

COPYRITE PLASTIC SHEETS
BRONX, NEW YORK

Final Engineering Report

NYSDEC Site Number: C203151

Prepared for:

Walton Street GC Developments LLC
1201 38th Street
Brooklyn, New York 12219

Prepared by:

AMC Engineering
18-36 42nd Street
Astoria, New York 11105

DECEMBER 2025

CERTIFICATIONS

I, Ariel Czemerinski, am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Remedial Action Work Plan was implemented and that all construction activities were completed in substantial conformance with the Department-approved Remedial Action Work Plan.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Remedial Action Work Plan and in all applicable statutes and regulations have been or will be achieved in accordance with the time frames, if any, established for the remedy.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the Site are contained in an environmental easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by the Department.

I certify that all documents generated in support of this report have been submitted in accordance with the DER's electronic submission protocols and have been accepted by the Department.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Ariel Czemerinski, of AMC Engineering, PLLC, 18-36 42nd Street, Astoria, New York 11105, am certifying as Owner's Designated Site Representative for the site. *[Signature]*

076508

12/11/2025

Agreement

NYS Professional Engineer #

Date

Signature

TABLE OF CONTENTS

CERTIFICATIONS	II
TABLE OF CONTENTS	III
LIST OF ACRONYMS	VI
FINAL ENGINEERING REPORT	1
1.0 BACKGROUND AND SITE DESCRIPTION	1
2.0 SUMMARY OF SITE REMEDY	2
2.1 REMEDIAL ACTION OBJECTIVES	2
2.1.1 GROUNDWATER RAOs.....	2
2.1.2 SOIL RAOs.....	2
2.1.3 SOIL VAPOR RAOs.....	2
2.2 DESCRIPTION OF SELECTED REMEDY.....	3
3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS	6
3.1 INTERIM REMEDIAL MEASURES	6
4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED	7
4.1 GOVERNING DOCUMENTS.....	7
4.1.1 SITE SPECIFIC HEALTH & SAFETY PLAN (HASP)	7
4.1.2 QUALITY ASSURANCE PROJECT PLAN (QAPP).....	7
4.1.3 CONSTRUCTION QUALITY ASSURANCE PLAN (CQAP)	8
4.1.4 SOIL/MATERIALS MANAGEMENT PLAN (S/MMP)	8
4.1.5 EROSION AND SEDIMENT CONTROL PLAN	9
4.1.6 COMMUNITY AIR MONITORING PLAN (CAMP).....	9
4.1.7 CONTRACTORS SITE OPERATIONS PLANS (SOPs).....	10
4.1.8 COMMUNITY PARTICIPATION PLAN	10
4.2 REMEDIAL PROGRAM ELEMENTS.....	11
4.2.1 CONTRACTORS AND CONSULTANTS	11
4.2.2 SITE PREPARATION.....	12
4.2.3 GENERAL SITE CONTROLS	14
4.2.4 NUISANCE CONTROLS	15
4.2.5 CAMP RESULTS	16
4.2.6 BEST MANAGEMENT PRACTICES	18
4.2.7 REPORTING	23
4.3 CONTAMINATED MATERIALS REMOVAL.....	24
4.3.1 WASTE CHARACTERIZATION SAMPLING	25
4.3.1.1 <i>Construction and Demolition Debris Removal</i>	26

4.3.1.2 Hazardous Soil/Fill Removal (Lead Hotspot).....	26
4.3.1.3 Chromium Hot Spot Removal.....	27
4.3.1.4 Arsenic Hot Spot Removal.....	27
4.3.1.5 Non-Hazardous Soil/Fill Removal.....	27
4.3.1.6 Clean Bedrock Removal.....	27
4.3.2 UST REMOVAL.....	28
4.3.3 DEWATERING FLUIDS REMOVAL.....	28
4.4 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING.....	28
4.4.1 POST-EXCAVATION ENDPOINT SAMPLING.....	28
4.4.2 Post-UST REMOVAL ENDPOINT SAMPLING.....	29
4.5 IMPORTED BACKFILL	29
4.6 CONTAMINATION REMAINING AT THE SITE.....	30
4.6.1 SOIL	30
4.6.2 GROUNDWATER.....	30
4.6.3 SOIL VAPOR	31
4.7 SOIL COVER SYSTEM.....	31
4.8 OTHER ENGINEERING CONTROLS.....	31
4.8.1 ACTIVE SUB-SLAB DEPRESSURIZATION SYSTEM.....	31
4.8.2 GROUNDWATER MONITORING WELLS ASSOCIATED WITH IN-SITU TECHNOLOGY AND SOURCE REMOVAL.....	33
4.9 INSTITUTIONAL CONTROLS.....	34
4.10 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN	34

LIST OF TABLES

Table 1: Track 1 Unrestricted Use Soil Cleanup Objectives
 Table 2: Soil/Fill Disposal Summary
 Table 3: Post-UST Removal Endpoint Samples
 Table 4: Backfill Quantities and Sources
 Table 5: Post-Source Removal Groundwater Sampling Results for Lot 1
 Table 6: Post-Source Removal Groundwater Sampling Results for Lot 27

LIST OF FIGURES

Figure 1: Site Location Map
 Figure 2: Site Plan
 Figure 3: Extent of Remedial Excavation (Track 1 Excavation Map)
 Figure 4: UST Endpoint Sampling Map

LIST OF FIGURES

- Figure 5: Backfill Locations
- Figure 6: As-Built Cover System Location and Details
- Figure 7A: As-Built SSDS Layout
- Figure 7B: As-Built SSDS Exhaust Detail
- Figure 8: Off-Site Monitoring Well Locations
- Figure 9: Post-Source Removal Groundwater Results
- Figure 10: Injection Well Locations

LIST OF APPENDICES

- Appendix A: Survey Map, Metes and Bounds
- Appendix B: Digital Copy of the FER
- Appendix C: Environmental Easement
- Appendix D: NYSDEC Approvals of Substantive Technical Requirements
- Appendix E: Non-Agency Remediation- Related Permits
- Appendix F: CAMP Field Data Sheets and Air Monitoring Data
- Appendix G: SEFA Emissions Summary
- Appendix H: Daily Reports
- Appendix I: Monthly Progress Reports
- Appendix J: Project Photo Log
- Appendix K: Waste Characterization Documentation
- Appendix L: Disposal Facility Acceptance Letters
- Appendix M: Soil Disposal Manifests
- Appendix N: UST Disposal Documentation
- Appendix O: Dewatering Plan and Permit
- Appendix P: Imported Material Documentation
- Appendix Q: SSDS Start Up Report
- Appendix R: Monitoring Well Construction Logs
- Appendix S: Laboratory Reports for Post-Source Removal Groundwater Results and DUSRs
- Appendix T: Digital Copy of SMP

LIST OF ACRONYMS

Acronym	Definition
AOC	Area of Concern
ASP	Analytical Services Protocol
AST	Aboveground Storage Tank
ASTM	American Society for Testing and Materials
AWQSGV	Ambient Water Quality Standards and Guidance Value
BCA	Brownfield Cleanup Agreement
BCP	Brownfield Cleanup Program
bgs	Below Grade Surface
BUD	Beneficial Use Determination
CAMP	Construction Air Monitoring Plan
C&D	Construction and Demolition
CEQR	City Environmental Quality Review
COC	Certificate of Completion
CPP	Citizen Participation Plan
CSM	Conceptual Site Model
CSCO	Commercial Use Soil Cleanup Objective
DD	Decision Document
DER	Division of Environmental Remediation
DUSR	Data Usability Summary Report
EC	Engineering Control
ECL	Environmental Conservation Law
EDD	Electronic Data Deliverable
EE	Environmental Easement
EJ	Environmental Justice
ELAP	Environmental Laboratory Approval Program
EPH	Extractable Petroleum Hydrocarbons
EQuIS™	Environmental Quality Information System
ESA	Environmental Site Assessment
EPA	Environmental Protection Agency
FER	Final Engineering Report
GAC	Granular Activated Carbon
GPA	Gas Permeable Aggregate
HASP	Health and Safety Plan
HAZWOPER	Hazardous Waste Operations and Emergency Response
IC	Institutional Control
MS/MSD	Matrix Spike/Matrix Spike Duplicate

NAVD	North American Vertical Datum
NTU	Nephelometric Turbidity Unit
NYCDEP	New York City Department of Environmental Protection
NYCDOB	New York City Department of Buildings
NYCDOT	New York City Department of Transportation
NYCOER	New York City Mayor's Office of Environmental Remediation
NYCRR	New York Code of Rules and Regulations
NYCT	New York City Transit
NYSDEC	New York State Department of Environmental Conservation/ Department
NYSDOH	New York State Department of Health
OHHEA	Overall Human Health Exposure Assessment
PCB	Polychlorinated Biphenyl
PFAS	Per-and Polyfluoroalkyl Substances
PFOA	Perfluorooctanoic Acid
PFOS	Perfluorooctane Sulfonate
PGWSCO	Protection of Groundwater Soil Cleanup Objective
PID	Photoionization Detector
PPE	Personal Protective Equipment
PPB	Parts Per Billion
PPM	Parts Per Million
PPT	Parts Per Trillion
PVC	Polyvinyl Chloride
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
QEP	Qualified Environmental Professional
QHHEA	Qualitative Human Health Exposure Assessment
RA	Remedial Action
RAO	Remedial Action Objective
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RE	Remedial Engineer
REC	Recognized Environmental Condition
RI	Remedial Investigation
RIR	Remedial Investigation Report
RIWP	Remedial Investigation Work Plan
SCG	Standards, Criteria, and Guidance
SCO	Soil Cleanup Objective
SMMP	Soil/Materials Management Plan
SMP	Site Management Plan

SOE	Support of Excavation
SOP	Standard Operating Procedure
SPDES	State Pollution Elimination System
SRI	Supplemental Remedial Investigation
SRIWP	Supplemental Remedial Investigation Work Plan
SVOC	Semivolatile Organic Compound
SWPPP	Storm Water Pollution Prevention Plan
TAL	Target Analyte List
TCL	Target Compound List
TCLP	Toxicity Characteristic Leaching Procedure
TIC	Tentatively Identified Compound
TOGS	Technical and Operational Guidance Series
TPH	Total Petroleum Hydrocarbons
UST	Underground Storage Tank
UUSCO	Unrestricted Use Soil Cleanup Objective
VOC	Volatile Organic Compounds

FINAL ENGINEERING REPORT

1.0 BACKGROUND AND SITE DESCRIPTION

261 Grand Concourse LLC, original Applicant, entered into a Brownfield Cleanup Agreement (BCA), with the New York State Department of Environmental Conservation (NYSDEC) in January 2022, to investigate and remediate a 0.235 acres property (i.e., original Lot 1 and the southern portion of the site). The ownership of the site was transferred to Walton Street GC Developments LLC on November 23, 2022, and Walton Street GC Developments LLC submitted a major amendment to the original Brownfield Cleanup Program (BCP) site at 261 Grand Concourse (Lot 1) to include the two adjacent tax lots at 315 Grand Concourse (Lot 27) and 270 Walton Avenue (former Lot 11) to the BCP site. The BCA was amended on December 21, 2023, to add the two tax parcels at 315 Grand Concourse and 270 Walton Avenue to the Brownfield Cleanup Program. Lots 1 and 11 were merged into one new Lot 1 for zoning purposes, and at NYSDEC's request, evidence of the lot merger was submitted on November 22, 2023. The site is a 0.865-acre property located in, New York. The property was remediated to unrestricted use.

The site is located in the County of Bronx, New York and is identified as Block 2344 and Lots 1 and 27 on the Bronx Tax Map #6A. The site is situated on an approximately 0.865-acre area bounded by East 140th Street followed by a commercial building and a vacant lot to the north, East 138th Street followed by a public park to the south, Grand Concourse followed by mixed residential and commercial use buildings to the east, and an industrial warehouse and Walton Avenue followed by a gas station and vacant lot to the west (see Figure 1). The boundaries of the site are fully described in Appendix A: Survey Map, Metes and Bounds, and Appendix C: Environmental Easement.

An electronic copy of this FER with all supporting documentation is included as Appendix B.

2.0 SUMMARY OF SITE REMEDY

2.1 REMEDIAL ACTION OBJECTIVES

Based on the results of the Remedial Investigation, the following Remedial Action Objectives (RAOs) were identified for this site.

2.1.1 Groundwater RAOs

RAOs for Public Health Protection

- Prevent ingestion of groundwater containing contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles emanating from contaminated groundwater.

RAOs for Environmental Protection

- Restore ground water aquifer, to the extent practicable, to pre-disposal/pre-release conditions.
- Remove the source of ground or surface water contamination.

2.1.2 Soil RAOs

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil.

RAOs for Environmental Protection

- Prevent migration of contaminants that would result in groundwater or surface water contamination.

2.1.3 Soil Vapor RAOs

- Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

2.2 DESCRIPTION OF SELECTED REMEDY

The site was remediated in accordance with the remedy selected by the NYSDEC in the Decision Document dated May 9, 2024 and Explanation of Significant Difference dated August 2024.

The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8. The following are the components of the selected remedy:

1. A remedial program was implemented to provide the details necessary for the construction, operation, optimization, maintenance, and monitoring of the remedial program. Green remediation principles and techniques were implemented to the extent feasible in the design, implementation, and site management of the remedy as per DER-31. The major green remediation components are as follows:
 - Considering the environmental impacts of treatment technologies and remedy stewardship over the long term;
 - Reducing direct and indirect greenhouse gases and other emissions;
 - Increasing energy efficiency and minimizing use of non-renewable energy;
 - Conserving and efficiently managing resources and materials;
 - Reducing waste, increasing recycling and increasing reuse of materials which would otherwise be considered a waste;
 - Maximizing habitat value and creating habitat when possible;
 - Fostering green and healthy communities and working landscapes which balance ecological, economic and social goals;
 - Integrating the remedy with the end use where possible and encouraging green and sustainable re-development; and
 - Additionally, to incorporate green remediation principles and techniques to the extent feasible in the future development at this site, any future on-site buildings shall be constructed, at a minimum, to meet the 2020 Energy Conservation Construction Code of New York (or most recent edition) to improve energy efficiency as an element of construction.

As part of the remedial program, to evaluate the remedy with respect to green and sustainable remediation principles, an environmental footprint analysis was completed. The environmental footprint analysis was completed using SEFA (Spreadsheets for Environmental Footprint Analysis, USEPA). Water consumption, greenhouse gas emissions, renewable and non-renewable energy use, waste reduction and material use will be estimated, and goals for the project related to these green and sustainable remediation metrics, as well as for minimizing community impacts, protecting habitats and natural and cultural resources, and promoting environmental justice, was incorporated into the remedial program, as appropriate. The project included detailed requirements to achieve the green and sustainable remediation goals. Further, progress with respect to green and sustainable remediation metrics were tracked during implementation of the remedial action and reported in this Final Engineering Report (FER), including a comparison to the goals established during the remedial program.

Additionally, the remedial program included a climate change vulnerability assessment, that evaluated the impact of climate change on the project site and the proposed remedy. Potential vulnerabilities associated with extreme weather events (e.g., hurricanes, lightning, heat stress and drought), flooding, and sea level rise were identified, and the remedial program incorporated measures to minimize the impact of climate change on potential identified vulnerabilities.

2. Excavation of approximately 5,253.3 tons of soil/fill exceeding unrestricted SCOs listed in Table 1. To achieve this, all soil/fill was excavated to bedrock between 1.5 feet and 5 feet across the site;
3. Removal of one 1,500-gallon steel aboveground storage tank (AST) containing waste oil, two 1,500-gallon steel ASTs containing motor oil, one 1,500-gallon steel AST containing transmission fluid, and one 1,000-gallon steel AST containing motor oil from the former partial cellar located in the northern portion of the site;
4. Removal of one 550-gallon underground storage tank (UST), containing petroleum impacted solids and oil sludge, from the northwestern portion of the site;

5. Import of 1,175.58 tons of ¾" ASTM #57 gravel and 22 tons of topsoil as backfill;
6. Dewatering, in compliance with city, state, and federal laws and regulations during the remedial action. Extracted groundwater was treated on-site utilizing a settling tank with filter bags and activated carbon vessels prior to discharging into the combined sewer system pursuant to a dewatering permit issued by the New York City Department of Environmental Protection;
7. Construction and maintenance of a soil cover system consisting of minimum of 24 inches of concrete slab underlain by a vapor barrier and a minimum of 6 inches of clean 3/4" ASTM #57 gravel as part of construction;
8. Installation of an active sub-slab depressurization system consisting of a network of horizontal pipe set in the middle of a gas permeable layer beneath the concrete building slab and vapor barrier system;
9. In-situ chemical treatment of volatile organic compounds (VOCs) in groundwater to achieve a bulk reduction in groundwater contamination;
10. Installation of off-site monitoring wells for post-treatment sampling to evaluate the performance of the remedy associated with in-situ treatment and source removal;
11. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the site;
12. Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting; and
13. Periodic certification of the institutional and engineering controls listed above.

3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS

An Interim Remedial Measures Work Plan (IRMWP) dated January 2024 was submitted to the NYSEC for Aboveground Storage Tank (AST) removal. The IRMWP was approved by the NYSDEC on January 22, 2024.

The information and certifications made in the May 2024 Construction Completion Report (CCR) were relied upon to prepare this report and certify that the remediation requirements for the site have been met.

3.1 INTERIM REMEDIAL MEASURES

The interim remedial measures included the following scope of work from March 20, 2024 through April 3, 2024:

- Implementation of a Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) during tank removal activities;
- Implementation of remedial oversight and air monitoring activities during tank removal activities;
- Removal of ASTs within the cellar footprint of the auto car wash and service station.

Five ASTs were cleaned and removed from the partial cellar of the former auto car wash and service station on former Lot 27 by ABC Fuel Oil Tank Cleaning (ABC) based out of Brooklyn, New York. The five removed ASTs were identified as one 1,500-gallon steel AST containing waste oil, two 1,500-gallon steel ASTs containing motor oil, one 1,500-gallon steel AST containing transmission fluid, and one 1,000-gallon steel AST containing motor oil. The NYSDEC Petroleum Bulk Storage (PBS) registration (PBS #2-402877) was updated once the tanks were properly cleaned and removed from site.

AST carcasses were disposed of as metal scraps, in accordance with Section 5.5 of DER-10. During the tank and associated fill/vent line removal, all tanks were screened with a photoionization detector (PID). No readings were observed above 0.0 ppm. A Community Air Monitoring Program was implemented during all tank removal activities. No VOC or dust concentrations exceeded the daily short-term exposure limit (STEL) at the work area CAMP station.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved Remedial Action Work Plan (RAWP) dated March 25, 2024 and Explanation of Significant Determination (ESD) dated August 12, 2024 for the Copyrite Plastic Sheets site. All deviations from the RAWP are noted below.

4.1 GOVERNING DOCUMENTS

4.1.1 Site Specific Health & Safety Plan (HASP)

The HASP provided a mechanism for establishing lines of authority, responsibility, and communication as they pertain to health and safety functions at this site in compliance with 29 CFR 1910.120(b)(2) and 29 CFR 1926.65(b)(2). The HASP was implemented by Vektor Consultants field personnel during Remedial Action. The site-specific HASP included, but was not limited to, the following components:

- Organization and identification of key personnel
- Task-specific Job Hazard control methods
- Site-specific training program, including initial HazWoper training
- PPE requirements
- Environmental monitoring procedures, including CAMP
- Decontamination requirements
- Emergency response plan

All remedial work performed under this Remedial Action was in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA.

The Health and Safety Plan (HASP) was complied with for all remedial and invasive work performed at the Site.

4.1.2 Quality Assurance Project Plan (QAPP)

The QAPP was included as Appendix E of the Remedial Action Work Plan (RAWP) approved by the NYSDEC. The QAPP describes the specific policies, objectives,

organization, functional activities and quality assurance/ quality control activities designed to achieve the project data quality objectives.

Project organization included Remedial Engineer, Ariel Czemerinski, P.E., Project Manager and QEP, Ezgi Karayel and Thomas Giordano, Field Team Leader, Antonio Cardenas and David Klein, and Construction Manager, responsible for all subcontractors performing remedial work, Tony Bennardello.

4.1.3 Construction Quality Assurance Plan (CQAP)

The Construction Quality Assurance Plan(s) (CQAPs) managed performance of the Remedial Action tasks through designed and documented QA/QC methodologies applied in the field and in the lab. The CQAP provided a detailed description of the observation and testing activities that were used to monitor construction quality and confirm that remedial construction was in conformance with the remediation objectives and specifications.

All construction work related to the remedy (i.e., soil excavation, storage tank removal) was monitored by Vektor/AMC field personnel under the direct supervision of the Remedial Engineer (RE). Monitoring during excavation was performed to protect the health of site workers and the surrounding community. A HASP and CAMP were specifically developed for the project. These plans specify the monitoring procedures, action levels, and contingency measures that are required to protect public health.

All intrusive and soil disturbance activities were monitored by an environmental professional (EP) under the direct supervision of the RE who recorded observations in the site field book and completed a photographic log of the daily activities. The EP provided daily updates to the Project Manager and Remedial Engineer who both made periodic visits to the site to assure construction quality.

4.1.4 Soil/Materials Management Plan (S/MMP)

Excavated soil was secured and either temporarily stored on-site or loaded directly onto trucks when arrangements were made for off-site disposal. The S/MMP included in Section 5.4 of the RAWP included the process for managing all soil/materials that were disturbed at the site. Additionally, based on the waste characterization soil samples, facilities were pre-determined prior to commencement of excavation activities to allow the soil/fill to be loaded on to trucks for transport to the disposal facility. Export and import

activities were performed in compliance with all applicable Federal, State and local laws, and regulations.

4.1.5 Erosion and Sediment Control Plan

Typical measures utilized at various stages of the project to limit the potential for erosion and migration of soil included the use of hay bales, temporary stabilized construction entrances/exits, placement of silt fencing and/or hay bales around soil stockpiles, and dust control measures.

The erosion and sediment controls for all remedial construction were performed in conformance with requirements presented in the New York State Guidelines for Urban Erosion and Sediment Control. The site was exempt from Stormwater Pollution Prevention Plan (SWPPP) at the time of permitting since less than one-acre was disturbed.

4.1.6 Community Air Monitoring Plan (CAMP)

A Community Air Monitoring Plan (CAMP) was developed and implemented in accordance with the New York State Department of Health (NYSDOH) Generic Air Monitoring Plan included within DER-10 Technical Guidance for Site Investigation and Remediation (May 2010) during all remediation and construction activities. The CAMP was developed to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses) from potential airborne contaminants releases as a direct result of investigative and remedial work activities.

CAMP was performed via at least two stations at the perimeter of the Site during all intrusive work. CAMP stations were increased to three (two downwind and one upwind) once remedial excavation started in the northern portion of the site. Monitoring for PM-10 particulate was performed by a TSI DustTrak II Model 8530 and monitoring for VOCs was performed by a MiniRAE 3000 PID. The instruments were calibrated daily and monitored concentrations on a continuous 15-minute running average. In addition to community air monitoring on the perimeter of the work zone, air monitoring was performed periodically (at a minimum once per hour) on a roving basis with hand-held equipment based upon wind direction and the location of the intrusive work.

Action levels were implemented for the protection of the community. Dust suppression techniques were employed when downwind PM-10 particulate levels were 100 micrograms per cubic meter greater than upwind levels for a 15-minute period. Work was stopped when PM-10 particulate levels were greater than 150 micrograms per cubic meter

greater than upwind levels for a 15-minute period and dust suppression and other control measures were taken. Work was allowed to resume once downwind PM-10 levels fell within 150 micrograms per cubic meter of the upwind levels. During events where the downwind VOC levels exceeded 5 ppm but less than 25 ppm above the upwind levels for a 15-minute period, the work was halted, the sources of vapors were identified, corrective actions were taken to abate emissions, and monitoring was continued until the downwind levels fell back down within 5 ppm over upwind levels. For VOC levels exceeding 25 ppm, all work activities were shutdown.

4.1.7 Contractors Site Operations Plans (SOPs)

The Remediation Engineer reviewed all plans and submittals for this remedial project (i.e. those listed above plus contractor and subcontractor submittals) and confirmed that they were in compliance with the RAWP. All remedial documents were submitted to NYSDEC and NYSDOH in a timely manner and prior to the start of work.

4.1.8 Community Participation Plan

A public comment period was held prior to mobilization of any field work, during which the public was encouraged to submit comments on the proposed remedy. All comments on the remedy received during the comment period were considered by the NYSDEC in selecting a remedy for the site. Site-related reports and documents were made available for review by the public at the following document repositories:

An electronic document repository is available through DECinfo Locator:

<https://www.dec.ny.gov/data/DecDocs/C203151/>

The following document repositories that have been established for this Site and will contain all applicable project documents are presented below:

- Bronx Community Board 1
3024 Third Avenue
Bronx, New York
Phone: (718) 585-7117
- New York Public Library – Woodstock Branch
761 East 160th Street
Bronx, New York
Phone: (718) 665-6255

4.2 REMEDIAL PROGRAM ELEMENTS

4.2.1 Contractors and Consultants

<i>Contractors/Consultant</i>	<i>Company</i>	<i>Representative</i>
Principal Engineer, P.E.	AMC Engineering	Ariel Czemerinski
Project Director, QEP	Vektor Consultants	Ezgi Karayel
Construction General Contractor	Prestige NYC LLC	Tony Bennardello
Excavation Contractor	RYC Turbos	James Scully
Well Drilling Contractor	Coastal Environmental Solutions	Marc Morgenstern
Waste Disposal	YESS Trucking & Disposal	Isaac Danesh
Underground Storage Tank Removal Contractor	Eastern Environmental Solutions	Scott Hamarich

AMC Engineering, PLLC (AMC) and Ariel Czemerinski acted as the Remedial Engineer of Record and was responsible for the inspection of the remedial work and is certifying this Final Engineering Report (FER).

Vektor Consultants was responsible for the oversight and implementation of the RAWP under the oversight of Ariel Czemerinski. Ezgi Karayel and Thomas Giordano acted as the project managers.

The Volunteer retained Prestige NYC LLC as the general construction contractor for the project and was responsible for general construction, following the remedial design plans set out by AMC.

Coastal Environmental Solutions acted as the drilling contractor and assisted in soil sampling via soil borings and installation of monitoring and injection wells.

YESS Trucking & Disposal was responsible for providing logistical support for off-site soil disposal and trucking to approved facilities during excavation and construction.

ABC Tank was responsible for the removal of five ASTs located at the site during the interim remedial measures prior to the start of remedial action.

Eastern Environmental Solutions was responsible for the removal of a former 550-gallon UST and its contents encountered during the remedial excavation of the site.

4.2.2 Site Preparation

A pre-construction meeting was held with NYSDEC and all contractors on July 17, 2024.

Prior to conducting any intrusive activities, the work zone(s), designated entry points, soil/fill staging areas, decontamination zones, and truck routes were established, as applicable.

Mobilization

Site mobilization included security setup, equipment mobilization, utility mark outs, and marking and staking excavation areas, which took place prior to any Site remediation activities in July 2024.

Groundwater Monitoring Well Decommissioning:

Existing groundwater monitoring wells located at the site were decommissioned by grouting the wells. A standard cement/bentonite grout mixture consisting of Type I Portland cement, powdered bentonite, and water, was poured into the wells. Afterwards, the well construction materials were pulled as much as possible before breakage. As per the RAWP, a request to decommission onsite wells was submitted to the NYSDEC on September 24, 2024. Additional well decommissioning details can be found in Deviations Section 4.10.

