

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	e No. C2	24100	Site Deta	ils		Box 1			
Sit	e Name Whole	Foods Site							
City Co	e Address: 214 3 //Town: Brookly unty: Kings e Acreage: 2.10	yn	Zip Code: 11215						
Re	porting Period: 、	June 30, 202 ⁻	1 to June 30, 2024						
						YES	NO		
1.	Is the information	on above cor	rect?			X			
	If NO, include h	nandwritten al	bove or on a separat	e sheet.					
2.		•	roperty been sold, su this Reporting Period	•	l, or undergone a		X		
3.	Has there been (see 6NYCRR 3		of use at the site du	ring this Reporting	g Period		X		
4.		Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?							
	-	•	estions 2 thru 4, in een previously subr						
5.	Is the site curre	ently undergoi	ng development?				X		
						Box 2			
						YES	NO		
6.	Is the current si Commercial and		stent with the use(s)	isted below?		X			
7.	Are all ICs in pl	lace and func	tioning as designed?		X				
			EITHER QUESTION (ETE THE REST OF			ınd			
AC	Corrective Measu	ures Work Pla	an must be submitte	d along with this	form to address tl	nese iss	ues.		
Sig	nature of Owner,	Remedial Par	rty or Designated Rep	resentative	 Date				

SITE NO. C224100 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u> <u>Institutional Control</u>

If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.

4-978-16 190-220 Third Street Store Brooklyn NY,

Ground Water Use Restriction Soil Management Plan Landuse Restriction Building Use Restriction Monitoring Plan Site Management Plan

O&M Plan IC/EC Plan

Institutional Controls

- Development of a Site Management Plan (SMP) that would include the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation barrier. Excavated soil from below the demarcation barrier would be tested, properly handled to protect the health and safety of workers and the nearby community, and would be properly managed in a manner acceptable to the New York State Department of Environmental Conservation (NYSDEC); (b) monitoring of groundwater; (c) identification of any use restrictions on the site; and (d) provisions for the continued proper operation and maintenance of the components of the remedy. The SMP would also include details for the operation of the SSDS and post-remedial groundwater-monitoring program.
- Imposition of an institutional control in the form of an environmental easement that would require (a) limiting the use and development of the property to commercial use, which would also permit industrial use; (b) compliance with the approved SMP; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH); and (d) the property owner to complete and submit to the NYSDEC a periodic certification of institutional and engineering controls.
- The property owner will provide a periodic certification of institutional and engineering controls, prepared and submitted by a professional engineer or such other expert acceptable to the NYSDEC, until the NYSDEC notifies the property owner in writing that this certification is no longer needed. This submittal would: (a) contain certification that the institutional controls and engineering controls put in place are still in place and are either unchanged from the previous certification or are compliant with NYSDEC-approved modifications; (b) allow the NYSDEC access to the site; and (c) state that nothing has occurred that would impair the ability of the control to protect public health or the environment, or constitute a violation or failure to comply with the SMP unless otherwise approved by the NYSDEC.

Box 4

Description of Engineering Controls

Docusign Envelope ID: 77AF4848-531C-4747-BD3E-996B37DBC7F0

<u>Parcel</u>

4-978-16

Cover System

Engineering Controls

- A composite cover system is comprised of (1) a two-foot clean fill buffer in all landscaped/non-capped areas. The two-foot thick cover consists of clean soil underlain by an indicator such as orange plastic snow fence to demarcate the cover soil from the residual soil. Clean soil meets the soil cleanup objectives outlined in 6 NYCRR Part 375-6.7(d); and (2) Non-vegetated areas (concrete building foundations, sidewalks/pathways and asphalt roadways) covered by a paving system or concrete at least 6 inches thick to prevent human exposure to residual contaminated soil/fill remaining under the Site. In addition, a vapor barrier was installed underneath the entire building foundation as additional protection.
- Implementation of post-remediation ground water monitoring.
- An active SSD system was installed at the Site for additional protection in preventing the off-gassing of any residual VOCs in the soil and groundwater. The SSD system maintains a negative pressure underneath the slab while allowing the vapors below the concrete slab to vent outdoors without intruding into the building.

		B37DBC7F0

Box 5

Periodic Review Report (PRR) Certification Statements

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted
	engineering practices; and the information presented is accurate and compete. YES NO
	${f X}$
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	${f X}$
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C224100

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Christopher Farrell	Whole Foods Market, 1 at Street, Jersey City, NJ (print business addr	07302,
·	·	655
am certifying as	Owner	(Owner or Remedial Party)
for the Site named in the Site D Christopher Farrell D1F7AASD37C94D5	etails Section of this form.	7/29/2024 12:15 PM EDT
Signature of Owner, Remedial I Rendering Certification	Party, or Designated Representative	Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true.	I understand that a false statement made herein is
punishable as a Class "A" misdemeanor, pursuant to S	Section 210.45 of the Penal Law.

	BL Companies Meriden, CT 0	•	earch Parkway,
print name	print busine	ess address	,
am certifying as a Qualified Environmental Profe	essional for the	(Owner
		(Owner or	Remedial Party)
DocuSigned by:			
Brian Lowry CSDDD55842F1470		N/A	7/29/2024 12:16 PM EDT
Signature of Qualified Environmental Profession the Owner or Remedial Party, Rendering Certification	•	amp equired for F	Date PE)

Whole Foods Market 214 3rd Street Brooklyn, Kings County, New York

Site Management Plan Periodic Review Report June 30, 2021 to June 30, 2024

NYSDEC Site Number: C224100

Prepared for:

190-220 Third Street Store Brooklyn, LLC 930 Sylvan Avenue Englewood Cliffs, New Jersey 07632

Prepared by:

BL Companies 355 Research Parkway, Meriden, Connecticut 06450 203-630-1406

JULY 30, 2024

TABLE OF CONTENTS

I.	EXECUTIVE SUI	MMARY1
II.	SITE OVERVIEW	V3
III.	REMEDY PERFO	ORMANCE, EFFECTIVENESS, AND PROTECTIVENESS 5
IV.		CONTROLS /ENGINEERING CONTROLS COMPLIANCE6
٧.	MONITORING P	LAN COMPLIANCE REPORT8
VI.	PERIODIC REVI	EW REPORT CONCLUSIONS15
LIS	T OF TABLES	
		indwater Analytical Results – Post-Construction 2021 – 2024
		oundwater Analytical Results – Post-Construction 2013 – 2021
	rable 2b – Gro	oundwater Analytical Results Post-Remediation, Pre-Construction
LIS	T OF FIGURES	
	Figure 1 – Site	Location Map
	Figure 2 – Site	e Plan
	Figure 3 – Der	narcation Barrier Elevation Plan
	Figure 4 – Loc	ation of Remaining Soil with Regulated Compounds Above Track 4
	Site Specific S	COs
	_	ations of Documentation Soil Samples and Surface Soil Samples dompounds Above Unrestricted Use SCOs
	Figure 6 – Cor	nposite Cover System Plan
	Figure 7 – Cor	nposite Cover System Demarcation Barrier Institutions
	Figure GW-01	 Groundwater Contour Plan, July 25, 2022
	Figures SD-00	1 through SD-003 – As-Built Vapor Barrier and Venting Layout and
	Details	
ı ic	T OF APPENDICES	
LIS	Appendix A	Liquid Boot® Certification and Warranty
	Appendix B	Annual Inspection Checklists
	Appendix C	Groundwater Sampling Logs
	Appendix D	Laboratory Certification
	Appendix E	Laboratory Analytical Reports – Groundwater Sampling

I. EXECUTIVE SUMMARY

190-220 Third Street Store Brooklyn, LLC voluntarily entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) to remediate the property located at 214 3rd Street in Kings County, Brooklyn, New York (the Site). The remediation was conducted to achieve cleanup for commercial use and provide Site conditions that are protective of human health and the environment. To manage contamination left in place, an Environmental Easement and a Composite Cover System (CCS) have been placed on the Site. A NYSDEC Brownfields Cleanup Program (BCP) Certificate of Completion was issued on March 30, 2012, and the Site is being managed under a NYSDEC-approved Site Management Plan (SMP).

The SMP addresses the implementation of Institutional Controls (ICs) and Engineering Controls (ECs) required by the Environmental Easement. The SMP has been approved by the NYSDEC in consultation with the New York State Department of Health (NYSDOH). Previous Periodic Review Reports were issued in December 2013, October 2014, October 2017, revised June 2018, and July 2021. This current Periodic Review Report (PRR) covers the Site activities from June 30, 2021, through June 30, 2024.

The July 2021 PRR was written to cover the Site activities from May 31, 2018 through July 30, 2021. NYSDEC issued a letter dated April 1, 2022, notifying 190-220 Third Street Store Brooklyn, LLC that the 2021 PRR and associated Certification were accepted.

The Site consists of 2.155 acres of land developed with a 58,000-square foot Whole Foods Market, associated paved parking spaces, landscaping, and a promenade along the 4th Street Basin. The Whole Foods Market opened for business on December 17, 2013. The Site improvements were constructed over the CCS. During construction activities in 2012 and 2013, excavation below the Demarcation Barrier was conducted to install drainage and irrigation components, foundations for retaining walls, and restoration of the waterfront along the 4th Street Basin. Piles for the building foundation were driven through the Demarcation Barrier. All earth work above and below the Demarcation Barrier was completed in accordance with the requirements of the SMP and was described in detail in the 2013 Periodic Review Report.

There has been no disturbance to the CCS during the reporting period.

The Whole Foods Market was constructed on a parcel of land formerly identified as Block 978, Lots 16, 19 and a portion of Lots 1 and 7. These parcels were consolidated into a single tax parcel known as Block 978, Lot 16 in August 2013. The store address is currently 214 3rd Street. In addition to the tax lot consolidation, the elevation of the surface of the Site was increased to achieve the final design elevation by importing and placing additional clean fill material over the CCS. The final as-built drawings and

survey were completed in the spring of 2014 and covered by the 2014 Periodic Review Report. No notable changes to the SMP are proposed at this time.

The ECs and ICs implemented under the Certificate of Completion and the Environmental Easement for the Site remain in effect and continue to be protective of human health and the environment.

II. SITE OVERVIEW

The Site was remediated in accordance with the BCA Index #W2-1052-05-02 Site #C224100, which was executed on April 25, 2005.

The Site is located in the Borough of Brooklyn, Kings County, New York and is identified as Block 978, Lot 16 on the City of New York Tax Map. The Site is part of a larger assemblage of three parcels that have been developed with a Whole Foods Market and associated parking and public space (see **Figure 1**). The Site is a 2.155-acre area bounded by 3rd Street to the north, the 4th Street Basin to the south, 3rd Avenue to the east, and the Gowanus Canal to the west (see **Figure 2**).

Demolition of former industrial Site buildings was completed in 2007. Subsequent to 2007, the Site was vacant until construction of the current Whole Foods Market began in July 2012. Construction of the 58,000-square foot Whole Foods Market, associated paved parking spaces, landscaping, and a promenade along the 4th Street Basin was completed in early December 2013 and the store opened on December 17, 2013. An as-built drawing showing the completed improvements is included in the Site Plan (**Figure 2**).

The nature of the contamination prior to Site remediation included Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), pesticides, Polychlorinated Biphenyls (PCBs) and metals. These constituents of concern (COCs) were detected at concentrations above laboratory detection limits in soil samples collected across the entire Site. VOCs, SVOCs and metals were additionally detected in groundwater samples collected at the Site.

The Site was remediated in accordance with the following NYSDEC-approved documents and the Hot Spot Remediation Project Manual and drawings dated June 10, 2009:

- Interim Remedial Work Plan dated May 20, 2005, revised May 27, 2005, and June 27, 2005.
- Interim Remedial Work Plan dated June 1, 2005, revised June 23, 2005, and July 27, 2005;
- Remedial Work Plan dated December 2006.
- Hot Spot Remediation Project Manual and Drawings dated June 10, 2009.
- Informational Letter on Hotspot Removal dated May 10, 2010.

The remedial work resulted in the excavation and off-site disposal of approximately 24,260 cubic yards of contaminated soil.

No long-term treatment systems were installed as part of the Site remedy. A soil vapor intrusion mitigation system, including a chemical vapor barrier and passive sub-slab depressurization system (SSDS), has been installed as part of the building foundation as an additional precautionary measure. The SSDS can be activated in the event that groundwater data, soil vapor data, or indoor air quality data indicates the potential for vapor intrusion into the building.

The remedial actions at the Site were conducted to achieve cleanup standards (the soil cleanup objectives (SCOs) as set forth in 6 New York Codes, Rules and Regulations (NYCRR) Part 375, December 2006) for the intended commercial use of the Site and provide Site conditions that are protective of human health and the environment. Impacted soil with concentrations of regulated compounds above the Track 4 Site Specific SCOs established for the Site remains in discrete areas under the CCS (see **Figure 4**), including areas of structurally intact portions of the 4th Street Basin Bulkhead and in portions of the urban fill, which is ubiquitous in the neighborhood.

This remaining contamination is managed by the use of ICs and ECs, which include the CCS constructed with a minimum 2-foot layer of clean crushed rock cover overlying a Demarcation Barrier of orange woven geotextile fabric with warning text printed in English and Spanish. **Figures 3, 4, 5 and 6** illustrate the elevation of the Demarcation Barrier, the location of remaining contaminated soil, and the design of the CCS, respectively.

During construction activities in 2012 and 2013, there were activities conducted below the Demarcation Barrier of the CCS. Additional contaminated soil was excavated and removed from the Site as reported in the Periodic Review Report issued on December 30, 2013. Although contaminated soil was removed from below the Demarcation Barrier during construction of the building and related improvements, contaminated soil with concentrations above the Track 4 Site Specific SCOs still remains, as shown on **Figure 4**, and as documented in the Final Engineering Report. All penetrations and/or disturbance to the Demarcation Barrier and the CCS were repaired.

The CCS is currently intact and protective of human health and the environment. There have been minor disturbances to the CCS during a previous reporting period (prior to June 30, 2021). However, those minor disturbances were previously addressed as noted in the July 2021 PRR. No disturbances to the CCS were identified during this reporting period. The CCS is currently intact and functioning as designed.

III. REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

The remedy implemented at the Site has met the required goals established for the Site under the BCA. Although soils with residual contamination remain at the Site, these soils are isolated under the CCS.

Generally, remedial processes are considered completed when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.6 of NYSDEC DER-10.

<u>Composite Cover System</u> - No in-situ treatment systems were installed as part of the Site remedy for contaminated soil. Approximately 24,260 cubic yards of contaminated soil were excavated and removed from the Site. Remaining contaminated soil is isolated under the CCS. The CCS is a permanent engineering control, and the quality and integrity of this system is currently intact. The CCS has been and will continue to be visually inspected annually.

Monitored Natural Attenuation - No in-situ treatment systems were installed as part of the Site remedy for contaminated groundwater. Groundwater quality was shown to improve after completion of the Interim Remedial Measures (IRM) and soil remediation. Groundwater monitoring to assess natural attenuation will continue, as determined by the NYSDEC, until residual groundwater concentrations are found to be consistently below NYSDEC standards or meet other criteria acceptable to the NYSDEC.

<u>Soil Vapor Mitigation</u> - No long-term treatment systems were installed as part of the Site remedy. A soil vapor intrusion mitigation system, including a chemical vapor barrier and passive SSDS, was installed as an element of building foundation construction. The chemical vapor barrier and SSDS were installed by EAI, Inc. in accordance with the approved building design plans. **Figures SD-001**, **SD-002**, **and SD-003** show the asbuilt vapor barrier and SSDS layout and construction details. A certification and warranty provided by Liquid Boot® is included in **Appendix A**. The SSDS can be activated in the event that groundwater data, sub-slab soil vapor data, or indoor air data indicates the potential for vapor intrusion into the building.

IV. INSTITUTIONAL CONTROLS /ENGINEERING CONTROLS COMPLIANCE REPORT

Engineering Controls (ECs)

Exposure to remaining contamination at the Site is prevented by the placement of the CCS over the Site. This CCS is comprised of a minimum of 24 inches of clean crushed rock placed over a Demarcation Barrier.

The CCS was disturbed in certain locations during the construction of the Whole Foods Market in 2012 and 2013, specifically for installation of piles for the building foundation, footings for retaining walls along 3rd Street and 3rd Avenue, for installation of portions of the drainage and irrigation systems, and during reconstruction of the waterfront. These locations where the Demarcation Barrier was disturbed or where work was completed below the Demarcation Barrier are illustrated on **Figure 7**. Activities that disturbed the CCS during construction were conducted in accordance with the Excavation Work Plan in Appendix B of the SMP, which outlined the procedures required to be implemented in the event the Demarcation Barrier is breached, penetrated or temporarily removed, and any underlying contamination is disturbed.

There were no disturbances to the CCS during this reporting period.

Procedures for operating and maintaining the ECs moving forward are documented in the Operation and Maintenance Plan (Section 4 of the SMP). Procedures for monitoring and inspecting the engineering control in the future are included in the Monitoring Plan (Section 3 of the SMP) and discussed in Section V below.

Institutional Controls (ICs)

ICs have been implemented as part of the approved remedy and the Certificate of Completion. Adherence to the ICs on the Site is required by the Environmental Easement granted to the NYSDEC and recorded with the Kings County Clerk, and the SMP. These Institutional Controls are:

- Compliance with the Environmental Easement and the SMP by the Grantor and the Grantor's successors and assigns.
- All ECs must be operated and maintained as specified in the SMP.
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- Groundwater monitoring must be performed as defined in the SMP.

• Data and information pertinent to Site management must be reported at the frequency and in a manner defined in the SMP.

The ICs include Site restrictions. The Environmental Easement requires adherence to these ICs. Site restrictions that apply are:

- The property may only be used for commercial/industrial use provided that the long-term ECs and ICs included in the SMP are employed.
- The property may not be used for a higher level of use, such as unrestricted or restricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC.
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP.
- The use of the groundwater underlying the property is prohibited unless the user first obtains permission from the NYSDEC or Relevant Agency.
- The potential for vapor intrusion must be evaluated for any buildings constructed at the Site, and any potential impacts that are identified must be monitored or mitigated. Alternatively, a soil vapor intrusion (SVI) mitigation system may be installed as an element of the building foundation without first conducting an investigation.
- Vegetable gardens and farming on the ground surface of the property are prohibited.
- The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Site are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access the Site at any time in order to evaluate the continued maintenance of any and all controls. This certification must be submitted annually at a frequency determined by the NYSDEC and will be made by an expert that the NYSDEC finds acceptable.

All ICs are in effect.

V. MONITORING PLAN COMPLIANCE REPORT

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce and/or mitigate contamination at the Site, the CCS, and the affected Site media identified below.

Purpose and Schedule

This Monitoring Plan describes the methods to be used for:

- Sampling and analysis of groundwater.
- Assessing compliance with applicable standards, criteria and guidance, particularly ambient groundwater standards and Part 375 Track 4 Site Specific SCOs for soil.
- Assessing achievement of the remedial performance criteria.
- Evaluating Site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment.
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, this Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency.
- Information on all designed monitoring systems (e.g., well logs).
- Analytical sampling program requirements.
- · Reporting requirements.
- Quality Assurance/Quality Control (QA/QC) requirements.
- Inspection and maintenance requirements for monitoring wells.
- Monitoring well decommissioning procedures.
- Annual inspection and periodic certification.

Semi-annual groundwater monitoring of the performance of the remedy and overall reduction in contamination is on-going. The NYSDEC initially indicated that the monitoring frequency would be conducted for the first two years following completion of remedial actions. The frequency thereafter will be determined by the NYSDEC. Semi-annual groundwater monitoring has continued at the Site since 2013. Trends in contaminant levels in groundwater in the affected areas will be evaluated to determine if the remedy continues to be effective in achieving remedial goals. Monitoring programs are summarized and outlined in detail below.

Monitoring/Inspection Schedule

Monitoring Program	Frequency*	Matrix	Analysis
MNA	Semi-Annual	Groundwater	EPA Methods 8260B and 8270C
Composite Cover System	Annual	Soil	Visual Inspection and Certification Checklist
Site-Wide	Annual	-	Visual Inspection and Certification Checklist
Site Records and Institutional Controls	Annual	-	Inspection and Certification Checklist

^{*} The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH

Composite Cover System Monitoring

The Annual Certification will be a written statement by a qualified environmental professional that the CCS employed at the Site is unchanged since the completion of the remedial activities or previous Annual Certification, or that any changes to the CCS at the Site were approved by the NYSDEC, and that nothing has occurred that would impair the ability of the CCS to protect public health and the environment or constitute a violation or failure to comply with this SMP. The Annual Site-Wide and Engineering Controls Inspection and Certification Checklist will be used for each Annual Inspection. The qualified environmental professional who conducts the Annual Inspection must be familiar with the Site, the CCS, and regulated post-remediation construction activities.

The CCS installed at the Site will be visually inspected annually to determine if, and when, maintenance activities are required to maintain the integrity of these features. The NYSDEC and NYSDOH—approved CCS includes the minimum 2-foot thick cover of clean crushed rock and Demarcation Barrier below the clean crushed rock to separate the cover from the underlying material and to serve as a visual indicator if the cover material is breached. The as-built drawing of the CCS is included as **Figure 6**. The CCS will be visually inspected at least annually for signs of erosion or other disturbances. The surface elevation of the CCS will be surveyed to confirm appropriate and required thickness in the event that erosion or other evidence of disturbance/deterioration of the CCS is observed. The cover will also be visually inspected and surveyed following intrusive excavation that requires notification to the NYSDEC. If damage to the cover is visually observed and/or determined by a survey, the engineering controls will be

repaired. During each survey, elevations will be referenced to an existing benchmark installed at the Site.

The Site was inspected visually during each of the semi-annual groundwater monitoring events completed on July 25, 2022, October 25, 2022, May 18, 2023, October 19, 2023, and June 3, 2024. The visual inspections completed during those events satisfied the Annual Inspections for this reporting period.

There were no disturbances to the CCS and/or any other issues associated with the CCS during this reporting period.

The Annual Site-Wide and Engineered Controls Inspection and Certification Checklist has been completed and is included as **Appendix B** of this report.

Media Monitoring Program

Groundwater Monitoring

The SMP calls for post-remediation groundwater samples to be collected from monitoring wells MW-1AR, MW-3AR, MW-4AR and MW-5AR on a semi-annual basis for a minimum period of two years following completion of the IRM to comply with Section 5.2, Certification of Engineering and Institutional Controls, of the SMP. The frequency; thereafter, will be determined by the NYSDEC.

BL Companies has completed six (6) groundwater sampling events during the current reporting period. BL Companies was on Site on July 7, 2021, July 25, 2022, October 25, 2022, May 18, 2023, October 19, 2023, and June 3, 2024, to conduct low flow sampling of groundwater monitoring wells, MW-1AR, MW-3AR, MW-4AR, and MW-5AR.

During each sampling event, water quality parameters (i.e., turbidity, temperature, conductivity, pH, oxygen reducing potential, and dissolved oxygen) were monitored during well purging. Once the sampling parameters had stabilized groundwater samples were collected. Well Sampling Field Logs are included in **Appendix C**.

Groundwater samples were placed into laboratory prepared glassware with Teflon-lined caps, stored on ice and shipped under proper chain-of-custody protocols to York Analytical Laboratories, Inc. (York) in Stratford, Connecticut. Samples were analyzed for VOCs via EPA Method 8260B and SVOCs via EPA Method 8270C. York is an Environmental Laboratory Accreditation Program (ELAP) certified laboratory for these analyses. Copies of the laboratory certifications for York are included in **Appendix D**.

Laboratory analytical reports for the six (6) sampling events for this reporting period are included in **Appendix E**.

Groundwater Analytical Results and Comparison

VOCs

All four (4) groundwater monitoring wells were sampled and analyzed for VOCs over the reporting period. Several VOCs were detected above the laboratory detection limits in the groundwater samples collected from MW-1AR, MW-3AR, MW-4AR and MW-5AR.

Benzene was detected in groundwater samples collected at MW-1AR at concentrations that exceeded the applicable Technical of Operational Guidance Series (TOGS) 1.1.1 criteria of 1 microgram per liter (μ g/L) during the six (6) sampling events. The benzene concentrations detected in groundwater during this reporting period (June 2021 to June 2024) were consistent with the concentrations observed at MW-1AR during the previous reporting period (June 2018 to June 2021).

Dichloromethane, which is also known as methylene chloride, was detected in groundwater samples collected at MW-1AR at concentrations that exceeded the applicable TOGS 1.1.1 criteria of 5 mg/L during the July 2021, July 2022, and May 2023 events. Methylene chloride is a common laboratory artifact and was detected in select few laboratory blank samples. Dichloromethane was not detected above the laboratory reporting limits in the groundwater samples collected during the October 2022, October 2023, and June 2024 sampling events.

Other VOCs were detected in groundwater samples collected at the Site during the reporting period at concentrations below the TOGS 1.1.1 criteria.

SVOCs

All four (4) groundwater monitoring wells were sampled and analyzed for SVOCs over the reporting period. Several SVOCs were detected above the laboratory detection limits in the groundwater samples collected from MW-1AR, MW-3AR, MW-4AR and MW-5AR over the sampling period.

The concentration of bis(2-ethylhexyl)phthalate detected in the groundwater sample collected from MW-1AR on October 19, 2023, exceeded the applicable TOGS 1.1.1 criteria. The concentrations of bis(2-ethylhexyl)phthalate in the remaining groundwater samples collected at MW-1AR were below the TOGS 1.1.1 criteria and/or the laboratory reporting limit.

Benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene were detected in groundwater samples collected from MW-1AR in October 2023 at concentrations that exceeded the applicable TOGS 1.1.1 criteria. The concentrations of those SVOCs were not detected above the laboratory reporting limits in the remaining groundwater samples collected from MW-1AR during the reporting period.

The concentrations of benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene detected in the groundwater sample collected from MW-3AR on July 25, 2022 exceeded the applicable TOGS 1.1.1 criteria. The concentrations of those SVOCs were below the laboratory reporting limit during the remaining five (5) sampling events completed during the reporting period (July 2021, October 2022, May 2023, October 2023 and June 2024).

MW-1AR is one of the upgradient monitoring wells located along 3rd Street. The VOCs and SVOCs detected in this well are believed to be migrating onto the Site from an off-site source.

Table 1 summarizes the post-construction groundwater monitoring data collected during the June 2021 through June 2024 reporting period. Previous post-remediation, post-construction groundwater monitoring results from 2013 through 2021 were reported in the PRR dated July 30, 2021 and summarized in the attached **Table 2a**. Additional post-remediation (pre-construction) groundwater monitoring results from 2006 through 2013 were reported in the Periodic Review Report dated October 30, 2017, and are also summarized in the attached **Table 2b**.

Quality Control / Quality Assurance Samples

Additional Quality Assurance and Quantity Control (QAQC) groundwater samples, including trip blanks (for VOCs) and a field duplicate, were collected during each sampling event completed during the reporting period. The field duplicate samples were collected from MW-3AR during the July 2021 event, MW-4AR during the July 2022, October 2022, and June 2024 events, and MW-5AR during the May and October 2023 events. In general, the field duplicate results were consistent with the initial groundwater results from the well location. Some discrepancies were noted for SVOCs between the MW-5AR and field duplicate sample collected in May and October 2023. However, those discrepancies were likely attributed to the heterogeneities of the sample matrix in each sample. No QAQC issues are anticipated based on the results.

VOCs were not detected above the laboratory reporting limits in any of the trip blank samples during the reporting period.

Groundwater Elevations and Flow Direction

Groundwater depths were collected from the four wells (MW-1AR, MW-3AR, MW-4AR, and MW-5AR) during this monitoring period between July 2021 and June 2024. The monitoring period included six groundwater sampling events. During this period, MW-3AR or MW-5AR recorded the deepest groundwater depths (ranging between 12.7 ft to 14.18 ft) while MW-1AR and MW-4AR recorded the shallowest groundwater depths (depths ranging between 5.89 ft to 6.58 ft).

Based on the calculated groundwater elevations, MW-1AR consistently recorded the highest groundwater elevations while MW-3AR and MW-5AR recorded the lowest groundwater elevations during each of the six groundwater sampling events.

Groundwater flow across the Site during this monitoring period consistently flowed in relatively southwesterly directions towards the 4th Street Basin at an average gradient of 2% (0.02 ft/ft).

A groundwater contour plan for the July 25, 2022 sampling event, which was the typical groundwater flow direction observed at the Site throughout the reporting period, is included as **Figure GW-01**.

Groundwater Elevation Survey (7/25/22), Whole Foods Market

Well ID	Installation Completion Date Depth (ft)		Screen Length (ft)	Top-of Casing Elevation (ft)	Depth to Water(ft)	Water Elevations (ft)
MW-1AR	12/20/13	17.5	10	20.41	8.20	12.21
MW-3AR	12/20/13	17.5	10	16.04	10.15	5.89
MW-4AR	12/20/13	17.5	10	14.54	7.76	6.78
MW-5AR	12/20/13	17.5	10	15.33	9.36	5.97

Notes:

- 1) Water depths measured from top of PVC.
- 2) Water depths taken on July 25, 2022.
- 3) Top of PVC elevations based on a survey completed by BL Companies on July 25, 2022.
- 4) Elevations are referenced to BL Companies Datum that is 4.795 feet below the U.S.C.G.S. 1929 datum.

Soil Vapor Intrusion Investigation

BL Companies completed a Soil Vapor Intrusion (SVI) Investigation at the Site in April 2018 in accordance with a NYSDEC-approved SVI work plan. Based on those results, which were documented in the PRR dated July 30, 2021, that was submitted to NYSDEC, no SVI issues were identified at the Site.

No SVI investigation activities were completed at the Site during this reporting period.

Operation & Monitoring Plan Compliance Report

The Site remedy does not rely on any mechanical systems. However, as a precaution a passive SSDS was installed to protect public health and the environment. The system relies on natural pressure differentials and does not require any operation or maintenance. The SSDS can be activated in the event that groundwater data, sub-slab soil vapor data, or indoor air quality data indicates the potential for vapor intrusion into the building. Based on the results of the last six (6) semi-annual groundwater monitoring events and the April 2018 SVI investigation, SVI is not a concern and the SSDS does not need to be activated.

A copy of the complete SMP will be kept at the Site. This Operation and Maintenance Plan is not to be used as a stand-alone document, but as a component document of the SMP.

Maintenance reports and information generated during regular operations at the Site will be kept on-file on-Site. All reports, forms, and other relevant information generated will be available upon request to the NYSDEC and submitted as part of the Periodic Review Report.

VI. PERIODIC REVIEW REPORT CONCLUSIONS

Site remediation was conducted to achieve cleanup standards for the commercial use of the Site and provide Site conditions that are protective of human health and the environment. To manage contamination left in-place, and address the potential for future exposure, an Environmental Easement and a CCS have been placed on the Site. A NYSDEC BCP Certificate of Completion was issued on March 30, 2012, and the Site is being managed under a NYSDEC-approved SMP.

The SMP addresses the means for implementing the ICs and ECs that are required by the Environmental Easement. The SMP has been approved by the NYSDEC in consultation with the NYSDOH. The SMP was revised to reflect grade changes and installation of the vapor barrier and SSDS during construction and is available for review at the Site.

The Site consists of 2.155 acres of land developed with a 58,000-square foot Whole Foods market, associated paved parking spaces, landscaping, and a promenade along the 4th Street Basin. The Whole Foods Market opened for business on December 17, 2013. The Site improvements were constructed in 2012 and 2013 over the CCS. During construction, excavation below the Demarcation Barrier was conducted to install drainage components and foundations for retaining walls. Piles for the building foundation were driven through the Demarcation Barrier. All earth work above and below the Demarcation Barrier was completed in accordance with the requirements of the SMP.

Any disturbance to the CCS during the Site construction and development work was repaired, as was the disturbance caused by work in the Gowanus Canal by EPA and their contractor, and the CCS currently complies with the remedial design to isolate residual contamination and prevent exposure. There was no disturbance to the CCS throughout this reporting period.

Post-remediation groundwater sampling was conducted on July 7, 2021, July 25, 2022, October 25, 2022, May 18, 2023, October 19, 2023, and June 3, 2024, to comply with Section 5.2, Certification of Engineering and Institutional Controls, of the SMP. Groundwater samples were collected from MW-1AR, MW-3AR, MW-4AR, and MW-5AR.

The concentrations of VOCs and SVOCs in groundwater remain consistent with past sampling events and appear to be stable following Site construction and redevelopment.

An SVI investigation was completed at the Site in April 2018 in accordance with a Soil Vapor Intrusion Sampling Work Plan submitted to NYSDEC and NYSDOH dated March 29, 2018 and approved on April 2, 2018. The results from that SVI investigation were

submitted to NYSDEC in the July 2021 PRR. Based on the SVI results from April 2018 and the consistent results of the last 12 semi-annual groundwater monitoring events, SVI is not a concern and the SSDS does not need to be activated.

The ECs and ICs implemented under the Certificate of Completion and the Environmental Easement granted to the NYSDEC and recorded with the Kings County Clerk remain in effect and continue to be protective of human health and the environment.

Table 1

Groundwater Analytical Results - Post-Construction (2021-2024) 214 3rd Street, Brooklyn, Kings County, New York

NYSDEC BCP Site No. C224100 BL Project No. 03C497-M

		Sample ID				OUP (3)					M\	W-1AR		
		Sample Date	7/7/2021	7/25/2022	10/25/2022	5/18/2023	10/19/2023	6/3/2024	7/7/2021	7/25/2022	10/25/2022	5/18/2023	10/19/2023	6/3/2024
Parameter	Unit	TOGS	(MW-3AR dup)	(MW-4AR dup)	(MW-4AR dup)	(MW-5AR dup)	(MW-5AR dup)	(MW-4AR dup)						
SVOCs EPA Method 8270 (1) (2)														
Acenaphthene	μg/L	20	ND < 0.05	ND < 0.05	0.0513	5.10	0.768	ND < 0.0500	0.25	0.20	0.133	1.05	0.20	ND < 0.0500
Anthracene	μg/L	50	ND < 0.05	ND < 0.05	ND < 0.0513	0.350	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.0526	ND < 0.0500
Benzo(a)anthracene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	0.263	ND < 0.0500
Benzo(a)pyrene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	0.379	ND < 0.0500
Benzo(b)fluoranthene	μg/L	0.002	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	0.432	ND < 0.0500
Benzo(g,h,i)perylene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	0.211	ND < 0.0500
Benzo(k)fluoranthene	μg/L	0.002	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	0.232	ND < 0.0500
Chrysene	μg/L	0.002	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	0.253	ND < 0.0500
Dibenz(a,h)anthracene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	0.0737	ND < 0.0500
Fluoranthene	μg/L	50	ND < 0.05	ND < 0.05	0.0615	ND < 0.250	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	1.8	0.0526	ND < 0.0500
Fluorene	μg/L	NE	0.2	ND < 0.05	0.0615	ND < 0.250	0.4	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	0.274	ND < 0.0500
Indeno(1,2,3-c,d)pyrene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	0.2	ND < 0.0500
Naphthalene	μg/L	10	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.0526	ND < 0.0500	0.21	0.18	0.154	0.8	0.232	0.41
Phenanthrene	μg/L	50	ND < 0.05	0.0588	0.0923	0.3	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.0526	ND < 0.0500
Pyrene	μg/L	50	0.08	ND < 0.05	ND < 0.0513	ND < 0.250	0.179	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	0.0842	ND < 0.0500
Bis(2-ethylhexyl) phthalate	μg/L	5	1.76	2.33 (B)	1.64 (B)	ND < 2.50	ND < 0.526	ND < 0.500	1	ND < 0.50	1.34 (B)	ND < 2.50	16	ND < 0.500
Pentachlorophenol	μg/L	NE	ND < 0.25	ND < 0.29	ND < 0.0256	ND < 1.25	NA	NA	ND < 0.25	ND < 0.25	ND < 0.256	ND < 1.25	NA	NA
VOCs EPA Method 8260 (1) (2)														
1,4-Diethylbenzene	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.341	ND < 0.341	NA	1.84	1.05	ND < 0.50	ND < 3.41	ND < 1.70	NA
tert-Butyl alcohol (TBA)	μg/L	NE	ND < 0.50	ND < 0.50	ND < 0.500	ND < 0.608	ND < 0.608	0.8	ND < 1.00	ND < 2.50	ND < 0.20	ND < 6.08	ND < 3.04	ND < 0.50
1,2,4-trimethylbenzene	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.310	ND < 0.310	ND < 0.20	ND < 0.40	ND < 1.00	ND < 0.200	ND < 3.10	ND < 0.155	0.27
Methyl Ethyl Ketone (MEK)	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.421	ND < 0.421	ND < 0.20	ND < 0.40	ND < 1.00	0.67	ND < 4.21	ND < 2.10	ND < 0.20
Naphthalene	μg/L	10	ND < 1.00	ND < 1.00	ND < 1.0	ND < 0.212	ND < 0.212	NA	ND < 2.00	ND < 5.00	ND < 1.00	ND < 2.12	ND < 1.06	NA
Acetone	μg/L	50	ND < 1.00	ND < 1.00	ND < 1.0	ND < 1.34	ND < 1.34	ND < 1.00	0.0129	ND < 5.00	5.64	ND < 1.34	ND < 6.70	ND < 1.0
Benzene	μg/L	1	ND < 0.20	0.25	0.22	ND < 0.279	ND < 0.279	ND < 0.20	74.1	62.6	45	74.6	65	50
Chloroform	μg/L	7	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.243	ND < 0.243	ND < 0.20	ND < 0.40	ND < 1.00	ND < 0.200	ND < 4.21	ND < 2.10	ND < 0.20
Chloromethane	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.372	0.73	ND < 0.20	ND < 0.40	ND < 1.00	ND < 0.200	ND < 3.72	ND < 1.86	ND < 0.20
Cyclohexane	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.491	ND < 0.491	0.25	51.8	41.6	7.03	54.7	47.5	60
Dichloromethane	μg/L	5**	ND < 1.00	3.49 (B)	ND < 0.200	ND < 0.397	ND < 0.203	ND < 1.0	5.06	19.2 (B)	ND < 0.20	5.1	ND < 1.98	ND < 1.0
Isopropylbenzene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.405	ND < 0.405	ND < 0.20	ND < 0.40	2.55	1.24	ND < 4.05	2.2	1.9
Methyl acetate	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.442	ND < 0.442	ND < 0.20	ND < 0.40	ND < 1.00	ND < 0.20	ND < 4.42	ND < 2.21	ND < 0.20
Methylcyclohexane	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.477	ND < 0.477	ND < 0.20	ND < 0.40	12.7	5.25	16.7	14.9	24
Methyl tert-butyl ether (MTBE)	μg/L	NE	ND < 0.20	0.72	0.6	ND < 0.244	ND < 0.244	0.62	ND < 0.40	ND < 1.00	ND < 0.20	ND < 2.44	ND < 1.22	ND < 0.20
n-propylbenzene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.384	ND < 0.384	ND < 0.20	ND < 0.40	1.7	0.74	ND < 3.84	2	1.1
sec-butylbenzene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.444	ND < 0.444	0.21	ND < 0.40	ND < 1.00	0.28	ND < 4.44	ND < 2.22	0.92
Toluene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.346	ND < 0.346	ND < 0.20	0.74	2.6	0.64	ND < 3.46	ND < 1.73	0.87
Ethylbenzene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.290	ND < 0.290	ND < 0.20	ND < 0.40	ND < 1.00	ND < 0.20	ND < 4.42	1.95	ND < 0.20
Xylene (m & p)	μg/L	5**	ND < 0.50	ND < 0.50	ND < 0.500	ND < 0.578	ND < 0.578	ND < 0.50	ND < 1.00	ND < 2.50	0.51	ND < 5.78	ND < 2.89	0.77
Xylene (o)	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.261	ND < 0.261	ND < 0.20	ND < 0.40	ND < 1.00	0.24	ND < 2.61	ND < 1.30	0.37
Xylene Total	μg/L	5**	ND < 0.60	ND < 0.60	ND < 0.600	ND < 0.836	ND < 0.836	ND < 0.60	ND < 1.20	ND < 3.00	0.75	ND < 8.36	ND < 4.18	1.1

Abbreviations and Symbols:

** = The principal organic contaminant standard for groundwater of 5

μg/L applies to this substance.

μg/L = micrograms per liter

DUP = Duplicate groundwater sample of MW-5AR.

EPA = United States Environmental Protection Agency

mg/L = milligrams per liter

NA = Not analyzed

NC = Not collected

ND <0.20 = Less than Laboratory Method Detection Limit (MDL) and

the limit.

NE = Not established by NYSDEC

SVOCs = semi-volatile organic compounds

TOGS = Technical and Operational Guidance Series (1.1.1)

VOCs = volatile organic compounds

B = Analyte detected in method batch lab blank

Notes:

Shading indicates exceedance of TOGS Criteria

2. Only detected compounds are listed

3. Duplicate sample of MW-5AR

Page 1 of 3

Table 1

Groundwater Analytical Results - Post-Construction (2021-2024) 214 3rd Street, Brooklyn, Kings County, New York NYSDEC BCP Site No. C224100 BL Project No. 03C497-M

		Sample ID	MW-3AR							MV	N-4AR			
		Sample Date	7/7/2021	7/25/2022	10/25/2022	5/18/2023	10/19/2023	6/3/2024	7/7/2021	7/25/2022	10/25/2022	5/18/2023	10/19/2023	6/3/2024
Parameter	Unit	TOGS		•			•							
SVOCs EPA Method 8270 (1) (2)														
Acenaphthene	μg/L	20	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.667	ND < 0.0500
Anthracene	μg/L	50	ND < 0.05	0.05	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	0.25	ND < 0.667	ND < 0.0500
Benzo(a)anthracene	μg/L	NE	ND < 0.05	0.06	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.667	ND < 0.0500
Benzo(a)pyrene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.667	ND < 0.0500
Benzo(b)fluoranthene	μg/L	0.002	ND < 0.05	0.05	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.667	ND < 0.0500
Benzo(g,h,i)perylene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.667	ND < 0.0500
Benzo(k)fluoranthene	μg/L	0.002	ND < 0.05	0.05	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.667	ND < 0.0500
Chrysene	μg/L	0.002	ND < 0.05	0.05	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.667	ND < 0.0500
Dibenz(a,h)anthracene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.667	ND < 0.0500
Fluoranthene	μg/L	50	ND < 0.05	0.11	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.667	ND < 0.0500
Fluorene	μg/L	NE	ND < 0.05	0.20	0.174	ND < 0.0526	0.20	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	0.40	ND < 0.667	ND < 0.0500
Indeno(1,2,3-c,d)pyrene	μg/L	NE	ND < 0.05	0.05	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.667	ND < 0.0500
Naphthalene	μg/L	10	ND < 0.05	ND < 0.05	ND < 2.56	ND < 0.0526	ND < 0.0526	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.250	ND < 0.667	ND < 0.0500
Phenanthrene	μg/L	50	ND < 0.05	0.05	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0500	ND < 0.05	0.0667	0.0615	0.95	0.08	ND < 0.0500
Pyrene	μg/L	50	ND < 0.05	0.09	ND < 0.0513	ND < 0.0526	0.0737	ND < 0.0500	ND < 0.05	ND < 0.05	ND < 0.0513	0.25	ND < 0.667	ND < 0.0500
Bis(2-ethylhexyl) phthalate	μg/L	5	ND < 0.50	1.92	3.01 (B)	ND < 0.526	12.3	ND < 0.500	0.66	0.589	2.54 (B)	ND < 2.50	ND < 0.667	ND < 0.500
Pentachlorophenol	μg/L	NE	ND < 0.25	ND < 0.25	ND < 0.256	ND < 0.263	NA	NA	0.27	ND < 0.27	ND < 0.256	ND < 1.25	NA	NA
VOCs EPA Method 8260 (1) (2)														
1,4-Diethylbenzene	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.341	ND < 0.341	NA	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.341	ND < 0.341	NA
tert-Butyl alcohol (TBA)	μg/L	NE	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.608	ND < 0.608	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.608	ND < 0.608	1.3
1,2,4-trimethylbenzene	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.310	ND < 0.310	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.310	ND < 0.310	ND < 0.20
Methyl Ethyl Ketone (MEK)	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.421	ND < 0.421	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.421	ND < 0.421	ND < 0.20
Naphthalene	μg/L	10	ND < 1.00	ND < 1.00	ND < 1.00	ND < 0.212	ND < 0.212	NA	ND < 1.00	ND < 1.00	ND < 1.00	ND < 0.212	ND < 0.212	NA
Acetone	μg/L	50	ND < 1.00	ND < 1.00	ND < 1.00	ND < 1.34	ND < 1.34	ND < 1.00	1.33	ND < 1.00	ND < 1.00	ND < 1.34	ND < 1.34	ND < 1.00
Benzene	μg/L	1	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.279	ND < 0.279	ND < 0.20	ND < 0.20	0.25	0.21	ND < 0.279	ND < 0.279	ND < 0.20
Chloroform	μg/L	7	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.421	ND < 0.421	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.421	ND < 0.421	ND < 0.20
Chloromethane	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.372	0.47	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.372	0.65	ND < 0.20
Cyclohexane	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.491	ND < 0.491	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.491	ND < 0.491	0.21
Dichloromethane	μg/L	5**	ND < 1.00	1.2 (B)	ND < 0.20	ND < 0.397	ND < 0.203	ND < 1.0	ND < 1.00	1.86 (B)	ND < 0.20	ND < 0.397	ND < 0.397	ND < 1.0
Isopropylbenzene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.405	ND < 0.405	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.405	ND < 0.405	ND < 0.20
Methyl acetate	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.442	ND < 0.442	ND < 0.20	ND < 0.20	0.85	ND < 0.20	ND < 0.442	ND < 0.442	ND < 0.20
Methylcyclohexane	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.477	ND < 0.477	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.477	ND < 0.477	0.2
Methyl tert-butyl ether (MTBE)	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.244	ND < 0.244	ND < 0.20	ND < 0.20	0.81	0.58	0.55	1.05	0.68
n-propylbenzene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.384	ND < 0.384	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.384	ND < 0.399	ND < 0.20
sec-butylbenzene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.444	ND < 0.444	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.444	ND < 0.444	0.21
Toluene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.346	ND < 0.346	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.346	ND < 0.346	ND < 0.20
Ethylbenzene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.442	ND < 0.442	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.442	ND < 0.442	ND < 0.20
Xylene (m & p)	μg/L	5**	ND < 0.50	ND < 0.50	ND < 0.20	ND < 0.578	ND < 0.578	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.578	ND < 0.578	ND < 0.50
Xylene (o)	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.261	ND < 0.261	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.261	ND < 0.261	ND < 0.20
Xylene Total	μg/L	5**	ND < 0.60	ND < 0.60	ND < 0.60	ND < 0.836	ND < 0.836	ND < 0.60	ND < 0.60	ND < 0.60	ND < 0.60	ND < 0.836	ND < 0.836	ND < 0.60

Abbreviations and Symbols:

** = The principal organic contaminant standard for groundwater of 5

μg/L applies to this substance.

μg/L = micrograms per liter

DUP = Duplicate groundwater sample of MW-5AR.

EPA = United States Environmental Protection Agency

mg/L = milligrams per liter

NA = Not analyzed

NC = Not collected

ND <0.20 = Less than Laboratory Method Detection Limit (MDL) and

the limit.

NE = Not established by NYSDEC

SVOCs = semi-volatile organic compounds

TOGS = Technical and Operational Guidance Series (1.1.1)

VOCs = volatile organic compounds

B = Analyte detected in method batch lab blank

Notes:

1. Shading indicates exceedance of TOGS Criteria

2. Only detected compounds are listed

3. Duplicate sample of MW-5AR

Page 2 of 3

Table 1

Groundwater Analytical Results - Post-Construction (2021-2024) 214 3rd Street, Brooklyn, Kings County, New York NYSDEC BCP Site No. C224100 BL Project No. 03C497-M

		Sample ID			M\	W-5AR					Trii	Blank		
		Sample Date	7/7/2021	7/25/2022	10/25/2022	5/18/2023	10/19/2023	6/3/2024	7/7/2021	7/25/2022	10/25/2022	5/18/2023	10/19/2023	6/3/2024
Parameter	Unit	TOGS					<u> </u>							
SVOCs EPA Method 8270 (1) (2)														
Acenaphthene	μg/L	20	1.28	2.22	1.41	0.34	0.37	0.22	NA	NA	NA	NA	NA	NA
Anthracene	μg/L	50	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0500	ND < 0.0500	ND < 0.0500	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0500	ND < 0.0500	ND < 0.0500	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0500	ND < 0.0500	ND < 0.0500	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	μg/L	0.002	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0500	ND < 0.0500	ND < 0.0500	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0500	ND < 0.0500	ND < 0.0500	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	μg/L	0.002	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0500	ND < 0.0500	ND < 0.0500	NA	NA	NA	NA	NA	NA
Chrysene	μg/L	0.002	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0500	ND < 0.0500	ND < 0.0500	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0500	ND < 0.0500	ND < 0.0500	NA	NA	NA	NA	NA	NA
Fluoranthene	μg/L	50	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0500	ND < 0.0500	ND < 0.0500	NA	NA	NA	NA	NA	NA
Fluorene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0500	0.29	ND < 0.0500	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-c,d)pyrene	μg/L	NE	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0500	ND < 0.0500	ND < 0.0500	NA	NA	NA	NA	NA	NA
Naphthalene	μg/L	10	0.42	ND < 0.05	ND < 1.00	ND < 0.0500	ND < 0.0500	ND < 0.0500	NA	NA	NA	NA	NA	NA
<u>Phenanthrene</u>	μg/L	50	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0500	ND < 0.0500	ND < 0.0500	NA	NA	NA	NA	NA	NA
Pyrene	μg/L	50	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0500	ND < 0.0500	ND < 0.0500	NA	NA	NA	NA	NA	NA
Bis(2-ethylhexyl) phthalate	μg/L	5	0.5	0.616	1.64 (B)	0.86 (B)	ND < 0.0500	ND < 0.500	NA	NA	NA	NA	NA	NA
Pentachlorophenol	μg/L	NE	ND < 0.25	ND < 0.27	ND < 0.256	ND < 0.250	NA	NA	NA	NA	NA	NA	NA	NA
VOCs EPA Method 8260 (1) (2)														
1,4-Diethylbenzene	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.341	ND < 0.341	NA	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.341	NC	ND < 0.341
tert-Butyl alcohol (TBA)	μg/L	NE	ND < 0.50	ND < 0.50	ND < 0.50	1	ND < 0.608	0.89	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.608	NC	ND < 0.608
1,2,4-trimethylbenzene	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.200	ND < 0.310	ND < 0.310	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.310	NC	ND < 0.310
Methyl Ethyl Ketone (MEK)	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.421	ND < 0.421	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.421	NC	ND < 0.421
Naphthalene	μg/L	10	1.05	ND < 1.00	ND < 1.00	ND < 0.212	ND < 0.212	NA	ND < 1.00	ND < 1.00	ND < 1.00	ND < 0.212	NC	ND < 0.212
Acetone	μg/L	50	ND < 1.00	ND < 1.00	ND < 1.00	ND < 1.34	ND < 1.34	ND < 1.00	ND < 1.00	ND < 1.00	ND < 1.00	ND < 1.34	NC	ND < 1.34
Benzene	μg/L	1	0.78	ND < 0.20	ND < 0.20	ND < 0.279	ND < 0.279	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.279	NC	ND < 0.279
Chloroform	μg/L	7	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.421	ND < 0.421	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.243	NC	ND < 0.243
Chloromethane	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.372	1.64	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.372	NC	ND < 0.372
Cyclohexane	μg/L	NE	0.88	0.36	ND < 0.20	ND < 0.491	ND < 0.491	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.491	NC	ND < 0.491
Dichloromethane	μg/L	5**	1.73	2.3 (B)	ND < 0.20	ND < 0.397	ND < 0.397	ND < 1.0	ND < 1.00	ND < 1.00	ND < 0.20	ND < 0.397	NC	ND < 0.397
Isopropylbenzene	μg/L	5**	1.21	0.62	ND < 0.20	ND < 0.405	ND < 0.405	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.405	NC	ND < 0.405
Methyl acetate	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.442	ND < 0.442	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.442	NC	ND < 0.442
Methylcyclohexane	μg/L	NE	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.477	ND < 0.477	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.477	NC	ND < 0.477
Methyl tert-butyl ether (MTBE)	μg/L	NE	0.9	0.56	0.53	ND < 0.244	ND < 0.244	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.244	NC	ND < 0.244
n-propylbenzene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.384	ND < 0.399	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.384	NC	ND < 0.384
sec-butylbenzene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.444	ND < 0.444	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.444	NC	ND < 0.444
Toluene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.346	ND < 0.346	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.346	NC	ND < 0.346
Ethylbenzene	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.442	ND < 0.442	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.290	NC	ND < 0.290
Xylene (m & p)	μg/L	5**	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.578	ND < 0.578	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.50	ND < 0.578	NC	ND < 0.578
Xylene (o)	μg/L	5**	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.261	ND < 0.261	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.20	ND < 0.261	NC	ND < 0.261
Xylene Total	μg/L	5**	ND < 0.60	ND < 0.60	ND < 0.60	ND < 0.836	ND < 0.836	ND < 0.60	ND < 0.60	ND < 0.60	ND < 0.60	ND < 0.836	NC	ND < 0.836

Abbreviations and Symbols:

** = The principal organic contaminant standard for groundwater of 5

μg/L applies to this substance.

μg/L = micrograms per liter

DUP = Duplicate groundwater sample of MW-5AR.

EPA = United States Environmental Protection Agency

mg/L = milligrams per liter

NA = Not analyzed

NC = Not collected

ND <0.20 = Less than Laboratory Method Detection Limit (MDL) and

the limit.

NE = Not established by NYSDEC

SVOCs = semi-volatile organic compounds

TOGS = Technical and Operational Guidance Series (1.1.1)

VOCs = volatile organic compounds

B = Analyte detected in method batch lab blank

Notes:

1. Shading indicates exceedance of TOGS Criteria

2. Only detected compounds are listed

3. Duplicate sample of MW-5AR

Page 3 of 3

Ground Water Analytical Results - Post-Construction (2013 - 2021) 214 3rd Street, Brooklyn, Kings County, New York NYSDEC BCP Site No. C224100 BL Project No. 03C497-M

Sample ID	TOGS	Γ									MW-1AR							
•	1003	12/27/2013	5/3/20	116	9/27/2	0016	6/30/2017	9/21/2017	3/6/2	0010	8/8/2018	9/24/2019	1/29/2020	5/14/2020	10/21/2020	T 5/2	5/2021	7/7/2021
Date Sampled		12/21/2013	3/3/20	710	9/2//2	2010	0/30/2017	9/21/2017	3/0/2	2010	0/0/2010	9/24/2019	1/29/2020	3/14/2020	10/21/2020	3/2	3/2021	7/1/2021
VOCs (μg/L) 1,2-Dichloroethane	0.6	ND <2.5	ND <0.2		ND <0.2		2.2	ND <0.2	ND <0.2		ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2		ND <0.4
1,2,3-Trichlorobenzene	5**	ND <2.5	ND <0.2		ND <0.2		0.33 J	ND <0.2	ND <0.2		ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2		ND < 0.4
1,2,4-Trimethylbenzene	5**	ND <2.5	ND <0.2		ND <0.2		ND <0.2	0.35	J 1.2		ND <0.2	0.24 J	ND <0.2	ND <0.2	0.32 J	ND <0.2		ND < 0.4
1,3,5-Trimethylbenzene	5**	ND <2.5	ND <0.2		ND <0.2		ND <0.2	0.33	J ND <0.2		ND <0.2	0.24 J	ND <0.2	ND <0.2	0.32 J	ND <0.2		ND < 0.4
2-Butanone (MEK)	50	ND <2.5	ND <0.2		ND <0.2		ND <0.2	ND <0.2	1.7	SCALE-E, J	ND <0.2	ND <0.2	ND <0.5	ND <0.2	ND <0.5	ND <0.5		ND < 0.4
2-Butanone (MEN)	50	ND <2.5	ND <0.2		ND <0.2		ND <0.2	ND <0.2	ND <0.2	SCALL-L, 3	0.76	ND <0.2	ND <0.5	ND <0.5	ND <0.5	ND <0.5		ND <0.4
Acetone	50	ND <2.5	ND <0.2		1.5		3.6 B	16	7.4	SCALE-E	ND <1.0	ND <0.2	ND <1.0	1.2 J	1		V-E, SCAL-E, J, B	12.9
Benzene	1	43	65		45	J	35	64	47	30ALL-L	49	59	53	45	71	63.2	V-L, 3CAL-L, 3, D	74.1
Carbon disulfide	NE	ND <2.5	ND <0.2		ND <0.2		ND <0.2	ND <0.2	ND <0.2		ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2		ND <0.4
cis-1,2-Dichloroethylene	5**	ND <2.5	ND <0.2		ND <0.2		0.21 J	0.21	J ND <0.2		ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2		ND < 0.4
Chloroform	7	ND <2.5	ND <0.2		ND <0.2		ND <0.2	ND <0.2	ND <0.2		ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2		ND < 0.4
	NE	ND <2.5	35		25		9.7	42	39		24	37		-02 45	56	68.9		51.8
Cyclohexane	5**		0.25	1			9.7 0.32 J	0.46	J 0.29		0.26		<u> </u>	J 0.21 J	 			ND < 0.4
Ethylbenzene	5**	ND <2.5		J	ND <0.2					J	•	J 0.32 J	0.34	J 0.21 J	0.36 J	ND < 0.2		
Isopropylbenzene		5.7	5.3		4.9		ND <0.2	ND <0.2	5.2		4.5	5.2	4.3	4	0	3.88		ND < 0.4
Methyl tert-butyl ether (MTBE)	NE	ND <2.5	ND <0.2		ND <0.2		ND <0.2	0.3	J 0.34	J	0.36	J 0.37 J	0.31	J 0.33 J	ND <0.2	ND <0.2		ND < 0.4
Methylcyclohexane	NE C**	ND <2.5	8.8		5.4		ND <0.2	ND <0.2	11		6.3	12	6.6	13	19	18.8		ND <0.4
Methylene chloride	5**	ND <2.5	ND <1.0		ND <1.0		ND <1.0	ND <1.0	ND <1.0		ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0		5.06
Naphthalene	10 5**	3.6 ND <2.5	NA ND <0.2		NA ND 40.2		NA 0.24	0.34 V	J 0.47		NA ND 40.2	NA 0.6	NA 0.45	NA J ND <0.2	0.9	NA ND <0.2		ND <2
n-butylbenzene	5**	4.5	2.6		ND <0.2 1.4		0.24 J 3.7	6.4	3.6	J	ND <0.2	0.6 3.8	0.45 2.9	2.7	3.9	2.78		ND <0.4 ND <0.4
n-propylbenzene o-Xylene	5**	4.5 ND <2.5	ND <0.2		ND <0.2		ND <0.2	ND <0.2	ND <0.2		0.22	J ND <0.2	ND <0.2	0.31 J	0.52	ND <0.2		ND < 0.4
p- & m- Xylenes	5**	ND<0.5	ND<0.2		ND<0.2		ND<0.2	ND<0.2	0.59		0.82	J ND<0.5	0.63	J 0.76 J	1.3	ND<0.5		ND <1
Xylenes (Total)	5**	ND <7.5	0.8	ı	ND < 0.6		0.94 J	1.85	J ND <0.6	<u> </u>	1	J 1.5 J	0.63	J 1.1 J	1.8	ND <0.6		ND <1.2
p-Diethylbenzene	NE	ND <0.4	ND <0.4	<u> </u>	ND <0.4		ND <0.4	ND <0.4	ND <0.4		ND <0.4	ND < 0.4	ND < 0.4	ND <0.4	ND <0.4	1.82		1.84
p-Isopropyltoluene	NE	ND <2.5	ND <0.2		ND <0.4		ND <0.2	0.66	ND <0.4		ND <0.4	ND <0.2	ND <0.2	ND <0.4	ND <0.4	ND <0.2		ND <0.4
sec-butylbenzene	5**	ND <2.5	0.91		0.99		0.83	ND <0.2	0.97		0.78	1.2	0.79	0.89	1.3	1.06		ND < 0.4
tert-butyl-alcohol (TBA)	NE	ND <2.5	3.3	CCV-E		CCV-E		ND <0.2	ND <0.5		8.9		ND <0.2	ND <0.2	ND <0.2	9.52		ND <1
tert-butylbenzene	5**	ND <2.5	0.23	I I	ND <0.2	OOV-L	0.2 J	ND <0.3	0.23	I	0.23	J ND <0.2	0.2	J 0.25 J	0.28 J	J ND <0.2		ND <0.4
p-Ethyltoluene	NE	ND <2.5	ND <0.2	J	ND <0.2		ND <0.2	NA NA	NA	<u> </u>	NA	NA NA	ND <0.2	ND <0.2	ND <0.2	ND <0.2		ND < 0.4
Toluene	5**	ND <2.5	0.45	ı	0.29		0.53	0.74	0.45		0.49	J 0.82	0.59	0.59	0.89	0.7		0.74 J
Trans-1,3-Dichloropropylene	NE	ND <2.5	ND <0.2	<u> </u>	ND <0.2	<u> </u>	ND <0.2	ND <0.2	ND <0.2	<u> </u>	ND <0.2	ND <0.2	0.29	J ND <0.2	ND <0.2	ND <0.2		ND <0.4
SVOCs (µg/L)	INL	ND \Z.5	140 <0.2		IND CO.2		ND CO.2	ND <0.2	140 <0.2		ND CO.2	110 <0.2	0.23	ND CO.Z	ND VO.Z	110 <0.2		ND CO.4
Acenaphthene	20	0.0821	0.0757		0.123		0.1	0.15	0.144		ND <0.05	0.103	0.133	0.164	0.14	0.2		ND <0.05
Acenaphthlyene	NE	ND <0.0513	ND <0.0541		ND <0.0513	3	ND <0.05	ND <0.05	ND <0.0556		ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05		ND <0.05
Anthracene	50	ND <0.0513	ND <0.0541		ND <0.0513		ND <0.05	ND < 0.05	ND <0.0557		ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05		ND <0.05
Benzo(a)anthracene	NE	ND <0.0513	ND <0.0541		ND <0.0513		ND <0.05	ND < 0.05	ND <0.0558		ND <0.05		ND <0.05	ND <0.05	ND <0.05	ND <0.05		ND <0.05
Benzo(a)pyrene	RL	ND <0.0513	ND <0.0541		ND <0.0513		ND <0.05	ND <0.05	ND <0.0559		ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05		ND <0.05
Benzo(b)fluoranthene	0.002	ND <0.0513	ND <0.0541		ND <0.0513		ND <0.05	ND < 0.05	ND <0.0560		ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05		ND <0.05
Benzo(g,h,i)perylene	NE	ND <0.0513	ND <0.0541		ND <0.0513		ND <0.05	ND <0.05	ND <0.0561		ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05		ND <0.05
Benzo(k)fluoranthene	0.002	ND <0.0513	ND <0.0541		ND <0.0513		ND <0.05	ND <0.05	ND <0.0562		ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05		ND <0.05
Bis(2-ethylhexyl)phthalate	5	ND <2.56	ND <0.0341		ND <2.56)	ND <0.05	ND < 0.05	ND <0.0563		ND <0.05	ND <0.05	121	ND< 0.5	ND< 0.5	0.85		1
- 7 7 7 7	0.002		ND <0.0541		ND <0.0513)		ND < 0.05	ND <0.0564				ND <0.05	ND < 0.05	ND < 0.05	ND <0.05		ND <0.05
Chrysene Diothyl phthalato	50	ND <0.0513 ND <2.56	ND <0.0541		ND <2.56)	ND <0.05 ND <2.5	ND <0.05	ND <0.0564		ND <0.05 4.95	ND <0.05 J ND <2.5	ND <0.05	ND <0.05	ND <0.05	ND <0.05		ND <0.05
Diethyl phthalate)					1				+			
Fluoranthene	50	ND <0.0513	ND < 0.0541		ND <0.0513)	ND <0.05	ND < 0.05	ND <0.0565		ND <0.05		ND <0.05	ND <0.05	ND < 0.05	ND <0.05		ND <0.05
Flourene	NE	0.0615	ND < 0.0541		0.462)	0.67	ND < 0.05	ND <0.0566		ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05		0.23
Indeno(1,2,3-cd)pyrene	NE 10	ND <0.0513	ND <0.0541		ND <0.0513)	ND <0.05 J	ND <0.05	ND <0.0567		ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	D	ND <0.05
Naphthalene Dhananthrana	10	0.492	0.151		0.0821)	0.12	0.25	0.122		0.0914	0.194	0.195	0.318	0.23	0.18	В	0.21
Phenanthrene	50	ND <0.0513	ND < 0.0541		ND <0.0513		0.05	ND < 0.05	ND <0.0556		ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND < 0.05	ND <0.05		ND <0.05
Pyrene	50	ND < 0.0513	ND < 0.0541		ND < 0.0513	3	ND < 0.05	ND < 0.05	ND < 0.0556		ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05		ND < 0.05

NOTES

Only compounds detected are listed

Post-Construction means after store construction and opening in December 2013.

