic acid (165%), 13c3-perfluorohexanesulfonic acid (174%), perfluoro-n-[13c8]octanoic acid (155%), perfluoro-n-[13c4]butanoic acid (172%), perfluoro-1-[13c8]octanesulfonic perfluoro-n-[13c5]pentanoic acid (158%), acid (174%), ndeuteriomethylperfluoro-1-octanesulfonamidoacetic acid (164%), n-deuterioethylperfluoro-1octanesulfonamidoacetic acid (169%), sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (418%), and sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (637%). The associated results are non-detections. No qualification is necessary.

The sample SB30_10-12 exhibited percent recoveries above the UCL for the standard isotopes 13c4-perfluoroheptanoic acid (152%), sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (185%), and sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (245%). The associated results are non-detections. No qualification is necessary.

The sample RISODUP02_100319 exhibited percent recoveries above the UCL for the standard isotopes 13c3-perfluorobutane sulfonate (155%), 13c4-perfluoroheptanoic acid (153%), 13c3-perfluorohexanesulfonic acid (156%), perfluoro-n-[13c8]octanoic acid (157%), n-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid (158%), n-deuterioethylperfluoro-1-octanesulfonamidoacetic acid (158%), n-deuterioethylperfluoro-1-octanesulfonamidoacetic acid (158%), n-deuterioethylperfluoro-1-octanesulfonamidoacetic acid (158%), n-deuterioethylperfluoro-1-sulfonamidoacetic acid (168%), sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (180%), and sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (275%). The associated results are non-detections. No qualification is necessary.

#### Herbicides by SW-846 Method 8151A:

#### <u> 19|1369:</u>

The MS/MSD for batch BJ90185 exhibited a RPD above the control limit for 2,4,5-TP (35.1%). Organic results are not qualified on the basis of MS/MSD RPDs alone. No qualification is necessary.

#### PCBs by SW-846 Method 8082A:

#### <u> 19|1369:</u>

The MS/MSD for batch BJ90089 exhibited a percent recovery below the LCL for PCB-1260 (26.4%, 34.5%). Organic results are not qualified on the basis of MS/MSD recoveries alone. No qualification is necessary.

The MS/MSD for batch BJ90089 exhibited a RPD above the control limit for PCB-1016 (54%). Organic results are not qualified on the basis of MS/MSD RPDs alone. No qualification is necessary.

#### <u>L1924067:</u>

The sample SB06_1-2 exhibited percent recoveries below the LCL for the surrogates 2,4,5,6-tetrachloro-m-xylene (0%) and decachlorobiphenyl (0%). The sample was diluted >10X. No qualification is necessary.

The sample SB06_7-8 exhibited percent recoveries below the LCL for the surrogates 2,4,5,6-tetrachloro-m-xylene (0%) and decachlorobiphenyl (0%). The sample was diluted >10X. No qualification is necessary.

#### Pesticides by SW-846 Method 8081B:

#### <u> 19|1369:</u>

The MS/MSD for batch BJ90089 exhibited percent recoveries below the LCL for endosulfan sulfate (25.9%, 28.2%), delta BHC (25.7%), beta endosulfan (25%), alpha chlordane (27.5%), dieldrin (27.3%), 4,4'-DDD (23.6%, 28.2%), 4,4'-DDE (26%, 29.9%), 4,4'-DDT (23.8%, 29.9%), and endrin (28.9%). Organic results are not qualified on the basis of MS/MSD recoveries alone. No qualification is necessary.

#### <u>L1924383:</u>

The sample SB13_10-11 exhibited a RPD above the control limit between the primary and secondary GC columns for 4,4'-DDE (48%). The associated results were previously qualified. No further action is necessary.

#### Metals by SW-846 Method 6010D and 6020B:

#### <u> 19|1299:</u>

The laboratory duplicate and parent sample (SB31_6.5-8.5) exhibited RPDs above the control limit for lead (65.2%) and zinc (41.5%). The associated results were previously qualified. No further action is necessary.

The MS/MSD for batch BI91617 exhibited percent recoveries below the LCL for manganese (-252%) and copper (-24.4%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

#### <u> 19|1369:</u>

The MS/MSD for batch BJ90042 exhibited a percent recovery above the UCL for manganese (182%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MB for batch BJ90027 exhibited a detection of zinc (0.00172 mg/L). The associated results are >10X the contamination. No qualification is necessary.