Site Control

The control measures included procedures for perimeter Site controls, stabilized construction pads at each construction entrance/exit, equipment decontamination, drainage inlet protection, and particulate suppression. The RE, or representative, conducted routine inspections; any required repairs and/or maintenance of control measures were completed

in a timely fashion to maintain the controls in proper working order. All vehicles leaving the Site were inspected to ensure that no soil/fill adheres to the wheels or undercarriage prior to leaving the Site. Stockpiling soil and construction debris on site was generally avoided; trucks and excavation equipment were idled as little as possible during site work. Any situations involving material spilled in transit, mud, and dust tracked off-site were remedied.

Utility Marker Layout:

The Volunteer and their contractors were solely responsible for the identification of utilities that may have been affected by the work and implementation of all required, appropriate, or necessary health and safety measures during performance of work outlined in the RAWP and this FER. The presence of utilities and easements on the Site was investigated by the Remedial Engineer or his representative.

The local, state, and federal permits and/or approvals obtained include but were not limited to the following:

- NYC Department of Building Demolition Permit approved April 19, 2021
- FDNY Bureau of Fire Prevention Letter of No Objection dated July 8, 2021
- NYSDEC fill material import request approval dated April 11, 2024
- NYSDEC BCP Remedial Action Workplan approval letter dated May 9, 2024
- NYSDEC BCP Decision Document dated May 9, 2024
- NYSDEC Fill Material Import Request approval dated July 18, 2024
- NYSDEC BCP Explanation of Significant Difference dated August 12, 2024
- EPA Underground Injection Control Permit Application for class V well dated September 19, 2024

Documentation of agency approvals required by the RAWP is included in Appendix D. Other non-agency permits relating to the remediation project are provided in Appendix E.

All SEQRA requirements and all substantive compliance requirements for attainment of applicable natural resource or other permits were achieved during this Remedial Action.

A NYSDEC-approved project sign was erected at the project entrance and remained in place during all phases of the Remedial Action.

4.2.3 General Site Controls

Site Security

The Site was completely closed from public access by use of a secured construction fence. No unauthorized personnel were able to access the Site. During off hours, the Site was locked. Traffic was not disrupted beyond normal contractor vehicle traffic going to and from the Site during construction. All sidewalk closures that were required during the course of construction/remediation activities were conducted in accordance with New York City Department of Transportation (NYCDOT) permits.

Job Site Record Keeping

Job-site record keeping for all remedial work was appropriately documented. These records were maintained on-site at all times during the project and were available for inspection by NYSDEC and NYSDOH staff.

Erosion and Sedimentation Controls

Erosion and sediment control measures were installed at the Site prior to conducting any ground intrusive work. These measures were implemented according to all applicable federal, state, and/or local laws. The measures provided for abatement and control of environmental pollution arising from remediation and construction activities. The control measures included procedures for perimeter Site controls, stabilized construction pads at each construction entrance/exit, equipment decontamination, drainage inlet protection, and particulate suppression.

The RE, or representative, conducted routine inspections; any repairs and/or maintenance of control measures were completed in a timely fashion to maintain the controls in proper working order. All vehicles leaving the Site were inspected to ensure that no soil/fill adhered to the wheels or undercarriage prior to leaving the Site. Any situations involving material spilled in transit or mud and dust tracked off-site were remedied. The access routes were inspected for road conditions, overhead clearance, and weight restrictions.

Stockpile Methods

Staged or stockpiled soil/fill were inspected at a minimum of once each week and after every storm event. Results of inspections were recorded in a logbook maintained at

the Site and were available for inspection by NYSDEC and NYSDOH. Stockpiling on site was avoided whenever possible. Stockpiles were kept covered at all times with appropriately anchored tarps. Damaged tarp covers were promptly replaced.

4.2.4 Nuisance Controls

Truck Wash and Egress Housekeeping

Decontamination procedures of equipment, including trucks transporting soil to off-site disposal facilities, limited the potential for impacted soil to be dispersed beyond the Site boundary. A truck decontamination pad was constructed, as described in the Remedial Action Work Plan, with approved imported ASTM #57 ¾-inch aggregate on July 24, 2024. The RE's representative ensured that all outbound trucks were washed at the truck wash before leaving the Site during the duration of the remedial action. All egress points for truck and equipment transport from the Site were clean of dirt and other materials derived from the Site during Site remediation and development. Cleaning of the adjacent streets was performed as needed to maintain a clean condition with respect to Site-derived materials.

Dust Control

The dust suppression plan that addressed dust management during invasive on-Site work included the items listed below:

- Dust suppression was achieved through spraying water directly onto on-site areas including excavations and stockpiles.
- Gravel was used as a truck pad at the main entrance to the site to provide a clean and dust-free road surface as trucks exited the site and turned onto Grand Concourse.
- On-Site roads were limited in total area to minimize the area required for water application.

Truck Routing

All trucks loaded with Site materials exited the vicinity of the Site using only the approved truck routes outlined in the RAWP. The most appropriate route took into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off site queuing of trucks entering the destination facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport.

Responding to Complaints

Complaints from the public regarding nuisance or other Site conditions including noise, odor, truck traffic etc., were recorded in the Site field book and reported to the NYSDEC via email on the same day as the complaint was received. During the course of the project, no complaints were levied by the public.

4.2.5 CAMP Results

The table below shows exceedance events, reasons for exceedances, and the response actions that were taken during the remedial period.

Date	Exceedance	Reason	Response Action
7/25/2024	Respirable Dust Downwind	Trucking and excavation	CAMP relocation
7/29/2024	Respirable Dust Downwind	Concrete breaking	CAMP relocation
8/01/2024	VOCs	PID out of calibration	PID reset and span calibration
8/02/2024	VOCs	PID out of calibration	PID reset and span calibration
8/05/2024	Respirable Dust Downwind	Excavation	CAMP relocation
8/06/2024	Respirable Dust Downwind	Excavation	Water suppression and temporary work stop
8/07/2024	Respirable Dust Downwind	Drilling of bedrock	Water suppression and temporary work stop
8/08/2024	Respirable Dust Downwind	Drilling of bedrock	Water suppression and temporary work stop
8/09/2024	VOCs	Calibration error	Finish Calibration

Date	Exceedance	Reason	Response Action
8/12/2024	Respirable Dust Downwind	Telemetry Error	Troubleshooting
8/12/2024	Respirable Dust Downwind	Chopping of bedrock	CAMP Relocation
8/14/2024	Respirable Dust Downwind	Excavation	CAMP relocation
8/15/2024	Respirable Dust Downwind	Chopping of bedrock	Water suppression and relocation
8/16/2024	Respirable Dust Downwind	Chopping of bedrock	Water suppression
9/05/2024	Respirable Dust Downwind	Bedrock chipping	Water suppression and relocation
9/06/2024	Respirable Dust Downwind	Bedrock chipping	Water suppression and relocation
9/17/2024	Respirable Dust Downwind	Site cleanup crew sweeping	Water suppression
11/19/2024	Respirable Dust Downwind	Site cleaning Crew sweeping near Downwind Camp II	Temp. Work Pause
12/24/2024	Respirable Dust Downwind	Cutting concrete sidewalk in vicinity	Temp. Work Pause
1/8/2025	Respirable Dust Downwind	Handheld blower used in proximity to CAMP	CAMP Relocation

In addition to the exceedance events listed above, elevated levels of CAMP readings were periodically noted, and actions were taken to mitigate exceedance events. Most exceedances recorded were due to CAMP station proximity to work activities. Reasons for elevated readings include bedrock chipping, excavation, and drilling, changes in ambient temperatures, drilling, idling and usage of construction equipment, maintenance

and cleaning of area, movement and relocation of materials on-site, and off-site dust encroachment from adjacent properties.

Intermittent CAMP data gaps, typically between 15 minutes and 30 minutes were observed during twenty (20) days of the remedial action due to malfunction of equipment and/or of the telemetry system of the CAMPs. Once field personnels were made aware of equipment malfunction, any invasive activities were paused until CAMP equipment was fixed and recalibrated. Data gaps occurred on July 23, 2024, July 24, 2024, July 25, 2024, July 26, 2024, July 29, 2024, July 31, 2024, August 1, 2024, August 6, 2024, August 27, 2024, September 10, 2024, September 24, 2024, September 27, 2024, October 1, 2024, October 11, 2024, November 11, 2024, November 12, 2024, November 14, 2024, November 15, 2024, November 19, 2024, and December 23, 2024. Air monitoring equipment manual logs (off-line of the telemetry) were reviewed and recorded as a substitute to telemetry data, as needed.

Copies of all field data sheets relating to the CAMP are provided in electronic format in Appendix F.

4.2.6 Best Management Practices

Best Management Practices (BMPs) are acceptable practices that were implemented to preserve environmental quality. BMPs were considered at the Site to reduce the environmental footprint of the actions dictated under the RAWP. Actions associated with the RAWP that require BMPs for environmental preservation are excavation, waste disposal, monitoring well installation, and on-site sampling as listed below:

Excavation

Utilizing dust-monitoring systems during excavation protected the air quality by ensuring dust levels at the site do not exceed safe levels. Similarly, reducing the speed limit on site prevented dust particles from contaminating the air. In the event that dust levels began to rise, dust suppression techniques such as spraying water on the dusty area were employed. These practices protected the workers, nearby community, and the local environment from unsafe air.

BMP that limited material use was to import reused or recycled materials for backfilling after excavating, once approved by NYSDEC.

Excavators are used to remove contaminated material. Preventing the excavators from contaminating other regions of the Site after contacting contaminated material reduced the spread of contamination, thus reducing harm to the environment. Thus, a BMP for excavation was to develop and utilize advanced schedules for anticipated onsite activities, to minimize traffic between onsite contaminated and clean zones and the days work is actively performed in the field.

Excavators that can be equipped with various tools to perform several tasks were utilized, reducing the need for the mobilization of multiple machines at one time, thus decreasing the quantity of emissions produced at one time. The work period per excavator was reduced by choosing excavators with automated coupling systems as opposed to manual pin-on systems and choosing a suitably sized excavator, as the wrong size can reduce efficiency.

Waste Disposal

Reducing the amount of time and distance for transporting materials to and from the Site will reduce the fuel consumed and associated air emissions. In addition, there are cleaner ways to transport materials for backfill or disposal such as ensuring any heavy diesel trucks transporting materials had a Clean Idle Certification Label, ensuring proper scheduling so that trucks did not need to idle longer than necessary to load or unload the material, and requiring trucks to turn off their engines when leaving the engine on is not necessary. Preventing idling reduces energy consumption by limiting fuel use, thus reducing emissions associated with fuel use. The creation of a trucking pad with clean gravel prevented contaminated soil from leaving the Site on truck tires, which would contaminate the surrounding environment. Any soil that appeared to be tracked off site was returned to site using an appropriate method given the material, location, and site condition.

Additionally, when applicable, the reuse of clean, recyclable materials reduced consumption of non-renewable virgin resources and can provide energy savings and greenhouse gas reduction since these materials can be locally derived, thus reducing transportation and processing emissions.

Monitoring Well & Injection Well Installation

As part of the remedial action, a groundwater treatment plan was prepared and implemented to address the petroleum and metals contamination in groundwater. Injection wells were installed, with a targeted treatment area between 4 and 15 feet below grade surface. Limiting the target source to the depths described above minimized the amount of material and energy associated with construction, emissions, and waste disposal generated

as part of this remedial action.

Less material usage requires less energy and generation of emissions required to extract and produce the well construction materials and installation of monitoring wells, ultimately making smaller wells a greener design. In addition to minimizing material and disposal of waste generated, the smaller wells required a smaller machine for installation, thus releasing less emissions. Monitoring and injection wells were clearly marked with high visibility paint and protected, when possible, to mitigate potential destruction during site construction activities. Ensuring that the installed wells were protected prevented the need to remobilize and reinstall wells on site, thus less total emissions would be released associated with monitoring and injection well installation.

On-Site Sampling

Collecting soil and groundwater samples with precaution and proper protocols is a BMP for standard operations, and it helps reduce the environmental footprint. Using the proper protocols and procedures ensures that there was a minimal quantity of waste produced while maintaining the integrity of the sample. Ideally, ensuring accurate data will ensure no unnecessary follow-up actions are taken, and no contaminants remain unnecessarily due to faulty data. Unnecessary follow-up actions such as continued sampling would increase energy usage and thus emissions associated with the remedial action. Improper sampling, indicating a clean sample in a contaminated area would be an inaccurate representation of the impact of groundwater on the environment, which has a long-term environmental impact. Sampling was often planned days in advance to ensure accurate scheduling and to avoid delays. On-site personnel strived to collect as many samples as possible per day of planned sampling to reduce third-party courier fuel use (mileage to the laboratory and any idle time). Sampling bottle ware was kept on site when feasible to prevent unnecessary laboratory courier trips to the site (mileage to the laboratory and any idle time).

General

To protect the local ecosystem and ecosystem services, minimally invasive technology for sampling were employed. Real-time data collecting technologies, such as Photo Ionization Detectors (PIDs) and dust-monitors are minimally invasive, protecting the local ecosystem and ecosystem services while providing relevant and accurate sampling data.

Whenever possible, meetings were held using remote communication technologies, such as videoconferencing and teleconferencing to reduce energy consumption and traffic

congestion associated with personal transportation.

Reducing the quantity of unnecessary material used on-site will reduce both material consumption and waste generation, and reduce the emissions associated with extraction, processing/production, use, and disposal of the implemented material. Based upon this principle, efforts were made to reduce paper usage by using electronic copies of plans and drawings. Additionally, when applicable, the reuse of clean, recyclable materials reduces consumption of non-renewable virgin materials.

To ensure a green remediation is considered by all parties, a BMP is requesting the contractor track material use, material disposal, equipment use and associated emissions, water use, and transportation emissions of both material and personnel. The tracking data will be used in collaboration with the EPA's spreadsheets for environmental footprint analysis ("SEFA") to determine the footprint of activities on site. Summaries of the activities are included in Appendix G.

Using SEFA and estimations provided by the contractor, excavation and waste disposal require the most energy use and emitted the most emissions of the components included in the FER, thus, implementing BMPs, particularly for the excavation component, reducing energy consumption during the remedial action. The excavation and waste disposal released 39,616,352 lbs. of CO₂e of greenhouse gases, including 165,276 lbs. NO_x, 249,554 lbs. SO_x, 94,031 lbs. particulate matter, and 22,010 lbs. of hazardous air pollutants.

The EPA's Vocabulary Catalog lists four key terms and definitions relating to the topic of climate change:

- **Vulnerability:** The degree to which a system is susceptible to, or unable to cope with, adverse effects of climate change, including climate variability and extremes. Vulnerability is a function of the character, magnitude and rate of climate variation to which a system is exposed, its sensitivity and its adaptive capacity.
- **Resilience:** A capability to anticipate, prepare for, respond to and recover from significant multi-hazard threats with minimum damage to social well-being, the economy and the environment.
- **Adaptation:** Adjustment or preparation of natural or human systems to a new or changing environment which moderates harm or exploits beneficial opportunities.
- **Adaptive Capacity:** The ability of a system to adjust to climate change (including climate variability and extremes), to moderate potential damages, to take advantage of opportunities or to cope with the consequences.

The definitions provide a basis for the climate vulnerability assessment.

According to FEMA's National Risk Index, the Site is at a moderately high risk for coastal flooding, relatively low risk for earthquakes, relatively low risk for hail, relatively high risk for heat wave, relatively high risk for hurricanes, relatively high risk for ice storms, relatively high risk for landslides, relatively high risk for riverine flooding, very high risk for strong wind, relatively moderate risk for tornados, very low risk for wildfires, and relatively moderate risk for winter weather. Apart from during an active natural disaster, which should not occur regularly, none of the risk levels will prevent the remedial action from occurring. The actions of the FER include minimal groundwater disturbance and high-level soil disturbance. The soil disturbances caused by excavation will occur alongside sloping or shoring to secure the property's soil and overall profile when necessary. The excavations will not increase the site's vulnerability to climate change.

According to FEMA's National Flood Hazard Layer Viewer, the Site is in Flood Zone X indicating an area of minimal flood hazard. The actions of this FER will not affect the site's susceptibility to flooding as the site will remain at the same elevation above sea level.

According to the NOAA Sea Level Rise Viewer, the Site would not be impacted if sea levels rose 10 feet. The actions taken as part of the proposed SMP will not worsen the risk for flooding due to climate change as the site will remain at the same elevation above sea level.

Based on the US Landslides Hazards Maps and the USGS Earthquake-triggered Ground-failure Inventories, the Site is not at risk for landslides or earthquake-triggered ground failures. The soil disturbance on the Site as part of this stage of the remedial action will not increase the chances of a landslide due to implementation of proper excavation techniques including sloping or shoring.

Based on the EPA's Vocabulary Catalog Definitions, the Site is not vulnerable to the adverse effects of climate change. The Site is currently only regularly impacted by a very significant sea level rise, heat waves, and strong winds which can worsen in magnitude and frequency due to climate change. However, due to the type of risks present, the remedial actions taken as part of this FER did not need to be adapted for climate change as the actions taken did not disturb soil, air, or groundwater in a way that increases the vulnerability to climate change and climate change related disasters. Additionally, the remedy selected for the site attempted to lower the emissions associated with this FER to prevent the acceleration of climate change, as described through the BMPs.

4.2.7 Reporting

Daily reports were submitted to the NYSDEC and NYSDOH project managers by the end of each day following the reporting period and included:

- An update of progress made during the reporting day;
- Locations of work and quantities of material imported to and exported from the Site;
- A summary of CAMP findings, including any exceedances;
- An explanation of notable Site conditions; and
- A photographic log documenting the work completed during the reporting day.

These reports included a summary of air sampling results, odor and dust problems and corrective actions, and all complaints received from the public.

Monthly Progress Reports (MPRs) prepared in accordance with DER-10 Section 5.7(b) were submitted to the NYSDEC and NYSDOH project managers by the tenth day of the month following the reporting period and included, at a minimum:

- Activities relative to the Site during the previous reporting period and those anticipated for the next reporting period, including a quantitative presentation of work performed (i.e., tons of material exported and imported, etc.);
- A description of any approved activity modifications, including changes of work scope and/or schedule;
- Sampling results received following internal data review and validation, as applicable; and
- An update of the remedial schedule, unresolved delays encountered or anticipated that may affect the future schedule, and efforts made to mitigate such delays.

All daily and monthly reports are included in electronic format in Appendix H and I, respectively.

The digital photo log required by the RAWP is included in electronic format in Appendix J.

4.3 CONTAMINATED MATERIALS REMOVAL

Materials and Waste Management considered greener and sustainable approaches related to both the purchase of greener products and material recycling versus disposal wherever practical. Based on the contamination at the Site, no soil was slated for reuse for backfill in other parts of the Site.

In the purchase of greener products, considerations for this project including using materials available from local sources, designing for optimized product sizing, and attempting to choose environmentally preferable products.

During excavation, backfill was purchased from local sources to reduce transportation distances, and thus energy use and emissions. During monitoring well installation, the wells were designed to be as small as realistically possible to require less material, and thus material extraction energy and waste generation.

Field generation of contaminated or uncontaminated dust and mobilization of volatile organic compounds, for example, were reduced with the following BMPs, such as:

- Spraying water in vulnerable areas, in conjunction with runoff management techniques;
- Securing and covering material in open trucks while hauling excavated material, and reusing the covers; and
- Limiting onsite vehicle speeds to 10 miles per hour.

Diesel fuel consumption by heavy construction machinery and equipment can be conserved by:

- Selecting suitably sized and typed equipment including excavators and drilling rigs for tasks;
- Instructing workers and off-site truckers to avoid engine idle and using machinery with automatic idle-shutdown devices; and
- Performing routine, on-time maintenance such as oil changes to improve fuel efficiency.

Fuel consumed during transfer of excavated soil or other materials to disposal facilities was reduced by selecting the closest waste receiver, if possible.

Greenhouse gas (GHG) and particulate matter (PM) emissions from mobile sources can be reduced through confirming off-site trucks have a Clean Idle Certification.

The footprint of the entire site was excavated to bedrock (depths ranging between 1.5 and 5 feet bgs) to achieve Track 1 UUSCOs. The total quantity of material disposed off-site as part of the remedy was approximately 5,253.3 tons. The soil/fill removed was classified as non-hazardous fill; non-hazardous soil/urban fill; and hazardous RCRA D008 (lead). Other materials removed included C&D debris (7,288.46 tons) and bedrock (1,156.43 tons)

All soil/fill excavated material removed from the site was treated as contaminated and regulated material and were disposed in accordance with all local, state (including 6 NYCRR Part 360), and federal regulations.

A list of the soil cleanup objectives (SCOs) for the contaminants of concern for this project is provided in Table 1.

A figure of the location of original sources and areas where excavations were performed is shown in Figure 3.

4.3.1 Waste Characterization Sampling

An in-situ waste characterization sampling was conducted at the site in May 2024. To characterize the soil quality, the site was divided into five horizontal grids with varying vertical sampling depths dependent on the depth to bedrock in that location.

Grid ID	Vertical Interval (ft)	Waste Management Grid
A	0' – 3'	Grid A (0-3')
	3' – 6'	Grid A (3'-6')
B	0' – 4.5'	Grid B (0-4.5')
C	0' – 2'	Grid C (0-2')
D	0' – 3'	Grid D (0-3')
E	0' – 5'	Grid E (0-5')

In each Grid, A through E, four borings were advanced within each horizontal grid, for a total of 20 soil borings, installed utilizing a direct-push Geoprobe 7822DT. All soil borings were advanced to bedrock depth. Additionally, a lead hotspot SB-2/SB-2X and an arsenic hotspot 23SB-6, identified during the remedial investigation, were delineated during the April 2024 waste characterization event. Eight grab and

eight five-point composite samples were collected. Grid and waste characterization sampling locations is provided in Appendix K.

Grab samples were analyzed for total volatile organic compounds (VOCs) (Target Compound List (TCL) plus the 10 highest concentrations Tentatively Identified Compound (TIC) List & New Jersey Department of Environmental Protection (NJDEP) SCC List + SRS List). The 5-point composite samples were analyzed for extractable petroleum hydrocarbon (EPH) Cat 2 non-fractionated, total semi-volatile organic compounds (SVOCs) (TCL+20 & NJDEP SCC List + NJDEP SRS List), total cyanide, target analyte list (TAL) metals, hexavalent chromium, mercury, toxicity characteristic leaching procedure (TCLP) Metals (RCRA 8), polychlorinated biphenyls (PCBs), total pesticides (TCL+NJDEP SCC List + NJDEP SRS List), herbicides, ignitability, corrosivity, reactivity cyanide and sulfide.

The analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Part 375 Unrestricted Use Soil Cleanup Objectives (SCOs), NYSDEC Part 375 Restricted Residential Use SCOs, PA Clean Fill Limits, PA Regulated Fill Limits, NJDEP Soil Remediation Standards Ingestion Dermal Exposure -Residential and Nonresidential, NJDEP Soil Remediation Standards Inhalation Exposure -Residential and Nonresidential, NJDEP Soil Remediation Standards Migration to Groundwater (SRSMG), and USEPA Hazardous Waste Limits for TCLP Metals. The results of waste characterization sampling are provided in Appendix K.

4.3.1.1 Construction and Demolition Debris Removal

A total of 7,288.46 tons of construction and demolition (C&D) was removed from the site during the remedial action between July 2024 and January 2025. Of these, 6,362.25 tons of C&D was disposed of at Mount Materials in Fairless Hills, PA between July 2024 and September 2024, and 926.21 tons of C&D was disposed of at Riverfront Recycling in Camden, NJ between November 2024 and January 2025.

4.3.1.2 Hazardous Soil/Fill Removal (Lead Hotspot)

Elevated concentrations of total lead and TCLP lead were observed in soils within the central east portion of the site (Hotspot SB-2X) on Lot 1 during the remedial investigation. The lead hotspot was delineated horizontally and vertically prior to disposal. A total of 80.4 tons of lead hazardous soil was removed from the site in July 2024. The hazardous soil/fill was disposed of at Clean Earth of North Jersey in Kearny, NJ.

4.3.1.3 Chromium Hot Spot Removal

Hexavalent and trivalent chromium were detected at concentrations exceeding their respective RRSCOs at 0-2 feet bgs at SB-5 during the remedial investigation (RI) on Lot 1. This hotspot was delineated during the supplemental remedial investigation. No hexavalent or trivalent chromium was detected above UUSCOs in any of the delineation samples. The localized chromium hotspot in the shallow soils in the northwest portion of Lot 1 was removed during remedial excavation as non-hazardous soil/fill described in Section 4.3.1.5 below.

4.3.1.4 Arsenic Hot Spot Removal

Total arsenic was detected at concentrations exceeding its RRSCO at 0-2 feet bgs at 23SB-6 during the RI on Lot 27. The arsenic hotspot was delineated horizontally and vertically prior to disposal during waste characterization. No hazardous (TCLP) arsenic was identified. No total arsenic was detected above UUSCOs in any of the delineation samples. The localized arsenic hotspot in the shallow soils in the northwest portion of Lot 27 was removed during remedial excavation as non-hazardous soil/fill described in Section 4.3.1.5 below.

4.3.1.5 Non-Hazardous Soil/Fill Removal

A total of 5,172.9 tons of non-hazardous soil/fill was removed from the site between July 2024 and November 2024. Of these, 4,186.39 tons of soil/fill was disposed of at Bayshore Soil Management in Keasbey, NJ between September 2024 and November 2024, and 986.51 tons of soil/fill was disposed of at Posillico Materials (Wash Plant) in Farmingdale, NY.

4.3.1.6 Clean Bedrock Removal

A total of 1,156.43 tons of clean bedrock was removed from the site between July 2024 and November 2024 and disposed of at P.Park facility in Prospect Park, NJ.

Table 2 shows the total quantities of each category of material removed from the site and the disposal locations. A summary of the samples collected to characterize the waste, and associated analytical results are summarized on Tables 2 through 8 of Appendix K.

Letters from Applicants to disposal facility owners and acceptance letters from disposal facility owners are attached in Appendix L.

Manifests and bills of lading are included in electronic format in Appendix M.

4.3.2 UST Removal

A 550-gallon lube oil UST, designated as UST-9 (PBS #2-402877), was encountered in the northwestern portion of Grid E during excavation activities on July 31, 2024. The UST was partially filled with soil and oil sludge. The UST was carefully removed, wrapped in plastic, and staged in a safe area to await proper disposal. Eastern Environmental Solutions properly cut, cleaned out, and removed the former UST carcass for disposal on September 11, 2024. The tank contents were described as petroleum impacted solids and oil sludge. Approximately four 55-gallon drums of non-hazardous petroleum impacted solids, consisting of tank bottoms, sludge and soil, were transported off-site to Cleanwater of New York located at 3244 Richmond Terrace, Staten Island, NY.

Disposal documentation related to the UST and its contents are included within Appendix N. A copy of the PBS Certificate is provided in Appendix N.

4.3.3 Dewatering Fluids Removal

All accumulated stormwater and groundwater in the former cellar was pumped into a settling frac tank, which was connected to filter bags and activated carbon vessels. Sediments and fine particulates were removed prior to discharge into the combined sewer system as per the dewatering plan. Dewatering activities were conducted in accordance with a dewatering permit issued by the New York City Department of Environmental Protection (NYCDEP) permit #C003295670. A copy of the dewatering plan and dewatering permit are provided in Appendix O.