TOGS = Technical and Operational Guidance Series (1.1.1).

Ambient water quality standards and guidance values and groundwater effluent limitations.

Shading indicates exceedance of TOGS Criteria

** = The principal organic contaminant standard for groundwater of 5 ug/L applies to this substance.

NE = None Established by NYSDEC

< = Less than Laboratory Method Detection Limit (MDL)</p>

ppb = parts per billion

SCAL-E = The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%)

The value reported is ESTIMATED. The value is estimated due to its behavior during cotinuing The value reported is ESTIIVATED. The value is communed and calibration verification (>20% difference for average Rf or >20% drift for quadratic fit.

The value reported is ESTIMATED. The value is estimated due to its behavior during initial ICV-E =

calibration verification (Recovery >30% of expected value.

This LCS analyte is outside laboratory recovery limits due to the analyte behavior using referened QL-02 = Inis Los analyte is outside laboratory recovery minus and to the method. The reference method has certain limitations with respect to analytes of this nature.

U = (Organic/Inorganic Qualifiers) The analyte was not detected at or above the reporting limit.

J and JJ = (Organic Qualifiers) The analyte was positively identified; the associated numerical value

is the approximate concentration of the analyte in the sample. UJ = (Organic Qualifiers) The analyte was not detected above the reported sample quantitation limit (QL).

However, the reported QL is approximate and may or may not represent the actual limit of quantitation

necessary to accurately and precisely measure the analyte in the sample.

B = (Inorganic Qualifiers) The result is less than the Low Level Standard Check - Secondary Dilution and

Analysis/Reporting Limit, but greater than or equal to the Instrument Detection Limit/Method Detection Limit.

Ground Water Analytical Results - Post-Construction (2013 - 2021) 214 3rd Street, Brooklyn, Kings County, New York NYSDEC BCP Site No. C224100 BL Project No. 03C497-M

Sample ID	TOGS									MW-3AR									
Date Sampled		12/27/2013	12/27/2013 (DUP)	4/29/2014	8/27/2014	4/30/2015	8/21/2015	5/3/2016	9/27/2016	6/30/2017	9/21/2017	3/6/2018	8/8/2018	9/24/2019	1/29/2020	5/14/2020	10/21/2020	5/25/2021	7/7/2021
VOCs (µg/L)		12,21,2010	12/21/2010 (201)	1/20/2011	0/21/2011	1/00/2010	0,21,2010	0/0/2010	0/21/2010	0/00/2017	0/21/2011	0,0,2010	0,0,2010	0/2 1/2010	172072020	10/11/2020	10/21/2020	10/20/2021	17172021
1,2-Dichloroethane	0.6	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
1,2,3-Trichlorobenzene	5**	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
1,2,4-Trimethylbenzene	5**	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
1,3,5-Trimethylbenzene	5**	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
2-Butanone (MEK)	50	ND <2.5	ND <2.5	ND <0.5	ND <0.5	ND <0.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
2-Hexanone	50	ND <2.5	ND <2.5	ND <0.5	ND <0.5	ND <0.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Acetone	50	ND <2.5	ND <2.5	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	1.9 J,B		ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Benzene	1	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Carbon disulfide	NE	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
cis-1,2-Dichloroethylene	5**	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Chloroform	7	ND <2.5	ND <2.5	ND <0.2	ND <0.2	0.92	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2
Cyclohexane	NE	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2
Ethylbenzene	5**	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Isopropylbenzene	5**	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Methyl tert-butyl ether (MTBE)	NE	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Methylcyclohexane	NE	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Methylene chloride	5**	ND <2.5	ND <2.5	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
Naphthalene	10	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-butylbenzene	5**	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
n-propylbenzene	5**	ND <2.5	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
o-Xylene	5**	ND <2.5	ND <2.5	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2
p- & m- Xylenes	5**	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
Xylenes (Total)	5**	ND <7.5	ND <7.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
p-Diethylbenzene	NE	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4
p-Isopropyltoluene	NE	ND <2.5	ND <2.5	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2
sec-butylbenzene	5**	ND <2.5	ND <2.5	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2
tert-butyl-alcohol (TBA)	NE	ND <2.5	ND <2.5	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2
tert-butylbenzene	5**	ND <2.5	ND <2.5	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2
p-Ethyltoluene	NE	ND <2.5	ND <2.5	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	5**	ND <2.5	ND <2.5	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2
Trans-1,3-Dichloropropylene	NE	ND <2.5	ND <2.5	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2
SVOCs (µg/L)																			
Acenaphthene	20	ND < 0.0541	ND < 0.0571	ND < 0.0556	ND < 0.0526	ND < 0.0513	ND < 0.0526	ND < 0.0541	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05	ND <0.05	ND < 0.05	ND < 0.05				
Acenaphthlyene	NE	ND < 0.0541	ND < 0.0571	0.0556	ND < 0.0526	ND < 0.0513	ND < 0.0526	ND < 0.0541	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05				
Anthracene	50	ND < 0.0541	ND < 0.0571	0.0667	ND < 0.0526	ND < 0.0513	ND < 0.0526	ND < 0.0541	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05				
Benzo(a)anthracene	NE	0.0865	ND < 0.0571	0.122	0.0632	ND < 0.0513	ND < 0.0526	ND < 0.0541	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05	0.0686	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05
Benzo(a)pyrene	RL	ND < 0.0541	ND < 0.0571	0.144	0.0632	ND < 0.0513	ND < 0.0526	ND < 0.0541	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05	0.0686	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05
Benzo(b)fluoranthene	0.002	ND < 0.0541	ND < 0.0571	0.0778	0.0526 J	ND < 0.0513	ND < 0.0526	ND < 0.0541	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05	0.0571	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05
Benzo(g,h,i)perylene	NE	ND <0.0541	ND < 0.0571	0.122	0.0526 J	ND < 0.0513	ND < 0.0526	ND < 0.0541	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05	0.0571	ND < 0.05	ND < 0.05	ND <0.05	ND <0.05	ND < 0.05	ND < 0.05
Benzo(k)fluoranthene	0.002	ND < 0.0541	ND < 0.0571	0.111	0.0632	ND < 0.0513	ND < 0.0526	ND < 0.0541	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05	0.0571	ND < 0.05	ND < 0.05	ND <0.05	ND <0.05	ND < 0.05	ND < 0.05
Bis(2-ethylhexyl)phthalate	5	ND <2.70	ND <2.86	1.63	0.0632	ND < 0.0513	ND < 0.526	ND < 0.541	ND <2.56	ND < 0.05	146	3.43	0.72	0.64	ND< 0.5				
Chrysene	0.002	ND < 0.0541	ND < 0.0571	0.144	0.0632	ND < 0.0513	ND < 0.0526	ND <0.0541	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05	0.0686	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05
Diethyl phthalate	50	ND <2.70	ND <2.86	ND <2.78	ND <2.63	ND <2.56	ND <2.63	ND <2.7	ND <2.56	ND <2.5	ND <2.5	ND <2.5	6.09	ND <2.5	ND <2.5	ND <2.5	ND <2.5	ND <2.5	ND <2.5
Fluoranthene	50	ND < 0.0541	ND < 0.0571	0.244	0.126	ND < 0.0513	ND < 0.0526	ND < 0.0541	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05	0.137	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05
Flourene	NE	ND < 0.0541	ND < 0.0571	ND <0.0556	0.253	ND < 0.0513	ND <0.0526	ND <0.0541	0.349	ND <0.05	ND <0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND <0.05	0.25	0.22
Indeno(1,2,3-cd)pyrene	NE	0.0541 J	ND < 0.0571	0.1	ND < 0.0526	ND < 0.0513	ND < 0.0526	ND < 0.0541	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND < 0.05				
Naphthalene	10	ND <0.0541	0.103	ND <0.0556	0.0737	ND <0.0513	ND <0.0526	0.281	ND <0.0513	ND <0.05	ND < 0.05	ND < 0.05	ND <0.05	ND <0.05	ND <0.05				
Phenanthrene	50	ND < 0.0541	ND <0.0571	0.144	0.0842	ND < 0.0513	ND <0.0526	ND <0.0541	ND < 0.0513	ND < 0.05	ND <0.05	ND < 0.05	0.08	ND < 0.05	ND < 0.05	ND < 0.05	ND <0.05	ND <0.05	ND < 0.05
Pyrene	50	ND < 0.0541	ND <0.0571	0.244	0.116	ND <0.0513	ND <0.0526	ND < 0.0541	ND <0.0513	ND < 0.05	ND <0.05	ND < 0.05	0.126	ND < 0.05	ND < 0.05	ND < 0.05	ND <0.05	ND < 0.05	0.08 B
NOTES	- 55	0.0011	10.0071	∪. ⊑ 1 1	1 55	10.0010	30.0020	30.0011					1 3.123	. 12 10.00				. 12 10.00	

NOTES

Only compounds detected are listed

Post-Construction means after store construction and opening in December 2013.

TOGS = Technical and Operational Guidance Series (1.1.1).

Ambient water quality standards and guidance values and groundwater effluent limitations.

Shading indicates exceedance of TOGS Criteria

** = The principal organic contaminant standard for groundwater of 5 ug/L applies to this substance.

NE = None Established by NYSDEC

< = Less than Laboratory Method Detection Limit (MDL)</p>

ppb = parts per billion

SCAL-E = The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%)

The value reported is ESTIMATED. The value is estimated due to its behavior during cotinuing

calibration verification (>20% difference for average Rf or >20% drift for quadratic fit.

The value reported is ESTIMATED. The value is estimated due to its behavior

during initial calibration verification (Recovery >30% of expected value.

This LCS analyte is outside laboratory recovery limits due to the analyte behavior using QL-02 =

referened method The reference method has certain limitations with respect to analytes of this

U = (Organic/Inorganic Qualifiers) The analyte was not detected at or above the reporting limit. J and JJ = (Organic Qualifiers) The analyte was positively identified; the associated numerical value

is the approximate concentration of the analyte in the sample.

UJ = (Organic Qualifiers) The analyte was not detected above the reported sample quantitation limit (QL).

However, the reported QL is approximate and may or may not represent the actual limit of quantitation

necessary to accurately and precisely measure the analyte in the sample. B = (Inorganic Qualifiers) The result is less than the Low Level Standard Check - Secondary Dilution and

Analysis/Reporting Limit, but greater than or equal to the Instrument Detection Limit/Method Detection Limit.

Ground Water Analytical Results - Post-Construction (2013 - 2021) 214 3rd Street, Brooklyn, Kings County, New York NYSDEC BCP Site No. C224100 BL Project No. 03C497-M

Sample ID	TOGS	1							MW-4AR										
Date Sampled	1000	12/27/2013	4/29/2014	8/27/2014	4/30	0/2015 8/21/2015	5/3/2016	9/27/2016	6/30/2017	9/21/2017	3/6/2018	8/8/2018	8/8/2018 (DUP)	9/24/2019	1/29/2020	5/14/2020	10/21/2020	5/25/2021	7/7/2021
VOCs (µg/L)		, ,	., 20, 2017	5,2,72014	1700	0,21,2010	3, 3, 2010	3.2.72010	5.00/2011	3,2.,,2311	3, 3, 23 13	3, 3, 2010	3.3.23.3 (201)	5.22010	25,2520	5, 1 1, 2020	. 3,2 .,2320	5. 25, 25Z 1	.,.,2021
1,2-Dichloroethane	0.6	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
1,2,3-Trichlorobenzene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	0.39 J	ND < 0.2	ND <0.2								
1,2,4-Trimethylbenzene	5**	ND <2.5		J,B ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
1,3,5-Trimethylbenzene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
2-Butanone (MEK)	50	ND <2.5	ND < 0.5	ND < 0.5	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2					
2-Hexanone	50	ND <2.5	ND < 0.5	ND <0.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2
Acetone	50	ND <2.5	1.5	J,B 2.2 CC	V-E, B 1.2 C	CCV-E, SCAL-E, J ND <1.0	ND <1.0	1 J	2.5 B	3 1.7 J	ND <1.0	ND <1.0	ND <1.0	ND <1.0	2.8	ND <1.0	ND <1.0	ND <1.0	1.33 J
Benzene	1	ND <2.5	ND < 0.2	0.6	ND <0.2	ND <0.2	1.6	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	0.25 J	ND < 0.2
Carbon disulfide	NE	ND <2.5	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2					
cis-1,2-Dichloroethylene	5**	ND <2.5	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2					
Chloroform	7	ND <2.5	ND < 0.2	ND <0.2	2.7	0.53	ND <0.2	ND < 0.2	1.1	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	1.4	ND < 0.2	ND < 0.2	0.68	ND <2.5	0.21 J
Cyclohexane	NE	ND <2.5	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2
Ethylbenzene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2							
Isopropylbenzene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2						
Methyl tert-butyl ether (MTBE)	NE	ND <2.5	ND <0.2	1.1	ND <0.2	ND <0.2	1.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2	0.4 J	ND <0.2				
Methylcyclohexane	NE	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND <0.2
Methylene chloride	5**	ND <2.5	ND <1.0	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2					
Naphthalene	10	ND <2.5	ND <1.0	ND <1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND < 0.2
n-butylbenzene	5**	ND <2.5	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2
n-propylbenzene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND <0.2	ND < 0.2
o-Xylene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2	ND <0.2	ND < 0.2
p- & m- Xylenes	5**	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <0.2
Xylenes (Total)	5**	ND <7.5	ND < 0.6	ND <0.6	ND <0.6	ND <0.6	ND < 0.6	ND <0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND <0.6	ND < 0.6	ND <0.2				
p-Diethylbenzene	NE	ND < 0.4	ND <0.4	ND <0.4	ND <0.4	ND <0.4	ND <0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND <0.4	ND < 0.4	ND <0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND <0.2	ND <0.2
p-Isopropyltoluene	NE	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	0.27	ND <0.2	ND <0.2	ND <0.2	ND <0.2
sec-butylbenzene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
tert-butyl-alcohol (TBA)	NE	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	1.64 J	ND <0.2
tert-butylbenzene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
p-Ethyltoluene	NE	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Toluene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Trans-1,3-Dichloropropylene	NE	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
SVOCs (µg/L)	20	ND -0.0540	ND 00544	0.0045	ND -0.0540	ND -0.0542	0.0040	0.0740	ND 0.05	ND 005	ND OF								
Acenaphthene Acenaphthlyene	20 NE	ND <0.0513 ND <0.0513	ND <0.0541 0.216	0.0615 0.0513	ND <0.0513 J ND <0.0513	ND <0.0513 ND <0.0513	0.0649 ND <0.0541	0.0718 0.0821	ND <0.05 ND <0.05										
1 7	50		ND <0.0541	ND <0.0513	ND <0.0513	ND <0.0513	ND < 0.0541	ND <0.0513	ND <0.05	ND <0.05	ND < 0.05	ND <0.05	ND <0.05	ND < 0.05					
Anthracene Benzo(a)anthracene	NE		ND <0.0541	ND <0.0513	ND <0.0513	ND <0.0513	ND < 0.0541	ND <0.0513	ND <0.05	ND <0.05	ND < 0.05	ND <0.05	ND <0.05	ND < 0.05					
Benzo(a)pyrene	RL		ND <0.0541	ND <0.0513	ND <0.0513	ND <0.0513	ND <0.0541	ND <0.0513	ND <0.05	ND <0.05	ND < 0.05	ND <0.05	ND <0.05	ND <0.05	ND < 0.05	ND < 0.05	ND <0.05	ND <0.05	ND <0.05
Benzo(b)fluoranthene	0.002		ND <0.0541	ND <0.0513	ND <0.0513	ND <0.0513	ND <0.0541	ND <0.0513	ND <0.05	ND <0.05	ND < 0.05	ND <0.05	ND <0.05	ND <0.05	ND < 0.05	ND <0.05	ND < 0.05	ND <0.05	ND < 0.05
Benzo(g,h,i)perylene	NE		ND <0.0541	ND <0.0513	ND <0.0513	ND <0.0513	ND <0.0541	ND <0.0513	ND <0.05	ND <0.05	ND < 0.05	ND <0.05	ND <0.05	ND < 0.05					
Benzo(k)fluoranthene	0.002		ND <0.0541	ND <0.0513	ND <0.0513	ND <0.0513	ND <0.0541	ND <0.0513	ND <0.05	ND <0.05	ND < 0.05	ND <0.05	ND <0.05	ND <0.05	ND < 0.05	ND < 0.05	ND < 0.05	ND <0.05	ND < 0.05
Bis(2-ethylhexyl)phthalate	5.002	ND <2.56	1.24	2.44	1.36	ND <0.513	ND <0.541	0.554	ND <0.05	ND <0.05	ND <0.05	1.38	ND <0.05	1.12	1.23	ND <0.03	0.51	ND <0.03	0.66
Chrysene	0.002	ND <0.0513	ND <0.0541	ND <0.0513	ND <0.0513	ND <0.0513	ND <0.0541	ND <0.0513	ND <0.05	ND < 0.05	ND <0.05	ND <0.05	ND <0.05						
Diethyl phthalate	50	ND <2.56	ND <2.7	ND <2.7	ND <2.56	ND <2.56	ND <2.7	ND <2.56	ND <2.5	ND <2.5	ND <2.5	4.09	J 4.64 J	ND <2.5	ND <0.03				
Fluoranthene	50	ND <0.0513	ND <0.0541	ND <0.0513	ND <0.0513	ND <0.0513	ND <0.0541	ND <0.0513	ND <0.05	ND < 0.05									
Flourene	NE		ND <0.0541	ND <0.0513	ND <0.0513	ND <0.0513	ND < 0.0541	ND <0.0513	ND <0.05	ND < 0.05									
Indeno(1,2,3-cd)pyrene	NE		ND <0.0541	ND <0.0513	ND <0.0513	ND <0.0513	ND <0.0541	ND <0.0513	ND <0.05										
Naphthalene	10		ND <0.0541	0.195	ND <0.0513	ND <0.0513	0.119	ND <0.0513	ND <0.05	0.08	ND <0.05								
Phenanthrene	50		ND <0.0541	0.103	ND <0.0513	ND <0.0513	0.0757	0.113	ND <0.05	0.06	0.06								
Pyrene	50		ND <0.0541	ND <0.0513	ND <0.0513	0.0821	ND <0.0541	ND <0.0513	ND <0.05	0.08	ND <0.05	ND <0.05	ND <0.05						
NOTES	50	0.107	140 /0.0341	140 <0.0010	IND <0.0313	J 0.0021	14D 70.0041	מונטיטר קוו	140 /0.00	110 /0.00	14D \0.00	140 /0.00	140 (0.00	110 /0.00	140 70.00	0.00	110 /0.00	140 /0.00	140 /0.00

NOTES

Only compounds detected are listed

Post-Construction means after store construction and opening in December 2013.

TOGS = Technical and Operational Guidance Series (1.1.1).

Ambient water quality standards and guidance values and groundwater effluent limitations.

Shading indicates exceedance of TOGS Criteria

** = The principal organic contaminant standard for groundwater of 5 ug/L applies to this substance.

NE = None Established by NYSDEC

< = Less than Laboratory Method Detection Limit (MDL)</p>

ppb = parts per billion

SCAL-E = The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%)

The value reported is ESTIMATED. The value is estimated due to its behavior during cotinuing calibration verification (>20% difference for average Rf or >20% drift for quadratic fit.

The value reported is ESTIMATED. The value is estimated due to its behavior during

ICV-E = initial calibration verification (Recovery >30% of expected value.

This LCS analyte is outside laboratory recovery limits due to the analyte behavior using referened QL-02 =

method The reference method has certain limitations with respect to analytes of this nature. U = (Organic/Inorganic Qualifiers) The analyte was not detected at or above the reporting limit.

J and JJ = (Organic Qualifiers) The analyte was positively identified; the associated numerical value

is the approximate concentration of the analyte in the sample. UJ = (Organic Qualifiers) The analyte was not detected above the reported sample quantitation limit (QL).

However, the reported QL is approximate and may or may not represent the actual limit of quantitation

necessary to accurately and precisely measure the analyte in the sample. B = (Inorganic Qualifiers) The result is less than the Low Level Standard Check - Secondary Dilution and

Analysis/Reporting Limit, but greater than or equal to the Instrument Detection Limit/Method Detection Limit.

Ground Water Analytical Results - Post-Construction (2013 - 2021) 214 3rd Street, Brooklyn, Kings County, New York NYSDEC BCP Site No. C224100 BL Project No. 03C497-M

Sample ID	TOGS								MW-5AR								
Date Sampled		12/27/2013	4/29/2014	4/29/2014 (DUP) 8/27/2014	4/30/2015	4/30/2015 (DUP)	8/21/2015	8/21/2015 (DUP)	5/3/2016	9/27/2016	9/27/2016	6/30/2017	6/30/2017	9/21/2017	3/6/2018	3/6/2018 (DUP)
VOCs (µg/L)		12/21/2010	1/20/2011	1/20/2011 (501	7 0/21/201	1 1700/2010	1/00/2010 (201)	G/2 1/2010	0/21/2010 (201)	0/0/2010	0/21/2010	0/21/2010	0,00,2011	0/00/2017	0/21/2011	0/0/2010	0/0/2010 (201)
1,2-Dichloroethane	0.6	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
1,2,3-Trichlorobenzene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
1,2,4-Trimethylbenzene	5**	ND <2.5	0.51 B	0.24 J.E	B ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	0.77	0.6	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
1,3,5-Trimethylbenzene	5**	ND <2.5	0.23 J,B	B ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	0.25	J ND <0.2	ND <0.2	ND <0.2	ND <0.2	2.2	ND <0.2	ND <0.2
2-Butanone (MEK)	50	ND <2.5	ND <0.5	ND <0.5	ND <0.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
2-Hexanone	50	ND <2.5	ND <0.5	ND <0.5	ND <0.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Acetone	50	11 CCV-E	ND <1.0	ND <1		V-E, J, B ND <1	ND <1	1.6 J	ND <1.0	ND <0.2	ND <0.2	ND <0.2	1.2 B. s	J 1.8 B	, J ND <0.2	ND <0.2	ND <0.2
Benzene	1	ND <2.5	ND <0.2	ND <0.2	0.36	J 0.31	J 0.28 J	0.9	0.96	0.24	J 0.23 J	0.23 B,J	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Carbon disulfide	NE	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	0.22 B,J	0.24 B,J	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
cis-1,2-Dichloroethylene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Chloroform	7	ND <2.5	1.7	1.6	0.21	J 0.58	0.6	ND <0.2	ND <0.2	ND <0.2	ND <0.2	0.28 J	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Cyclohexane	NE	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	0.27 J	0.28 J	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Ethylbenzene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	0.77	ND <0.2	0.3	0.22 J	0.21 J	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Isopropylbenzene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	0.2 J	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Methyl tert-butyl ether (MTBE)	NE	ND <2.5	ND <0.2	ND <0.2	4.7	1.8	1.8	2.3	2.6	1.6	2.9	3.1	0.77	0.86	0.81	ND <0.2	ND <0.2
Methylcyclohexane	NE	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.20	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Methylene chloride	5**	ND <2.5	ND <1.0	ND <1.0	ND <1.0	ND <0.2	ND <0.2	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0
Naphthalene	10	NA NA	NA NA	NA NA	5	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-butylbenzene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
n-propylbenzene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
o-Xylene	5**	ND <2.5	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
p- & m- Xylenes	5**	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
Xylenes (Total)	5**	ND <7.5	ND < 0.6	ND < 0.6	ND < 0.6	ND <0.6	ND < 0.6	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
p-Diethylbenzene	NE	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND <0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.4	ND <0.4
p-Isopropyltoluene	NE	ND <0.20	ND < 0.20	ND <0.20	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND <0.2
sec-butylbenzene	5**	ND <2.5	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2
tert-butyl-alcohol (TBA)	NE	ND <2.5	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	6.6	7	1.3	5.4 CCV-E	6.6 CCV-E	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2
tert-butylbenzene	5**	ND <2.5	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2
p-Ethyltoluene	NE	ND <2.5	0.23 J,B	3 ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2
Toluene	5**	ND <2.5	ND <0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2	0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND <0.2
Trans-1,3-Dichloropropylene	NE	ND <2.5	ND <0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2	ND <0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND < 0.2	ND <0.2
SVOCs (µg/L)																	
Acenaphthene	20	ND <0.0526	ND < 0.0541	ND < 0.0541	ND < 0.0526	ND < 0.0513	ND < 0.0513	0.0632	0.0737	0.0649	0.22	0.236	ND < 0.0513	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05
Acenaphthlyene	NE	ND <0.0526	0.0973	0.0973	ND < 0.0526	ND < 0.0513	ND < 0.0513	ND < 0.0526	0.0632	0.119	0.07	0.0718	ND < 0.0513	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05
Anthracene	50	ND <0.0526	ND < 0.0541	ND < 0.0541	ND < 0.0526	ND < 0.0513	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0541	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05
Benzo(a)anthracene	NE	ND <0.0526	ND < 0.0541	ND < 0.0541	ND < 0.0526	ND < 0.0513	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0541	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05
Benzo(a)pyrene	RL	ND <0.0526	ND < 0.0541	ND < 0.0541	ND < 0.0526	ND < 0.0513	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0541	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05
Benzo(b)fluoranthene	0.002	ND <0.0526	ND < 0.0541	ND < 0.0541	ND < 0.0526	ND < 0.0513	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND <0.0541	ND <0.05	ND < 0.05	ND < 0.0513	ND < 0.0513	ND <0.05	ND < 0.05	ND < 0.05
Benzo(g,h,i)perylene		ND <0.0526	ND < 0.0541	ND < 0.0541	ND < 0.0526	ND < 0.0513	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND < 0.0541	ND <0.05	ND < 0.05	ND < 0.0513	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05
Benzo(k)fluoranthene		ND <0.0526	ND <0.0541	ND <0.0541	ND <0.0526	ND < 0.0513	ND < 0.0513	ND < 0.0526	ND < 0.0526	ND <0.0541	ND <0.05	ND <0.05	ND <0.0513	ND < 0.0513	ND <0.05	ND < 0.05	ND < 0.05
Bis(2-ethylhexyl)phthalate	5		ND < 0.0541	1.21	ND <2.63	ND < 0.0513	ND < 0.0513	15.9	15.1	ND <0.541	ND <0.05	ND < 0.05	ND <0.513	ND < 0.513	ND < 0.05	ND < 0.05	ND < 0.05
Chrysene			ND < 0.0541	ND < 0.0541	ND < 0.0526	ND < 0.0513	2.21	ND < 0.0526	ND < 0.0526	ND <0.0541	ND < 0.05	ND < 0.05	ND < 0.0513	ND < 0.0513	ND < 0.05	ND < 0.05	ND < 0.05
Diethyl phthalate	50	ND <2.63	ND <2.7	ND <2.7	ND <2.63	ND <2.56	ND <2.56	ND <2.63	ND <2.63	ND <2.7	ND <2.5	ND <2.5	ND <2.56	ND <2.56	ND <2.5	ND <2.5	ND <2.5
Fluoranthene	50	ND <0.0526	ND < 0.0541	ND < 0.0541	ND <0.0526	ND < 0.0513	ND <0.0513	ND < 0.0526	ND < 0.0526	ND <0.0541	ND <0.05	ND < 0.05	ND <0.0513	ND <0.0513	ND < 0.05	ND < 0.05	ND <0.05
Flourene	NE	ND <0.0526	ND <0.0541	ND < 0.0541	ND <0.0526	0.2	0.249	ND < 0.0526	ND <0.0526	0.551	ND < 0.05	ND < 0.05	ND < 0.0513	0.759	ND < 0.05	ND < 0.05	ND <0.05
Indeno(1,2,3-cd)pyrene	NE	ND <0.0526	ND <0.0541	ND <0.0541	ND <0.0526	ND < 0.0513	ND <0.0513	ND < 0.0526	ND <0.0526	ND <0.0541	ND < 0.05	ND < 0.05	ND <0.0513	ND <0.0513	ND <0.05	ND <0.05	ND <0.05
Naphthalene		ND <0.0526	ND <0.0541	0.0541	ND <0.0526	0.126	0.865	4.23	8.76	ND <0.0541	4.3	4.29	0.113	0.113	ND <0.05	0.215	0.174
Phenanthrene	50	ND <0.0526	ND <0.0541	ND <0.0541	ND <0.0526	ND <0.0526	ND <0.0513	ND <0.0526	ND <0.0526	ND <0.0541	ND <0.05	ND <0.05	ND <0.0513	ND <0.0513	ND <0.05	ND <0.05	ND <0.05
Pyrene		ND <0.0526	0.0973	ND <0.0541	ND <0.0526	ND <0.0513	ND <0.0513	0.0947	0.105	ND <0.0541	ND <0.05	ND <0.05	ND <0.0513	ND <0.0513	ND <0.05	ND <0.05	ND <0.05
NOTES	50	145 70.0020	0.0310	140 (0.0041	140 \0.0020	ND <0.0013	140 <0.0010	0.0371	1 0.100	14D /0.0041	IND <0.00	IND <0.00	140 70.0010	נורטיטי חוו	145 /0.00	110 /0.00	14D \0.03

NOTES

Only compounds detected are listed

Post-Construction means after store construction and opening in December 2013.

TOGS = Technical and Operational Guidance Series (1.1.1).

Ambient water quality standards and guidance values and groundwater effluent limitations.

Shading indicates exceedance of TOGS Criteria

** = The principal organic contaminant standard for groundwater of 5 ug/L applies to this substance.

NE = None Established by NYSDEC

< = Less than Laboratory Method Detection Limit (MDL)</p>

ppb = parts per billion

SCAL-E = The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%)

The value reported is ESTIMATED. The value is estimated due to its behavior during cotinuing

calibration verification (>20% difference for average Rf or >20% drift for quadratic fit. The value reported is ESTIMATED. The value is estimated due to its behavior during

ICV-E = initial calibration verification (Recovery >30% of expected value.

This LCS analyte is outside laboratory recovery limits due to the analyte behavior using referened QL-02 =

method The reference method has certain limitations with respect to analytes of this nature.

U = (Organic/Inorganic Qualifiers) The analyte was not detected at or above the reporting limit.

J and JJ = (Organic Qualifiers) The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ = (Organic Qualifiers) The analyte was not detected above the reported sample quantitation limit (QL).

However, the reported QL is approximate and may or may not represent the actual limit of quantitation

necessary to accurately and precisely measure the analyte in the sample. B = (Inorganic Qualifiers) The result is less than the Low Level Standard Check - Secondary Dilution and

Analysis/Reporting Limit, but greater than or equal to the Instrument Detection Limit/Method Detection Limit.

Ground Water Analytical Results - Post-Construction (2013 - 2021) 214 3rd Street, Brooklyn, Kings County, New York NYSDEC BCP Site No. C224100 BL Project No. 03C497-M

Sample ID	TOGS				MW-5AR			
Date Sampled		8/8/2018	9/24/2019	1/29/2020	5/14/2020	10/21/2020	5/25/2021	7/7/2021
VOCs (µg/L)								
1,2-Dichloroethane	0.6	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2
1,2,3-Trichlorobenzene	5**	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2
1,2,4-Trimethylbenzene	5**	ND <0.2	ND < 0.2	0.23 J	ND < 0.2	ND <0.2	ND <0.2	ND < 0.2
1,3,5-Trimethylbenzene	5**	ND < 0.2	2.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2
2-Butanone (MEK)	50	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2
2-Hexanone	50	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2
Acetone	50	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2
Benzene	1	ND < 0.2	0.5	1.5	1.5	0.54	1.5	0.78
Carbon disulfide	NE	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2
cis-1,2-Dichloroethylene	5**	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND <0.2	ND < 0.2
Chloroform	7	ND < 0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND < 0.2
Cyclohexane	NE	ND < 0.2	ND < 0.2	0.29 ICV-E, QL-02, J	0.58	0.4 CCV-E, J	1.57	0.88
Ethylbenzene	5**	ND < 0.2	ND < 0.2	0.22 J	ND < 0.2	ND <0.2	0.81	0.37 J
Isopropylbenzene	5**	ND <0.2	ND <0.2	1.3	1	0.81	1.73	1.21
Methyl tert-butyl ether (MTBE)	NE	ND <0.2	0.34 J	1.1	0.59	0.33 J	0.86	0.9
Methylcyclohexane	NE	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	0.35 J	ND <0.2
Methylene chloride	5**	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	ND <1.0	1.73 J
Naphthalene	10	NA	NA	NA	NA	NA	NA	1.05 J
n-butylbenzene	5**	ND <0.2	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2	ND <0.2	ND <0.2
n-propylbenzene	5**	ND <0.2	ND < 0.2	0.37 J	ND < 0.2	ND <0.2	ND <0.2	ND <0.2
o-Xylene	5**	ND <0.2	ND < 0.2	0.23 J	ND < 0.2	ND <0.2	ND < 0.2	ND <0.2
p- & m- Xylenes	5**	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND <0.2
Xylenes (Total)	5**	ND <0.6	ND <0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6	ND <0.2
p-Diethylbenzene	NE	ND <0.4	ND <0.4	ND < 0.4	ND <0.4	ND < 0.4	ND <0.4	ND <0.2
p-Isopropyltoluene	NE	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
sec-butylbenzene	5**	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
tert-butyl-alcohol (TBA)	NE	ND <0.2	ND <0.2	5.1 CCV-E	ND <0.2	ND <0.2	2.81	ND <0.2
tert-butylbenzene	5**	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
p-Ethyltoluene	NE	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Toluene	5**	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
Trans-1,3-Dichloropropylene	NE	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2	ND <0.2
SVOCs (µg/L)	00	ND 0.05	ND 0.05	0.00	0.40	0.70	4 7	4.00
Acenaphthene	20	ND < 0.05	ND <0.05	0.28	0.48	0.73	1.7	1.28
Acenaphthlyene	NE	ND < 0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	0.0513	ND <0.05
Anthracene	50	ND < 0.05	0.0778	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05
Benzo(a)anthracene	NE	ND < 0.05	ND < 0.05	ND <0.05	ND <0.05	ND <0.05	ND < 0.05	ND <0.05
Benzo(a)pyrene	RL	ND < 0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND < 0.05	ND <0.05
Benzo(b)fluoranthene	0.002	ND < 0.05	ND < 0.05	ND <0.05	ND <0.05	ND <0.05	ND < 0.05	ND <0.05
Benzo(g,h,i)perylene	NE	ND < 0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05
Benzo(k)fluoranthene	0.002	ND < 0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05
Bis(2-ethylhexyl)phthalate	5	ND < 0.05		ND <0.05	0.85	ND <0.05	ND < 0.05	0.5
Chrysene	0.002	ND < 0.05	ND < 0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05
Diethyl phthalate	50	3.65 J	ND <2.5	ND <2.5	ND <2.5	ND <2.5	ND <2.5	ND <2.5
Fluoranthene	50	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND < 0.05	ND <0.05
Flourene	NE	ND < 0.05	ND <0.05	ND <0.05	ND <0.05	ND <0.05	ND < 0.05	ND <0.05
Indeno(1,2,3-cd)pyrene	NE 10	ND < 0.05	ND < 0.05	ND <0.05	ND <0.05	ND <0.05	ND < 0.05	ND <0.05
Naphthalene Dhananthrana	10	0.137	2.12	8.23	1.17	2.24	0.297	0.42
Phenanthrene Pyrene	50 50	ND <0.05 ND <0.05	ND <0.05 ND <0.05	ND <0.05 ND <0.05	ND <0.05 0.08	ND <0.05 ND <0.05	ND <0.05 ND <0.05	ND <0.05 ND <0.05
					ı IIIIX	1 1011 1 / 11 115		1311 1 /11 115

Only compounds detected are listed

Post-Construction means after store construction and opening in December 2013.

TOGS = Technical and Operational Guidance Series (1.1.1).

Ambient water quality standards and guidance values and groundwater effluent limitations.

Shading indicates exceedance of TOGS Criteria

** = The principal organic contaminant standard for groundwater of 5 ug/L applies to this substance.

NE = None Established by NYSDEC

< = Less than Laboratory Method Detection Limit (MDL)</p>

ppb = parts per billion

SCAL-E = The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%)

The value reported is ESTIMATED. The value is estimated due to its behavior during cotinuing

calibration verification (>20% difference for average Rf or >20% drift for quadratic fit. The value reported is ESTIMATED. The value is estimated due to its behavior during

ICV-E = initial calibration verification (Recovery >30% of expected value.

This LCS analyte is outside laboratory recovery limits due to the analyte behavior using referened QL-02 =method The reference method has certain limitations with respect to analytes of this nature.

U = (Organic/Inorganic Qualifiers) The analyte was not detected at or above the reporting limit.

J and JJ = (Organic Qualifiers) The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ = (Organic Qualifiers) The analyte was not detected above the reported sample quantitation limit (QL).

However, the reported QL is approximate and may or may not represent the actual limit of quantitation

necessary to accurately and precisely measure the analyte in the sample.

B = (Inorganic Qualifiers) The result is less than the Low Level Standard Check - Secondary Dilution and

Analysis/Reporting Limit, but greater than or equal to the Instrument Detection Limit/Method Detection Limit.

Table 2b Ground Water Analytical Results - Post-Remediation, Pre-Construction 214 3rd Street, Brooklyn, Kings County, New York

NYSDEC BCP Site No. C224100 BL Project No. 03C497-M

Sample ID	TOGS	I		G\\\-I	MW-1A			1		G/\/-N	/W-2A		T		GW-M	W-3A/3B			$\overline{}$
Date Sampled	1000	26-Apr-06	9-Aug-06	3-Oct-07	30-Apr-09	24-Jun-11	23-Feb-12	18-Jul-12	26-Apr-06	9-Aug-06	3-Oct-07	30-Apr-09	26-Apr-06	9-Aug-06	3-Oct-07	30-Apr-09	24-Jun-11	23-Feb-12	18-Jul-12
Date Sampleu		20 / (p) 00	3 / tag 00	3 000 07	30 /\pi 03	Z+ Juli II	20 1 00 12	10 001 12	20 / (p) 00	1 3 7 tag 00	3 000 07	00 /tpi 00	20 / (p) 00	1 3 7 tag 00	3 000 07	00 /\pi 00	24 0011 11	2010012	1000112
VOCs (ppb) TCL																			+
Acetone	50	8.6 UJ	12	NA	5 JB	ND	<10	ND	5.0 UJ	1.4 J	<5.0	<10	<0.64 UJ	1.3 J	<5.0	<10	ND	<10	ND
Methylene chloride	50 5**	<0.97 U	2.8 J	<5.0	5 JB	4.3 JB	3.9 JB	ND ND	<0.97 U	<0.97 U	<5.0 <5.0	5 JB	<0.04 U3	<0.97 U	<5.0 <5.0	5 JB	5.1 JB	3.5 JB	ND ND
2-Butanone	NE		2.6 J	<5.0 <5.0	<10	4.3 JB ND	<u>3.9 JB</u> <10	ND ND	<0.97 U	<0.58 U	<5.0 <5.0	<10	<0.97 U	<0.58 U	<5.0 <5.0	<10	ND	<10	ND ND
	1NE	5.0 U 66	2.5 J 120	150	63	19	6.9	14	<0.090 U	0.16 J	<5.0 <5.0	<10 <5.0	<0.090 U	0.19 J	<5.0 <5.0	<5.0	<5.0	<10 <5	ND ND
Benzene Toluene	<u> </u>	0.54 J	120 1.1 J	<5.0	<5.0	19 <5.0	<u>6.9</u> <5	ND	<0.090 U	<0.16 J	<5.0 <5.0	<5.0 <5.0	<0.090 U	<0.19 J	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5 <5	ND ND
Ethylbenzene	5 5**	0.34 J	0.54 J	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5 <5	ND ND	<0.10 U	<0.10 U	<5.0 <5.0	<5.0 <5.0	<0.10 U	<0.10 U	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5 <5	ND ND
Xylenes (Total)	5 5**			<5.0 <5.0			<5 <15	ND ND	<0.22 U		<5.0 <5.0	<5.0 <5.0			<5.0 <5.0	<5.0 <5.0			ND ND
1,2-Dichloroethane		1.6	2.8		2 J	<15		ND ND		<0.34 U			<0.34 U	<0.34 U		<5.0 <5.0	<15	<15	
,	0.6 5**	ND ND	ND ND	<5.0	1 J 4 J	<5.0 <5.0	< <u>5</u>	ND ND	ND ND	ND ND	<5.0 <5.0	<5.0 <5.0	ND ND	ND ND	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5 <5	ND ND
Isopropylbenzene				5	<5.0		< <u>5</u>								<0.0				
Methyl tert-butyl ether (MTBE)	NE F	ND ND	ND ND	<5.0	<5.0 ND	<5.0 <5.0	<5 <5	ND ND	ND ND	ND ND	<5.0 <5.0	1 J ND	ND ND	ND ND	<5.0	<5.0 ND	1.6 J <5.0	1.5 J <5	1.6 J ND
n-butylbenzene 1,2,4-Trimethylbenzene	ე	ND ND	ND ND	ND	ND ND	<5.0 <5.0	<u> </u>	ND ND	ND ND	ND ND	<5.0 <5.0	ND ND	ND ND	ND ND	<5.0 <5.0	ND ND	<5.0 <5.0	<5 <5	ND ND
Naphthalene		ND ND	ND ND	ND ND	ND ND	<10.0	<u> </u>	ND ND	ND ND	ND ND	<5.0	ND ND	ND ND	ND ND	<10.0	ND ND	<10.0	<10	ND ND
1,3,5-Trimethylbenzene		ND ND	ND ND	ND ND	ND ND	<5.0	<u> </u>	ND ND	ND ND	ND ND	<5.0	ND ND	ND ND	ND ND	<5.0	ND ND	<5.0	<5	ND
1,5,5 1111101111111111111111111111111111		140	140	140	140	νο.υ		140	IND	IND	\0.0	140	IND	IND	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	IND	<u> </u>		+ 115
SVOCs (ppb) TCL										<u> </u>		1		+					+
Acenaphthene	20	<0.8 U	<1 U	<0.0525	<5.2	<6.90	<5.13	ND	<0.8 U	<0.8 U	0.4	<5.2	<0.8 U	<0.9 U	<0.0525	<5.2	<5.0	<5.13	ND
Acenaphthalyene	NE	ND	ND	0.2	<5.2	<6.90	<5.13	ND ND	30.0 0	ND	<0.0525	<5.2	ND	ND	<0.0525	<5.2	<5.0	<5.13	ND ND
Flourene	50	<0.8 U	<1 U	<5.25	<5.2	<6.90	<5.13	ND	<0.8 U	<0.8 U	<5.25	<5.2	<0.8 U	<0.9 U	<5.25	<5.2	<5.0	<5.13	ND ND
Naphthalene	10	ND	ND	0.2	<5.2	<6.90	<5.13	ND	νο.ο ο	ND	<0.0525	<5.2	ND	ND	<0.0525	<5.2	<5.0	<5.13	ND
Phenanthrene	50	<0.7 U	<0.8 U	0.1	<5.2	<6.90	<5.13	ND	<0.7 U	<0.7 U	<0.0525	<5.2	<0.7 U	<0.8 U	<0.0525	<5.2	<5.0	<5.13	ND
Phenol	1	5 J	<0.4 U	<5.25	<5.2	<6.90	<5.13	ND	<0.4 U	<0.4 U	<5.25	<5.2	<0.4 U	<0.4 U	<5.25	<5.2	<5.0	<5.13	ND
Bis(2-ethylhexyl)phthalate	<u>.</u> 5	ND	ND	ND	<5.2	<6.90	<5.13	ND	ND	ND	ND	<5.2	ND	ND	ND	<5.2	<5.0	12.1	ND
N-nitroso-di-n-propylamine	50	ND	ND	ND	<5.2	8.25	<5.13	ND	ND	ND	ND	<5.2	ND	ND	ND	<5.2	<5.0	<5.13	ND
The second secon			.,,		10.2	<u> </u>						10.1				, ,,,,,	10.0		
Total Metals (ppb)																			
Aluminum	NE	2,770	1,570	452	2,410	NA	NA	NA	198 B	<92.0 U	244	16.2	142 B	<92.0 U	275	28.4	NA	NA	NA
Arsenic	25	10.3 B	8.2 B	31.9	15.8	NA	NA	NA	5.3 B	8.0 B	<10.0	<10.0	<3.9 U	5.2 B	<10.0	<10.0	NA	NA	NA
Barium	1,000	121	91.9	259	116	NA	NA	NA	215	399	228	123	151	238	253	81.6	NA	NA	NA
Beryllium	3	0.71 B	<0.54 U	<1	<1.0	NA	NA	NA	<0.54 U	<0.54 U	<1.0	<1.0	<0.54 U	<0.54 U	<1.0	<1.0	NA	NA	NA
Calcium	NE	85,200	105,000	120,000	51,900	NA	NA	NA	161,000	185,000	126,000	171,000	253,000	162,000	144,000	87,700	NA	NA	NA
Chromium	50	4.9 B	5.9 B	7.7	7.3	NA	NA	NA	1.5 B	<1.3 U	5.1	<5.0	<1.3 U	<1.3 U	6	<5.0	NA	NA	NA
Cobalt	NE	4.6 B	2.8 B	<5	<5.0	NA	NA	NA	<1.8 U	<1.8 U	<5.0	<5.0	3.4 B	<1.8 U	<5.0	<5.0	NA	NA	NA
Copper	200	12.2	10.3	7.9	24.6	NA	NA	NA	<4.3 U	<4.3 U	8.8	8.8	<4.3 U	<4.3 U	12.4	18.1	NA	NA	NA
Iron	300	5,440	2,110	37,900	15,300	NA	NA	NA	1,200	3,370	12,200	1,550	13,500	9,170	4,430	777	NA	NA	NA
Lead	25	16.9	5.0 B	5.1	21.4	NA	NA	NA	9.4 B	<3.0 U	<3.0	10.3	7.6 B	<3.0 U	<3.0	5.8	NA	NA	NA
Magnesium	35,000	53,500	72,600	64,000	27,400	NA	NA	NA	168,000	195,000	40,200	162,000	52,200	35,200	43,500	10,500	NA	NA	NA
Manganese	300	2,340	3,440	5,680	2,110	NA	NA	NA	585	681	1,540	486	1,660	1,850	1,600	254	NA	NA	NA
Nickel	100	11.2	11.7	<5	1.7	NA	NA	NA	<1.9 U	<1.9 U	<5.0	<5.0	9.3 B	<1.9 U	<5.0	<5.0	NA	NA	NA
Potassium	NE	43,200 J	52,600	29,600	11,100	NA	NA	NA	115,000 J	128,000	26,900	58,200	39,600 J	52,900	30,300	6,800	NA	NA	NA
Sodium	20,000	167,000 JJ	218,000	593,000	168,000	NA	NA	NA	195,000 JJ	226,000	361,000	861,000	153,000 JJ	159,000	590,000	61,900	NA	NA	NA
Vanadium	NE	13.8	10.2	<10	16.8	NA	NA	NA	3.4 B	<1.5 U	<10.0	<10.0	1.8 B	<1.5 U	<10.0	<10.0	NA	NA	NA
Zinc	2,000	34.5 B	27.8 B	<20	51.2	NA	NA	NA	<11.0 U	<11.0 U	<20.0	47.8	90.5	<11.0 U	<20.0	62	NA	NA	NA
PCBs (ppb)																			
PCB 1248	0.09	0.50 U	<0.068 U	<0.5	NA	NA	NA	NA	<0.060 U	<0.060 U	<0.5	NA	<0.060 U	<0.067 U	<0.5	NA	NA	NA	NA
Pesticides (ppb)																			+
Aldrin	ND	0.0079 J (M)	0.018 J	<0.0384	NA	NA	NA	NA	<0.0058 U	<0.0058 U	<0.0253	NA	<0.0058 U	<0.0064 U	<0.032	NA	NA	NA	NA
alpha-BHC	NE	0.014 J (M)	<0.012 U	<0.0384	NA	NA	NA	NA	<0.011 U	<0.011 U	<0.0253	NA	<0.011 U	<0.012 U	<0.032	NA	NA	NA	NA
beta-BHC	NE	0.025 J	<0.015 U	<0.0384	NA	NA	NA	NA	<0.013 U	<0.013 U	<0.0253	NA	<0.013 U	<0.014 U	<0.032	NA	NA	NA	NA
Chlordane-alpha	0.05	<0.0055 U	<0.0063 U	<0.160	NA	NA	NA	NA	<0.0055 U	<0.0055 U	<0.105	NA	<0.0055 U	<0.0061 U	<0.133	NA	NA	NA	NA
Chlordane-gamma	0.05	<0.0061 U	<0.0069 U	<0.160	NA	NA	NA	NA	<0.0061 U	<0.0061 U	<0.105	NA	<0.0061 U	<0.0068 U	<0.133	NA	NA	NA	NA
						N I A	A I A	I NIA			0.0050	I NIA	I 0 0070 I (NA)	I 0 00E0 II	1 0 000	I NIA	I NIA	I NIA	I NIA I
gamma-BHC (Lindane) Heptachlor epoxide	NE 0.03	0.034 J <0.0057 U	<0.0059 U <0.0065 U	<0.0384 <0.0384	NA NA	NA NA	NA NA	NA NA	<0.0052 U <0.0057 U	0.028 J <0.0057 U	<0.0253 <0.0253	NA NA	0.0072 J (M) <0.0057 U	<0.0058 U <0.0063 U	<0.032 <0.032	NA NA	NA NA	NA NA	NA NA

Only compounds detected are listed

Post-Remediation refers to interim remedial measures completed in 2005 and 2006 and remediation completed in 2012

TOGS = Technical and Operational Guidance Series (1.1.1).

__Ambient water quality standards and guidance values and groundwater effluent limitations.

Shading indicates exceedance of TOGS Criteria
Post-Remediation refers to Site conditions following completion of Interim Remedial Measures (IRMs) conducted in 2005 and remediation in 2010.

Monitoring well locations are depicted on Figure 1 of the Site Management Plan

** = The principal organic contaminant standard for groundwater of 5 ug/L applies to this substance. NE = None Established by NYSDEC

ND = Non-detectable concentration by the approved analytical methods referenced in TOGS 1.1.1 Section 700.3

NA = Not analyzed

< = Less than Laboratory Method Detection Limit (MDL)</p>

GW-MW-1A is identified as GW-MW-A in some laboratory analytical reports

GW-MW-2A destroyed in 2010

ppb = parts per billion

U = (Organic/Inorganic Qualifiers) The analyte was not detected at or above the reporting limit.

J and JJ = (Organic Qualifiers) The analyte was positively identified; the associated numerical value

is the approximate concentration of the analyte in the sample.

UJ = (Organic Qualifiers) The analyte was not detected above the reported sample quantitation limit (QL).

However, the reported QL is approximate and may or may not represent the actual limit of quantitation

necessary to accurately and precisely measure the analyte in the sample.

B = (Inorganic Qualifiers) The result is less than the Low Level Standard Check - Secondary Dilution and Analysis/Reporting Limit, but greater than or equal to the Instrument Detection Limit/Method Detection Limit.

Table 2b	
Ground Water Analytical Results - Post-Remediation, Pre-0	Construction
214 3rd Street, Brooklyn, Kings County, New Yor	rk
NYSDEC BCP Site No. C224100	
BL Project No. 03C497-M	

Sample ID	TOGS	1		GW	/-MW-4A				T		GW-	MW-5A				TMW-1	TMW-2		TMW-2-Filtered	TMW-3	TMW-4	DUP-C
Date Sampled	1000	26-Apr-06	9-Aug-06	3-Oct-07	30-Apr-09	24-Jun-11	23-Feb-12 18-	Jul-12	26-Apr-06	9-Aug-06	3-Oct-07	30-Apr-09	24-Jun-11	23-Feb-12	18-Jul-12	18-Jul-13	18-Jul-13	1-Aug-13	18-Jul-13	18-Jul-13	18-Jul-13	18-Jul-13
Date Gampieu	<u> </u>	20 7101 00	l crag co	1 0 000 07	007100	2 i daii i i	2010012 10	0di 12	207101	l crag cc	1 0 000 07	007100	2 T Gail T I	2010012	10 001 12	10 001 10	10 001 10	1 7 (4)	10 001 10	10 001 10	10-301-13	10 001 10
VOCs (ppb) TCL																						
Acetone	50	5.0 UJ	5.4	<5.0	<10	ND	<10	ND	5.0 UJ	1.7 J	<5.0	<10	ND	<10	ND	4.0 JB	26 JB	<5.0	NA	<5.0	2.7 JB	<5.0
Methylene chloride	5**	<0.97 U	<0.97 U	<5.0	5 JB	4.7 JB	3.9 JB	ND	<0.97 U	<0.97 U	<5.0	5 JB	4.7 JB	3.6 JB	ND	17	<50	<5.0	NA NA	20	10	20
2-Butanone	NE	<0.58 U	<0.58 U	<5.0	<10	ND	<10	ND	<0.58 U	<0.58 U	<5.0	<10	ND	<10	ND	<5.0	<50 <50	<5.0 <5.0	NA NA	<5.0	<5.0	<5.0
Benzene	1	0.58 J	<0.090 U	<5.0	<5.0	<5.0	<5	ND	<0.090 U	<0.090 U	<5.0	<5.0	<5.0	<5	ND ND	<5.0 <5.0	43 J	7.2	NA NA	84	<5.0	89
Toluene	5**	<0.10 U	<0.10 U	<5.0	<5.0	<5.0	<5	ND	<0.090 U	<0.090 U	<5.0	<5.0	<5.0	<5	ND ND	<5.0 <5.0	<50	<5.0	NA NA	<5.0	<5.0	<5.0
Ethylbenzene	5**	<0.10 U	<0.10 U	<5.0	<5.0	<5.0	<5	ND	<0.10 U	<0.10 U	<5.0	<5.0	<5.0	<5	ND ND	<5.0	220	28	NA NA	<5.0 <5.0	<5.0	<5.0
Xylenes (Total)	5**	<0.34 U	<0.22 U	<5.0	<5.0	<15	<15	ND	<0.22 U	<0.22 U	<5.0	<5.0	<15	<15	ND ND	<15	<150	<15	NA NA	<15	<15	<15
1,2-Dichloroethane	0.6	ND	ND	<5.0 <5.0	<5.0	<5.0	<5	ND	ND	ND	<5.0 <5.0	<5.0 <5.0	<5.0	<5	ND ND	<5.0	<50	<5.0	NA NA	<5.0	<5.0	<5.0
,	5**	ND ND	ND ND	<5.0 <5.0	<5.0	<5.0	<5 <5	ND	ND ND	ND ND	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5 <5	ND ND	<5.0 <5.0	<50 <50	<5.0 <5.0	NA NA	2.7 J	<5.0 <5.0	3.5 J
Isopropylbenzene Methyl tert-butyl ether (MTBE)	NE	ND ND	ND	28	23.0	3.5 J	3.8 J	4.4 J	ND	ND	<5.0	3 J	<5.0	3.8 J	ND ND	<5.0	<50	<5.0 <5.0	NA NA	<5.0	<5.0	<5.0
n-butylbenzene	NE	ND ND	ND ND	<5.0	ND ND	<5.0	<5	ND ND	ND ND	ND ND	<5.0 <5.0	ND	<5.0 <5.0	<5	ND ND	<5.0 <5.0	<50 <50	<5.0 <5.0	NA NA	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0
1,2,4-Trimethylbenzene	5	ND ND	ND ND	<5.0	ND ND	<5.0	<5	ND	ND ND	ND ND	<5.0	ND ND	<5.0	<5	ND ND	<5.0	27 J	2.8 J	NA NA	<5.0	<5.0	8.9
Naphthalene		ND	ND	<10.0	ND ND	<10.0	<10	ND	ND	ND	<10.0	ND ND	<10.0	<10	ND	<5.0	1200	200	NA NA	3.7 J	<5.0	<5.0
1,3,5-Trimethylbenzene		ND	ND	<5.0	ND	<5.0	<5	ND	ND	ND	<5.0	ND	<5.0	<5	ND	<5.0	<50	<5.0	NA NA	6.5	<5.0	8.5
.,5,5		110		10.0	110	10.10	 	.,,,,,		110	10.0		10.0		. 10	10.0	100		177	0.0	10.0	<u> </u>
SVOCs (ppb) TCL					+				1		†								 		1	
Acenaphthene	20	<0.8 U	<0.9 U	<0.0835	<5.2	<5.13	<5.13	ND	24	13	<0.0625	<5.2	<5.0	<5.13	ND	<5.26	83.8 J	19.3	84 J	<5.26	<5.26	<5.26
Acenaphthalyene	NE	ND	ND	<0.0835	<5.2	<5.13	<5.13	ND	ND	ND	<0.0625	<5.2	<5.0	<5.13	ND	<5.26	<125	<5.41	<125	<5.26	<5.26	<5.26
Flourene	50	<0.8 U	<0.8 U	<8.35	<5.2	<5.13	<5.13	ND	2 J	<0.9 U	<6.25	<5.2	<5.0	<5.13	ND	<5.26	<125	<5.41	<125	<5.26	<5.26	<5.26
Naphthalene	10	ND	ND	<0.0835	<5.2	<5.13	<5.13	ND	ND ND	ND	<0.0625	<5.2	<5.0	<5.13	ND	<5.26	1040	50.7	926	<5.26	<5.26	<5.26
Phenanthrene	50	<0.7 U	<0.7 U	<0.0835	<5.2	<5.13	<5.13	ND	0.8 J	0.7 J	<0.0625	<5.2	<5.0	<5.13	ND	<5.26	<125	<5.41	<125	<5.26	<5.26	<5.26
Phenol	1	<0.4 U	<0.4 U	<8.35	<5.2	<5.13	<5.13	ND	<0.4 U	<0.4 U	<6.25	<5.2	<5.0	<5.13	ND	<5.26	<125	<5.41	<125	<5.26	<5.26	<5.26
Bis(2-ethylhexyl)phthalate	5	ND	ND	4	<5.2	<5.13	6.76	ND	ND	ND	3	<5.2	<5.0	6.76	ND	6.33	<125	<5.41	<125	<5.26	<5.26	<5.26
N-nitroso-di-n-propylamine	50	ND	ND	ND	<5.2	<5.13	<5.13	ND	ND	ND	ND	<5.2	<5.0	<5.13	ND	<5.26	<125	<5.41	<125	<5.26	<5.26	<5.26
14 milese di 11 propylamine	00	TAB TAB	IND	110	\U.Z	VO. 10	VO. 10	IND	IND	NB	THE THE	\O.Z	\\0.0	VO. 10	140	\0.20	V120	\0. 41	\120	\0.20	\0.20	10.20
Total Metals (ppb)																						
Aluminum	NE	617	1,190	1,250	1,310	NA	NA	NA	142 B	<92.0 U	350	55.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	25	5.2 B	17.6 B	10.6	13.8	NA	NA NA	NA	<3.9 U	4.3 B	<10.0	<10.0	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA NA
Barium	1,000	202	292	370	293	NA NA	NA NA	NA	189	175	232	170	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA
Beryllium	3	<0.54 U	<0.54 U	<3.0	<1.0	NA	NA NA	NA	<0.54 U	<0.54 U	<1.0	<1.0	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA
Calcium	NE	148,000	146,000	172,000	152,000	NA	NA NA	NA	138,000	134,000	293,000	125,000	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
Chromium	50	<1.3 U	5.5 B	9.2	<5.0	NA	NA NA	NA	<1.3 U	4.9 B	5.3	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt	NE	3.1 B	<1.8 U	<5.0	<5.0	NA	NA NA	NA	<1.8 U	<1.8 U	<5.0	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	200	<4.3 U	6.7 B	11.1	10.7	NA	NA	NA	<4.3 U	<4.3 U	42.7	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	300	2,300	9,370	12,000	13,400	NA	NA	NA	15,400	10,300	1,620	7,360	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	25	27.5	5.7 B	11.3	15	NA	NA NA	NA	<3.0 U	<3.0 U	<3.0	3.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium	35,000	35,100	58,900	71,900	53,700	NA	NA NA	NA	35,500	37,400	396,000	31,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	300	5,080	6,470	7,840	6,640	NA	NA NA	NA	1,900	1,410	579	1,150	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	100	6.9 B	12.6	7.5	11	NA	NA NA	NA	<1.9 U	3.5 B	<5.0	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium	NE	20,000 J	11,800	12,000	8,660	NA	NA NA	NA	35,000 J	41,100	49,600	29,200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	20,000	92,600 JJ	135,000	185,000	143,000	NA	NA	NA	132,000 JJ	159,000	4,500,000	210,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	NE	5.0 B	1.9 B	<10.0	<10.0	NA	NA	NA	<1.5 U	<1.5 U	<10.0	<10.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	2,000	22.8 B	16.4 B	23.2	40.9	NA	NA	NA	<11.0 U	<11.0 U	20.8	<20.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	·																					
PCBs (ppb)																			1			
PCB 1248	0.09	<0.060 U	<0.067 U	<0.5	NA	NA	NA	NA	0.50 U	<0.067 U	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (ppb)																						
Aldrin	ND	<0.0058 U	<0.0064 U	<0.0436	NA	NA	NA	NA	<0.0058 U	<0.0064 U	<0.03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
alpha-BHC	NE	<0.011 U	<0.012 U	<0.0436	NA	NA	NA	NA	<0.011 U	<0.012 U	<0.03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
beta-BHC	NE	0.050 U	<0.014 U	<0.0436	NA	NA	NA	NA	0.032 J (M)	<0.014 U	<0.03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlordane-alpha	0.05	<0.0055 U	<0.0061 U	<0.182	NA	NA	NA	NA	0.013 J	<0.0061 U	<0.125	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlordane-gamma	0.05	<0.0061 U	<0.0068 U	<0.182	NA	NA	NA	NA	0.018 J	<0.0068 U	<0.125	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
gamma-BHC (Lindane)	NE	0.018 J (M)		<0.0436	NA NA	NA	NA	NA	<0.0052 U	<0.0058 U	<0.03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor epoxide	0.03	<0.0057 U	<0.0063 U	<0.0436	NA NA	NA	NA NA	NA	0.050 U	<0.0063 U	<0.03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NOTES		<u> </u>					<u> </u>	·				•	•	•						-		-
140 LO																						

Only compounds detected are listed

Post-Remediation refers to interim remedial measures completed in 2005 and 2006 and remediation completed in 2012

TOGS = Technical and Operational Guidance Series (1.1.1).