The field blank (RISOFB01_093019) exhibited a detection of zinc (0.0771 mg/L). The associated results are >10X the contamination. No qualification is necessary.

#### <u> 19J0068:</u>

The MS/MSD for batch BJ90119 exhibited a percent recovery below the LCL for manganese (-170%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

#### <u>19J0216:</u>

The MB for batch BJ90306 exhibited detections of copper (2.31 mg/kg) and zinc (2.68 mg/kg). The associated results are >10X the contamination. No qualification is necessary.

The laboratory duplicate and parent sample (SB20_0-2) exhibited RPDs above the control limit for lead (48.1%) and chromium (82.7%). The associated results were previously qualified. No further action is necessary.

The MS/MSD for batch BJ90306 exhibited percent recoveries below the LCL for lead (-166%) and manganese (-31.1%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS/MSD for batch BJ90306 exhibited a percent recovery above the UCL for zinc (129%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The field duplicate and parent sample (RISODUP02_100319 and SB20_0-2) exhibited a RPD above the control limit for chromium (69%). The associated results were previously qualified. No further action is necessary.

The field blank (RISOFB02_100319) exhibited a detection of zinc (0.0287 mg/L). The associated results are >10X the contamination. No qualification is necessary.

#### L1924067:

The MB for batch WG1247080 exhibited detections of chromium (0.06 mg/kg), iron (2.01 mg/kg), silver (0.56 mg/kg), and sodium (7.48 mg/kg). The associated results are >10X the contamination. No qualification is necessary.

The MS/MSD for batch WG1247080 exhibited percent recoveries above the UCL for aluminum (574%), calcium (271%), and zinc (307%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS/MSD for batch WG1247080 exhibited percent recoveries below the LCL for iron (0%), magnesium (60%), and manganese (15%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The laboratory duplicate and parent sample (SB06_1-2) exhibited a RPD above the control limit for copper (192%). The associated results were previously qualified. No further action is necessary.

#### L1927241:

The MB for batch WG1252228 exhibited detections of copper (0.316 mg/kg), iron (0.78 mg/kg), sodium (1.43 mg/kg), and zinc (0.156 mg/kg). The associated results are >10X the contamination. No qualification is necessary.

The MS/MSD for batch WG1252228 exhibited percent recoveries above the UCL for aluminum (381%), calcium (1790%), copper (2900%), magnesium (1000%), and zinc (134%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.



The MS/MSD for batch WG1252228 exhibited percent recoveries below the LCL for iron (0%), lead (0%), and manganese (0%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The laboratory duplicate and parent sample (TP01_2-2.5) exhibited RPDs above the control limit for cadmium (45%), chromium (42%), and nickel (53%). The associated results were previously qualified. No further action is necessary.

#### COMMENTS:

Two field duplicate and parent sample pairs were collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than  $\pm 2X$  the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 50%. The following field duplicate and parent sample pairs were compared to the precision criteria:

- RISODUP01_093019 and SB22_0-2: criteria met for all analytes
- RISODUP02_100319 and SB20_0-2: criteria met for all analytes

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified, with the exception of the rejected results. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%. Signed:

Emily Strake, CEP Senior Project Chemist



#### 2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

From: Emily Strake, Langan Senior Project Chemist

**Date:** November 27, 2019

Re: Data Usability Summary Report For 2413 Third Avenue June and October 2019 Soil Vapor Samples Langan Project No.: 170396002

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of soil vapor samples collected in June and October 2019 by Langan Engineering and Environmental Services ("Langan") at the 2413 Third Avenue site ("the site"). The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) and York Analytical Laboratories, Inc. (NYSDOH NELAP registration # 10854) for volatile organic compounds (VOCs) by the methods specified below.