4.4 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING

4.4.1 Post-Excavation Endpoint Sampling

As per the Explanation of Significant Difference document, the remedy was changed from a Track 4 to a Conditional Track 1 remedy in August 2024. The remedy involved removal of all soil above Unrestricted Use Soil Cleanup Objectives (UUSCO) by excavation of the site to bedrock, between 1 to 5 feet below grade surface. No residual soil remained on site after sitewide excavation; therefore, endpoint confirmation samples were not collected.

4.4.2 Post-UST Removal Endpoint Sampling

During the removal of USTs, endpoint soil samples were collected from the tank grave to determine whether the tanks have leaked or not. Endpoint sampling in the area of the 550-gallon UST (UST-9) included five endpoint samples, designated as EP-UST-9 (4 feet) from the bottom of tank grave, EP-UST-9N (2 feet), EP-UST-9S (2 feet), EP-UST-9E (2 feet), and EP-UST-9W (2 feet) from the sidewalls of the tank grave. No VOCs were detected above UUSCOs. Three SVOCs, benzo(a)anthracene (max. of 1.09 ppm), chrysene (max. of 1.01 ppm), and indeno(1,2,3-cd)pyrene (max. of 0.595 ppm) were detected above their respective UUSCOs. Two of these SVOCs, benzo(a)anthracene and indeno(1,2,3-cd)pyrene, also exceeded their respective RRSCOs. These SVOCs are indicative of urban fill. However, all soil/fill including the soil surrounding the former USTs were removed from the site during the remedial action.

A table and figure summarizing all end-point sampling is included in Table 3 and Figure 4, respectively, and all exceedances of SCOs are highlighted.

4.5 IMPORTED BACKFILL

Backfill imported to the site consisted of ¾" ASTM #57 stone aggregate to construct onsite truck ramps and roads, and as a gas permeable layer for the SSDS wells. Approximately 1,148.58 tons of ASTM #57 stone aggregate was imported from Tilcon Mount Hope Quarry, Parsippany NJ. Approximately 831.6 tons of Recycled Item #4 stone was imported from New York Recycling (NYR) to slope the existing cellar pit for demolition sign off from the NYC Department of Buildings (NYCDOB). It should be noted that although there is a discrepancy in the site name for the NYR tickets due to the registration of the customer's name (DEM TEC) in NYR system, they were imported to this site.

A total of 22 tons of clean topsoil was imported to the site and installed over the 12 inches gravel layer in the central east portion of Lot 1 (exterior landscaping) and central west portion of Lot 27 (interior courtyard). A request to import was submitted to the NYSDEC for approval prior to all imports.

A table of all sources of imported backfill with quantities for each source is shown in Table 4. Tables summarizing chemical analytical results for backfill, in comparison to allowable levels, are provided in Appendix P. A figure showing the site locations where backfill was used at the site is shown in Figure 5.

4.6 CONTAMINATION REMAINING AT THE SITE

4.6.1 Soil

The entirety of the site was excavated to bedrock. As such, no residual soil contamination remains at the site.

4.6.2 Groundwater

The excavation at the site was advanced into bedrock, and no perched water remains at the site. Prior to the remedy, petroleum and metals impacts were identified in the groundwater beneath the site. Specifically, metals contamination was present on Lot 1, and petroleum contamination was present on Lot 27.

A round of groundwater samples was collected from the seven on-site monitoring wells at Lot 1 upon removal of all soil/fill (i.e., source material). Based on the results, only total and dissolved antimony, manganese, and sodium were detected in exceedance of AWQGS in three monitoring wells. Therefore, it was determined that the source removal was successful in remediating the metals impacts in groundwater beneath Lot 1, and NYSDEC approved termination of in-situ remediation (i.e., zero valent iron injection) for metals.

A round of samples was also collected from Lot 27 upon removal of all soil/fill and post partial in-situ groundwater treatment. One VOC, methylene chloride (10 ug/l), was detected above its AWQS of 5 ug/l in MW-8. One SVOC, bis(2-ethylhexylphthalate) (5.5 ug/l) was detected above its AWQS of 5 ug/L in MW-4A. Although the three post-excavation groundwater samples collected from Lot 27 did not show elevated concentrations of VOCs, the MDLs were higher than the regulatory standards due to high dilution. Therefore, resulting in MDLs in exceedance of AWQS.

Whether petroleum contamination remains in groundwater or not will be determined upon sampling of off-site monitoring wells. It is expected that the concentrations of contaminants in groundwater should decrease over time due to the source removal. The results of the groundwater sampling will be reported in the Quarterly Groundwater Monitoring Report.

4.6.3 Soil Vapor

Prior to the remedy, chlorinated VOCs and petroleum-related VOCs were identified in soil vapor at concentrations above the NYSDOH Soil Vapor Guidance threshold values across the site. The presence of petroleum-related VOCs was attributed to the former underground storage tanks. However, since all source material was removed by excavating the entire footprint of the site into bedrock, it is expected that no soil vapor contamination remains at the site. If there is residual soil vapor contamination left, it will be addressed by the active sub-slab depressurization system installed beneath the two buildings. A soil vapor intrusion evaluation will be conducted during the heating season, and results will be provided in a Soil Vapor Intrusion Evaluation Report.

Since contaminated groundwater and soil vapor remains beneath the site after completion of the Remedial Action, Institutional and Engineering Controls are required to protect human health and the environment. These Engineering and Institutional Controls (ECs/ICs) are described in the following sections. Long-term management of these EC/ICs and residual contamination will be performed under the Site Management Plan (SMP) approved by the NYSDEC.

4.7 SOIL COVER SYSTEM

All contaminated soil/fill was removed to bedrock sitewide. However, as part of development, a soil cover system was installed at the site. This cover system is comprised of a minimum of 24 inches of reinforced concrete building slabs underlain by a vapor barrier and a minimum of 6 inches of clean 3/4" ASTM #57 gravel. Figure 6 shows the location and as-built cross sections for each remedial cover type used on the site.

4.8 OTHER ENGINEERING CONTROLS

Since remaining contaminated groundwater and soil vapor exists beneath the site, Engineering Controls (EC) are required to protect human health and the environment. The site has the following primary Engineering Controls, as described in the following subsections.

4.8.1 Active Sub-Slab Depressurization System

An active SSDS was installed at the Site as an engineering control to prevent potential migration of contaminated soil vapor into the new buildings. The SSDS design was included in the RAWP dated March 2024; however, during construction, the design

was slightly amended due to the revisions to foundation plan (i.e., installation of large mat slabs). The amended layout still encompasses the footprint of both buildings and ensures sufficient vacuum is achieved across the entire site.

The SSDS consists of a network of horizontal pipe set in the middle of a gas permeable layer approximately 6-inches in depth and immediately beneath the concrete building slab and vapor barrier system, respectively. The SSDS consists of nine loops installed underneath both buildings' foundations. The horizontal piping consists of 4-inch Schedule 40 perforated, corrugated PVC pipes connected to a 6-inch cast iron riser pipe that penetrates the slab and travels vertically through the building to the roof. The gas permeable layer consists of a 6-inch-thick layer of $\frac{3}{4}$ -inch gravel located beneath the entire building slabs and surrounding the perforated pipe. A vapor barrier system was installed over the SSDS and below the buildings' concrete slabs. Each individual SSDS loop has a stub rising above the first-floor slab. After penetrating through the slab, Loops 1 and 2, Loops 5 and 6, and Loops 7 and 8 were manifolded on the first floor. Loops 3, 4, and 9 were not manifolded. Seventeen (17) pressure/monitoring points were installed throughout the buildings' slab on the ground floor to confirm the efficacy of the system and for future sampling. Six RadonAway (model RP265) fans were installed and hardwired on the roof line. The vertical risers include a rain cap on the roof to prevent water infiltration. The pressure gauge and alarm consist of Magnehelic Pressure Gauges and RadonAway alarms located on the first floor. The PE for the Remedial Action inspected the system and confirmed that the effluent discharge point is a minimum of 10 feet from any operable window or air intake for any building as per the NYC Mechanical Code. Figure 7A provides the as-built layout of the SSDS, and Figure 7B provides the as-built exhaust detail of the SSDS.

The system was tested upon installation of the fans over the risers located on the roofs of the buildings. After allowing sufficient time for the system to equilibrate, vacuum was measured at each of the 17 monitoring points and confirmed vacuum throughout the subslab has been achieved. Individual alarms on risers were confirmed to be functioning properly. Alarm was disconnected by removing the tubing between the riser and alarm, and the disconnection activated the alarm, thus confirming its efficacy. Appendix Q provides a copy of the start-up inspection.

Procedures for monitoring, operating and maintaining the active sub-slab depressurization system are provided in the Operation and Maintenance Plan in Section 5.0 of the Site Management Plan (SMP). The Monitoring Plan also addresses inspection

procedures that must occur after any severe weather condition has taken place that may affect on-site ECs.

4.8.2 Groundwater Monitoring Wells Associated with In-Situ Technology and Source Removal

Groundwater monitoring to assess the efficacy of the partial in-situ Petrofix injections and source removal will continue until residual groundwater concentrations achieve asymptotic levels (i.e. below AWGQS). In order to evaluate the remaining concentrations over an extended period, three off-site monitoring wells (SW-1 through SW-3) were installed to the north and east of Lot 27. The monitoring wells will be sampled quarterly for TCL VOCs and SVOCs. Monitoring will continue until NYSDEC grants approval for termination. Figure 8 shows the off-site monitoring well locations.

As part of the groundwater monitoring, one upgradient well, one cross-gradient well, and one downgradient well will be sampled to evaluate the effectiveness of the remedial system. The 2" diameter monitoring wells were installed into bedrock using a sonic drill rig by advancing steel casing 5 feet into bedrock, grouting the annulus within the borehole, and drilling another 5 feet into rock from the bottom of casing. Each bedrock well consists of 10 feet of 0.010-inch slotted PVC well screen. Morrie no. 1 sand was used to fill the annular gap around the screen and above the top of the screened interval. Bentonite was used to seal above the sand, and the remainder of the borehole was backfilled to grade with clean sand. They are all flushed to sidewalk and protected with steel manhole covers. Appendix R provides the monitoring well construction logs.

Procedures for monitoring, operating and maintaining the groundwater monitoring wells are provided in the Operation and Maintenance Plan in Section 5.0 of the Site Management Plan (SMP). The Monitoring Plan also addresses inspection procedures that must occur after any severe weather condition has taken place that may affect on-site ECs.

In-Text-Table 1 – Monitoring Well Construction Details

Monitoring Well ID	Well Location	Coordinates (longitude/latitude)	Well Diameter (inches)	Elevation (above mean sea level)			
				Casing	Surface	Screen Top	Screen Bottom
SW-1	Upgradient	(40.814908, -73.9292121)	2	35.46	35.76	32.81	22.81
SW-2	Crossgradient	(40.8146172, -73.9292470)	2	30.64	30.94	27.94	17.94
SW-3	Downgradient	(40.8143248, -73.9294850)	2	27.12	27.42	23.92	13.92

4.9 INSTITUTIONAL CONTROLS

The site remedy requires that an environmental easement be placed on the property to (1) implement, maintain and monitor the Engineering Controls; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to unrestricted use.

The environmental easement for the site was executed by the Department on November 25, 2025, and filed with the Bronx County Clerk on December 9, 2025. The City Register File No. for this filing is 2025000333942. The document ID for this filing is 2025120900040001. A copy of the easement and proof of filing is provided in Appendix C.

4.10 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN

The following deviations from the RAWP or subsequent NYSDEC-approved documents occurred during the remedial action:

- The SSDS design included in the RAWP was slightly amended due to revisions to the foundation plan (i.e., installation of large mat slabs). The amended layout still encompasses the footprint of both buildings and ensures sufficient vacuum is achieved across the entire site.

- Prior to the remedy, metals impacts were identified in the groundwater beneath Lot 1. A round of groundwater samples was collected from the seven on-site monitoring wells at Lot 1 upon removal of all soil/fill (i.e., source material). Based on the results, only total and dissolved antimony, manganese, and sodium were detected in exceedance of AWQGS in three monitoring wells. None of the metals, lead, chromium hexavalent, selenium, or silver, identified at the site prior to source removal were present in the confirmatory groundwater samples. Therefore, it was determined that the source removal was successful in remediating the metals impacts in groundwater beneath Lot 1, and zero valent iron (ZVI) injection was eliminated. Table 5 provides the post-source removal groundwater results for Lot 1. Figure 9 provides the post-source removal groundwater results for the entire site. Appendix S includes the analytical laboratory results and data usability validation reports for the groundwater sampling event. All data was acceptable and considered usable, as qualified.
- Prior to the remedy, VOCs impacts were identified in the groundwater beneath Lot 27. The NYSDEC-approved RAWP proposed retaining MW4-A, MW-6, MW-3A, MW-2A, MW-1A, MW-4, MW-2, and MW-1X, if feasible, during construction. A contingency for reinstalling the new monitoring wells was provided in the RAWP. Since some of the wells were destroyed during the construction, they were reinstalled for the in-situ remediation program. This is recorded as a deviation. A total of eight bedrock injection wells were advanced approximately 2 feet into bedrock during the groundwater treatment program in accordance with the Groundwater Treatment Plan on September 5 and 6, 2024. Figure 10 shows the location of injection wells. Coastal Environmental Solutions (Coastal) was retained to implement the injection program. Coastal conducted the injection event from a graduated bulk tank containing the Petrofix solution into each of the eight injection wells on October 2, 2025 using a Honda WB20XT pump. The discharge hose was attached via a pressure fitting to each injection well independently, and the approximate volume delivered to each well was recorded. During the injection event, Petrofix was only successfully injected into IW-4, although at a much smaller volume that was intended to be injected as per the Groundwater Treatment

Plan. Petrofix could not be injected into any of the other seven wells. A second injection attempt was performed on October 30, 2025 by Coastal. The second attempt yielded similar results to the first; Petrofix was only successfully injected into IW-4. The site has been excavated to bedrock, all historic tanks have been previously removed, and all soils and have been removed from the site, therefore no source material remains. In light of the uninjectable bedrock, the petroleum groundwater treatment plan was deemed infeasible. As a result, AMC and Vektor proposed collecting a round of groundwater samples from the on-site monitoring wells to evaluate the groundwater conditions after partial in-situ treatment and source removal. Vektor collected three groundwater samples; however, samples from MW-8 were diluted in the laboratory, elevating the method detection limits. Table 6 provides the post-source removal groundwater results for Lot 27. Figure 9 provides the post-source removal groundwater results for the entire site. Appendix S includes the analytical laboratory results and data usability validation reports for the groundwater sampling event. Majority of the results are considered usable, although some are rejected due to spikes. Due to the diluted results, AMC and Vektor proposed collecting another round of samples. However, due to the ongoing construction activities, since the on-site monitoring wells were destroyed, based on a meeting with the NYSDEC, AMC submitted a Work Plan to install three off-site monitoring wells on the adjacent sidewalks to Lot 27. Upon approval of this work plan, three monitoring wells, SW-1 through SW-3 were installed on the north and east adjacent sidewalks of the site.

- Confirmation endpoint samples were not collected, as approved by the NYSDEC, since all soil/fill was removed from the site to bedrock.

TABLES

Table 1
Soil Cleanup Objectives
Track 1 Unrestricted Use
Copyrite Plastic Sheets (BCP #C203151)
261-315 Grand Concourse, Bronx, NY

Compounds	UUSCOs
Volatile Organic Compounds	
1,1,1-Trichloroethane	0.68
1,1-Dichloroethane	0.27
1,1-Dichloroethylene	0.33
1,2,4-Trimethylbenzene	3.6
1,2-Dichlorobenzene	1.1
1,2-Dichloroethane	0.02
1,2-Dichloroethene(cis)	0.25
1,2-Dichloroethene(trans)	0.19
1,3,5-Trimethylbenzene	8.4
1,3-Dichlorobenzene	2.4
1,4-Dichlorobenzene	1.8
1,4-Dioxane	0.1
Acetone	0.05
Benzene	0.06
Butylbenzene	12
Carbon tetrachloride	0.76
Chlorobenzene	1.1
Chloroform	0.37
Ethyl Benzene	1
Hexachlorobenzene	0.33
Methyl ethyl ketone	0.12
Methyl tert-butyl ether (MTBE)	0.93
Methylene chloride	0.05
n-Propylbenzene	3.9
sec-Butylbenzene	11
tert-Butylbenzene	5.9
Tetrachloroethylene	1.3
Toluene	0.7
Trichloroethylene	0.47
Vinyl Chloride	0.02
Xylenes, Total	0.26
Semi-Volatile Organic Compounds	
Acenaphthene	20
Acenaphthylene	100
Anthracene	100
Benzo(a)anthracene	1
Benzo(a)pyrene	1
Benzo(b)fluoranthene	1
Benzo(g,h,i)perylene	100
Benzo(k)fluoranthene	0.8
Chrysene	1
Dibenzo(a,h)anthracene	0.33
Fluoranthene	100
Fluorene	30
Indeno(1,2,3-cd)pyrene	0.5
m-Cresol(s)	0.33
Naphthalene	12
o-Cresol(s)	0.33
p-Cresol(s)	0.33
Pentachlorophenol	0.8
Phenanthrene	100
Phenol	0.33
Pyrene	100

Compounds	UUSCOs
Pesticides	
2,4,5-TP Acid (silvex)	3.8
4,4'-DDD	0.0033
4,4'-DDE	0.0033
4,4'-DDT	0.0033
Aldrin	0.005
alpha-BHC	0.02
alpha-Chlordane	0.094
beta-BHC	0.036
delta-BHC	0.04
Dieldrin	0.005
Endosulfan I	2.4
Endosulfan II	2.4
Endosulfan sulfate	2.4
Endrin	0.014
Heptachlor	0.042
Lindane	0.1
Metals	
Arsenic	13
Barium	350
Beryllium	7.2
Cadmium	2.5
Chromium, Hexavalent	1
Chromium, Trivalent	30
Copper	50
Cyanide	27
Lead	63
Mercury	0.18
Manganese	1600
Nickel	30
Selenium	3.9
Silver	2
Zinc	109
Polychlorinated Biphenyls (PCBs)	
Total PCBs	0.1

UUSCO: NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives
 ppm: parts per million

Table 2
Soil/Fill, Debris, Bedrock Disposal Volumes and Facilities
Copyrite Plastic Sheets (BCP #C203151)
261-315 Grand Concourse, Bronx, NY

Load #	Date	Manifest #	Transporter / #	License Plate	Grid / Interval	Material Type	Disposal Facility	Tonnage
1	7/25/24	E0842351	LST #01	AY678S	Grid A (0-3)	Non-Haz Soil	Bayshore	30.23
2	7/25/24	E0842352	Magnolia #7	AYZ70H	Grid A (0-3)	Non-Haz Soil	Bayshore	30.02
3	7/25/24	E0842353	Magnolia #17	AW562A	Grid A (0-3)	Non-Haz Soil	Bayshore	31.99
4	7/25/24	E0842354	J&I Castillo #6	AZ184A	Grid A (0-3)	Non-Haz Soil	Bayshore	32.78
5	7/25/24	E0842355	Magnolia #5	C299594	Grid A (0-3)	Non-Haz Soil	Bayshore	32.28
6	7/25/24	E0842356	H&M #02	AY591L	Grid A (0-3)	Non-Haz Soil	Bayshore	33.82
7	7/25/24	E0842366	E&T Perez #04	AY586D	Grid A (0-3)	Non-Haz Soil	Bayshore	34.31
8	7/25/24	E0842358	E&T Perez #6	AZ860C	Grid A (0-3)	Non-Haz Soil	Bayshore	34.79
9	7/25/24	E0842359	E&T Perez #03	AY638H	Grid A (0-3)	Non-Haz Soil	Bayshore	33.36
10	7/25/24	E0842360	E&T Perez #1	AW181A	Grid A (0-3)	Non-Haz Soil	Bayshore	34.43
11	7/25/24	E0842361	Sindel #02	C289042	Grid A (0-3)	Non-Haz Soil	Bayshore	28.76
12	7/25/24	E0842362	Almonte #2	AZ650C	Grid A (0-3)	Non-Haz Soil	Bayshore	29.75
13	7/25/24	E0842363	E&T Perez #5	AY716T	Grid A (0-3)	Non-Haz Soil	Bayshore	32.34
14	7/25/24	E0842364	LST #01	AY678S	Grid A (0-3)	Non-Haz Soil	Bayshore	33.82
15	7/25/24	E0842365	H&M #1	AU764V	Grid A (0-3)	Non-Haz Soil	Bayshore	28.74
16	7/25/24	E0842367	Magnolia #9	AW172H	Grid A (0-3)	Non-Haz Soil	Bayshore	33.67
17	7/25/24	E0842368	Almonte #6	AZ901D	Grid A (0-3)	Non-Haz Soil	Bayshore	30.75
18	7/25/24	E0842369	Almonte #4	AY510M	Grid A (0-3)	Non-Haz Soil	Bayshore	29.57
19	7/25/24	E0842370	Sindel #03	AY694M	Grid A (0-3)	Non-Haz Soil	Bayshore	35.17
20	7/25/24	E0842371	Sindel #01	AY648Y	Grid A (0-3)	Non-Haz Soil	Bayshore	33.7
21	7/25/24	E0842372	VE Transport #17	AW641V	Grid A (0-3)	Non-Haz Soil	Bayshore	26.27
22	7/25/24	E0842373	J&I Castillo #5	AZ276B	Grid A (0-3)	Non-Haz Soil	Bayshore	29.85
23	7/25/24	E0842374	VE Transport #13	AY774E	Grid A (0-3)	Non-Haz Soil	Bayshore	26.73
24	7/25/24	E0842375	J&I Castillo #1	AY615L	Grid A (0-3)	Non-Haz Soil	Bayshore	32.13
25	7/25/24	E0842376	W Ojeda #01	AX845D	Grid A (0-3)	Non-Haz Soil	Bayshore	29.9
26	7/25/24	E0842377	VE Transport #11	AY436A	Grid A (0-3)	Non-Haz Soil	Bayshore	28.41
27	7/25/24	E0842378	VE Transport #06	AW259D	Grid A (0-3)	Non-Haz Soil	Bayshore	26.53
28	7/25/24	E0842379	LST #01	AY678S	Grid A (0-3)	Non-Haz Soil	Bayshore	30.6
29	7/25/24	E0842380	PIPOS #06	AX248Z	Grid A (0-3)	Non-Haz Soil	Bayshore	28.48
30	7/25/24	E0842381	W Ojeda #02	AU750G	Grid A (0-3)	Non-Haz Soil	Bayshore	30.57
31	7/25/24	18009480	J&D Trucking #23	AW131X	24SB-2 (3-6)	Haz Lead Soil	CE NJ	26.05
32	7/25/24	18009481	J&D Trucking #23	AW131X	24SB-2 (3-6)	Haz Lead Soil	CE NJ	28.95
33	7/25/24	21332	J Brothers #1	AX768V	Sitewide	C&D	Mt Materials	17.32
34	7/25/24	21333	J Brothers #27	AX167T	Sitewide	C&D	Mt Materials	18.19
35	7/25/24	21334	J Brothers #8	AX651Y	Sitewide	C&D	Mt Materials	16.79
36	7/25/24	21339	J Brothers #7	AT295K	Sitewide	C&D	Mt Materials	18.21
37	7/25/24	21338	J Brothers #5	AX667F	Sitewide	C&D	Mt Materials	19.23
38	7/25/24	21335	J Brothers #9	AT390M	Sitewide	C&D	Mt Materials	18.62
39	7/25/24	21336	J Brothers #6	AX927M	Sitewide	C&D	Mt Materials	21.27
40	7/25/24	21337	PIPOS #08	AY847K	Sitewide	C&D	Mt Materials	19.34
41	7/26/24	21381	Almonte #1	AZ650C	Sitewide	C&D	Mt Materials	16.93
42	7/26/24	21380	E&T Perez #2	AY357E	Sitewide	C&D	Mt Materials	16.93
43	7/26/24	21379	Magnolia #17	AU562A	Sitewide	C&D	Mt Materials	14.54
44	7/26/24	21378	J Brothers #21	AX811X	Sitewide	C&D	Mt Materials	18.9
45	7/26/24	21377	H&M #1	AU764U	Sitewide	C&D	Mt Materials	16.9
46	7/26/24	21376	J Brothers #4	AT667J	Sitewide	C&D	Mt Materials	14.9
47	7/26/24	21375	Magnolia #7	AY270H	Sitewide	C&D	Mt Materials	17.44
48	7/26/24	21374	J Brothers #27	AX167T	Sitewide	C&D	Mt Materials	18.44
49	7/26/24	21373	J Brothers #7	AT245K	Sitewide	C&D	Mt Materials	19.59
50	7/26/24	21372	J Brothers #23	AX464X	Sitewide	C&D	Mt Materials	16.93
51	7/26/24	514815	LST #1	AY678S	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	30.33
52	7/26/24	514827	Magnolia #9	AW172H	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	35.7
53	7/26/24	514830	Magnolia #5	C299594	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	35.06
54	7/26/24	514851	E&T Perez #4	AY586P	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	37.39
55	7/26/24	514849	E&T Perez #6	AZ860C	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	35.51
56	7/26/24	514847	E&T Perez #5	AY716T	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	32.77
57	7/26/24	514856	E&T Perez #3	AY638H	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	32.53
58	7/26/24	514876	Pipos #13	AY903R	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	34.42
59	7/26/24	514884	E&T Perez #1	AW181A	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	32.51
60	7/26/24	514883	H&M #2	AY591L	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	38.17
61	7/26/24	514916	Sindel #2	C289042	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	24.47
62	7/26/24	514900	Sindel #1	AY648Y	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	27.3
63	7/26/24	514911	Sindel #3	AY694M	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	24.32
64	7/26/24	514922	Almonte #6	AZ901D	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	44.64
65	7/26/24	514924	Almonte #4	AY510M	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	32.85
66	7/26/24	514927	JDN # 4	AY657V	Grid A (3-6)	Non-Haz Soil	Posillico Wash Plant	32.34
67	7/26/24	514928	LST #1	AY678S	Grid A (3-6) Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	31.77
68	7/26/24	514995	Magnolia #9	AW172H	Grid A (3-6) Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	36.8
69	7/26/24	514983	Magnolia #5	C299594	Grid A (3-6) Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	35.17
70	7/26/24	514974	E&T Perez #3	AY638H	Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	32.04
71	7/26/24	515023	E&T Perez #6	AZ860C	Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	28.41
72	7/26/24	515021	E&T Perez #5	AY716T	Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	25.47
73	7/26/24	515022	E&T Perez #4	AY586P	Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	31.53
74	7/26/24	515029	E&T Perez #1	AW181A	Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	31.43
75	7/26/24	515027	H&M 2	AY591L	Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	33.9
76	7/26/24	515033	Pipos #13	AY903R	Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	29.35
77	7/26/24	515036	Sindel #2	C289047	Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	30.83
78	7/26/24	515038	Sindel #3	AY694M	Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	31.2
79	7/26/24	515039	JDN #4	AY657V	Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	24.6
80	7/26/24	515049	Almonte #6	AZ901D	Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	20.57
81	7/26/24	515055	Almonte #4	AY510M	Grid B (0-4.5)	Non-Haz Soil	Posillico Wash Plant	33.13
82	7/29/24	21341	H&M #2	AY591L	Sitewide	C&D	Mt Materials	20.93
83	7/29/24	21342	JDN #4	AY657V	Sitewide	C&D	Mt Materials	25.4
84	7/29/24	21343	LST #1	AY678S	Sitewide	C&D	Mt Materials	19.03
85	7/29/24	21344	H&M #1	AU764V	Sitewide	C&D	Mt Materials	20.25
86	7/29/24	21345	Magnolia #7	AY270H	Sitewide	C&D	Mt Materials	20.4
87	7/29/24	21346	Magnolia #17	AW562A	Sitewide	C&D	Mt Materials	20.95