_ Ambient water quality standards and guidance values and groundwater effluent limitations.

Shading indicates exceedance of TOGS Criteria

Post-Remediation refers to Site conditions following completion of Interim Remedial Measures (IRMs) conducted in 2005 and remediation in 2010.

Monitoring well locations are depicted on Figure 1 of the Site Management Plan

** = The principal organic contaminant standard for groundwater of 5 ug/L applies to this substance.

NE = None Established by NYSDEC

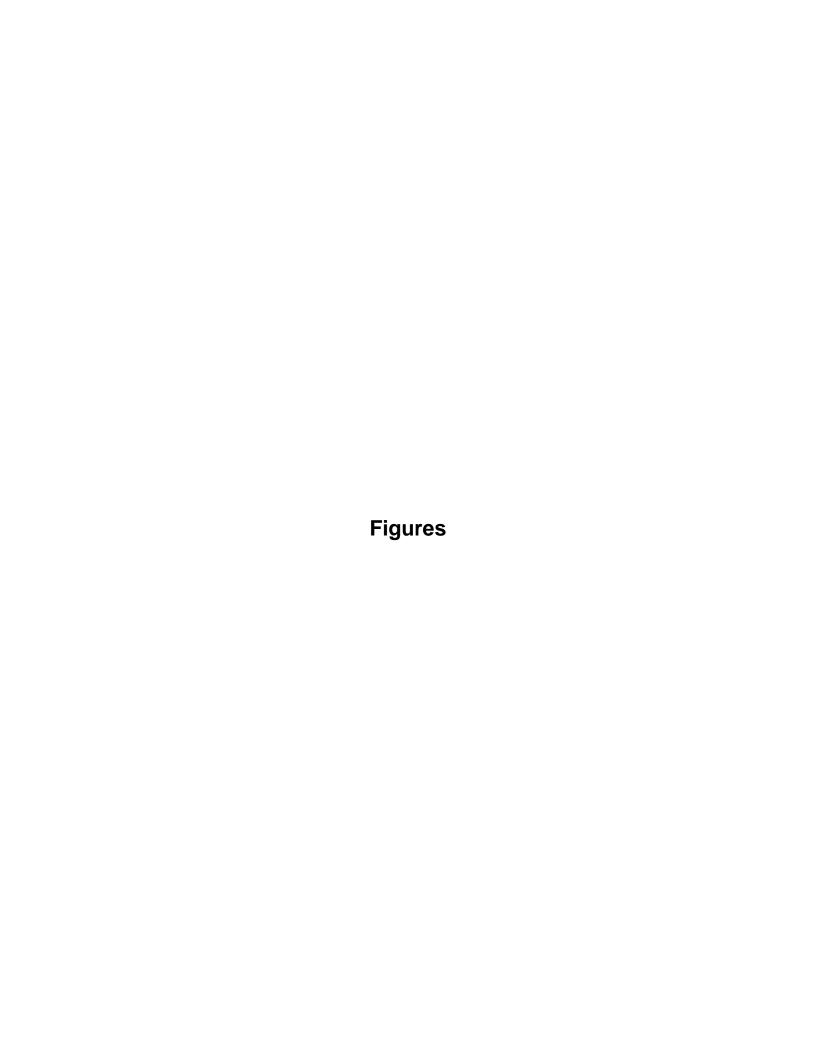
ND = Non-detectable concentration by the approved analytical methods referenced in TOGS 1.1.1 Section 700.3 NA = Not analyzed

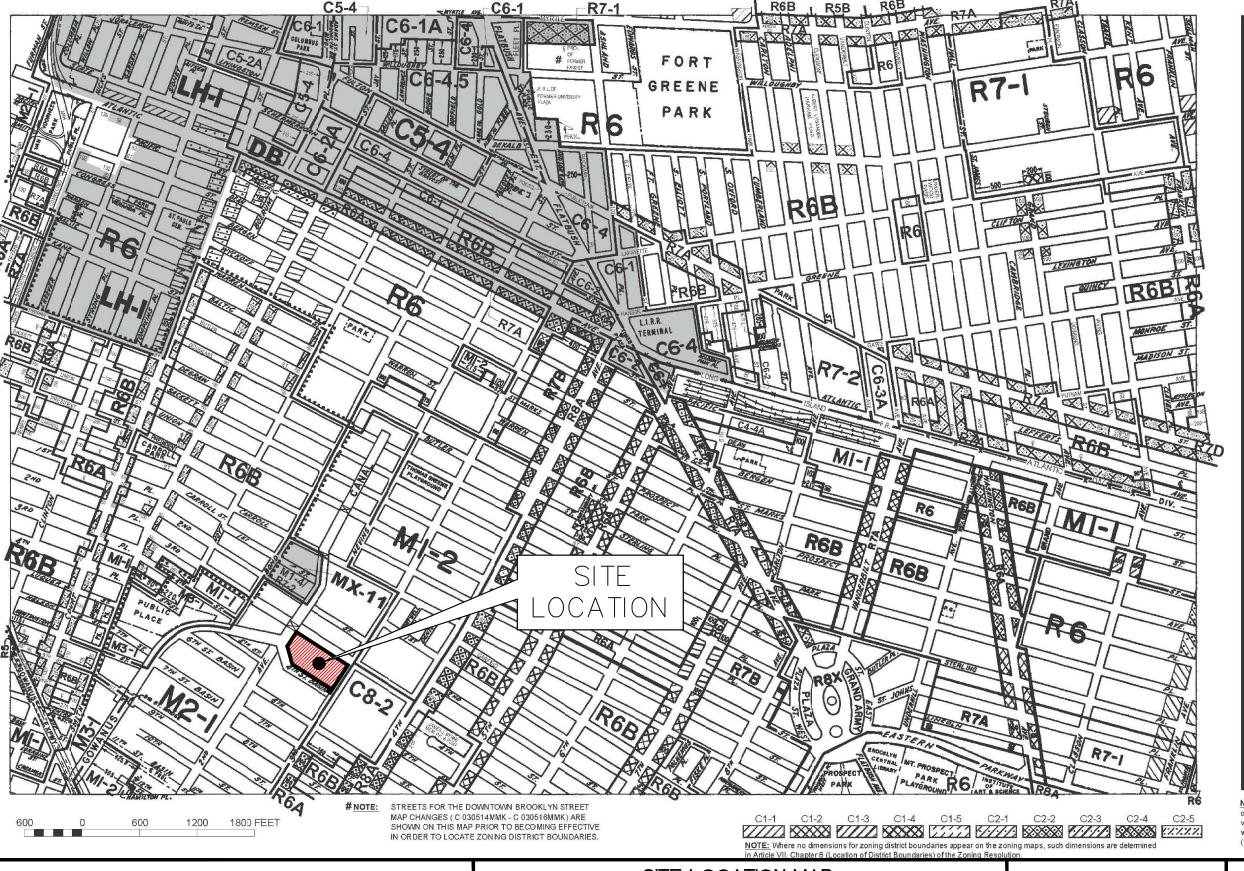
< = Less than Laboratory Method Detection Limit (MDL)</p>

GW-MW-1A is identified as GW-MW-A in some laboratory analytical reports GW-MW-2A destroyed in 2010

ppb = parts per billion

U = (Organic/Inorganic Qualifiers) The analyte was not detected at or above the reporting limit. J and JJ = (Organic Qualifiers) The analyte was positively identified; the associated numerical value


is the approximate concentration of the analyte in the sample.


UJ = (Organic Qualifiers) The analyte was not detected above the reported sample quantitation limit (QL).

However, the reported QL is approximate and may or may not represent the actual limit of quantitation

necessary to accurately and precisely measure the analyte in the sample. B = (Inorganic Qualifiers) The result is less than the Low Level Standard Check - Secondary Dilution and

Analysis/Reporting Limit, but greater than or equal to the Instrument Detection Limit/Method Detection Limit.

ZONING MAP

THE NEW YORK CITY PLANNING COMMISSION

Major Zoning Classifications:

The number(s) and/or letter(s) that follows an R, C or M District designation indicates use, bulk and other controls as described in the text of the Zoning Resolution.

R - RESIDENTIAL DISTRICT

C - COMMERCIAL DISTRICT

M - MANUFACTURING DISTRICT

SPECIAL PURPOSE DISTRICT The letter(s) within the shaded area designates the special purpose district as described in the text of the Zoning Resolution.

AREA(S) REZONED

Effective Date(s) of Rezoning:

10-28-2009 C 090462 ZMK

Special Requirements:

For a list of lots subject to CEQR environmental requirements, see APPENDIX C.

For a list of lots subject to "D" restrictive declarations, see APPENDIX D.

For Inclusionary Housing designated areas on this map, see APPENDIX F.

MAP KEY

12b	12d	13b
16a	16c	17a
16b	16d	17b

 \odot Copyrighted by the City of New York

NOTE: Zoning information as shown on this map is subject to change. For the most up-to-date zoning information for this map, visit the Zoning section of the Department of City Planning website: www.nyc.gov/planning or contact the Zoning Information Desk at (212) 720-3291.

J.K.B. J.S.Y.

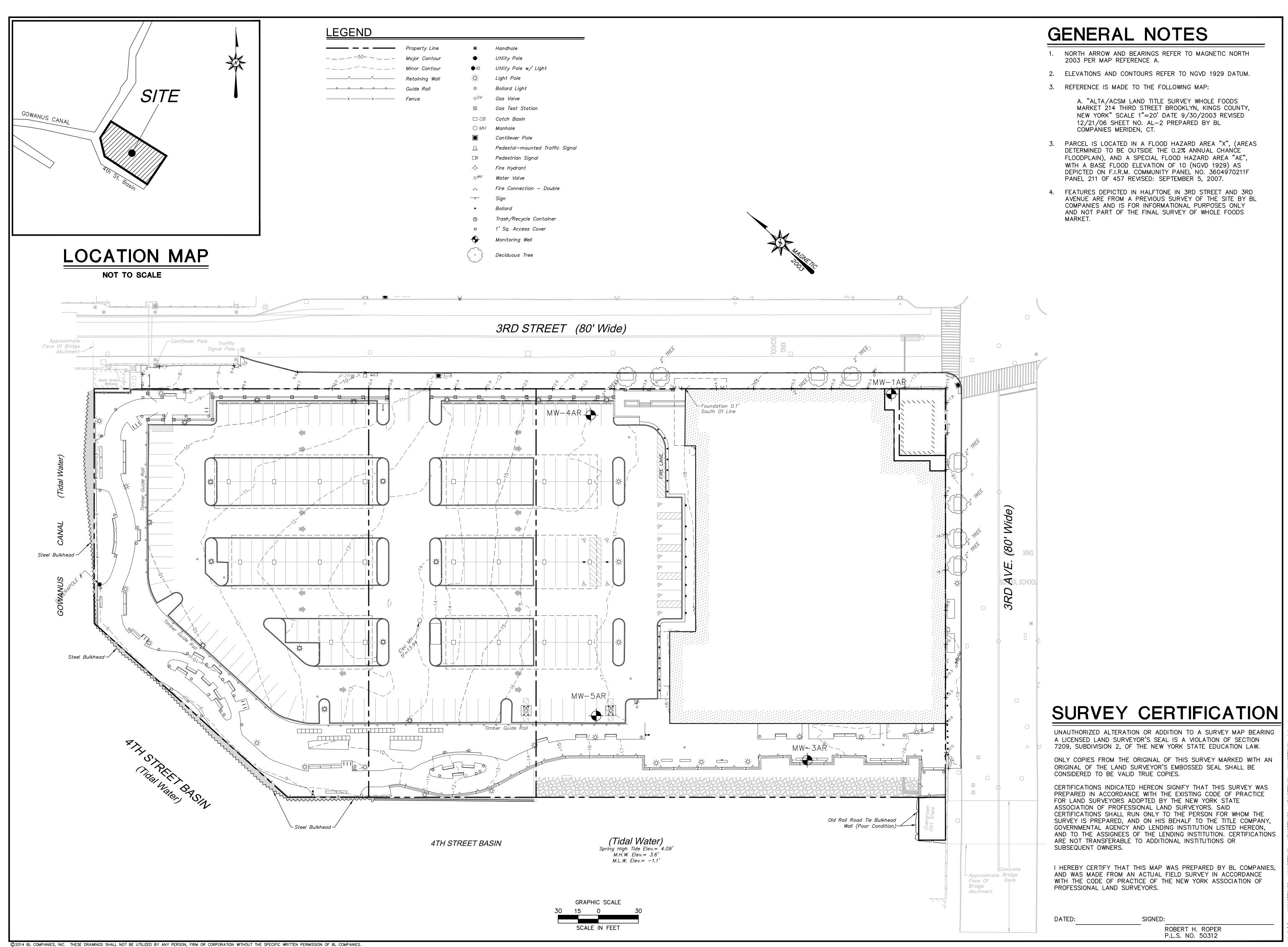
Companies

ARCHITECTURE
ENGINEERING
PLANNING
LANDSCAPE ARCHITECTURE
LAND SURVEYING
ENVIRONMENTAL SCIENCES

50 West 17th Street 3rd Floor New York, NY 10011 (212) 529-6543 (212) 529-4774 Fax WHÔLE FOODS

SITE LOCATION MAP

WHOLE FOODS MARKET
214 3RD STREET
BROOKLYN, KINGS COUNTY, NEW YORK


REVISIONS No. Date

Description

Designed Drawn Checked Approved

Approved
Scale AS SHOWN
Project No.
Origination Date 08/02/1
File EV03C49706

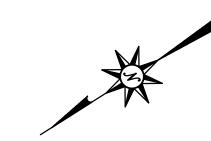
FIGURE 1

ARCHITECTURE **ENGINEERING ENVIRONMENTAL** LAND SURVEYING

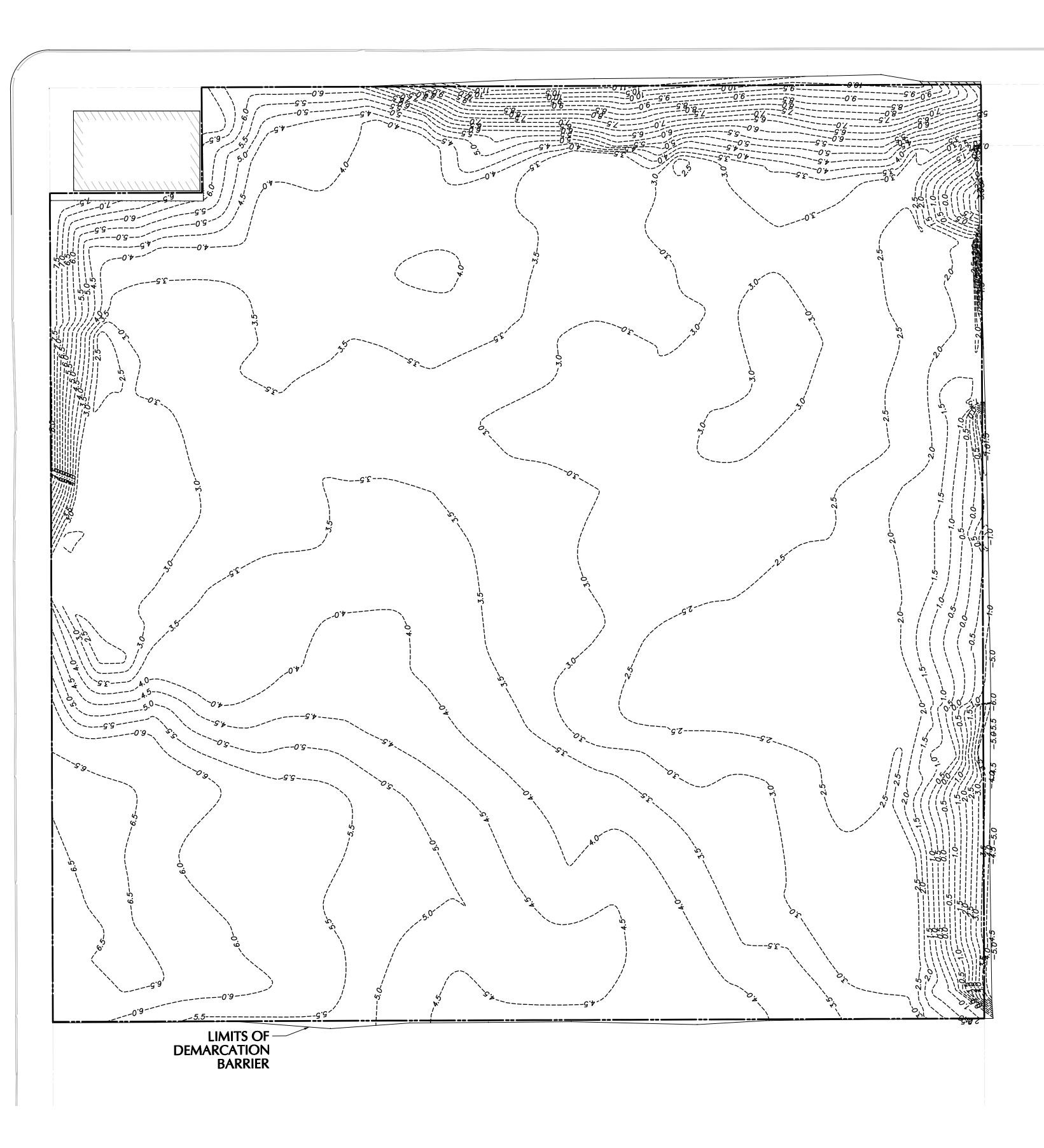
440 Park Avenue South, 3rd Floor New York, NY 10016 (212) 529-6543 (212) 529-4774 Fax

OR NNO \mathbb{A}

JS./J.P. Surveyed Checked R.H.R. 1"=30' 11C3794


Approved Scale Project N Date 10/16/2014 Field Book EV11C379401

CAD File:


PLAN

Sheet No.

FIGURE-2

(80, STREET 3RD

GENERAL NOTES:

1. BASE PLAN AND SURVEY COMPLETED BY LANGAN ENGINEERING SERVICES AND PROVIDED TO BL COMPANIES BY OP-TECH ENVIRONMENTAL SERVICES INC.

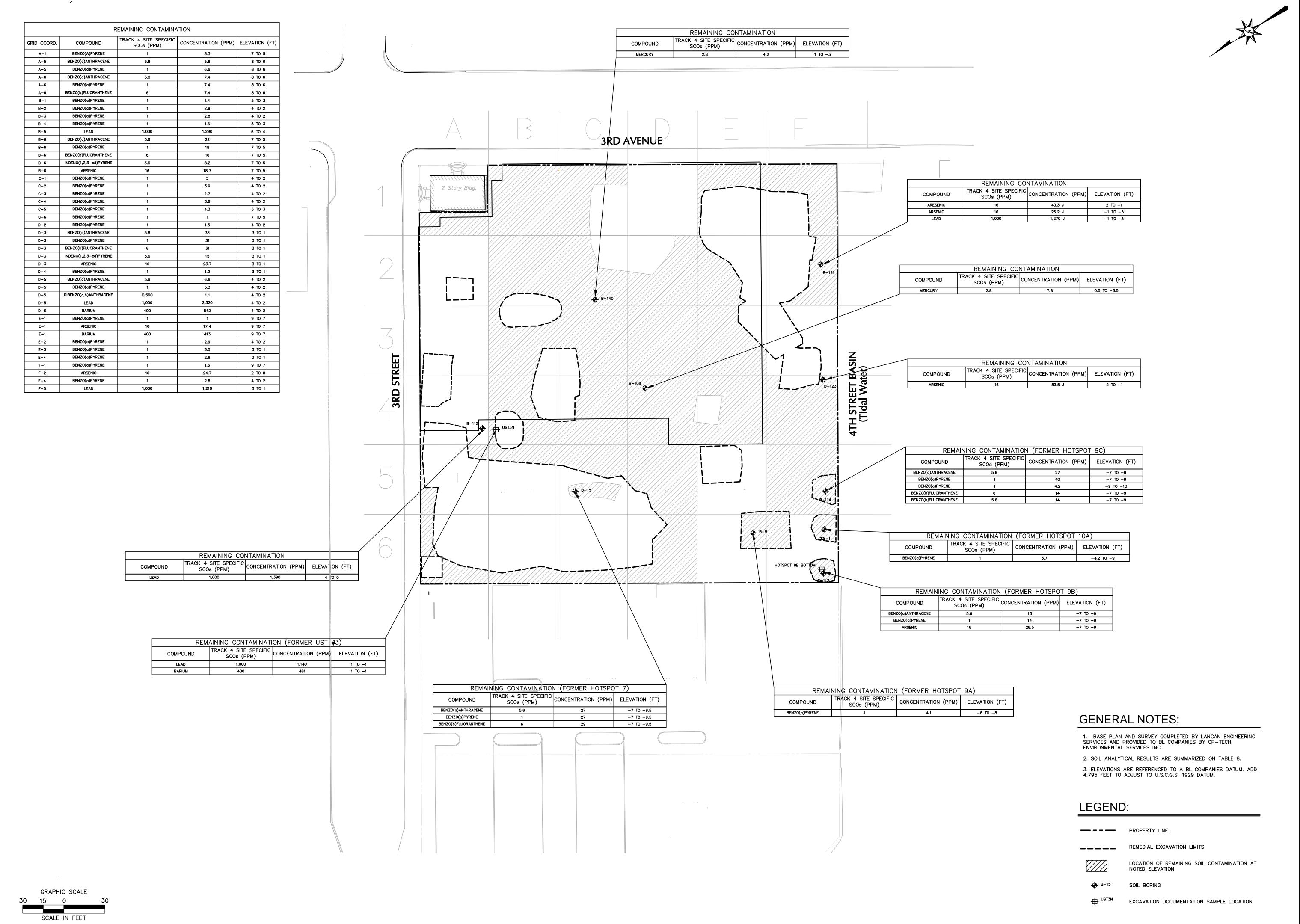
2. ELEVATIONS ARE REFERENCED TO A BL COMPANIES DATUM. ADD 4.795 FEET TO ADJUST TO U.S.C.G.S. 1929 DATUM.

LEGEND:

PROPERTY LINE

SCALE IN FEET ©2008 BL COMPANIES, INC. THESE DRAWINGS SHALL NOT BE UTILIZED BY ANY PERSON, FIRM OR CORPORATION WITHOUT THE SPECIFIC WRITTEN PERMISSION OF BL COMPANIES ARCHITECTURE
ENGINEERING
PLANNING
LANDSCAPE ARCHITECTURE
LAND SURVEYING
ENVIRONMENTAL SCIENCES 355 Research Parkway Meriden, CT 06450 (203) 630-1406 (203) 630-2615 Fax

J.S.Y. Drawn Checked


Approved Scale 03C497 Project No.

04/14/11 CAD File: EV03C49702

DEMARCATION BARRIER **ELEVATION**

Sheet No.

|FIGURE 3|

©2008 BL COMPANIES, INC. THESE DRAWINGS SHALL NOT BE UTILIZED BY ANY PERSON, FIRM OR CORPORATION WITHOUT THE SPECIFIC WRITTEN PERMISSION OF BL COMPANIES

ENGINEERING PLANNING LANDSCAPE ARCHITECTURE LAND SURVEYING ENVIRONMENTAL SCIENCES

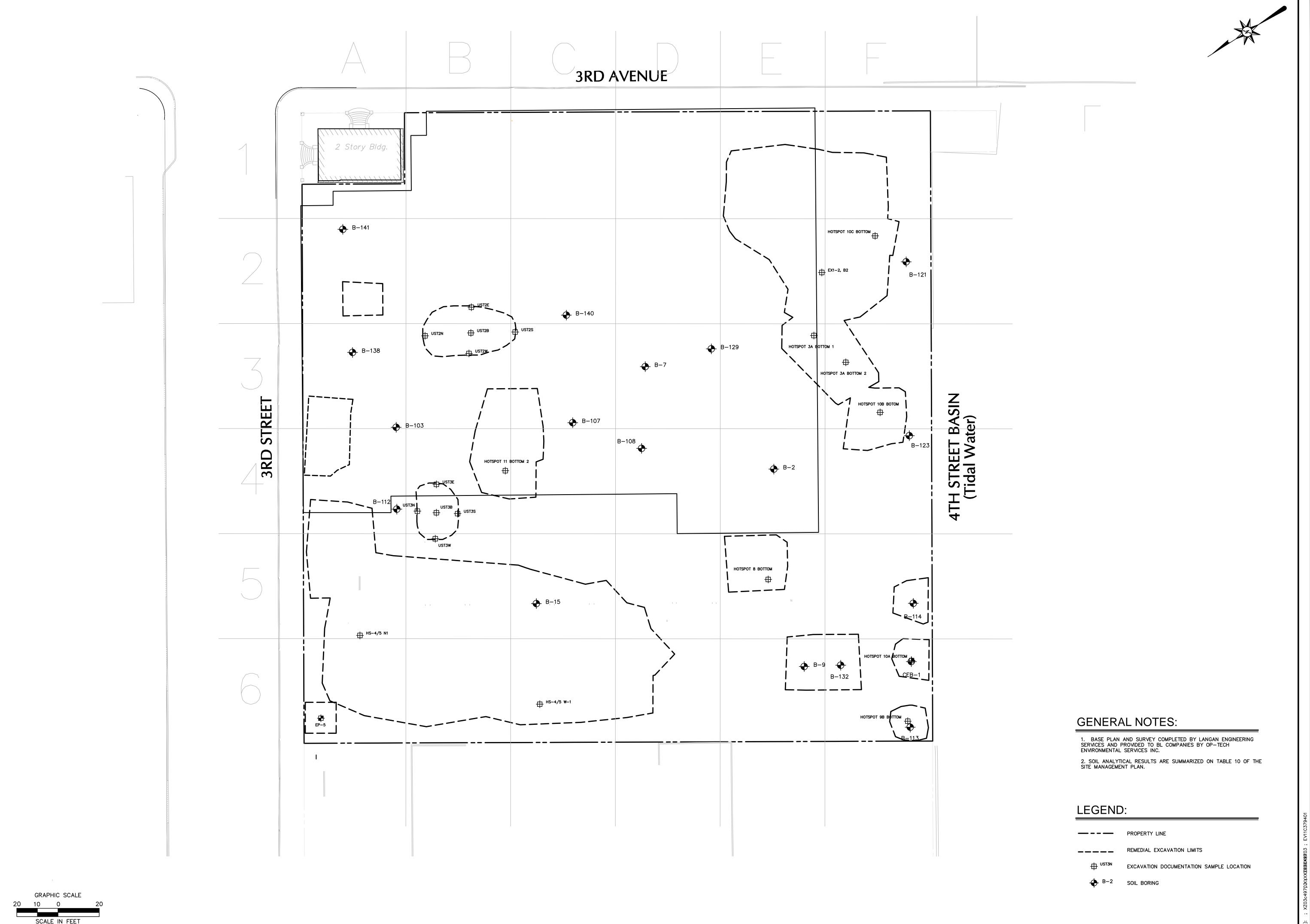
> 355 Research Parkway Meriden, CT 06450 (203) 630-1406

(203) 630-2615 Fax

MARKE-OKLYN, K NYSDEC

Designed Drawn Checked Approved

J.S.Y. 1"=30' Scale


03C497 Project No. 10/16/14 Date CAD File: EV03C49704

LOCATION OF REMAINING SOIL **COMPOUNDS ABOVE**

WITH REGULATED TRACK 4 SITE SPECIFIC SCOS

Sheet No.

|FIGURE 4

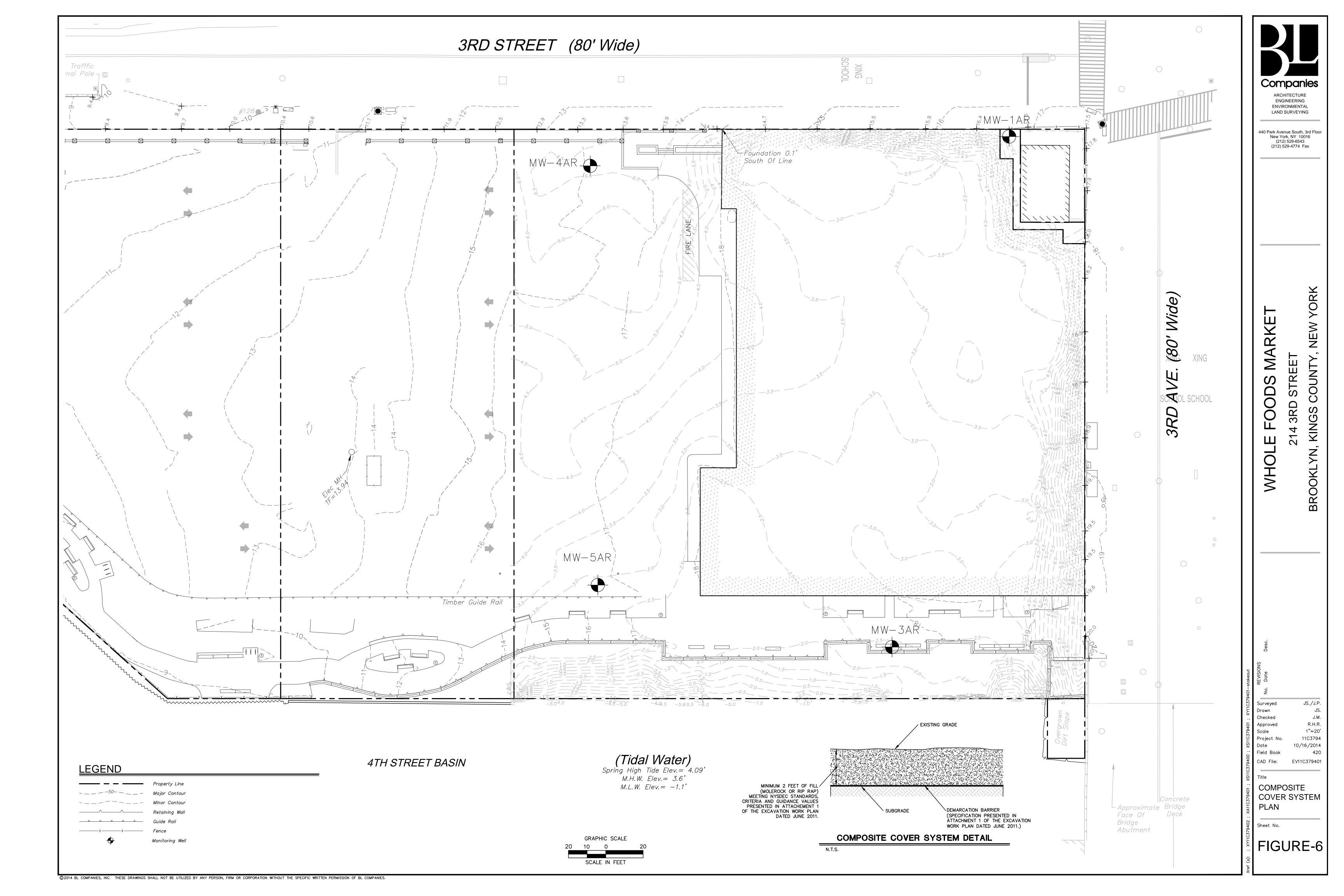
ARCHITECTURE
ENGINEERING
PLANNING
LANDSCAPE ARCHITECTURE
LAND SURVEYING
ENVIRONMENTAL SCIENCES

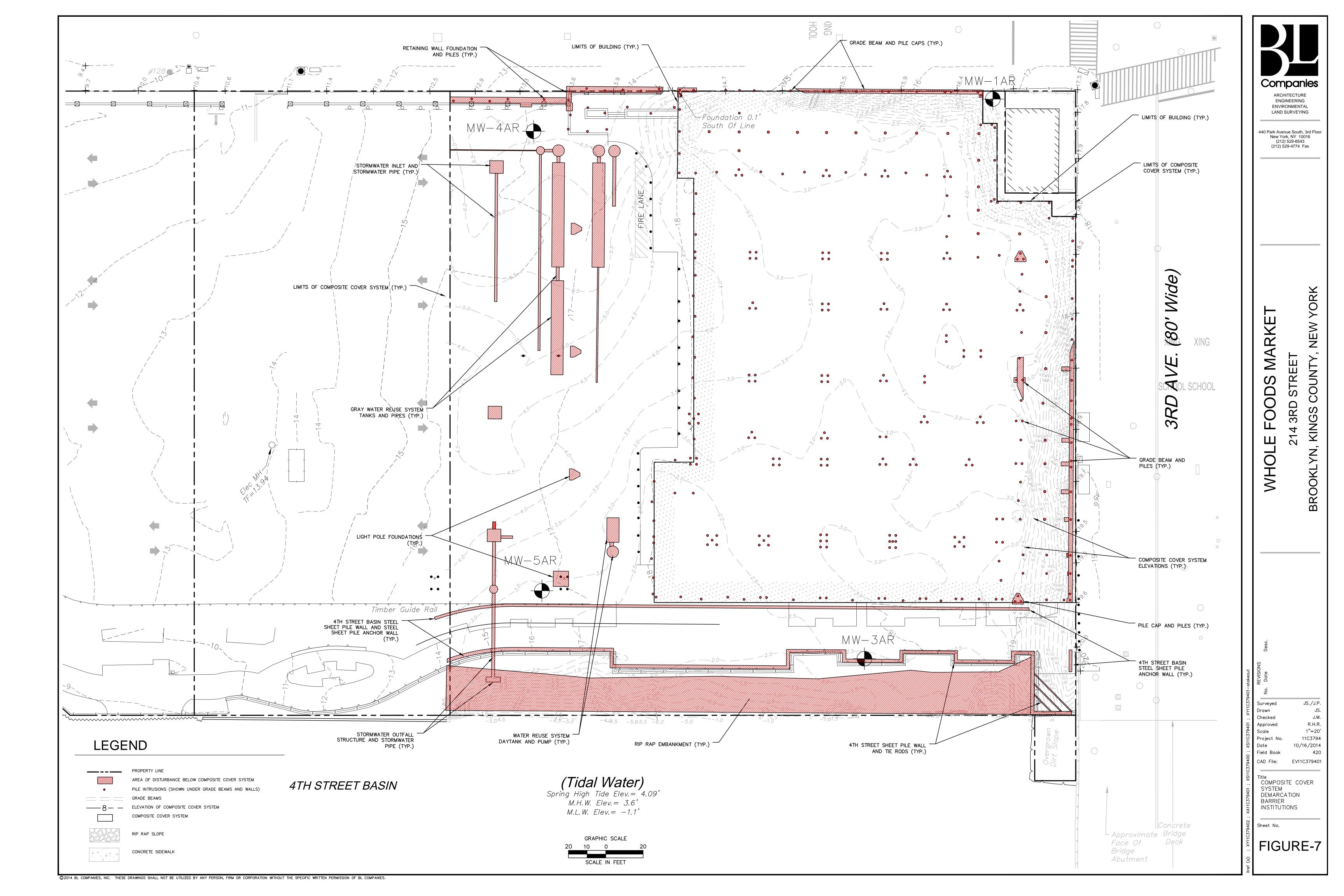
355 Research Parkway Meriden, CT 06450 (203) 630-1406 (203) 630-2615 Fax

WHOLE FOODS MARKET
220 3RD STREET
BROOKLYN, KINGS COUNTY, NEW YORK
NYSDEC BCP SITE NO. C224100

Designed J.S.Y. 1"=20'

Drawn Checked Approved Scale Project No.


03C497 10/16/14 CAD File: EV03C49704


LOCATIONS OF
DOCUMENTATION SOIL
SAMPLES AND SURFACE
SOIL SAMPLES WITH
REGULATED COMPOUNDS
ABOVE UNRESTRICTED
USE SCOS

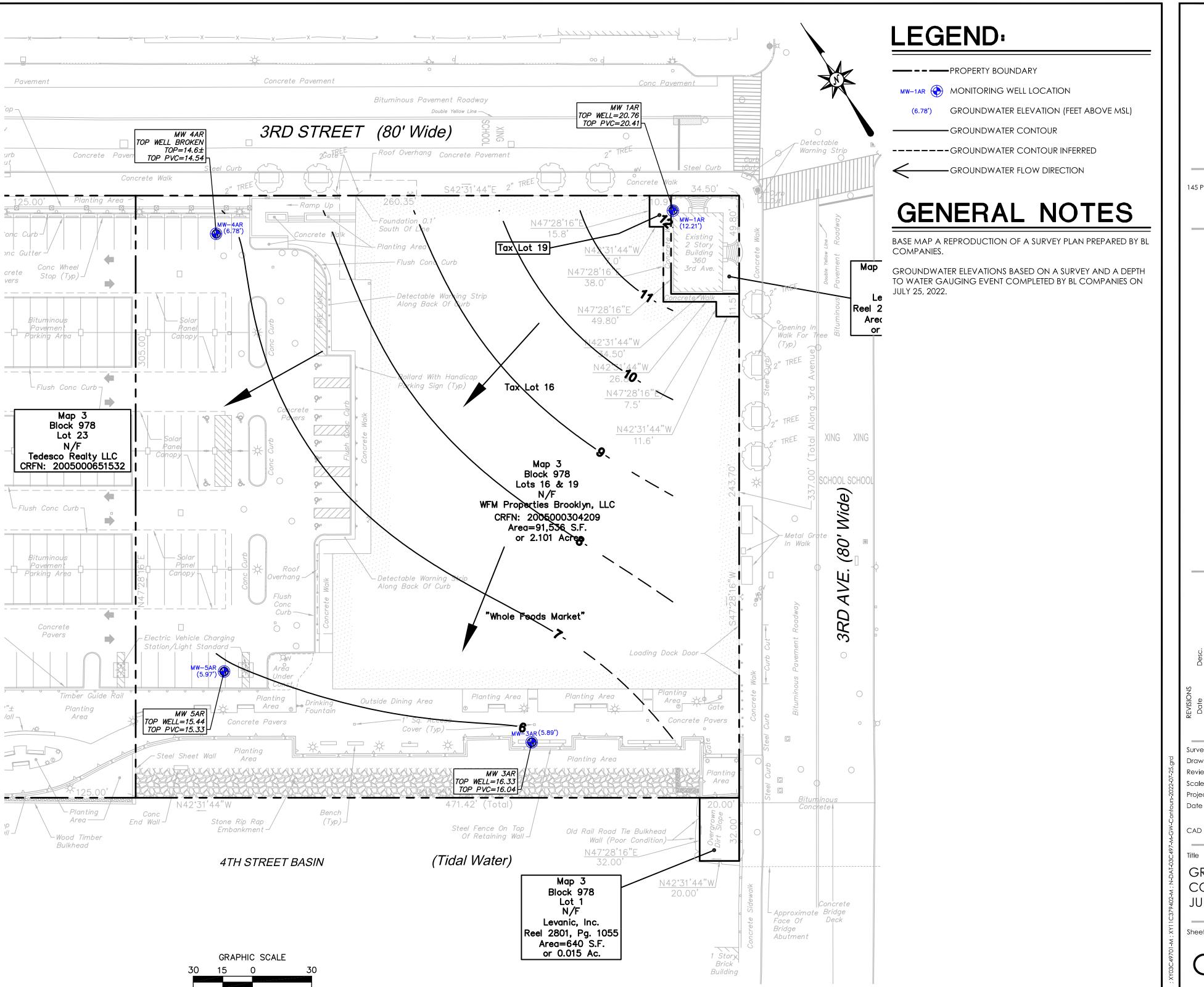

Sheet No.

FIGURE 5

©2008 BL COMPANIES, INC. THESE DRAWINGS SHALL NOT BE UTILIZED BY ANY PERSON, FIRM OR CORPORATION WITHOUT THE SPECIFIC WRITTEN PERMISSION OF BL COMPANIES

145 Pinelawn RD, Suite 300 South Melville, NY 11747 (212) 529-6543 (212) 529-4774 Fax

YORK

FOODS MARKEI NEW NEW STREET COUNTY, 214 3RD S KINGS CO WHOLE BROOKLYN,

Surveyed Drawn Reviewed Scale Project No. 03C497-M 08/16/2022

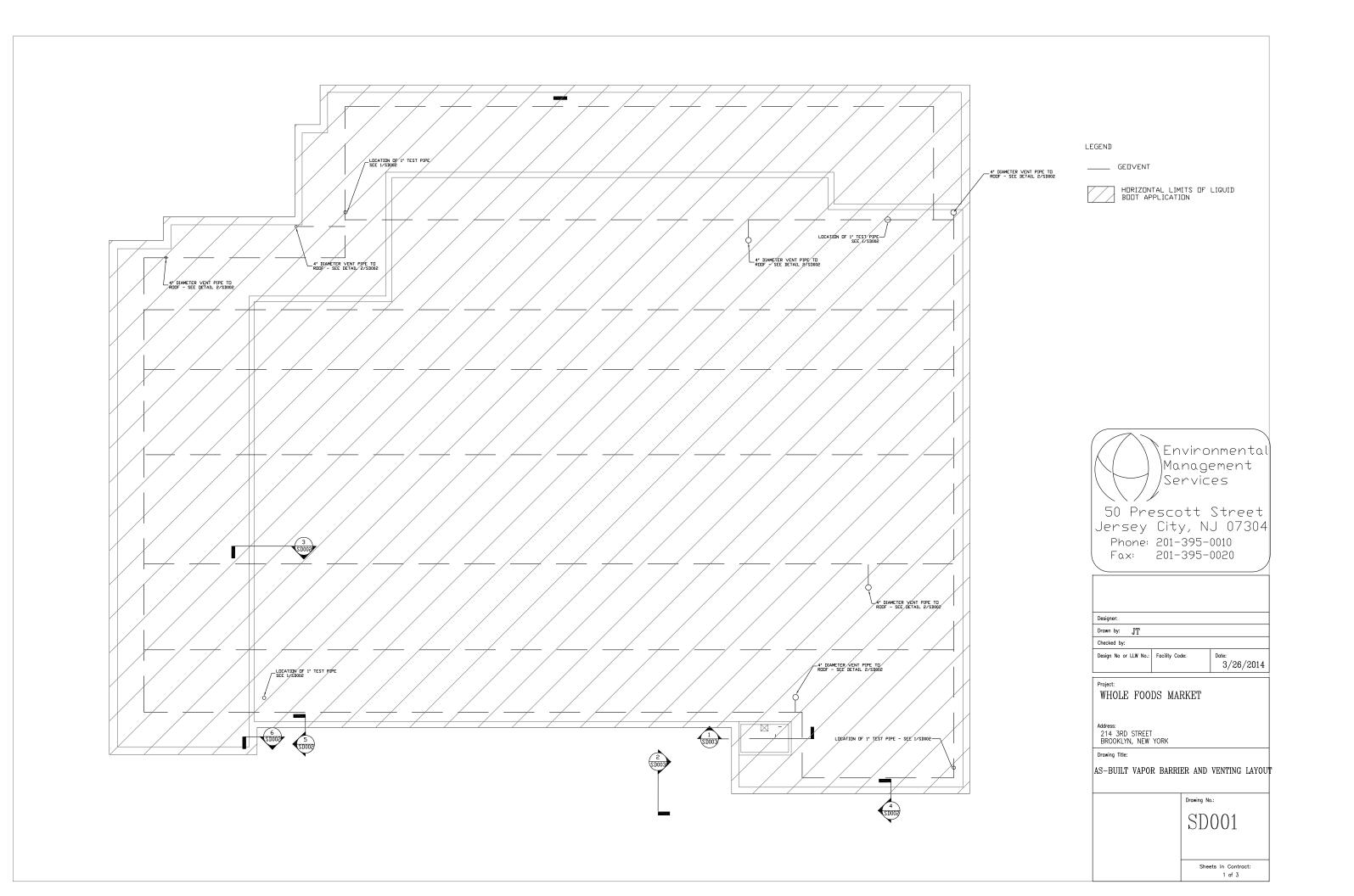
EV03C49701-M CAD File:

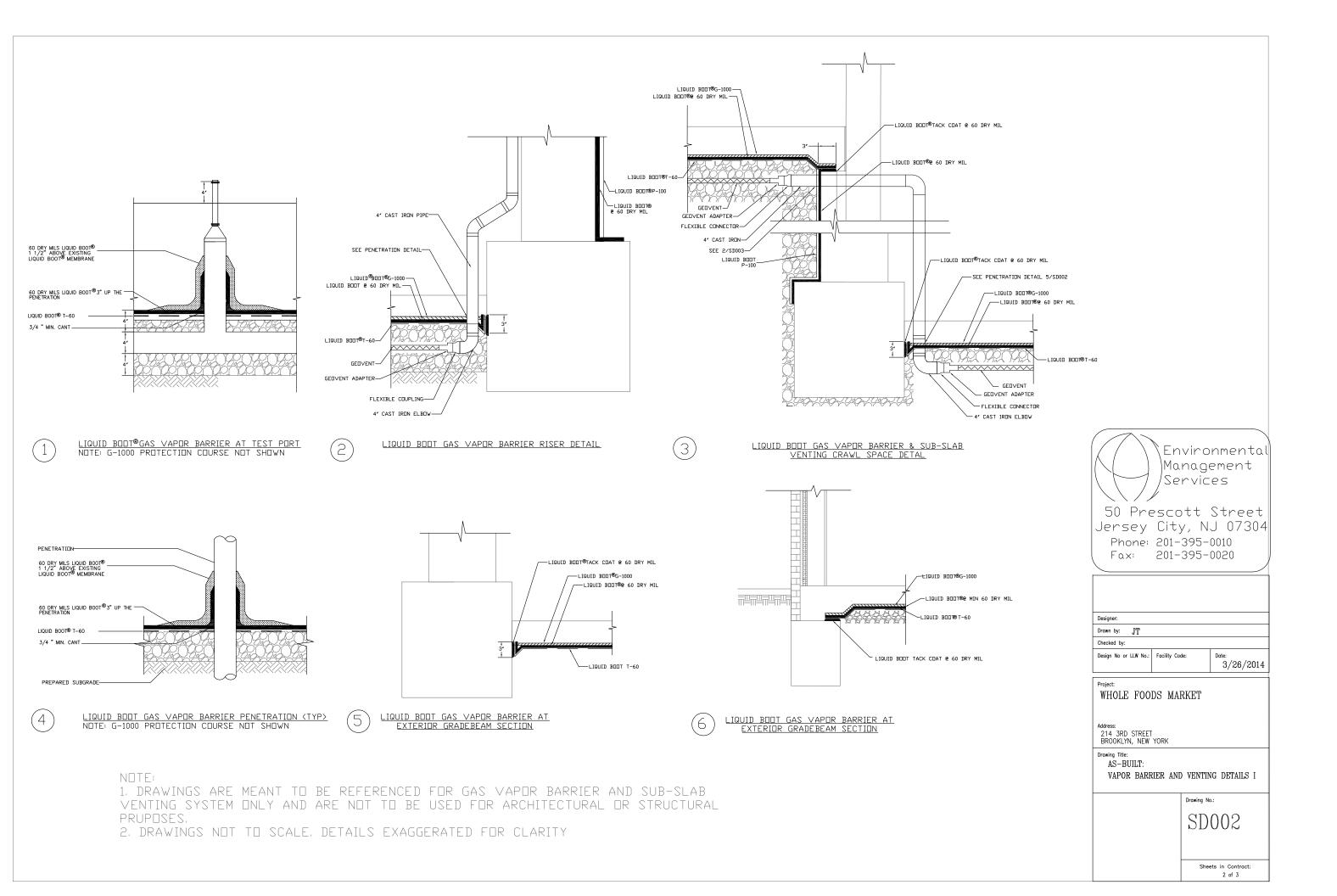
TW

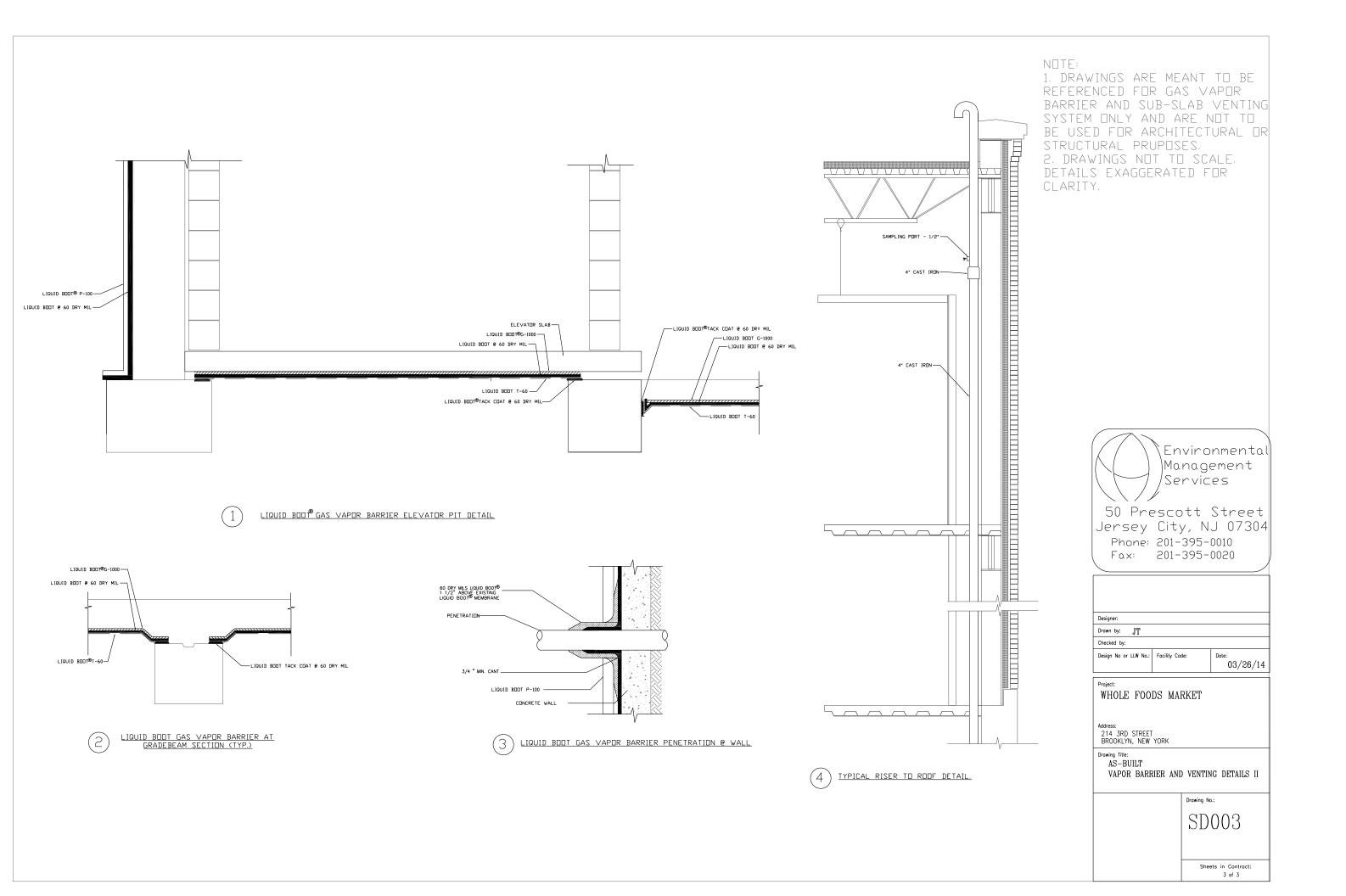
JS.

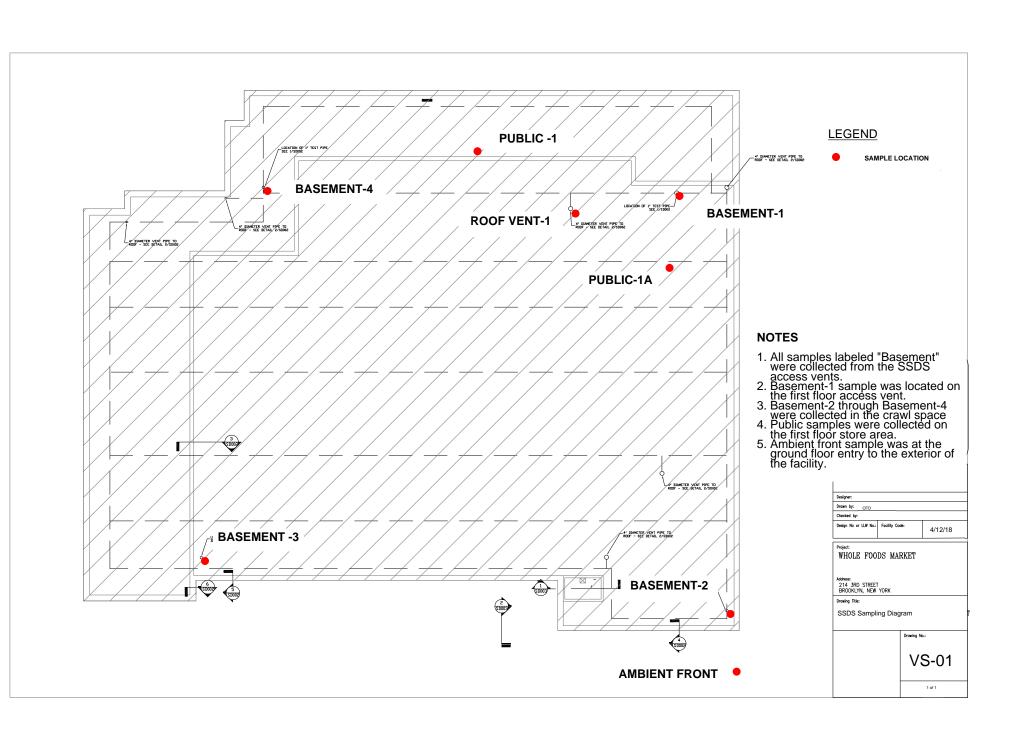
PJC

1"=30"


Title


GROUNDWATER CONTOUR PLAN JULY 25, 2022


Sheet No.


GW-01

SCALE IN FEET

Appendix A

Liquid Boot® Certification and Warranty

LIQUID BOOT® LIMITED WARRANTY

PROJECT NAME:	Whole Foods
LOCATION:	Brooklyn, NY
INSTALLING CONTRACTOR:	EAI, Inc.
CERTIFICATE NUMBER:	000101 882
EFFECTIVE DATE:	11/22/2013

LIMITED WARRANTY. Subject to the terms and conditions set forth below, Colloid Environmental Technologies Company ("CETCO") warrants to the owner (the "Owner") of the construction project identified above (the "Project") that the Liquid Boot[®] product supplied by CETCO (the "Product") will at the time of delivery by CETCO be free from defects in material.

CLAIMS. The foregoing warranty shall remain in effect for a period of five (5) years from the "Effective Date" specified above (the "Warranty Period"). During the Warranty Period, CETCO will replace or, at its option refund the purchase price for, any Products failing to meet the foregoing warranty. Any claim by Owner for any claimed defect hereunder for any cause shall be deemed waived by Owner unless submitted to CETCO in writing within thirty (30) days from the date Owner discovers, or should have discovered any claimed breach.

EXCLUSIONS. CETCO shall have no liability for breach of the warranty caused by (A) accident, neglect, abuse or mishandling of the Product, including failure of Owner to use reasonable care in maintaining the Product; or (B) natural occurrences and acts of God, including without limitation, earthquakes, floods, storms, tornadoes or explosions.

LIMITATIONS. THE FOREGOING WARRANTY IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES NOT EXPRESSLY SET FORTH HEREIN, WHETHER EXPRESSED OR IMPLIED BY OPERATION OF LAW OR OTHERWISE, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CETCO does not authorize any person, including its representatives, to make any representations or warranty, condition or guaranty other than this warranty. Without limitation to the foregoing, any warranty concerning workmanship or non-CETCO materials provided by the installing contractor of the Product or any other subsequent contractor performing work on or to the Product is enforceable against such contractor, and is not provided by, and is not enforceable against, CETCO.

UNDER NO CIRCUMSTANCES SHALL CETCO BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, LOSSES OR EXPENSES, WHETHER ARISING DIRECTLY OR INDIRECTLY FROM THE FAILURE OF ANY PRODUCT TO PERFORM AS WARRANTED OR FROM ANY OTHER CAUSE WHATSOEVER, WHETHER SUCH CLAIM IS BASED ON BREACH OF WARRANTY, BREACH OF CONTRACT, NEGLIGENCE, STRICT LIABILITY OR ANY OTHER LEGAL THEORY. CETCO'S LIABILITY HEREUNDER SHALL IN ANY CASE BE LIMITED TO THE COST OF REPLACEMENT (IN THE FORM ORIGINALLY SHIPPED) OF DEFECTIVE PRODUCTS, OR, AT CETCO'S ELECTION, THE REPAYMENT OF OR CREDITING TO OWNER OF AN AMOUNT EQUAL TO THE PURCHASE PRICE OF SUCH PRODUCTS. The foregoing states the sole and exclusive liability of CETCO and the sole and exclusive remedy of Owner.

MISCELLANEOUS. CETCO's failure at any time to enforce or rely upon any of the terms of conditions stated herein should not be construed to be a waiver of its rights hereunder. This warranty may not be assigned without the prior written approval of CETCO. This warranty shall be interpreted in accordance with the internal laws of the State of Illinois, without regard to the provisions concerning the conflicts of laws.

TECHNICAL DATA

LIQUID BOOT®

SPRAY-APPLIED GAS VAPOR BARRIER

DESCRIPTION

Liquid Boot® is a seamless, spray-applied, water-based membrane containing no VOCs, which provides a barrier against vapor intrusion into structures. Liquid Boot® is installed under slab and on below grade vertical walls as a gas vapor barrier to minimize vapor and nuisance water migration into buildings. Liquid Boot® spray-application directly to penetrations, footings, grade beams, pile caps and other irregular surfaces, provides for a fully-adhered gas vapor barrier system.

APPLICATIONS

Liquid Boot® is used as an underslab and below-grade vertical wall gas vapor barrier, used to minimize vapor and nuisance water (non-hydrostatic conditions) migration into buildings. Liquid Boot® is ideal for methane migration control. Liquid Boot® is also NSF® certified for use as a potable water liner in concrete water reservoirs and tanks greater than 300,000 gallons to protect the concrete from water seepage.