• VOCs by USEPA Method TO-15 and TO-15 SIM

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1924604	L1924604-01	SV06_060719	6/7/2019	VOCs
L1924604	L1924604-02	SV12_060719	6/7/2019	VOCs
L1924604	L1924604-03	SV10_060719	6/7/2019	VOCs
L1924604	L1924604-04	SV11_060719	6/7/2019	VOCs
19J0219	19J0219-01	SV16_100319	10/3/2019	VOCs
19J0219	19J0219-02	SV22_100319	10/3/2019	VOCs
19J0219	19J0219-03	SV24_100319	10/3/2019	VOCs
19J0219	19J0219-04	AA01_100319	10/3/2019	VOCs

#### TABLE 1: SAMPLE SUMMARY

#### Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-31, "Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15" (September 2016, Revision 6), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), and the specifics of the methods employed.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, target compound identification and quantification, chromatograms, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
AA01_100319	TO15	115-07-1	Propylene	UJ
SV16_100319	TO15	115-07-1	Propylene	UJ
SV22_100319	TO15	115-07-1	Propylene	UJ
SV24_100319	TO15	115-07-1	Propylene	UJ

#### TABLE 2: VALIDATOR-APPLIED QUALIFICATION

#### **MAJOR DEFICIENCIES:**

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

#### MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

#### VOCs by USEPA Method TO-15 and TO-15 SIM:

The initial calibration for instrument 5975C exhibited a relative standard deviation (RSD) above the control limit for propylene (40.4%). The associated results in sample SV16_100319, SV22_100319, SV24_100319, and AA01_100319 are qualified as "UJ" based on potential indeterminate bias.

#### **OTHER DEFICIENCIES:**

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

#### VOCs by USEPA Method TO-15 and TO-15 SIM:

The continuing calibration verification analyzed on 10/10/2019 at 10:48 exhibited an RSD above the control limit for propylene (-36.9%). The associated results were previously qualified. No further action is necessary.

#### COMMENTS:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above,



Data Usability Summary Report For 2413 Third Avenue June and October 2019 Soil Vapor Samples Langan Project No.: 170396002 November 27, 2019 Page 4 of 4

that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified, with the exception of the rejected results. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP Senior Project Chemist

APPENDIX I Laboratory Data Reports APPENDIX J Completed FWRIA Decision Key

	Appendix 3C Fish and Wildlife Resources Impact Analysis Decision Key	If YES Go to:	If NO Go to:
1.	Is the site or area of concern a discharge or spill event?	13	2
2.	Is the site or area of concern a point source of contamination to the groundwater which will be prevented from discharging to surface water? Soil contamination is not widespread, or if widespread, is confined under buildings and paved areas.	13	3
3.	Is the site and all adjacent property a developed area with buildings, paved surfaces and little or no vegetation?	4	9
4.	Does the site contain habitat of an endangered, threatened or special concern species?	Section 3.10.1	5
5.	Has the contamination gone off-site?	6	14
6.	Is there any discharge or erosion of contamination to surface water or the potential for discharge or erosion of contamination?	7	14
7.	Are the site contaminants PCBs, pesticides or other persistent, bioaccumulable substances?	Section 3.10.1	8
8.	Does contamination exist at concentrations that could exceed ecological impact SCGs or be toxic to aquatic life if discharged to surface water?	Section 3.10.1	14
9.	<ul> <li>Does the site or any adjacent or downgradient property contain any of the following resources?</li> <li>i. Any endangered, threatened or special concern species or rare plants or their habitat</li> <li>ii. Any DEC designated significant habitats or rare NYS Ecological Communities</li> <li>iii. Tidal or freshwater wetlands</li> <li>iv. Stream, creek or river</li> <li>v. Pond, lake, lagoon</li> <li>vi. Drainage ditch or channel</li> <li>vii. Other surface water feature</li> <li>viii. Other marine or freshwater habitat</li> <li>ix. Forest</li> <li>x. Grassland or grassy field</li> <li>xi. Parkland or woodland</li> <li>xii. Shrubby area</li> <li>xiii. Urban wildlife habitat</li> </ul>	11	10
10.	Is the lack of resources due to the contamination?	3.10.1	14
11.	Is the contamination a localized source which has not migrated and will not migrate from the source to impact any on-site or off-site resources?	14	12
12.	Does the site have widespread surface soil contamination that is not confined under and around buildings or paved areas?	Section 3.10.1	12
13.	Does the contamination at the site or area of concern have the potential to migrate to, erode into or otherwise impact any on-site or off-site habitat of endangered, threatened or special concern species or other fish and wildlife resource? (See #9 for list of potential resources. Contact DEC for information regarding endangered species.)	Section 3.10.1	14
14.	No Fish and Wildlife Resources Impact Analysis needed.		

APPENDIX K NYSDEC Correspondence