Table 2
Soil/Fill, Debris, Bedrock Disposal Volumes and Facilities
Copyrite Plastic Sheets (BCP #C203151)
261-315 Grand Concourse, Bronx, NY

Load #	Date	Manifest #	Transporter / #	License Plate	Grid / Interval	Material Type	Disposal Facility	Tonnage
88	7/29/24	21347	Almonte #2	AZ650C	Sitewide	C&D	Mt Materials	18.92
89	7/29/24	21348	Gregory #1	AX873M	Sitewide	C&D	Mt Materials	20.37
90	7/29/24	21349	Gregory #5	AY928L	Sitewide	C&D	Mt Materials	19.42
91	7/29/24	21350	Sindel #2	C289042	Sitewide	C&D	Mt Materials	20.28
92	7/29/24	21351	Sindel #1	AY648Y	Sitewide	C&D	Mt Materials	22.5
93	7/29/24	21352	E&T Perez #3	AY638H	Sitewide	C&D	Mt Materials	22.14
94	7/29/24	21353	Almonte #6	AZ901D	Sitewide	C&D	Mt Materials	19.08
95	7/29/24	21354	E&T Perez #4	AY586P	Sitewide	C&D	Mt Materials	23.75
96	7/29/24	21355	Magnolia #5	C299594	Sitewide	C&D	Mt Materials	21.15
97	7/29/24	21356	E&T Perez #5	AY716T	Sitewide	C&D	Mt Materials	20.46
98	7/29/24	21357	E&T Perez #6	AZ860C	Sitewide	C&D	Mt Materials	21.28
99	7/29/24	21358	Magnolia #9	AW172H	Sitewide	C&D	Mt Materials	21.34
100	7/29/24	21359	Magnolia #21	AW251D	Sitewide	C&D	Mt Materials	18.34
101	7/29/24	21360	Sindel #3	AY694M	Sitewide	C&D	Mt Materials	19.8
102	7/29/24	21361	Almonte #4	AY510M	Sitewide	C&D	Mt Materials	16.02
103	7/29/24	21362	E&T Perez #1	AW181A	Sitewide	C&D	Mt Materials	21.98
104	7/29/24	21363	J Brothers #18	AX810X	Sitewide	C&D	Mt Materials	17.17
105	7/29/24	21364	PIPO'S #8	AY847K	Sitewide	C&D	Mt Materials	15.67
106	7/29/24	21365	J Brothers #17	AX156Z	Sitewide	C&D	Mt Materials	18.7
107	7/29/24	21366	Almonte #2	AZ650C	Sitewide	C&D	Mt Materials	18.51
108	7/29/24	21367	Sindel #2	C289040	Sitewide	C&D	Mt Materials	17.88
109	7/29/24	21368	Sindel #1	AY648Y	Sitewide	C&D	Mt Materials	22.03
110	7/29/24	21369	Magnolia #7	AY270H	Sitewide	C&D	Mt Materials	23.66
111	7/29/24	21817	Magnolia #7	AY270H	Sitewide	C&D	Mt Materials	23.66
112	7/29/24	21818	E&T Perez #4	AY586D	Sitewide	C&D	Mt Materials	18.62
113	7/29/24	21819	Magnolia #13	AW562A	Sitewide	C&D	Mt Materials	14.1
114	7/29/24	21820	E&T Perez #3	AY638H	Sitewide	C&D	Mt Materials	14.14
115	7/29/24	21821	Almonte #4	AY510M	Sitewide	C&D	Mt Materials	19.19
116	7/29/24	21822	J Brothers #5	AX667F	Sitewide	C&D	Mt Materials	19.19
117	7/29/24	21824	J Brothers #22	AX463J	Sitewide	C&D	Mt Materials	24.41
118	7/29/24	21825	Almonte #6	AZ901D	Sitewide	C&D	Mt Materials	18.48
119	7/29/24	21826	J Brothers #9	AT390M	Sitewide	C&D	Mt Materials	21.51
120	7/29/24	21827	J Brothers #20	AW129K	Sitewide	C&D	Mt Materials	24.84
121	7/29/24	21828	Mesa Trucking #2	AU927B	Sitewide	C&D	Mt Materials	15.23
122	7/30/24	E0842383	FTM #3	AY913V	Grid E (0-5)	Non-Haz Soil	Bayshore	31.38
123	7/30/24	E0842384	FTM #2	AY642H	Grid E (0-5)	Non-Haz Soil	Bayshore	36.68
124	7/30/24	E0842385	E&T Perez #3	AY638H	Grid E (0-5)	Non-Haz Soil	Bayshore	32.09
125	7/30/24	E0842386	Magnolia #9	AW172H	Grid E (0-5)	Non-Haz Soil	Bayshore	33.46
126	7/30/24	E0842387	Mesa Trucking #3	AY553W	Grid E (0-5)	Non-Haz Soil	Bayshore	35.76
127	7/30/24	E0842388	Joel Trucking #11	AZ374A	Grid E (0-5)	Non-Haz Soil	Bayshore	29.88
128	7/30/24	E0842389	Joel Trucking #5	AU260R	Grid E (0-5)	Non-Haz Soil	Bayshore	34.03
129	7/30/24	E0842390	Gregory #5	AY928L	Grid E (0-5)	Non-Haz Soil	Bayshore	31.11
130	7/30/24	21829	Gregory #5	AY928L	Sitewide	C&D	Mt Materials	22.76
131	7/30/24	21780	Gregory #01	AX873M	Sitewide	C&D	Mt Materials	25.49
132	7/30/24	21781	Tela #8	AY584R	Sitewide	C&D	Mt Materials	23.31
133	7/30/24	21782	Pipo's #13	AY903R	Sitewide	C&D	Mt Materials	21.49
134	7/30/24	21783	Pipo's #6	AX248Z	Sitewide	C&D	Mt Materials	27.36
135	7/30/24	21784	E&T Perez #5	AY716T	Sitewide	C&D	Mt Materials	24.18
136	7/30/24	21785	J Brothers #3	AX859E	Sitewide	C&D	Mt Materials	25.61
137	7/30/24	21786	J Brothers #1	AX768V	Sitewide	C&D	Mt Materials	23.61
138	7/30/24	21787	J Brothers #14	AY851E	Sitewide	C&D	Mt Materials	23.71
139	7/30/24	21788	J Brothers #21	AX811X	Sitewide	C&D	Mt Materials	23.12
140	7/30/24	21789	J Brothers #7	AT295K	Sitewide	C&D	Mt Materials	24.26
141	7/30/24	21790	J Brothers #27	AX167T	Sitewide	C&D	Mt Materials	22.59
142	7/30/24	21792	J Brothers #22	AX463J	Sitewide	C&D	Mt Materials	23.22
143	7/30/24	21794	J Brothers #9	AT390M	Sitewide	C&D	Mt Materials	24.45
144	7/30/24	21795	J Brothers #20	AW129K	Sitewide	C&D	Mt Materials	22.58
145	7/30/24	21796	J Brothers #6	AX927M	Sitewide	C&D	Mt Materials	30.68
146	7/30/24	21797	J Brothers #23	AX464J	Sitewide	C&D	Mt Materials	26.68
147	7/30/24	21798	J Brothers #5	AX667F	Sitewide	C&D	Mt Materials	30.26
148	7/30/24	21799	J Brothers #25	AX603M	Sitewide	C&D	Mt Materials	33.27
149	7/30/24	21800	E&T Perez #4	AY586P	Sitewide	C&D	Mt Materials	26.26
150	7/30/24	21801	Magnolia #21	AW251D	Sitewide	C&D	Mt Materials	27.62
151	7/30/24	21802	AAJM #8	AY975M	Sitewide	C&D	Mt Materials	35.27
152	7/30/24	21803	AAJM #12	AY447R	Sitewide	C&D	Mt Materials	35.51
153	7/30/24	21804	J Brothers #1	AX768V	Sitewide	C&D	Mt Materials	23.36
154	7/30/24	21805	J Brothers #14	AY851E	Sitewide	C&D	Mt Materials	22.17
155	7/30/24	21806	J Brothers #21	AX811X	Sitewide	C&D	Mt Materials	23
156	7/30/24	21807	J Brothers #4	AT667J	Sitewide	C&D	Mt Materials	24.22
157	7/30/24	21808	J Brothers #22	AX463J	Sitewide	C&D	Mt Materials	18.71
158	7/30/24	21809	J Brothers #20	AW129K	Sitewide	C&D	Mt Materials	22.3
159	7/30/24	21810	J Brothers #9	AT390M	Sitewide	C&D	Mt Materials	21.66
160	7/30/24	21811	J Brothers #6	AX927M	Sitewide	C&D	Mt Materials	22.6
161	7/31/24	E0842398	H&M #1	AU764V	Grid E (0-5)	Non Haz Soil	Bayshore	32.89
162	7/31/24	E0842397	Magnolia #7	AY270H	Grid E (0-5)	Non Haz Soil	Bayshore	37
163	7/31/24	E0842396	Magnolia #17	AW562A	Grid E (0-5)	Non Haz Soil	Bayshore	37.8
164	7/31/24	E0842395	Almonte #2	AZ650C	Grid E (0-5)	Non Haz Soil	Bayshore	31.7
165	7/31/24	E0842394	Magnolia #21	AW251D	Grid E (0-5)	Non Haz Soil	Bayshore	37.68
166	7/31/24	E0842393	Almonte #4	AY510M	Grid E (0-5)	Non Haz Soil	Bayshore	35.51
167	7/31/24	E0842392	E&T Perez #1	AW181A	Grid E (0-5)	Non Haz Soil	Bayshore	31.9
168	7/31/24	18009539	J&D #2	AU221V	Grid B SB-5 (0-4.5)	Haz Soil	CE NJ	25.4
169	7/31/24	21812	Bruce #2	AY338Y	Sitewide	C&D	Mt Materials	31.86
170	7/31/24	21813	H&M #2	AY591L	Sitewide	C&D	Mt Materials	25.61
171	7/31/24	21814	Sindel #1	AY648Y	Sitewide	C&D	Mt Materials	19.82
172	7/31/24	21815	E&T Perez #4	AY586P	Sitewide	C&D	Mt Materials	18.96
173	7/31/24	21816	E&T Perez #5	AY716T	Sitewide	C&D	Mt Materials	23.84
174	7/31/24	22027	Sindel #3	AY694M	Sitewide	C&D	Mt Materials	21.19

Table 2
Soil/Fill, Debris, Bedrock Disposal Volumes and Facilities
Copyrite Plastic Sheets (BCP #C203151)
261-315 Grand Concourse, Bronx, NY

Load #	Date	Manifest #	Transporter / #	License Plate	Grid / Interval	Material Type	Disposal Facility	Tonnage
175	7/31/24	22028	FTM #2	AY642H	Sitewide	C&D	Mt Materials	19.08
176	7/31/24	22029	FTM #3	AY913Y	Sitewide	C&D	Mt Materials	18.48
177	7/31/24	22030	E&T Perez #6	AZ860C	Sitewide	C&D	Mt Materials	29.53
178	7/31/24	22031	E&T Perez #3	AY638H	Sitewide	C&D	Mt Materials	27.56
179	8/2/24	22032	Almonte #2	AZ650C	Sitewide	C&D	Mt Materials	17.77
180	8/2/24	22033	Sindel #2	AZ798E	Sitewide	C&D	Mt Materials	23.43
181	8/2/24	22034	Sindel #1	AY648Y	Sitewide	C&D	Mt Materials	22.58
182	8/2/24	22035	Almonte #4	AY510M	Sitewide	C&D	Mt Materials	20.38
183	8/2/24	22036	Almonte #6	AZ901D	Sitewide	C&D	Mt Materials	19.67
184	8/2/24	22037	Sindel #3	AY694M	Sitewide	C&D	Mt Materials	26.05
185	8/2/24	22038	E&T Perez #3	AY638H	Sitewide	C&D	Mt Materials	24.73
186	8/2/24	22039	E&T Perez #1	AW181A	Sitewide	C&D	Mt Materials	33.72
187	8/5/24	22040	J Brothers #22	AK463J	Sitewide	C&D	Mt Materials	28.41
188	8/5/24	22041	J Brothers #11	AU122M	Sitewide	C&D	Mt Materials	31.16
189	8/5/24	22042	J Brothers #17	AX156Z	Sitewide	C&D	Mt Materials	28.85
190	8/5/24	22043	J Brothers #6	AX927M	Sitewide	C&D	Mt Materials	28.69
191	8/5/24	22044	J Brothers #9	AT390M	Sitewide	C&D	Mt Materials	29.32
192	8/5/24	22045	J Brothers #4	AT667J	Sitewide	C&D	Mt Materials	27.29
193	8/5/24	22046	E&T Perez #5	AY716T	Sitewide	C&D	Mt Materials	33.83
194	8/5/24	22026	Sindel #3	AY694M	Sitewide	C&D	Mt Materials	26.56
195	8/5/24	22025	J Brothers #22	AX463J	Sitewide	C&D	Mt Materials	23.38
196	8/5/24	22024	J Brothers #11	AU122M	Sitewide	C&D	Mt Materials	23.85
197	8/5/24	22023	J Brothers #14	AY851E	Sitewide	C&D	Mt Materials	26.41
198	8/5/24	22021	J Brothers #6	AX927M	Sitewide	C&D	Mt Materials	21.15
199	8/6/24	22020	E&T Perez #1	AW181A	Sitewide	C&D	Mt Materials	33.94
200	8/6/24	22019	E&T Perez #4	AY586P	Sitewide	C&D	Mt Materials	30.57
201	8/6/24	22018	Almonte #4	AY510M	Sitewide	C&D	Mt Materials	23.98
202	8/6/24	22017	Magnolia #5	AZ661E	Sitewide	C&D	Mt Materials	21.42
203	8/6/24	22016	H&M #1	AU764V	Sitewide	C&D	Mt Materials	20.29
204	8/6/24	22015	H&M #2	AY591L	Sitewide	C&D	Mt Materials	25.13
205	8/6/24	22014	Magnolia #21	AW251D	Sitewide	C&D	Mt Materials	25.82
206	8/6/24	22013	E&T Perez #5	AY716T	Sitewide	C&D	Mt Materials	25.11
207	8/6/24	22012	E&T Perez #2	AY357E	Sitewide	C&D	Mt Materials	24.39
208	8/6/24	22011	Magnolia #7	AY270H	Sitewide	C&D	Mt Materials	26.22
209	8/7/24	22010	Ariamy's #1	AW682R	Sitewide	C&D	Mt Materials	32.58
210	8/7/24	22009	Ariamy's #4	AX681C	Sitewide	C&D	Mt Materials	34.16
211	8/7/24	22008	Magnolia #5	AZ661E	Sitewide	C&D	Mt Materials	29.43
212	8/8/24	22007	J Brothers #21	AX811X	Sitewide	C&D	Mt Materials	30.46
213	8/8/24	22006	E&T Perez #6	AZ860C	Sitewide	C&D	Mt Materials	29.15
214	8/8/24	22005	E&T Perez #5	AY716T	Sitewide	C&D	Mt Materials	35.38
215	8/8/24	22004	J Brothers #7	AT295K	Sitewide	C&D	Mt Materials	32.74
216	8/8/24	22003	J Brothers #6	AX927M	Sitewide	C&D	Mt Materials	30.64
217	8/8/24	22002	E&T Perez #1	AW181A	Sitewide	C&D	Mt Materials	31.5
218	8/8/24	22001	E&T Perez #4	AY586P	Sitewide	C&D	Mt Materials	27.12
219	8/8/24	21990	J Brothers #4	AT667J	Sitewide	C&D	Mt Materials	28.72
220	8/8/24	21991	H&M #2	AY591L	Sitewide	C&D	Mt Materials	28.45
221	8/8/24	21992	Magnolia #7	AY270H	Sitewide	C&D	Mt Materials	20.7
222	8/8/24	21993	J Brothers #8	AX651Y	Sitewide	C&D	Mt Materials	27.73
223	8/8/24	21994	J Brothers #22	AX463J	Sitewide	C&D	Mt Materials	27.05
224	8/8/24	21995	E&T Perez #3	AY638H	Sitewide	C&D	Mt Materials	21.8
225	8/8/24	21996	J Brothers #6	AZ927M	Sitewide	C&D	Mt Materials	23.35
226	8/8/24	21997	J Brothers #7	AT295K	Sitewide	C&D	Mt Materials	21.89
227	8/8/24	21998	H&M #1	AU764V	Sitewide	C&D	Mt Materials	29.55
228	8/9/24	21999	E&T Perez #2	AY357E	Sitewide	C&D	Mt Materials	31.06
229	8/9/24	21989	J Brothers #3	AX859E	Sitewide	C&D	Mt Materials	30.05
230	8/9/24	21988	J Brothers #8	AX651Y	Sitewide	C&D	Mt Materials	26.53
231	8/9/24	21987	E&T Perez #1	AW181A	Sitewide	C&D	Mt Materials	32.09
232	8/9/24	21986	E&T Perez #4	AY586P	Sitewide	C&D	Mt Materials	34.68
233	8/9/24	21985	J Brothers #7	AT295K	Sitewide	C&D	Mt Materials	27.78
234	8/9/24	21984	H&M #2	AY591L	Sitewide	C&D	Mt Materials	33.73
235	8/9/24	21983	E&T Perez #3	AY638H	Sitewide	C&D	Mt Materials	27.32
236	8/9/24	21982	E&T Perez #6	AZ860C	Sitewide	C&D	Mt Materials	28.06
237	8/9/24	21981	E&T Perez #5	AY716T	Sitewide	C&D	Mt Materials	25.43
238	8/9/24	21980	Magnolia #21	AW251D	Sitewide	C&D	Mt Materials	25.92
239	8/9/24	21979	Magnolia #9	AW172H	Sitewide	C&D	Mt Materials	25.58
240	8/9/24	21978	Magnolia #17	AW562A	Sitewide	C&D	Mt Materials	15.96
241	8/9/24	21977	Magnolia #5	AZ661E	Sitewide	C&D	Mt Materials	26.66
242	8/9/24	21976	H&M #1	AU764V	Sitewide	C&D	Mt Materials	27.47
243	8/14/24	21975	Magnolia #09	AW172H	Sitewide	C&D	Mt Materials	24.73
244	8/14/24	21966	H & M #02	AY591L	Sitewide	C&D	Mt Materials	25.2
245	8/14/24	21974	J Brothers #25	AX603M	Sitewide	C&D	Mt Materials	25.23
246	8/14/24	21973	H & M #01	AU764V	Sitewide	C&D	Mt Materials	24.25
247	8/14/24	21967	J Brothers #20	AW129K	Sitewide	C&D	Mt Materials	22.08
248	8/14/24	21968	Almonte #02	AZ650C	Sitewide	C&D	Mt Materials	16.84
249	8/14/24	21969	Magnolia #07	AY270H	Sitewide	C&D	Mt Materials	23.13
250	8/14/24	21970	Sindel #01	AY648Y	Sitewide	C&D	Mt Materials	28.86
251	8/14/24	21971	E & T Perez #06	AZ860C	Sitewide	C&D	Mt Materials	31.83
252	8/14/24	21972	J Brothers #22	AX463J	Sitewide	C&D	Mt Materials	21.56
253	8/15/24	21956	Ariamys (J Brothers) #23	AX464J	Sitewide	C&D	Mt Materials	20.59
254	8/15/24	21957	Ariamys (J Brothers) #20	AU129K	Sitewide	C&D	Mt Materials	19.4
255	8/15/24	21958	H & M #01	AV764V	Sitewide	C&D	Mt Materials	22.15
256	8/15/24	21959	Ariamys (J Brothers) #01	AX768V	Sitewide	C&D	Mt Materials	25.14
257	8/15/24	21960	Ariamys (J Brothers) #21	AX811X	Sitewide	C&D	Mt Materials	21.18
258	8/15/24	21961	Ariamys (J Brothers) #27	AX167T	Sitewide	C&D	Mt Materials	21.65
259	8/15/24	21962	Ariamys #01	AW682R	Sitewide	C&D	Mt Materials	19.75
260	8/15/24	21963	E & T Perez #05	AY716T	Sitewide	C&D	Mt Materials	22.25
261	8/15/24	21964	E & T Perez #03	AY638H	Sitewide	C&D	Mt Materials	19.15

Table 2
Soil/Fill, Debris, Bedrock Disposal Volumes and Facilities
Copyrite Plastic Sheets (BCP #C203151)
261-315 Grand Concourse, Bronx, NY

Load #	Date	Manifest #	Transporter / #	License Plate	Grid / Interval	Material Type	Disposal Facility	Tonnage
262	8/15/24	21965	Ariamys (J Brothers) #03	AX859E	Sitewide	C&D	Mt Materials	20.46
263	8/16/24	21943	Magnolia #17	AW562A	Sitewide	C&D	Mt Materials	12.22
264	8/16/24	21944	H & M #1	AU764U	Sitewide	C&D	Mt Materials	19.38
265	8/16/24	21945	E & T Perez #1	AW181A	Sitewide	C&D	Mt Materials	24.16
266	8/16/24	21946	E & T Perez #04	AY586P	Sitewide	C&D	Mt Materials	25.59
267	8/16/24	21947	E & T Perez #06	AZ860C	Sitewide	C&D	Mt Materials	25.59
268	8/19/24	21950	Magnolia #21	AW251D	Sitewide	C&D	Mt Materials	14.17
269	8/19/24	21948	E & T Perez #6	AZ860C	Sitewide	C&D	Mt Materials	22.45
270	8/19/24	21949	H & M #1	AU764V	Sitewide	C&D	Mt Materials	16.64
271	8/19/24	21955	E & T Perez #05	AY 716T	Sitewide	C&D	Mt Materials	21.97
272	8/19/24	21954	E & T Perez #03	AY638H	Sitewide	C&D	Mt Materials	21.9
273	8/20/24	21938	E & T Perez #6	AZ650C	Sitewide	C&D	Mt Materials	16.94
274	8/20/24	21939	Sindel #4	C407733	Sitewide	C&D	Mt Materials	15.03
275	8/20/24	21940	E & T Perez #1	AW181A	Sitewide	C&D	Mt Materials	23.77
276	8/20/24	21941	H & M #1	AU764V	Sitewide	C&D	Mt Materials	16.94
277	8/20/24	21942	Magnolia #7	AY270H	Sitewide	C&D	Mt Materials	20.14
278	8/21/24	21928	E & T Perez #03	AY638H	Sitewide	C&D	Mt Materials	24.08
279	8/21/24	21929	E & T Perez #05	AY 716T	Sitewide	C&D	Mt Materials	26.46
280	8/21/24	21930	Gregory #5	AY928L	Sitewide	C&D	Mt Materials	20.09
281	8/21/24	21931	Almonte #02	AZ6500	Sitewide	C&D	Mt Materials	19.12
282	8/21/24	21932	J Brothers #17	AX1567	Sitewide	C&D	Mt Materials	18.86
283	8/21/24	21933	Gregory #1	AX873M	Sitewide	C&D	Mt Materials	20.17
284	8/21/24	21934	Pipos #6	AX2482	Sitewide	C&D	Mt Materials	26.17
285	8/21/24	21935	H & M #1	AU764V	Sitewide	C&D	Mt Materials	25.47
286	8/22/24	21927	Sindel #03	AY694M	Sitewide	C&D	Mt Materials	28.01
287	8/22/24	21921	Sindel #01	AY648Y	Sitewide	C&D	Mt Materials	33.27
288	8/22/24	21922	Sindel #04	C407733	Sitewide	C&D	Mt Materials	29.23
289	8/22/24	21923	Sindel #02	AZ798E	Sitewide	C&D	Mt Materials	23.9
290	8/22/24	21924	E & T Perez #02	AY357E	Sitewide	C&D	Mt Materials	26.41
291	8/22/24	21925	E & T Perez #5	AY716T	Sitewide	C&D	Mt Materials	28.37
292	8/22/24	21926	E & T Perez #3	AY638H	Sitewide	C&D	Mt Materials	29.16
293	8/22/24	21915	Almonte #04	AY510M	Sitewide	C&D	Mt Materials	33.11
294	8/22/24	21916	Almonte #06	AZ901D	Sitewide	C&D	Mt Materials	27.57
295	8/22/24	21909	J Brothers #06	AX927M	Sitewide	C&D	Mt Materials	26
296	8/22/24	21910	Sindel #03	AY694M	Sitewide	C&D	Mt Materials	21.82
297	8/22/24	21911	Sindel #04	C407733	Sitewide	C&D	Mt Materials	24.44
298	8/22/24	21912	Sindel #01	AY846Y	Sitewide	C&D	Mt Materials	26.18
299	8/22/24	21913	Sindel #02	AZ798E	Sitewide	C&D	Mt Materials	21.82
300	8/23/24	21846	J Brothers #04	AT667J	Sitewide	C&D	Mt Materials	27.89
301	8/23/24	21847	J Brothers #25	AX603M	Sitewide	C&D	Mt Materials	26.6
302	8/23/24	21848	J Brothers #07	AT295K	Sitewide	C&D	Mt Materials	27
303	8/23/24	21849	J Brothers #20	AW129K	Sitewide	C&D	Mt Materials	22.18
304	8/23/24	21850	J Brothers #09	AT390M	Sitewide	C&D	Mt Materials	20.14
305	8/23/24	21851	J Brothers #18	AX810X	Sitewide	C&D	Mt Materials	23.43
306	8/23/24	21852	Magnolia #21	AW251D	Sitewide	C&D	Mt Materials	20.48
307	8/23/24	21853	E & T Perez #02	AY357E	Sitewide	C&D	Mt Materials	25.38
308	8/23/24	21854	J Brothers #09	AT390M	Sitewide	C&D	Mt Materials	20.14
309	8/23/24	21855	J Brothers #10	AX810X	Sitewide	C&D	Mt Materials	24.12
310	9/6/24	E0842399	Almonte #02	AZ650C	Grid E 0-5	Non Haz PC soil	Bayshore	34.31
311	9/6/24	E0842400	Sindel #02	AZ978E	Grid E 0-5	Non Haz PC soil	Bayshore	34.02
312	9/6/24	E0842401	Almonte #08	C420037	Grid E 0-5	Non Haz PC soil	Bayshore	34.5
313	9/6/24	E0842402	E & T Perez #03	AY638H	Grid E 0-5	Non Haz PC soil	Bayshore	37.36
314	9/6/24	E0842403	Magnolia #21	AW251D	Grid E 0-5	Non Haz PC soil	Bayshore	35.45
315	9/6/24	E0842404	E & T Perez #06	AZ860C	Grid E 0-5	Non Haz PC soil	Bayshore	39.93
316	9/6/24	E0842405	E & T Perez #02	AY357E	Grid E 0-5	Non Haz PC soil	Bayshore	35.59
317	9/9/24	E0842406	J & T Castillo #01	AY615L	Grid E 0-5	Non Haz PC soil	Bayshore	36.08
318	9/9/24	E0842407	J & T Castillo #05	AZ276B	Grid E 0-5	Non Haz PC soil	Bayshore	34.58
319	9/9/24	E0842408	J & I Castillo #09	AY284X	Grid E 0-5	Non Haz PC soil	Bayshore	31.39
320	9/9/24	E0842409	J & I Castillo #04	AY870L	Grid E 0-5	Non Haz PC soil	Bayshore	31.59
321	9/9/24	E0842410	J & I Castillo #03	AY523N	Grid E 0-5	Non Haz PC soil	Bayshore	29.64
322	9/9/24	E0842411	Magnolia #9	AW172H	Grid E 0-5	Non Haz PC soil	Bayshore	31.45
323	9/9/24	E0842412	Pipos #29	AY920M	Grid E 0-5	Non Haz PC soil	Bayshore	36.57
324	9/9/24	E0842413	Pipos #28	AY671U	Grid E 0-5	Non Haz PC soil	Bayshore	32.76
325	9/9/24	E0842414	Pipos #08	AY847K	Grid E 0-5	Non Haz PC soil	Bayshore	30.96
326	9/9/24	E0842415	Magnolia #07	AY270H	Grid E 0-5	Non Haz PC soil	Bayshore	37.98
327	9/9/24	E0842416	Pipos #01	AX680W	Grid E 0-5	Non Haz PC soil	Bayshore	35.87
328	9/9/24	E0842417	Magnolia #21	AW251D	Grid E 0-5	Non Haz PC soil	Bayshore	35.89
329	9/9/24	E0842418	Magnolia #05	AZ661E	Grid E 0-5	Non Haz PC soil	Bayshore	33.46
330	9/9/24	E0842419	E & T Perez #01	AW181A	Grid E 0-5	Non Haz PC soil	Bayshore	36.96
331	9/9/24	E0842420	Magnolia #17	AW526A	Grid E 0-5	Non Haz PC soil	Bayshore	33.22
332	9/9/24	E0842421	E & T Perez #06	AZ860C	Grid E 0-5	Non Haz PC soil	Bayshore	34.93
333	9/9/24	E0842422	Pipos #29	AY902M	Grid E 0-5	Non Haz PC soil	Bayshore	34.67
334	9/9/24	E0842423	Tetra #08	AY584R	Grid E 0-5	Non Haz PC soil	Bayshore	31.63
335	9/9/24	E0842424	Tetra #06	AY664G	Grid E 0-5	Non Haz PC soil	Bayshore	35.73
336	9/9/24	E0842425	Pipos #08	AY847K	Grid E 0-5	Non Haz PC soil	Bayshore	33.91
337	9/9/24	E0842426	Pipos #28	AY671U	Grid E 0-5	Non Haz PC soil	Bayshore	34.9
338	9/9/24	E0842429	Pipos #04	AX917D	Grid E 0-5	Non Haz PC soil	Bayshore	34.51
339	9/9/24	E0842430	Pipos #13	AY903R	Grid E 0-5	Non Haz PC soil	Bayshore	34.55
340	9/9/24	E0842427	Magnolia #21	AW251D	Grid E 0-5	Non Haz PC soil	Bayshore	35.63
341	9/9/24	E0842428	Pipos #07	AY998C	Grid E 0-5	Non Haz PC soil	Bayshore	36.65
342	9/9/24	E0842431	Pipos #01	AX680W	Grid E 0-5	Non Haz PC soil	Bayshore	34.69
343	9/12/24	243961	H & A #7	AU857D	Sitewide	Bedrock	P Park LLC	24.89
344	9/12/24	243967	H & A #1	AP552Y	Sitewide	Bedrock	P Park LLC	22.33
345	9/12/24	243981	H & M #1	AU764V	Sitewide	Bedrock	P Park LLC	27.35
346	9/12/24	244008	H & A #1	AP552Y	Sitewide	Bedrock	P Park LLC	21.95
347	9/12/24	244037	Sindel #5	C478506	Sitewide	Bedrock	P Park LLC	33.04
348	9/12/24	244031	H & A #7	AU857D	Sitewide	Bedrock	P Park LLC	27.66
349	9/12/24	244059	Sindel #01	AY648Y	Sitewide	Bedrock	P Park LLC	31.46
350	9/13/24	E0842432	H & A #7	AU857D	Grid E 0-5	Non Haz PC soil	Bayshore	32.92
351	9/13/24	E0842433	H & A #1	AP552Y	Grid E 0-5	Non Haz PC soil	Bayshore	33.86