BENEFITS

- Spray-application provides excellent sealing of penetrations, eliminating the need for mechanical fastening
- Seamless, monolithic membrane eliminates seaming-related membrane failures
- Unique formulation provides superior protection from methane gases and water vapor
- ► Fully adhered system reduces risk of gas migration
- Protection from methane gas, VOCs, chlorinated solvents and other contaminates

INSTALLATION

Protect all adjacent areas not to receive gas vapor barrier. Ambient temperature shall be within man-ufacturer's specifications. All plumbing, electrical, mechanical and structural items to be under or passing through the gas vapor barrier shall be secured in their proper positions and appropriately protected prior to membrane application. Gas vapor barrier shall be installed before placement of rein-forcing steel. Expansion joints must be filled with a conventional waterproof expansion joint material. Surface preparation shall be per manufacturer's specification. A minimum thickness of 60 dry mils, unless specified otherwise.

LIMITED WARRANTY

CETCO warrants its products to be free of defects. This warranty only applies when the product is applied by Approved Applicators trained by CETCO. As factors which affect the result obtained from this product, including weather, equipment, construction, work-manship and other variables are all beyond CETCO's control, we warrant only that the material herein conforms to our product specifications. Under this warranty we will replace at no charge any product proved to be defective within 12 months of manufacture, provided it has been applied in accordance with our written directions for uses we recommend as suitable for this product. This warranty is in lieu of any and all other warranties expressed or implied (including any implied warranty of merchantability or fitness for a particular use), and the Manufacturer shall have no further liability of any kind including liability for consequential or incidental damages resulting from any defects or any delays caused by replacement or otherwise. This warranty shall become valid only when the product has been paid for in full.

EQUIPMENT

- COMPRESSOR: Minimum output of 155-185 cubic feet per minute (CFM)
- PUMPS: For "A" drum, an air-powered piston pump of 4:1 ratio (suggested model: Graco, 4:1 Bulldog). For "B" drum, an air-powered diaphragm pump (0 -100 psi)
- ► HOSES: For "A" drum, ½" wire hose with a solvent resistant core (for diesel cleaning flush), hose rated for 500 psi minimum. For "B" drum, a 3/8" fluid hose rated at only 300 psi may be used.
- SPRAY WAND: Only the spray wand sold by CETCO is approved for the application of Liquid Boot®.
- ► SPRAY TIPS: Replacement tips can be purchased separately from CETCO.

PACKAGING

Liquid Boot® is available in the following packaging options:

- ▶ 55 Gallon Drum
- ▶ 275 Gallon Tote

2870 Forbs Avenue, Hoffman Estates, IL 60192 800.527.9948 | http://remediation.cetco.com

IMPORTANT: The information contained herein supersedes all previous printed versions, and is believed to be accurate and reliable. For the most current information, please visit remediation, cetco.com. CETCO accepts no responsibility for the results obtained through application of this product. CETCO reserves the right to update information without notice.

© 2012 OETCO

EV: 2/12 | PAGE 1 OF 2

TECHNICAL DATA

LIQUID BOOT®

SPRAY-APPLIED GAS VAPOR BARRIER

TESTING DATA

CHEMICAL & PHYSICAL PROPERTIES				
CHEMICAL PROPERTY .	TEST METHOD	RESULT		
Acid Exposure (10% H ₂ SO ₄ for 90 days)	ASTM D543	Less than 1% weight change		
Benzene Diffusion Test	Tested at 43,000 ppm	2.90 x 10 ⁻¹¹ m ² /day		
Chemical Resistance: VOCs, BTEXs (tested at 20,000 ppm)	ASTM D543	Less than 1% weight change		
Chromate Exposure (10% Chromium6+ salt for 31 days)	ASTM E96	Less than 1% weight change		
Diesel (1000 mg/l), Ethylbenzene (1000 mg/l), Naphthalene (5000 mg/l) and Acetone (500 mg/l) Exposure for 7 days	ASTM D543	Less than 1% weight change; Less than 1% tensile strength change		
Hydrogen Sulfide Gas Permeability	ASTM D1434	None Detected		
Methane Permeability	ASTM 1434-82	Passed*		
Microorganism Resistance	ASTM D4068-88	Passed*		
Oil Resistance	ASTM D543-87	Passed*		
PCE Diffusion Coefficient	Tested at 120 mg/L	1.32 x 10 ⁻¹³ m ² /sec		
Radon Permeability	Tested by US Dept. of Energy	Zero permeability to Radon (222Rn)		
TCE Diffusion Coefficient	Tested at 524 mg/L	9.07 x 10 ⁻¹³ m ² /sec		

PHYSICAL PROPERTY	TEST METHOD	RESULT
Accelerated Weathering and Ultraviolet Exposure	ASTM D822	No adverse effect after 500 hours
Air Infiltration	ASTM E283-91	O cfm/sq. ft.
Bonded Seam Strength Tests	ASTM D6392	Passed*
Coefficient of Friction (with geotextile both sides)	ASTM D5321	0.72
Cold Bend Test	ASTM D146	Passed. Ø cracking at -25°F
Dead Load Seam Strength	City of Los Angeles	Passed*
Electric Volume Resistivity	ASTM D257	1.91 x 1010 ohms-cm
Elongation	ASTM D412	1,332% Ø reinforcement, 90% recovery
Elongation w/8 oz. non-woven geotextile both sides	ASTM D751	100% (same as geotextile tested separately)
Environmental Stress-Cracking	ASTM D1693-78	Passed*
Flame Spread	ASTM E108	Class A with top coat (comparable to UL790)
Freeze-Thaw Resistance (100 Cycles)	ASTM A742	Meets criteria. Ø spalling or disbondment
Heat Aging	ASTM D4068-88	Passed*
Hydrostatic Head Resistance	ASTM D751	Tested to 138 feet or 60 psi
Potable Water Containment	ANSI/NSF 61	NSF Certified for tanks >300,000 gal
Puncture Resistance w/8 oz. non-woven geotextile both sides	ASTM D4833	286 lbs. (travel of probe = 0.756 in)
Sodium Sulfate (2% water solution)	ASTM D543, D412, D1434	Less than 1% weight change
Soil Burial	ASTM E154-88	Passed
Tensile Bond Strength to Concrete	ASTM D413	2,556 lbs/ft² uplift force
Tensile Strength	ASTM D412	58 psi without reinforcement
Tensile Strength w/8 oz. non-woven geotextile both sides	ASTM D751	196 psi (same as geotextile tested separately)
Toxicity Test	22 CCR 66696	Passed
Water Penetration Rate	ASTM D2434	<7.75 x 10 ⁻⁹ cm/sec
Water Vapor Permeance	ASTM E96	0.069 perms

^{*}Passes all Los Angeles City and County Methane Criteria

2870 Forbs Avenue, Hoffman Estates, IL 60192 800.527.9948 | http://remediation.cetco.com

IMPORTANT: The information contained herein supersedes all previous printed versions, and is believed to be accurate and reliable. For the most current information, please visit remediation cetco.com. CETCO accepts no responsibility for the results obtained through application of this product. CETCO reserves the right to update information without notice.

© 2012 CETCO

REV: 2/12 | PAGE 2 OF 2

Appendix B Annual Inspection Checklists

Date:7/2	25/2022
Inspector:	D. Seitlinger
Weather Cor	nditions:
1. Inspection and survey).	on of entire clean fill cover system completed (Including visual inspection X Yes No
	e any animal burrows greater than 6 inches relative to the surrounding grade the limits of the composite cover system? Yes No
the cover sy	ribe location, diameter, and depth. Burrow holes shall be repaired following ystem design criteria and using similar materials as the system in place. of the repair will be made by a New York-licensed Professional Engineer)
	e any areas of settlement and/or erosion and/or unauthorized excavations or greater than 6 inches within the area of the composite cover system? No
deficiencies	cribe location, size, and amount of settlement. Repair engineering control using cover system design criteria and similar materials as the system in ification of the repair will be made by a New York-Licensed Professional

4. Based on the information obtained from the Site inspector of appear to be performing as designed and does it appear to be protective of human health and the anxironment?	ear	that the		continues
to be protective of human health and the environment?	X	Yes		No
If no, explain:				
5. Are the ground water monitoring wells damaged or missing Yes ▼ No Describe:	ng?			
6. Are the Site cover materials (e.g. buildings, paveme composite cover system damaged? Yes Describe:		etc) in	the are	ea of the
7. Have irrigation or drinking water wells been installed at t ☐ Yes 🗶 No Describe:	he S	ite?		
8. Is the current land use of the area within the limits of being used in accordance with the environmental easement? X Yes No Describe: Site has continued to operate as a Whole Foods so maintained the CCS across the Site to mitigate direction.	tore	since 20	13 and	·
9. If applicable, is an environmental easement on file at the the New York City Registrar's Office? Applica		nd Divisi		Records of Not applicable

If applicable, confirm easement and any amendments Provide the following information for the recorded earlies Book Number: Page: Date easement was filed: Have any amendments and/or additional filings be supersede the easement? Yes	asement.
If yes, explain:	
Inspection Follow-Up and/or Corrective Action The following is a description and scheduled date or animal burrow repair, erosion repair, settlement repetc.)	
Inspector's Signature:	Date: _7/25/2022
Reviewed By:B. Lowry	Date: <u>8/8/2022</u>
Submit inspection reports to:	
BL Companies 355 Research Parkway Meriden, CT 06450	

Date:5/18/2023
Inspector: C. Rizzo
Weather Conditions:
1. Inspection of entire clean fill cover system completed (Including visual inspection and survey). Yes No
2. Are there any animal burrows greater than 6 inches relative to the surrounding grad noted within the limits of the composite cover system? ☐ Yes ☐ No Describe:
(If yes, describe location, diameter, and depth. Burrow holes shall be repaired following the cover system design criteria and using similar materials as the system in place Certification of the repair will be made by a New York-licensed Professional Engineer)
3. Are there any areas of settlement and/or erosion and/or unauthorized excavations of protrusions greater than 6 inches within the area of the composite cover system? ☐ Yes ▼ No Describe:
(If yes, describe location, size, and amount of settlement. Repair engineering controdeficiencies using cover system design criteria and similar materials as the system is place. Certification of the repair will be made by a New York-Licensed Professional Engineer)

4. Based on the information obtained from the Site inspector of appear to be performing as designed and does it appear to be protective of human health and the anxironment?	ear	that the		continues
to be protective of human health and the environment?	X	Yes		No
If no, explain:				
5. Are the ground water monitoring wells damaged or missing Yes ▼ No Describe:	ng?			
6. Are the Site cover materials (e.g. buildings, paveme composite cover system damaged? Yes Describe:		etc) in	the are	ea of the
7. Have irrigation or drinking water wells been installed at t ☐ Yes 🗶 No Describe:	he S	ite?		
8. Is the current land use of the area within the limits of being used in accordance with the environmental easement? X Yes No Describe: Site has continued to operate as a Whole Foods so maintained the CCS across the Site to mitigate direction.	tore	since 20	13 and	·
9. If applicable, is an environmental easement on file at the the New York City Registrar's Office? Applica		nd Divisi		Records of Not applicable

If applicable, confirm easement and any amendments Provide the following information for the recorded ease Book Number: Page: Date easement was filed: Have any amendments and/or additional filings be supersede the easement? Yes	sement.
If yes, explain:	
Inspection Follow-Up and/or Corrective Action The following is a description and scheduled date of animal burrow repair, erosion repair, settlement repetc.)	
Inspector's Signature: Christina Rizzo	Date:5/18/2023
Reviewed By:B. Lowry	Date:
Submit inspection reports to:	
BL Companies 355 Research Parkway Meriden, CT 06450	

Date:10/19/2023
Inspector: C. Rizzo
Weather Conditions:
1. Inspection of entire clean fill cover system completed (Including visual inspection and survey). Yes No
2. Are there any animal burrows greater than 6 inches relative to the surrounding grade noted within the limits of the composite cover system? Yes No Describe:
(If yes, describe location, diameter, and depth. Burrow holes shall be repaired following the cover system design criteria and using similar materials as the system in place. Certification of the repair will be made by a New York-licensed Professional Engineer)
3. Are there any areas of settlement and/or erosion and/or unauthorized excavations or protrusions greater than 6 inches within the area of the composite cover system? ☐ Yes ☑ No Describe:
(If yes, describe location, size, and amount of settlement. Repair engineering control deficiencies using cover system design criteria and similar materials as the system in place. Certification of the repair will be made by a New York-Licensed Professional Engineer)

4. Based on the information obtained from the Site inspector of appear to be performing as designed and does it appear to be protective of human health and the anxironment?	ear	that the		continues
to be protective of human health and the environment?	X	Yes		No
If no, explain:				
5. Are the ground water monitoring wells damaged or missing Yes ▼ No Describe:	ng?			
6. Are the Site cover materials (e.g. buildings, paveme composite cover system damaged? Yes Describe:		etc) in	the are	ea of the
7. Have irrigation or drinking water wells been installed at t ☐ Yes 🗶 No Describe:	he S	ite?		
8. Is the current land use of the area within the limits of being used in accordance with the environmental easement? X Yes No Describe: Site has continued to operate as a Whole Foods so maintained the CCS across the Site to mitigate direction.	tore	since 20	13 and	·
9. If applicable, is an environmental easement on file at the the New York City Registrar's Office? Applica		nd Divisi		Records of Not applicable

If applicable, confirm easement and any amendments are properly recorded. Provide the following information for the recorded easement. Book Number: Page: Date easement was filed: Have any amendments and/or additional filings been recorded that may modify or supersede the easement? Yes No
If yes, explain:
Inspection Follow-Up and/or Corrective Action The following is a description and scheduled date of any required corrective action (i.e. animal burrow repair, erosion repair, settlement repair, unauthorized excavation repair etc.)
Inspector's Signature: Date: Date: Date: Date:
Reviewed By: B. Lowry Date: 10/31/2023
Submit inspection reports to:
BL Companies 355 Research Parkway Meriden, CT 06450

Date:	6/3/2024
Inspector	. C. Rizzo
Weather	Conditions:
1. Inspea	ction of entire clean fill cover system completed (Including visual inspection ey). Yes No
	here any animal burrows greater than 6 inches relative to the surrounding grade thin the limits of the composite cover system? Yes No
the cover	escribe location, diameter, and depth. Burrow holes shall be repaired following r system design criteria and using similar materials as the system in place. ion of the repair will be made by a New York-licensed Professional Engineer)
protrusio	here any areas of settlement and/or erosion and/or unauthorized excavations or ns greater than 6 inches within the area of the composite cover system? es No :
deficienc	describe location, size, and amount of settlement. Repair engineering control ies using cover system design criteria and similar materials as the system in Certification of the repair will be made by a New York-Licensed Professional ()

4. Based on the information obtained from the Site inspector of appear to be performing as designed and does it appear to be protective of human health and the anxironment?	ear	that the		continues
to be protective of human health and the environment?	X	Yes		No
If no, explain:				
5. Are the ground water monitoring wells damaged or missing Yes ▼ No Describe:	ng?			
6. Are the Site cover materials (e.g. buildings, paveme composite cover system damaged? Yes Describe:		etc) in	the are	ea of the
7. Have irrigation or drinking water wells been installed at t ☐ Yes 🗶 No Describe:	he S	ite?		
8. Is the current land use of the area within the limits of being used in accordance with the environmental easement? X Yes No Describe: Site has continued to operate as a Whole Foods so maintained the CCS across the Site to mitigate direction.	tore	since 20	13 and	·
9. If applicable, is an environmental easement on file at the the New York City Registrar's Office? Applica		nd Divisi		Records of Not applicable

If applicable, confirm easement and any amendment Provide the following information for the recorded Book Number: Page: Date easement was filed: Have any amendments and/or additional filings supersede the easement? Yes	easement.
If yes, explain:	
Inspection Follow-Up and/or Corrective Action The following is a description and scheduled date animal burrow repair, erosion repair, settlement retc.)	
Inspector's Signature: Christina Rizzo	Date: 6/3/2024
Reviewed By: B. Lowry	Date:
Submit inspection reports to:	
BL Companies 355 Research Parkway Meriden, CT 06450	

Appendix C Groundwater Sampling Logs

Companies				Bro	ooklyn NY	Sampler:	Wesley John		
roject Name: 214 3	3rd Street		Project Loc.:	0.00	OKIYIT	Date:	7/7/2021		
roject Number:	03C49	97-M	Weather: Sunny	90 8		Sample Details			
		ell Details	2011	Purge Start Time	1156	Headspace Reading:			
Vell Number: MW	-IAR	Casing type/Diameter		Flow Rate (mL/m	nin): ~145	Sample Containers:	3 Voas, 2 1L A		
Depth to Bottom:	, 41	Depth to Water: 4		Time Collected:	1215	Equipment Used: P	m I flow me		
Screen Length: Un	K	Pump Intake Depth:	Para	meter Details					
		_		+/- 0.1 units	+/- 10% for value	+/- 3%	< 0.3 ft		
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %		> 5 NTU Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.	
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН			9.49		
	-121	11.45	4,950	5,73	11.8	23.39			
11:58			5,170	5.59	2.2	20.17	10.64		
12:03	- 122	1.31		5.66	6.7	19.24	12.29		
12:08	-130	0.74	5,200		14.9	18.98	13.17		
12:11	-131	0.65	5,090	5.68		10.10			
							-		
					-				
								l	
						ization due to	1100:	. 1	

Notes: Pumping as slow as pump goes. Sampled Prior to stabalization due to very rapid drawdown.

Project Name: 214 3rd Street			Project Loc.:		ooklyn NY	Sampler:	Wesley Jol	nnson		
Project Number: 03C497-M			Weather: Sunny 53	3°F		Date:	7/7/202	21		
	We	II Details		Sample Details						
Well Number: MN-4AR Casing type/Diameter: 1.5" Purge Star				Purge Start Time		Headspace Reading:				
Depth to Bottom: 17		Depth to Water: 7.		Flow Rate (mL/n		Sample Containers:	3 Voas, 2 1L			
Screen Length: Un	k	Pump Intake Depth:		Time Collected:	11:20	Equipment Used: F	Peristaltic Pump, L	ow flow meter		
			Para .	meter Details						
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for value > 5 NTU	+/- 3%	< 0.3 ft			
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	pН	Turbidity (NTU) Temperature (°C)	Drawdown (ft)	Flow Adj.		
10:11	- 146	18.70	4,210	6.55	2.2	25.30	7.92			
10:16	-105	1.03	3,780	5.71	1.9	23.38	7.97			
1021	-102	0.75	3,270	5.81	30.3	22.80	7.97			
1026	- 103	0.60	3,300	5.89	38.5	22.71	7.96			
१०३।	-106	0.56	3,320	5.93	37.3	23.00	7.83			
1045	-148	0.49	3,910	6.35	27.7	23.48	7.80			
1055	-129	0.45	4,120	5.93	23.7	23.65	7.79			
1105	-134	0.42	4,250	5.90	19.0	23.79	7.79			
1110	-136	0.40	4,280	5.89	17.3	23.86	7.79			
แเร	-138	0,40	4,310	5.90	15.8	23.95	7.79			
-										

Notes: Turned Pump speed down.

Project Name: 214 3rd Street		Project Loc.:	Br	ooklyn NY	Sampler:	Sampler: Wesley Johnson		
Project Number:	ct Number: 03C497-M Weather: Sunny		Weather: Sunny	Date: 7/7/2021				1
	We	II Details				Sample Details		
Well Number: MW-5AR Casing type/Diameter: (-5"			er: 1.5"	Purge Start Time	e: 9 10 5	Headspace Reading:		
Depth to Bottom: 17	.94	Depth to Water:	.20	Flow Rate (mL/n	nin):~ 50	Sample Containers:	3 Voas, 2 1L	Ambers
Screen Length:		Pump Intake Depth:	~13'	Time Collected:	9:40	Equipment Used: F	Peristaltic Pump, Lo	ow flow meter
	5		Para	meter Details				
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for value > 5 NTU	+/- 3%	< 0.3 ft	
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)) Temperature (°C)	Drawdown (ft)	Flow Adj.
9:07	-161	10.21	3,810	8.0	0,0	24-06	9.88	
9:12	-65	1.73	3,630	6.17	0.0	22.92	10.19	
9:17	-67	0.92	3,6∞	6.24	0.0	22.03		
9:25	-76	0.78	3,700	6.33	0	21.77	6.55	
9:30	- 80	0.66	3,740	6.36	0.0	21.75	10.66	
9:35	-83	0.62	3,760	6.38	0.0	21.79	10.65	
						Tr.		
Notes:			-					

Page ____ of ____

		Project Loc.: Brooklyn NY			Sampler:		Wesley Johnson		
10,000	Toject Name. 214 Std Otlock					Date:	Date: 7/7/2021		
Project Number:		ell Details	Weather.	Sample Details					
AAIA L		Casing type/Diamete	er: 1.5"	Purge Start Time: 7: (1 Headspace Reading:					
Well Number: MV-		Depth to Water: 9.	23	Flow Rate (mL/m	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Sample Containers:	3 Voas, 2 1L A		
Depth to Bottom: 17 Screen Length: Un		Pump Intake Depth:		Time Collected:	the state of the s	Equipment Used: P	eristaltic Pump, Lo	w flow meter	
Screen Length: Offi	Λ	I dilip intone is appropri	Para	ameter Details					
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for values > 5 NTU	4/- 376	< 0.3 ft		
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.	
7:23	34	3.92	3,040	7.39	2.3	22.70	9-79		
7:30	110	1.90	3,000	6.61	1.9	22.63	9.92		
7:35	114	1.40	2,990	6.62	1.6	22.49	9.95		
7:40	117	1.17	3,000	6.61	1.0	22.33	9.98		
7:45	118	1.05	3,000	6.59	1.0	22.21	10.00		
7:50	120	0.95	3,016	6.57	0.8	22.09	10.00		
7:55	120	0.92	3,010	6.54	0.8	22.00	[0.00		
7:58	120	0.90	3,010	6.53	0.7	21.94	10.00		
1.50	120	-	010.10						
	-								
	-								
<u> </u>									
Natasi			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Cloud th:	muah cell	not holding	Water		
Notes: Slow	Start be	ecause of	issues with	FIUN THE	joogie een	100. 100.0	V 434. =		
No.	Collecte	٨ .		11					
I DUP	Collect	J							

		1	
ш	•	4	
	<		
		ъ.	_
		7	_

Whole	Food	5 /	Yark	PL

Project Name: BJ's	Wholesale Club P	laze	Project Loc.: Brookly	NY TO	rrington CT	Sampler: D	ave Seitlinger & N	lick Zygmount	
Project Number: 05	C497-M			v 905	1.37	Date: 7-	25-22		
	We	ell Details		Sample Details					
Well Number: 🙏 🏴	IAR	Casing type/Diameter	r: 1.5"	Purge Start Time	e: // 5	Headspace Reading:			
Depth to Bottom:	7.4'	Depth to Water: 8	7.20	Flow Rate (mL/n		Sample Containers:	3U ZA		
Screen Length:	Length: Pump Intake Depth: 151 :sh Time Collected: 11:45 Equipment Used: South Bladder Pump,					Bladder Pump, Lo	w flow meter		
			Para	meter Details					
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for value > 5 NTU	s +/- 3%	< 0.3 ft		
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	pН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.	
11:15	-108	1.05	3.73	7-3/	34.5	26.35	9.77		
11:20	126	0.21	3.73	7.18	44.2	25.14	10.35		
11:25	-127	9.08	<i>3.</i> 77	7.18	43.5	24.44	11.54		
11:30	-129	0.01	3.62	7.17	43.2	23.93	12.68		
11:33	-129	0.00	3.78	7.17	40.2	23.43	13.37		
11:36	-129	0.00	3.96	7.16	47.6	23.02	14.14		
								<u> </u>	
Notes:									

Notes:

Lowered Pump Speed due to very rapid drawabun.

Sampled prior to Stabilization due to extreme drawdown.

- V	
	ı
\prec	ı
	1
	l
Companie	ī

Whole Foods Markot

LOW-FLOW GROUNDWATER SAMPLING LOG

WY	are 10005	"prize+						
Project Name: BJ's			Project Loc.: Kock	NY TO	rrington CT		ave Seitlinger &	lick Zygmount
Project Number: 📿	30497-1		Weather:			Date: 7-25-2	22	
		II Details				Sample Details		
Well Number: 🧷 🗸	1-3AR	Casing type/Diamete		Purge Start Time	e: /2:08	leadspace Reading:		
Depth to Bottom: 🎺	17.33	Depth to Water:	10.15'	Flow Rate (mL/r			3V ZA	
Screen Length:		Pump Intake Depth:		Time Collected:	12:40	Equipment Used 🚗 🕒	Bladder-Pump, Lo	w flow meter
			Para	meter Details				
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for values > 5 NTU	+/- 3%	< 0.3 ft	
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.
12:08	28	0.55	2.01	7.41	28.6	23.78	<i>10.32</i>	
12:13	51	0.23	2.00	7.20	14.9	23.88	10.45	
12:18	61	0.12	2.01	7.15	10.2	23.87	10.45	
12:23	70	0.05	2.00	7.13	6.5	24.14	10.45	
12:26	76	0.00	2.12	7.12	4.8	24.11	10.45	
12:29	79	0.00	1.99	7.12	2.8	23.99	10.45	
12:32	82	0.04	1.99	7.12	2.2	24.26	10.45	
Notes:								

Page ____ of ___

Companies	-lee -l- M-	-ko l	LOW-FLOW GR	OUNDWATER	R SAMPLING LOG				
	olcsale Ma Wholesale Glub P	Haza	Project Loc.: Book/y	NY TO	rrington CT	Sampler: D	Dave Seitlinger & N	lick Zvamount	
	36497-M		Weather: P. 5w	m) 905°			7-25-22		
1.0		ell Details		Sample Details					
Well Number: MW	-SAR	Casing type/Diamete	er: 1.5*	Purge Start Time: 10:/0 Headspace Reading:					
Depth to Bottom: /				Flow Rate (mL/r	min): ///	Sample Containers: 3V 2A			
Screen Length:				Time Collected:	10:35	quipment Used:	Bladder Pump, Lo	w flow meter	
			Para	meter Details					
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for values > 5 NTU	+/- 3%	< 0.3 ft		
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.	
10:10	-63	0.54	1.93	7.18	5.5	24.04	10.12		
10:15	-58	0.28	2.00	7.56	2.7	23.06	10.27		
10:20	-59	0.16	2.10	7.47	3.3	22.19	10.28		
10:25	-GZ	0.04	2.20	7.43	3.2	21.79	10.30		
10:28	-65	0.00	2.28	7.43	2.3	21.22	10.31		
10:31	-66	0.00	2.31	744	2.0	21.05	10.5		
	¥								
	E								
-						-			
Notes:									

Project Name: BJ's Project Number: 03	Wholesale Club P	laza	Project Loc.: Brooklyn					
Toject Number. US		ell Details	Weather: P. Sunay	103		Date: 7-25-3		
Vell Number: MW-		Casing type/Diamet	er: 1.5*	Purge Start Time	0845	Headspace Reading:		
	7.67	Depth to Water:	7.76	Flow Rate (mL/n		Sample Containers: 3	V ZA	
creen Length:		Pump Intake Depth:		Time Collected:			Bladder Pump, Lo	w flow mete
			Para	meter Details				
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for values > 5 NTU	+/- 3%	< 0.3 ft	
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj
8:45	-121	19.0	4.09	7.00	72.3	22.00	8.23	
v: 50	-122	9.2	4.07	7.00	81.1	22.33	8.25	
8:55	-120	5.3	4.03	7.02	93.0	22.26	8.28	
9:00	-120	3.9	4.00	7.04	82.7	22.29	8.28	
9:05	-119	2.9	3.96	7.06	51.8	22.29	8.30	
9:10	-119	2.3	3.90	7.07	35.9	22.16	7.30	
9:15	-116	1.9	3.73	7.05	18.2	22.50	3.30	
9:18	-114	3.4	3.65	7.05	14.1	22.35	8.30	
9:21	-112	2.1	3.59	7.04	9.0	22.44	8.30	
9:23	-112	1.9	3.56	7.04	7.5	22.54	8.30	
otes:	Du	o Collec	1-1	Hisha	4	off at 9:	18	

Page _____ of ____

ł	ı		
۹			
n	ı		
ı			
	Į	_	_

Project Name:			Project Loc.: Whole-to	005 1300	Klun N7	Sampler: Dave	5.		
Project Number: 03	6C497-M		Weather: Cloud		/	Date: 10-25-2	2		
		ell Details	The state of the s	Sample Details					
Well Number: MW-		Casing type/Diamete	er: 2 "	Purge Start Time	e: <i>10 5 5</i>	Headspace Reading:			
Depth to Bottom: 17.	64'	Depth to Water: 7	20'	Flow Rate (mL/min): //o Sample Containers: 3 V 2A					
Screen Length:		Pump Intake Depth:	17.00'	Time Collected:	1125	Equipment Used:	GeoPump, Low	flow meter	
			Para	meter Details					
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for value > 5 NTU	+/- 3%	< 0.3 ft		
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU) Temperature (°C)	Drawdown (ft)	Flow Adj.	
1055	0.5	6.79	1388	7.15	28.3	20.59	7.95'		
1100	-60.5	3.95	1952	6.79	18.4	20.86	7.95'		
1105	-88.5	3.98	2450	6.73	8.3	20.81	7. 95		
1110	-89.5	3.67	2417	6.72	23	20.82	7.96'		
1115	-38.8	3.82	2443	6.72	1.8	20.83	7. 96'		
1120	-87.5	3.81	2465	6.71	1.4	20.82	7.96		
lotoe:									

Notes:

DUP Collected

	10		
	-		
	_		
	•		
	•		
		_	_
	•		
		_	-
CCC	ити	20	nies

Project Name:			Project Loc.: Whaled	Foods Bro	oklyn NY	Sampler: Dave	5.		
Project Number: 😘	C497-M		Weather: Cloudy 1			Date: 10-25-	2Z		
		ell Details		Sample Details					
Well Number: Mw-		Casing type/Diamete		Purge Start Time: //50 Headspace Reading:					
	7.95		3.91'	Flow Rate (mL/n		Sample Containers: 5	V 21		
Screen Length:				GeoPump, Low	flow meter				
		10	Para	meter Details					
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for value > 5 NTU	+/- 3%	< 0.3 ft	*:	
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	pН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.	
1150	-4.2	3.59	1449	7.19	14.0	19.66	16.20'		
1165	-9.6	1.99	M31	7.25	7.2	19.62	10.30		
1200	-11.6	2.02	1371	7.26	3.9	19.58	10.45		
1205	-16.3	2.32	1413	7.25	4.2	19.54	10.53		
1210	-16.3	2.43	1431	7.25	3.0	19.62	10.59'		
1215	-19.4	2.60	1498	7.23	4.1	19.44	10.6)		

Notes:

-	4	
	N.	
-9		
	Ź	S)

Project Name:			Project Loc.: Mok fo	nels Brook	LYO NY	Sampler: Dave	5.			
Project Number: 03	3C497-M		Weather: Chudy	Rainy	ă .	Date: /6-25-7	22			
		II Details		Sample Details						
Well Number: Mu	1-3AR	Casing type/Diameter	er: 2"	Purge Start Time: 230 Headspace Reading:						
Depth to Bottom: 🦑		Depth to Water:	er: 2" 9.35 '	Flow Rate (mL/n		Sample Containers: 3V 2A				
Screen Length:		Pump Intake Depth:	Time Collected: (250 Eq		Equipment Used: GeoPump, Low flow meter					
			Para	meter Details						
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for value > 5 NTU	+/- 3%	< 0.3 ft			
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	pН	Turbidity (NTU) Temperature (°C)	Drawdown (ft)	Flow Adj.		
1230	22.9	5.90	897	7.03	9.9	20.15	9,597			
1235	24.8	5.78	8 5 5	6.91	10.5	20.04	9.59'			
1840	26.6	6.04	820	6.82	7.2	19.97	9.61			
1245	27.5	5.88	822	6.77	6.4	19.97	9.62'			
1250	27.8	5.14	831	6.74	5.2	19.98	9.63'			
		VI.								
	1									
Notes:	J.	· ·	.tu							

-	
\prec	
70.1	_
To the	
Compa	nias
	1111

Project Name:			Project Loc.: Whole o		Kyn NY	Sampler: Dave !	5		
Project Number: 03			Weather: Cloudy						
		II Details		Sample Details					
Well Number: MW-		Casing type/Diamete		Purge Start Time: /335 Headspace Reading:					
	1.40'	Depth to Water:		Flow Rate (mL/n		Sample Containers: 2			
Screen Length:		Pump Intake Depth:		Time Collected:	1420	Equipment Used:	GeoPump, Low	flow meter	
			Para	meter Details	+/- 10% for values				
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	> 5 NTU	+/- 3%	< 0.3 ft		
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)			Flow Adj.	
1325	-82.6	4.44	3705	6.54	53.3	19.02	6.41'		
1330	-94.1	3,57	3773	6.50	126.4	18.85	6.45'		
1335	-101.6	2.75	3876	6.46	95.6	18.68	6.60'		
1340	-98.3	3.07	3926	6.49	84.5	18.69	6.63		
1345	-93.1	3.30	3991	6.50	66.6	18.75	6.65		
1350	-95.8	3.10	4094	6.53	75.7	r. 95	6.71		
1355	- 103.2	2.45	4163	6.54	70.1	19.05	6.75'		
18X	- 103.3	3.26	4172	6.55	67.7	19.09	6.77'		
1405	-102.8	3.03	4183	6.55	63.0	19.14	6.79		
1410	-102.4	3.57	4193	6.55	63.7	19.17	6.79'		
1415	-101.2	3.13	4207	6.55	64.5	19.20	6.83		
1420	-106.7	3.23	4219	6.54	63.8	19.21	6.85'		
Notes:	(-) ALT7	4.21.1.	r= 4.1 = -1		Slight	Fiel odor			
, t	righ 1010,	Duobles	in Tube, 3/01	ve C	31.947				
Pun	ip down		in tube, 5/00						
		Vot Stabi							

Companies	Companies ESVI ESVI SINSUIDIVATEIX SAINT EING EGG								
Project Name:			Project Loc.: Whole	Foods Br	poklun. NY	Sampler: (, /2 i	220		
Project Number: 03	3C497- N		Weather: 40°F, C		*** 'Y'		2023		
	We	il Detalis			S	Sample Details			
Well Number: Mw	-5AR	Casing type/Diamete	r. 2" PVC	Purge Start Time	:7:09am Hea	dspace Reading:			
	`&D,	Depth to Water:		Flow Rate (mL/n	nin): 96 San	nple Containers: 3\	1. ZA		
Screen Length:		Pump Intake Depth:	~13'	Time Collected:	7:40 am Equ	ipment Used: P	eristaltic Pump	YSI	
			Parai	meter Details					
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for values > 5 NTU	+/- 3%	< 0.3 ft		
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	pН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.	
7:12	88.8	3.06	878	8.00	1.3	13.0	9.65		
7:17	87.8	1.94	843	8.00	1.5	13.1	9.87		
7:22	88.4	1.53	845	7.97	1.3	13.1	9.91		
7:27	88.D	1.19	852	7.95	1.2	13.2	9.95		
7:32	87.4	1.07	858	7.93	1.2	13.1	9.97		
7:37	86.4v	1.12 /	865 V	7921	1.3 1	13.1 /	9.98	•	
Notes:									
	ged ~	1 gal.	No sh	een,	no odo	DUP	collect (7:55 c	ited.	

DIE								
Companies			LOW-FLOW GR	OUNDWATER	R SAMPLING LOG			
Project Name:			Project Loc.\\V\o\U	Foods Br	poklun. NY	Sampler: C. K	Silvo	
Project Number: 02	10497 - M		Weather: 50°F.	SUNNY		Date: 5 18 2		
		ell Detalis	,	J		Sample Details		
Well Number: Mw	1-3AR	Casing type/Diamete		Purge Start Time	e: 8:24 am Hez	adspace Reading:		
Depth to Bottom: 17.00' Depth to Water:			.07	Flow Rate (mL/n	nin): 96 Sar	nple Containers: 3\	1, 2A	
Screen Length: Pump Intake Depth: ~ 13.5'			~13.5'	Time Collected:	_			YSI
			Para	meter Details				
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for values > 5 NTU	+/- 3%	< 0.3 ft	
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.
8:28	136.3	7.25	1,592	7.03	5.9	15.0	9.27	
8:33	143.9	6.78	1,1043	7.00	2.3	15.1	9.31	
8:38	148.4	6.53	1,658	6.99	2.5	15.2	9.32	
8:43	152.0	6.19	1,662	6.99	2.8 /	15.1 /	9.34	2
			· · · · · · · · · · · · · · · · · ·					
Notes:			A					
Pure	jed ~ 0.	.5 gal.	NO 3	heen,	No ode	ĵγ.		

BL			LOW-FLOW GR	OUNDWATER	R SAMPLING LOG			
Project Name:			Project Loc.: Whole	Foods Brok	Klyn, NY	Sampler: C · R	1770	
Project Number: 0*	30497N		Weather: 50°F, S	Many	-077	Date: 5 18 20		
	We	ll Details		J		Sample Details		
Well Number: MW		Casing type/Diamete	er: 211 PUC	Purge Start Tim	e: 9:24am H	eadspace Reading:		
	1.50'	Depth to Water: 1		Flow Rate (mL/r		ample Containers: 3	V. 2A	
Screen Length:	111	Pump Intake Depth:		Time Collected:	10:05 E	quipment Used: Dev	ictaltic pum	IP, YSI
			Para	meter Details	v III III III III III III III III III I	M ^c	Å	
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for values > 5 NTU	+/- 3%	< 0.3 ft	
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.
9:26	-126.4	1.74	3224	10.88	5.9	14.4	7.60	
9:31	-130.2	0.79	3.078	10.92	7.5	14.3	7.58	
9.36	-129.5	0.56	2,867	10.95	8.2	14.4	7.40	
9:41	-124.4	0.49	2,436	7.00	6.5	14.3	7.59	
9:46	-121.1	0.46	2,224	7.01	5.3	14.3	7.59	
9:51	-118.4	0.42	2.092	7.02	4.4	14.3	7.60	
9:56	-117.2	0.40	2,047	7.03	3.0	14.4	7.59	
10:01	-116.31	0.39	2,037 🗸	7.03 V	2.3	14.41	7.60	
	ļļ.				2 11 1			

Porged ~1.5 gal. Light sheen, mod.odor.

\prec I	
Compar	nles

Project Name:			Project Loc.: BOOK U	n. NY W	nove Foods	Sampler: C. Fit	w	
Project Number: () 2	C497-M	()	Weather: SS °F, SWNU			Date: 5 18 2023		
	We	II Details		Sample Details				
Well Number: MW		Casing type/Diamete	er: 2" PVC	Purge Start Time: 10:50 am				-
	5.51'	Depth to Water: 7		Flow Rate (mL/m	nin): ~80 Sar	nple Containers: $ 3$	V, 2A	
Screen Length: Pump Intake Depth:			Time Collected:	11:35 Equ	ipment Used: pen	static amp	YSI	
			Para	meter Details		*		
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for values > 5 NTU	+/- 3%	< 0.3 ft	
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	pH	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.
10:53	-136.4	1.24	3.094	10.85	17.5	15.1	8.60	
10:58	-137.6	0.96	3,120	6.85	19.7	15.4	8.95	
11:03	-138.2	0.68	3,146	10.85	18.6	15.4	9.32	
11:08	-138.7	0.58	3,135	6.85	22.7	15.0	9.55	
11.13	-139.8	0.48	3,177	6.85	25.5	14.9	9.99	
11:18	-140.2	0.45	3,181	6.85	21.9	14.9	10.52	
11:23	-141.5	0.43	3,187	10.85	18.6	15.0	10.93	
11:28	-140.0	0.42	3,215	6.85	20.4	14.9	11.43	
11:33	-139.3v	0.45 V	3,247 /	6.851	19.6	14.8 /	11.87x	
		t	*				,,,,,,	
lotes:					1	W 1	Ž.	

Pump literally will not go slower who shutting of Lots of bubbles in tubing. Sampled despite drawdowns. Purged ~1.5 gal. Light sheen, Strongodor.

Page 4 of 4

4 (1):

		r							
Project Name:			Project Loc.: Whole Foods Brooklyn, NY Sampler: Co. Rodriquez						
Project Number: 03	:497-M		Weather: 50°F, de	ar	(4)	Date: 10 / 19/2	023		
		II Details		Sample Details					
Well Number: MW -		Casing type/Diamete		Purge Start Time: 655 AM Headspace Reading:					
Depth to Bottom: \	1.14	Depth to Water:	3.18	Flow Rate (mL/n		Sample Containers: 3 V			
Screen Length:	Screen Length: Pump Intake Deptl			Time Collected:	745	Equipment Used: pen's	taltic pump,	YSI	
		4"	Para	meter Details					
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for value > 5 NTU	+/- 3%	< 0.3 ft		
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	pН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.	
659	129	7.42	767	6.72	14.0	12.49	8.26	1	
704	126	7.91	739	6.83	10.3	13.49	8.26	_	
709	123	7.00	715	6.90	4.0	15.33	8.26		
-714	121	6 .35	714	6.92	4.4	15.99	8.27		
719	118	6.38	712	6.94	4.7	16.67	8.29		
724	117	6.20	715	6.99	3.6	16.70	8.29		
729	Ille	5-66	710	6.96	3.6	17.40	8.30		
734	116	5-38	704	6.96	2.8	17.93	8.31		
739	115	5.30	709	6.97	2.6	18.01	8.31		
744	114	5.15	713	6.98	2.5	18.01	8.31		
.141									

Notes:

Purged ~ 2.5 gal. No Sheen No Odor

Project Name:			Project Loc. Whole Foods Brooklyn, NY			Sampler: G. Rad	Sampler: G. Radriguer		
Project Number: 03(497 - M		Weather: 56°F S	UNKY		Date: 10/19/20	23		
	We	ell Details		1		Sample Details			
Well Number: MW-	5AR	Casing type/Diamete	er: 2" PUC Purge Start Time: 8:27		Headspace Reading:	`	-		
Depth to Bottom: 18.	86.	Depth to Water: 8.		Flow Rate (mL/n	nin): ~92	Sample Containers: 3			
Screen Length: Pump Intake Dep		Pump Intake Depth:	~ 13. ≨ 5	Time Collected:	0859	Equipment Used: pen	staltic pump	IZY	
			Para	meter Details			•		
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for value > 5 NTU	es +/- 3%	< 0.3 ft	_	
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU) Temperature (°C)	Drawdown (ft)	Flow Adj.	
837	61	1.25	537	7.66	4.6	14.87	9.35	4	
842	67	1.28	535	7.14	2.6	15.06	9.19		
847	64	0.55	530	7.77	2.4	15.41	9.42	4	
852	61	0.44	542	7.78	2.3	15.54	9.42	1	
867	58	0.55	547	7.79	2.7	15.53	9.20	1	
	:								
Nata a. I								U.	

Notes: Notes: No Sheen. No Odor. Purged ". 5 gallons

Project Name: Project Loc.: Whole Foods Brooklyn, NY Sampler: G. Rodriguez									
Project Number: 03	2497 - M		Weather: 57 Sunn	Y	(A) S	Date: (0/19/2	023		
		II Details				Sample Details			
Well Number: MW	- 4AR	Casing type/Diamete		Purge Start Time: 9005 Headspace Reading:					
Depth to Bottom: 17.	65	Depth to Water: 6.		Flow Rate (mL/n		Sample Containers: 🦈	3V, 2A		
Screen Length:		Pump Intake Deptha		Time Collected:	1055	Equipment Used:			
			Para	meter Details					
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for value: > 5 NTU	+/- 3%	< 0.3 ft		
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.	
8003	-129	1.45	5200	₩6.87	19 MART 19	12.90	7.44	phone	
1013	-144	0.76	5070	6.79	23.6	13.89	7.44		
1018	- 149	0.46	4750	6.81	17.2	14.87	7.45		
1023	-151	0.29	4250	6.86	13.7	15.69	7.46		
1028	150	0.19	3880	6.89	16.4	16.36	7.48	4	
1033	-150	0.15	3710	6.89	14.7	16.84	7.44		
1038	-149	0.15	3560	6.91	11.0	17.32	7.44		
1043	-148	0-11	3320	6.91	6.9	19.76	7.44		
1048	-148	0.07	3260	6.91	5.2	19.94	7.45		
1053	-149	0.04	3210	6.92	4.2	20.03	7.44		
	×								
Notes									

Notes:

Light Sheen, moderate odor. Purged ~ 2.5 gallons (petrollium)

Field Chain-of-Custody Record

York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document This document serves as your written authorization for YORK to proceed with the analyses requested below.

	YORK Project No.	
ment.		
DRK	Page of	
er	Turn-Around Time	
	RUSH - Next Day	
	RUSH - Two Day	
9	RUSH - Three Day	
	RUSH - Four Day	
	RUSH - Five Day	
	Standard (6-9 Day)	
	PFAS Standard is 7-10 Days	
	YORK Reg. Comp.	
dard)	Compared to the following	
ulS .	Regulation(s): (please fill in)	
HazSite		
gen	0 11 7 1 1	
	Container Type No.	
70)	3 Vods, Zambers	ŀ
		l
	¥ 3	
		l
		l
		l
		l
	Special Instruction	
)H	Field Filtered	
,	Lab to Filter	l
	Date/Time	
	Date/Time	
	Date/Time Temperature	-
	·	4

V		You	r signature binds you to Y	ORK's Standard Terms	& Conditions.		. 1
120 Research Drive Stratford, CT 06615 132-02 89t	th Ave Queens, NY 11418	56 Church Hill Rd. #2 New		rvices@yorklab.com	www.yorklab.com 800-306-YORK	Page of	_
YOUR Information	Repo	rt To:	Invoi	ce To:	YOUR Project Number	Turn-Around Tim	1е
Company: BL Companies	Company:	ж-	Company:		03C497-M	RUSH - Next Day	
Address: 355 Research Parkway	Address: Dave		Address:		-03C771-W	RUSH - Two Day	\Box
Meriden, CT 06450					YOUR Project Name	RUSH - Three Day	一
Phone.:	Phone.:		Phone.:		1	RUSH - Four Day	
Contact Brian Lowery	Contact: Saw	٠, ٥	Contact:	0		RUSH - Five Day	
	E-mail:		E-mail:		YOUR PO#:	Standard (6-9 Day)	Χl
blowry@Blcompanies.com	+			1		PFAS Standard is 7-10	ays
Please print clearly and legibly. All information	n must be complete.	Matrix Codes	Samples From	Report / I	EDD Type (circle selections)	YORK Reg. Com	p.
Samples will not be logged in and the turn-ard begin until any questions by YORK are resolv		S - soil / solid	New York	Summary Report	CT RCP EQuIS (Standard)	Compared to the follow	
Care result	ou.	GW - groundwater	New Jersey	QA Report	CT RCP DQA/DUE NYSDEC EQuIS	Regulation(s): (please fill in	n)
Gregory Rodriguez		DW - drinking water	Connecticut	CMDP	NJDEP Reduced NJDKQP		
Complex		WW - wastewater	Pennsylvania	Standard Excel EDD			- 1
0 000 5					Other NY ASP A Package		
Samples Collected by: (print AND s		O - Oil Other	Other:		Analyses Requested	Container Type I	No.
Sample Identification	on	Sample Matrix	Date/Time Sample				-
MW-1AR		GW	10/19/2023 115	3 NOC5 (826	0) Full SVOCS (8270)	3 Vods, Zambers	\dashv
MW-3AR		GW	674	10.75 E.			\dashv
mw-4AR		GW	1059	1			_
MW-5AR		GW	085	1 <u> </u>			_
008		GW	*	7	<u>*</u>	<u> </u>	
				Ti Ti			
Comments:				Preserv	ation: (check all that apply)	Special Instruction	on
<u></u>				HCI ✓ MeOH _	HNO3 H2SO4 NaOH	Field Filtered	
		Samples iced/chilled at time of	of lab pickup? circle Yes or No	ZnAc Ascorbi	ic Acid Other:	Lab to Filter	
Samples Relinquished by / Company	Date/Time	1. Samples Received by / Con	1 101	Date/Time	2. Samples Relinquished by / Company	Date/Time	
Crelo 10/2	20/2023 DAOG	Christina le	man 10/20	2023 0806			
Samples Received by / Company	Date/Time	3. Samples Relinquished by /	Company	Date/Time	3. Samples Received by / Company	Date/Time	
4. Samples Relinquished by / Company	Date/Time	4. Samples Received by / Cor	mpany	Date/Time	Samples Received in LAB by	Date/Time Temper	ature
						Degr	ees C
							_

1	DI	
H	≺୲	
Ļ	7	
0	compo	inies

					_				
Project Name:			Project Loc.: 214 Th	rd St. Bro	oklyn, NY		no K. Pe	kar	
Project Number: 03	3C497M		Weather: 65°F, (cloudin	5,	Date: 4/3/201	24	2	
	We	ll Details		Sample Details					
Well Number: V/W	- 1AR	Casing type/Diamete	er: 1.5" PVC	Purge Start Time: 0632 Headspace Reading:				_	
Depth to Bottom: 1つ	.50'	Depth to Water: 7.		Flow Rate (mL/r	nin): 92 Sa	mple Containers: 3x	VOA5, 2x [- amberc	
Screen Length: \O	?	Pump Intake Depth:	W/15 125!	Time Collected:	0700 Eq	uipment Used: pen	staltic own	O. YSI	
			Para	meter Details		W.	7	13	
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for values > 5 NTU	+/- 3%	< 0.3 ft		
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	pН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.	
0637	-47.5	0.08	3,328	6.69	9.10	17.2	8,94	44	
0640	-56.3	0.85	3,345	6.67	9.01	17.0	9.13		
0643	-68.8	0.74	3,350	6.66	10.90	17.0	9.40	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Ow	
\$1004G	-76.4	0.65	3,391	6.65	10.20	17.1	9.67	_	
0649	-83.3	0.60	3,411	6.66		17.1	9.91		
0652	-88.3	0.57	3,428	6.67	8.50	16.9	10.17		
0655	-91.3	0.56	3,438	6.67	8.21	16.8	10.39		
0658	-93.8	0.541	3,4901	6.67	8.57 v	16.91	0.58	/ —	
Notes:	0 :2	0 l	aight of an	. \A . =	()	te de	John I a a .		
4040	year ~ 0	5 gar	mos shell,	modera	repodor. L	or or ou	visues "		
toping	. Samp	ole collect	ed despite	draw	down. Co.	1d not	tun pu	mp	
love	wo '	shutting	off. Tubing	set to	~11.5 during	g lan-flor	v. Had	to loner	
					- V		D. C. CVII		

Page ____ of ___

Companies

						r .		
Project Name:			Project Loc.: 214 3va	d Sty Brook	lyn, NY	Sampler: (`, Liza	10 + K. Pe	kar
Project Number: 0 3	5C497- N		Weather: 75'F,	sunny		Date: 6 3 202	up	
		II Details				Sample Details		
				Purge Start Time: 1022 Headspace Reading:				
Depth to Bottom: 17		Depth to Water: 8.		Flow Rate (mL/n	nin): 133 Sar	nple Containers: 3_{χ})	VOAs, 2x ur	ipres ambe
Screen Length: \0'? Pump Intake Depth:				Time Collected:	1047 Equ	ipment Used: peris	taltic pump	T2V,
	10		Para	meter Details			2 3	2
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for values > 5 NTU	+/- 3%	< 0.3 ft	
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.
1025	84.4	7.26	1,075	7.40	4.00	20-9	8.80	44
1030	97.60	10.74	1,080	7.06	4.63	21.1	8.79	_
035	98.5	6.53	1,121	7.02	4.99	2021.2	8.80	
1040	98.8	6.42	1,123	7.02	4.53	20.8	8.85	_
1045	987 V	6.361	1,132 /	7.001	3.26 √	20.8/	8.84	
1								
Notes:	red < 0.	5 gal.	No sheen	no	odor.	Good ve	charge.	
)						0	

-			-	
	ш		ш	
		<	-	
_			m	
		9		
	200	000		

Project Name:			Project Loc.: 214 3v	det Broom	Klun. M	Sampler: C.V	21220		
Project Number: () ?	30497-N	١	Weather: 70°C	Date: 6/3/2024					
Well Details			Sample Details						
Well Number: MW - YAR Casing type/Diameter: 1.5" PVC F			Purge Start Time	: 0743 Hea	adspace Reading:		•		
		Flow Rate (mL/m	nin): ~\05 Sar	nple Containers: 3x	VAS. 2V &	mores ant			
Screen Length: \01	?	Pump Intake Depth:	~12.5'	Time Collected:	D & 28 Equ	ipment Used: Den	istallic our	no YSE	
Parameter Details									
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for values > 5 NTU	+/- 3%	< 0.3 ft		
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.	
0751	-59.3	1.13	4,314	6.77	23.52	18,1	7.51	→	
0756	-76.1	0.77	4,318	6.73	15.93	18.4	7.51)	
0801	-86.6	0.69	4, 243	6.75	17.31	18.2	7.53	_	
0806	-93.4	0.00	4,154	(0.77	17.47	18.1	7.53		
0811	-97.0	0.55	3,951	6.79	17.35	17.9	7.59	_	
0816	-97.5	0.52	3,749	6.79	12.57	18.1	7.59	_	
0821	-97.8	0.52	3,669	6.79	12.57	18.2	7.55	_	
0826	-98.2	0.50 V	3,6511	10.79v	12.51 V	18.21	7.57	_	
						La constitución de la constituci			
Notes:									
Initia	ally ven	turbid -	let pump to	$v \sim 3 m$	nins to remo	we woarse	ted innent.		
Mod	sheen, r	noderate	tet pump to strong o	dor. Pi	rged ~0.5	s gal	Good		
red	n arge.	DUP CO	llected.		U	-			

		1	н	
ч		J,	ш	
٠	≺	•	н	
-		ъ.	щ	_

Project Name:			Project Loc.: 214 3rd	St, Brookl	yn. NY	Sampler: C. Riz	220 K. Pe	kar
Project Number: 03	C497M		Weather: 72°F,	partly U	oude	Date: 4 3 202	4	
Well Details			Sample Details					
Well Number: MW-5AR Casing type/Diameter		1.5" PVC	Purge Start Time: 09 1 9 Hea		Headspace Reading:		-	
Depth to Bottom:	1.87'	Depth to Water: 8,	75'	Flow Rate (mL/n	nin): 100	Sample Containers: 3x	VDAS, 2 XVI	noves. ant.
Screen Length: 10'	,	Pump Intake Depth:	~141	Time Collected:	0950	Equipment Used: pens	stallic pun	10 YSE
			Para	meter Details		3.		1.5
Stabilization Range	+/- 10 mV	+/- 10%	+/- 3 %	+/- 0.1 units	+/- 10% for value: > 5 NTU	+/- 3%	< 0.3 ft	
Time	ORP (mV)	DO (mg/L)	Conductivity (uS/cm)	рН	Turbidity (NTU)	Temperature (°C)	Drawdown (ft)	Flow Adj.
09 23	16.0	3.60	560	3.24	3.03	18.3	9.28	7
0928	29.4	2.73	519	7.98	2.59	18-2	9.37	
0933	34.4	2.51	519	7.91	2.41	18.0	9.48	
0933	36.4	2.87	528	7.89	2.89	17.8	9.62	
0943	37.3	2.10	526	7,84	7.80	17.7	9,69	
0948	31.9/	1.95	537 /	7.811	2,94	17.61	9.701	
	- 1							
Netee								
Notes: Pur	rged ~ c	0.5 gal	. No Sheen	, faint	odor. Good	recharge	i	

Appendix D Laboratory Certification

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Acrylates

Aciyiatos		
Acrolein (Propenal)	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
Acrylonitrile	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
Methyl methacrylate	EPA 8260D	
	EPA 8260C	
Amines		
1,2-Diphenylhydrazine	EPA 8270D	
, , ,	EPA 8270E	
2-Nitroaniline	EPA 8270D	
	EPA 8270E	
3-Nitroaniline	EPA 8270D	
	EPA 8270E	
4-Chloroaniline	EPA 8270D	
	EPA 8270E	
4-Nitroaniline	EPA 8270D	
	EPA 8270E	
Aniline	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Carbazole	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Diphenylamine	EPA 8270D	

Serial No.: 68593

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8270E

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Amines

Benzidines

3,3'-Dichlorobenzidine EPA 625.1

EPA 8270D

EPA 8270E

Benzidine EPA 625.1

EPA 8270D

EPA 8270E

Chlorinated Hydrocarbon Pesticides

4,4'-DDD	EPA 8081B
	EPA 608.3
4,4'-DDE	EPA 8081B
	EPA 608.3
4,4'-DDT	EPA 8081B
	EPA 608.3
Aldrin	EPA 8081B
	EPA 608.3
alpha-BHC	EPA 8081B
	EPA 608.3
alpha-Chlordane	EPA 8081B
beta-BHC	EPA 8081B
	EPA 608.3
Chlordane Total	EPA 8081B
	EPA 608.3

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Chlorinated Hydrocarbon Pesticides

Chlorinated Hydrocarbon Pes	ticides	
delta-BHC	EPA 8081B	
	EPA 608.3	
Dieldrin	EPA 8081B	
	EPA 608.3	
Endosulfan I	EPA 8081B	
	EPA 608.3	
Endosulfan II	EPA 8081B	
	EPA 608.3	
Endosulfan sulfate	EPA 8081B	
	EPA 608.3	
Endrin	EPA 8081B	
	EPA 608.3	
Endrin aldehyde	EPA 8081B	
	EPA 608.3	
Endrin Ketone	EPA 8081B	
gamma-Chlordane	EPA 8081B	
Heptachlor	EPA 8081B	
	EPA 608.3	
Heptachlor epoxide	EPA 8081B	
	EPA 608.3	
Lindane	EPA 8081B	
	EPA 608.3	
Methoxychlor	EPA 8081B	
	EPA 608.3	
Mirex	EPA 8081B	
Toxaphene	EPA 8081B	

Serial No.: 68593

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 608.3

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Chlorinated Hydrocarbons

1,2,3-Trichlorobenzene	EPA 8260D
	EPA 8260C
1,2,4,5-Tetrachlorobenzene	EPA 8270D
	EPA 8270E
1,2,4-Trichlorobenzene	EPA 625.1
	EPA 8270D
	EPA 8270E
2-Chloronaphthalene	EPA 625.1
	EPA 8270D
	EPA 8270E
Hexachlorobenzene	EPA 8270D
	EPA 8270E
Hexachlorobutadiene	EPA 625.1
	EPA 8270D
	EPA 8270E
Hexachlorocyclopentadiene	EPA 625.1
	EPA 8270D
	EPA 8270E
Hexachloroethane	EPA 625.1
	EPA 8270D
	EPA 8270E
Pentachlorobenzene	EPA 8270D
	EPA 8270E

Chlorophenoxy Acid Pesticides

2,4,5-T EPA 8151A 2,4,5-TP (Silvex) EPA 8151A SM 6640B-2006

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Chlorophenoxy Acid Pesticides

2,4-D EPA 8151A Dicamba **EPA 8151A**

Demand

Biochemical Oxygen Demand SM 5210B-2016 Carbonaceous BOD SM 5210B-2016 SM 5220D-2011 Chemical Oxygen Demand

Fuel Oxygenates

Di-isopropyl ether **EPA 8260D** EPA 8260C EPA 8260D Ethanol EPA 8260C EPA 8260D

Methyl tert-butyl ether

EPA 8260C

tert-amyl alcohol **EPA 8260D**

EPA 8260C

tert-amyl methyl ether (TAME) **EPA 8260D**

EPA 8260C

tert-butyl alcohol **EPA 8260D**

EPA 8260C

tert-butyl ethyl ether (ETBE) **EPA 8260D**

EPA 8260C

Haloethers

2,2'-Oxybis(1-chloropropane) EPA 625.1

EPA 8270D

EPA 8270E

4-Bromophenylphenyl ether EPA 625.1

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Haloethers

4-Bromophenylphenyl ether EPA 8270D
EPA 8270E
4-Chlorophenylphenyl ether EPA 625.1
EPA 8270D
EPA 8270E
Bis(2-chloroethoxy)methane EPA 625.1
EPA 8270D
EPA 8270D
EPA 8270E
Bis(2-chloroethyl)ether EPA 625.1
EPA 8270D
EPA 8270D
EPA 8270E

Low Level Halocarbons

1,2,3-Trichloropropane, Low Level EPA 8011
1,2-Dibromo-3-chloropropane, Low Le EPA 8011
1,2-Dibromoethane, Low Level EPA 8011

Low Level Polynuclear Aromatics

Acenaphthene Low Level EPA 8270D

EPA 8270E

EPA 8270E SIM

Acenaphthylene Low Level EPA 8270D

EPA 8270E

EPA 8270E

EPA 8270E

EPA 8270D

EPA 8270D

EPA 8270D

EPA 8270E

EPA 8270E

EPA 8270E

EPA 8270E

EPA 8270E

EPA 8270E SIM

Benzo(a)anthracene Low Level EPA 8270D

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Low Level Polynuclear Aromatics

Benzo(a)anthracene Low Level **EPA 8270E EPA 8270E SIM** Benzo(a)pyrene Low Level **EPA 8270D EPA 8270E EPA 8270E SIM** Benzo(b)fluoranthene Low Level EPA 8270D **EPA 8270E** EPA 8270E SIM Benzo(g,h,i)perylene Low Level EPA 8270D **EPA 8270E** EPA 8270E SIM Benzo(k)fluoranthene Low Level EPA 8270D **EPA 8270E** EPA 8270E SIM Chrysene Low Level EPA 8270D **EPA 8270E EPA 8270E SIM EPA 8270D** Dibenzo(a,h)anthracene Low Level

EPA 8270E

EPA 8270E SIM

EPA 8270E EPA 8270E SIM

EPA 8270D

Fluorene Low Level EPA 8270D

EPA 8270E

EPA 8270E SIM

Indeno(1,2,3-cd)pyrene Low Level EPA 8270D

Serial No.: 68593

Fluoranthene Low Level

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Low Level Polynuclear Aromatics

Indeno(1,2,3-cd)pyrene Low Level EPA 8270E

EPA 8270E SIM

Naphthalene Low Level EPA 8270D

EPA 8270E

EPA 8270E SIM

Phenanthrene Low Level EPA 8270D

EPA 8270E

EPA 8270E SIM

Pyrene Low Level EPA 8270D

EPA 8270E

EPA 8270E SIM

Metals I

Barium, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C

EPA 6010D

Cadmium, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D EPA 6020A EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Calcium, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C

EPA 6010D

Chromium, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Metals I

Chromium, Total EPA 6020A

EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Copper, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D EPA 6020A EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Iron, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D EPA 6020A

EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Lead, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D EPA 6020A EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Magnesium, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C

EPA 6010D

Manganese, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Metals I

Manganese, Total EPA 6020A

EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Nickel, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D EPA 6020A EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Potassium, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C

EPA 6010D

Silver, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D EPA 6020A EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Sodium, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D

Metals II

Aluminum, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D EPA 6020A EPA 6020B

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Metals II

Aluminum, Total EPA 200.8, Rev. 5.4 (1994)
Antimony, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D EPA 6020A EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Arsenic, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D EPA 6020A EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Beryllium, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D EPA 6020A EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Chromium VI EPA 7196A

SM 3500-Cr B-2011

Mercury, Total EPA 245.1, Rev. 3.0 (1994)

EPA 245.2 (Issued 1974, Rev. 1983)

EPA 7470A EPA 7473

Vanadium, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Metals II

Vanadium, Total EPA 6010D

EPA 6020A EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Zinc, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D

Metals III

Cobalt, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D EPA 6020A EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Molybdenum, Total EPA 6020A

EPA 200.8, Rev. 5.4 (1994)

Thallium, Total EPA 200.7, Rev. 4.4 (1994)

EPA 6010C EPA 6010D EPA 6020A EPA 6020B

EPA 200.8, Rev. 5.4 (1994)

Tin, Total EPA 6020A

EPA 200.8, Rev. 5.4 (1994)

Titanium, Total EPA 6020A

EPA 200.8, Rev. 5.4 (1994)

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Mineral

Alkalinity SM 2320B-2011

 Calcium Hardness
 EPA 200.7, Rev. 4.4 (1994)

 Chloride
 EPA 300.0, Rev. 2.1 (1993)

 Fluoride, Total
 EPA 300.0, Rev. 2.1 (1993)

Hardness, Total SM 2340B-2011

Sulfate (as SO4) EPA 300.0, Rev. 2.1 (1993)

Miscellaneous

Boron, Total EPA 6020A

EPA 200.8, Rev. 5.4 (1994)

Bromide EPA 300.0, Rev. 2.1 (1993)

 Color
 SM 2120B-2011

 Cyanide, Total
 SM 4500-CN E-2016

Oil and Grease Total Recoverable EPA 1664A

 Phenols
 EPA 420.1 (Rev. 1978)

 Specific Conductance
 EPA 120.1 (Rev. 1982)

 Sulfide (as S)
 SM 4500-S2- F-2011

 Surfactant (MBAS)
 SM 5540C-2011

Turbidity EPA 180.1, Rev. 2.0 (1993)

Nitroaromatics and Isophorone

2,4-Dinitrotoluene EPA 625.1

EPA 8270D

EPA 8270E

2,6-Dinitrotoluene EPA 625.1

EPA 8270D

EPA 8270E

Isophorone EPA 625.1

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Nitroaromatics and Isophorone

Isophorone EPA 8270D

EPA 8270E

Nitrobenzene EPA 625.1

EPA 8270D

EPA 8270E

Nitrosoamines

N-Nitrosodimethylamine EPA 625.1

EPA 8270D

EPA 8270E

N-Nitrosodi-n-propylamine EPA 625.1

EPA 8270D EPA 8270E

_....