Table 2
Soil/Fill, Debris, Bedrock Disposal Volumes and Facilities
Copyrite Plastic Sheets (BCP #C203151)
261-315 Grand Concourse, Bronx, NY

Load #	Date	Manifest #	Transporter / #	License Plate	Grid / Interval	Material Type	Disposal Facility	Tonnage
352	9/13/24	E0842434	H & A #4	AU548H	Grid E 0-5	Non Haz PC soil	Bayshore	28.65
353	9/13/24	E0842485	Sindel #1	AY648Y	Grid E 0-5	Non Haz PC soil	Bayshore	37.3
354	9/13/24	E0842486	Sindel #2	AZ798E	Grid E 0-5	Non Haz PC soil	Bayshore	34.36
355	9/13/24	E0842487	Andrades #6	AW858W	Grid E 0-5	Non Haz PC soil	Bayshore	36.44
356	9/13/24	E0842489	H & M #3	C489982	Grid E 0-5	Non Haz PC soil	Bayshore	28.88
357	9/13/24	E0842490	Andrades #8	AT477J	Grid E 0-5	Non Haz PC soil	Bayshore	34.97
358	9/13/24	E0842491	H & A #7	AU857D	Grid E 0-5	Non Haz PC soil	Bayshore	35.86
359	9/13/24	E0842492	H & A #1	AP552Y	Grid E 0-5	Non Haz PC soil	Bayshore	36.4
360	9/13/24	E0842493	H & A #4	AU548H	Grid E 0-5	Non Haz PC soil	Bayshore	34.13
361	9/13/24	E0842494	Andrades #1	AX406N	Grid E 0-5	Non Haz PC soil	Bayshore	35.37
362	9/13/24	E0842495	H & A #8	AU322P	Grid E 0-5	Non Haz PC soil	Bayshore	34.51
363	9/13/24	E0842496	Andrades #8	AT477J	Grid E 0-5	Non Haz PC soil	Bayshore	33.74
364	9/13/24	E0842497	Andrades #1	AX406N	Grid E 0-5	Non Haz PC soil	Bayshore	35.27
365	9/13/24	E0842498	Andrades #6	AW858W	Grid E 0-5	Non Haz PC soil	Bayshore	33.5
366	9/13/24	E0842499	H & A #8	AU322P	Grid E 0-5	Non Haz PC soil	Bayshore	33.51
367	9/13/24	E0842500	H & M #1	AU764V	Grid E 0-5	Non Haz PC soil	Bayshore	35.25
368	9/13/24	E0842483	H & A #8	AU322P	Grid E 0-5	Non Haz PC soil	Bayshore	36.99
369	9/13/24	E0842484	H & A #7	AU857D	Grid E 0-5	Non Haz PC soil	Bayshore	35.85
370	9/13/24	244111	E & T Perez #3	AY638H	Sitewide	Bedrock	P Park LLC	30.82
371	9/13/24	0204617	E & T Perez #5	AY716T	Sitewide	Bedrock	P Park LLC	39.86
372	9/13/24	244144	Sindel #4	AZ383G	Sitewide	Bedrock	P Park LLC	38.48
373	9/13/24	0204616	H & M #3	C488982	Sitewide	Bedrock	P Park LLC	31.18
374	9/13/24	244126	H & M #1	AU764V	Sitewide	Bedrock	P Park LLC	31.53
375	9/13/24	244103	Almonte #2	AZ650C	Sitewide	Bedrock	P Park LLC	31.1
376	9/13/24	244127	E & T Perez #4	AY586P	Sitewide	Bedrock	P Park LLC	24.95
377	9/13/24	244131	Almonte #4	AY510M	Sitewide	Bedrock	P Park LLC	28.61
378	9/13/24	244132	Magnolia	AW251D	Sitewide	Bedrock	P Park LLC	25.01
379	9/13/24	21918	Sindel #5	C478506	Sitewide	C&D	Mt Materials	34.29
380	9/16/24	E0842436	H & A #8	AU322P	Grid E 0-5	Non Haz PC soil	Bayshore	32.51
381	9/16/24	E0842437	Andrades #11	AY189N	Grid E 0-5	Non Haz PC soil	Bayshore	33.91
382	9/16/24	E0842438	Andrades #8	AT477J	Grid E 0-5	Non Haz PC soil	Bayshore	34.95
383	9/16/24	E0842439	Andrades #10	AW854W	Grid E 0-5	Non Haz PC soil	Bayshore	33.43
384	9/16/24	E0842440	J & I Castillo #5	AZ276B	Grid E 0-5	Non Haz PC soil	Bayshore	34.85
385	9/16/24	E0842441	J & I Castillo #2	AY924J	Grid E 0-5	Non Haz PC soil	Bayshore	29.81
386	9/16/24	E0842442	Andrades #11	AY189N	Grid E 0-5	Non Haz PC soil	Bayshore	33.25
387	9/16/24	E0842443	Andrades #10	AW854W	Grid E 0-5	Non Haz PC soil	Bayshore	34.12
388	9/16/24	E0842444	J & I Castillo #1	AY615L	Grid E 0-5	Non Haz PC soil	Bayshore	38.12
389	9/16/24	E0842446	J & I Castillo #4	AY870L	Grid E 0-5	Non Haz PC soil	Bayshore	37.62
390	9/16/24	E0842479	Andrades #8	AT477J	Grid E 0-5	Non Haz PC soil	Bayshore	33.94
391	9/16/24	E0842480	H & A #8	AU322P	Grid E 0-5	Non Haz PC soil	Bayshore	33.85
392	9/16/24	E0842481	H & A #1	AP552Y	Grid E 0-5	Non Haz PC soil	Bayshore	34.59
393	9/16/24	E0842482	J & I Castillo #10	AZ381G	Grid E 0-5	Non Haz PC soil	Bayshore	30.98
394	9/16/24	244229	H & A #1	AP552Y	Sitewide	Bedrock	P Park LLC	24.53
395	9/16/24	244230	H & A #7	AU857D	Sitewide	Bedrock	P Park LLC	28.06
397	9/16/24	244283	H & A #8	AU322P	Sitewide	Bedrock	P Park LLC	21.81
398	9/16/24	244278	H & A #7	AU857D	Sitewide	Bedrock	P Park LLC	26.62
399	9/16/24	244274	H & A #1	AP552Y	Sitewide	Bedrock	P Park LLC	23.39
400	9/16/24	244287	Andrades #8	AT477J	Sitewide	Bedrock	P Park LLC	23.71
401	9/17/24	244347	Gregory #5	AY928L	Sitewide	Bedrock	P Park LLC	25.33
402	9/17/24	244349	DSM #1027	AY503H	Sitewide	Bedrock	P Park LLC	26.6
403	9/17/24	244352	DSM #4	AY694F	Sitewide	Bedrock	P Park LLC	28.43
404	9/17/24	244384	Gregory #4	AZ510C	Sitewide	Bedrock	P Park LLC	26.56
405	9/17/24	244398	Gregory #1	AX873M	Sitewide	Bedrock	P Park LLC	27.67
406	9/18/24	21877	DSM #1027	AY503H	Sitewide	C&D	Mt Materials	30.25
407	9/18/24	21867	DSM #6	AY347F	Sitewide	C&D	Mt Materials	33.2
408	9/18/24	21868	DSM #15	AT532X	Sitewide	C&D	Mt Materials	33.42
409	9/18/24	21872	DSM #4	AY694F	Sitewide	C&D	Mt Materials	32.5
410	9/18/24	21873	Sindel #5	C478506	Sitewide	C&D	Mt Materials	32.98
411	9/18/24	21874	E & T Perez #6	AZ860C	Sitewide	C&D	Mt Materials	34.76
412	9/18/24	21875	DSM #9	AT898W	Sitewide	C&D	Mt Materials	32.56
413	9/18/24	21876	H & M #1	AU764V	Sitewide	C&D	Mt Materials	32.54
414	9/18/24	21889	Almonte #4	AU764V	Sitewide	C&D	Mt Materials	33.42
415	9/18/24	21888	Almonte #8	C420037	Sitewide	C&D	Mt Materials	33.22
416	9/18/24	21887	Sindel #3	HY694M	Sitewide	C&D	Mt Materials	29.49
417	9/18/24	21885	Ariamy's (J Brothers) #20	AW129K	Sitewide	C&D	Mt Materials	26.38
418	9/18/24	21886	JJ Urena	AX599P	Sitewide	C&D	Mt Materials	26.81
419	9/19/24	E0842478	Magnolia #17	AW562A	Grid E 0-5	Non Haz PC soil	Bayshore	37.93
420	9/19/24	E0842477	Magnolia #21	AW251D	Grid E 0-5	Non Haz PC soil	Bayshore	37.33
421	9/19/24	E0842476	Sindel #5	C478506	Grid E 0-5	Non Haz PC soil	Bayshore	36.03
422	9/19/24	21884	J Brothers #9	AT390M	Sitewide	C&D	Mt Materials	22.46
423	9/19/24	21883	J Brothers #18	AX810X	Sitewide	C&D	Mt Materials	30.44
424	9/19/24	244629	J Brothers #17	AX156Z	Sitewide	Bedrock	P Park LLC	30.84
425	9/19/24	244661	H & M #2	AY591L	Sitewide	Bedrock	P Park LLC	25.23
426	9/19/24	244636	Ariamy's J Brothers #3	AX859E	Sitewide	Bedrock	P Park LLC	18.69
427	9/19/24	244633	Sindel #4	AZ383G	Sitewide	Bedrock	P Park LLC	25.74
428	9/19/24	244640	J Brothers #5	AX667F	Sitewide	Bedrock	P Park LLC	22.79
429	9/19/24	244630	H & M #2	AU764V	Sitewide	Bedrock	P Park LLC	22.52
430	9/19/24	244677	Sindel #3	AY694M	Sitewide	Bedrock	P Park LLC	21.11
431	9/20/24	E0842474	H & A #4	AU548H	Grid E 0-5	Non Haz PC soil	Bayshore	35.51
432	9/20/24	E0842475	H & A #8	AU322P	Grid E 0-5	Non Haz PC soil	Bayshore	36.58
433	9/20/24	E0842447	H & A #1	AP552Y	Grid E 0-5	Non Haz PC soil	Bayshore	38.13
434	9/20/24	E0842449	Andrades #1	AX406N	Grid E 0-5	Non Haz PC soil	Bayshore	37.54
435	9/20/24	244749	Andrades #8	AT477J	Sitewide	Bedrock	P Park LLC	22.56
436	9/20/24	244747	H & A #7	AU857D	Sitewide	Bedrock	P Park LLC	30.41
437	9/20/24	244755	Andrades #10	AW854W	Sitewide	Bedrock	P Park LLC	20.84
438	9/20/24	244758	Andrades #6	AW858W	Sitewide	Bedrock	P Park LLC	22.04
439	9/23/24	21878	Mesa Trucking #7	AZ805G	Sitewide	C&D	Mt Materials	37.65
440	9/23/24	21879	Mesa Trucking #1	AS420W	Sitewide	C&D	Mt Materials	29.3
441	9/23/24	21880	Joel Trucking #5	AU260R	Sitewide	C&D	Mt Materials	28.2
442	9/23/24	21881	Joel Trucking #11	AZ374A	Sitewide	C&D	Mt Materials	27.96
443	9/23/24	21892	Joel Trucking #7	AZ370A	Sitewide	C&D	Mt Materials	33.14
444	9/23/24	244879	Mesa Trucking #1	AS420W	Sitewide	Bedrock	P Park LLC	25.69
445	9/23/24	244869	Mesa Trucking #7	AZ805G	Sitewide	Bedrock	P Park LLC	30.36

Table 2
Soil/Fill, Debris, Bedrock Disposal Volumes and Facilities
Copyrite Plastic Sheets (BCP #C203151)
261-315 Grand Concourse, Bronx, NY

Load #	Date	Manifest #	Transporter / #	License Plate	Grid / Interval	Material Type	Disposal Facility	Tonnage
446	9/23/24	244883	Joel Trucking #12	AZ375A	Sitewide	Bedrock	P Park LLC	28.84
447	9/23/24	244906	Joel Trucking #7	AZ370A	Sitewide	Bedrock	P Park LLC	28.82
448	9/24/24	21893	Sindel #2	AZ798E	Sitewide	C&D	Mt Materials	31.71
449	9/24/24	21894	J Brothers #14	AY851E	Sitewide	C&D	Mt Materials	29.33
450	9/24/24	21895	J Brothers #2	AX212E	Sitewide	C&D	Mt Materials	28.02
451	9/24/24	21896	Ariamys J Brothers #1	AX768V	Sitewide	C&D	Mt Materials	23.95
452	9/24/24	21897	Joel Trucking #12	AX811X	Sitewide	C&D	Mt Materials	26.05
453	9/24/24	21898	Joel Trucking #13	AZ650C	Sitewide	C&D	Mt Materials	22.93
454	9/24/24	21890	H & M #1	AU764V	Sitewide	C&D	Mt Materials	25.05
456	11/18/24	14545	E&T Perez #6	AZ860C	Grid E	C&D	Riverfront	28.65
457	11/18/24	14546	E&T Perez #5	AY716T	Grid E	C&D	Riverfront	30.1
458	11/18/24	14547	J Brothers #2	AZ796J	Grid E	C&D	Riverfront	26.42
459	11/18/24	14548	J Brothers #14	AY851E	Grid E	C&D	Riverfront	30.61
460	11/20/24	14549	Sindel #02	AZ798E	Grid E	C&D	Riverfront	29.57
461	11/20/24	14550	Sindel #01	AY648Y	Grid E	C&D	Riverfront	29.13
462	11/20/24	14551	Sindel #04	AZ383G	Grid E	C&D	Riverfront	29.64
463	11/20/24	14552	Magnolia #17	AW526A	Grid E	C&D	Riverfront	23.07
464	11/20/24	14553	Magnolia #7	AY270H	Grid E	C&D	Riverfront	24.97
465	11/21/24	14554	Magnolia #21	AW251D	Grid E	C&D	Riverfront	29.24
466	11/21/24	14555	J Brothers #3	AY859E	Grid E	C&D	Riverfront	26.43
467	11/21/24	14556	Magnolia #5	AZ661E	Grid E	C&D	Riverfront	28.96
468	11/21/24	14557	Magnolia #17	AW562A	Grid E	C&D	Riverfront	21.58
469	11/21/24	14558	Magnolia #7	AY270H	Grid E	C&D	Riverfront	21.33
470	11/25/24	250899	H & A #8	AU322P	Grid E	Rock	P Park LLC	27.02
471	11/25/24	21861	H & A #8	AY322P	Grid E	Rock	Riverfront	30.92
472	11/25/24	21860	H & A #8	AY322P	Grid E	Rock	Riverfront	31.87
473	11/29/24	E0842458	H & A #3	AZ2354	Grid E	Non Haz PC soil	Bayshore	36.19
474	11/29/24	E0842459	H & A #1	AP552Y	Grid E	Non Haz PC soil	Bayshore	35.74
475	11/29/24	E0842460	H & A #7	AU857D	Grid E	Non Haz PC soil	Bayshore	35.34
476	11/29/24	E0842461	H & A #4	AU548H	Grid E	Non Haz PC soil	Bayshore	34.86
477	11/29/24	E0842462	H & A #8	AU322P	Grid E	Non Haz PC soil	Bayshore	37.54
478	12/3/24	21862	Sindel #03	AY694M	Grid E	C & D	Mt Material	34.66
479	12/3/24	21863	Sindel #02	AZ798E	Grid E	C & D	Mt Material	33.33
480	12/3/24	21864	Sindel #5	AZ607H	Grid E	C & D	Mt Material	29.55
481	12/3/24	14561	Sindel #4	AZ383G	Grid E	C & D	Riverfront	28.42
482	12/3/24	14559	E & T Perez #02	AY357E	Grid E	C & D	Riverfront	30.97
483	12/3/24	14589	Gregory #2	AW894F	Grid E	C & D	Riverfront	25.81
484	12/3/24	14588	Magnolia #7	AY270H	Grid E	C & D	Riverfront	26.95
485	12/3/24	14587	Magnolia #21	AW251D	Grid E	C & D	Riverfront	23.65
486	12/3/24	14586	Gregory #1	AX873M	Grid E	C & D	Riverfront	29.88
487	12/3/24	14585	J Brothers #7	AT295K	Grid E	C & D	Riverfront	27.4
488	12/27/24	14591	Almonte #2	AZ650C	Grid E	C & D	Riverfront	29.72
489	12/27/24	14592	Almonte #8	AZ721H	Grid E	C & D	Riverfront	27.74
490	12/27/24	14596	Almonte #6	AZ901D	Grid E	C & D	Riverfront	25.66
491	12/27/24	14595	E & T #1	AW181A	Grid E	C & D	Riverfront	29.66
492	12/27/24	14590	E & T #2	AY357E	Grid E	C & D	Riverfront	27.12
493	1/6/25	14593	H & A #2	AU764V	Grid E	C & D	Riverfront	30.22
494	1/6/25	14594	H & A #1	AY591L	Grid E	C & D	Riverfront	27.78
495	1/6/25	14560	E & T #6	AZ860C	Grid E	C & D	Riverfront	30.16
496	1/6/25	14561	E & T #3	AY638H	Grid E	C & D	Riverfront	27.16
497	1/6/25	14562	E & T #4	AY586P	Grid E	C & D	Riverfront	35.42

TOTAL 13698.19

Table 2
Soil/Fill, Debris, Bedrock Disposal Volumes and Facilities
Copyrite Plastic Sheets (BCP #C203151)
261-315 Grand Concourse, Bronx, NY

Soil/Fill Disposal Summary			
Disposal Facility	# Loads	Type of Material	Total Removal Quantity (Tons)
Clean Earth of North Jersey, Kearny, NJ	3	Hazardous Lead Contaminated	80.4
Bayshore Soil Management, Keasbey, NJ	124	Non-Hazardous Contaminated	4186.39
Posillico Materials, Farmingdale, NY	31	Non-Hazardous	986.51
		SUBTOTAL	5253.3

C&D Debris Disposal Summary			
Disposal Facility	# Loads	Type of Material	Total Removal Quantity (Tons)
Mount Materials, Fairless Hills, PA	261	C&D	6362.25
Riverfront Recycling, Camden, NJ	33	C&D	926.21
		SUBTOTAL	7288.46

Bedrock Disposal Summary			
Disposal Facility	# Loads	Type of Material	Total Removal Quantity (Tons)
PPark, Prospect Park, NJ	43	Bedrock	1156.43
		TOTAL	13698.19

Table 3
UST Endpoint Sampling Results - VOCs
Copyrite Plastic Sheets(C203151)
261-315 GrandConcourse, Bronx, NY

Sample ID Laboratory ID Sampling Date Sample Matrix		Compound	CAS Number	NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives		NYSDEC Part 375 Restricted Use Soil Cleanup Objectives - Restricted Residential		EP_UST_9 (4 ft) 24G2073-01 7/31/24 Soil		EP_UST_9N (2 ft) 24G2073-02 7/31/24 Soil		EP_UST_9S (2 ft) 24G2073-03 7/31/24 Soil		EP_UST_9E (2 ft) 24G2073-04 7/31/24 Soil		EP_UST_9W (2 ft) 24G2073-05 7/31/24 Soil	
				Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q		
VOA, 8260 MASTER				mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg			
Dilution Factor								1		1		1		1			
1,1,1,2-Tetrachloroethane	630-20-6	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,1,1-Trichloroethane	71-55-6	0.68	100	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,1,2,2-Tetrachloroethane	79-34-5	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	76-13-1	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,1,2-Trichloroethane	79-00-5	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,1-Dichloroethane	75-34-3	0.27	26	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,1-Dichloroethylene	75-35-4	0.33	100	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,2,3-Trichlorobenzene	87-61-6	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,2,3-Trichloropropane	96-18-4	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,2,4-Trichlorobenzene	120-82-1	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,2,4-Trimethylbenzene	95-63-6	3.6	52	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,2-Dibromo-3-chloropropane	96-12-8	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,2-Dibromoethane	106-93-4	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,2-Dichlorobenzene	95-50-1	1.1	100	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,2-Dichloroethane	107-06-2	0.02	3.1	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,2-Dichloropropane	78-87-5	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,3,5-Trimethylbenzene	108-67-8	8.4	52	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,3-Dichlorobenzene	541-73-1	2.4	49	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
14-Dichlorobenzene	106-46-7	1.8	13	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
1,4-Dioxane	123-91-1	0.1	13	0.054	U	0.052	U	0.054	U	0.055	U	0.055	U	0.063	U		
2-Butanone	78-93-3	0.12	100	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
2-Hexanone	591-78-6	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
4-Methyl-2-pentanone	108-10-1	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Acetone	67-64-1	0.05	100	0.0054	U	0.0062	J	0.0054	U	0.0097	J	0.0073	J				
Acrolein	107-02-8	~	~	0.0054	U	0.0052	U	0.0054	U	0.0055	U	0.0055	U	0.0063	U		
Acrylonitrile	107-13-1	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Benzene	71-43-2	0.06	4.8	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Bromochloromethane	74-97-5	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Bromodichloromethane	75-27-4	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Bromoform	75-25-2	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Bromomethane	74-83-9	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Carbon disulfide	75-15-0	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Carbon tetrachloride	56-23-5	0.76	2.4	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Chlorobenzene	108-90-7	1.1	100	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Chloroethane	75-00-3	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Chloroform	67-66-3	0.37	49	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Chloromethane	74-87-3	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
cis-1,2-Dichloroethylene	156-59-2	0.25	100	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
cis-1,3-Dichloropropylene	10061-01-5	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Cyclohexane	110-82-7	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Dibromochloromethane	124-48-1	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Dibromomethane	74-95-3	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Dichlorodifluoromethane	75-71-8	~	~	0.0027	U	0.0026	U	0.0027	U	0.0027	U	0.0027	U	0.0032	U		
Ethyl Benzene	100-41-4	1	41	0.002													

Table 3
USTEndpoint Sampling Results - SVOCs
Copyrite Plastic Sheets (C203151)
261-315 GrandConcourse, Bronx, NY

Sample ID Laboratory ID Sampling Date Sample Matrix		NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives	NYSDEC Part 375 Restricted Use Soil Cleanup Objectives - Restricted Residential	EP_UST_9 (4 ft) 24G2073-01 7/31/24 Soil		EP_UST_9N (2 ft) 24G2073-02 7/31/24 Soil		EP_UST_9S (2 ft) 24G2073-03 7/31/24 Soil		EP_UST_9E (2 ft) 24G2073-04 7/31/24 Soil		EP_UST_9W (2 ft) 24G2073-05 7/31/24 Soil	
				Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
SVOA, 8270 MASTER		mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor				2		2		2		2		2	
1,1-Biphenyl	92-52-4	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
1,2,4,5-Tetrachlorobenzene	95-94-3	~	~	0.094	U	0.091	U	0.0954	U	0.0949	U	0.0994	U
1,2,4-Trichlorobenzene	120-82-1	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
1,2-Dichlorobenzene	95-50-1	1.1	100	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
1,2-Diphenylhydrazine (as Azobenzene)	122-66-7	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
1,3-Dichlorobenzene	541-73-1	2.4	49	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
1,4-Dichlorobenzene	106-46-7	1.8	13	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
2,3,4,6-Tetrachlorophenol	58-90-2	~	~	0.094	U	0.091	U	0.0954	U	0.0949	U	0.0994	U
2,4,5-Trichlorophenol	95-95-4	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
2,4,6-Trichlorophenol	88-06-2	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
2,4-Dichlorophenol	120-83-2	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
2,4-Dimethylphenol	105-67-9	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
2,4-Dinitrophenol	51-28-5	~	~	0.094	U	0.091	U	0.0954	U	0.0949	U	0.0994	U
2,4-Dinitrotoluene	121-14-2	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
2,6-Dinitrotoluene	606-20-2	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
2-Chloronaphthalene	91-58-7	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
2-Chlorophenol	95-57-8	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
2-Methylnaphthalene	91-57-6	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
2-Methylphenol	95-48-7	0.33	100	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
2-Nitroaniline	88-74-4	~	~	0.094	U	0.091	U	0.0954	U	0.0949	U	0.0994	U
2-Nitrophenol	88-75-5	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
3- & 4-Methylphenols	65794-96-9	0.33	100	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
3,3-Dichlorobenzidine	91-94-1	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
3-Nitroaniline	99-09-2	~	~	0.094	U	0.091	U	0.0954	U	0.0949	U	0.0994	U
4,6-Dinitro-2-methylphenol	534-52-1	~	~	0.094	U	0.091	U	0.0954	U	0.0949	U	0.0994	U
4-Bromophenyl phenyl ether	101-55-3	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
4-Chloro-3-methylphenol	59-50-7	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
4-Chloroaniline	106-47-8	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
4-Chlorophenyl phenyl ether	7005-72-3	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
4-Nitroaniline	100-01-6	~	~	0.094	U	0.091	U	0.0954	U	0.0949	U	0.0994	U
4-Nitrophenol	100-02-7	~	~	0.094	U	0.091	U	0.0954	U	0.0949	U	0.0994	U
Acenaphthene	83-32-9	20	100	0.047	U	0.137	D	0.0478	U	0.0476	U	0.0498	U
Acenaphthylene	208-96-8	100	100	0.059	JD	0.131	D	0.0478	U	0.0476	U	0.0755	JD
Acetophenone	98-86-2	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
Aniline	62-53-3	~	~	0.188	U	0.181	U	0.191	U	0.190	U	0.199	U
Anthracene	120-12-7	100	100	0.068	JD	0.536	D	0.0478	U	0.0476	U	0.0938	JD
Atrazine	1912-24-9	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
Benzaldehyde	100-52-7	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
Benzidine	92-87-5	~	~	0.188	U	0.181	U	0.191	U	0.190	U	0.199	U
Benz(a)anthracene	56-55-3	1	1	0.268	D	1.09	D	0.0701	JD	0.121	D	0.356	D
Benz(a)pyrene	50-32-8	1	1	0.268	D	0.947	D	0.0617	JD	0.137	D	0.263	D
Benz(b)fluoranthene	205-99-2	1	1	0.247	D	0.809	D	0.0541	JD	0.129	D	0.244	D
Benz(g,h,i)perylene	191-24-2	100	100	0.249	D	0.566	D	0.0762	JD	0.118	D	0.163	D
Benz(k)fluoranthene	207-08-9	0.8	3.9	0.249	D	0.686	D	0.0656	JD	0.123	D	0.266	D
Benzoic acid	65-85-0	~	~	0.099	D	0.045	U	0.0930	JD	0.0476	U	0.0540	JD
Benzyl alcohol	100-51-6	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
Benzyl butyl phthalate	85-68-7	~	~	0.776	D	0.092	D	0.0800	JD	0.249	D	0.0954	JD
Bis(2-chloroethoxy)methane	111-91-1	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
Bis(2-chloroethyl)ether	111-44-4	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
Bis(2-chloroisopropyl)ether	108-60-1	~	~	0.047	U	0.045	U	0.0478	U	0.0476	U	0.0498	U
Bis(2-ethylhexyl)phthalate	117-8												

Table 4
Backfill Quantities and Sources
Copyrite Plastic Sheets Site (C203151)
261 - 315 Grand Concourse, Bronx, New York

Load #	Date	Ticket #	Material	Facility	Volume	Unit
1	4/18/24	275348	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
2	4/18/24	275354	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
3	4/18/24	275358	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
4	4/18/24	275368	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
5	4/18/24	275371	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
6	4/18/24	275373	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
7	4/18/24	275383	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
8	4/18/24	275394	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
9	4/18/24	275398	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
10	4/18/24	275402	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
11	4/18/24	275408	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
12	4/26/24	276020	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
13	4/26/24	276023	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
14	4/26/24	276028	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
15	4/26/24	276032	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
16	4/29/24	276066	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
17	4/29/24	276067	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
18	4/29/24	276075	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
19	4/29/24	276074	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
20	4/29/24	276078	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
21	4/29/24	276079	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
22	4/29/24	276081	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
23	4/29/24	276082	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
24	4/29/24	276083	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
25	4/29/24	276084	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
26	4/29/24	276087	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
27	4/29/24	276089	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
28	4/29/24	276090	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
29	4/29/24	276092	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
30	4/29/24	276093	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
31	4/29/24	276095	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
32	4/29/24	276098	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
33	4/29/24	276099	Recycled Item #4 Base Contractor Blend	New York Recycling, LLC	25.20	Tons
34	7/23/24	418134573	ASTM #57	Tilcon	24.59	Tons
35	7/23/24	418134606	ASTM #57	Tilcon	24.93	Tons
36	8/23/24	418149002	ASTM #57	Tilcon	12.21	Tons
37	9/12/24	418159024	ASTM #57	Tilcon	24.16	Tons
38	9/12/24	418159026	ASTM #57	Tilcon	24.39	Tons
39	9/12/24	418159148	ASTM #57	Tilcon	24.79	Tons
40	9/12/24	418159150	ASTM #57	Tilcon	25.54	Tons
41	9/17/24	418161205	ASTM #57	Tilcon	24.19	Tons
42	9/17/24	418161206	ASTM #57	Tilcon	23.90	Tons
43	9/17/24	418161436	ASTM #57	Tilcon	24.45	Tons
44	9/17/24	418161495	ASTM #57	Tilcon	24.87	Tons
45	9/18/24	418162752	ASTM #57	Tilcon	24.43	Tons
46	9/18/24	418162755	ASTM #57	Tilcon	25.88	Tons
47	9/18/24	418162855	ASTM #57	Tilcon	24.90	Tons
48	9/18/24	418162866	ASTM #57	Tilcon	24.72	Tons
49	9/18/24	418162891	ASTM #57	Tilcon	25.51	Tons
50	9/18/24	418162908	ASTM #57	Tilcon	24.45	Tons
51	9/18/24	418162939	ASTM #57	Tilcon	25.09	Tons
52	9/25/24	418147732	ASTM #57	Tilcon	24.78	Tons
53	9/25/24	418147858	ASTM #57	Tilcon	24.93	Tons
54	9/25/24	418147965	ASTM #57	Tilcon	24.90	Tons
55	9/25/24	418147984	ASTM #57	Tilcon	22.94	Tons
56	9/26/24	418149090	ASTM #57	Tilcon	23.71	Tons
57	9/26/24	418149095	ASTM #57	Tilcon	25.11	Tons
58	9/26/24	418149096	ASTM #57	Tilcon	25.46	Tons
59	9/26/24	418149218	ASTM #57	Tilcon	25.29	Tons
60	9/26/24	418149421	ASTM #57	Tilcon	24.77	Tons
61	9/26/24	0038	ASTM #57	Tilcon	30.00	Tons
62	9/26/24	1358	ASTM #57	Tilcon	30.00	Tons
63	9/26/24	1359	ASTM #57	Tilcon	30.00	Tons
64	9/26/24	1360	ASTM #57	Tilcon	30.00	Tons
65	12/31/24	418189573	ASTM #57	Tilcon	24.90	Tons
66	12/31/24	418189575	ASTM #57	Tilcon	24.07	Tons
67	1/8/25	418191521	ASTM #57	Tilcon	24.86	Tons
68	1/9/25	418191784	ASTM #57	Tilcon	24.86	Tons
69	1/10/25	418192159	ASTM #57	Tilcon	26.00	Tons
70	1/10/25	418192166	ASTM #57	Tilcon	25.20	Tons
71	1/13/25	418192429	ASTM #57	Tilcon	24.87	Tons
72	1/13/25	418192794	ASTM #57	Tilcon	25.33	Tons
73	1/13/25	418192824	ASTM #57	Tilcon	25.53	Tons
74	1/14/25	418193213	ASTM #57	Tilcon	24.65	Tons
75	1/15/25	418193318	ASTM #57	Tilcon	24.02	Tons
76	1/15/25	418193340	ASTM #57	Tilcon	24.68	Tons
77	1/15/25	418193356	ASTM #57	Tilcon	24.20	Tons
78	1/15/25	418193359	ASTM #57	Tilcon	24.97	Tons
79	1/15/25	418193362	ASTM #57	Tilcon	25.55	Tons
80	9/4/25	1	Topsoil	Westhampton Properties	22.00	Tons

Material	Facility	Loads	Tonnage
Item #4	New York Recycling, LLC	33	831.6
ASTM #57	Tilcon	46	1,148.58
Topsoil	Westhampton Properties	1	22
Totals		81	2,002.18

Table 5
Post-Source Removal Groundwater Results (Lot 1)
Copyrite Plastic Sheets Site (BCP #C203151)
261-315 Grand Concourse, Bronx, NY

Sample ID		NYSDEC TOGS Standards and Guidance Values - GA	MW-1X		MW-1A		MW-2		MW-3		MW-3A		MW-4		FB-1		FB-2		MW-Dup-1	
			24H0668-01 9/3/24 Groundwater		24H1046-01 9/4/24 Groundwater		24H1970-01 8/28/24 Groundwater		24H1970-04 8/28/24 Groundwater		24H1970-02 8/28/24 Groundwater		24H1046-02 9/4/24 Groundwater		24H1970-03 8/28/24 Groundwater		24H1970-05 8/28/24 Groundwater		24H1046-03 9/4/24 Groundwater	
Compound	CAS Number	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Metals, Target Analyte, ICP																				
Dilution Factor																				
Aluminum	7429-90-5	~	574	J	1,120	367	J	328	J	1,060	J	659	562	J	55.6	U	55.6	U	364	
Barium	7440-39-3	1000	173	J	43.9	77.1		27.8	U	32.3		27.8	U	27.8	U	27.8	U	33.9		
Calcium	7440-70-2	~	19,600	J	11,900	J+	61,800	J	11,000	J	17,000	J	18,300	J+	3,660	J	278	U	183	
Chromium	7440-47-3	50	12.1		5.56	U	18.3		5.56	U	11.8		5.56	U	5.67		5.56	U	12,700	
Cobalt	7440-48-4	~	4.4	U	4.44	U	4.44	U	4.44	U	4.44	U	4.44	U	4.44	U	4.44	U	4.44	
Copper	7440-50-8	200	22.2	U	22.2	U	22.2	U	22.2	U	22.2	U	22.2	U	22.2	U	22.2	U	22.2	
Iron	7439-89-6	~	17,300		1,500	278	U	10,700	J	16,100	J	1,840	5,370	J	278	U	278	U	9,180	
Lead	7439-92-1	25	5.6	U	5.84		5.56	U	5.56	U	13.9		5.56	U	5.56	U	5.56	U	5.56	
Magnesium	7439-95-4	35000	3,980	J	1,240	269	J	1,280	J	2,970	J	687	967	J	55.6	U	55.6	U	1,380	
Manganese	7439-96-5	300	663	J	22.9		5.56	U	55	J	156	J	14.1	87.8	J	5.56	U	5.56	U	50.9
Nickel	7440-02-0	100	11.1	U	11.1	U	11.1	U	11.1	U	11.1	U	11.1	U	11.1	U	11.1	U	11.1	
Potassium	7440-09-7	~	74,200	J+	7,400	J	25,400	J+	11,900	J+	12,900	J+	8,360	2,890	J+	55.6	U	55.6	U	15,300
Silver	7440-22-4	50	5.6	U	5.56	U	5.56	U	5.56	U	5.56	U	5.56	U	5.56	U	5.56	U	5.56	
Sodium	7440-23-5	20000	118,000	J+	10,700	J+	51,600	J+	9,150	J+	63,700	J+	11,100	J+	9,180	J+	635	556	U	9,430
Vanadium	7440-62-2	~	11.1	U	11.1	U	17		11.1	U	11.1	U	11.1	U	11.1	U	11.1	U	11.1	
Zinc	7440-66-6	2000	60.4	J	40.7		33	J	703	J	861	J	72.6	657	J	27.8	U	27.8	U	623
Metals, Target Analyte, ICP Dissolved																				
Dilution Factor																				
Aluminum	7429-90-5	~	55.6	U	325	349	95.9		55.6	U	272		55.6	U	55.6	U	55.6	U	92.4	
Barium	7440-39-3	1000	154	J	27.8	U	76.3	48.2		27.8	U	27.8	U	27.8	U	27.8	U	42.2		
Calcium	7440-70-2	~	19,400	J	13,700	J+	63,700	J+	20,800	J+	16,100	J+	16,400	J+	4,350	J+	228	314	18,200	
Chromium	7440-47-3	50	5.6	U	5.56	U	17.1		5.56	U	5.56	U	5.56	U	5.56	U	5.56	U	5.56	
Cobalt	7440-48-4	~	4.4	U	4.44	U	4.44	U	4.44	U	4.44	U	4.44	U	4.44	U	4.44	U	4.44	
Copper	7440-50-8	200	22.2	U	22.2	U	22.2	U	22.2	U	22.2	U	22.2	U	22.2	U	22.2	U	22.2	
Iron	7439-89-6	~	505		278	U	278	U	278	U	278	U	278	U	278	U	278	U	278	
Lead	7439-92-1	25	5.6	U	5.56	U	5.56	U	5.56	U	5.56	U	5.56	U	5.56	U	5.56	U	5.56	
Magnesium	7439-95-4	35000	3,690	J	1,140		236	J	1,720	J	2,780	J	823	J	1,120	J	55.6	U	1,530	
Manganese	7439-96-5	300	583	J	5.56	U	5.56	U	5.56	U	136		5.56	U	63.8		5.56	U	5.56	
Nickel	7440-02-0	100	11.1	U	11.1	U	11.1	U	11.1	U	11.1	U	11.1	U	11.1	U	11.1	U	11.1	
Potassium	7440-09-7	~	68,500	J	8,460	J	25,400	J	31,800	J	12,600	J	8,100		2,550	J	438	B	62	
Silver	7440-22-4	50	5.6	U	5.56	U	5.56	U	5.56	U	5.56	U	5.56	U	5.56	U	5.56	U	5.56	
Sodium	7440-23-5	20000	108,000	J+	11,600	J-	52,300	J+	9,680	J+	60,200	J+	11,200	J-	8,630	J+	648	562	8,180	
Vanadium	7440-62-2	~	11.1	U	11.1	U	17		11.1	U	11.1	U	11.1	U	11.1	U	11.1	U	11.1	
Zinc	7440-66-6	2000	97.6	J	29.8		27.8	U	259		27.8	U	223		27.8	U	29.9		27.8	
Metals, Target Analyte, ICPMS																				
Dilution Factor																				
Antimony	7440-36-0	3	1.1	U	1.11	U	5.73		1.11	U	2.35		1.11	U	1.11	U	1.11	U	1.11	
Arsenic	7440-38-2	25	1.1	U	2.46		3.4		1.11	U	1.82		2.16		1.11	U	1.11	U	1.11	
Beryllium	7440-41-7	3	0.3	U	0.333		0.333	U	0.333	U	0.333		0.333	U	0.333	U	0.333	U	0.333	
Cadmium	7440-43-9	5	0.6	U	0.556		0.556	U	0.556	U	0.556		0.556	U	0.556	U	0.556	U	0.556	
Selenium	7782-49-2	10	1.1	J-	1.11	U	6.24	J+	1.84	J+	3.34	J+	1.11	U	1.11	U	1.11	U	3.32	
Thallium	7440-28-0	~	1.1	U	1.11	U	1.11	U	1.11	U	1.11	U	1.11	U	1.11	U	1.11	U	1.11	
Mercury by 7470/7471																				
Dilution Factor																				
Mercury	7439-97-6	0.7	0.2	U	0.2		0.2	U	0.2	U	0.2		0.2	U	0.2	U	0.2	U	0.2	
Mercury, Dissolved																				
Dilution Factor																				
Mercury	7439-97-6	0.7	0.2	U	0.2		0.2	U	0.2	U	0.2		0.2	U	0.2	U	0.2	U	0.2	

NOTES:
Any Regulatory Exceedances are color coded by Regulation

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

P=this flag is used for pesticide and PCB (Aroclor) target compounds when there is a % difference for detected concentrations that exceed method dictated limits between the two GC columns used for analysis

NT=this indicates the analyte was not a target for this sample

~this indicates that no regulatory limit has been established for this analyte

Table 6
Post-Source Removal Groundwater Results (Lot 27)
Copyrite Plastic Sheets Site (BCP #C203151)
261-315 Grand Concourse, Bronx, NY

Sample ID Laboratory ID Sampling Date Sample Matrix	NYSDEC TOGS Standards and Guidance Values - GA	MW-6 24L1726-01 12/26/24 Groundwater		MW-4A 24L1726-02 12/26/24 Groundwater		MW-8 24L1633-01 12/23/24 Groundwater	
		Result	Q	Result	Q	Result	Q
VOA, 8260 LOW MASTER	ug/L	ug/L		ug/L		ug/L	
Dilution Factor		5		5		25	
1,1,1,2-Tetrachloroethane	5	1.08	U	1.08	U	5.4	U
1,1,1-Trichloroethane	5	1.33	U	1.33	U	6.7	U
1,1,2,2-Tetrachloroethane	5	1.28	U	1.28	U	6.4	R
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	5	1.43	U	1.43	U	7.2	U
1,1,2-Trichloroethane	1	1.24	U	1.24	U	6.2	U
1,1-Dichloroethane	5	1.36	U	1.36	U	6.8	U
1,1-Dichloroethylene	5	1.64	U	1.64	U	8.2	U
1,2,3-Trichlorobenzene	5	1.11	R	1.11	U	5.6	R
1,2,3-Trichloropropane	0.04	1.36	R	1.36	U	6.8	R
1,2,4-Trichlorobenzene	5	0.69	R	0.69	U	3.5	R
1,2,4-Trimethylbenzene	5	1.55	R	1.55	U	7.8	R
1,2-Dibromo-3-chloropropane	0.04	2.16	R	2.16	U	10.8	R
1,2-Dibromoethane	0.0006	1.08	U	1.08	U	5.4	U
1,2-Dichlorobenzene	3	1.35	R	1.35	U	6.8	R
1,2-Dichloroethane	0.6	1.88	U	1.88	U	9.4	U
1,2-Dichloropropane	1	1.64	U	1.64	U	8.2	U
1,3,5-Trimethylbenzene	5	1.74	R	1.74	U	8.7	R
1,3-Dichlorobenzene	3	1.42	R	1.42	U	7.1	R
1,3-Dichloropropane	5	1.3	U	1.3	U	6.5	U
1,4-Dichlorobenzene	3	1.56	U	1.56	U	7.8	R
1,4-Dioxane	0.35	176	R	176	R	882	R
2-Butanone	50	2.1	U	2.1	U	10.5	U
2-Hexanone	50	1.6	U	1.6	U	8	U
4-Methyl-2-pentanone	~	1.82	U	1.82	U	9.1	U
Acetone	50	11.3	U	8.2	U	33.5	U
Acrolein	~	2.24	U	2.24	U	11.2	U
Acrylonitrile	~	2.11	U	2.11	U	10.6	U
Benzene	1	1.4	U	1.4	U	7	U
Bromochloromethane	5	1.77	U	1.77	U	8.9	U
Bromodichloromethane	50	1.22	U	1.22	U	6.1	U
Bromoform	50	0.815	U	0.815	U	4.1	U
Bromomethane	5	0.595	U	0.595	U	3.0	U
Carbon disulfide	~	1.81	U	1.81	U	9.1	U
Carbon tetrachloride	5	1.02	U	1.02	U	5.1	U
Chlorobenzene	5	1.42	U	1.42	U	7.1	U
Chloroethane	5	2.24	U	2.24	U	11.2	U
Chloroform	7	1.22	U	1.22	U	6.1	U
Chloromethane	5	3.7	J+	1.86	U	9.3	U
cis-1,2-Dichloroethylene	5	1.47	U	1.47	U	7.4	U
cis-1,3-Dichloropropylene	0.4	1.31	U	1.31	U	6.6	U
Cyclohexane	~	2.46	U	2.46	U	12.3	U
Dibromochloromethane	50	0.73	U	0.73	U	3.7	U
Dibromomethane	~	1.02	U	1.02	U	5.1	U
Dichlorodifluoromethane	5	2.26	U	2.26	U	11.3	U
Ethyl Benzene	5	1.45	U	1.45	U	7.3	U
Hexachlorobutadiene	0.5	1.2	U	1.2	U	6	R
Isopropylbenzene	5	2.02	R	2.02	U	10.1	U
Methyl acetate	~	2.21	U	2.21	U	11	U
Methyl tert-butyl ether (MTBE)	10	1.22	U	1.22	U	6.1	U
Methylcyclohexane	~	2.38	U	2.38	U	11.9	U
Methylene chloride	5	1.98	U	1.98	U	10	U
Naphthalene	10	1.06	R	1.06	U	5.3	R
n-Butylbenzene	5	2	R	2	U	10	R
n-Propylbenzene	5	1.92	R	1.92	U	9.6	R
o-Xylene	5	1.3	U	1.3	U	6.5	U
p- & m- Xylenes	~	2.89	U	2.89	U	14.4	U
p-Diethylbenzene	~	1.7	R	1.7	U	8.5	R
p-Ethyltoluene	~	1	R	1	U	5	R
p-isopropyltoluene	5	1.88	R	1.88	U	9.4	R
sec-Butylbenzene	5	2.22	R	2.22	U	11.1	R
Styrene	5	1.28	U	1.28	U	6.4	U
tert-Butyl alcohol (TBA)	~	19.8	J+	3.04	U	15.2	U
tert-Butylbenzene	5	1.84	R	1.84	U	9.2	R
Tetrachloroethylene	5	1.2	U	1.2	U	6	U
Toluene	5	1.73	U	1.73	U	8.7	U
trans-1,2-Dichloroethylene	5	1.4	U	1.4	U	7	U
trans-1,3-Dichloropropylene	0.4	1.14	U	1.14	U	5.7	U
Trichloroethylene	5	1.24	U	1.24	U	6.2	U
Trichlorofluoromethane	5	1.68	U	1.68	U	8.4	U
Vinyl Chloride	2	2.34	U	2.34	U	11.7	U
Xylenes, Total	5	4.2	U	4.2	U	21	U

NOTES:

Any Regulatory Exceedences are color coded by Regulation

1,4-Dioxane was not analyzed with the appropriate method

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

~this indicates that no regulatory limit has been established for this analyte

Table 6
 Post-Source Removal Groundwater Results (Lot 27)
 Copyrite Plastic Sheets Site (BCP #C203151)
 261-315 Grand Concourse, Bronx, NY

Sample ID	Laboratory ID	Sampling Date	Sample Matrix	NYSDEC TOGS Standards and Guidance Values - GA	MW-6 24L1726-01 12/26/24 Groundwater		MW-4A 24L1726-02 12/26/24 Groundwater		MW-8 24L1633-01 12/23/24 Groundwater	
					Result	Q	Result	Q	Result	Q
SVOA, 8270 LOW MASTER				ug/L	ug/L		ug/L		ug/L	
Dilution Factor					1		1		1	
1,1-Biphenyl					~		5	R	2.5	U
1,2,4,5-Tetrachlorobenzene					~		5	R	2.5	U
2,3,4,6-Tetrachlorophenol					~		5	R	2.5	R
2,4,5-Trichlorophenol					1		5	R	2.5	R
2,4,6-Trichlorophenol					1		5	R	2.5	R
2,4-Dichlorophenol					5		5	R	2.5	R
2,4-Dimethylphenol					50		5	R	2.5	R
2,4-Dinitrophenol					10		5	R	2.5	R
2,4-Dinitrotoluene					5		5	R	2.5	U
2,6-Dinitrotoluene					5		5	R	2.5	U
2-Chloronaphthalene					10		5	R	2.5	U
2-Chlorophenol					1		5	R	2.5	R
2-Methylnaphthalene					~		5	R	2.5	U
2-Methylphenol					1		5	R	2.5	R
2-Nitroaniline					5		5	R	2.5	U
2-Nitrophenol					1		5	R	2.5	R
3- & 4-Methylphenols					1		5	R	2.5	R
3,3-Dichlorobenzidine					5		5	R	2.5	U
3-Nitroaniline					5		5	R	2.5	U
4,6-Dinitro-2-methylphenol					~		5	R	2.5	R
4-Bromophenyl phenyl ether					~		5	R	2.5	U
4-Chloro-3-methylphenol					1		5	R	2.5	R
4-Chloroaniline					5		5	R	2.5	U
4-Chlorophenyl phenyl ether					~		5	R	2.5	U
4-Nitroaniline					5		5	R	2.5	U
4-Nitrophenol					1		10	R	5.0	R
Acetophenone					~		5	R	2.5	U
Benzaldehyde					~		5	R	2.5	U
Benzyl butyl phthalate					50		5	R	2.5	U
Bis(2-chloroethoxy)methane					5		5	R	2.5	U
Bis(2-chloroethyl)ether					1		2	R	1	U
Bis(2-chloroisopropyl)ether					5		5	R	2.5	U
Caprolactam					~		5	R	2.5	R
Carbazole					~		5	R	2.5	U
Dibenzofuran					~		5	R	2.5	U
Diethyl phthalate					50		5	R	2.5	U
Dimethyl phthalate					50		5	R	2.5	U
Di-n-butyl phthalate					50		5	R	2.5	U
Di-n-octyl phthalate					50		5	R	2.5	U
Hexachlorocyclopentadiene					5		10	R	10	R
Isophorone					50		5	R	2.5	U
N-nitroso-di-n-propylamine					~		5	R	2.5	U
N-Nitrosodiphenylamine					50		5	R	2.5	U
Phenol					1		1.5	R	0.8	R
Propargite					~		5	R	2.5	U
Pyridine					50		5	R	2.5	R
SVOA, 8270 SIM MASTER				ug/L	ug/L		ug/L		ug/L	
Dilution Factor										
Acenaphthene				20	0.1	U	0.1	U	0.1	U
Acenaphthylene					~	0.1	U	0.1	U	0.1
Anthracene					50	0.1	U	0.1	U	0.1
Atrazine					~	1	U	1	U	0.5
Benzo(a)anthracene					0.002	0.1	U	0.1	U	0.1
Benzo(a)pyrene					0.002	0.1	U	0.1	U	0.1
Benzo(b)fluoranthene					0.002	0.1	U	0.1	U	0.1
Benzo(g,h,i)perylene					~	0.1	U	0.1	U	0.1
Benzo(k)fluoranthene					0.002	0.1	U	0.1	U	0.1
Bis(2-ethylhexyl)phthalate					5	1	U	5.5	J+	0.5
Chrysene					0.002	0.1	U	0.1	U	0.1
Dibenz(a,h)anthracene					~	0.1	U	0.1	U	0.1
Fluoranthene					50	0.1	U	0.1	U	0.1
Fluorene					50	0.1	U	0.1	U	0.1
Hexachlorobenzene					0.04	0.04	U	0.04	U	0.04
Hexachlorobutadiene					0.5	1	R	1	R	0.5
Hexachloroethane					5	1	U	1	U	0.5
Indeno[1,2,3-cd]pyrene					0.002	0.1	U	0.1	U	0.1
Naphthalene					10	0.1	U	0.1	U	0.1
Nitrobenzene					0.4	0.5	U	0.5	U	0.3
N-Nitrosodimethylamine					~	1	R	1	R	0.5
Pentachlorophenol					1	0.5	U	0.5	U	0.3
Phenanthrene					50	0.1	U	0.1	U	0.1
Pyrene					50	0.1	U	0.1	U	0.1