N-Nitrosodiphenylamine EPA 625.1

EPA 8270D

EPA 8270E

Nutrient

Ammonia (as N) SM 4500-NH3 D-2011 or E-2011

Kjeldahl Nitrogen, Total SM 4500-N Org D-2011

SM 4500-NH3 D-2011 or E-2011

 Nitrate (as N)
 EPA 300.0, Rev. 2.1 (1993)

 Nitrate-Nitrite (as N)
 EPA 300.0, Rev. 2.1 (1993)

 Nitrite (as N)
 EPA 300.0, Rev. 2.1 (1993)

 Orthophosphate (as P)
 EPA 300.0, Rev. 2.1 (1993)

SM 4500-P E-2011

Organophosphate Pesticides

Atrazine EPA 8270D

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Organophosphate Pesticides

Atrazine	EPA 8270E
Parathion ethyl	EPA 8270D
	EPA 8270E

Petroleum Hydrocarbons

=		
Diesel Range Organics	EPA 8015D	
Gasoline Range Organics	EPA 8015D	
Phthalate Esters		
Benzyl butyl phthalate	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Bis(2-ethylhexyl) phthalate	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Diethyl phthalate	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Dimethyl phthalate	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Di-n-butyl phthalate	EPA 625.1	
	EPA 8270D	
	EPA 8270E	

EPA 625.1 EPA 8270D EPA 8270E

Serial No.: 68593

Di-n-octyl phthalate

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Polychlorinated Biphenyls

Folycillorillated Dipliellyis		
Aroclor 1016 (PCB-1016)	EPA 8082A	
	EPA 608.3	
Aroclor 1221 (PCB-1221)	EPA 8082A	
	EPA 608.3	
Aroclor 1232 (PCB-1232)	EPA 8082A	
	EPA 608.3	
Aroclor 1242 (PCB-1242)	EPA 8082A	
	EPA 608.3	
Aroclor 1248 (PCB-1248)	EPA 8082A	
	EPA 608.3	
Aroclor 1254 (PCB-1254)	EPA 8082A	
	EPA 608.3	
Aroclor 1260 (PCB-1260)	EPA 8082A	
	EPA 608.3	
Aroclor 1262 (PCB-1262)	EPA 8082A	
Aroclor 1268 (PCB-1268)	EPA 8082A	
Polynuclear Aromatics		
Acenaphthene	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Acenaphthylene	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Anthracene	EPA 625.1	
	EPA 8270D	
	EPA 8270E	

Serial No.: 68593

Benzo(a)anthracene

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 625.1

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Polynuclear Aromatics

i olyllacical Arolliadics		
Benzo(a)anthracene	EPA 8270D	
	EPA 8270E	
Benzo(a)pyrene	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Benzo(b)fluoranthene	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Benzo(g,h,i)perylene	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Benzo(k)fluoranthene	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Chrysene	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Dibenzo(a,h)anthracene	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Fluoranthene	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Fluorene	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Indeno(1,2,3-cd)pyrene	EPA 625.1	

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> EPA 8270D EPA 8270E

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Polynuclear Aromatics Indeno(1,2,3-cd)pyrene

Naphthalene	EPA 625.1
	EPA 8270D
	EPA 8270E
Phenanthrene	EPA 8270D
	EPA 8270E
Pyrene	EPA 625.1
	EPA 8270D
	EPA 8270E
Priority Pollutant Phenols	
2,3,4,6 Tetrachlorophenol	EPA 8270D
	EPA 8270E
2,4,5-Trichlorophenol	EPA 625.1
	EPA 8270D
	EPA 8270E
2,4,6-Trichlorophenol	EPA 625.1
	EPA 8270D
	EPA 8270E
2,4-Dichlorophenol	EPA 625.1
	EPA 8270D
	EPA 8270E
2,4-Dimethylphenol	EPA 625.1
	EPA 8270D
	EPA 8270E
2,4-Dinitrophenol	EPA 8270E

Serial No.: 68593

2-Chlorophenol

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 625.1

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Priority Pollutant Phenols

2-Chlorophenol	EPA 8270D	
	EPA 8270E	
2-Methyl-4,6-dinitrophenol	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
2-Methylphenol	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
2-Nitrophenol	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
4-Chloro-3-methylphenol	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
4-Methylphenol	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
4-Nitrophenol	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Cresols, Total	EPA 8270D	
	EPA 8270E	
Pentachlorophenol	EPA 625.1	
	EPA 8270D	
	EPA 8270E	
Phenol	EPA 625.1	
	EPA 8270D	

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

EPA 8270E

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Priority Pollutant Phenols

Phenol

Residue	
Settleable Solids	SM 2540 F-2015
Solids, Total	SM 2540 B-2015
Solids, Total Dissolved	SM 2540 C-2015
Solids, Total Suspended	SM 2540 D-2015

EPA 8270D
EPA 8270E
EPA 8270D
EPA 8270E
EPA 625.1
EPA 8270E
EPA 8270D
EPA 8270E
EPA 8270D
EPA 8270E

EPA 8270D

Serial No.: 68593

Benzyl alcohol

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Semi-Volatile Organics

Benzyl alcohol	EPA 8270E		
Caprolactam	EPA 8270D		
	EPA 8270E		
Dibenzofuran	EPA 8270D		
	EPA 8270E		
Volatile Aromatics			
1,2,4-Trichlorobenzene, Volatile	EPA 8260D		
	EPA 8260C		
1,2,4-Trimethylbenzene	EPA 8260D		
	ED4 00000		

, ,	
	EPA 8260C
1,2-Dichlorobenzene	EPA 8260D
	EPA 8260C
	EPA 624.1
1,3,5-Trimethylbenzene	EPA 8260D

	EPA 8260C
1,3-Dichlorobenzene	EPA 8260D
	EPA 8260C
	FPΔ 624 1

	EPA 024.1
1,4-Dichlorobenzene	EPA 8260D
	EPA 8260C
	EPA 624.1
2-Chlorotoluene	EPA 8260D
	EPA 8260C
4-Chlorotoluene	EPA 8260D

EPA 8260C
Benzene EPA 8260D
EPA 8260C

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatile Aromatics

Benzene	EPA 624.1	
Bromobenzene	EPA 8260D	
	EPA 8260C	
Chlorobenzene	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
Ethyl benzene	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
Isopropylbenzene	EPA 8260D	
	EPA 8260C	
m/p-Xylenes	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
Naphthalene, Volatile	EPA 8260D	
	EPA 8260C	
n-Butylbenzene	EPA 8260D	
	EPA 8260C	
n-Propylbenzene	EPA 8260D	
	EPA 8260C	
o-Xylene	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
p-Isopropyltoluene (P-Cymene)	EPA 8260D	
	EPA 8260C	
sec-Butylbenzene	EPA 8260D	

Serial No.: 68593

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8260C

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatile Aromatics

Styrene

,		
	EPA 8260C	
	EPA 624.1	
tert-Butylbenzene	EPA 8260D	
	EPA 8260C	
Toluene	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
Total Xylenes	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
Volatile Halocarbons		
1,1,1,2-Tetrachloroethane	EPA 8260D	
	EPA 8260C	
1,1,1-Trichloroethane	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
1,1,2,2-Tetrachloroethane	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	EPA 8260D	
	EPA 8260C	
1,1,2-Trichloroethane	EPA 8260D	
	EPA 8260C	
	EPA 624.1	

EPA 8260D

Serial No.: 68593

1.1-Dichloroethane

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8260D EPA 8260C

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatile Halocarbons

1,1-Dichloroethane	EPA 624.1
1,1-Dichloroethene	EPA 8260D
	EPA 8260C
	EPA 624.1
1,1-Dichloropropene	EPA 8260D
	EPA 8260C
1,2,3-Trichloropropane	EPA 8260D
	EPA 8260C
1,2-Dibromo-3-chloropropane	EPA 8260D
	EPA 8260C
1,2-Dibromoethane	EPA 8260D
	EPA 8260C
1,2-Dichloroethane	EPA 8260D
	EPA 8260C
	EPA 624.1
1,2-Dichloropropane	EPA 8260D
	EPA 8260C
	EPA 624.1
1,3-Dichloropropane	EPA 8260D
	EPA 8260C
2,2-Dichloropropane	EPA 8260D
	EPA 8260C
2-Chloroethylvinyl ether	EPA 8260D
	EPA 8260C
	EPA 624.1
Bromochloromethane	EPA 8260D
	EPA 8260C

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatile Halocarbons

EPA 8260D	
EPA 8260C	
EPA 624.1	
EPA 8260D	
EPA 8260C	
EPA 624.1	
EPA 8260D	
EPA 8260C	
EPA 624.1	
EPA 8260D	
EPA 8260C	
EPA 624.1	
EPA 8260D	
EPA 8260C	
EPA 624.1	
EPA 8260D	
EPA 8260C	
EPA 624.1	
EPA 8260D	
EPA 8260C	
EPA 624.1	
EPA 8260D	
EPA 8260C	
EPA 624.1	
EPA 8260D	
EPA 8260C	
	EPA 8260C EPA 624.1 EPA 8260D EPA 8260C EPA 624.1

Serial No.: 68593

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 624.1

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatile Halocarbons

Dibromochloromethane	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
Dibromomethane	EPA 8260D	
	EPA 8260C	
Dichlorodifluoromethane	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
Hexachlorobutadiene, Volatile	EPA 8260D	
	EPA 8260C	
Methylene chloride	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
Tetrachloroethene	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
trans-1,2-Dichloroethene	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
trans-1,3-Dichloropropene	EPA 8260D	
	EPA 8260C	
	EPA 624.1	
trans-1,4-Dichloro-2-butene	EPA 8260D	
	EPA 8260C	
Trichloroethene	EPA 8260D	
	EPA 8260C	

Serial No.: 68593

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 624.1

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatile Halocarbons

Trichlorofluoromethane	EPA 8260D
	EPA 8260C
	EPA 624.1
Vinyl chloride	EPA 8260D
	EPA 8260C
	EPA 624.1

VIII yi dillondo	LITTOLOGE	
	EPA 8260C	
	EPA 624.1	
Volatiles Organics		
1,4-Dioxane	EPA 8260D	
	EPA 8260C	
	EPA 8270D SIM	
	EPA 8270E	
	EPA 8270E SIM	
2-Butanone (Methylethyl ketone)	EPA 8260D	
	EPA 8260C	
2-Hexanone	EPA 8260D	
	EPA 8260C	
4-Methyl-2-Pentanone	EPA 8260D	
	EPA 8260C	
Acetone	EPA 8260D	
	EPA 8260C	
Carbon Disulfide	EPA 8260D	
	EPA 8260C	
Cyclohexane	EPA 8260D	
	EPA 8260C	
Methyl acetate	EPA 8260D	

Serial No.: 68593

Methyl cyclohexane

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8260C EPA 8260D

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatiles Organics

Methyl cyclohexane EPA 8260C
Vinyl acetate EPA 8260D
EPA 8260C

Sample Preparation Methods

SM 4500-P B(5)-2011

EPA 5030C

SM 4500-CN B-2016 and C-2016

EPA 3015A EPA 3010A EPA 3005A EPA 3510C

SM 4500-N Org B-2011 or C-2011

Serial No.: 68593

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved subcategories and/or analytes are listed below:

Miscellaneous

non-Polar Extractable Material (TPH) EPA 1664A

Organic Carbon, Total SM 5310B-2014

Serial No.: 68594

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

EPA 200.8 Rev. 5.4

EPA 200.7 Rev. 4.4 EPA 200.8 Rev. 5.4

EPA 200.7 Rev. 4.4 EPA 200.8 Rev. 5.4

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES POTABLE WATER

All approved analytes are listed below:

Fuel Additives

Arsenic, Total

Methyl tert-butyl ether	EPA 524.2
Naphthalene	EPA 524.2

Metals I

Barium, Total	EPA 200.7 Rev. 4.4
Cadmium, Total	EPA 200.7 Rev. 4.4
	EPA 200.8 Rev. 5.4
Chromium, Total	EPA 200.7 Rev. 4.4
Copper, Total	EPA 200.7 Rev. 4.4
Iron, Total	EPA 200.7 Rev. 4.4
Lead, Total	EPA 200.8 Rev. 5.4
Manganese, Total	EPA 200.7 Rev. 4.4
	EPA 200.8 Rev. 5.4
Mercury, Total	EPA 245.1 Rev. 3.0
Selenium, Total	EPA 200.8 Rev. 5.4

Zinc,	Total

Metals II

Silver, Total

Aluminum, Total	EPA 200.7 Rev. 4.4
Antimony, Total	EPA 200.8 Rev. 5.4
Beryllium, Total	EPA 200.7 Rev. 4.4
Molybdenum, Total	EPA 200.8 Rev. 5.4
Nickel, Total	EPA 200.7 Rev. 4.4
	EPA 200.8 Rev. 5.4

Serial No.: 68592

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES POTABLE WATER

All approved analytes are listed below:

Metals II

Thallium, Total EPA 200.8 Rev. 5.4

Vanadium, Total EPA 200.7 Rev. 4.4

EPA 200.8 Rev. 5.4

Metals III

 Calcium, Total
 EPA 200.7 Rev. 4.4

 Magnesium, Total
 EPA 200.7 Rev. 4.4

 Potassium, Total
 EPA 200.7 Rev. 4.4

 Sodium, Total
 EPA 200.7 Rev. 4.4

Miscellaneous

1,4-Dioxane EPA 522

Turbidity EPA 180.1 Rev. 2.0

Non-Metals

 Alkalinity
 SM 21-23 2320B (-97)

 Calcium Hardness
 EPA 200.7 Rev. 4.4

 Chloride
 EPA 300.0 Rev. 2.1

 Color
 SM 21-23 2120B (-01)

 Fluoride, Total
 EPA 300.0 Rev. 2.1

Orthophosphate (as P) SM 19, 21-23 4500-P E (-99)

Solids, Total Dissolved SM 21-23 2540C (-97)
Specific Conductance EPA 120.1 Rev. 1982
Sulfate (as SO4) EPA 300.0 Rev. 2.1

Volatile Aromatics

1,2,3-TrichlorobenzeneEPA 524.21,2,4-TrichlorobenzeneEPA 524.21,2,4-TrimethylbenzeneEPA 524.21,2-DichlorobenzeneEPA 524.2

Serial No.: 68592

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES POTABLE WATER All approved analytes are listed below:

Volatile Aromatics

1,3,5-Trimethylbenzene	EPA 524.2
1,3-Dichlorobenzene	EPA 524.2
1,4-Dichlorobenzene	EPA 524.2
2-Chlorotoluene	EPA 524.2
4-Chlorotoluene	EPA 524.2
Benzene	EPA 524.2
Bromobenzene	EPA 524.2
Chlorobenzene	EPA 524.2
Ethyl benzene	EPA 524.2
Hexachlorobutadiene	EPA 524.2
Isopropylbenzene	EPA 524.2
n-Butylbenzene	EPA 524.2
n-Propylbenzene	EPA 524.2
p-Isopropyltoluene (P-Cymene)	EPA 524.2
sec-Butylbenzene	EPA 524.2
Styrene	EPA 524.2
tert-Butylbenzene	EPA 524.2
Toluene	EPA 524.2
Total Xylenes	EPA 524.2
Volatile Halocarbons	
1,1,1,2-Tetrachloroethane	EPA 524.2

1,1,1,2-Tetrachloroethane	EPA 524.2
1,1,1-Trichloroethane	EPA 524.2
1,1,2,2-Tetrachloroethane	EPA 524.2
1,1,2-Trichloroethane	EPA 524.2
1,1-Dichloroethane	EPA 524.2
1,1-Dichloroethene	EPA 524.2
1,1-Dichloropropene	EPA 524.2

Serial No.: 68592

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES POTABLE WATER

All approved analytes are listed below:

Volatile Halocarbons

1,2,3-Trichloropropane	EPA 524.2	
1,2-Dichloroethane	EPA 524.2	
1,2-Dichloropropane	EPA 524.2	
1,3-Dichloropropane	EPA 524.2	
2,2-Dichloropropane	EPA 524.2	
Bromochloromethane	EPA 524.2	
Bromomethane	EPA 524.2	
Carbon tetrachloride	EPA 524.2	
Chloroethane	EPA 524.2	
Chloromethane	EPA 524.2	
cis-1,2-Dichloroethene	EPA 524.2	
cis-1,3-Dichloropropene	EPA 524.2	
Dibromomethane	EPA 524.2	
Dichlorodifluoromethane	EPA 524.2	
Methylene chloride	EPA 524.2	
Tetrachloroethene	EPA 524.2	
trans-1,2-Dichloroethene	EPA 524.2	
trans-1,3-Dichloropropene	EPA 524.2	
Trichloroethene	EPA 524.2	
Trichlorofluoromethane	EPA 524.2	
Vinyl chloride	EPA 524.2	

Serial No.: 68592

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Acrylates

Acrolein (Propenal)	EPA 8260D	
	EPA 8260C	
Acrylonitrile	EPA 8260D	
	EPA 8260C	
Methyl methacrylate	EPA 8260D	
	EPA 8260C	
Amines		
1,2-Diphenylhydrazine	EPA 8270D	
	EPA 8270E	
2-Nitroaniline	EPA 8270D	
	EPA 8270E	
3-Nitroaniline	EPA 8270D	
	EPA 8270E	
4-Chloroaniline	EPA 8270D	
	EPA 8270E	
4-Nitroaniline	EPA 8270D	
	EPA 8270E	
Aniline	EPA 8270D	
	EPA 8270E	
Carbazole	EPA 8270D	
	EPA 8270E	
Diphenylamine	EPA 8270D	
	EPA 8270E	
Benzidines		
3,3'-Dichlorobenzidine	EPA 8270D	

Serial No.: 68595

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8270E

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Benzidines

4.4'-DDD

Benzidine EPA 8270D EPA 8270E

Characteristic Testing

Corrosivity (pH) EPA 9045D
Free Liquids EPA 9095B
Ignitability EPA 1010A
Synthetic Precipitation Leaching Proc. EPA 1312
TCLP EPA 1311

EPA 8081B

Chlorinated Hydrocarbon Pesticides

T,T-000	LIAGOOID
4,4'-DDE	EPA 8081B
4,4'-DDT	EPA 8081B
Aldrin	EPA 8081B
alpha-BHC	EPA 8081B
alpha-Chlordane	EPA 8081B
Atrazine	EPA 8270D
	EPA 8270E
beta-BHC	EPA 8081B
Chlordane Total	EPA 8081B
delta-BHC	EPA 8081B
Dieldrin	EPA 8081B
Endosulfan I	EPA 8081B
Endosulfan II	EPA 8081B
Endosulfan sulfate	EPA 8081B
Endrin	EPA 8081B
Endrin aldehyde	EPA 8081B

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Chlorinated Hydrocarbon Pesticides

Endrin Ketone	EPA 8081B
gamma-Chlordane	EPA 8081B
Heptachlor	EPA 8081B
Heptachlor epoxide	EPA 8081B
Lindane	EPA 8081B
Mirex	EPA 8081B
Toxaphene	EPA 8081B

C

Chlorinated Hydrocarbons			
1,2,3-Trichlorobenzene	EPA 8260D		
	EPA 8260C		
1,2,4,5-Tetrachlorobenzene	EPA 8270D		
	EPA 8270E		
1,2,4-Trichlorobenzene	EPA 8270D		
	EPA 8270E		
2-Chloronaphthalene	EPA 8270D		
	EPA 8270E		
Hexachlorobenzene	EPA 8270D		
	EPA 8270E		
Hexachlorobutadiene	EPA 8270D		
	EPA 8270E		
Hexachlorocyclopentadiene	EPA 8270D		
	EPA 8270E		
Hexachloroethane	EPA 8270D		
	EPA 8270E		

Chlorophenoxy Acid Pesticides

2,4,5-T EPA 8151A

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

EDA 0454A

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Chlorophenoxy Acid Pesticides

Dicamba	EPA 8151A
2,4-D	EPA 8151A
2,4,5-TP (Silvex)	EPA 8151A

Haloethers

0 4 5 TD (0"

i laioeti lei s	
2,2'-Oxybis(1-chloropropane)	EPA 8270D
	EPA 8270E
4-Bromophenylphenyl ether	EPA 8270D
	EPA 8270E
4-Chlorophenylphenyl ether	EPA 8270D
	EPA 8270E
Bis(2-chloroethoxy)methane	EPA 8270D
	EPA 8270E
Bis(2-chloroethyl)ether	EPA 8270D
	EPA 8270E

Metals I	
Barium, Total	EPA 6010C
	EPA 6010D
	EPA 6020A
	EPA 6020B
Cadmium, Total	EPA 6010C
	EPA 6010D
	EPA 6020A
	EPA 6020B
Calcium, Total	EPA 6010C
	EPA 6010D
Chromium, Total	EPA 6010C

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Metals I

INIGIAIS I		
Chromium, Total	EPA 6010D	
	EPA 6020A	
	EPA 6020B	
Copper, Total	EPA 6010C	
	EPA 6010D	
	EPA 6020A	
	EPA 6020B	
Iron, Total	EPA 6010C	
	EPA 6010D	
Lead, Total	EPA 6010C	
	EPA 6010D	
	EPA 6020A	
	EPA 6020B	
Magnesium, Total	EPA 6010C	
	EPA 6010D	
Manganese, Total	EPA 6010C	
	EPA 6010D	
	EPA 6020A	
	EPA 6020B	
Nickel, Total	EPA 6010C	
	EPA 6010D	
	EPA 6020A	
	EPA 6020B	
Potassium, Total	EPA 6010C	
	EPA 6010D	
Silver, Total	EPA 6010C	
	EPA 6010D	

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Metals I

Silver, Total	EPA 6020A	
	EPA 6020B	
Sodium, Total	EPA 6010C	
	EPA 6010D	
Metals II		
Aluminum, Total	EPA 6010C	
	EPA 6010D	
	EPA 6020A	
	EPA 6020B	
Antimony, Total	EPA 6010C	
	EPA 6010D	
	EPA 6020A	
	EPA 6020B	
Arsenic, Total	EPA 6010C	
	EPA 6010D	
	EPA 6020A	
	EPA 6020B	
Beryllium, Total	EPA 6010C	
	EPA 6010D	
Chromium VI	EPA 7196A	
Mercury, Total	EPA 7471B	
	EPA 7473	
Selenium, Total	EPA 6010C	
	EPA 6010D	
	EPA 6020A	
	EPA 6020B	
Vanadium, Total	EPA 6010C	

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Metals II

Vanadium, Total EPA 6010D **EPA 6020A EPA 6020B** Zinc, Total **EPA 6010C EPA 6010D** EPA 6020A EPA 6020B

Metals III Cobalt. Total **EPA 6010C** EPA 6010D **EPA 6020A EPA 6020B** Molybdenum, Total **EPA 6020A** Thallium, Total **EPA 6010C EPA 6010D EPA 6020A EPA 6020B** Tin. Total EPA 6020A **EPA 6020B** Titanium, Total EPA 6020A

Miscellaneous

Boron, Total **EPA 6020A EPA 6020B** Cyanide, Total EPA 9014 Extractable Organic Halides EPA 9023

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Nitroaromatics and Isophorone

2,4-Dinitrotoluene	EPA 8270D
	EPA 8270E
2,6-Dinitrotoluene	EPA 8270D
	EPA 8270E
Isophorone	EPA 8270D
	EPA 8270E
Nitrobenzene	EPA 8270D
	EPA 8270E
Pyridine	EPA 8270D
	EPA 8270E

Nitrosoamines

Nitrosoanines	
N-Nitrosodimethylamine	EPA 8270D
	EPA 8270E
N-Nitrosodi-n-propylamine	EPA 8270D
	EPA 8270E
N-Nitrosodiphenylamine	EPA 8270D
	EPA 8270E

Organophosphate Pesticides

Parathion ethyl	EPA 8270D
	EPA 8270E

Petroleum Hydrocarbons

Diesel Range Organics	EPA 8015D
Gasoline Range Organics	EPA 8015D

Phthalate Esters

Benzyl butyl phthalate	EPA 8270D
	EPA 8270E

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Phthalate Esters

Bis(2-ethylhexyl) phthalate	EPA 8270D
	EPA 8270E
Diethyl phthalate	EPA 8270D
	EPA 8270E
Dimethyl phthalate	EPA 8270D
	EPA 8270E
Di-n-butyl phthalate	EPA 8270D
	EPA 8270E
Di-n-octyl phthalate	EPA 8270D
	EPA 8270E

Polychlorinated Biphenyls

Aroclor 1016 (PCB-1016)	EPA 8082A
Aroclor 1016 (PCB-1016) in Oil	EPA 8082A
Aroclor 1221 (PCB-1221)	EPA 8082A
Aroclor 1221 (PCB-1221) in Oil	EPA 8082A
Aroclor 1232 (PCB-1232)	EPA 8082A
Aroclor 1232 (PCB-1232) in Oil	EPA 8082A
Aroclor 1242 (PCB-1242)	EPA 8082A
Aroclor 1242 (PCB-1242) in Oil	EPA 8082A
Aroclor 1248 (PCB-1248)	EPA 8082A
Aroclor 1248 (PCB-1248) in Oil	EPA 8082A
Aroclor 1254 (PCB-1254)	EPA 8082A
Aroclor 1254 (PCB-1254) in Oil	EPA 8082A
Aroclor 1260 (PCB-1260)	EPA 8082A
Aroclor 1260 (PCB-1260) in Oil	EPA 8082A
Aroclor 1262 (PCB-1262)	EPA 8082A
Aroclor 1262 (PCB-1262) in Oil	EPA 8082A

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Polychlorinated Biphenyls

Aroclor 1268 (PCB-1268) EPA 8082A Aroclor 1268 (PCB-1268) in Oil EPA 8082A

Polynuclear Aromatic Hydrocarbons

,	
Acenaphthene	EPA 8270D
	EPA 8270E
Acenaphthylene	EPA 8270D
	EPA 8270E
Anthracene	EPA 8270D
	EPA 8270E
Benzo(a)anthracene	EPA 8270D
	EPA 8270E
Benzo(a)pyrene	EPA 8270D
	EPA 8270E
Benzo(b)fluoranthene	EPA 8270D
	EPA 8270E
Benzo(g,h,i)perylene	EPA 8270D
	EPA 8270E
Benzo(k)fluoranthene	EPA 8270D
	EPA 8270E
Dibenzo(a,h)anthracene	EPA 8270D
	EPA 8270E
Fluoranthene	EPA 8270D
	EPA 8270E
Fluorene	EPA 8270D
	EPA 8270E
Indeno(1,2,3-cd)pyrene	EPA 8270D

Serial No.: 68595

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8270E

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Polynuclear Aromatic Hydrocarbons

Naphthalene	EPA 8270D
	EPA 8270E
Phenanthrene	EPA 8270D
	EPA 8270E
Pyrene	EPA 8270D
	EPA 8270E

	EPA 8270E
Priority Pollutant Phenols	
2,3,4,6 Tetrachlorophenol	EPA 8270D
	EPA 8270E
2,4,5-Trichlorophenol	EPA 8270D
	EPA 8270E
2,4,6-Trichlorophenol	EPA 8270D
	EPA 8270E
2,4-Dichlorophenol	EPA 8270D
	EPA 8270E
2,4-Dimethylphenol	EPA 8270D
	EPA 8270E
2,4-Dinitrophenol	EPA 8270D
	EPA 8270E
2-Chlorophenol	EPA 8270D
	EPA 8270E
2-Methyl-4,6-dinitrophenol	EPA 8270D
	EPA 8270E
2-Methylphenol	EPA 8270D
	EPA 8270E
2-Nitrophenol	EPA 8270D

Serial No.: 68595

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8270E

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Priority Pollutant Phenols

4-Chloro-3-methylphenol	EPA 8270D
	EPA 8270E
4-Methylphenol	EPA 8270D
	EPA 8270E
4-Nitrophenol	EPA 8270D
	EPA 8270E
Pentachlorophenol	EPA 8270D
	EPA 8270E
Phenol	EPA 8270D
	EPA 8270E

S

Semi-Volatile Organics	
1,1'-Biphenyl	EPA 8270D
	EPA 8270E
1,2-Dichlorobenzene, Semi-volatile	EPA 8270D
	EPA 8270E
1,3-Dichlorobenzene, Semi-volatile	EPA 8270D
	EPA 8270E
1,4-Dichlorobenzene, Semi-volatile	EPA 8270D
	EPA 8270E
2-Methylnaphthalene	EPA 8270D
	EPA 8270E
Acetophenone	EPA 8270D
	EPA 8270E
Benzaldehyde	EPA 8270D
	EPA 8270E
Benzoic Acid	EPA 8270D
	EPA 8270E

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Semi-Volatile Organics

Benzyl alcohol	EPA 8270D
	EPA 8270E
Caprolactam	EPA 8270D
	EPA 8270E
Dibenzofuran	EPA 8270D
	EPA 8270E

	EPA 8270E	
Volatile Aromatics		
1,2,4-Trichlorobenzene, Volatile	EPA 8260D	
	EPA 8260C	
1,2,4-Trimethylbenzene	EPA 8260D	
	EPA 8260C	
1,2-Dichlorobenzene	EPA 8260D	
	EPA 8260C	
1,3,5-Trimethylbenzene	EPA 8260D	
	EPA 8260C	
1,3-Dichlorobenzene	EPA 8260D	
	EPA 8260C	
1,4-Dichlorobenzene	EPA 8260D	
	EPA 8260C	
2-Chlorotoluene	EPA 8260D	
	EPA 8260C	
4-Chlorotoluene	EPA 8260D	
	EPA 8260C	
Benzene	EPA 8260D	
	EPA 8260C	
Bromobenzene	EPA 8260D	

EPA 8260C

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Volatile Aromatics

Chlorobenzene	EPA 8260D	
	EPA 8260C	
Ethyl benzene	EPA 8260D	
	EPA 8260C	
Isopropylbenzene	EPA 8260D	
	EPA 8260C	
m/p-Xylenes	EPA 8260D	
	EPA 8260C	
Naphthalene, Volatile	EPA 8260D	
	EPA 8260C	
n-Butylbenzene	EPA 8260D	
	EPA 8260C	
n-Propylbenzene	EPA 8260D	
	EPA 8260C	
o-Xylene	EPA 8260D	
	EPA 8260C	
p-Isopropyltoluene (P-Cymene)	EPA 8260D	
	EPA 8260C	
sec-Butylbenzene	EPA 8260D	
	EPA 8260C	
Styrene	EPA 8260D	
	EPA 8260C	
tert-Butylbenzene	EPA 8260D	
	EPA 8260C	
Toluene	EPA 8260D	
	EPA 8260C	
Total Xylenes	EPA 8260D	

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Volatile Aromatics

Volutile Al officies		
Total Xylenes	EPA 8260C	
Volatile Halocarbons		
1,1,1,2-Tetrachloroethane	EPA 8260D	
	EPA 8260C	
1,1,1-Trichloroethane	EPA 8260D	
	EPA 8260C	
1,1,2,2-Tetrachloroethane	EPA 8260D	
	EPA 8260C	
1,1,2-Trichloro-1,2,2-Trifluoroethane	EPA 8260D	
	EPA 8260C	
1,1,2-Trichloroethane	EPA 8260D	
	EPA 8260C	
1,1-Dichloroethane	EPA 8260D	
	EPA 8260C	
1,1-Dichloroethene	EPA 8260D	
	EPA 8260C	
1,1-Dichloropropene	EPA 8260D	
	EPA 8260C	
1,2,3-Trichloropropane	EPA 8260D	
	EPA 8260C	
1,2-Dibromo-3-chloropropane	EPA 8260D	
	EPA 8260C	
1,2-Dibromoethane	EPA 8260D	
	EPA 8260C	
1,2-Dichloroethane	EPA 8260D	
	EPA 8260C	
1,2-Dichloropropane	EPA 8260D	

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Volatile Halocarbons

1,2-Dichloropropane	EPA 8260C
1,3-Dichloropropane	EPA 8260D
	EPA 8260C
2,2-Dichloropropane	EPA 8260D
	EPA 8260C
2-Chloroethylvinyl ether	EPA 8260D
	EPA 8260C
Bromochloromethane	EPA 8260D
	EPA 8260C
Bromodichloromethane	EPA 8260D
	EPA 8260C
Bromoform	EPA 8260D
	EPA 8260C
Bromomethane	EPA 8260D
	EPA 8260C
Carbon tetrachloride	EPA 8260D
	EPA 8260C
Chloroethane	EPA 8260D
	EPA 8260C
Chloroform	EPA 8260D
	EPA 8260C
Chloromethane	EPA 8260D
	EPA 8260C
cis-1,2-Dichloroethene	EPA 8260D
	EPA 8260C
cis-1,3-Dichloropropene	EPA 8260D

Serial No.: 68595

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8260C

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Volatile Halocarhone

Volatile Halocarbons		
Dibromochloromethane	EPA 8260D	
	EPA 8260C	
Dibromomethane	EPA 8260D	
	EPA 8260C	
Dichlorodifluoromethane	EPA 8260D	
	EPA 8260C	
Hexachlorobutadiene, Volatile	EPA 8260D	
	EPA 8260C	
Methylene chloride	EPA 8260D	
	EPA 8260C	
Tetrachloroethene	EPA 8260D	
	EPA 8260C	
trans-1,2-Dichloroethene	EPA 8260D	
	EPA 8260C	
trans-1,3-Dichloropropene	EPA 8260D	
	EPA 8260C	
Trichloroethene	EPA 8260D	
	EPA 8260C	
Trichlorofluoromethane	EPA 8260D	
	EPA 8260C	
Vinyl chloride	EPA 8260D	
	EPA 8260C	
Volatile Organics		
1,4-Dioxane	EPA 8260D	
	EPA 8260C	

EPA 8260C **EPA 8270D SIM**

EPA 8270E

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Volatile Organics

volutilo ol garilloo		
1,4-Dioxane	EPA 8270E SIM	
2-Butanone (Methylethyl ketone)	EPA 8260D	
	EPA 8260C	
2-Hexanone	EPA 8260D	
	EPA 8260C	
4-Methyl-2-Pentanone	EPA 8260D	
	EPA 8260C	
Acetone	EPA 8260D	
	EPA 8260C	
Carbon Disulfide	EPA 8260D	
	EPA 8260C	
Cyclohexane	EPA 8260D	
	EPA 8260C	
Methyl acetate	EPA 8260D	
	EPA 8260C	
Methyl cyclohexane	EPA 8260D	
	EPA 8260C	
Methyl tert-butyl ether	EPA 8260D	
	EPA 8260C	
tert-butyl alcohol	EPA 8260D	
	EPA 8260C	
Vinyl acetate	EPA 8260D	
	EPA 8260C	

Sample Preparation Methods

EPA 5035A-L EPA 5035A-H EPA 3580A

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

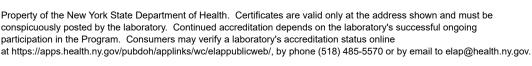
> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Sample Preparation Methods

EPA 3010A

EPA 3050B

EPA 3550C


EPA 3546

EPA 3545A

EPA 9010C

Serial No.: 68595

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 10854

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. CATHERINE L. MOSHER YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

is hereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved subcategories and/or analytes are listed below:

Miscellaneous

Lead in Dust Wipes EPA 6010C
Lead in Paint EPA 6010C

Sample Preparation Methods

EPA 3050B

Serial No.: 68596

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 12058

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

EDA TO 45

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES AIR AND EMISSIONS All approved analytes are listed below:

Acrylates

404 T : 11

Acrylonitrile	EPA TO-15
Methyl methacrylate	EPA TO-15

Chlorinated Hydrocarbons

1,2,4-Trichloropenzene	EPA 10-15
Hexachlorobutadiene	EPA TO-15
Hexachloroethane	EPA TO-15

Purgeable Aromatics

1,2,4-Trimethylbenzene	EPA TO-15
1,2-Dichlorobenzene	EPA TO-15
1,3,5-Trimethylbenzene	EPA TO-15
1,3-Dichlorobenzene	EPA TO-15
1,4-Dichlorobenzene	EPA TO-15
Benzene	EPA TO-15
Chlorobenzene	EPA TO-15
Ethyl benzene	EPA TO-15
Isopropylbenzene	EPA TO-15
m/p-Xylenes	EPA TO-15
o-Xylene	EPA TO-15
Styrene	EPA TO-15
Toluene	EPA TO-15
Total Xylenes	EPA TO-15

Purgeable Halocarbons

1,1,1-Trichloroethane	EPA TO-15
1,1,2,2-Tetrachloroethane	EPA TO-15
1,1,2-Trichloro-1,2,2-Trifluoroethane	EPA TO-15
1,1,2-Trichloroethane	EPA TO-15

Serial No.: 69093

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 12058

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES AIR AND EMISSIONS All approved analytes are listed below:

Purgeable Halocarbons

1,1-Dichloroethane	EPA TO-15
1,1-Dichloroethene	EPA TO-15
1,2-Dibromoethane	EPA TO-15
1,2-Dichloroethane	EPA TO-15
1,2-Dichloropropane	EPA TO-15
3-Chloropropene (Allyl chloride)	EPA TO-15
Bromodichloromethane	EPA TO-15
Bromoform	EPA TO-15
Bromomethane	EPA TO-15
Carbon tetrachloride	EPA TO-15
Chloroethane	EPA TO-15
Chloroform	EPA TO-15
Chloromethane	EPA TO-15
cis-1,2-Dichloroethene	EPA TO-15
cis-1,3-Dichloropropene	EPA TO-15
Dibromochloromethane	EPA TO-15
Dichlorodifluoromethane	EPA TO-15
Methylene chloride	EPA TO-15
Tetrachloroethene	EPA TO-15
trans-1,2-Dichloroethene	EPA TO-15
trans-1,3-Dichloropropene	EPA TO-15
Trichloroethene	EPA TO-15
Trichlorofluoromethane	EPA TO-15
Vinyl bromide	EPA TO-15
Vinyl chloride	EPA TO-15

Volatile Chlorinated Organics

Benzyl chloride EPA TO-15

Serial No.: 69093

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 12058

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES AIR AND EMISSIONS All approved analytes are listed below:

Volatile Organics

1,2-Dichlorotetrafluoroethane	EPA TO-15	
1,3-Butadiene	EPA TO-15	
1,4-Dioxane	EPA TO-15	
2-Butanone (Methylethyl ketone)	EPA TO-15	
4-Methyl-2-Pentanone	EPA TO-15	
Acetone	EPA TO-15	
Carbon Disulfide	EPA TO-15	
Cyclohexane	EPA TO-15	
Hexane	EPA TO-15	
Isopropanol	EPA TO-15	
Methyl tert-butyl ether	EPA TO-15	
n-Heptane	EPA TO-15	
Vinyl acetate	EPA TO-15	

Serial No.: 69093

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 12058

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Acrylates

Acrolein (Propenal) **EPA 8260D EPA 8260C EPA 8260D** Acrylonitrile EPA 8260C Methyl methacrylate **EPA 8260D** EPA 8260C

Chlorinated Hydrocarbons

1.2.3-Trichlorobenzene **EPA 8260D EPA 8260C**

Fuel Oxygenates

Di-isopropyl ether **EPA 8260D** EPA 8260C

Ethanol **EPA 8260D EPA 8260C**

EPA 8260D Methyl tert-butyl ether

EPA 8260C tert-amyl alcohol **EPA 8260D**

EPA 8260C

tert-amyl methyl ether (TAME) **EPA 8260D EPA 8260C**

tert-butyl alcohol **EPA 8260D**

EPA 8260C

tert-butyl ethyl ether (ETBE) **EPA 8260D**

EPA 8260C

Volatile Aromatics

1,2,4-Trichlorobenzene, Volatile **EPA 8260D**

Serial No.: 69089

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

NY Lab Id No: 12058

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatile Aromatics

1,2,4-Trichlorobenzene, Volatile	EPA 8260C	
1,2,4-Trimethylbenzene	EPA 8260D	
	EPA 8260C	
1,2-Dichlorobenzene	EPA 8260D	
	EPA 8260C	
1,3,5-Trimethylbenzene	EPA 8260D	
	EPA 8260C	
1,3-Dichlorobenzene	EPA 8260D	
	EPA 8260C	
1,4-Dichlorobenzene	EPA 8260D	
	EPA 8260C	
2-Chlorotoluene	EPA 8260D	
	EPA 8260C	
4-Chlorotoluene	EPA 8260D	
	EPA 8260C	
Benzene	EPA 8260D	
	EPA 8260C	
Bromobenzene	EPA 8260D	
	EPA 8260C	
Chlorobenzene	EPA 8260D	
	EPA 8260C	
Ethyl benzene	EPA 8260D	
	EPA 8260C	
Isopropylbenzene	EPA 8260D	
	EPA 8260C	
m/p-Xylenes	EPA 8260D	

Serial No.: 69089

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8260C

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 12058

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatile Aromatics

volatile Aromatics		
Naphthalene, Volatile	EPA 8260D	
	EPA 8260C	
n-Butylbenzene	EPA 8260D	
	EPA 8260C	
n-Propylbenzene	EPA 8260D	
	EPA 8260C	
o-Xylene	EPA 8260D	
	EPA 8260C	
p-Isopropyltoluene (P-Cymene)	EPA 8260D	
	EPA 8260C	
sec-Butylbenzene	EPA 8260D	
	EPA 8260C	
Styrene	EPA 8260D	
	EPA 8260C	
tert-Butylbenzene	EPA 8260D	
	EPA 8260C	
Toluene	EPA 8260D	
	EPA 8260C	
Total Xylenes	EPA 8260D	
	EPA 8260C	
Volatile Halocarbons		
1,1,1,2-Tetrachloroethane	EPA 8260D	
	EPA 8260C	
1,1,1-Trichloroethane	EPA 8260D	
	EPA 8260C	

Serial No.: 69089

1.1.2.2-Tetrachloroethane

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8260D EPA 8260C

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 12058

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

is hereby APPROVED as an Environmental Laboratory in conformance with the

ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

National Environmental Laboratory Accreditation Conference Standards (2016) for the category

Volatile Halocarbons

1,1,2-Trichloro-1,2,2-Trifluoroethane	EPA 8260D	
	EPA 8260C	
1,1,2-Trichloroethane	EPA 8260D	
	EPA 8260C	
1,1-Dichloroethane	EPA 8260D	
	EPA 8260C	
1,1-Dichloroethene	EPA 8260D	
	EPA 8260C	
1,1-Dichloropropene	EPA 8260D	
	EPA 8260C	
1,2,3-Trichloropropane	EPA 8260D	
	EPA 8260C	
1,2-Dibromo-3-chloropropane	EPA 8260D	
	EPA 8260C	
1,2-Dibromoethane	EPA 8260D	
	EPA 8260C	
1,2-Dichloroethane	EPA 8260D	
	EPA 8260C	
1,2-Dichloropropane	EPA 8260D	
	EPA 8260C	
1,3-Dichloropropane	EPA 8260D	
	EPA 8260C	
2,2-Dichloropropane	EPA 8260D	
	EPA 8260C	
2-Chloroethylvinyl ether	EPA 8260D	
	EPA 8260C	
Bromochloromethane	EPA 8260D	

Serial No.: 69089

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 12058

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

......

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatile Halocarbons

Bromochloromethane	EPA 8260C
Bromodichloromethane	EPA 8260D
	EPA 8260C
Bromoform	EPA 8260D
	EPA 8260C
Bromomethane	EPA 8260D
	EPA 8260C
Carbon tetrachloride	EPA 8260D
	EPA 8260C
Chloroethane	EPA 8260D
	EPA 8260C
Chloroform	EPA 8260D
	EPA 8260C
Chloromethane	EPA 8260D
	EPA 8260C
cis-1,2-Dichloroethene	EPA 8260D
	EPA 8260C
cis-1,3-Dichloropropene	EPA 8260D
	EPA 8260C
Dibromochloromethane	EPA 8260D
	EPA 8260C
Dibromomethane	EPA 8260D
	EPA 8260C
Dichlorodifluoromethane	EPA 8260D
	EPA 8260C
Hexachlorobutadiene, Volatile	EPA 8260D

Serial No.: 69089

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8260C

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

NY Lab Id No: 12058

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatile Halocarbons

Volatile Halocal Bolls		
Methylene chloride	EPA 8260D	
	EPA 8260C	
Tetrachloroethene	EPA 8260D	
	EPA 8260C	
trans-1,2-Dichloroethene	EPA 8260D	
	EPA 8260C	
trans-1,3-Dichloropropene	EPA 8260D	
	EPA 8260C	
trans-1,4-Dichloro-2-butene	EPA 8260D	
	EPA 8260C	
Trichloroethene	EPA 8260D	
	EPA 8260C	
Trichlorofluoromethane	EPA 8260D	
	EPA 8260C	
Vinyl chloride	EPA 8260D	
	EPA 8260C	
Volatiles Organics		
1,4-Dioxane	EPA 8260D	
	EPA 8260C	

Volutiles Organies	
1,4-Dioxane	EPA 8260D
	EPA 8260C
2-Butanone (Methylethyl ketone)	EPA 8260D
	EPA 8260C
2-Hexanone	EPA 8260D
	EPA 8260C
4-Methyl-2-Pentanone	EPA 8260D
	EPA 8260C
Acetone	EPA 8260D
Carbon Disulfide	EPA 8260D

Serial No.: 69089

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 12058

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Volatiles Organics

Carbon Disulfide	EPA 8260C
Cyclohexane	EPA 8260D
	EPA 8260C
Methyl acetate	EPA 8260D
	EPA 8260C
Methyl cyclohexane	EPA 8260D
	EPA 8260C
Vinyl acetate	EPA 8260D
	FPA 8260C

Sample Preparation Methods

EPA 5030C

Serial No.: 69089

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 12058

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

is hereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES POTABLE WATER All approved subcategories and/or analytes are listed below:

Perfluorinated Alkyl Acids

•	Pernuorinaleu Aikyi Acius		
	11CL-PF3OUDS	EPA 533	
		EPA 537.1	
	4:2FTS	EPA 533	
	6:2FTS	EPA 533	
	8:2FTS	EPA 533	
	9CL-PF3ONS	EPA 533	
		EPA 537.1	
	ADONA	EPA 533	
		EPA 537.1	
	Hexafluoropropylene Oxide Dimer Acid	EPA 533	
		EPA 537.1	
	NETFOSAA	EPA 537.1	
	NMEFOSAA	EPA 537.1	
	Nonafluoro-3,6-Dioxaheptanoic Acid	EPA 533	
	Perflourotridecanoic Acid (PFTRDA)	EPA 537.1	
	Perfluordecanoic Acid (PFDA)	EPA 533	
		EPA 537.1	
	Perfluoro-3-Methoxypropanoic Acid	EPA 533	
	Perfluoro-4-Methoxybutanoic Acid	EPA 533	
	Perfluorobutanesulfonic Acid (PFBS)	EPA 533	
		EPA 537.1	
	Perfluorobutanoic Acid (PFBA)	EPA 533	
	Perfluorododecanoic Acid (PFDOA)	EPA 533	
		EPA 537.1	
	Perfluoroheptanesulfonic Acid (PFHPS	EPA 533	
	Perfluoroheptanoic Acid (PFHPA)	EPA 533	

Serial No.: 69088

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 537.1

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 12058

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

is hereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES POTABLE WATER All approved subcategories and/or analytes are listed below:

Perfluorinated Alkyl Acids

Perfluorinated Alkyl Acids		
Perfluorohexanesulfonic Acid (PFHXS	EPA 533	
	EPA 537.1	
Perfluorohexanoic Acid (PFHXA)	EPA 533	
	EPA 537.1	
Perfluorononanoic Acid (PFNA)	EPA 533	
	EPA 537.1	
Perfluorooctanesulfonic Acid (PFOS)	EPA 533	
	EPA 537	
	EPA 537.1	
Perfluorooctanoic Acid (PFOA)	EPA 533	
	EPA 537	
	EPA 537.1	
Perfluoropentanesulfonic Acid (PFPES	EPA 533	
Perfluoropentanoic Acid (PFPEA)	EPA 533	
Perfluorotetradecanoic Acid (PFTA)	EPA 537.1	
Perfluoroundecanoic Acid (PFUNA)	EPA 533	
	EPA 537.1	
PFEESA	EPA 533	

Serial No.: 69088

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 12058

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Acrylates

Acrolein (Propenal)	EPA 8260D	
	EPA 8260C	
Acrylonitrile	EPA 8260D	
	EPA 8260C	
Methyl methacrylate	EPA 8260D	
	EPA 8260C	
Chlorinated Hydrocarbons		
1,2,3-Trichlorobenzene	EPA 8260D	
	EPA 8260C	
Volatile Aromatics		
1,2,4-Trichlorobenzene, Volatile	EPA 8260D	
	EPA 8260C	
1,2,4-Trimethylbenzene	EPA 8260D	
	EPA 8260C	
1,2-Dichlorobenzene	EPA 8260D	
	EPA 8260C	
1,3,5-Trimethylbenzene	EPA 8260D	
	EPA 8260C	
1,3-Dichlorobenzene	EPA 8260D	
	EPA 8260C	
1,4-Dichlorobenzene	EPA 8260D	
	EPA 8260C	
2-Chlorotoluene	EPA 8260D	

Serial No.: 69091

4-Chlorotoluene

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8260C

EPA 8260D EPA 8260C

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 12058

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Volatile Aromatics

Benzene	EPA 8260D	
	EPA 8260C	
Bromobenzene	EPA 8260D	
	EPA 8260C	
Chlorobenzene	EPA 8260D	
	EPA 8260C	
Ethyl benzene	EPA 8260D	
	EPA 8260C	
Isopropylbenzene	EPA 8260D	
	EPA 8260C	
m/p-Xylenes	EPA 8260D	
	EPA 8260C	
Naphthalene, Volatile	EPA 8260D	
	EPA 8260C	
n-Butylbenzene	EPA 8260D	
	EPA 8260C	
n-Propylbenzene	EPA 8260D	
	EPA 8260C	
o-Xylene	EPA 8260D	
	EPA 8260C	
p-Isopropyltoluene (P-Cymene)	EPA 8260D	
	EPA 8260C	
sec-Butylbenzene	EPA 8260D	
	EPA 8260C	
Styrene	EPA 8260D	
	EPA 8260C	
tert-Butylbenzene	EPA 8260D	

Serial No.: 69091

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

EPA 8260C

NY Lab Id No: 12058

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Volatile Aromatics tert-Butylbenzene

•		
Toluene	EPA 8260D	
	EPA 8260C	
Total Xylenes	EPA 8260D	
	EPA 8260C	
Volatile Halocarbons		
1,1,1,2-Tetrachloroethane	EPA 8260D	
	EPA 8260C	
1,1,1-Trichloroethane	EPA 8260D	
	EPA 8260C	
1,1,2,2-Tetrachloroethane	EPA 8260D	
	EPA 8260C	
1,1,2-Trichloro-1,2,2-Trifluoroethane	EPA 8260D	
	EPA 8260C	
1,1,2-Trichloroethane	EPA 8260D	
	EPA 8260C	
1,1-Dichloroethane	EPA 8260D	
	EPA 8260C	
1,1-Dichloroethene	EPA 8260D	
	EPA 8260C	
1,1-Dichloropropene	EPA 8260D	
	EPA 8260C	

EPA 8260D

EPA 8260C

EPA 8260D EPA 8260C EPA 8260D

Serial No.: 69091

1.2-Dibromoethane

1,2,3-Trichloropropane

1,2-Dibromo-3-chloropropane

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418 NY Lab Id No: 12058

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE

All approved analytes are listed below:

Volatile Halocarbons

1,2-Dibromoethane	EPA 8260C	
1,2-Dichloroethane	EPA 8260D	
	EPA 8260C	
1,2-Dichloropropane	EPA 8260D	
	EPA 8260C	
1,3-Dichloropropane	EPA 8260D	
	EPA 8260C	
2,2-Dichloropropane	EPA 8260D	
	EPA 8260C	
2-Chloroethylvinyl ether	EPA 8260D	
	EPA 8260C	
Bromochloromethane	EPA 8260D	
	EPA 8260C	
Bromodichloromethane	EPA 8260D	
	EPA 8260C	
Bromoform	EPA 8260D	
	EPA 8260C	
Bromomethane	EPA 8260D	
	EPA 8260C	
Carbon tetrachloride	EPA 8260D	
	EPA 8260C	
Chloroethane	EPA 8260D	
	EPA 8260C	
Chloroform	EPA 8260D	
	EPA 8260C	
Chloromethane	EPA 8260D	

Serial No.: 69091

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8260C

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418 NY Lab Id No: 12058

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE

All approved analytes are listed below:

Volatile Halocarbons

cis-1,2-Dichloroethene	EPA 8260D	
	EPA 8260C	
cis-1,3-Dichloropropene	EPA 8260D	
	EPA 8260C	
Dibromochloromethane	EPA 8260D	
	EPA 8260C	
Dibromomethane	EPA 8260D	
	EPA 8260C	
Dichlorodifluoromethane	EPA 8260D	
	EPA 8260C	
Hexachlorobutadiene, Volatile	EPA 8260D	
	EPA 8260C	
Methylene chloride	EPA 8260D	
	EPA 8260C	
Tetrachloroethene	EPA 8260D	
	EPA 8260C	
trans-1,2-Dichloroethene	EPA 8260D	
	EPA 8260C	
trans-1,3-Dichloropropene	EPA 8260D	
	EPA 8260C	
Trichloroethene	EPA 8260D	
	EPA 8260C	
Trichlorofluoromethane	EPA 8260D	
	EPA 8260C	
Vinyl chloride	EPA 8260D	

Serial No.: 69091

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 8260C

Expires 12:01 AM April 01, 2025 Issued April 01, 2024

NY Lab Id No: 12058

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. KRZYSZTOF TRAFALSKI YORK ANALYTICAL LABORATORIES, INC. (II) 132-02 89TH AVENUE SUITE 217 RICHMOND HILL, NY 11418

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2016) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Volatile Organics

1,4-Dioxane	EPA 8260D	
	EPA 8260C	
2-Butanone (Methylethyl ketone)	EPA 8260D	
	EPA 8260C	
2-Hexanone	EPA 8260D	
	EPA 8260C	
4-Methyl-2-Pentanone	EPA 8260D	
	EPA 8260C	
Acetone	EPA 8260D	
	EPA 8260C	
Carbon Disulfide	EPA 8260D	
	EPA 8260C	
Cyclohexane	EPA 8260D	
	EPA 8260C	
Methyl acetate	EPA 8260D	
	EPA 8260C	
Methyl cyclohexane	EPA 8260D	
	EPA 8260C	
Methyl tert-butyl ether	EPA 8260D	
	EPA 8260C	
tert-butyl alcohol	EPA 8260D	
	EPA 8260C	
Vinyl acetate	EPA 8260D	
	EPA 8260C	

Serial No.: 69091

Sample Preparation Methods

Property of the New York State Department of Health. Certificates are valid only at the address shown and must be conspicuously posted by the laboratory. Continued accreditation depends on the laboratory's successful ongoing participation in the Program. Consumers may verify a laboratory's accreditation status online at https://apps.health.ny.gov/pubdoh/applinks/wc/elappublicweb/, by phone (518) 485-5570 or by email to elap@health.ny.gov.

EPA 5035A-L EPA 5035A-H

Appendix E

Laboratory Analytical Reports - Groundwater Sampling

Technical Report

prepared for:

BL Companies 355 Research Parkway Meriden CT, 06450

Attention: Wesley Johnson

Report Date: 07/14/2021

Client Project ID: 03C497 - M

York Project (SDG) No.: 21G0278

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 07/14/2021 Client Project ID: 03C497 - M York Project (SDG) No.: 21G0278

BL Companies

355 Research Parkway Meriden CT, 06450

Attention: Wesley Johnson

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on July 07, 2021 and listed below. The project was identified as your project: 03C497 - M.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
21G0278-01	MW-3AR	Water	07/07/2021	07/07/2021
21G0278-02	MW-5AR	Water	07/07/2021	07/07/2021
21G0278-03	MW-4AR	Water	07/07/2021	07/07/2021
21G0278-04	MW-1AR	Water	07/07/2021	07/07/2021
21G0278-05	DUP	Water	07/07/2021	07/07/2021
21G0278-06	Trip Blank	Water	07/07/2021	07/07/2021

General Notes for York Project (SDG) No.: 21G0278

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

 Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By: Oh I most

Cassie L. Mosher Laboratory Manager **Date:** 07/14/2021

Client Sample ID: MW-3AR York Sample ID: 21G0278-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 21G0278
 03C497 - M
 Water
 July 7, 2021 8:00 am
 07/07/2021

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Method Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE		PD P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 NELAC-NY10854,NELAC-NY	07/12/2021 18:00 12058,NJDEP,PADEP	PD
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 NELAC-NY10854,NELAC-NY		PD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 NELAC-NY10854,NELAC-NY	07/12/2021 18:00 12058,NJDEP,PADEP	PD
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE		PD P,PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 NELAC-NY10854,NELAC-NY	07/12/2021 18:00 12058,NJDEP,PADEP	PD
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C Certifications:	07/12/2021 12:30 NELAC-NY10854,NELAC-NY	07/12/2021 18:00 12058,NJDEP,PADEP	PD
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NE		PD P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 66

Client Sample ID: MW-3AR

York Sample ID:

21G0278-01

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water <u>Collection Date/Time</u> July 7, 2021 8:00 am Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepar	imple Prepared by Method: EPA 5030B										
CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analyst
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CTI	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CTI	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
67-64-1	Acetone	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications: CTI	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CTI	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CTI	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
71-43-2	Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CTI	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00 LAC-NY12058,NJDEI	PD P,PADEP
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: NE	07/12/2021 12:30 LAC-NY10854,NELAC-NY	07/12/2021 18:00 12058,NJDEP,PADEP	PD
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00	PD
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CTI	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00 LAC-NY12058,NJDEF	PD P,PADEP
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00	PD
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00	PD
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00	PD
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00	PD
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00	PD
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00	PD
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00	PD
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00	PD
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 DOH,NELAC-NY10854,NEI	07/12/2021 18:00	PD
110-82-7	Cyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 LAC-NY10854,NELAC-NY	07/12/2021 18:00	PD
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C		07/12/2021 18:00	PD
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 LAC-NY10854,NELAC-NY	07/12/2021 18:00	PD
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 LAC-NY10854,NELAC-NY	07/12/2021 18:00	PD
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30 DOH NELAC-NY10854 NEI	07/12/2021 18:00	PD

CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

Client Sample ID: MW-3AR

York Sample ID:

21G0278-01

York Project (SDG) No. 21G0278

Sample Prepared by Method: EPA 5030B

Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 8:00 am

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time e Method Prepared	Date/Time Analyzed	Analyst
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 NELAC-NY10854,NELAC-NY1:	07/12/2021 18:00 2058,NJDEP,PADEP	PD
98-82-8	Isopropylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00 AC-NY12058,NJDEF	PD P,PADEP
79-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 NELAC-NY10854,NELAC-NY1:	07/12/2021 18:00 2058,NJDEP,PADEP	PD
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00 AC-NY12058,NJDEF	PD P,PADEP
108-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 NELAC-NY10854,NELAC-NY1	07/12/2021 18:00 2058,NJDEP,PADEP	PD
75-09-2	Methylene chloride	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00 AC-NY12058,NJDEF	PD P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	07/12/2021 12:30 NELAC-NY10854,NELAC-NY1	07/12/2021 18:00 2058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00	PD P,PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00	PD
95-47-6	o-Xylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00	PD
179601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00	PD
105-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30	07/12/2021 18:00	PD
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30	07/12/2021 18:00	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00 AC-NY12058,NJDEF	PD P,PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00	PD
100-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00	PD
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	07/12/2021 12:30 NELAC-NY10854,NELAC-NY1	07/12/2021 18:00	PD
98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00	PD P.PADEP
127-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00	PD
108-88-3	Toluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00	PD
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00	PD
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00	PD
79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 CTDOH,NELAC-NY10854,NEL	07/12/2021 18:00	PD
								Certifications:	CTDOH,NELAC-NY 10854,NEL	AC-NY 12058,NJDEF	,PADEP

Client Sample ID: MW-3AR

York Sample ID:

21G0278-01

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 8:00 am

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-1	n N	otes	:
			-

Sample Notes:

CAS N	lo. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NELA	07/12/2021 18:00 AC-NY12058,NJDEP	PD PADEP
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:00 AC-NY12058,NJDEP	PD PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NELA	07/12/2021 18:00 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	112 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	92.0 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.1 %			79-122							

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

CAS I	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	07/12/2021 07:35 Y10854,NJDEP,PADEP	07/13/2021 12:27	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	07/12/2021 07:35 Y10854,NJDEP,PADEP	07/13/2021 12:27	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	07/12/2021 07:35 Y10854,NJDEP,PADEP	07/13/2021 12:27	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/13/2021 12:27 P,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/13/2021 12:27 P,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/13/2021 12:27 P,PADEP	КН
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/13/2021 12:27 P,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/13/2021 12:27 P,PADEP	КН
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/13/2021 12:27 P,PADEP	КН
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/13/2021 12:27 P,PADEP	КН
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/13/2021 12:27 P,PADEP	КН
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/13/2021 12:27 P,PADEP	КН
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/13/2021 12:27 P,PADEP	КН
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/13/2021 12:27 P,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 7 of 66

Log-in Notes:

Client Sample ID: MW-3AR **York Sample ID:** 21G0278-01

York Project (SDG) No. 21G0278

Client Project ID 03C497 - M

Matrix Water

Collection Date/Time July 7, 2021 8:00 am

Sample Notes:

Date Received 07/07/2021

Semi-Volatiles, 8270 - Comprehensive

Sample Prepar	ed by Method: EPA 3510C											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	КН
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	KH
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	КН
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	KH
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	КН
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	КН
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	КН
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	КН
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	КН
100-02-7	4-Nitrophenol	ND		ug/L	5.00	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	КН
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 /10854,NJDEP,PADE	07/13/2021 12:27 P	КН
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 /10854,NJDEP,PADE	07/13/2021 12:27 P	КН
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	КН
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.00	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	КН
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	КН
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 /10854,NJDEP,PADE	07/13/2021 12:27 P	КН
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	КН
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJD	07/13/2021 12:27 EP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D	СТООН МЕ	07/12/2021 07:35	07/13/2021 12:27	КН

Dimethyl phthalate

131-11-3

ug/L

2.50

ND

5.00

EPA 8270D

CTDOH,NELAC-NY10854,NJDEP,PADEP

CTDOH,NELAC-NY10854,NJDEP,PADEP

KH

Client Sample ID: MW-3AR

York Sample ID:

21G0278-01

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 8:00 am

Date Received 07/07/2021

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Met	Date/Time hod Prepared	Date/Time Analyzed	Analyst
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications: CTL	07/12/2021 07:35 OOH,NELAC-NY10854,NJDE	07/13/2021 12:27 P,PADEP	КН
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications: CTE	07/12/2021 07:35 OOH,NELAC-NY10854,NJDE	07/13/2021 12:27 P,PADEP	КН
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.00	10.0	1	EPA 8270D Certifications: CTE	07/12/2021 07:35 OOH,NELAC-NY10854,NJDE	07/13/2021 12:27 P,PADEP	КН
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications: CTE	07/12/2021 07:35 OOH,NELAC-NY10854,NJDE	07/13/2021 12:27 P,PADEP	КН
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications: CTE	07/12/2021 07:35 OOH,NELAC-NY10854,NJDE	07/13/2021 12:27 P,PADEP	КН
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications: CTE	07/12/2021 07:35 OOH,NELAC-NY10854,NJDE	07/13/2021 12:27 P,PADEP	КН
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications: CTE	07/12/2021 07:35 OOH,NELAC-NY10854,NJDE	07/13/2021 12:27 P,PADEP	КН
2312-35-8	* Propargite	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35	07/13/2021 12:27	КН
110-86-1	Pyridine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications: CTE	07/12/2021 07:35 OOH,NELAC-NY10854,NJDE	07/13/2021 12:27 P,PADEP	КН
	Surrogate Recoveries	Result		Acc	eptance Rang	e					
367-12-4	Surrogate: SURR: 2-Fluorophenol	32.0 %			19.7-63.1						
1165-62-2	Surrogate: SURR: Phenol-d5	19.8 %			10.1-41.7						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	78.0 %			50.2-113						
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	70.5 %			39.9-105						
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	95.9 %			39.3-151						
1718-51-0	Surrogate: SURR: Terphenyl-d14	94.2 %			30.7-106						

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ Dilut	tion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND	ug/L	0.0500	1 EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 19:28 EP,PADEP	CD
208-96-8	Acenaphthylene	ND	ug/L	0.0500	1 EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 19:28 EP,PADEP	CD
120-12-7	Anthracene	ND	ug/L	0.0500	1 EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 19:28 EP,PADEP	CD
1912-24-9	Atrazine	ND	ug/L	0.500	1 EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 19:28 EP	CD
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0500	1 EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 19:28 EP,PADEP	CD
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0500	1 EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 19:28 EP,PADEP	CD
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0500	1 EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 19:28 EP,PADEP	CD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 9 of 66

Client Sample ID: MW-3AR

<u>York Sample ID:</u> 21G0278-01

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 8:00 am

Date Received 07/07/2021

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

	•	TA T	
Log	T_IN	N ₀	tac.
LUUZ	-111	110	ucs.

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P,PADEP	CD
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P,PADEP	CD
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P	CD
218-01-9	Chrysene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P,PADEP	CD
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P,PADEP	CD
206-44-0	Fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P,PADEP	CD
86-73-7	Fluorene	0.220		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDI	07/12/2021 19:28 EP,PADEP	CD
118-74-1	Hexachlorobenzene	ND		ug/L	0.0200	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P	CD
87-68-3	Hexachlorobutadiene	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P	CD
67-72-1	Hexachloroethane	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P	CD
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P,PADEP	CD
91-20-3	Naphthalene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P,PADEP	CD
98-95-3	Nitrobenzene	ND		ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P	CD
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P	CD
87-86-5	Pentachlorophenol	ND		ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P	CD
85-01-8	Phenanthrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 19:28 P,PADEP	CD
129-00-0	Pyrene	0.0800	В	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDI	07/12/2021 19:28 EP,PADEP	CD

Sample Information

Client Sample ID: MW-5AR

York Sample ID:

21G0278-02

York Project (SDG) No. 21G0278

Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 9:40 am

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 10 of 66

Client Sample ID: MW-5AR **York Sample ID:**

21G0278-02

York Project (SDG) No. 21G0278

Client Project ID 03C497 - M

Matrix Water

Collection Date/Time July 7, 2021 9:40 am Date Received 07/07/2021

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	07/12/2021 12:30 Y10854,NELAC-NY1	07/12/2021 18:27 2058,NJDEP,PADEP	PD
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	07/12/2021 12:30 Y10854,NELAC-NY1	07/12/2021 18:27 2058,NJDEP,PADEP	PD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/12/2021 12:30 Y10854,NELAC-NY1	07/12/2021 18:27 2058,NJDEP,PADEP	PD
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/12/2021 12:30 Y10854,NELAC-NY1	07/12/2021 18:27 2058,NJDEP,PADEP	PD
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C Certifications:	NELAC-N	07/12/2021 12:30 Y10854,NELAC-NY1	07/12/2021 18:27 2058,NJDEP,PADEP	PD
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27	PD
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27	PD

Client Sample ID: MW-5AR **York Sample ID:** 21G0278-02

York Project (SDG) No. 21G0278

Client Project ID 03C497 - M

Matrix Water

Collection Date/Time July 7, 2021 9:40 am Date Received 07/07/2021

	Organics, 8260 - Comprehension	<u>ve</u>			<u>Log-in Notes:</u>			Samp	Sample Notes:			
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
71-43-2	Benzene	0.780		ug/L	0.200	0.500	1	EPA 8260C		07/12/2021 12:30	07/12/2021 18:27	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/12/2021 12:30 Y10854,NELAC-NY1	07/12/2021 18:27 2058,NJDEP,PADEP	PD
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 .AC-NY12058,NJDEF	PD P,PADEP
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 .AC-NY12058,NJDEF	PD P,PADEP
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
110-82-7	Cyclohexane	0.880		ug/L	0.200	0.500	1	EPA 8260C		07/12/2021 12:30	07/12/2021 18:27	PD
								Certifications:	NELAC-N	Y10854,NELAC-NY	12058,NJDEP,PADEP	
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NEI	07/12/2021 18:27 AC-NY12058,NJDEF	PD P,PADEP
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/12/2021 12:30 Y10854,NELAC-NY1	07/12/2021 18:27 2058,NJDEP,PADEP	PD
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/12/2021 12:30 Y10854,NELAC-NY1	07/12/2021 18:27 2058,NJDEP,PADEP	PD
100-41-4	Ethyl Benzene	0.370	J	ug/L	0.200	0.500	1	EPA 8260C		07/12/2021 12:30	07/12/2021 18:27	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/12/2021 12:30 Y10854,NELAC-NY1	07/12/2021 18:27 2058,NJDEP,PADEP	PD
98-82-8	Isopropylbenzene	1.21		ug/L	0.200	0.500	1	EPA 8260C		07/12/2021 12:30	07/12/2021 18:27	PD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

Certifications:

RICHMOND HILL, NY 11418

CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

ClientServices@ Page 12 of 66

Log-in Notes:

Client Sample ID: MW-5AR

York Sample ID:

21G0278-02

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 9:40 am

Sample Notes:

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Page Methyl acciate	Sample Prepare	ed by Method: EPA 5030B										
	CAS No	o. Parameter	Result	Flag	Units		LOQ	Dilution	Reference M			Analyst
	79-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1				PD
	1634-04-4	Methyl tert-butyl ether (MTBE)	0.900		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30	07/12/2021 18:27	PD
									Certifications: C	CTDOH,NELAC-NY10854,NEI	.AC-NY12058,NJDE	P,PADEP
Page	108-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1				PD
	75-09-2	Methylene chloride	1.73	J	ug/L	1.00	2.00	1	EPA 8260C	07/12/2021 12:30	07/12/2021 18:27	PD
Part									Certifications: C	CTDOH,NELAC-NY10854,NEI	LAC-NY12058,NJDE	P,PADEP
104-14-14 Palytherizere	91-20-3	Naphthalene	1.05	J	ug/L	1.00	2.00	1	EPA 8260C	07/12/2021 12:30	07/12/2021 18:27	PD
103-65-1 Propylbenzene ND									Certifications: N	NELAC-NY10854,NELAC-NY	12058,NJDEP,PADEP	•
PS-47-6	104-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1				PD P,PADEP
179601-23-1 p-& m-Xylenes	103-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1				PD P,PADEP
105-95-5 PDiethylbenzene ND ug/L 0.200 0.500 1 EPA 8260C 0.711/2021 1230 0.71/2021 1827 P. EPA 8260C 0.71/2021 1230 0.	95-47-6	o-Xylene	ND		ug/L	0.200	0.500	1				PD
10-05-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	179601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1				PD
Pach	105-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C			PD
P-Isopropyltoluene	622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30	07/12/2021 18:27	PD
135-98-8 135-98-8	99-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C			PD
100-42-5 Styrene	135-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30	07/12/2021 18:27	PD
Trichloroethylene ND ND ND ND ND ND ND N	100-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30	07/12/2021 18:27	PD
Part	75 65 0	tart Dutyl alaahal (TDA)	ND		ng/I	0.500	1.00	1				
Tetrachloroethylene	73-03-0	tert-Butyl alcollol (TBA)	ND		ug/L	0.500	1.00	1				ID
Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,NIDEP,PADEP PASSON Pass Pa	98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1				PD P,PADEP
Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,NIDEP,PADEP	127-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1				PD P,PADEP
Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP PER	108-88-3	Toluene	ND		ug/L	0.200	0.500	1				PD P,PADEP
79-01-6 Trichloroethylene ND ug/L 0.200 0.500 1 EPA 8260C Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP PER PR	156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1				PD P,PADEP
79-01-6 Trichloroethylene ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-69-4 Trichlorofluoromethane ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-69-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 18:27 DER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 18:27 DER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 18:27 DER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 18:27 DER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 18:27 DER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 18:27 DER 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 18:27 DER 75-01-4 VINYL 0	10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1				PD P.PADEP
75-69-4 Trichlorofluoromethane ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PE 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PE 75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PE	79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30	07/12/2021 18:27	PD
75-01-4 Vinyl Chloride ND ug/L 0.200 0.500 1 EPA 8260C 07/12/2021 12:30 07/12/2021 18:27 PE	75-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30	07/12/2021 18:27	PD
	75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2021 12:30	07/12/2021 18:27	PD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 13 of 66

Client Sample ID: MW-5AR

York Sample ID:

21G0278-02

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 9:40 am

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log	<u>-in</u>	N	01	tes:	

Sample Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NEL	07/12/2021 18:27 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	108 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	91.9 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	97.4 %			79-122							

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
2-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 /10854,NJDEP,PADEP	07/12/2021 17:51	КН
5-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 710854,NJDEP,PADEP	07/12/2021 17:51	KH
3-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 710854,NJDEP,PADEP	07/12/2021 17:51	KH
5-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 P,PADEP	KH
3-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 P,PADEP	KH
20-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 P,PADEP	KH
05-67-9	2,4-Dimethylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 P,PADEP	KH
1-28-5	2,4-Dinitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 P,PADEP	KH
21-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 P,PADEP	KH
06-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 P,PADEP	KH
-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 P,PADEP	KH
5-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 P,PADEP	KH
1-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 P,PADEP	KH
5-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 P.PADEP	KH
3-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 P.PADEP	KH
-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51	КН

Client Sample ID: MW-5AR **York Sample ID:**

21G0278-02

York Project (SDG) No. 21G0278

Client Project ID 03C497 - M

Matrix Water

Collection Date/Time July 7, 2021 9:40 am Date Received 07/07/2021

Semi-Volatiles, 8270 - Comprehensive

Semi-Vola				Log-in	Notes:		Sample Notes:					
CAS N	ed by Method: EPA 3510C o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	КН
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	KH
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	КН
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	КН
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	КН
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	КН
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	КН
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	КН
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	КН
100-02-7	4-Nitrophenol	ND		ug/L	5.00	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	KH
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 /10854,NJDEP,PADE	07/12/2021 17:51	KH
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 /10854,NJDEP,PADE	07/12/2021 17:51	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	КН
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.00	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	КН
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 /10854,NJDEP,PADE	07/12/2021 17:51 P	КН
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	KH
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	KH
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	КН
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 17:51 EP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 15 of 66

Client Sample ID: MW-5AR

York Sample ID:

21G0278-02

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 9:40 am

Date Received 07/07/2021

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

<u> Log-in Notes:</u>

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.00	10.0	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/12/2021 17:51 EP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 EP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/12/2021 17:51 EP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/12/2021 17:51 EP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 EP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 07:35	07/12/2021 17:51	KH
110-86-1	Pyridine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 17:51 EP,PADEP	KH
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	31.1 %			19.7-63.1							
4165-62-2	Surrogate: SURR: Phenol-d5	18.4 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	65.2 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	64.5 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	83.4 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	135 %	S-08		30.7-106							

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

o. Parameter	Result	Flag	Units	Reported to LOQ		Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Acenaphthene	1.28		ug/L	0.0500	1	EPA 8270D SIM	07/12/2021 07:35	07/12/2021 20:33	CD
						Certifications: CTDOH,	NELAC-NY10854,NJD	EP,PADEP	
Acenaphthylene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 IELAC-NY10854,NJDI	07/12/2021 20:33 EP,PADEP	CD
Anthracene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 IELAC-NY10854,NJDI	07/12/2021 20:33 EP,PADEP	CD
Atrazine	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 IELAC-NY10854,NJDI	07/12/2021 20:33 EP	CD
Benzo(a)anthracene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 IELAC-NY10854,NJDI	07/12/2021 20:33 EP,PADEP	CD
Benzo(a)pyrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 IELAC-NY10854,NJDI	07/12/2021 20:33 EP,PADEP	CD
Benzo(b)fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 IELAC-NY10854,NJDI	07/12/2021 20:33 EP,PADEP	CD
Benzo(g,h,i)perylene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 IELAC-NY10854,NJDI	07/12/2021 20:33 EP,PADEP	CD
Benzo(k)fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 IELAC-NY10854,NJDI	07/12/2021 20:33 EP,PADEP	CD
	Acenaphthene Acenaphthylene Anthracene Atrazine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	Acenaphthene1.28AcenaphthyleneNDAnthraceneNDAtrazineNDBenzo(a)anthraceneNDBenzo(a)pyreneNDBenzo(b)fluorantheneNDBenzo(g,h,i)peryleneND	Acenaphthene 1.28 Acenaphthylene ND Anthracene ND Atrazine ND Benzo(a)anthracene ND Benzo(a)pyrene ND Benzo(b)fluoranthene ND Benzo(g,h,i)perylene ND	Acenaphthene 1.28 ug/L Acenaphthylene ND ug/L Anthracene ND ug/L Atrazine ND ug/L Benzo(a)anthracene ND ug/L Benzo(a)pyrene ND ug/L Benzo(b)fluoranthene ND ug/L Benzo(g,h,i)perylene ND ug/L	o. Parameter Result Flag Units Loq Acenaphthene 1.28 ug/L 0.0500 Acenaphthylene ND ug/L 0.0500 Anthracene ND ug/L 0.0500 Atrazine ND ug/L 0.0500 Benzo(a)anthracene ND ug/L 0.0500 Benzo(a)pyrene ND ug/L 0.0500 Benzo(b)fluoranthene ND ug/L 0.0500 Benzo(g,h,i)perylene ND ug/L 0.0500	Acenaphthene 1.28 ug/L 0.0500 1 Acenaphthylene ND ug/L 0.0500 1 Anthracene ND ug/L 0.0500 1 Atrazine ND ug/L 0.500 1 Benzo(a)anthracene ND ug/L 0.0500 1 Benzo(a)pyrene ND ug/L 0.0500 1 Benzo(b)fluoranthene ND ug/L 0.0500 1 Benzo(g,h,i)perylene ND ug/L 0.0500 1	Acenaphthene 1.28 ug/L 0.0500 1 EPA 8270D SIM Certifications: CTDOH, N Anthracene ND ug/L 0.0500 1 EPA 8270D SIM Certifications: CTDOH, N Anthracene ND ug/L 0.0500 1 EPA 8270D SIM Certifications: CTDOH, N Dug/L Benzo(a)anthracene ND ug/L 0.0500 1 EPA 8270D SIM Certifications: CTDOH, N Certifications: CTDOH, N Certifications: CTDOH, N Dug/L 0.0500 1 EPA 8270D SIM Certifications: CTDOH, N Certifications: CTDOH, N Dug/L Dug/L 0.0500 1 EPA 8270D SIM Certifications: CTDOH, N Certifications: CTDOH, N Certifications: CTDOH, N Dug/L Dug/L	ND	ND Ug/L D.500 1 EPA 8270D SIM O7/12/2021 07.35 O7/12/2021 20.33 O7/12/20

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 16 of 66

Client Sample ID: MW-5AR **York Sample ID:**

21G0278-02

York Project (SDG) No. 21G0278

Client Project ID 03C497 - M

Matrix Water

Collection Date/Time July 7, 2021 9:40 am Date Received 07/07/2021

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-	·ın	N	01	tes:

Sample Notes:

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ D	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	0.500	ug/L	0.500	1	EPA 8270D SIM	07/12/2021 07:35	07/12/2021 20:33	CD
						Certifications: CTDOH,N	ELAC-NY10854,NJDI	EP	
218-01-9	Chrysene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 20:33 P,PADEP	CD
53-70-3	Dibenzo(a,h)anthracene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 20:33 P,PADEP	CD
206-44-0	Fluoranthene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 20:33 P,PADEP	CD
86-73-7	Fluorene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 20:33 P,PADEP	CD
118-74-1	Hexachlorobenzene	ND	ug/L	0.0200	1	EPA 8270D SIM Certifications: CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 20:33	CD
87-68-3	Hexachlorobutadiene	ND	ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 20:33	CD
67-72-1	Hexachloroethane	ND	ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 20:33	CD
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 20:33 P,PADEP	CD
91-20-3	Naphthalene	0.420	ug/L	0.0500	1	EPA 8270D SIM	07/12/2021 07:35	07/12/2021 20:33	CD
						Certifications: CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
98-95-3	Nitrobenzene	ND	ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 20:33	CD
62-75-9	N-Nitrosodimethylamine	ND	ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 20:33	CD
87-86-5	Pentachlorophenol	ND	ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 20:33	CD
85-01-8	Phenanthrene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 20:33 P,PADEP	CD
129-00-0	Pyrene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 20:33 P,PADEP	CD

Sample Information

MW-4AR **Client Sample ID:**

York Sample ID:

21G0278-03

York Project (SDG) No. 21G0278

Client Project ID 03C497 - M

Matrix Water

Collection Date/Time July 7, 2021 11:20 am Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS I	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/13/2021 09:00 ELAC-NY10854,NELA	07/13/2021 14:17 AC-NY12058,NJDEP,	PD PADEP
120 DE	SEADOH DDIVE	STRATEORD CT	06615		_	132	-02 80th A	VENITE		SICHMOND HILL	NV 11/118	

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 17 of 66

Log-in Notes:

Client Sample ID: MW-4AR

York Sample ID: 21G0278-03

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water <u>Collection Date/Time</u> July 7, 2021 11:20 am

Sample Notes:

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Mo	Date/Time ethod Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 FDOH,NELAC-NY10854,NE	07/13/2021 14:17 LAC-NY12058,NJDEI	PD P,PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: C7	07/13/2021 09:00 FDOH,NELAC-NY10854,NE	07/13/2021 14:17 LAC-NY12058,NJDEI	PD P,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00 FDOH,NELAC-NY10854,NE	07/13/2021 14:17	PD
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 FDOH,NELAC-NY10854,NE	07/13/2021 14:17 LAC-NY12058,NJDEI	PD P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 FDOH,NELAC-NY10854,NE	07/13/2021 14:17 LAC-NY12058,NJDEI	PD P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: C7	07/13/2021 09:00 FDOH,NELAC-NY10854,NE	07/13/2021 14:17 LAC-NY12058,NJDEF	PD P,PADEP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00 ELAC-NY10854,NELAC-NY	07/13/2021 14:17	PD
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00 ELAC-NY10854,NELAC-NY	07/13/2021 14:17	PD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00 ELAC-NY10854,NELAC-NY	07/13/2021 14:17	PD
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00 FDOH,NELAC-NY10854,NE	07/13/2021 14:17	PD
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00 FDOH,NELAC-NY10854,NE	07/13/2021 14:17	PD
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00 FDOH,NELAC-NY10854,NE	07/13/2021 14:17	PD
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00 FDOH,NELAC-NY10854,NE	07/13/2021 14:17	PD
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00 FDOH,NELAC-NY10854,NE	07/13/2021 14:17	PD
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00 FDOH,NELAC-NY10854,NE	07/13/2021 14:17	PD
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00 FDOH,NELAC-NY10854,NE	07/13/2021 14:17	PD
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00	07/13/2021 14:17	PD
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00	07/13/2021 14:17	P,PADEP PD
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00	07/13/2021 14:17	PD
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C		07/13/2021 14:17	PD
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00	07/13/2021 14:17	PD
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C	TDOH,NELAC-NY10854,NE 07/13/2021 09:00	07/13/2021 14:17	PD
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C	TDOH,NELAC-NY10854,NE 07/13/2021 09:00	07/13/2021 14:17	PD
								Certifications: C7	TDOH,NELAC-NY10854,NE	LAC-NY12058,NJDEI	P,PADEP

Log-in Notes:

Client Sample ID: MW-4AR

York Sample ID: 21G0278-03

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water <u>Collection Date/Time</u> July 7, 2021 11:20 am

Sample Notes:

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

are organics, or or compreh

Sample Prepar	ed by Method: EPA 5030B										
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	1.33	J	ug/L	1.00	2.00	1	EPA 8260C	07/13/2021 09:00	07/13/2021 14:17	PD
								Certifications: CT	TDOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 .AC-NY12058,NJDEI	PD P,PADEP
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 .AC-NY12058,NJDEI	PD P,PADEP
71-43-2	Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: NE	07/13/2021 09:00 LAC-NY10854,NELAC-NY1	07/13/2021 14:17 2058,NJDEP,PADEP	PD
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEI	PD P,PADEP
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEI	PD P,PADEP
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEI	PD P,PADEP
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEI	PD P,PADEP
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEI	PD P,PADEP
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEI	PD P,PADEP
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEI	PD P,PADEP
67-66-3	Chloroform	0.210	J	ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00	07/13/2021 14:17	PD
								Certifications: CT	TDOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	.P,PADEP
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 .AC-NY12058,NJDEI	PD P,PADEP
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 .AC-NY12058,NJDEI	PD P,PADEP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEI	PD P,PADEP
110-82-7	Cyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: NE	07/13/2021 09:00 LAC-NY10854,NELAC-NY1	07/13/2021 14:17 2058,NJDEP,PADEP	PD
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: NE	07/13/2021 09:00 LAC-NY10854,NELAC-NY1	07/13/2021 14:17 2058,NJDEP,PADEP	PD
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: NE	07/13/2021 09:00 LAC-NY10854,NELAC-NY1	07/13/2021 14:17 2058,NJDEP,PADEP	PD
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CT	07/13/2021 09:00 DOH,NELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEI	PD P,PADEP
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/13/2021 09:00	07/13/2021 14:17	PD

0.200

ug/L

0.500

Isopropylbenzene

98-82-8

ND

Certifications:

EPA 8260C

Certifications:

CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

Client Sample ID: MW-4AR **York Sample ID:**

21G0278-03

York Project (SDG) No. 21G0278

Client Project ID 03C497 - M

Matrix Water

Collection Date/Time July 7, 2021 11:20 am Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

	ed by Method: EPA 5030B	<u> </u>						Sump	1011000			
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/13/2021 09:00 /10854,NELAC-NY1	07/13/2021 14:17 2058,NJDEP,PADEP	PD
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
108-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/13/2021 09:00 /10854,NELAC-NY1	07/13/2021 14:17 2058,NJDEP,PADEP	PD
75-09-2	Methylene chloride	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	NELAC-NY	07/13/2021 09:00 /10854,NELAC-NY1	07/13/2021 14:17 2058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
95-47-6	o-Xylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,PADEI	PD
179601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,PADEI	PD
105-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/13/2021 09:00	07/13/2021 14:17	PD
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/13/2021 09:00	07/13/2021 14:17	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
100-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	NELAC-NY	07/13/2021 09:00 /10854,NELAC-NY1	07/13/2021 14:17 2058,NJDEP,PADEP	PD
98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
127-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
108-88-3	Toluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
75-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NEL	07/13/2021 14:17 AC-NY12058,NJDEF	PD P,PADEP

Client Sample ID: MW-4AR **York Sample ID:**

21G0278-03

York Project (SDG) No. 21G0278

CAS No.

1330-20-7

17060-07-0

2037-26-5

460-00-4

Client Project ID 03C497 - M

Matrix Water

Collection Date/Time July 7, 2021 11:20 am Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

97.7 %

Sample Prepared by Method: EPA 5030B

ed by Method: EPA	13030B											
0.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference !	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Xylenes, Total		ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 ELAC-NY10854,NELA	07/13/2021 14:17 AC-NY12058,NJDEP	PD
S	urrogate Recoveries	Result		Acce	ptance Range	e						
Surrogate: SU 1,2-Dichloroe		113 %			69-130							
Surrogate: SU	RR: Toluene-d8	90.5 %			81-117							

Semi-Volatiles, 8270 - Comprehensive

Surrogate: SURR:

 $p\hbox{-}Bromofluor obenzene$

Log-in Notes:

79-122

Log-in Notes:

Sample Notes:

Sample Notes:

Sample Prepa	ared by Method: EPA 3510C				Reported to					Date/Time	Date/Time	
CAS	No. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 Y10854,NJDEP,PADEF	07/13/2021 13:03	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 Y10854,NJDEP,PADEF	07/13/2021 13:03	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 Y10854,NJDEP,PADEF	07/13/2021 13:03	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 P,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 P,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 P,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 P,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 P,PADEP	КН
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 P,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 P,PADEP	KH
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 P,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 P,PADEP	KH
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 P,PADEP	KH
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 P,PADEP	KH
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 P,PADEP	КН
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 P.PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 21 of 66

Client Sample ID: MW-4AR **York Sample ID:** 21G0278-03

York Project (SDG) No. 21G0278

Client Project ID 03C497 - M

Matrix Water

Collection Date/Time July 7, 2021 11:20 am Date Received 07/07/2021

Semi-Vol	latiles, 8270 - Comprehensive				Log-in	Notes:		Sam	ple Note	<u>es:</u>		
Sample Prepa	red by Method: EPA 3510C											
CAS N	vo. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	КН
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	KH
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 EP,PADEP	KH
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	КН
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	KH
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	КН
100-02-7	4-Nitrophenol	ND		ug/L	5.00	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	KH
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	07/12/2021 07:35 Y10854,NJDEP,PADE	07/13/2021 13:03 P	KH
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	07/12/2021 07:35 Y10854,NJDEP,PADE	07/13/2021 13:03 P	КН
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 EP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 EP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.00	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 EP,PADEP	KH
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	07/12/2021 07:35 Y10854,NJDEP,PADE	07/13/2021 13:03 P	КН
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	КН
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	КН
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	КН
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 EP,PADEP	КН
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	КН
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 22 of 66

Client Sample ID: MW-4AR

York Sample ID:

21G0278-03

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water <u>Collection Date/Time</u> July 7, 2021 11:20 am Date Received 07/07/2021

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log	-ın	N	0	tes:	:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.00	10.0	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 EP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 13:03 EP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 EP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 07:35	07/13/2021 13:03	KH
110-86-1	Pyridine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 13:03 EP,PADEP	KH
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	37.2 %			19.7-63.1							
4165-62-2	Surrogate: SURR: Phenol-d5	23.0 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	90.2 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	83.0 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	111 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	113 %	S-08		30.7-106							

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported t	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDI	07/13/2021 10:18 EP,PADEP	CD
208-96-8	Acenaphthylene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 10:18 EP,PADEP	CD
120-12-7	Anthracene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 10:18 EP,PADEP	CD
1912-24-9	Atrazine	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 10:18 EP	CD
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 10:18 EP,PADEP	CD
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 10:18 EP,PADEP	CD
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 10:18 EP,PADEP	CD
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDF	07/13/2021 10:18 EP,PADEP	CD
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJDE	07/13/2021 10:18 EP,PADEP	CD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 23 of 66

Client Sample ID: MW-4AR **York Sample ID:**

21G0278-03

York Project (SDG) No. 21G0278

Client Project ID 03C497 - M

Matrix Water

Collection Date/Time July 7, 2021 11:20 am Date Received 07/07/2021

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

	•	TAT 4
	α_{-1}	Notes:
L/	UZ-III	Tiutes.

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	0.660		ug/L	0.500	1	EPA 8270D SIM	07/12/2021 07:35	07/13/2021 10:18	CD
							Certifications: CTDOH,NE	ELAC-NY10854,NJD	EP	
218-01-9	Chrysene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/13/2021 10:18 EP,PADEP	CD
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/13/2021 10:18 EP,PADEP	CD
206-44-0	Fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/13/2021 10:18 EP,PADEP	CD
86-73-7	Fluorene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/13/2021 10:18 EP,PADEP	CD
118-74-1	Hexachlorobenzene	ND		ug/L	0.0200	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/13/2021 10:18 EP	CD
87-68-3	Hexachlorobutadiene	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/13/2021 10:18 EP	CD
67-72-1	Hexachloroethane	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/13/2021 10:18 EP	CD
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/13/2021 10:18 EP,PADEP	CD
91-20-3	Naphthalene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/13/2021 10:18 EP,PADEP	CD
98-95-3	Nitrobenzene	ND		ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/13/2021 10:18 EP	CD
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/13/2021 10:18 EP	CD
87-86-5	Pentachlorophenol	0.270		ug/L	0.250	1	EPA 8270D SIM	07/12/2021 07:35	07/13/2021 10:18	CD
							Certifications: CTDOH,NE	ELAC-NY10854,NJD	EP	
85-01-8	Phenanthrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/13/2021 10:18 EP,PADEP	CD
129-00-0	Pyrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/13/2021 10:18 EP,PADEP	CD

Sample Information

MW-1AR **Client Sample ID:**

York Sample ID:

21G0278-04

York Project (SDG) No. 21G0278

Client Project ID 03C497 - M

Matrix Water

Collection Date/Time July 7, 2021 12:15 pm Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS I	No. Parameter	Result	Flag Un	Reported to LOD/MD		Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND	ug/l	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NI	07/13/2021 09:00 ELAC-NY10854,NELA	07/13/2021 13:50 AC-NY12058,NJDEP	PD PADEP
120 PE	SEARCH DRIVE	STRATEORD CT	06615	_	131	2_02 89th 4	VENUE	-	SICHMOND HILL	NY 11418	

120 RESEARCH DRIVE

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@

Page 24 of 66

Log-in Notes:

Client Sample ID: MW-1AR

York Sample ID: 21G0278-04

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 12:15 pm

Sample Notes:

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B												
CAS No). Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	NELAC-NY	07/13/2021 09:00 10854,NELAC-NY1	07/13/2021 13:50 2058,NJDEP,PADEP	PD
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	NELAC-NY	07/13/2021 09:00 10854,NELAC-NY1	07/13/2021 13:50 2058,NJDEP,PADEP	PD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	NELAC-NY	07/13/2021 09:00 10854,NELAC-NY1	07/13/2021 13:50 2058,NJDEP,PADEP	PD
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
107-06-2	1,2-Dichloroethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
78-87-5	1,2-Dichloropropane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
142-28-9	1,3-Dichloropropane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:		07/13/2021 09:00	07/13/2021 13:50 2058,NJDEP,PADEP	PD
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	CTDOH,NE	07/13/2021 09:00 LAC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEI	PD P.PADEP
123-91-1	1,4-Dioxane	ND		ug/L	80.0	160	2	EPA 8260C Certifications:	NELAC-NY	07/13/2021 09:00 10854,NELAC-NY1	07/13/2021 13:50 2058,NJDEP,PADEP	PD
78-93-3	2-Butanone	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:		07/13/2021 09:00	07/13/2021 13:50 AC-NY12058,NJDEI	PD P,PADEP
591-78-6	2-Hexanone	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:		07/13/2021 09:00	07/13/2021 13:50 AC-NY12058,NJDEI	PD
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:		07/13/2021 09:00	07/13/2021 13:50 AC-NY12058,NJDEI	PD

Client Sample ID: MW-1AR

York Sample ID: 21G0278-04

 York Project (SDG) No.
 Client Project ID

 21G0278
 03C497 - M

Matrix Water Collection Date/Time
July 7, 2021 12:15 pm

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS N 67-64-1 107-02-8	io. Parameter Acetone Acrolein	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dibetion	D.C. A	Date/Ti		
		12.9				LUQ	Dilution	Reference N	Aethod Prepa	red Analyzeo	Analyst
107-02-8	Acrolein			ug/L	2.00	4.00	2	EPA 8260C	07/13/2021	09:00 07/13/2021 13:	50 PD
107-02-8	Acrolein							Certifications:	CTDOH,NELAC-NY108	54,NELAC-NY12058,N.	DEP,PADEP
		ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
107-13-1	Acrylonitrile	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
71-43-2	Benzene	74.1		ug/L	0.400	1.00	2	EPA 8260C	07/13/2021	09:00 07/13/2021 13:	50 PD
								Certifications:	CTDOH,NELAC-NY108	54,NELAC-NY12058,N.	DEP,PADEP
74-97-5	Bromochloromethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 NELAC-NY10854,NELA		
75-27-4	Bromodichloromethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
75-25-2	Bromoform	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
74-83-9	Bromomethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
75-15-0	Carbon disulfide	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
56-23-5	Carbon tetrachloride	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
108-90-7	Chlorobenzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
75-00-3	Chloroethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
67-66-3	Chloroform	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
74-87-3	Chloromethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
110-82-7	Cyclohexane	51.8		ug/L	0.400	1.00	2	EPA 8260C	07/13/2021	09:00 07/13/2021 13:	50 PD
								Certifications:	NELAC-NY10854,NELA	AC-NY12058,NJDEP,PAI	DEP
124-48-1	Dibromochloromethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
74-95-3	Dibromomethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 NELAC-NY10854,NELA		
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 NELAC-NY10854,NELA		
100-41-4	Ethyl Benzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		
87-68-3	Hexachlorobutadiene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 NELAC-NY10854,NELA		
98-82-8	Isopropylbenzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications:	07/13/2021 CTDOH,NELAC-NY1085		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 26 of 66

Log-in Notes:

Client Sample ID: MW-1AR

York Sample ID: 21G0278-04

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 12:15 pm

Sample Notes:

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

	red by Method: EPA 5030B		Sample Notes:									
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M		Date/Time Prepared	Date/Time Analyzed	Analyst
79-20-9	Methyl acetate	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications: N		7/13/2021 09:00 854,NELAC-NY1	07/13/2021 13:50 2058,NJDEP,PADEP	PD
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications: C		7/13/2021 09:00 C-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEP	PD PADEP
108-87-2	Methylcyclohexane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications: N		7/13/2021 09:00 354,NELAC-NY1	07/13/2021 13:50 2058,NJDEP,PADEP	PD
75-09-2	Methylene chloride	5.06		ug/L	2.00	4.00	2	EPA 8260C		7/13/2021 09:00	07/13/2021 13:50	PD
91-20-3	Naphthalene	ND		ug/L	2.00	4.00	2	EPA 8260C	0	7/13/2021 09:00	LAC-NY12058,NJDE 07/13/2021 13:50 2058,NJDEP,PADEP	P,PADEP PD
104-51-8	n-Butylbenzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications: C		7/13/2021 09:00 C-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEP	PD PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications: C		7/13/2021 09:00 C-NY10854,NEI	07/13/2021 13:50 AC-NY12058,NJDEP	PD PADEP
95-47-6	o-Xylene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications: C		7/13/2021 09:00 C-NY10854,NEL	07/13/2021 13:50 AC-NY12058,PADEF	PD
179601-23-1	p- & m- Xylenes	ND		ug/L	1.00	2.00	2	EPA 8260C Certifications: C		7/13/2021 09:00 C-NY10854,NEI	07/13/2021 13:50 AC-NY12058,PADEF	PD
105-05-5	* p-Diethylbenzene	1.84		ug/L	0.400	1.00	2	EPA 8260C	0	7/13/2021 09:00	07/13/2021 13:50	PD
622-96-8	* p-Ethyltoluene	ND		ug/L	0.400	1.00	2	Certifications: EPA 8260C Certifications:	0.	7/13/2021 09:00	07/13/2021 13:50	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications: C		7/13/2021 09:00 C-NY10854,NEI	07/13/2021 13:50 AC-NY12058,NJDEP	PD PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications: C		7/13/2021 09:00 C-NY10854,NEI	07/13/2021 13:50 AC-NY12058,NJDEP	PD PADEP
100-42-5	Styrene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications: C		7/13/2021 09:00 C-NY10854,NEI	07/13/2021 13:50 AC-NY12058,NJDEP	PD PADEP
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	1.00	2.00	2	EPA 8260C Certifications: N		7/13/2021 09:00 354,NELAC-NY1	07/13/2021 13:50 2058,NJDEP,PADEP	PD
98-06-6	tert-Butylbenzene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications: C		7/13/2021 09:00 C-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEP	PD PADEP
127-18-4	Tetrachloroethylene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications: C		7/13/2021 09:00 C-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEP	PD PADEP
108-88-3	Toluene	0.740	J	ug/L	0.400	1.00	2	EPA 8260C		7/13/2021 09:00	07/13/2021 13:50	PD
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.400	1.00	2	EPA 8260C	0	7/13/2021 09:00	LAC-NY12058,NJDE 07/13/2021 13:50 .AC-NY12058,NJDEP	PD
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.400	1.00	2	EPA 8260C	0	7/13/2021 09:00	07/13/2021 13:50 AC-NY12058,NJDEP	PD
79-01-6	Trichloroethylene	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications: C		7/13/2021 09:00 C-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEP	PD PADEP
75-69-4	Trichlorofluoromethane	ND		ug/L	0.400	1.00	2	EPA 8260C Certifications: C		7/13/2021 09:00 C-NY10854,NEI	07/13/2021 13:50 AC-NY12058,NJDEP	PD PADEP
75-01-4	Vinyl Chloride	ND		ug/L	0.400	1.00	2	EPA 8260C	0	7/13/2021 09:00	07/13/2021 13:50	PD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

ClientServices@ Page 27 of 66

Client Sample ID: MW-1AR

York Sample ID: 21G0278-04

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 12:15 pm

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in	Notes:	
--------	---------------	--

Sample Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	1ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/L	1.20	3.00	2	EPA 8260C Certifications:		07/13/2021 09:00 AC-NY10854,NEL	07/13/2021 13:50 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	114 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	92.0 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	97.9 %			79-122							

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	Aethod	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 Y10854,NJDEP,PADEP	07/12/2021 18:52	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 Y10854,NJDEP,PADEP	07/12/2021 18:52	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 Y10854,NJDEP,PADEP	07/12/2021 18:52	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/12/2021 18:52 P,PADEP	KH
38-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/12/2021 18:52 P,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/12/2021 18:52 P,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/12/2021 18:52 P,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/12/2021 18:52 P,PADEP	КН
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/12/2021 18:52 P,PADEP	КН
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/12/2021 18:52 P,PADEP	КН
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/12/2021 18:52 P,PADEP	КН
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/12/2021 18:52 P,PADEP	КН
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/12/2021 18:52 P,PADEP	KH
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/12/2021 18:52 P,PADEP	KH
38-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/12/2021 18:52 P,PADEP	KH
38-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH.NI	07/12/2021 07:35 ELAC-NY10854,NJDEI	07/12/2021 18:52 PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 28 of 66

Client Sample ID: MW-1AR

York Sample ID: 21G0278-04

Date/Time

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 12:15 pm

Sample Notes:

Date Received 07/07/2021

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

R	Reported to	Date/Time

Log-in Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	КН
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
100-02-7	4-Nitrophenol	ND		ug/L	5.00	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 710854,NJDEP,PADE	07/12/2021 18:52 P	KH
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 Y10854,NJDEP,PADE	07/12/2021 18:52 P	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.00	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	07/12/2021 07:35 Y10854,NJDEP,PADE	07/12/2021 18:52 P	KH
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	KH
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	КН
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 18:52 EP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 29 of 66

Client Sample ID: MW-1AR

York Sample ID:

21G0278-04

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 12:15 pm

Date Received 07/07/2021

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.00	10.0	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/12/2021 18:52 EP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 18:52 EP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/12/2021 18:52 EP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/12/2021 18:52 EP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 18:52 EP,PADEP	КН
2312-35-8	* Propargite	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 07:35	07/12/2021 18:52	KH
110-86-1	Pyridine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 18:52 EP,PADEP	KH
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	30.4 %			19.7-63.1							
4165-62-2	Surrogate: SURR: Phenol-d5	18.0 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	65.9 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	64.4 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	84.2 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	130 %	S-08		30.7-106							

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No). Parameter	Result	Flag Units	Reported to LOQ Dil	lution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	0.250	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	07/12/2021 07:35 ELAC-NY10854,NJD	07/12/2021 21:04 EP,PADEP	CD
208-96-8	Acenaphthylene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:04 EP,PADEP	CD
120-12-7	Anthracene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:04 EP,PADEP	CD
1912-24-9	Atrazine	ND	ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:04 EP	CD
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:04 EP,PADEP	CD
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:04 EP,PADEP	CD
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:04 EP,PADEP	CD
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:04 EP,PADEP	CD
207-08-9	Benzo(k)fluoranthene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:04 EP,PADEP	CD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

1

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 30 of 66

(203) 325-1371

Client Sample ID: MW-1AR

York Sample ID: 21G0278-04

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water <u>Collection Date/Time</u> July 7, 2021 12:15 pm Date Received 07/07/2021

Semi-volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

CAS N	o. Parameter	Result	Flag	Units	Reported t LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	1.00		ug/L	0.500	1	EPA 8270D SIM	07/12/2021 07:35	07/12/2021 21:04	CD
							Certifications: CTDOH,NE	ELAC-NY10854,NJD	EP	
218-01-9	Chrysene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:04 EP,PADEP	CD
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:04 EP,PADEP	CD
206-44-0	Fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:04 EP,PADEP	CD
86-73-7	Fluorene	0.230		ug/L	0.0500	1	EPA 8270D SIM	07/12/2021 07:35	07/12/2021 21:04	CD
							Certifications: CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
118-74-1	Hexachlorobenzene	ND		ug/L	0.0200	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:04 EP	CD
87-68-3	Hexachlorobutadiene	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:04 EP	CD
67-72-1	Hexachloroethane	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:04 EP	CD
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:04 EP,PADEP	CD
91-20-3	Naphthalene	0.210		ug/L	0.0500	1	EPA 8270D SIM	07/12/2021 07:35	07/12/2021 21:04	CD
							Certifications: CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
98-95-3	Nitrobenzene	ND		ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:04 EP	CD
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:04 EP	CD
87-86-5	Pentachlorophenol	ND		ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:04 EP	CD
85-01-8	Phenanthrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:04 EP,PADEP	CD
129-00-0	Pyrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:04 EP,PADEP	CD

Sample Information

Client Sample ID: DUP

_

21G0278-05

York Project (SDG) No. 21G0278

Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 3:00 pm

York Sample ID:

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

					Reported to			Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 31 of 66

Client Sample ID: York Sample ID: 21G0278-05

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 21G0278
 03C497 - M
 Water
 July 7, 2021 3:00 pm
 07/07/2021

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		te/Time .nalyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 NELAC-NY10854,NELAC-NY12058,NJ	2/2021 19:47 DEP,PADEP	PD
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 NELAC-NY10854,NELAC-NY12058,NJ	2/2021 19:47 DEP,PADEP	PD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 NELAC-NY10854,NELAC-NY12058,NJ	2/2021 19:47 DEP,PADEP	PD
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 NELAC-NY10854,NELAC-NY12058,NJ	2/2021 19:47 DEP,PADEP	PD
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 NELAC-NY10854,NELAC-NY12058,NJ	2/2021 19:47 DEP,PADEP	PD
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47 12058,NJDEP	PD P,PADEP
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2021 12:30 07/12 CTDOH,NELAC-NY10854,NELAC-NY	2/2021 19:47	PD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 32 of 66

Client Sample ID: DUP York Sample ID: 21G0278-05

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 21G0278
 03C497 - M
 Water
 July 7, 2021 3:00 pm
 07/07/2021

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes
Log-III Notes:	Samble Note

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		/Time pared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10		07/12/2021 19:47 AC-NY12058,NJDE	
67-64-1	Acetone	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10		07/12/2021 19:47 AC-NY12058,NJDE	
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10		07/12/2021 19:47 AC-NY12058,NJDE	
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10		07/12/2021 19:47 AC-NY12058,NJDE	
71-43-2	Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10		07/12/2021 19:47 AC-NY12058,NJDE	
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/20: NELAC-NY10854,NEI		07/12/2021 19:47 2058,NJDEP,PADEF	
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10	21 12:30	07/12/2021 19:47	PD
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10	21 12:30	07/12/2021 19:47	PD
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10	21 12:30	07/12/2021 19:47	PD
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10	21 12:30	07/12/2021 19:47	PD
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10	21 12:30	07/12/2021 19:47	PD
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10	21 12:30	07/12/2021 19:47	PD
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10	21 12:30	07/12/2021 19:47	PD
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10	21 12:30	07/12/2021 19:47	PD
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10	21 12:30	07/12/2021 19:47	PD
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10	21 12:30	07/12/2021 19:47	PD
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10		07/12/2021 19:47 AC-NY12058,NJDE	
110-82-7	Cyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/20: NELAC-NY10854,NEI		07/12/2021 19:47 2058,NJDEP,PADEF	
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10		07/12/2021 19:47 AC-NY12058,NJDE	
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 NELAC-NY10854,NEI		07/12/2021 19:47 2058,NJDEP,PADEF	
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 NELAC-NY10854,NEI	21 12:30	07/12/2021 19:47	PD
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 CTDOH,NELAC-NY10	21 12:30	07/12/2021 19:47	PD
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/202 NELAC-NY10854,NEI	21 12:30	07/12/2021 19:47	PD
											.,	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 33 of 66

Client Sample ID: DUP York Sample ID: 21G0278-05

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 21G0278
 03C497 - M
 Water
 July 7, 2021 3:00 pm
 07/07/2021

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes
Log-III Notes:	Samble Note

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		te/Time repared	Date/Time Analyzed	Analyst
98-82-8	Isopropylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		2021 12:30 Y10854,NEL	07/12/2021 19:47 AC-NY12058,NJDEI	PD P,PADEP
79-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2 NELAC-NY10854,N	2021 12:30 IELAC-NY1	07/12/2021 19:47 2058,NJDEP,PADEP	PD
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		2021 12:30 Y10854,NEL	07/12/2021 19:47 AC-NY12058,NJDEI	PD P,PADEP
108-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		2021 12:30	07/12/2021 19:47	PD
75-09-2	Methylene chloride	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	07/12/2	2021 12:30	07/12/2021 19:47 AC-NY12058,NJDEI	PD
91-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:		2021 12:30	07/12/2021 19:47	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2	2021 12:30	07/12/2021 19:47 AC-NY12058,NJDEI	PD
103-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2	2021 12:30	07/12/2021 19:47 AC-NY12058,NJDEI	PD
95-47-6	o-Xylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2	2021 12:30	07/12/2021 19:47	PD
179601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	07/12/2	2021 12:30	07/12/2021 19:47	PD
105-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		2021 12:30	AC-NY12058,PADE 07/12/2021 19:47	PD
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2	2021 12:30	07/12/2021 19:47	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		2021 12:30 V10854 NEI	07/12/2021 19:47 AC-NY12058,NJDEI	PD
135-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2	2021 12:30	07/12/2021 19:47 AC-NY12058,NJDEI	PD
100-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2	2021 12:30	07/12/2021 19:47 AC-NY12058,NJDEI	PD
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:		2021 12:30	07/12/2021 19:47	PD
98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2	2021 12:30	07/12/2021 19:47 .AC-NY12058,NJDEI	PD
127-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2	2021 12:30	07/12/2021 19:47 AC-NY12058,NJDEI	PD
108-88-3	Toluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/12/2	2021 12:30	07/12/2021 19:47 AC-NY12058,NJDEI	PD
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/12/2	2021 12:30	07/12/2021 19:47	PD
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	Certifications:		2021 12:30	07/12/2021 19:47 .AC-NY12058,NJDEI	PD
79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	Certifications:	07/12/2	2021 12:30	07/12/2021 19:47	PD
75-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	Certifications:		2021 12:30	07/12/2021 19:47	PD
								Certifications:	CTDOH,NELAC-NY	r 10854,NEL	AC-NY 12058,NJDEI	,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 34 of 66

Client Sample ID: DUP

York Sample ID:

21G0278-05

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 3:00 pm

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/12/2021 12:30 ELAC-NY10854,NELA	07/12/2021 19:47 AC-NY12058,NJDEP,	PD PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH,NE	07/12/2021 12:30 ELAC-NY10854,NELA	07/12/2021 19:47 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	114 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	91.2 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	96.9 %			79-122							

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes: EXT-EM

Sample Prepa	ared by Method: EPA 3510C										
CAS	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 NELAC-NY10854,NJDEP,PADE	07/12/2021 19:23	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 NELAC-NY10854,NJDEP,PADE	07/12/2021 19:23	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 NELAC-NY10854,NJDEP,PADE	07/12/2021 19:23 P	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 CTDOH,NELAC-NY10854,NJDH	07/12/2021 19:23 EP,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 CTDOH,NELAC-NY10854,NJDH	07/12/2021 19:23 EP,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 CTDOH,NELAC-NY10854,NJDH	07/12/2021 19:23 EP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 CTDOH,NELAC-NY10854,NJDH	07/12/2021 19:23 EP,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 CTDOH,NELAC-NY10854,NJDH	07/12/2021 19:23 EP,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 CTDOH,NELAC-NY10854,NJDH	07/12/2021 19:23 EP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 CTDOH,NELAC-NY10854,NJDH	07/12/2021 19:23 EP,PADEP	КН
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 CTDOH,NELAC-NY10854,NJDH	07/12/2021 19:23 EP,PADEP	КН
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 CTDOH,NELAC-NY10854,NJDB	07/12/2021 19:23 EP,PADEP	КН
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 CTDOH,NELAC-NY10854,NJDB	07/12/2021 19:23 EP,PADEP	КН
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 CTDOH,NELAC-NY10854,NJDB	07/12/2021 19:23 EP,PADEP	КН
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 CTDOH,NELAC-NY10854,NJDH	07/12/2021 19:23 EP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 35 of 66

Client Sample ID: DUP

York Sample ID: 21G0278-05

Client Project ID York Project (SDG) No. Matrix Collection Date/Time 21G0278 03C497 - M Water

July 7, 2021 3:00 pm

Date Received 07/07/2021

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes: EXT-EM

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 (CTDOH,NELAC-NY10854,NJDEP,	07/12/2021 19:23 PADEP	КН
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 (CTDOH,NELAC-NY10854,NJDEP,I	07/12/2021 19:23 PADEP	KH
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 (CTDOH,NELAC-NY10854,NJDEP,I	07/12/2021 19:23 PADEP	КН
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 (CTDOH,NELAC-NY10854,NJDEP,I	07/12/2021 19:23 PADEP	КН
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 (CTDOH,NELAC-NY10854,NJDEP,I	07/12/2021 19:23 PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 19:23	КН
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 19:23	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 19:23	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 19:23	KH
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 19:23	KH
100-02-7	4-Nitrophenol	ND		ug/L	5.00	5.00	1	EPA 8270D Certifications:		07/12/2021 19:23	KH
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 19:23	KH
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 19:23	КН
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 (CTDOH,NELAC-NY10854,NJDEP,I	07/12/2021 19:23 PADEP	КН
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 19:23	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.00	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 (CTDOH,NELAC-NY10854,NJDEP,I	07/12/2021 19:23 PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 (CTDOH,NELAC-NY10854,NJDEP,I	07/12/2021 19:23 PADEP	KH
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 (NELAC-NY10854,NJDEP,PADEP	07/12/2021 19:23	KH
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 (CTDOH,NELAC-NY10854,NJDEP,I	07/12/2021 19:23 PADEP	KH
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	07/12/2021 07:35 (CTDOH,NELAC-NY10854,NJDEP,I	07/12/2021 19:23 PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 19:23	KH
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 19:23	КН
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 19:23	KH
									,		

Client Sample ID: DUP York Sample ID: 21G0278-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received21G027803C497 - MWaterJuly 7, 2021 3:00 pm07/07/2021

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

•		TAT 4	
	$\alpha\sigma_{-1}$	Notes:	
1	102-III	110103.	