NOTES:

Any Regulatory Exceedences are color coded by Regulation

Q is the Qualifier Column with definitions as follows:

U=analyte not detected at or above the level indicated

~ = this indicates that no regulatory limit has been established for this analyte

FIGURES

vektor consultants

t: +1.347.871.0750
 f: +1.347.402.7735
 e: info@vektorconsultants.com
 www.vektorconsultants.com

Legend:

BCP Site Location

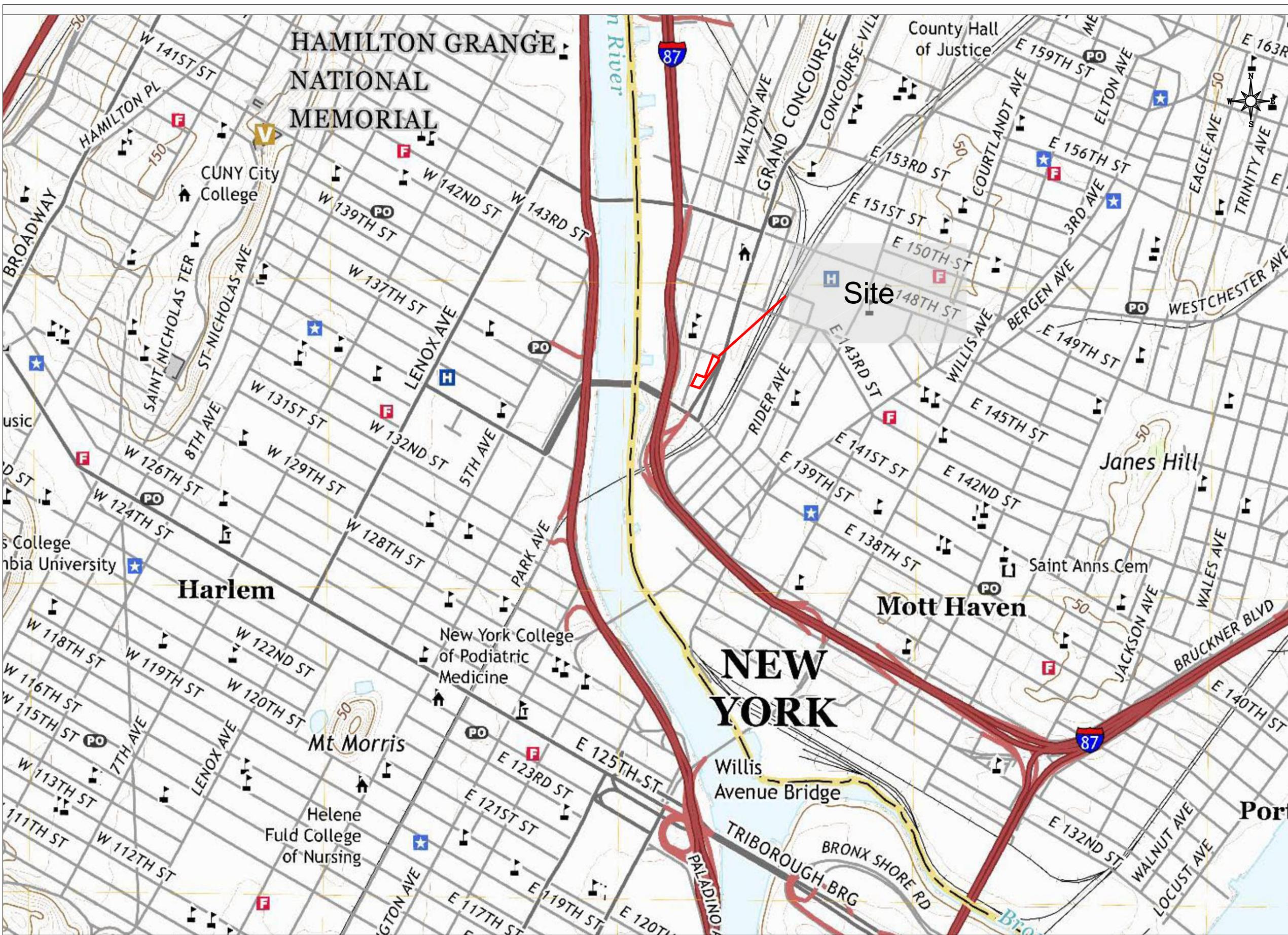
Notes:

1. All feature locations are approximate
2. Base Maps is USGS 7.5 Minute-Central Park, NY 2019 Map

Scale:

0 Miles 0.25 0.5

Figure No. 1


Figure Name: SITE LOCATION

Report: FINAL ENGINEERING REPORT

Date: 3/12/2025

Drawn By: KB

Site Address: COPYRITE PLASTIC SHEETS
261 - 315 GRAND CONCOURSE
BRONX, NY (BCP #C203151)

vEKtor consultants

t: +1.347.871.0750

f: +1.347.402.7735

e: info@vektorconsultants.com

www.vektorconsultants.com

Legend:

 Approximate BCP Site Boundary

Notes:

1. Base Map provided by Google

Scale:

0 18' 35' 70'

Figure No. 2

Figure Name: SITE PLAN

Report: FINAL ENGINEERING REPORT

Date: 3/1/2025

Drawn By: KB

Site Address: COPYRITE PLASTIC SHEETS
261 - 315 GRAND CONCOURSE
BRONX, NY (BCP #C203151)

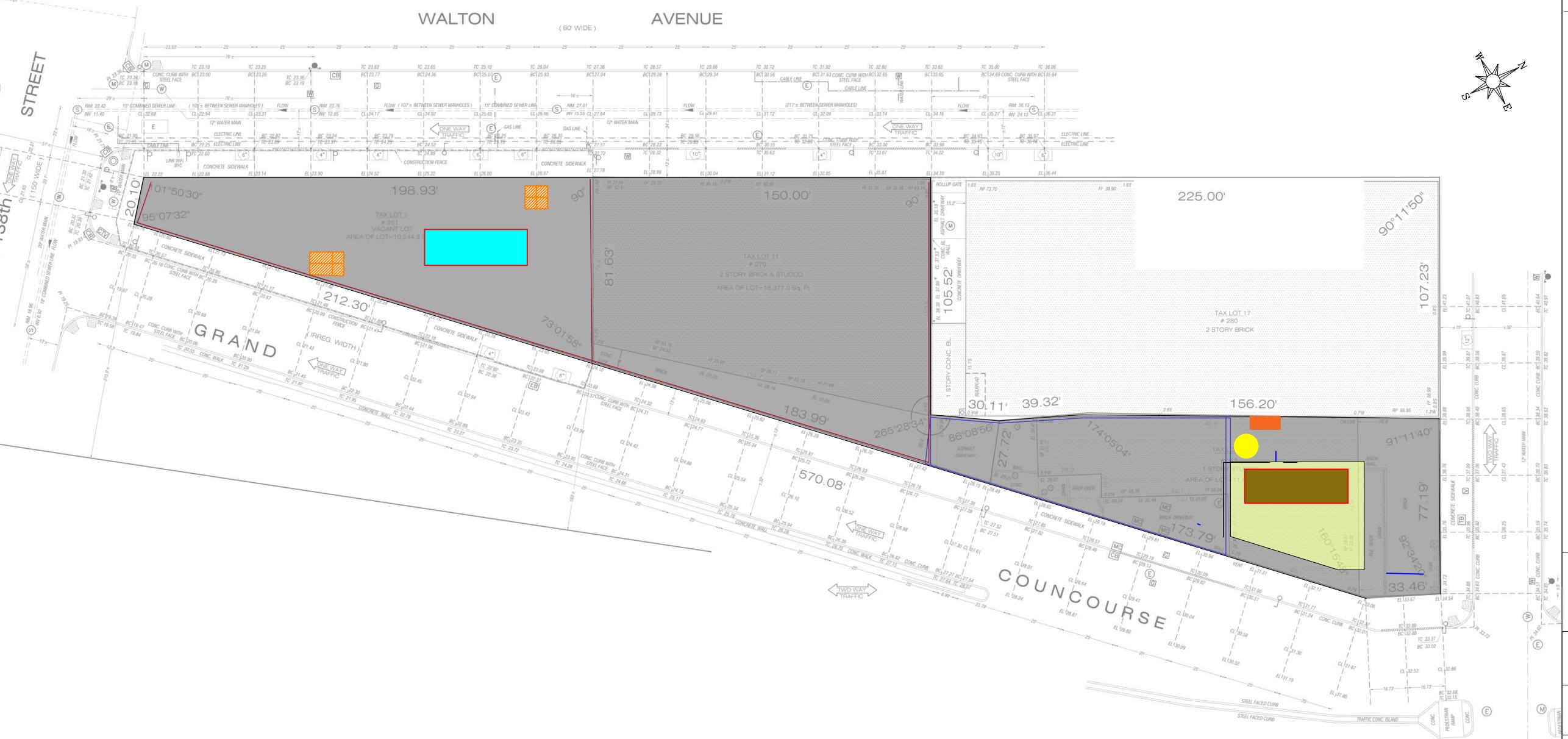
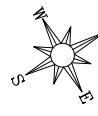
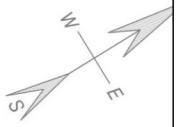


Figure No. 3

Figure Name: EXTENT OF EXCAVATION

Report: FINAL ENGINEERING REPORT

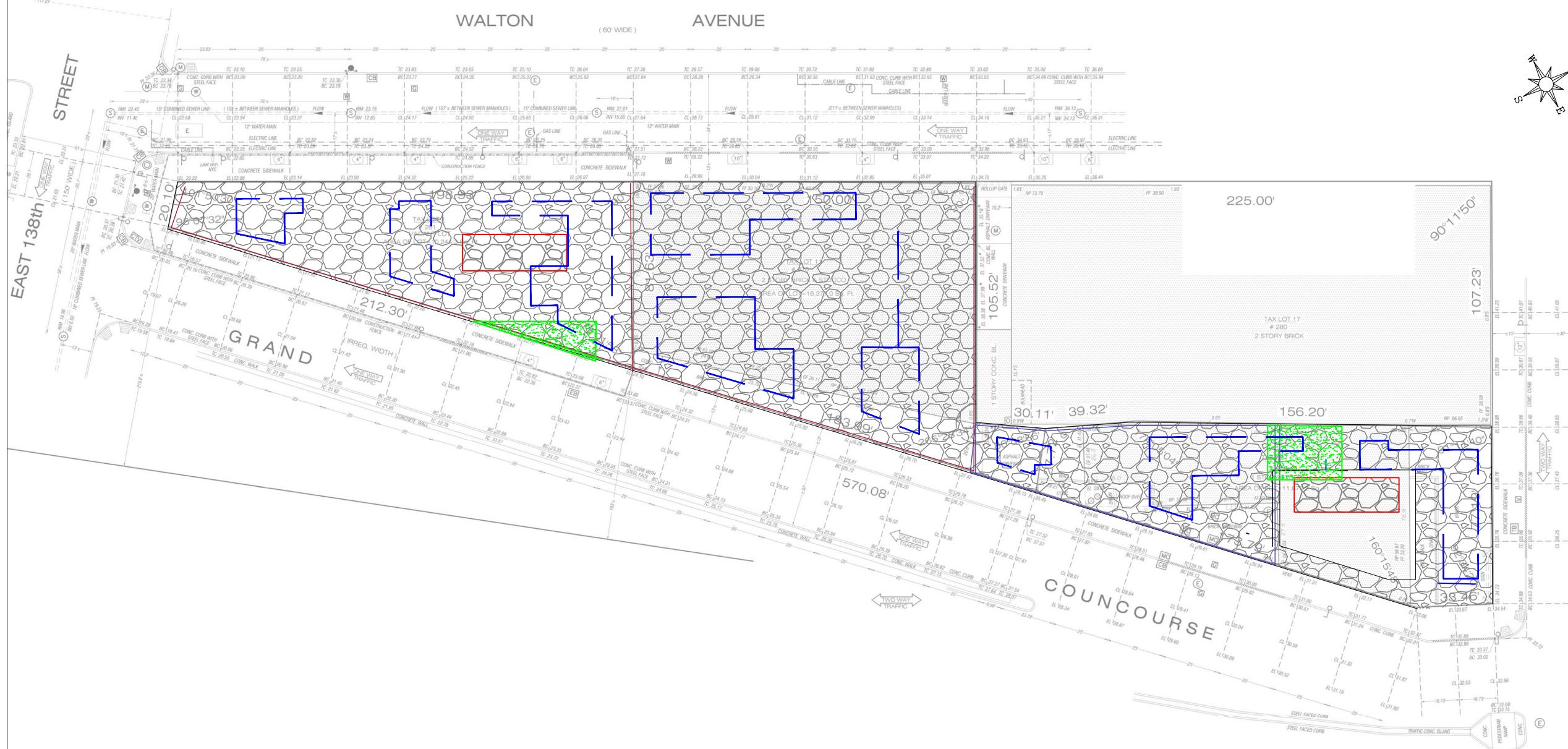
Date: 9/29/2025



Drawn By: KB

Site Address: COPYRITE PLASTIC SHEETS
261 - 315 GRAND CONCOURSE
BRONX, NY (BCP #C203151)

Notes:

- All feature locations are approximate
- SB-5_Hotspot: 10' x 10' x 5' Deep
- SB-2_Hotspot: 10' x 15' x Bedrock Depth
- 23SB-6_Hotspot: 10' x 10' x 4' Deep
- Partial Cellar Prior to Remedial Excavation was approximately 15 feet below grade
- Base Map provided by Statewide Land Surveying


Legend:

Site Boundary & Partial Cellar

Approximate SSDS Loops

12" Topsoil

3/4" ASTM #57 Gravel

Scale:

Figure No. 5

Figure Name: IMPORTED BACKFILL PLACEMENT LOCATIONS

Report: FINAL ENGINEERING REPORT

Date: 9/29/2025

Drawn By: KB

Site Address: COPYRITE PLASTIC SHEETS
261 - 315 GRAND CONCOURSE
BRONX, NY (BCP #C203151)

Notes:

1. All feature locations are approximate
2. Min. 6" thick 3/4" ASTM #57 gravel under building slab
3. 12" thick 3/4" ASTM #57 gravel under 12" topsoil in landscaped areas

t: +1.347.871.0750

f: +1.347.402.7735

e: info@vektorconsultants.com

www.vektorconsultants.com

Legend:

 Site Boundary & Partial Cellar

 Approximate SSDS Loops

 Landscape Areas MIN. 24" Concrete Slab Over Imported Gravel

 Elevator Pits

 6" SSDS Riser

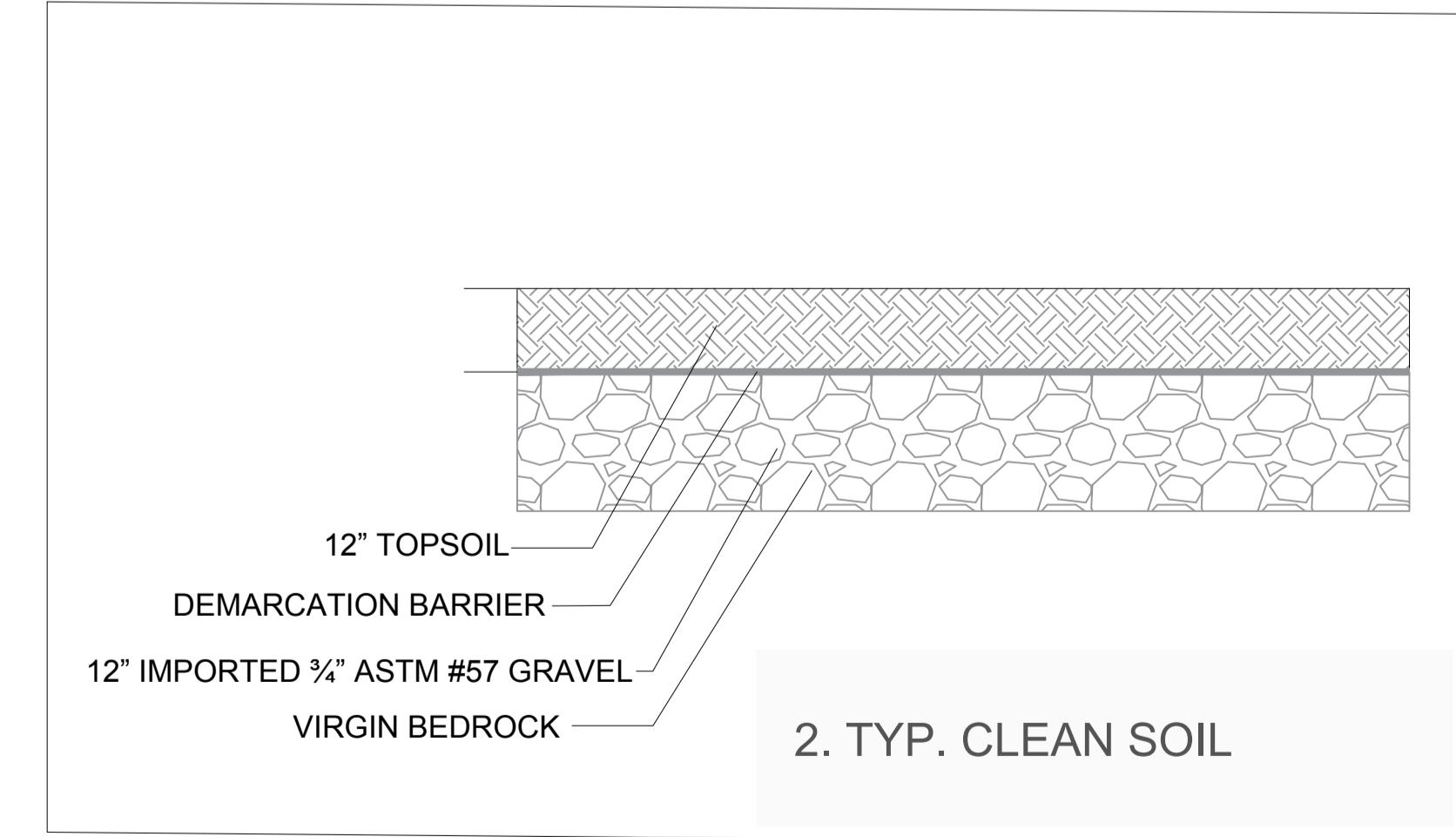
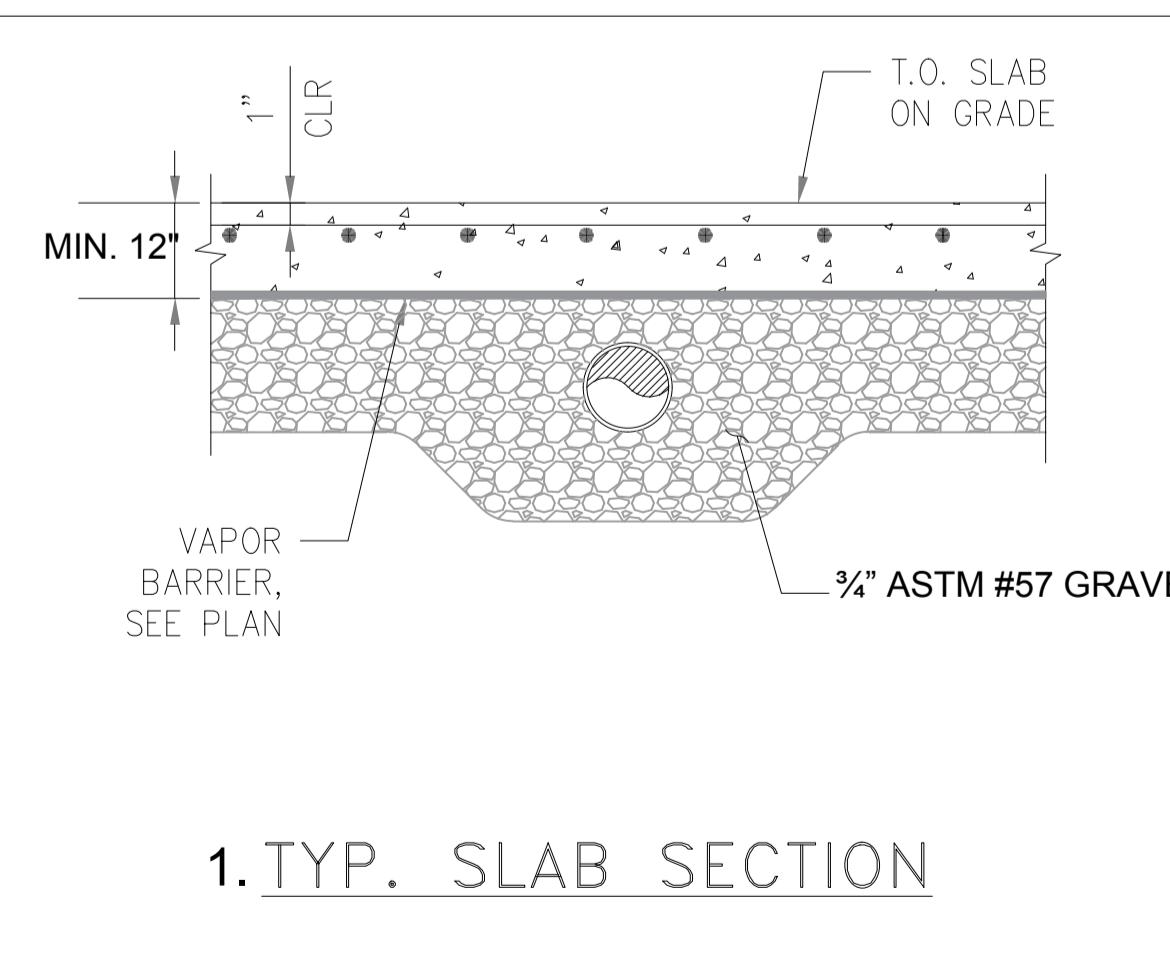
Notes:

1. All feature locations are approximate
2. SSDS details are provided separately

Scale:

0 50' 100'

Figure No. 6



Figure Name: AS-BUILT COVER SYSTEM LOCATION AND DETAILS

Report: FINAL ENGINEERING REPORT

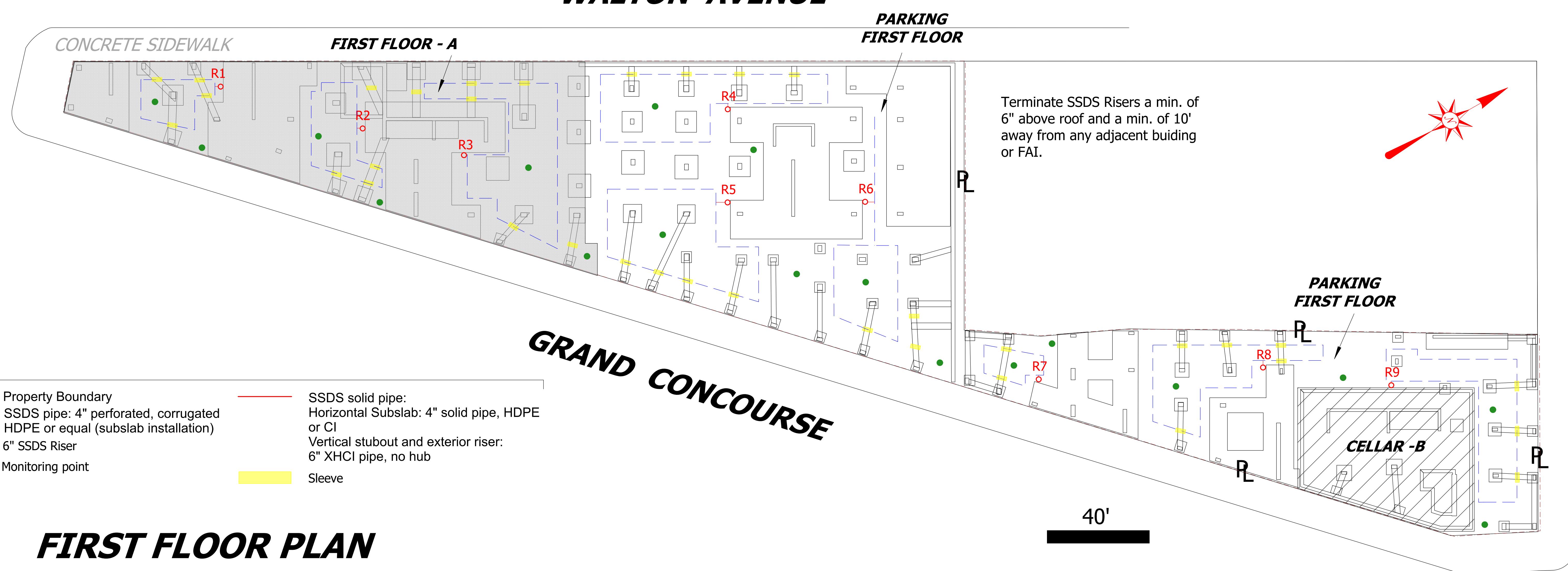
Date: 08/11/2025

Drawn By: KB

Site Address: COPYRITE PLASTIC SHEETS
261 - 315 GRAND CONCOURSE
BRONX, NY (BCP #C203151)

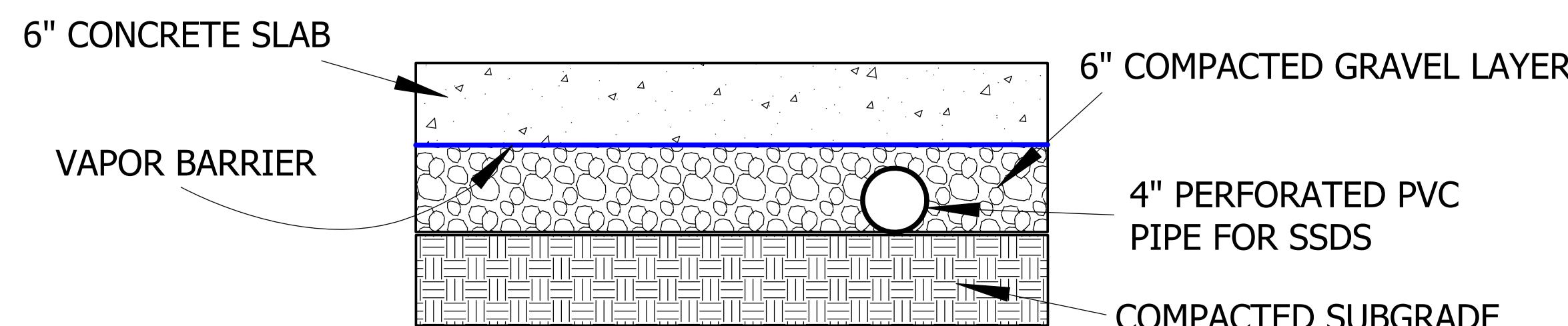
EAST 138TH STREET

WALTON AVENUE


KEY

Property Boundary	SSDS solid pipe:
SSDS pipe: 4" perforated, corrugated HDPE or equal (subslab installation)	Horizontal Subslab: 4" solid pipe, HDPE or CI
6" SSDS Riser	Vertical stubout and exterior riser: 6" XHCl pipe, no hub
Monitoring point	Sleeve

FIRST FLOOR PLAN


NOTES:

1. REFER TO ARCHITECTURAL PLANS FOR WATERPROOFING REQUIREMENTS.
2. FOUNDATION WALL BELOW GRADE SHALL BE PROTECTED WITH VAPOR BARRIER.
3. FAN TO BE RADONAWAY HIGH FLOW INLINE FAN, MODEL RP-265 OR APPROVED EQUAL.
4. FAN ON/OFF SWITCH TO BE HARD-WIRED TO INDEPENDENT 115 VOLT CIRCUIT.
5. SECURE RUBBER COUPLING WITH SCREW TO PREVENT FAN ASSEMBLY FROM SLIPPING DOWN VERTICAL PIPE.
6. DWYER MAGNAHELIC DIAL TYPE VACUUM GAUGE MODEL 2002-M OR APPROVED.
7. ABOVE SLAB RISER MUST BE CAST IRON OR PVC SCH 40. IF PVC, THEN ENCLOSE PIPE WITH ENCLOSURE OF THE SAME FIRE RATING AS THE SPACE OCCUPANCY.
8. USE N12-ADS PERFORATED PIPE OR SIMILAR.
9. ALARM TO BE RADOWAY CHECKPOINT 2R #28001-4, HARDWIRED TO INDEPENDENT CIRCUIT.
10. VAPOR BARRIER TO BE VAPORBLOCK VBP20 FROM RAVEN INDUSTRIES OR EQUAL.
11. ALL ABOVE GRADE SLAB HORIZONTAL RUNS TO BE PITCHED MIN. 1% TO SUBLAB.
12. PROGRESS INSPECTIONS:
 - A. SUBLAB PIPE INSTALLATION
 - B. GAS PERMEABLE AGGREGATE
 - C. PIPE CONNECTIONS
 - D. VAPOR BARRIER INSTALLATION
 - E. SEALING AROUND PENETRATIONS
 - F. ABOVE-SLAB PIPE (RISER) AND SYSTEM
INSTALLATION, INCLUDING FANS, ALARM, GAUGE.
 - G. START-UP AND VACUUM CHECK

SECTION 1-1

BELOW GRADE CROSS VIEW

The diagram illustrates the overlap detail for a 20 mil HDPE liner. It shows a blue horizontal line representing the liner, with a black rectangular tape applied to its edge. A dimension line above the tape indicates a 12" overlap width. A callout arrow points to the tape with the text "2" wide EPDM double sided tape".