Sample Notes: EXT-EM

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDI	07/12/2021 19:23 EP,PADEP	КН
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.00	10.0	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/12/2021 19:23 EP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/12/2021 19:23 EP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/12/2021 19:23 EP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/12/2021 19:23 EP,PADEP	КН
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDF	07/12/2021 19:23 EP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		07/12/2021 07:35	07/12/2021 19:23	KH
110-86-1	Pyridine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 19:23 EP,PADEP	КН
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	27.7 %			19.7-63.1							
4165-62-2	Surrogate: SURR: Phenol-d5	15.8 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	60.8 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	57.2 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	72.1 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	106 %			30.7-106							

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes: EXT-EM

CAS N	o. Parameter	Result	Flag Units	Reported to LOQ Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:36 P,PADEP	CD
208-96-8	Acenaphthylene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:36 P,PADEP	CD
120-12-7	Anthracene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:36 P,PADEP	CD
1912-24-9	Atrazine	ND	ug/L	0.500 1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:36 PP	CD
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:36 P,PADEP	CD
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:36 P,PADEP	CD
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:36 P,PADEP	CD
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 ELAC-NY10854,NJDE	07/12/2021 21:36 EP,PADEP	CD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

66 ClientServices@ Page 37 of 66

FAX (203) 357-0166

Client Sample ID: DUP

York Project (SDG) No. Client Project ID Collection Date/Time Date Received Matrix 03C497 - M 21G0278 Water July 7, 2021 3:00 pm 07/07/2021

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes: EXT-EM

York Sample ID:

21G0278-05

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:36 EP,PADEP	CD
117-81-7	Bis(2-ethylhexyl)phthalate	1.76		ug/L	0.500	1	EPA 8270D SIM	07/12/2021 07:35	07/12/2021 21:36	CD
							Certifications: CTDOH,NE	ELAC-NY10854,NJD	EP	
218-01-9	Chrysene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:36 EP,PADEP	CD
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:36 EP,PADEP	CD
206-44-0	Fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:36 EP,PADEP	CD
86-73-7	Fluorene	0.200		ug/L	0.0500	1	EPA 8270D SIM	07/12/2021 07:35	07/12/2021 21:36	CD
							Certifications: CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	
118-74-1	Hexachlorobenzene	ND		ug/L	0.0200	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:36 EP	CD
87-68-3	Hexachlorobutadiene	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:36 EP	CD
67-72-1	Hexachloroethane	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:36 EP	CD
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:36 EP,PADEP	CD
91-20-3	Naphthalene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:36 EP,PADEP	CD
98-95-3	Nitrobenzene	ND		ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:36 EP	CD
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:36 EP	CD
87-86-5	Pentachlorophenol	ND		ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:36 EP	CD
85-01-8	Phenanthrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NE	07/12/2021 07:35 LAC-NY10854,NJDE	07/12/2021 21:36 EP,PADEP	CD
129-00-0	Pyrene	0.0800	В	ug/L	0.0500	1	EPA 8270D SIM	07/12/2021 07:35	07/12/2021 21:36	CD
							Certifications: CTDOH,NE	ELAC-NY10854,NJD	EP,PADEP	

Sample Information

Trip Blank **Client Sample ID: York Sample ID:** 21G0278-06

York Project (SDG) No. Collection Date/Time Date Received Client Project ID Matrix 21G0278 03C497 - M Water July 7, 2021 3:00 pm 07/07/2021

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH D	RIVE	STRATFORD, C	T 06615			132	2-02 89th AV	'ENUE	RICHMOND HILL	_, NY 11418	

Log-in Notes:

Sample Notes:

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 38 of 66

			Sampl	e Inforn	nation				
Client S	ample ID: Trip Blank							York Sample ID:	21G0278-06
York Pro	oject (SDG) No.	Client P	roject ID			<u>N</u>	<u> 1atrix</u>	Collection Date/Time	Date Received
	21G0278	03C49	97 - M			V	Vater	July 7, 2021 3:00 pm	07/07/2021
630-20-6	1,1,1,2-Tetrachloroethane	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/ CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
71-55-6	1,1,1-Trichloroethane	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
79-00-5	1,1,2-Trichloroethane	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
75-34-3	1,1-Dichloroethane	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
75-35-4	1,1-Dichloroethylene	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
87-61-6	1,2,3-Trichlorobenzene	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 NELAC-NY10854,NELAC-NY12058,NJE	2021 19:26 PD EP,PADEP
96-18-4	1,2,3-Trichloropropane	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 NELAC-NY10854,NELAC-NY12058,NJE	2021 19:26 PD EP,PADEP
120-82-1	1,2,4-Trichlorobenzene	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 NELAC-NY10854,NELAC-NY12058,NJE	2021 19:26 PD EP,PADEP
95-63-6	1,2,4-Trimethylbenzene	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
106-93-4	1,2-Dibromoethane	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
95-50-1	1,2-Dichlorobenzene	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
107-06-2	1,2-Dichloroethane	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
78-87-5	1,2-Dichloropropane	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
541-73-1	1,3-Dichlorobenzene	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
142-28-9	1,3-Dichloropropane	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 NELAC-NY10854,NELAC-NY12058,NJE	2021 19:26 PD EP,PADEP
106-46-7	1,4-Dichlorobenzene	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
123-91-1	1,4-Dioxane	ND	ug/L	40.0	80.0	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 NELAC-NY10854,NELAC-NY12058,NJE	2021 19:26 PD EP,PADEP
78-93-3	2-Butanone	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
591-78-6	2-Hexanone	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
108-10-1	4-Methyl-2-pentanone	ND	ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/09/2021 12:30 07/09/2 CTDOH,NELAC-NY10854,NELAC-NY12	2021 19:26 PD 2058,NJDEP,PADEP
67-64-1	Acetone	ND	ug/L	1.00	2.00	1	EPA 8260C	07/09/2021 12:30 07/09/	2021 19:26 PD

 $Certifications: \qquad CTDOH, NELAC-NY10854, NELAC-NY12058, NJDEP, PADEP$

Client Sample ID: Trip Blank

York Sample ID: 21G0278-06

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 3:00 pm

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

	red by Method: EPA 5030B											
CAS N	-	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
71-43-2	Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/09/2021 12:30 10854,NELAC-NY	07/09/2021 19:26 12058,NJDEP,PADEP	PD
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
110-82-7	Cyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/09/2021 12:30 10854,NELAC-NY	07/09/2021 19:26 12058,NJDEP,PADEP	PD
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/09/2021 12:30 10854,NELAC-NY	07/09/2021 19:26 12058,NJDEP,PADEP	PD
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/09/2021 12:30 10854,NELAC-NY	07/09/2021 19:26 12058,NJDEP,PADEP	PD
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/09/2021 12:30 10854,NELAC-NY	07/09/2021 19:26 12058,NJDEP,PADEP	PD
98-82-8	Isopropylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/09/2021 12:30 LAC-NY10854,NE	07/09/2021 19:26 LAC-NY12058,NJDE	PD P,PADEP
79-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/09/2021 12:30 10854,NELAC-NY	07/09/2021 19:26 12058,NJDEP,PADEP	PD

Client Sample ID: Trip Blank

York Sample ID:

21G0278-06

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 3:00 pm

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30 AC-NY10854,NEI	07/09/2021 19:26 LAC-NY12058,NJDEI	PD P,PADEP
108-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30 0854,NELAC-NY	07/09/2021 19:26 12058,NJDEP,PADEP	PD
75-09-2	Methylene chloride	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:		07/09/2021 12:30 AC-NY10854,NEI	07/09/2021 19:26 LAC-NY12058,NJDEI	PD P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:		07/09/2021 12:30 0854,NELAC-NY	07/09/2021 19:26 12058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30 AC-NY10854,NEI	07/09/2021 19:26 LAC-NY12058,NJDEI	PD P.PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30	07/09/2021 19:26 LAC-NY12058,NJDEI	PD
95-47-6	o-Xylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30	07/09/2021 19:26 LAC-NY12058,PADE	PD
179601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:		07/09/2021 12:30	07/09/2021 19:26 LAC-NY12058,PADE	PD
105-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30	07/09/2021 19:26	PD
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30	07/09/2021 19:26	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30 AC-NY10854 NEI	07/09/2021 19:26 AC-NY12058,NJDEI	PD
135-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30	07/09/2021 19:26 LAC-NY12058,NJDEI	PD
100-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30	07/09/2021 19:26 LAC-NY12058,NJDEI	PD
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:		07/09/2021 12:30	07/09/2021 19:26 12058,NJDEP,PADEP	PD
98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30	07/09/2021 19:26 LAC-NY12058,NJDEI	PD
127-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30	07/09/2021 19:26 LAC-NY12058,NJDEI	PD
108-88-3	Toluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30	07/09/2021 19:26 LAC-NY12058,NJDEI	PD
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/09/2021 12:30	07/09/2021 19:26 LAC-NY12058,NJDEI	PD
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C		07/09/2021 12:30	07/09/2021 19:26 LAC-NY12058,NJDEI	PD
79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	Certifications: EPA 8260C		07/09/2021 12:30	07/09/2021 19:26	PD
75-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	Certifications: EPA 8260C		07/09/2021 12:30	07/09/2021 19:26	PD
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	Certifications:		07/09/2021 12:30	07/09/2021 19:26	PD
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	Certifications:		07/09/2021 12:30		PD
	Surrogate Recoveries	Result		Acco	eptance Rang	e		Certifications:	C1DOH,NEL	AC-NY 10854,NEI	LAC-NY12058,NJDEI	r

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 41 of 66

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

Client Sample ID: Trip Blank

York Sample ID: 21G0278-06

York Project (SDG) No. 21G0278 Client Project ID 03C497 - M Matrix Water Collection Date/Time
July 7, 2021 3:00 pm

Date Received 07/07/2021

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	99.3 %			69-130					
2037-26-5	Surrogate: SURR: Toluene-d8	96.2 %			81-117					
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	106 %			79-122					

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 42 of 66

Analytical Batch Summary

Batch ID: BG10327	Preparation Method:	EPA 5030B	Prepared By:	LM
YORK Sample ID	Client Sample ID	Preparation Date		
21G0278-06	Trip Blank	07/09/21		
BG10327-BLK1	Blank	07/08/21		
BG10327-BS1	LCS	07/08/21		
BG10327-BSD1	LCS Dup	07/08/21		
Batch ID: BG10458	Preparation Method:	EPA 3510C	Prepared By:	MC
YORK Sample ID	Client Sample ID	Preparation Date		
21G0278-01	MW-3AR	07/12/21		
21G0278-02	MW-5AR	07/12/21		
21G0278-03	MW-4AR	07/12/21		
21G0278-04	MW-1AR	07/12/21		
21G0278-05	DUP	07/12/21		
BG10458-BLK1	Blank	07/12/21		
BG10458-BLK2	Blank	07/12/21		
BG10458-BS1	LCS	07/12/21		
BG10458-BS2	LCS	07/12/21		
BG10458-BSD1	LCS Dup	07/12/21		
Batch ID: BG10522	Preparation Method:	EPA 5030B	Prepared By:	LM
YORK Sample ID	Client Sample ID	Preparation Date		
21G0278-01	MW-3AR	07/12/21		
21G0278-02	MW-5AR	07/12/21		
21G0278-05	DUP	07/12/21		
BG10522-BLK1	Blank	07/12/21		
BG10522-BS1	LCS	07/12/21		
BG10522-BSD1	LCS Dup	07/12/21		
Patab ID: DC10555	Duonauction Math - J.	EDA 5020D	Duone and Day	DD
Batch ID: BG10555	Preparation Method:	EFA JUJUD	Prepared By:	PD
YORK Sample ID	Client Sample ID	Preparation Date		
21G0278-03	MW-4AR	07/13/21		
21G0278-04	MW-1AR	07/13/21		
BG10555-BLK1	Blank	07/13/21		
BG10555-BS1		07/12/21		
	LCS	07/13/21		
BG10555-BSD1	LCS LCS Dup	07/13/21		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 43 of 66

$\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

1: 07/09/20	021
1: 07/09/20	021

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

York Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BG10327 - EPA 5030B											
Blank (BG10327-BLK1)							Prepa	ared: 07/08/2	2021 Analyz	zed: 07/09/2	021
Methylcyclohexane	ND	0.500	ug/L								
Methylene chloride	ND	2.00	"								
Naphthalene	ND	2.00	"								
n-Butylbenzene	ND	0.500	"								
n-Propylbenzene	ND	0.500	"								
o-Xylene	ND	0.500	"								
p- & m- Xylenes	ND	1.00	"								
p-Diethylbenzene	ND	0.500	"								
p-Ethyltoluene	ND	0.500	"								
p-Isopropyltoluene	ND	0.500	"								
sec-Butylbenzene	ND	0.500	"								
Styrene	ND	0.500	"								
tert-Butyl alcohol (TBA)	ND	1.00	"								
tert-Butylbenzene	ND	0.500	"								
Tetrachloroethylene	ND	0.500	"								
Toluene	ND	0.500	"								
trans-1,2-Dichloroethylene	ND	0.500	"								
trans-1,3-Dichloropropylene	ND	0.500	"								
Trichloroethylene	ND	0.500	"								
Trichlorofluoromethane	ND	0.500	"								
Vinyl Chloride	ND	0.500	"								
Xylenes, Total	ND	1.50	"								
Surrogate: SURR: 1,2-Dichloroethane-d4	10.8		"	10.0		108	69-130				
Surrogate: SURR: Toluene-d8	9.34		"	10.0		93.4	81-117				
Surrogate: SURR: p-Bromofluorobenzene	10.0		"	10.0		100	79-122				
LCS (BG10327-BS1)							Prepa	ared: 07/08/2	2021 Analyz	zed: 07/09/2	021
1,1,1,2-Tetrachloroethane	10.2		ug/L	10.0		102	82-126				
1,1,1-Trichloroethane	11.3		"	10.0		113	78-136				
1,1,2,2-Tetrachloroethane	10.8		"	10.0		108	76-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	12.3		"	10.0		123	54-165				
113) 1,1,2-Trichloroethane	10.5		,,	10.0		105	82-123				
1,1-Dichloroethane	10.9		"	10.0		109	82-129				
1,1-Dichloroethylene	11.9		"	10.0		119	68-138				
1,2,3-Trichlorobenzene	11.2		"	10.0		112	76-136				
1,2,3-Trichloropropane	10.7		"	10.0		107	77-128				
1,2,4-Trichlorobenzene	10.8		"	10.0		108	76-137				
1,2,4-Trimethylbenzene	10.0		"	10.0		100	82-132				
1,2-Dibromo-3-chloropropane	8.76		"	10.0		87.6	45-147				
1,2-Dibromoethane	10.6		"	10.0		106	83-124				
1,2-Dichlorobenzene	9.83		"	10.0		98.3	79-123				
1,2-Dichloroethane	11.4		"	10.0		114	73-132				
1,2-Dichloropropane	10.1		"	10.0		101	78-126				
1,3,5-Trimethylbenzene	10.0		"	10.0		100	80-131				
1,3-Dichlorobenzene	9.74		"	10.0		97.4	86-122				
1,3-Dichloropropane	10.1		"	10.0		101	81-125				
1,4-Dichlorobenzene	9.92		"	10.0		99.2	85-124				
1,4-Dioxane	228		"	210		108	10-349				
2-Butanone	12.4		"	10.0		124	49-152				
2-Hexanone	9.65		"	10.0		96.5	51-146				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

.CS (BG10327-BS1)					Prep	pared: 07/08/2021 Analyzed: 07/09/20
-Methyl-2-pentanone	8.52	ug/L	10.0	85.2	57-145	
cetone	8.37	"	10.0	83.7	14-150	
crolein	14.7	"	10.0	147	10-153	
crylonitrile	14.4	"	10.0	144	51-150	
enzene	11.1	"	10.0	111	85-126	
romochloromethane	11.0	"	10.0	110	77-128	
romodichloromethane	10.4	"	10.0	104	79-128	
romoform	8.65	"	10.0	86.5	78-133	
romomethane	6.76	"	10.0	67.6	43-168	
arbon disulfide	12.0	"	10.0	120	68-146	
arbon tetrachloride	11.6	"	10.0	116	77-141	
hlorobenzene	9.97	"	10.0	99.7	88-120	
hloroethane	10.4	"	10.0	104	65-136	
nloroform	11.2	"	10.0	112	82-128	
nloromethane	9.96	"	10.0	99.6	43-155	
s-1,2-Dichloroethylene	11.0	"	10.0	110	83-129	
s-1,3-Dichloropropylene	8.76	"	10.0	87.6	80-131	
yclohexane	11.6	"	10.0	116	63-149	
ibromochloromethane	9.14	"	10.0	91.4	80-130	
ibromomethane	10.3	"	10.0	103	72-134	
ichlorodifluoromethane	13.5	"	10.0	135	44-144	
hyl Benzene	10.2	"	10.0	102	80-131	
exachlorobutadiene	11.3	"	10.0	113	67-146	
ppropylbenzene	9.53	"	10.0	95.3	76-140	
ethyl acetate	12.1	"	10.0	121	51-139	
ethyl tert-butyl ether (MTBE)	11.8	"	10.0	118	76-135	
ethylcyclohexane	9.80	"	10.0	98.0	72-143	
ethylene chloride	10.8	"	10.0	108	55-137	
aphthalene	11.1	"	10.0	111	70-147	
Butylbenzene	10.5	"	10.0	105	79-132	
Propylbenzene	9.65	"	10.0	96.5	78-133	
Xylene	10.1	"	10.0	101	78-130	
& m- Xylenes	20.3	"	20.0	102	77-133	
Diethylbenzene	11.4	"	10.0	114	84-134	
Ethyltoluene	9.57	"	10.0	95.7	88-129	
Isopropyltoluene	10.3	"	10.0	103	81-136	
c-Butylbenzene	10.5	"	10.0	105	79-137	
yrene	10.5	"	10.0	106	67-132	
rt-Butyl alcohol (TBA)	77.7	"	50.0	155	25-162	
t-Butyl aconor (1BA)	9.35	"	10.0	93.5	77-138	
etrachloroethylene	6.34	"	10.0	93.3 63.4	82-131	Low Bias
bluene	9.98	"	10.0	99.8	80-127	LON DINO
ans-1,2-Dichloroethylene		"	10.0		80-127	
ans-1,3-Dichloropropylene	11.7 8.92	"	10.0	117	78-131	
ichloroethylene	8.92 9.93			89.2		
ichlorofluoromethane		"	10.0 10.0	99.3 115	82-128 67-139	
inyl Chloride	11.5			115		
<u> </u>	10.8		10.0	108	58-145	
urrogate: SURR: 1,2-Dichloroethane-d4	10.6	"	10.0	106	69-130	
urrogate: SURR: Toluene-d8	9.44	"	10.0	94.4	81-117	
urrogate: SURR: p-Bromofluorobenzene	9.93	"	10.0	99.3	79-122	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 46 of 66

York Analytical Laboratories, Inc.

		Reporting	Spike	Source*		%REC			RPD	
Analyte	Result	, .	nits Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BG10327 - EPA 5030B										
LCS Dup (BG10327-BSD1)						Prep	ared: 07/08/	2021 Analyz	ed: 07/09/2	2021
1,1,1,2-Tetrachloroethane	10.2	ug	/L 10.0		102	82-126		0.197	30	
1,1,1-Trichloroethane	10.8	,	10.0		108	78-136		4.90	30	
1,1,2,2-Tetrachloroethane	11.2	,	10.0		112	76-129		3.00	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	11.6	,	10.0		116	54-165		5.68	30	
1,1,2-Trichloroethane	10.7		10.0		107	82-123		1.80	30	
1,1-Dichloroethane	10.5		10.0		105	82-129		4.02	30	
1,1-Dichloroethylene	11.3	1	10.0		113	68-138		5.09	30	
1,2,3-Trichlorobenzene	12.6	1	10.0		126	76-136		11.6	30	
1 2 3 Trichloronronana	11.2		10.0		112	77 120		4.76	30	

1,2,3-Trichloropropane	11.2	"	10.0	112	77-128	4.76	30
1,2,4-Trichlorobenzene	11.4	"	10.0	114	76-137	5.39	30
1,2,4-Trimethylbenzene	9.35	"	10.0	93.5	82-132	6.72	30
1,2-Dibromo-3-chloropropane	9.31	"	10.0	93.1	45-147	6.09	30
1,2-Dibromoethane	11.0	"	10.0	110	83-124	2.96	30
1,2-Dichlorobenzene	9.71	"	10.0	97.1	79-123	1.23	30
1,2-Dichloroethane	11.8	"	10.0	118	73-132	3.10	30
1,2-Dichloropropane	9.73	"	10.0	97.3	78-126	3.63	30
1,3,5-Trimethylbenzene	9.30	"	10.0	93.0	80-131	7.35	30
1,3-Dichlorobenzene	9.34	"	10.0	93.4	86-122	4.19	30
1,3-Dichloropropane	10.4	"	10.0	104	81-125	2.63	30
1,4-Dichlorobenzene	9.53	"	10.0	95.3	85-124	4.01	30
1,4-Dioxane	243	"	210	116	10-349	6.56	30
2-Butanone	14.0	"	10.0	140	49-152	12.3	30
2-Hexanone	10.4	"	10.0	104	51-146	7.39	30
4-Methyl-2-pentanone	9.40	"	10.0	94.0	57-145	9.82	30

10.0

86.3

14-150

Acrolein	16.5	"	10.0	165	10-153	High Bias	11.3	30
Acrylonitrile	12.7	"	10.0	127	51-150		12.4	30
Benzene	10.7	"	10.0	107	85-126		3.58	30
Bromochloromethane	11.1	"	10.0	111	77-128		0.271	30
Bromodichloromethane	10.1	"	10.0	101	79-128		2.74	30
Bromoform	9.17	"	10.0	91.7	78-133		5.84	30
Bromomethane	5.90	"	10.0	59.0	43-168		13.6	30
Carbon disulfide	11.4	"	10.0	114	68-146		5.05	30
Carbon tetrachloride	11.1	"	10.0	111	77-141		5.11	30
Chlorobenzene	9.56	"	10.0	95.6	88-120		4.20	30
Chloroethane	10.0	"	10.0	100	65-136		3.52	30
Chloroform	10.9	"	10.0	109	82-128		2.27	30
Chloromethane	9.19	"	10.0	91.9	43-155		8.04	30
cis-1.2-Dichloroethylene	10.8	"	10.0	108	83-129		2.01	30

8.63

Chioromethane	9.19		10.0	91.9	43-133	0.04	50
cis-1,2-Dichloroethylene	10.8	"	10.0	108	83-129	2.01	30
cis-1,3-Dichloropropylene	8.64	"	10.0	86.4	80-131	1.38	30
Cyclohexane	11.0	"	10.0	110	63-149	4.86	30
Dibromochloromethane	9.43	"	10.0	94.3	80-130	3.12	30
Dibromomethane	10.6	"	10.0	106	72-134	2.39	30
Dichlorodifluoromethane	12.6	"	10.0	126	44-144	6.60	30
Ethyl Benzene	9.69	"	10.0	96.9	80-131	4.83	30
Hexachlorobutadiene	11.1	"	10.0	111	67-146	1.78	30
Isopropylbenzene	8.84	"	10.0	88.4	76-140	7.51	30
Methyl acetate	12.8	"	10.0	128	51-139	5.31	30
Methyl tert-butyl ether (MTBE)	12.8	"	10.0	128	76-135	8.14	30
Methylcyclohexane	9.19	"	10.0	91.9	72-143	6.42	30

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

Acetone

FAX (203) 357-0166

ClientServices@ Page 47 of 66

30

3.06

York Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
•	Resuit	Liiiit	Units	LCVCI	Result	/UKEC	Lillius	1145	1011	Limit	1 148
Batch BG10327 - EPA 5030B											
LCS Dup (BG10327-BSD1)							Pre	pared: 07/08/2			2021
Methylene chloride	10.7		ug/L	10.0		107	55-137		0.835	30	
Naphthalene	12.4		"	10.0		124	70-147		11.5	30	
n-Butylbenzene	9.88		"	10.0		98.8	79-132		5.70	30	
n-Propylbenzene	8.86		"	10.0		88.6	78-133		8.54	30	
o-Xylene	9.73		"	10.0		97.3	78-130		4.03	30	
p- & m- Xylenes	19.2		"	20.0		96.2	77-133		5.31	30	
p-Diethylbenzene	10.7		"	10.0		107	84-134		6.18	30	
p-Ethyltoluene	8.89		"	10.0		88.9	88-129		7.37	30	
p-Isopropyltoluene	9.69		"	10.0		96.9	81-136		5.91	30	
sec-Butylbenzene	9.78		"	10.0		97.8	79-137		7.39	30	
Styrene	10.2		"	10.0		102	67-132		4.41	30	
tert-Butyl alcohol (TBA)	91.9		"	50.0		184	25-162	High Bias	16.7	30	
tert-Butylbenzene	8.70		"	10.0		87.0	77-138		7.20	30	
Tetrachloroethylene	5.99		"	10.0		59.9	82-131	Low Bias	5.68	30	
Гoluene	9.48		"	10.0		94.8	80-127		5.14	30	
trans-1,2-Dichloroethylene	11.2		"	10.0		112	80-132		4.20	30	
trans-1,3-Dichloropropylene	9.13		"	10.0		91.3	78-131		2.33	30	
Trichloroethylene	9.25		"	10.0		92.5	82-128		7.09	30	
Trichlorofluoromethane	11.0		"	10.0		110	67-139		4.53	30	
Vinyl Chloride	9.86		"	10.0		98.6	58-145		9.10	30	
Surrogate: SURR: 1,2-Dichloroethane-d4	11.0		"	10.0		110	69-130				
Surrogate: SURR: Toluene-d8	9.39		"	10.0		93.9	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.81		"	10.0		98.1	79-122				
Blank (BG10522-BLK1) ,1,1,2-Tetrachloroethane	ND.	0.500	/T				Pre	pared & Analy	zed: 0//12/	2021	
1,1,1-Trichloroethane	ND ND	0.500	ug/L								
1,1,2,2-Tetrachloroethane	ND	0.500	,,								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.500	,,								
113)	ND	0.500									
1,1,2-Trichloroethane	ND	0.500	"								
1,1-Dichloroethane	ND	0.500	"								
,1-Dichloroethylene	ND	0.500	"								
1,2,3-Trichlorobenzene	ND	0.500	"								
1,2,3-Trichloropropane	ND	0.500	"								
1,2,4-Trichlorobenzene	ND	0.500	"								
1,2,4-Trimethylbenzene	ND	0.500	"								
1,2-Dibromo-3-chloropropane	ND	0.500	"								
1,2-Dibromoethane	ND	0.500	"								
1,2-Dichlorobenzene	ND	0.500	"								
1,2-Dichloroethane	ND	0.500	"								
1,2-Dichloropropane	ND	0.500	"								
1,3,5-Trimethylbenzene	ND	0.500	"								
1,3-Dichlorobenzene	ND	0.500	"								
1,3-Dichloropropane	ND	0.500	"								
1,4-Dichlorobenzene	ND	0.500	"								
1,4-Dioxane	ND	80.0	"								
2-Butanone	ND	0.500	"								
2-Hexanone	ND	0.500	"								
4-Methyl-2-pentanone	ND	0.500	"								
	STRATFORD, CT		_	40	2-02 89th A	VENITE		RICHMOND		11/110	
120 RESEARCH DRIVE	STRAIFURD, CI	00013		13	2-02 09111 A	VLINUE		I VICI IIVIOND	I IILL, IN I	11410	

FAX (203) 357-0166

ClientServices@ Page 48 of 66

(203) 325-1371

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BG10522-BLK1)						Prepared & Analyzed: 07/12/2021
Acetone	ND	2.00	ug/L			
Acrolein	ND	0.500	"			
Acrylonitrile	ND	0.500	"			
Benzene	ND	0.500	"			
Bromochloromethane	ND	0.500	"			
Bromodichloromethane	ND	0.500	"			
Bromoform	ND	0.500	"			
Bromomethane	ND	0.500	"			
Carbon disulfide	ND	0.500	"			
Carbon tetrachloride	ND	0.500	"			
Chlorobenzene	ND	0.500	"			
Chloroethane	ND	0.500	"			
Chloroform	ND	0.500	"			
Chloromethane	ND	0.500	"			
is-1,2-Dichloroethylene	ND	0.500	"			
is-1,3-Dichloropropylene	ND	0.500	"			
Cyclohexane	ND	0.500	"			
Dibromochloromethane	ND	0.500	"			
Dibromomethane	ND	0.500	"			
Dichlorodifluoromethane	ND	0.500	"			
Ethyl Benzene	ND	0.500	"			
Hexachlorobutadiene	ND	0.500	"			
sopropylbenzene	ND	0.500	"			
Methyl acetate	ND	0.500	"			
Methyl tert-butyl ether (MTBE)	ND	0.500	"			
1ethylcyclohexane	ND	0.500	"			
Methylene chloride	ND	2.00	"			
Japhthalene	ND	2.00	"			
-Butylbenzene	ND	0.500	"			
-Propylbenzene	ND	0.500	"			
-Xylene	ND	0.500	"			
- & m- Xylenes	ND	1.00	"			
-Diethylbenzene	ND	0.500	"			
-Ethyltoluene	ND	0.500	"			
-Isopropyltoluene	ND	0.500	"			
ec-Butylbenzene	ND	0.500	"			
tyrene	ND	0.500	"			
ert-Butyl alcohol (TBA)	ND	1.00	"			
ert-Butylbenzene	ND	0.500	"			
Tetrachloroethylene	ND	0.500	"			
oluene	ND	0.500	"			
rans-1,2-Dichloroethylene	ND	0.500	"			
rans-1,3-Dichloropropylene	ND	0.500	"			
Crichloroethylene	ND	0.500	"			
Trichlorofluoromethane	ND	0.500	"			
/inyl Chloride	ND	0.500	"			
Zylenes, Total	ND	1.50	"			
Surrogate: SURR: 1,2-Dichloroethane-d4	11.2		"	10.0	112	69-130
Surrogate: SURR: Toluene-d8	9.17		"	10.0	91.7	81-117
Surrogate: SURR: p-Bromofluorobenzene	9.89		"	10.0	98.9	79-122

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 49 of 66

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Reporting Limit	Units	Spike Level	Result	%REC	%REC Limits	Flag	RPD	Limit	Flag
Batch BG10522 - EPA 5030B											
LCS (BG10522-BS1)							Prep	ared & Anal	yzed: 07/12/	2021	
1,1,1,2-Tetrachloroethane	9.81		ug/L	10.0		98.1	82-126				

LCS (BG10522-BS1)					Prepared & Analyzed: 07/12/2021
1,1,1,2-Tetrachloroethane	9.81	ug/L	10.0	98.1	82-126
1,1,1-Trichloroethane	11.3	"	10.0	113	78-136
1,1,2,2-Tetrachloroethane	9.83	"	10.0	98.3	76-129
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	11.8	"	10.0	118	54-165
113)					* * * * * * * * * * * * * * * * * * * *
1,1,2-Trichloroethane	9.54	"	10.0	95.4	82-123
1,1-Dichloroethane	10.7	"	10.0	107	82-129
1,1-Dichloroethylene	11.7	"	10.0	117	68-138
1,2,3-Trichlorobenzene	9.30	"	10.0	93.0	76-136
1,2,3-Trichloropropane	9.90	"	10.0	99.0	77-128
1,2,4-Trichlorobenzene	9.30	"	10.0	93.0	76-137
1,2,4-Trimethylbenzene	9.88	"	10.0	98.8	82-132
1,2-Dibromo-3-chloropropane	7.27	"	10.0	72.7	45-147
1,2-Dibromoethane	9.78	"	10.0	97.8	83-124
1,2-Dichlorobenzene	9.29	"	10.0	92.9	79-123
1,2-Dichloroethane	10.7	"	10.0	107	73-132
1,2-Dichloropropane	9.77	"	10.0	97.7	78-126
1,3,5-Trimethylbenzene	9.97	"	10.0	99.7	80-131
1,3-Dichlorobenzene	9.53	"	10.0	95.3	86-122
1,3-Dichloropropane	9.24	"	10.0	92.4	81-125
1,4-Dichlorobenzene	9.47	"	10.0	94.7	85-124
1,4-Dioxane	201	"	210	95.7	10-349
2-Butanone	11.2	"	10.0	112	49-152
2-Hexanone	7.94	"	10.0	79.4	51-146
4-Methyl-2-pentanone	7.43	"	10.0	74.3	57-145
Acetone	7.28	"	10.0	72.8	14-150
Acrolein	12.5	"	10.0	125	10-153
Acrylonitrile	11.0	"	10.0	110	51-150
Benzene	11.0	"	10.0	110	85-126
Bromochloromethane	10.5	"	10.0	105	77-128
Bromodichloromethane	9.90	"	10.0	99.0	79-128
Bromoform	8.08	"	10.0	80.8	78-133
Bromomethane	7.43	"	10.0	74.3	43-168
Carbon disulfide	11.8	"	10.0	118	68-146
Carbon tetrachloride	11.6	"	10.0	116	77-141
Chlorobenzene	9.72	"	10.0	97.2	88-120
Chloroethane	10.6	"	10.0	106	65-136
Chloroform		,,	10.0		
Chloromethane	11.1	"		111	82-128
cis-1,2-Dichloroethylene	10.8 10.9	"	10.0 10.0	108 109	43-155 83-129
cis-1,3-Dichloropropylene		,,			
Cyclohexane	8.32	"	10.0	83.2	80-131
2	11.4		10.0	114	63-149
Dibromochloromethane	8.33		10.0	83.3	80-130
Dibromomethane Diablared if lucromethane	9.63	"	10.0	96.3	72-134
Dichlorodifluoromethane	13.6	"	10.0	136	44-144
Ethyl Benzene	10.0		10.0	100	80-131
Hexachlorobutadiene	9.96		10.0	99.6	67-146
Isopropylbenzene	9.75	"	10.0	97.5	76-140
Methyl acetate	10.6	"	10.0	106	51-139
Methyl tert-butyl ether (MTBE)	10.5	"	10.0	105	76-135
Methylcyclohexane	9.50	"	10.0	95.0	72-143

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 50 of 66

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

	Reporting			Spike	Source* %REC			RPD			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit Omis	Level	Resuit	/oKEC	Lillits	1 lug	KI D	Lillit	1 lag
Batch BG10522 - EPA 5030B										
LCS (BG10522-BS1)						Prej	pared & Analy	zed: 07/12/	2021	
Methylene chloride	14.2	ug/L	10.0		142	55-137	High Bias			
Naphthalene	9.40	"	10.0		94.0	70-147				
n-Butylbenzene	9.97	"	10.0		99.7	79-132				
n-Propylbenzene	9.69	"	10.0		96.9	78-133				
o-Xylene	9.88	"	10.0		98.8	78-130				
p- & m- Xylenes	20.1	"	20.0		100	77-133				
p-Diethylbenzene	10.8	"	10.0		108	84-134				
p-Ethyltoluene	9.63	"	10.0		96.3	88-129				
p-Isopropyltoluene	10.1	II .	10.0		101	81-136				
sec-Butylbenzene	10.3	"	10.0		103	79-137				
Styrene	10.2	"	10.0		102	67-132				
tert-Butyl alcohol (TBA)	62.8	"	50.0		126	25-162				
tert-Butylbenzene	9.28	"	10.0		92.8	77-138				
Tetrachloroethylene	6.31	"	10.0		63.1	82-131	Low Bias			
Toluene	9.93	"	10.0		99.3	80-127				
trans-1,2-Dichloroethylene	11.6	"	10.0		116	80-132				
trans-1,3-Dichloropropylene	8.20	"	10.0		82.0	78-131				
Trichloroethylene	9.84	"	10.0		98.4	82-128				
Trichlorofluoromethane	11.5	"	10.0		115	67-139				
Vinyl Chloride	11.4	11	10.0		114	58-145				
Surrogate: SURR: 1,2-Dichloroethane-d4	10.1	"	10.0		101	69-130				
Surrogate: SURR: Toluene-d8	9.50	"	10.0		95.0	81-117				
Surrogate: SURR: p-Bromofluorobenzene	10.1	"	10.0		101	79-122				
Surrogate. Serat. p Bromojimoroconzene	10.1		10.0		101	// 122				
LCS Dup (BG10522-BSD1)						Prep	pared & Analy	zed: 07/12/	2021	
1,1,1,2-Tetrachloroethane	9.43	ug/L	10.0		94.3	82-126		3.95	30	
1,1,1-Trichloroethane	10.4	"	10.0		104	78-136		8.32	30	
1,1,2,2-Tetrachloroethane	10.1	"	10.0		101	76-129		3.10	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	11.1	"	10.0		111	54-165		5.84	30	
1,1,2-Trichloroethane	10.1	"	10.0		101	82-123		5.60	30	
1,1-Dichloroethane	10.0	"	10.0		100	82-129		6.54	30	
1,1-Dichloroethylene	10.6	"	10.0		106	68-138		9.77	30	
1,2,3-Trichlorobenzene	11.0	"	10.0		110	76-136		16.9	30	
1,2,3-Trichloropropane	10.1	"	10.0		101	77-128		2.10	30	
1,2,4-Trichlorobenzene	10.3	"	10.0		103	76-137		10.5	30	
1,2,4-Trimethylbenzene	8.81	"	10.0		88.1	82-132		11.4	30	
1,2-Dibromo-3-chloropropane	8.18	"	10.0		81.8	45-147		11.8	30	
1,2-Dibromoethane	10.3	"	10.0		103	83-124		4.79	30	
1,2-Dichlorobenzene	8.97	"	10.0		89.7	79-123		3.50	30	
1,2-Dichloroethane	11.3	"	10.0		113	73-132		5.46	30	
1,2-Dichloropropane	9.25	"	10.0		92.5	78-126		5.47	30	
1,3,5-Trimethylbenzene	8.73	"	10.0		87.3	80-131		13.3	30	
1,3-Dichlorobenzene	8.67	"	10.0		86.7	86-122		9.45	30	
1,3-Dichloropropane	9.57	"	10.0		95.7	81-125		3.51	30	
1,4-Dichlorobenzene	8.92	"	10.0		89.2	85-124		5.98	30	
1,4-Dioxane	241	"	210		115	10-349		18.1	30	
2-Butanone	12.2	"	10.0		122	49-152		7.87	30	
2-Hexanone	9.30	"	10.0		93.0	51-146		15.8	30	
4-Methyl-2-pentanone	8.36	"	10.0		83.6	57-145		11.8	30	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 51 of 66

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

	Reporting		Spike	Source* %REC		%REC	RPD				
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS Dup (BG10522-BSD1)					Prepared	& Analyzed: 07/	12/2021
Acrolein	15.1	ug/L	10.0	151	10-153	19.3	30
Acrylonitrile	12.6	"	10.0	126	51-150	14.2	30
Benzene	10.3	"	10.0	103	85-126	6.41	30
Bromochloromethane	10.8	"	10.0	108	77-128	2.73	30
Bromodichloromethane	9.59	"	10.0	95.9	79-128	3.18	30
Bromoform	8.72	"	10.0	87.2	78-133	7.62	30
Bromomethane	6.01	"	10.0	60.1	43-168	21.1	30
Carbon disulfide	10.8	"	10.0	108	68-146	9.14	30
Carbon tetrachloride	10.8	n .	10.0	108	77-141	7.17	30
Chlorobenzene	9.08	"	10.0	90.8	88-120	6.81	30
Chloroethane	9.90	"	10.0	99.0	65-136	7.21	
Chloroform	10.6	"	10.0	106	82-128	4.25	
Chloromethane	10.2	"	10.0	102	43-155	5.42	
cis-1,2-Dichloroethylene	10.4	"	10.0	104	83-129	4.88	
cis-1,3-Dichloropropylene	8.03	"	10.0	80.3	80-131	3.55	
Cyclohexane	10.5	"	10.0	105	63-149	7.93	
Dibromochloromethane	8.83	"	10.0	88.3	80-130	5.83	
Dibromomethane	9.89	"	10.0	98.9	72-134	2.66	
Dichlorodifluoromethane	12.4	"				8.98	
Ethyl Benzene		"	10.0	124	44-144	9.92	
Hexachlorobutadiene	9.10	"	10.0	91.0	80-131	3.79	
sopropylbenzene	9.59		10.0	95.9	67-146		
	8.32		10.0	83.2	76-140	15.8	
Methyl acetate	12.1		10.0	121	51-139	12.5	
Methyl tert-butyl ether (MTBE)	12.1		10.0	121	76-135	13.8	
Methylcyclohexane	8.62	"	10.0	86.2	72-143	9.71	
Methylene chloride	14.9	"	10.0	149	_	h Bias 5.10	
Naphthalene	11.0	"	10.0	110	70-147	15.5	
n-Butylbenzene	9.08	"	10.0	90.8	79-132	9.34	
n-Propylbenzene	8.34	"	10.0	83.4	78-133	15.0	
o-Xylene	9.14	"	10.0	91.4	78-130	7.78	
o- & m- Xylenes	18.1	"	20.0	90.4	77-133	10.5	
p-Diethylbenzene	9.85	"	10.0	98.5	84-134	9.02	
p-Ethyltoluene	8.33	"	10.0	83.3	88-129 Lov	Bias 14.5	
p-Isopropyltoluene	9.02	"	10.0	90.2	81-136	11.1	30
ec-Butylbenzene	9.06	"	10.0	90.6	79-137	12.9	30
Styrene	9.52	"	10.0	95.2	67-132	6.70	30
ert-Butyl alcohol (TBA)	83.0	"	50.0	166	25-162 Hig	h Bias 27.8	30
ert-Butylbenzene	8.10	"	10.0	81.0	77-138	13.6	30
Tetrachloroethylene	5.69	"	10.0	56.9	82-131 Lov	Bias 10.3	30
Toluene	9.01	"	10.0	90.1	80-127	9.71	30
rans-1,2-Dichloroethylene	10.7	"	10.0	107	80-132	8.05	30
rans-1,3-Dichloropropylene	8.43	"	10.0	84.3	78-131	2.77	30
Trichloroethylene	8.72	"	10.0	87.2	82-128	12.1	30
Trichlorofluoromethane	10.7	"	10.0	107	67-139	7.46	30
Vinyl Chloride	10.5	"	10.0	105	58-145	8.31	30
Surrogate: SURR: 1,2-Dichloroethane-d4	10.9	"	10.0	109	69-130		
Surrogate: SURR: Toluene-d8	9.29	"	10.0	92.9	81-117		
Surrogate: SURR: p-Bromofluorobenzene	9.68	"	10.0	96.8	79-122		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 52 of 66

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BG10555 - EPA 5030B											
Blank (BG10555-BLK1)							Prepa	ared & Anal	vzed: 07/13/	2021	
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L						,		
1,1,1-Trichloroethane	ND	0.500	ug/E								
1,1,2,2-Tetrachloroethane	ND	0.500	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.500	"								
113)	ND	0.500									
1,1,2-Trichloroethane	ND	0.500	"								
1,1-Dichloroethane	ND	0.500	"								
1,1-Dichloroethylene	ND	0.500	"								
1,2,3-Trichlorobenzene	ND	0.500	"								
1,2,3-Trichloropropane	ND	0.500	"								
1,2,4-Trichlorobenzene	ND	0.500	"								
1,2,4-Trimethylbenzene	ND	0.500	"								
1,2-Dibromo-3-chloropropane	ND	0.500	"								
1,2-Dibromoethane	ND	0.500	"								
1,2-Dichlorobenzene	ND	0.500	"								
1,2-Dichloroethane	ND	0.500	"								
1,2-Dichloropropane	ND	0.500	"								
1,3,5-Trimethylbenzene	ND	0.500	"								
1,3-Dichlorobenzene	ND	0.500	"								
1,3-Dichloropropane	ND	0.500	"								
1,4-Dichlorobenzene	ND	0.500	"								
1,4-Dioxane	ND	80.0	"								
2-Butanone	ND	0.500	"								
2-Hexanone	ND	0.500	"								
4-Methyl-2-pentanone	ND	0.500	"								
Acetone	ND	2.00	"								
Acrolein	ND	0.500	"								
Acrylonitrile	ND	0.500	"								
Benzene	ND	0.500	"								
Bromochloromethane	ND	0.500	"								
Bromodichloromethane	ND	0.500	"								
Bromoform	ND	0.500	"								
Bromomethane	ND	0.500	"								
Carbon disulfide	ND	0.500	"								
Carbon tetrachloride	ND	0.500	"								
Chlorobenzene	ND	0.500	"								
Chloroethane	ND	0.500	"								
Chloroform	ND	0.500	"								
Chloromethane	ND	0.500	"								
cis-1,2-Dichloroethylene	ND	0.500	"								
cis-1,3-Dichloropropylene	ND	0.500	"								
Cyclohexane	ND	0.500	"								
Dibromochloromethane	ND	0.500	"								
Dibromomethane	ND	0.500	"								
Dichlorodifluoromethane	ND	0.500	"								
Ethyl Benzene	ND	0.500	"								
Hexachlorobutadiene	ND	0.500	"								
Isopropylbenzene	ND	0.500	"								
Methyl acetate	ND	0.500	"								
Methyl tert-butyl ether (MTBE)	ND ND	0.500	"								
Methylcyclohexane	ND	0.500	"								
	ND	0.500									

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 53 of 66

$\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

York Analytical Laboratories, Inc.

	1	ork Analy	ucai La	DOI ALOI	ies, inc.						
		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BG10555 - EPA 5030B											
Blank (BG10555-BLK1)							Prep	ared & Anal	yzed: 07/13/	/2021	
Methylene chloride	ND	2.00	ug/L								
Naphthalene	ND	2.00	"								
n-Butylbenzene	ND	0.500	"								
n-Propylbenzene	ND	0.500	"								
o-Xylene	ND	0.500	"								
p- & m- Xylenes	ND	1.00	"								
p-Diethylbenzene	ND	0.500	"								
p-Ethyltoluene	ND	0.500	"								
p-Isopropyltoluene	ND	0.500	"								
sec-Butylbenzene	ND	0.500	"								
Styrene	ND	0.500	"								
tert-Butyl alcohol (TBA)	ND	1.00	"								
tert-Butylbenzene	ND	0.500	"								
Tetrachloroethylene	ND	0.500	,,								
Toluene	ND	0.500	,,								
trans-1,2-Dichloroethylene	ND ND	0.500	,,								
trans-1,3-Dichloropropylene	ND ND	0.500	"								
Trichloroethylene			,,								
-	ND	0.500	,,								
Trichlorofluoromethane	ND	0.500									
Vinyl Chloride	ND	0.500	"								
Xylenes, Total	ND	1.50	"								
Surrogate: SURR: 1,2-Dichloroethane-d4	11.1		"	10.0		111	69-130				
Surrogate: SURR: Toluene-d8	9.12		"	10.0		91.2	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.77		"	10.0		97.7	79-122				
LCS (BG10555-BS1)							Prep	ared & Anal	yzed: 07/13/	/2021	
1,1,1,2-Tetrachloroethane	10.3		ug/L	10.0		103	82-126				
1,1,1-Trichloroethane	11.5		"	10.0		115	78-136				
1,1,2,2-Tetrachloroethane	10.6		"	10.0		106	76-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	12.2		"	10.0		122	54-165				
1,1,2-Trichloroethane	10.6		"	10.0		106	82-123				
1,1-Dichloroethane	10.9		"	10.0		109	82-129				
1,1-Dichloroethylene	11.8		"	10.0		118	68-138				
1,2,3-Trichlorobenzene	11.8		"	10.0		118	76-136				
1,2,3-Trichloropropane	10.6		"	10.0		106	77-128				
1,2,4-Trichlorobenzene	11.2		"	10.0		112	76-137				
1,2,4-Trimethylbenzene	9.78		"	10.0		97.8	82-132				
1,2-Dibromo-3-chloropropane	8.30		"	10.0		83.0	45-147				
1,2-Dibromoethane	10.8		"	10.0		108	83-124				
1,2-Dichlorobenzene	9.79		"	10.0		97.9	79-123				
1,2-Dichloroethane	12.0		"	10.0		120	73-132				
1,2-Dichloropropane	9.79		"	10.0		97.9	78-132				
1,3,5-Trimethylbenzene	9.72		,,	10.0		97.9	80-131				
1,3-Dichlorobenzene	9.72 9.50		,,	10.0		97.2 95.0	86-122				
1,3-Dichloropropane			,,								
1,4-Dichlorobenzene	10.1		,,	10.0		101	81-125 85-124				
1,4-Dicniorobenzene 1,4-Dioxane	9.73		,,	10.0		97.3	85-124				
	252		,,	210		120	10-349				
2-Butanone	14.4			10.0		144	49-152				
2-Hexanone	9.41		"	10.0		94.1	51-146				

120 RESEARCH DRIVE www.YORKLAB.com

4-Methyl-2-pentanone

STRATFORD, CT 06615

(203) 325-1371

8.82

132-02 89th AVENUE

FAX (203) 357-0166

88.2

10.0

RICHMOND HILL, NY 11418

ClientServices@

57-145

Page 54 of 66

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	R(21	N555 _	. FPA	5030R

LCS (BG10555-BS1)					Prepa	ared & Analyzed: 07/13/2021
Acetone	8.34	ug/L	10.0	83.4	14-150	
Acrolein	15.1	"	10.0	151	10-153	
Acrylonitrile	12.4	"	10.0	124	51-150	
Benzene	11.2	"	10.0	112	85-126	
Bromochloromethane	11.2	"	10.0	112	77-128	
Bromodichloromethane	10.2	"	10.0	102	79-128	
Bromoform	9.18	"	10.0	91.8	78-133	
Bromomethane	7.46	"	10.0	74.6	43-168	
Carbon disulfide	11.8	"	10.0	118	68-146	
Carbon tetrachloride	11.8	"	10.0	118	77-141	
Chlorobenzene	9.78	"	10.0	97.8	88-120	
Chloroethane	10.9	"	10.0	109	65-136	
Chloroform	11.4	"	10.0	114	82-128	
Chloromethane	10.6	"	10.0	106	43-155	
is-1,2-Dichloroethylene	11.2	"	10.0	112	83-129	
sis-1,3-Dichloropropylene	8.75	"	10.0	87.5	80-131	
Cyclohexane	11.4	"	10.0	114	63-149	
Dibromochloromethane	9.27	"	10.0	92.7	80-130	
Dibromomethane	10.4	"	10.0	104	72-134	
Dichlorodifluoromethane	12.3	"	10.0	123	44-144	
Ethyl Benzene	9.92	"	10.0	99.2	80-131	
Hexachlorobutadiene	10.6	"	10.0	106	67-146	
sopropylbenzene	9.19	"	10.0	91.9	76-140	
Methyl acetate	12.7	"	10.0	127	51-139	
Methyl tert-butyl ether (MTBE)	12.5	"	10.0	125	76-135	
Methylcyclohexane	9.52	"	10.0	95.2	72-143	
Methylene chloride	12.4	"	10.0	124	55-137	
Japhthalene	11.6	"	10.0	116	70-147	
-Butylbenzene	10.3	"	10.0	103	79-132	
a-Propylbenzene	9.24	"	10.0	92.4	78-133	
-Xylene	9.90	"	10.0	99.0	78-130	
- & m- Xylenes	19.8	"	20.0	99.0	77-133	
-Diethylbenzene	11.0	"	10.0	110	84-134	
-Ethyltoluene	9.20	"	10.0	92.0	88-129	
-Isopropyltoluene	10.1	"	10.0	101	81-136	
ec-Butylbenzene	10.1	"	10.0	101	79-137	
Styrene	10.2	"	10.0	102	67-132	
ert-Butyl alcohol (TBA)	86.2	"	50.0	172	25-162	High Bias
ert-Butyl alcohol (TBA)	9.02	"	10.0			man Dias
Tetrachloroethylene		"		90.2	77-138	Low Bias
Coluene	6.24 9.77	"	10.0 10.0	62.4 97.7	82-131 80-127	LOW DIAS
rans-1,2-Dichloroethylene		"				
rans-1,3-Dichloropropylene	11.8	" "	10.0	118	80-132	
	9.00	"	10.0	90.0	78-131	
richloroethylene	9.61		10.0	96.1	82-128	
Trichlorofluoromethane	11.5	"	10.0	115	67-139	
Vinyl Chloride	11.3	"	10.0	113	58-145	
Surrogate: SURR: 1,2-Dichloroethane-d4	10.9	"	10.0	109	69-130	
Surrogate: SURR: Toluene-d8	9.25	"	10.0	92.5	81-117	
Surrogate: SURR: p-Bromofluorobenzene	9.67	"	10.0	96.7	79-122	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 55 of 66

York Analytical Laboratories, Inc.

		Reporting	Spike	Source*		%REC			RPD	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BG10555 - EPA 5030B										
LCS Dup (BG10555-BSD1)						Pre	pared & Analy	zed: 07/13/	2021	
1,1,1,2-Tetrachloroethane	10.1	ug/L	10.0		101	82-126		1.57	30	
1,1,1-Trichloroethane	11.2	"	10.0		112	78-136		2.73	30	
1,1,2,2-Tetrachloroethane	10.8	"	10.0		108	76-129		1.88	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	11.7	"	10.0		117	54-165		3.52	30	
113) 1,1,2-Trichloroethane	10.5	"	10.0		105	82-123		1.52	30	
1,1-Dichloroethane	10.5	"						1.32	30	
1,1-Dichloroethylene		"	10.0		108	82-129		3.36	30	
-	11.4		10.0		114	68-138				
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	11.9		10.0		119	76-136		1.60 0.655	30 30	
	10.7	"	10.0		107	77-128				
1,2,4-Trichlorobenzene	11.3	"	10.0		113	76-137		1.33	30	
,2,4-Trimethylbenzene	9.58	"	10.0		95.8	82-132		2.07	30	
,2-Dibromo-3-chloropropane	8.83	"	10.0		88.3	45-147		6.19	30	
,2-Dibromoethane	10.8	"	10.0		108	83-124		0.186	30	
,2-Dichlorobenzene	9.83	"	10.0		98.3	79-123		0.408	30	
,2-Dichloroethane	11.8	"	10.0		118	73-132		1.26	30	
,2-Dichloropropane	9.73		10.0		97.3	78-126		0.615	30	
,3,5-Trimethylbenzene	9.51	"	10.0		95.1	80-131		2.18	30	
,3-Dichlorobenzene	9.45	"	10.0		94.5	86-122		0.528	30	
,3-Dichloropropane	10.2	"	10.0		102	81-125		0.791	30	
,4-Dichlorobenzene	9.70	"	10.0		97.0	85-124		0.309	30	
,4-Dioxane	127	"	210		60.5	10-349		66.2	30	Non-d
-Butanone	13.7	"	10.0		137	49-152		4.78	30	
2-Hexanone	10.4	"	10.0		104	51-146		9.80	30	
-Methyl-2-pentanone	9.02	"	10.0		90.2	57-145		2.24	30	
Acetone	9.77	"	10.0		97.7	14-150		15.8	30	
Acrolein	15.4	"	10.0		154	10-153	High Bias	1.97	30	
Acrylonitrile	12.5	"	10.0		125	51-150		1.21	30	
Benzene	11.0	"	10.0		110	85-126		1.81	30	
Bromochloromethane	11.1	"	10.0		111	77-128		0.898	30	
Bromodichloromethane	10.2	"	10.0		102	79-128		0.196	30	
Bromoform	9.10	"	10.0		91.0	78-133		0.875	30	
Bromomethane	7.60	"	10.0		76.0	43-168		1.86	30	
Carbon disulfide	11.5	"	10.0		115	68-146		2.15	30	
Carbon tetrachloride	11.6	"	10.0		116	77-141		1.88	30	
Chlorobenzene	9.68	"	10.0		96.8	88-120		1.03	30	
Chloroethane	10.6	"	10.0		106	65-136		3.26	30	
Chloroform	11.3	"	10.0		113	82-128		1.59	30	
Chloromethane	10.2	"	10.0		102	43-155		4.03	30	
eis-1,2-Dichloroethylene	11.1	"	10.0		111	83-129		1.34	30	
eis-1,3-Dichloropropylene	8.59	"	10.0		85.9	80-131		1.85	30	
Cyclohexane	11.2	"	10.0		112	63-149		2.21	30	
Dibromochloromethane	9.23	"	10.0		92.3	80-130		0.432	30	
Dibromomethane	10.6	"	10.0		106	72-134		1.14	30	
Dichlorodifluoromethane	12.1	"	10.0		121	44-144		1.89	30	
Ethyl Benzene	9.84	"	10.0		98.4	80-131		0.810	30	
						-			20	

120 RESEARCH DRIVE www.YORKLAB.com

Methyl tert-butyl ether (MTBE)

Hexachlorobutadiene

Isopropylbenzene

Methylcyclohexane

Methyl acetate

STRATFORD, CT 06615

(203) 325-1371

11.5

9.08

12.9

12.7

9.43

132-02 89th AVENUE

10.0

10.0

10.0

10.0

10.0

RICHMOND HILL, NY 11418

FAX (203) 357-0166

115

90.8

129

127

94.3

67-146

76-140

51-139

76-135

72-143

ClientServices@ Page 56 of 66

7.96

1.20

1.40

1.75

0.950

30

30

30

30

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RC10	0555_	FΡΔ	5030R

LCS Dup (BG10555-BSD1)					Prepared & Ana	lyzed: 07/13/	2021
Methylene chloride	12.8	ug/L	10.0	128	55-137	3.16	30
Naphthalene	11.7	"	10.0	117	70-147	0.861	30
n-Butylbenzene	10.2	"	10.0	102	79-132	1.08	30
n-Propylbenzene	9.05	"	10.0	90.5	78-133	2.08	30
o-Xylene	9.85	"	10.0	98.5	78-130	0.506	30
p- & m- Xylenes	19.6	"	20.0	98.0	77-133	1.02	30
p-Diethylbenzene	11.0	"	10.0	110	84-134	0.00	30
p-Ethyltoluene	9.08	"	10.0	90.8	88-129	1.31	30
p-Isopropyltoluene	9.95	"	10.0	99.5	81-136	1.69	30
sec-Butylbenzene	10.1	"	10.0	101	79-137	1.28	30
Styrene	10.2	"	10.0	102	67-132	0.972	30
tert-Butyl alcohol (TBA)	91.0	"	50.0	182	25-162 High Bias	5.32	30
tert-Butylbenzene	8.95	"	10.0	89.5	77-138	0.779	30
Tetrachloroethylene	6.18	"	10.0	61.8	82-131 Low Bias	0.966	30
Toluene	9.64	"	10.0	96.4	80-127	1.34	30
trans-1,2-Dichloroethylene	11.5	"	10.0	115	80-132	2.40	30
trans-1,3-Dichloropropylene	8.90	"	10.0	89.0	78-131	1.12	30
Trichloroethylene	9.43	"	10.0	94.3	82-128	1.89	30
Trichlorofluoromethane	11.4	"	10.0	114	67-139	0.873	30
Vinyl Chloride	11.0	"	10.0	110	58-145	2.79	30
Surrogate: SURR: 1,2-Dichloroethane-d4	11.0	"	10.0	110	69-130		
Surrogate: SURR: Toluene-d8	9.27	"	10.0	92.7	81-117		
Surrogate: SURR: p-Bromofluorobenzene	9.69	"	10.0	96.9	79-122		

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 57 of 66

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BG10458-BLK1)						Prepared & Analyzed: 07/12/2021
1,1-Biphenyl	ND	5.00	ug/L			
1,2,4,5-Tetrachlorobenzene	ND	5.00	"			
2,3,4,6-Tetrachlorophenol	ND	5.00	"			
2,4,5-Trichlorophenol	ND	5.00	"			
2,4,6-Trichlorophenol	ND	5.00	"			
2,4-Dichlorophenol	ND	5.00	"			
2,4-Dimethylphenol	ND	5.00	"			
2,4-Dinitrophenol	ND	5.00	"			
2,4-Dinitrotoluene	ND	5.00	"			
2,6-Dinitrotoluene	ND	5.00	"			
2-Chloronaphthalene	ND	5.00	"			
2-Chlorophenol	ND	5.00	"			
2-Methylnaphthalene	ND	5.00	"			
2-Methylphenol	ND	5.00	"			
2-Nitroaniline	ND	5.00	"			
2-Nitrophenol	ND	5.00	"			
3- & 4-Methylphenols	ND	5.00	"			
3,3-Dichlorobenzidine	ND	5.00	"			
-Nitroaniline	ND	5.00	"			
1,6-Dinitro-2-methylphenol	ND	5.00	"			
l-Bromophenyl phenyl ether	ND	5.00	"			
I-Chloro-3-methylphenol	ND	5.00	"			
-Chloroaniline	ND	5.00	"			
-Chlorophenyl phenyl ether	ND	5.00	"			
l-Nitroaniline	ND	5.00	"			
-Nitrophenol	ND	5.00	"			
Acetophenone	ND	5.00	"			
Benzaldehyde	ND	5.00	"			
Benzyl butyl phthalate	ND	5.00	"			
Bis(2-chloroethoxy)methane	ND	5.00	"			
Bis(2-chloroethyl)ether	ND	5.00	"			
Bis(2-chloroisopropyl)ether	ND	5.00	"			
Caprolactam	ND	5.00	"			
Carbazole	ND	5.00	"			
Dibenzofuran	ND	5.00	"			
Diethyl phthalate	ND	5.00	"			
Dimethyl phthalate	ND	5.00	"			
Di-n-butyl phthalate	ND	5.00	"			
Di-n-octyl phthalate	ND	5.00	"			
Hexachlorocyclopentadiene	ND	10.0	"			
sophorone	ND	5.00	"			
N-nitroso-di-n-propylamine	ND	5.00	"			
N-Nitrosodiphenylamine	ND	5.00	"			
Phenol	ND	5.00	"			
Propargite	ND	5.00	"			
Pyridine	ND	5.00	"			
Surrogate: SURR: 2-Fluorophenol	14.7		"	50.0	29.5	19.7-63.1
Surrogate: SURR: Phenol-d5	8.62		"	50.0	17.2	10.1-41.7
Surrogate: SURR: Nitrobenzene-d5	17.2		"	25.0	68.7	50.2-113
Surrogate: SURR: 2-Fluorobiphenyl	16.4		"	25.0	65.5	39.9-105
Surrogate: SURR: 2,4,6-Tribromophenol	40.2		"	50.0	80.4	39.3-151

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 58 of 66

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RC10458	_ FPA	3510C

Blank (BG10458-BLK1)						Prepared & Analyzed: 07/12/2021
Surrogate: SURR: Terphenyl-d14	28.8		ug/L	25.0	115	30.7-106
Blank (BG10458-BLK2)						Prepared & Analyzed: 07/12/2021
Acenaphthene	ND	0.0500	ug/L			
Acenaphthylene	ND	0.0500	"			
Anthracene	ND	0.0500	"			
Atrazine	ND	0.500	"			
Benzo(a)anthracene	ND	0.0500	"			
Benzo(a)pyrene	ND	0.0500	"			
Benzo(b)fluoranthene	ND	0.0500	"			
Benzo(g,h,i)perylene	ND	0.0500	"			
Benzo(k)fluoranthene	ND	0.0500	"			
Bis(2-ethylhexyl)phthalate	ND	0.500	"			
Chrysene	ND	0.0500	"			
Dibenzo(a,h)anthracene	ND	0.0500	"			
Fluoranthene	ND	0.0500	"			
Fluorene	ND	0.0500	"			
Hexachlorobenzene	ND	0.0200	"			
Hexachlorobutadiene	ND	0.500	"			
Hexachloroethane	ND	0.500	"			
ndeno(1,2,3-cd)pyrene	ND	0.0500	"			
Naphthalene	ND	0.0500	"			
Nitrobenzene	ND	0.250	"			
N-Nitrosodimethylamine	ND	0.500	"			
Pentachlorophenol	ND	0.250	"			
Phenanthrene	ND	0.0500	"			
Pyrene	0.100	0.0500	"			

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 59 of 66

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

. mary to	resure	2311111	Ointo	Level	rtesun /oreze	Limito	
Batch BG10458 - EPA 3510C							
LCS (BG10458-BS1)						Prep	ared & Analyzed: 07/12/2021
1,1-Biphenyl	16.6	5.00	ug/L	25.0	66.2	33-95	
1,2,4,5-Tetrachlorobenzene	14.5	5.00	"	50.0	29.1	26-120	
2,3,4,6-Tetrachlorophenol	22.9	5.00	"	25.0	91.8	30-130	
2,4,5-Trichlorophenol	18.9	5.00	"	25.0	75.8	32-114	
2,4,6-Trichlorophenol	16.9	5.00	"	25.0	67.7	35-118	
2,4-Dichlorophenol	20.0	5.00	"	25.0	80.2	25-116	
2,4-Dimethylphenol	19.0	5.00	"	25.0	76.1	15-116	
2,4-Dinitrophenol	18.5	5.00	"	25.0	73.9	10-170	
2,4-Dinitrotoluene	20.8	5.00	"	25.0	83.4	41-128	
2,6-Dinitrotoluene	20.7	5.00	"	25.0	83.0	45-116	
2-Chloronaphthalene	16.2	5.00	"	25.0	64.8	33-112	
2-Chlorophenol	15.4	5.00	"	25.0	61.7	15-120	
2-Methylnaphthalene	21.5	5.00	"	25.0	85.9	24-118	
2-Methylphenol	13.8	5.00	"	25.0	55.2	10-110	
2-Nitroaniline	19.7	5.00	"	25.0	78.6	34-129	
2-Nitrophenol	18.5	5.00	"	25.0	74.0	28-118	
3- & 4-Methylphenols	11.2	5.00	"	25.0	44.6	10-107	
3,3-Dichlorobenzidine	7.36	5.00	"	50.0	14.7	15-187	Low Bias
3-Nitroaniline	20.6	5.00	"	25.0	82.5	24-134	
4,6-Dinitro-2-methylphenol	18.2	5.00	"	25.0	73.0	10-153	
4-Bromophenyl phenyl ether	17.7	5.00	"	25.0	70.6	34-120	
4-Chloro-3-methylphenol	20.8	5.00	"	25.0	83.2	20-120	
4-Chloroaniline	19.2	5.00	"	25.0	77.0	10-147	
4-Chlorophenyl phenyl ether	18.1	5.00	"	25.0	72.3	27-121	
4-Nitroaniline	18.9	5.00	"	25.0	75.6	13-134	
4-Nitrophenol	8.26	5.00	"	25.0	33.0	10-131	
Acetophenone	18.2	5.00	"	25.0	72.7	25-110	
Benzaldehyde	16.2	5.00	"	25.0	64.7	29-117	
Benzyl butyl phthalate	21.7	5.00	"	25.0	86.9	29-133	
Bis(2-chloroethoxy)methane	16.9	5.00	"	25.0	67.7	10-154	
Bis(2-chloroethyl)ether	18.5	5.00	"	25.0	73.9	17-125	
Bis(2-chloroisopropyl)ether	15.5	5.00	"	25.0	62.1	10-139	
Caprolactam	4.51	5.00	"	25.0	18.0	10-137	
Carbazole	19.2	5.00	"	25.0	76.7	42-126	
Dibenzofuran	18.6	5.00	"	25.0	74.4	36-113	
Diethyl phthalate	20.9	5.00	"	25.0	83.6	38-115	
Dimethyl phthalate	19.4	5.00	"	25.0	77.4	38-129	
Di-n-butyl phthalate	20.0	5.00	"	25.0	80.1	31-120	
Di-n-octyl phthalate	20.8	5.00	"	25.0	83.2	21-149	
Hexachlorocyclopentadiene	12.5	10.0	"	25.0	50.2	10-130	
Isophorone	19.0	5.00	"	25.0	75.8	25-127	
N-nitroso-di-n-propylamine	17.7	5.00	"	25.0	70.7	26-122	
N-Nitrosodiphenylamine	23.1	5.00	"	25.0	92.5	23-149	
Phenol	6.39	5.00	"	25.0	25.6	10-110	
Pyridine	5.92	5.00	"	25.5	23.2	10-110	
Surrogate: SURR: 2-Fluorophenol	17.4		"	50.0	34.8	19.7-63.1	
Surrogate: SURR: Phenol-d5	10.1		"	50.0	20.2	10.1-41.7	
Surrogate: SURR: Nitrobenzene-d5	19.2		"	25.0	76.7	50.2-113	
Surrogate: SURR: 2-Fluorobiphenyl	17.6		"	25.0	70.5	39.9-105	
Surrogate: SURR: 2,4,6-Tribromophenol	40.1		"	50.0	80.2	39.3-151	
Surrogate: SURR: Terphenyl-d14	27.9		"	25.0	112	30.7-106	
120 DESEADON DRIVE	STRATEORN OT 0661	15		12	22 02 80th AVENUE	-	PICHMOND HILL NV 11418