FIGURE 7A - SSDS LAYOUT

AMC ENGINEERING PLLC
18-36 42ND STREET
ASTORIA, NY 11105
(718) 545-0474

261-315 Grand Concourse
Bronx, NY 10451

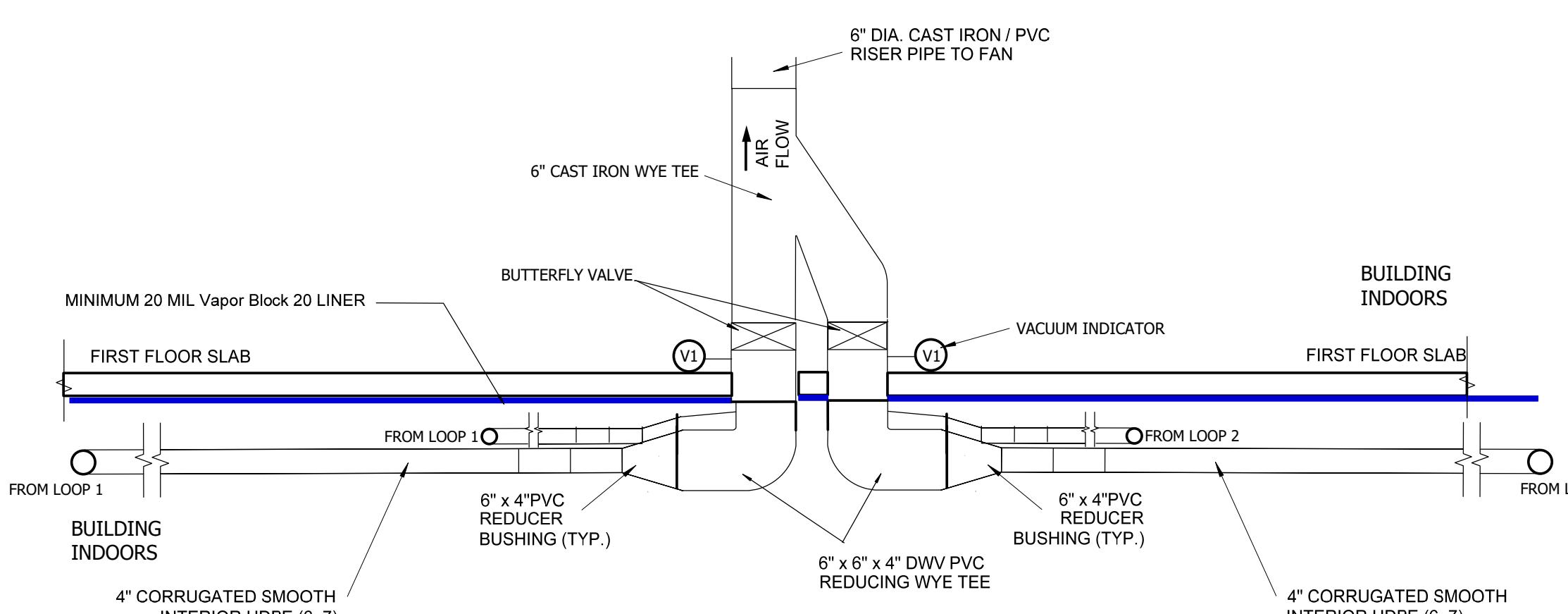
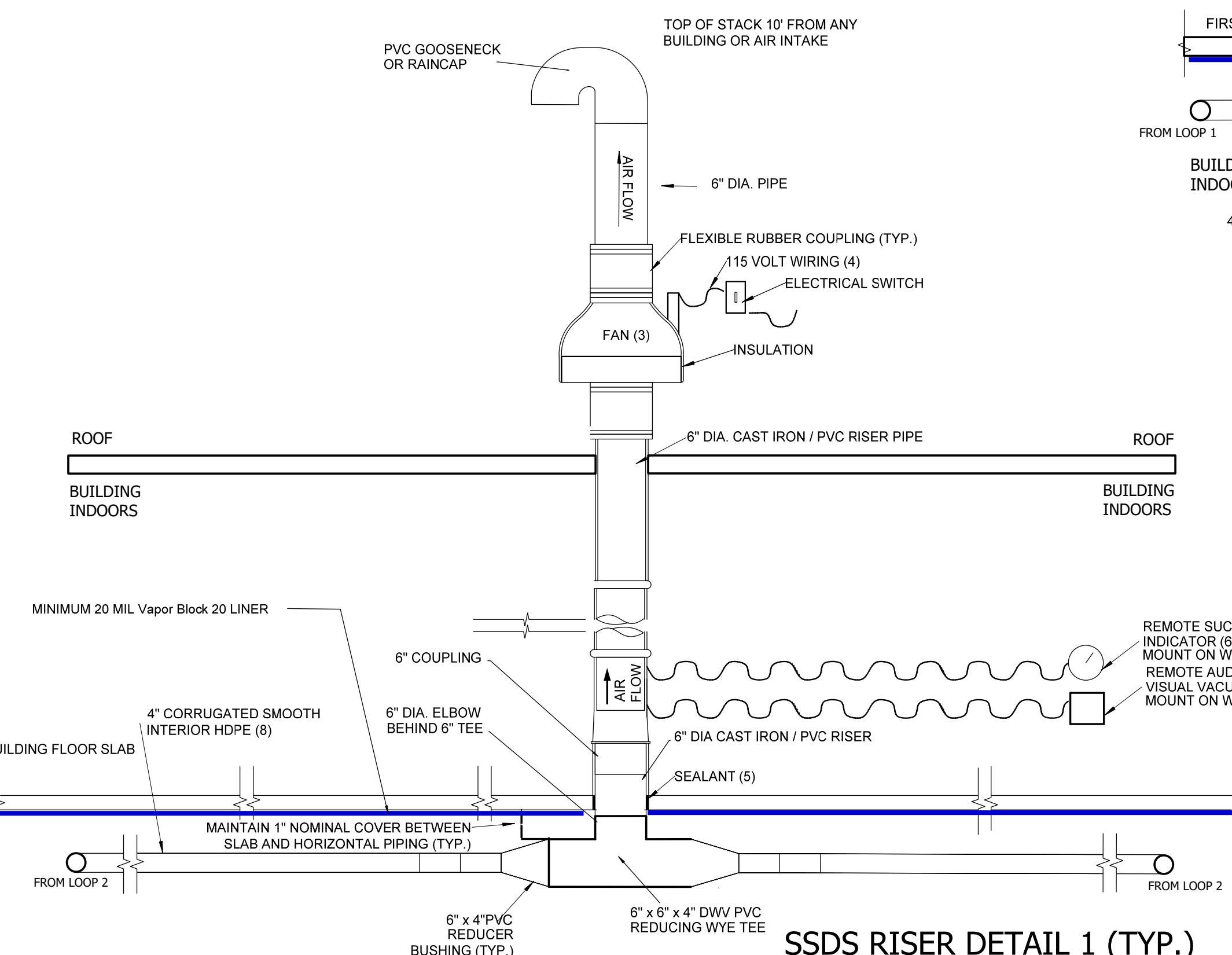
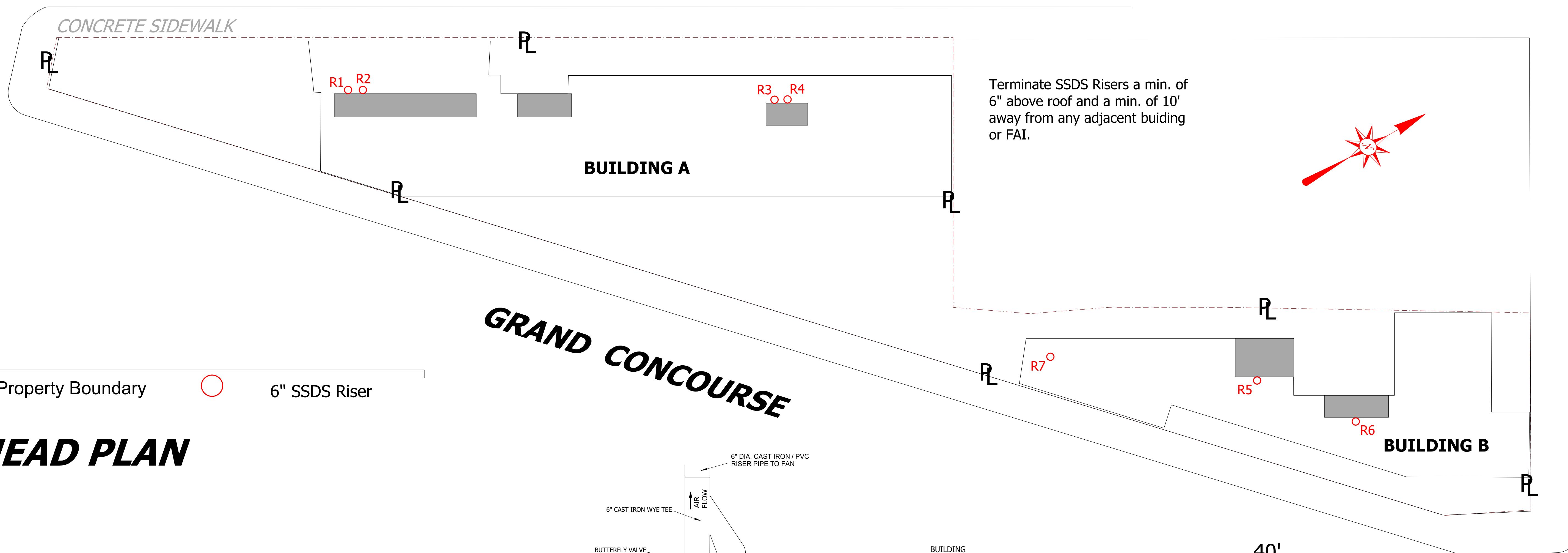
TITLE: SUBSLAB DEPRESSURIZATION SYSTEM (SSDS)

DATE: SEP 5, 2024
PROJECT No:
DRAWING BY: EW
CHK BY:
DWG No:

CAO FILE No: _____

EAST 138TH STREET

WALTON AVENUE




BULKHEAD PLAN

KEY

Property Boundary

6" SSDS Riser

NOTES:

1. REFER TO ARCHITECTURAL PLANS FOR WATERPROOFING REQUIREMENTS.
2. FOUNDATION WALL BELOW GRADE SHALL BE PROTECTED WITH VAPOR BARRIER.
3. FAN TO BE RADONAWAY HIGH FLOW INLINE FAN, MODEL RP-265 OR APPROVED EQUAL.
4. FAN AND ON/OFF SWITCH TO BE HARD-WIRED TO INDEPENDENT 115 VOLT CIRCUIT.
5. SECURE RUBBER COUPLING WITH SCREW TO PREVENT FAN ASSEMBLY FROM SLIPPING DOWN VERTICAL PIPE.
6. DWYER MAGNAHELIC DIAL TYPE VACUUM GAUGE MODEL 2002-M OR APPROVED EQUAL.
7. ABOVE SLAB RISER MUST BE CAST IRON OR PVC SCH 40. IF PVC, THEN ENCLOSE PIPE WITH ENCLOSURE OF THE SAME FIRE RATING AS THE SPACE OCCUPANCY.
8. USE N12-ADS PERFORATED PIPE OR SIMILAR.
9. ALARM TO BE RADONAWAY CHECKPOINT 2R #28001-4, HARDWIRED TO INDEPENDENT CIRCUIT.
10. VAPOR BARRIER TO BE VAPORBLOCK VBP20 FROM RAVEN INDUSTRIES OR EQUAL.
11. PROGRESS INSPECTIONS:
 - A. SUBSLAB PIPE INSTALLATION
 - B. GAS PERMEABLE AGGREGATE
 - C. PIPE CONNECTIONS
 - D. VAPOR BARRIER INSTALLATION
 - E. SEALING AROUND PENETRATIONS
 - F. ABOVE-SLAB PIPE (RISER) AND SYSTEM INSTALLATION, INCLUDING FANS, ALARM, GAUGE.
 - G. START-UP AND VACUUM CHECK.

FIGURE 7B - SSDS EXHAUST DETAIL

AMC ENGINEERING PLLC
18-36 42ND STREET
ASTORIA, NY 11105
(718) 545-0474

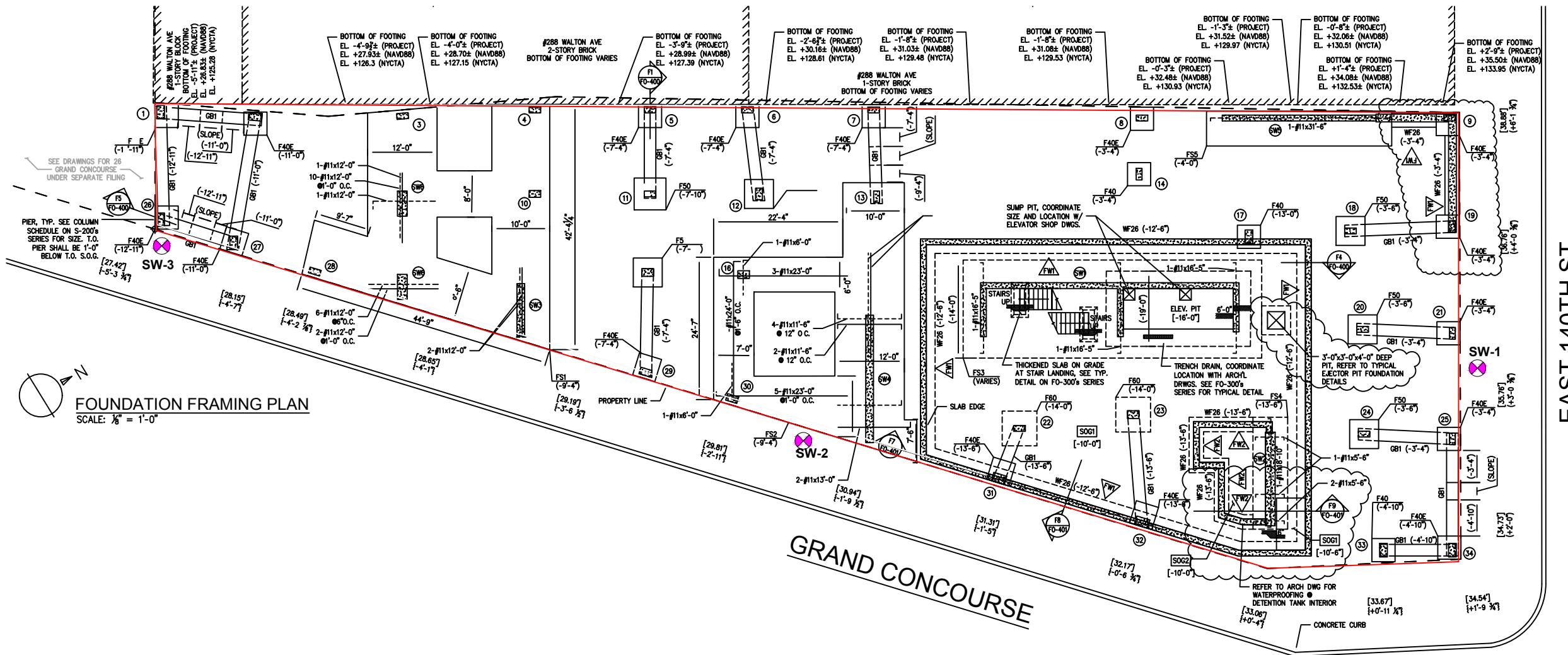
PROJECT
261-315 Grand Concourse
Bronx, NY 10451

TITLE:
SUBSLAB DEPRESSURIZATION
SYSTEM (SSDS)

DATE: SEP 5, 2024

PROJECT No:

DRAWING BY:


CHK BY:

DWG No:

CAD FILE No:

2 of 2

Legend:

Partial Site Boundary (Lot 27)

Off-Site Monitoring Well Locations

EAST 140TH ST.

Notes:

1. All feature locations are approximate
2. Base Map is EO 100 Drawing

Scale:

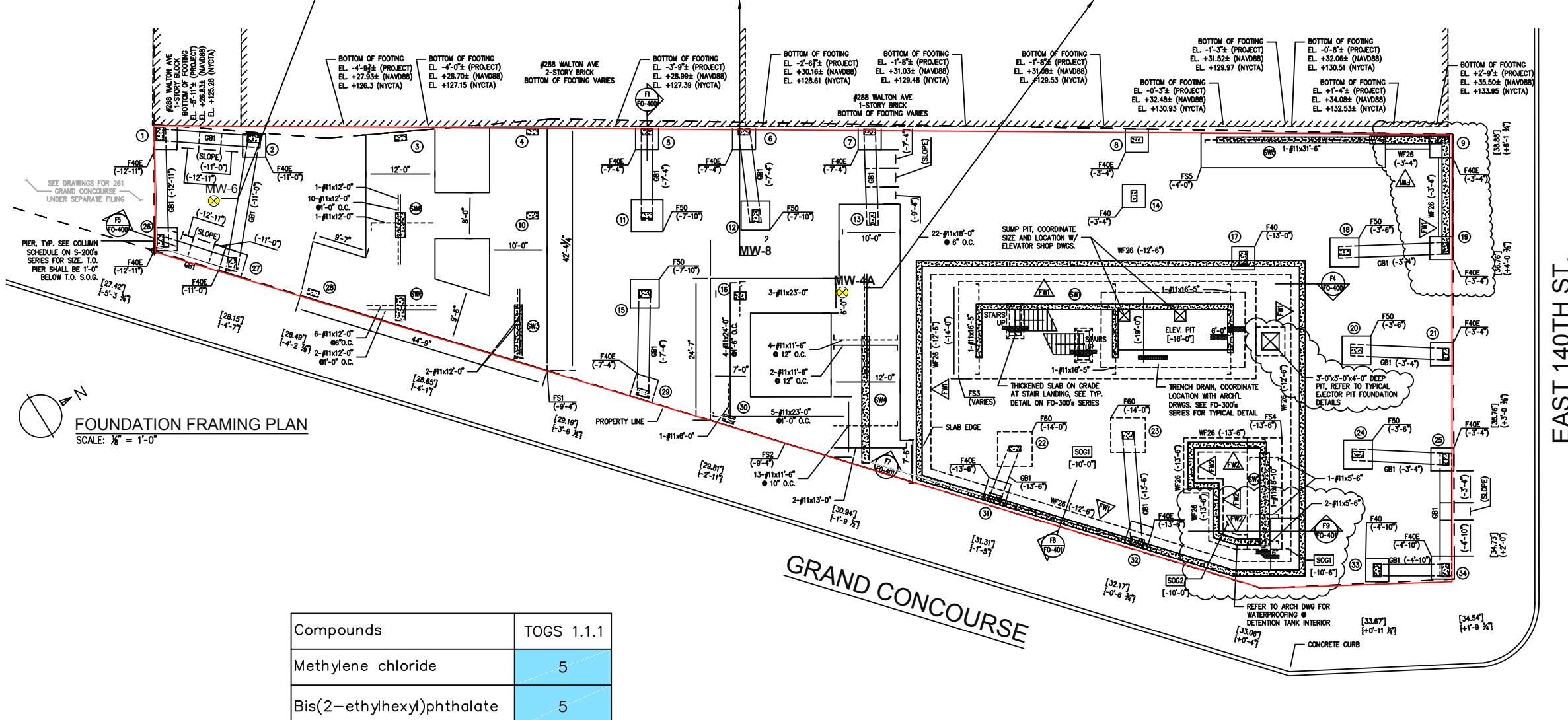
AS SHOWN

Figure No. 8

Figure Name: OFF-SITE MONITORING WELL LOCATIONS

Report: FINAL ENGINEERING REPORT

Date: 3/05/2025


Drawn By: KB

Site Address: COPYRITE PLASTIC SHEETS
261 - 315 GRAND CONCOURSE
BRONX, NY (BCP #C203151)

Sample ID	MW-6
Sampling Date	12/26/2024
VOCS	NE
SVOCS	ND

Sample ID	MW-8
Sampling Date	12/23/2024
VOCs	Result Q
Methylene chloride	10 JBD
SVOCS	ND

Sample ID	MW-4A
Sampling Date	12/26/2024
VOCs	NE
SVOCS	Result Q
Bis(2-ethylhexyl)phthalate	5.52

Legend:

- Partial Site Boundary
- Post-Remedial Monitoring Well Locations (Destroyed)
- MW-X

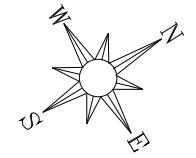
Notes:

1. All feature locations are approximate
2. Base Map is FO-100 Drawing
3. All results are reported in micrograms per liter (ug/L)

Scale:

AS SHOWN

Figure No. 9


Figure Name: POST-REMEDIAL GROUNDWATER EXCEEDANCES

Report: FINAL ENGINEERING REPORT

Date: 5/05/2025

Drawn By: EK

Site Address: COPYRITE PLASTIC SHEETS
 261 - 315 GRAND CONCOURSE
 BRONX, NY (BCP #C203151)

Legend:

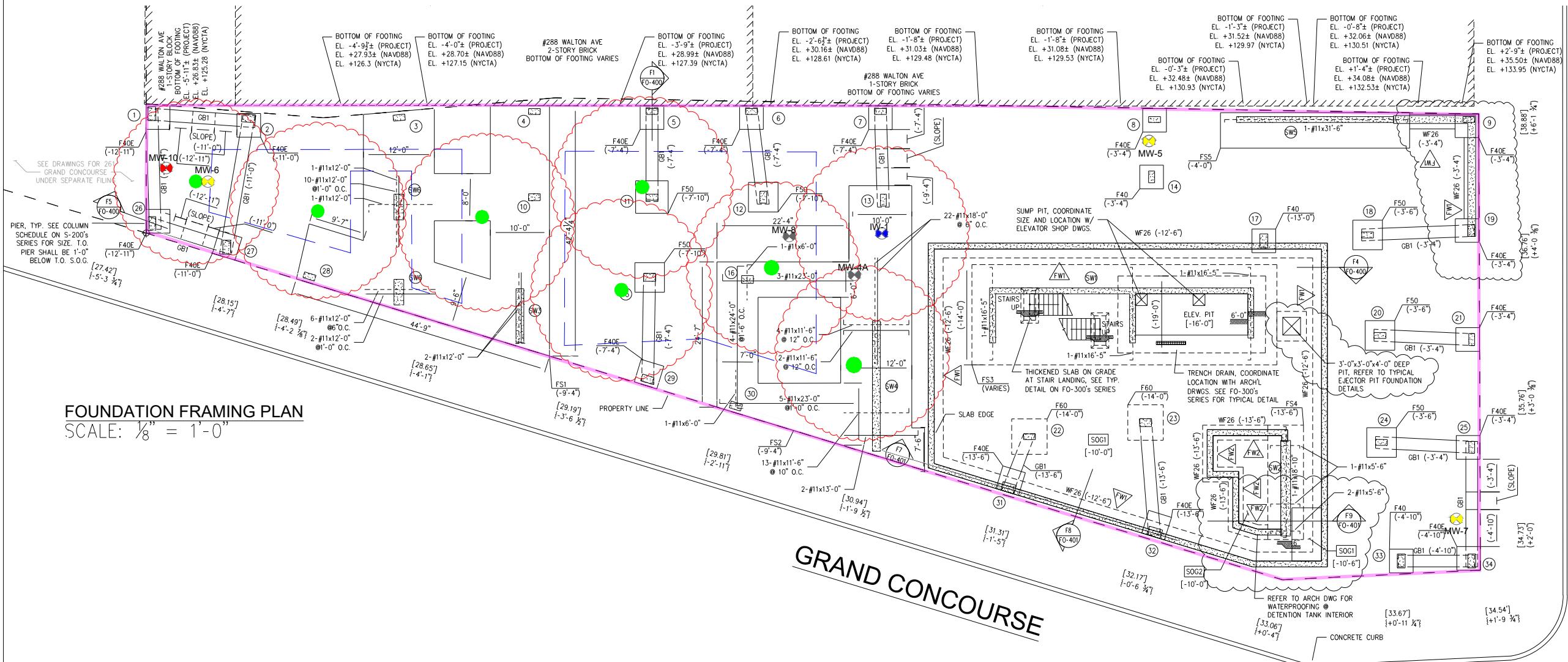
- Site Boundary
- Injection Well Location During RA
- Estimated Radius of Influence (12' R)
- Installed Groundwater Monitoring Well Location and Designated ID During RA
- Existing Injection Well Location Location and Designated ID During RA
- Existing Groundwater Monitoring Well Location and Designated ID During RA
- January 2023 Remedial Investigation Groundwater Monitoring Well Location and Designated ID

Notes:

1. All feature locations are approximate
2. Base Map from SWA FO Drawing
3. RA: Remedial Action

Scale

Figure No. 10


Figure Name: INJECTION WELL LOCATIONS

Report: FINAL ENGINEERING REPORT

Date: 08/28/2024

Drawn By: KB

Site Address: COPYRITE PLASTIC SHEETS
261 - 315 GRAND CONCOURSE
BRONX, NY (BCP #C203151)