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 60 of 66

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

Reporting

Spike

Source*

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Fl
Batch BG10458 - EPA 3510C											
CS (BG10458-BS2)							Prep	oared & Analyz	zed: 07/12/	2021	
Acenaphthene	0.760	0.0500	ug/L	1.00		76.0	25-116				
cenaphthylene	0.790	0.0500	"	1.00		79.0	26-116				
nthracene	0.860	0.0500	"	1.00		86.0	25-123				
enzo(a)anthracene	0.880	0.0500	"	1.00		88.0	33-125				
enzo(a)pyrene	0.850	0.0500	"	1.00		85.0	32-132				
enzo(b)fluoranthene	0.870	0.0500	"	1.00		87.0	22-137				
enzo(g,h,i)perylene	1.01	0.0500	"	1.00		101	10-138				
enzo(k)fluoranthene	0.840	0.0500	"	1.00		84.0	20-137				
is(2-ethylhexyl)phthalate	1.43	0.500	"	1.00		143	10-189				
hrysene	0.870	0.0500	"	1.00		87.0	32-124				
ibenzo(a,h)anthracene	0.970	0.0500	"	1.00		97.0	16-133				
uoranthene	1.02	0.0500	"	1.00		102	32-121				
luorene	0.890	0.0500	"	1.00		89.0	28-118				
exachlorobenzene	0.780	0.0200	"	1.00		78.0	23-124				
exachlorobutadiene	0.840	0.500	"	1.00		84.0	15-123				
exachloroethane	0.740	0.500	"	1.00		74.0	18-115				
ideno(1,2,3-cd)pyrene	0.940	0.0500	"	1.00		94.0	15-135				
aphthalene	0.760	0.0500	"	1.00		76.0	18-120				
itrobenzene	0.850	0.250	"	1.00		85.0	21-121				
-Nitrosodimethylamine	ND	0.500	"	1.00		05.0	10-124	Low Bias			
entachlorophenol	1.05	0.250	"	1.00		105	10-124	Low Dias			
nenanthrene	0.860	0.0500	"	1.00		86.0	24-127				
rene	0.780	0.0500	"	1.00		78.0	31-132				
	0.700	0.0500		1.00		70.0		and fr Amalys	rad: 07/12/	2021	
CS Dup (BG10458-BSD1)	14.5		/1	25.0		50.0		ared & Analyz	13.2		_
1-Biphenyl	14.5	5.00	ug/L "	25.0		58.0	33-95			20	
2,4,5-Tetrachlorobenzene	14.3	5.00	"	50.0		28.6	26-120		1.52	20 20	
3,4,6-Tetrachlorophenol	22.7	5.00	,,	25.0		90.8	30-130		1.05		
4,5-Trichlorophenol	18.7	5.00	"	25.0		74.8	32-114		1.22	20	
4,6-Trichlorophenol	16.7	5.00		25.0		66.8	35-118		1.37	20	
4-Dichlorophenol	17.8	5.00	"	25.0		71.4	25-116		11.7	20	
4-Dimethylphenol	16.4	5.00		25.0		65.8	15-116		14.6	20	
4-Dinitrophenol	18.6	5.00	"	25.0		74.3	10-170		0.594	20	
4-Dinitrotoluene	20.5	5.00	"	25.0		82.2	41-128		1.50	20	
6-Dinitrotoluene	20.1	5.00	"	25.0		80.3	45-116		3.23	20	
Chloronaphthalene	15.4	5.00	"	25.0		61.4	33-112		5.26	20	
Chlorophenol	13.8	5.00	"	25.0		55.3	15-120		11.0	20	
Methylnaphthalene	18.7	5.00	"	25.0		74.6	24-118		14.1	20	
Methylphenol	11.7	5.00	"	25.0		46.8	10-110		16.5	20	
Nitroaniline	18.6	5.00	"	25.0		74.5	34-129		5.38	20	
Nitrophenol	16.9	5.00	"	25.0		67.4	28-118		9.28	20	
& 4-Methylphenols	10.4	5.00	"	25.0		41.4	10-107		7.44	20	
3-Dichlorobenzidine	7.74	5.00	"	50.0		15.5	15-187		5.03	20	
Nitroaniline	19.0	5.00	"	25.0		76.0	24-134		8.17	20	
6-Dinitro-2-methylphenol	17.9	5.00	"	25.0		71.7	10-153		1.71	20	
Bromophenyl phenyl ether	16.9	5.00	"	25.0		67.7	34-120		4.22	20	
Chloro-3-methylphenol	18.9	5.00	"	25.0		75.6	20-120		9.52	20	
Chloroaniline	16.2	5.00	"	25.0		64.8	10-147		17.3	20	
Chlorophenyl phenyl ether	16.8	5.00	"	25.0		67.3	27-121		7.16	20	
Nitroaniline	19.6	5.00	"	25.0		78.4	13-134		3.58	20	
Nitrophenol	7.78	5.00	"	25.0			10-131		5.99	20	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BG10458 - EPA 3510C											
LCS Dup (BG10458-BSD1)							Prepa	ared & Analy	zed: 07/12/	2021	
Acetophenone	14.6	5.00	ug/L	25.0		58.3	25-110		22.0	20	Non-dir.
Benzaldehyde	13.4	5.00	"	25.0		53.6	29-117		18.9	20	
Benzyl butyl phthalate	21.6	5.00	"	25.0		86.5	29-133		0.461	20	
Bis(2-chloroethoxy)methane	15.0	5.00	"	25.0		60.2	10-154		11.7	20	
Bis(2-chloroethyl)ether	16.1	5.00	"	25.0		64.5	17-125		13.5	20	
Bis(2-chloroisopropyl)ether	14.5	5.00	"	25.0		57.8	10-139		7.14	20	
Caprolactam	4.00	5.00	"	25.0		16.0	10-137		12.0	20	
Carbazole	19.1	5.00	"	25.0		76.4	42-126		0.366	20	
Dibenzofuran	17.8	5.00	"	25.0		71.4	36-113		4.06	20	
Diethyl phthalate	19.8	5.00	"	25.0		79.3	38-115		5.30	20	
Dimethyl phthalate	18.3	5.00	"	25.0		73.2	38-129		5.58	20	
Di-n-butyl phthalate	19.8	5.00	"	25.0		79.0	31-120		1.41	20	
Di-n-octyl phthalate	20.5	5.00	"	25.0		81.8	21-149		1.65	20	
Hexachlorocyclopentadiene	11.8	10.0	"	25.0		47.0	10-130		6.50	20	
Isophorone	17.8	5.00	"	25.0		71.2	25-127		6.26	20	
N-nitroso-di-n-propylamine	15.9	5.00	"	25.0		63.8	26-122		10.4	20	
N-Nitrosodiphenylamine	22.7	5.00	"	25.0		90.8	23-149		1.92	20	
Phenol	6.17	5.00	"	25.0		24.7	10-110		3.50	20	
Pyridine	5.80	5.00	"	25.5		22.7	10-90		2.05	20	
Surrogate: SURR: 2-Fluorophenol	15.7		"	50.0		31.4	19.7-63.1				
Surrogate: SURR: Phenol-d5	9.35		"	50.0		18.7	10.1-41.7				

Surrogate: SURR: Nitrobenzene-d5 17.2 25.0 68.7 50.2-113 Surrogate: SURR: 2-Fluorobiphenyl 16.1 25.0 64.4 39.9-105 Surrogate: SURR: 2,4,6-Tribromophenol 39.3 50.0 78.5 39.3-151 Surrogate: SURR: Terphenyl-d14 26.8 25.0 107 30.7-106

132-02 89th AVENUE

RICHMOND HILL, NY 11418

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

FAX (203) 357-0166

Page 62 of 66 ClientServices@

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
21G0278-01	MW-3AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
21G0278-02	MW-5AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
21G0278-03	MW-4AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
21G0278-04	MW-1AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
21G0278-05	DUP	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
21G0278-06	Trip Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

S-08	The recovery of this surrogate was outside of QC limits.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
EXT-EM	The sample exhibited emulsion formation during the extraction process. This may affect surrogate recoveries.
CCV-E	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as

Diphenylamine.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 64 of 66

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418** FAX (203) 357-0166 ClientServices@ Page 65 of 66

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc.

120 Research Drive Stratford, CT 06615

www.yorklab.com

YORK

132-02 89th Ave Queens, NY 11418 clientservices@yorklab.com

Field Chain-of-Custody Record

Page of NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.

2160278 YORK Project No.

YOUR Information		Report To:	Invo	Invoice To:	YOUR Project Number	Turn-Around Time	
COMPANY BL COMPANIES	Company: Same		Company: Same			RUSH - Next Day	
Address: 355 Research Prays	Address:		Address:		03C497-M	RUSH - Two Day	-
Meriden, cT, 06450					YOUR Project Name	RUSH - Three Day	
Phongo 3-630-1406	Phone.:		Phone.:			RUSH - Four Day	_
Contact Wes Johnson	Contact:		Contact: TIM My Sat	Sak		Standard (5-7 Day)	
Johnson@blompanies.com	E-mail;		F-mail:	AMYJAK@blcompanies.com	YOUR PO#:		_
Please print clearly and legibly. All information must be complete. Samples will not be logged in and the turn-around-time clock will not begin until any	ist be complete. Samples ck will not begin until any	Matrix Codes	Samples From	Report	Report / EDD Type (circle selections)	YORK Reg. Comp.	
Suoris by TORN are resouved.		S - soil / solid	New York	Summary Report	CT RCP Standard Excel EDD	Compared to the following Regulation(s): (diese fill in)	
Wesley Shrison		GW - groundwater	New Jersey	QA Report	CT RCP DQA/DUE EQuIS (Standard)		
Samples Collected by: (print your name above and sign below)	ove and sign below)	DW - drinking water	Connecticut	NY ASP A Package	NJDEP Reduced NYSDEC EQUIS		
Nesley Shinson	١	WW - wastewater O - Oil Other	Pennsylvania Other	NY ASP B Package	Deliverables NJDEP SRP HazSite NJDKQP Other:		
Sample Identification	n	Sample Matrix	Date/Time Sampled		Analysis Requested	Container Description	
MM-3AR		MY	717/21 800	VOCs (8260)	, 500Cs (8270)	3V, 2 A	_
MW-5AR			9:40				_
MW-4AR			11:20				_
MW-IAR		→	12:15		→	→	_
DUP		SP	7/1/21 -	>	SVOCS (8270)	3V, 2A	
Trip Blank				VOCS (8260)		20	
							7
Comments: SVOCS analyze	sed in full			Prese	Preservation: (check all that apply)	Special Instruction	_
)				HCI MeOH HN Ascorbic Acid Other.	HNO3 H2SO4 NaOH ZnAc	Field Filtered Lab to Filter	
es Relinquished by / Company	Date/Time	Samples Received by / Company	iny	Date/Time	Samples Relinquished by / Company	Date/Time	7
Page Stery Schuson	717/21 1512						
Received by / Company	Date/Time	Samples Relinquished by / Cor	ompany	Date/Time	Samples Received by / Company	Date/Time	
Relinquished by / Company	Date/Time	Samples Received by / Compa	VI	Date/Time	Samples Received in LAB by Date/Time	Temp. Received at Lab	

Temp. Received at Lab

Sin

1.-1 JAN 15:1

Technical Report

prepared for:

BL Companies 355 Research Parkway Meriden CT, 06450 Attention: Brian Lowry

Report Date: 08/02/2022

Client Project ID: 03C497-M

York Project (SDG) No.: 22G1127

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 08/02/2022 Client Project ID: 03C497-M York Project (SDG) No.: 22G1127

BL Companies

355 Research Parkway Meriden CT, 06450

Attention: Brian Lowry

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on July 26, 2022 and listed below. The project was identified as your project: 03C497-M.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
22G1127-01	MW-4AR	Water	07/25/2022	07/26/2022
22G1127-02	MW-5AR	Water	07/25/2022	07/26/2022
22G1127-03	MW-1AR	Water	07/25/2022	07/26/2022
22G1127-04	MW-3AR	Water	07/25/2022	07/26/2022
22G1127-05	DUP	Water	07/25/2022	07/26/2022
22G1127-06	Trip Blank	Water	07/25/2022	07/26/2022

General Notes for York Project (SDG) No.: 22G1127

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Cassie L. Mosher Laboratory Manager

Och I most

Date: 08/02/2022

Client Sample ID: MW-4AR York Sample ID: 22G1127-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 22G1127
 03C497-M
 Water
 July 25, 2022 9:25 am
 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepare	d by Method: EPA 5030B				-							
CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
530-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
37-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	07/28/2022 08:00 Y10854,NELAC-NY1	07/28/2022 18:03 2058,NJDEP,PADEP	PD
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	07/28/2022 08:00 Y10854,NELAC-NY1	07/28/2022 18:03 2058,NJDEP,PADEP	PD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	07/28/2022 08:00 Y10854,NELAC-NY1	07/28/2022 18:03 2058,NJDEP,PADEP	PD
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	07/28/2022 08:00 Y10854,NELAC-NY1	07/28/2022 18:03 2058,NJDEP,PADEP	PD
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C		07/28/2022 08:00 Y10854,NELAC-NY1	07/28/2022 18:03	PD
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C		07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03	PD P,PADEP
				-				Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 66

Client Sample ID: MW-4AR

York Sample ID: 22G1127-01

York Project (SDG) No. 22G1127

Sample Prepared by Method: EPA 5030B

Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> July 25, 2022 9:25 am Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		PD P,PADEP
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		PD P,PADEP
67-64-1	Acetone	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		PD P,PADEP
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		PD P,PADEP
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		PD P,PADEP
71-43-2	Benzene	0.250	J	ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:0	0 07/28/2022 18:03	PD
								Certifications:	CTDOH,NELAC-NY10854,N	ELAC-NY12058,NJDE	EP,PADEP
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 NELAC-NY10854,NELAC-N		PD
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		PD P,PADEP
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		PD P,PADEP
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		PD P,PADEP
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		PD P,PADEP
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		PD P,PADEP
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 18:03	PD
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 18:03	PD
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 18:03	PD
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 18:03	PD
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 18:03	PD
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 18:03	PD
110-82-7	Cyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 NELAC-NY10854,NELAC-N	0 07/28/2022 18:03	PD
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 18:03	PD P.PADEP
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 NELAC-NY10854,NELAC-N	0 07/28/2022 18:03	PD
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 NELAC-NY10854,NELAC-N	0 07/28/2022 18:03	PD
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 18:03	PD P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 5 of 66

Client Sample ID: MW-4AR

York Sample ID: 22G1127-01

York Project (SDG) No. 22G1127

Sample Prepared by Method: EPA 5030B

Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> July 25, 2022 9:25 am Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 (10854,NELAC-NY)	07/28/2022 18:03 2058,NJDEP,PADEP	PD
98-82-8	Isopropylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
79-20-9	Methyl acetate	0.850		ug/L	0.200	0.500	1	EPA 8260C		07/28/2022 08:00	07/28/2022 18:03	PD
								Certifications:	NELAC-N	Y10854,NELAC-NY	12058,NJDEP,PADEP	,
1634-04-4	Methyl tert-butyl ether (MTBE)	0.810		ug/L	0.200	0.500	1	EPA 8260C		07/28/2022 08:00	07/28/2022 18:03	PD
								Certifications:	CTDOH,NI	ELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
108-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY1	07/28/2022 18:03 12058,NJDEP,PADEP	PD
75-09-2	Methylene chloride	1.86	J, B	ug/L	1.00	2.00	1	EPA 8260C		07/28/2022 08:00	07/28/2022 18:03	PD
	•	1.00	٠, ٤				-	Certifications:	CTDOH,NI	ELAC-NY10854,NE	LAC-NY12058,NJDE	
91-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 (10854,NELAC-NY)	07/28/2022 18:03 12058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
95-47-6	o-Xylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:03 AC-NY12058,PADE	PD P
179601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:03 AC-NY12058,PADE	PD P
105-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/28/2022 08:00	07/28/2022 18:03	PD
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/28/2022 08:00	07/28/2022 18:03	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
100-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 710854,NELAC-NY1	07/28/2022 18:03 2058,NJDEP,PADEP	PD
98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:03 .AC-NY12058,NJDEI	PD P,PADEP
127-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
108-88-3	Toluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:03 .AC-NY12058,NJDEI	PD P,PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:03 AC-NY12058,NJDEI	PD P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 6 of 66

Client Sample ID: MW-4AR

York Sample ID: 22G1127-01

York Project (SDG) No. 22G1127 Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> July 25, 2022 9:25 am Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log	-ın	N	ot	es	:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEF	PD P,PADEP
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEF	PD P,PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:03 AC-NY12058,NJDEF	PD
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	102 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	101 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	95.5 %			79-122							

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes: EXT-EM

CAS	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 NELAC-NY10854,NJDEP,PADI	08/01/2022 20:18 EP	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 NELAC-NY10854,NJDEP,PADI	08/01/2022 20:18 EP	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 NELAC-NY10854,NJDEP,PADI	08/01/2022 20:18 EP	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJE	08/01/2022 20:18 DEP,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJE	08/01/2022 20:18 DEP,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJE	08/01/2022 20:18 DEP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJE	08/01/2022 20:18 DEP,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJE	08/01/2022 20:18 DEP,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJE	08/01/2022 20:18 DEP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJE	08/01/2022 20:18 DEP,PADEP	KH
91-58-7	2-Chloronaphthalene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJE	08/01/2022 20:18 DEP,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJE	08/01/2022 20:18 DEP,PADEP	KH
91-57-6	2-Methylnaphthalene	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJE	08/01/2022 20:18 DEP,PADEP	КН
95-48-7	2-Methylphenol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJE	08/01/2022 20:18 DEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 7 of 66

Client Sample ID: MW-4AR

York Sample ID: 22G1127-01

York Project (SDG) No. 22G1127 Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> July 25, 2022 9:25 am Date Received 07/26/2022

Semi-Vol	atiles, 8270 - Comprehensive				Log-in	Notes:		Sam	ple Note	s: EXT-EM		
Sample Prepar	red by Method: EPA 3510C											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
88-74-4	2-Nitroaniline	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	КН
88-75-5	2-Nitrophenol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	КН
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
99-09-2	3-Nitroaniline	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
100-01-6	4-Nitroaniline	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
100-02-7	4-Nitrophenol	ND		ug/L	5.56	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
98-86-2	Acetophenone	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-NY	08/01/2022 08:15 /10854,NJDEP,PADER	08/01/2022 20:18	KH
100-52-7	Benzaldehyde	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-NY	08/01/2022 08:15 /10854,NJDEP,PADER	08/01/2022 20:18	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.11	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
105-60-2	Caprolactam	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	NELAC-NY	08/01/2022 08:15 /10854,NJDEP,PADEF	08/01/2022 20:18	KH
86-74-8	Carbazole	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
132-64-9	Dibenzofuran	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 8 of 66

Client Sample ID: MW-4AR

York Sample ID:

22G1127-01

York Project (SDG) No. 22G1127 Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> July 25, 2022 9:25 am Date Received 07/26/2022

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log	-in	N	01	es:	

Sample Notes: EXT-EM

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	КН
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.56	11.1	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	КН
78-59-1	Isophorone	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	КН
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	КН
108-95-2	Phenol	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	КН
2312-35-8	* Propargite	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:		08/01/2022 08:15	08/01/2022 20:18	КН
110-86-1	Pyridine	ND		ug/L	2.78	5.56	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:18 EP,PADEP	KH
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	33.3 %			19.7-63.1							
4165-62-2	Surrogate: SURR: Phenol-d5	19.2 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	69.5 %			50.2-113							

39.9-105

39.3-151

30.7-106

Semi-volatiles, 8270 - Comprehensive

Surrogate: SURR: 2,4,6-Tribromophenol

Surrogate: SURR: 2-Fluorobiphenyl

Surrogate: SURR: Terphenyl-d14

Sample Prepared by Method: EPA 3510C

321-60-8

118-79-6

1718-51-0

Log-in Notes:

Sample Notes: EXT-EM

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ Di	lution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND	ug/L	0.0556	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 LAC-NY10854,NJDE	08/01/2022 18:17 EP,PADEP	КН
208-96-8	Acenaphthylene	ND	ug/L	0.0556	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 LAC-NY10854,NJDI	08/01/2022 18:17 EP,PADEP	KH
120-12-7	Anthracene	ND	ug/L	0.0556	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 LAC-NY10854,NJDI	08/01/2022 18:17 EP,PADEP	KH
1912-24-9	Atrazine	ND	ug/L	0.556	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 LAC-NY10854,NJDI	08/01/2022 18:17 EP	KH
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0556	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 LAC-NY10854,NJDE	08/01/2022 18:17 EP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0556	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 LAC-NY10854,NJDF	08/01/2022 18:17 EP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0556	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 LAC-NY10854,NJDF	08/01/2022 18:17 EP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

76.2 %

113 %

90.8 %

132-02 89th AVENUE

RICHMOND HILL, NY 11418

entServices@ Page 9 of 66

(203) 325-1371 FAX (203) 357-0166 ClientServices@

Client Sample ID: MW-4AR **York Sample ID:** 22G1127-01

York Project (SDG) No. 22G1127

Client Project ID 03C497-M

Matrix Water

Collection Date/Time July 25, 2022 9:25 am Date Received 07/26/2022

Semi-volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes: EXT-EM

Sami	nle	Pre	nared	by	М	ethod:	$FP\Delta$	3510C	•
Sami	pic	110	pareu	υy	IVI	emou.	LIA	33100	•

CAS No	o. Parameter	Result Flag	Units	Reported to LOQ	Dilution	Date/Time Date/Time Reference Method Prepared Analyzed Ana	alyst
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND	ug/L	0.0556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP	KH
117-81-7	Bis(2-ethylhexyl)phthalate	0.589	ug/L	0.556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP	KH
218-01-9	Chrysene	ND	ug/L	0.0556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND	ug/L	0.0556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP	KH
206-44-0	Fluoranthene	ND	ug/L	0.0556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP	KH
86-73-7	Fluorene	ND	ug/L	0.0556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP	KH
118-74-1	Hexachlorobenzene	ND	ug/L	0.0222	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP	KH
87-68-3	Hexachlorobutadiene	ND	ug/L	0.556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP	KH
67-72-1	Hexachloroethane	ND	ug/L	0.556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ug/L	0.0556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP	KH
91-20-3	Naphthalene	ND	ug/L	0.0556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP	KH
98-95-3	Nitrobenzene	ND	ug/L	0.278	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP	KH
62-75-9	N-Nitrosodimethylamine	ND	ug/L	0.556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP	KH
87-86-5	Pentachlorophenol	ND	ug/L	0.278	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP	KH
85-01-8	Phenanthrene	0.0667	ug/L	0.0556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP	КН
129-00-0	Pyrene	ND	ug/L	0.0556	1	EPA 8270D SIM 08/01/2022 08:15 08/01/2022 18:17 K Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP	КН

Sample Information

Client Sample ID: MW-5AR **York Sample ID:**

22G1127-02

07/26/2022

York Project (SDG) No. 22G1127

Client Project ID 03C497-M

Matrix Water

Collection Date/Time July 25, 2022 10:35 am Date Received

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 10 of 66

Client Sample ID: MW-5AR **York Sample ID:** 22G1127-02

York Project (SDG) No. 22G1127

Client Project ID 03C497-M

Matrix Water

Collection Date/Time July 25, 2022 10:35 am Date Received 07/26/2022

					Reported to				Date/Time	Date/Time	
CAS No	. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference N	Method Prepared	Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29 LAC-NY12058,NJDEF	PD P,PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29 LAC-NY12058,NJDEF	PD P,PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29 LAC-NY12058,NJDEF	PD P,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29 LAC-NY12058,NJDEF	PD P,PADEP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29 LAC-NY12058,NJDEF	PD P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29 LAC-NY12058,NJDEF	PD P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29 LAC-NY12058,NJDEF	PD P,PADEP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 NELAC-NY10854,NELAC-NY	07/28/2022 18:29 12058,NJDEP,PADEP	PD
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 NELAC-NY10854,NELAC-NY	07/28/2022 18:29 12058,NJDEP,PADEP	PD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 NELAC-NY10854,NELAC-NY	07/28/2022 18:29 12058,NJDEP,PADEP	PD
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29	PD
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29 LAC-NY12058,NJDEF	PD P,PADEP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29 LAC-NY12058,NJDEF	PD P,PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29	PD
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29 LAC-NY12058,NJDEF	PD P,PADEP
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29	PD
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29	PD
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29	PD
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00 NELAC-NY10854,NELAC-NY	07/28/2022 18:29	PD
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29	PD
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C	07/28/2022 08:00 NELAC-NY10854,NELAC-NY	07/28/2022 18:29	PD
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29	PD
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29	PD
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 18:29	PD

FAX (203) 357-0166

Client Sample ID: MW-5AR

York Sample ID: 22G1127-02

York Project (SDG) No. 22G1127 Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> July 25, 2022 10:35 am Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

	ed by Method: EPA 5030B	<u> </u>						Sump	10110005	<u>-</u>		
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 AC-NY12058,NJDEI	PD P,PADEP
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 AC-NY12058,NJDEI	PD P,PADEP
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 .AC-NY12058,NJDEI	PD P,PADEP
71-43-2	Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 AC-NY12058,NJDEI	PD P,PADEP
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY1	07/28/2022 18:29 2058,NJDEP,PADEP	PD
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 .AC-NY12058,NJDEI	PD P,PADEP
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 AC-NY12058,NJDEI	PD P,PADEP
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 AC-NY12058,NJDEI	PD P,PADEP
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 .AC-NY12058,NJDEI	PD P,PADEP
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 .AC-NY12058,NJDEI	PD P,PADEP
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 .AC-NY12058,NJDEI	PD P,PADEP
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 .AC-NY12058,NJDEI	PD P,PADEP
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 .AC-NY12058,NJDEI	PD P,PADEP
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 .AC-NY12058,NJDEI	PD P,PADEP
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 .AC-NY12058,NJDEI	PD P,PADEP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 .AC-NY12058,NJDEI	PD P,PADEP
110-82-7	Cyclohexane	0.360	J	ug/L	0.200	0.500	1	EPA 8260C		07/28/2022 08:00	07/28/2022 18:29	PD
								Certifications:	NELAC-NY	10854,NELAC-NY	12058,NJDEP,PADEP	
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 AC-NY12058,NJDEI	PD P,PADEP
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY	07/28/2022 18:29 2058,NJDEP,PADEP	PD
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY1	07/28/2022 18:29 12058,NJDEP,PADEP	PD
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:29 AC-NY12058,NJDEI	PD P,PADEP
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY1	07/28/2022 18:29 2058,NJDEP,PADEP	PD
98-82-8	Isopropylbenzene	0.620		ug/L	0.200	0.500	1	EPA 8260C		07/28/2022 08:00	07/28/2022 18:29	PD
								Certifications:	CTDOH,NE	LAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 12 of 66

Client Sample ID: MW-5AR

York Sample ID: 22G1127-02

York Project (SDG) No. 22G1127 Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> July 25, 2022 10:35 am Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

l by Method: EPA 5030B											
Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY12	07/28/2022 18:29 2058,NJDEP,PADEP	PD
Methyl tert-butyl ether (MTBE)	0.560		ug/L	0.200	0.500	1	EPA 8260C		07/28/2022 08:00	07/28/2022 18:29	PD
							Certifications:	CTDOH,NE	ELAC-NY10854,NEL	AC-NY12058,NJDEF	P,PADEP
Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY		07/28/2022 18:29 2058,NJDEP,PADEP	PD
Methylene chloride	2.30	В	ug/L	1.00	2.00	1	EPA 8260C		07/28/2022 08:00	07/28/2022 18:29	PD
			-	1.00	2.00			CTDOH,NE			
Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	NELAC-NY			PD
n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEL	07/28/2022 18:29 AC-NY12058,NJDEP,	PD PADEP
n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEL	07/28/2022 18:29 AC-NY12058,NJDEP,	PD PADEP
o-Xylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEL	07/28/2022 18:29 AC-NY12058,PADEP	PD
p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEL	07/28/2022 18:29 AC-NY12058,PADEP	PD
* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/28/2022 08:00	07/28/2022 18:29	PD
* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/28/2022 08:00	07/28/2022 18:29	PD
p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C	CTDOH.NE	07/28/2022 08:00 LAC-NY10854.NEL/	07/28/2022 18:29 AC-NY12058.NJDEP.	PD PADEP
sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C		07/28/2022 08:00	07/28/2022 18:29	PD
Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C		07/28/2022 08:00	07/28/2022 18:29	PD
tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C		07/28/2022 08:00	07/28/2022 18:29	PD
tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C		07/28/2022 08:00	07/28/2022 18:29	PD PA DEP
Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C		07/28/2022 08:00	07/28/2022 18:29	PD
Toluene	ND		ug/L	0.200	0.500	1	EPA 8260C		07/28/2022 08:00	07/28/2022 18:29	PD
trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/28/2022 08:00	07/28/2022 18:29	PD
trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEL	07/28/2022 18:29 AC-NY12058,NJDEP,	PD PADEP
Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEL	07/28/2022 18:29 AC-NY12058,NJDEP,	PD PADEP
Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/28/2022 08:00	07/28/2022 18:29 AC-NY12058,NJDEP,	PD
	Methyl acetate Methyl tert-butyl ether (MTBE) Methylene chloride Maphthalene n-Butylbenzene n-Propylbenzene o-Xylene p- & m- Xylenes * p-Diethylbenzene * p-Ethyltoluene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butyl alcohol (TBA) tert-Butylbenzene Tetrachloroethylene Toluene trans-1,2-Dichloropropylene Trichloroethylene Trichloroethylene	Methyl tert-butyl ether (MTBE) 0.560 Methyl tert-butyl ether (MTBE) 0.560 Methylcyclohexane ND Methylene chloride 2.30 Naphthalene ND n-Butylbenzene ND n-Propylbenzene ND o-Xylene ND p- & m- Xylenes ND * p-Diethylbenzene ND * p-Ethyltoluene ND p-Isopropyltoluene ND sec-Butylbenzene ND Styrene ND tert-Butyl alcohol (TBA) ND tert-Butylbenzene ND Tetrachloroethylene ND Toluene ND trans-1,2-Dichloroethylene ND Trichloroethylene ND Trichloroethylene ND	Methyl acetate ND Methyl tert-butyl ether (MTBE) 0.560 Methylene chloride 2.30 B Naphthalene ND n-Butylbenzene ND n-Propylbenzene ND o-Xylene ND * p-Diethylbenzene ND * p-Ethyltoluene ND p-Isopropyltoluene ND sec-Butylbenzene ND Styrene ND tert-Butyl alcohol (TBA) ND Tetrachloroethylene ND Trichloroethylene ND	Methyl acetate ND ug/L Methyl tert-butyl ether (MTBE) 0.560 ug/L Methyleyclohexane ND ug/L Methylene chloride 2.30 B ug/L Naphthalene ND ug/L n-Butylbenzene ND ug/L o-Xylene ND ug/L p-& m-Xylenes ND ug/L * p-Diethylbenzene ND ug/L * p-Ethyltoluene ND ug/L * p-Ethyltoluene ND ug/L Styrene ND ug/L tert-Butyl alcohol (TBA) ND ug/L Tetrachloroethylene ND ug/L Trichloroethylene ND ug/L	Methyl acetate ND ug/L 0.200 Methyl tert-butyl ether (MTBE) 0.560 ug/L 0.200 Methylcyclohexane ND ug/L 0.200 Methylene chloride 2.30 B ug/L 1.00 Maphthalene ND ug/L 1.00 Naphthalene ND ug/L 0.200 n-Butylbenzene ND ug/L 0.200 n-Propylbenzene ND ug/L 0.200 a-Yelene ND ug/L 0.200 * p-Diethylbenzene ND ug/L 0.200 * p-Ethyltoluene ND ug/L 0.200 * p-Ethyltoluene ND ug/L 0.200 sec-Butylbenzene ND ug/L 0.200 Styrene ND ug/L 0.200 tert-Butyl alcohol (TBA) ND ug/L 0.200 tert-Butylbenzene ND ug/L 0.200 Tetrachloroethylene ND ug/L 0.200	Methyl acetate ND ug/L 0.200 0.500 Methyl tert-butyl ether (MTBE) 0.560 ug/L 0.200 0.500 Methyleyclohexane ND ug/L 0.200 0.500 Methylene chloride 2.30 B ug/L 1.00 2.00 Naphthalene ND ug/L 0.200 0.500 n-Butylbenzene ND ug/L 0.200 0.500 n-Propylbenzene ND ug/L 0.200 0.500 o-Xylene ND ug/L 0.200 0.500 * p-Diethylbenzene ND ug/L 0.200 0.500 * p-Diethylbenzene ND ug/L 0.200 0.500 * p-Ethyltoluene ND ug/L 0.200 0.500 * p-Ethyltoluene ND ug/L 0.200 0.500 Styrene ND ug/L 0.200 0.500 Styrene ND ug/L 0.200 0.500 tert-Butylbenzene ND	Methyl acetate ND ug/L 0.200 0.500 1 Methyl tert-butyl ether (MTBE) 0.560 ug/L 0.200 0.500 1 Methylepclohexane ND ug/L 0.200 0.500 1 Methylene chloride 2.30 B ug/L 1.00 2.00 1 Naphthalene ND ug/L 1.00 2.00 1 Naphthalene ND ug/L 0.200 0.500 1 n-Butylbenzene ND ug/L 0.200 0.500 1 n-Propylbenzene ND ug/L 0.200 0.500 1 n-Propylbenzene ND ug/L 0.200 0.500 1 * p-Dicthylbenzene ND ug/L 0.200 0.500 1 * p-Dicthylbenzene ND ug/L 0.200 0.500 1 * p-Ethyltoluene ND ug/L 0.200 0.500 1 sec-Butylbenzene ND ug/L 0.	Methyl acetate	Methyl acetate	Methyl acctate	Methyl acetate

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 13 of 66

Client Sample ID: MW-5AR

York Sample ID: 2

22G1127-02

York Project (SDG) No. 22G1127

Client Project ID 03C497-M Matrix Water Collection Date/Time
July 25, 2022 10:35 am

<u>Date Received</u> 07/26/2022

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Log-in Notes:

Sample Notes:

Sample Notes: EXT-D

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:29 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	96.1 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	102 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	103 %			79-122							

Semi-Volatiles, 8270 - Comprehensive

2-Chloronaphthalene

2-Methylnaphthalene

2-Chlorophenol

2-Methylphenol

2-Nitroaniline

2-Nitrophenol

Sample Prepared by Method: EPA 3510C

91-58-7

95-57-8

91-57-6

95-48-7

88-74-4

88-75-5

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time Method Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	08/01/2022 08:15 NELAC-NY10854,NJDEP,PADE	08/01/2022 20:48	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	08/01/2022 08:15 NELAC-NY10854,NJDEP,PADE	08/01/2022 20:48	КН
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	08/01/2022 08:15 NELAC-NY10854,NJDEP,PADE	08/01/2022 20:48	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDH	08/01/2022 20:48 EP,PADEP	КН
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDH	08/01/2022 20:48 EP,PADEP	КН
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDH	08/01/2022 20:48 EP,PADEP	КН
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDH	08/01/2022 20:48 EP,PADEP	КН
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDH	08/01/2022 20:48 EP,PADEP	КН
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDF	08/01/2022 20:48 EP,PADEP	КН
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.70	5.41	1	EPA 8270D	08/01/2022 08:15	08/01/2022 20:48	KH

2.70

2.70

2.70

2.70

2.70

2.70

5.41

5.41

5.41

5.41

5.41

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

ND

ND

ND

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

Certifications:

EPA 8270D

Certifications:

ClientServices@ Page 14 of 66

CTDOH.NELAC-NY10854.NJDEP.PADEP

CTDOH,NELAC-NY10854,NJDEP,PADEP

CTDOH,NELAC-NY10854,NJDEP,PADEP

CTDOH,NELAC-NY10854,NJDEP,PADEP

CTDOH,NELAC-NY10854,NJDEP,PADEP

CTDOH,NELAC-NY10854,NJDEP,PADEP

CTDOH.NELAC-NY10854.NJDEP.PADEP

KH

KH

KH

KΗ

KΗ

KH

Client Sample ID: MW-5AR **York Sample ID:**

22G1127-02

York Project (SDG) No. 22G1127

Client Project ID 03C497-M

Matrix Water

Collection Date/Time July 25, 2022 10:35 am Date Received 07/26/2022

Semi-Volatiles, 8270 - Comprehensive

	atiles, 8270 - Comprehensive				Log-in	Notes:		Sam	ple Note	s: EXT-D		
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EPPADEP	КН
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:		08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48	KH
99-09-2	3-Nitroaniline	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	КН
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	КН
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	KH
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	KH
100-01-6	4-Nitroaniline	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	KH
100-02-7	4-Nitrophenol	ND		ug/L	5.41	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	KH
98-86-2	Acetophenone	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	NELAC-N	08/01/2022 08:15 /10854,NJDEP,PADEI	08/01/2022 20:48	KH
100-52-7	Benzaldehyde	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	NELAC-N	08/01/2022 08:15 /10854,NJDEP,PADEI	08/01/2022 20:48	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	КН
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.08	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	КН
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	КН
105-60-2	Caprolactam	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	NELAC-N	08/01/2022 08:15 /10854,NJDEP,PADEI	08/01/2022 20:48	KH
86-74-8	Carbazole	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	КН
132-64-9	Dibenzofuran	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE		KH
84-66-2	Diethyl phthalate	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	KH
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	KH
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 20:48 EP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 15 of 66

Client Sample ID: MW-5AR

York Sample ID:

22G1127-02

York Project (SDG) No. 22G1127

Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> July 25, 2022 10:35 am Date Received 07/26/2022

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in	Not	es:	

Sample Notes: EXT-D

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.41	10.8	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 20:48 EP,PADEP	КН
78-59-1	Isophorone	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDF	08/01/2022 20:48 EP,PADEP	КН
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDF	08/01/2022 20:48 EP,PADEP	КН
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDF	08/01/2022 20:48 EP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDF	08/01/2022 20:48 EP,PADEP	КН
2312-35-8	* Propargite	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:		08/01/2022 08:15	08/01/2022 20:48	KH
110-86-1	Pyridine	ND		ug/L	2.70	5.41	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 20:48 EP,PADEP	KH
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	35.6 %			19.7-63.1							
4165-62-2	Surrogate: SURR: Phenol-d5	19.8 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	77.6 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	74.5 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	111 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	90.0 %			30.7-106							

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes: EXT-D

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ Dil	lution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	2.22	ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJD	08/01/2022 18:49 EP,PADEP	КН
208-96-8	Acenaphthylene	ND	ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH
120-12-7	Anthracene	ND	ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH
1912-24-9	Atrazine	ND	ug/L	0.541	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP	KH
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND	ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

entServices@ Page 16

(203) 325-1371 FA

ClientServices@

Page 16 of 66

Client Sample ID: MW-5AR

York Sample ID:

22G1127-02

York Project (SDG) No. 22G1127 Client Project ID 03C497-M Matrix Water Collection Date/Time
July 25, 2022 10:35 am

Date Received 07/26/2022

Semi-volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes: EXT-D

Sample	Prepared	by I	Method:	EΡΛ	3510C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	0.616		ug/L	0.541	1	EPA 8270D SIM	08/01/2022 08:15	08/01/2022 18:49	KH
							Certifications: CTDOH,N	ELAC-NY10854,NJD	EP	
218-01-9	Chrysene	ND		ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH
206-44-0	Fluoranthene	ND		ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH
86-73-7	Fluorene	ND		ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH
118-74-1	Hexachlorobenzene	ND		ug/L	0.0216	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	0.541	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP	KH
67-72-1	Hexachloroethane	ND		ug/L	0.541	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH
98-95-3	Nitrobenzene	ND		ug/L	0.270	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP	KH
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.541	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP	KH
87-86-5	Pentachlorophenol	ND		ug/L	0.270	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP	KH
85-01-8	Phenanthrene	ND		ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH
129-00-0	Pyrene	ND		ug/L	0.0541	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 18:49 EP,PADEP	KH

Sample Information

Client Sample ID: MW-1AR

York Sample ID:

22G1127-03

York Project (SDG) No. 22G1127

Client Project ID 03C497-M Matrix Water Collection Date/Time
July 25, 2022 11:45 am

Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6 1,1,1,2	Tetrachloroethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NELA	07/28/2022 18:56 AC-NY12058,NJDEP,	PD PADEP

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 1

Page 17 of 66

Client Sample ID: MW-1AR

York Sample ID: 22G1127-03

York Project (SDG) No. 22G1127 Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> July 25, 2022 11:45 am Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

	ed by Method: EPA 5030B				<u> </u>	. 1000		Sum	710 1 (Otes	<u></u>		
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
79-00-5	1,1,2-Trichloroethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
75-34-3	1,1-Dichloroethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY1	07/28/2022 18:56 2058,NJDEP,PADEP	
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY1	07/28/2022 18:56 2058,NJDEP,PADEP	
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY1	07/28/2022 18:56 2058,NJDEP,PADEP	
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
106-93-4	1,2-Dibromoethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
95-50-1	1,2-Dichlorobenzene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
107-06-2	1,2-Dichloroethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
78-87-5	1,2-Dichloropropane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
541-73-1	1,3-Dichlorobenzene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
142-28-9	1,3-Dichloropropane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY1	07/28/2022 18:56 2058,NJDEP,PADEP	
106-46-7	1,4-Dichlorobenzene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
123-91-1	1,4-Dioxane	ND		ug/L	200	400	5	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY1	07/28/2022 18:56 2058,NJDEP,PADEP	
78-93-3	2-Butanone	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 AC-NY12058,NJDE	
591-78-6	2-Hexanone	ND		ug/L	1.00	2.50	5	EPA 8260C		07/28/2022 08:00	07/28/2022 18:56 AC-NY12058,NJDE	PD
108-10-1	4-Methyl-2-pentanone	ND		ug/L	1.00	2.50	5	EPA 8260C		07/28/2022 08:00	07/28/2022 18:56 AC-NY12058,NJDE	PD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 18 of 66

Client Sample ID: MW-1AR

York Sample ID: 22G1127-03

York Project (SDG) No. 22G1127 Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> July 25, 2022 11:45 am Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepare	Sample Prepared by Method: EPA 5030B												
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst		
67-64-1	Acetone	ND		ug/L	5.00	10.0	5	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058,NJDEF	PD P,PADEP		
107-02-8	Acrolein	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058,NJDEF	PD P,PADEP		
107-13-1	Acrylonitrile	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058,NJDEF	PD P,PADEP		
71-43-2	Benzene	62.6		ug/L	1.00	2.50	5	EPA 8260C	07/28/2022 08:00	07/28/2022 18:56	PD		
74-97-5	Bromochloromethane	ND		ug/L	1.00	2.50	5	Certifications: EPA 8260C	CTDOH,NELAC-NY10854,NE 07/28/2022 08:00	07/28/2022 18:56	P,PADEP PD		
74 77 3	Bromoemoromemane	ND		ug/L	1.00	2.50	,		NELAC-NY10854,NELAC-NY1		10		
75-27-4	Bromodichloromethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058,NJDEF	PD P,PADEP		
75-25-2	Bromoform	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058,NJDEF	PD P,PADEP		
74-83-9	Bromomethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058,NJDEF	PD P,PADEP		
75-15-0	Carbon disulfide	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058,NJDEF	PD P,PADEP		
56-23-5	Carbon tetrachloride	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058,NJDEF	PD P,PADEP		
108-90-7	Chlorobenzene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications: C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058,NJDEF	PD P,PADEP		
75-00-3	Chloroethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications: C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058,NJDEF	PD P,PADEP		
67-66-3	Chloroform	ND		ug/L	1.00	2.50	5	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56	PD		
74-87-3	Chloromethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications: C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058.NJDEF	PD P.PADEP		
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	1.00	2.50	5	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56	PD		
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	1.00	2.50	5	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56	PD		
110-82-7	Cyclohexane	41.6		ug/L	1.00	2.50	5	EPA 8260C	07/28/2022 08:00	07/28/2022 18:56	PD		
									NELAC-NY10854,NELAC-NY	12058,NJDEP,PADEP			
124-48-1	Dibromochloromethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058,NJDEF	PD P,PADEP		
74-95-3	Dibromomethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications: N	07/28/2022 08:00 NELAC-NY10854,NELAC-NY1	07/28/2022 18:56 2058,NJDEP,PADEP	PD		
75-71-8	Dichlorodifluoromethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications: N	07/28/2022 08:00 NELAC-NY10854,NELAC-NY1	07/28/2022 18:56 2058,NJDEP,PADEP	PD		
100-41-4	Ethyl Benzene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058,NJDEF	PD P,PADEP		
87-68-3	Hexachlorobutadiene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications: N	07/28/2022 08:00 NELAC-NY10854,NELAC-NY1	07/28/2022 18:56 2058,NJDEP,PADEP	PD		
98-82-8	Isopropylbenzene	2.55		ug/L	1.00	2.50	5	EPA 8260C	07/28/2022 08:00	07/28/2022 18:56	PD		
								Certifications:	CTDOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 19 of 66

Client Sample ID: MW-1AR

York Sample ID: 22G1127-03

York Project (SDG) No. 22G1127

Sample Prepared by Method: EPA 5030B

Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> July 25, 2022 11:45 am Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-20-9	Methyl acetate	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 710854,NELAC-NY	07/28/2022 18:56 12058,NJDEP,PADEP	PD
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:56 LAC-NY12058,NJDEF	PD P.PADEP
108-87-2	Methylcyclohexane	12.7		ug/L	1.00	2.50	5	EPA 8260C		07/28/2022 08:00	07/28/2022 18:56	PD
								Certifications:	NELAC-N	Y10854,NELAC-NY	12058,NJDEP,PADEP	•
75-09-2	Methylene chloride	19.2	В	ug/L	5.00	10.0	5	EPA 8260C		07/28/2022 08:00	07/28/2022 18:56	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
91-20-3	Naphthalene	ND		ug/L	5.00	10.0	5	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 /10854,NELAC-NY	07/28/2022 18:56 12058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:56 LAC-NY12058,NJDEF	PD P,PADEP
103-65-1	n-Propylbenzene	1.70	J	ug/L	1.00	2.50	5	EPA 8260C		07/28/2022 08:00	07/28/2022 18:56	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
95-47-6	o-Xylene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:56 LAC-NY12058,PADEI	PD
179601-23-1	p- & m- Xylenes	ND		ug/L	2.50	5.00	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 LAC-NY12058,PADEI	PD
105-05-5	* p-Diethylbenzene	1.05	J	ug/L	1.00	2.50	5	EPA 8260C		07/28/2022 08:00	07/28/2022 18:56	PD
								Certifications:				
622-96-8	* p-Ethyltoluene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:		07/28/2022 08:00	07/28/2022 18:56	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 LAC-NY12058,NJDEF	PD P,PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:56 LAC-NY12058,NJDEF	PD P,PADEP
100-42-5	Styrene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:		07/28/2022 08:00	07/28/2022 18:56 LAC-NY12058,NJDEF	PD
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	2.50	5.00	5	EPA 8260C Certifications:		07/28/2022 08:00	07/28/2022 18:56	PD
98-06-6	tert-Butylbenzene	ND		ug/L	1.00	2.50	5	EPA 8260C		07/28/2022 08:00	07/28/2022 18:56	PD
107.10.4				/ -	1.00	2.50	_	Certifications:	CTDOH,NE		LAC-NY12058,NJDEF	
127-18-4	Tetrachloroethylene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:56 LAC-NY12058,NJDEF	PD P,PADEP
108-88-3	Toluene	2.60		ug/L	1.00	2.50	5	EPA 8260C		07/28/2022 08:00	07/28/2022 18:56	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 18:56 LAC-NY12058,NJDEF	PD P,PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 18:56 LAC-NY12058,NJDEF	PD P,PADEP
79-01-6	Trichloroethylene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:		07/28/2022 08:00	07/28/2022 18:56 LAC-NY12058,NJDEF	PD
75-69-4	Trichlorofluoromethane	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:		07/28/2022 08:00	07/28/2022 18:56 LAC-NY12058,NJDEF	PD
75-01-4	Vinyl Chloride	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:		07/28/2022 08:00	07/28/2022 18:56 LAC-NY12058,NJDEF	PD
								Certifications.	CIDOII,NE	.L. 10-14 1 1005-4,14E1	21 10-14 1 12020,143DEF	,111001

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 20 of 66

Client Sample ID: MW-1AR **York Sample ID:** 22G1127-03

York Project (SDG) No. 22G1127

Client Project ID 03C497-M

Matrix Water

Collection Date/Time July 25, 2022 11:45 am Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/L	3.00	7.50	5	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 18:56 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	103 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	99.9 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.9 %			79-122							

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes: EXT-EM

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 NELAC-NY10854,NJDEP,PADE	08/01/2022 21:18 P	KH
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 NELAC-NY10854,NJDEP,PADE	08/01/2022 21:18 P	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 NELAC-NY10854,NJDEP,PADE	08/01/2022 21:18 P	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJD	08/01/2022 21:18 EP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJD	08/01/2022 21:18 EP,PADEP	KH
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJD	08/01/2022 21:18 EP,PADEP	KH
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJD	08/01/2022 21:18 EP,PADEP	KH
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	08/01/2022 08:15 CTDOH,NELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 21 of 66

Log-in Notes:

Client Sample ID: MW-1AR **York Sample ID:** 22G1127-03

York Project (SDG) No. Client Project ID 22G1127 03C497-M

Matrix Collection Date/Time Water July 25, 2022 11:45 am

Sample Notes: EXT-EM

Date Received 07/26/2022

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C												
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	КН
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	КН
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
100-02-7	4-Nitrophenol	ND		ug/L	5.00	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	08/01/2022 08:15 Y10854,NJDEP,PADE	08/01/2022 21:18 P	KH
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	08/01/2022 08:15 Y10854,NJDEP,PADE	08/01/2022 21:18 P	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.00	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	08/01/2022 08:15 Y10854,NJDEP,PADE	08/01/2022 21:18 P	KH
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18	КН
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18	КН
									,	,	•	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 www.YORKLAB.com

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

Page 22 of 66 ClientServices@

Client Sample ID: MW-1AR

York Sample ID:

22G1127-03

York Project (SDG) No. 22G1127

Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> July 25, 2022 11:45 am Date Received 07/26/2022

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes: EXT-EM

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.00	10.0	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:18 EP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDF	08/01/2022 21:18 EP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDF	08/01/2022 21:18 EP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDF	08/01/2022 21:18 EP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15	08/01/2022 21:18	KH
110-86-1	Pyridine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:18 EP,PADEP	KH

	Surrogate Recoveries	Result	Acceptance Range
367-12-4	Surrogate: SURR: 2-Fluorophenol	34.9 %	19.7-63.1
4165-62-2	Surrogate: SURR: Phenol-d5	18.5 %	10.1-41.7
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	69.7 %	50.2-113
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	74.2 %	39.9-105
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	106 %	39.3-151
1718-51-0	Surrogate: SURR: Terphenyl-d14	88.4 %	30.7-106

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes: EXT-EM

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	0.200		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJD	08/01/2022 19:20 EP,PADEP	КН
208-96-8	Acenaphthylene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:20 EP,PADEP	KH
120-12-7	Anthracene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:20 EP,PADEP	KH
1912-24-9	Atrazine	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:20 EP	KH
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:20 EP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:20 EP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:20 EP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:20 EP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:20 EP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

s@ Page 23 of 66

Client Sample ID: MW-1AR

York Sample ID: 22G1127-03

York Project (SDG) No. 22G1127 Client Project ID 03C497-M Matrix Water Collection Date/Time
July 25, 2022 11:45 am

Date Received 07/26/2022

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes	:
--------------	---

Sample Notes: EXT-EM

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ Diluti	on Reference Method	Date/Time Prepared Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	ND	ug/L	0.500 1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15	KH
218-01-9	Chrysene	ND	ug/L	0.0500 1		08/01/2022 08:15 08/01/2022 19:20 ELAC-NY10854,NJDEP,PADEP	КН
53-70-3	Dibenzo(a,h)anthracene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15	KH
206-44-0	Fluoranthene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15	KH
86-73-7	Fluorene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15	KH
118-74-1	Hexachlorobenzene	ND	ug/L	0.0200 1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 08/01/2022 19:20 ELAC-NY10854,NJDEP	KH
87-68-3	Hexachlorobutadiene	ND	ug/L	0.500 1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15	KH
67-72-1	Hexachloroethane	ND	ug/L	0.500 1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 08/01/2022 19:20 ELAC-NY10854,NJDEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15 08/01/2022 19:20 ELAC-NY10854,NJDEP,PADEP	KH
91-20-3	Naphthalene	0.180	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 08/01/2022 19:20 ELAC-NY10854,NJDEP,PADEP	KH
98-95-3	Nitrobenzene	ND	ug/L	0.250 1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15	KH
62-75-9	N-Nitrosodimethylamine	ND	ug/L	0.500 1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15	KH
87-86-5	Pentachlorophenol	ND	ug/L	0.250 1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15	KH
85-01-8	Phenanthrene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15	KH
129-00-0	Pyrene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,NE	08/01/2022 08:15	KH

Sample Information

Client Sample ID: MW-3AR York Sample ID: 22G1127-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22G112703C497-MWaterJuly 25, 2022 12:40 pm07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

120 RESEARCH DRIVE

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NELA	07/28/2022 19:23 AC-NY12058,NJDEP,	PD PADEP

www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

(203) 325-1371

FAX (203) 357-0166

THO I MOIND THEE, 141 THE 10

3) 357-0166 ClientServices@ Page 24 of 66

Log-in Notes:

Client Sample ID: MW-3AR

York Sample ID: 22G1127-04

York Project (SDG) No. 22G1127 Client Project ID 03C497-M Matrix Water Collection Date/Time
July 25, 2022 12:40 pm

Sample Notes:

Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Sample Prepare	ed by Method: EPA 5030B								_			
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEF	PD P,PADEP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	07/28/2022 08:00 Y10854,NELAC-NY1	07/28/2022 19:23 2058,NJDEP,PADEP	PD
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	07/28/2022 08:00 Y10854,NELAC-NY1	07/28/2022 19:23 2058,NJDEP,PADEP	PD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	07/28/2022 08:00 Y10854,NELAC-NY1	07/28/2022 19:23 2058,NJDEP,PADEP	PD
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	07/28/2022 08:00 Y10854,NELAC-NY1	07/28/2022 19:23 2058,NJDEP,PADEP	PD
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C Certifications:	NELAC-N	07/28/2022 08:00 Y10854,NELAC-NY1	07/28/2022 19:23 2058,NJDEP,PADEP	PD
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23	PD P,PADEP
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/28/2022 08:00 ELAC-NY10854,NEI	07/28/2022 19:23	PD
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23	PD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 25 of 66

FAX (203) 357-0166 ClientService

Client Sample ID: MW-3AR

York Sample ID: 22G1127-04

York Project (SDG) No. 22G1127

Client Project ID 03C497-M Matrix Water Collection Date/Time
July 25, 2022 12:40 pm

Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

	red by Method: EPA 5030B	<u>ive</u>			<u> </u>	10000		Sump	ic mores	<u></u>		
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference !	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
71-43-2	Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY	07/28/2022 19:23 2058,NJDEP,PADEP	PD
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
110-82-7	Cyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY	07/28/2022 19:23 2058,NJDEP,PADEP	PD
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NEI	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY	07/28/2022 19:23 2058,NJDEP,PADEP	PD
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY	07/28/2022 19:23 2058,NJDEP,PADEP	PD
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/28/2022 08:00 10854,NELAC-NY	07/28/2022 19:23 2058,NJDEP,PADEP	PD
98-82-8	Isopropylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/28/2022 08:00 LAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDE	PD P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 26 of 66

Client Sample ID: MW-3AR

York Sample ID: 22G1127-04

York Project (SDG) No. 22G1127 Client Project ID 03C497-M Matrix Water Collection Date/Time
July 25, 2022 12:40 pm

Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

	ed by Method: EPA 5030B										
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
79-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 NELAC-NY10854,NELAC-NY1	07/28/2022 19:23 2058,NJDEP,PADEP	PD
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
108-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 NELAC-NY10854,NELAC-NY1	07/28/2022 19:23 2058,NJDEP,PADEP	PD
75-09-2	Methylene chloride	1.20	J, B	ug/L	1.00	2.00	1	EPA 8260C	07/28/2022 08:00	07/28/2022 19:23	PD
								Certifications:	CTDOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	07/28/2022 08:00 NELAC-NY10854,NELAC-NY1	07/28/2022 19:23 2058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
95-47-6	o-Xylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,PADE	PD P
179601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,PADE	PD P
105-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00	07/28/2022 19:23	PD
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00	07/28/2022 19:23	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058.NJDEI	PD P.PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
100-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23	PD
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C	07/28/2022 08:00 NELAC-NY10854,NELAC-NY1	07/28/2022 19:23	PD
98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
127-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23	PD
108-88-3	Toluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23	PD
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23	PD
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23 AC-NY12058,NJDEI	PD P,PADEP
75-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23	PD
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00 CTDOH,NELAC-NY10854,NEI	07/28/2022 19:23	PD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 27 of 66

Client Sample ID: MW-3AR

York Sample ID: 22G

22G1127-04

York Project (SDG) No. 22G1127

Client Project ID 03C497-M Matrix Water Collection Date/Time
July 25, 2022 12:40 pm

Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

|--|

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:23 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	103 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	99.5 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.1 %			79-122							

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes: EXT-EM
---------------	----------------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	08/01/2022 08:15 /10854,NJDEP,PADEP	08/01/2022 21:48	KH
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	08/01/2022 08:15 /10854,NJDEP,PADEP	08/01/2022 21:48	КН
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	08/01/2022 08:15 /10854,NJDEP,PADEP	08/01/2022 21:48	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:48 P,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:48 P,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:48 P,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:48 P,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:48 P,PADEP	КН
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:48 P,PADEP	КН
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:48 P,PADEP	КН
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:48 P,PADEP	КН
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:48 P,PADEP	КН
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:48 P,PADEP	КН
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NE	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:48 P,PADEP	КН
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:48 P,PADEP	КН
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,NI	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 21:48 P,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 28 of 66

Client Sample ID: MW-3AR

Sample Prepared by Method: EPA 3510C

York Sample ID: 22G1127-04

<u>York Project (SDG) No.</u> <u>Client Project ID</u> 22G1127 03C497-M MatrixCollection Date/TimeWaterJuly 25, 2022 12:40 pm

Date Received 07/26/2022

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes: EXT-EM

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	КН
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDE	08/01/2022 21:48 EP,PADEP	КН
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
100-02-7	4-Nitrophenol	ND		ug/L	5.00	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 0854,NJDEP,PADE	08/01/2022 21:48 P	KH
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 0854,NJDEP,PADE	08/01/2022 21:48 P	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDI	08/01/2022 21:48 EP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.00	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 0854,NJDEP,PADE	08/01/2022 21:48 P	KH
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDI	08/01/2022 21:48 EP,PADEP	KH
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDE	08/01/2022 21:48 EP,PADEP	KH
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15 AC-NY10854,NJDE	08/01/2022 21:48 EP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 29 of 66

Client Sample ID: MW-3AR

York Sample ID:

22G1127-04

York Project (SDG) No. 22G1127

Client Project ID 03C497-M Matrix Water Collection Date/Time
July 25, 2022 12:40 pm

Date Received 07/26/2022

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

	Log-	·in	No	tes:
--	------	-----	----	------

Sample Notes: EXT-EM

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.00	10.0	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDI	08/01/2022 21:48 EP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	КН
2312-35-8	* Propargite	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		08/01/2022 08:15	08/01/2022 21:48	KH
110-86-1	Pyridine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDF	08/01/2022 21:48 EP,PADEP	KH
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	34.1 %			19.7-63.1							
4165-62-2	Surrogate: SURR: Phenol-d5	17.1 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	70.4 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	69.8 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	108 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	82.3 %			30.7-106							

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes: EXT-EM

CAS No.	. Parameter	Result	Flag Units	Reported to LOQ Dilution	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP,PADEP	КН
208-96-8	Acenaphthylene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP,PADEP	KH
120-12-7	Anthracene	0.0500	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 IELAC-NY10854,NJD	08/01/2022 19:52 EP,PADEP	KH
1912-24-9	Atrazine	ND	ug/L	0.500 1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP	KH
56-55-3	Benzo(a)anthracene	0.0600	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 IELAC-NY10854,NJD	08/01/2022 19:52 EP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	0.0500	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 IELAC-NY10854,NJD	08/01/2022 19:52 EP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	0.0500	ug/L	0.0500 1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 IELAC-NY10854,NJD	08/01/2022 19:52 EP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 30 of 66

Client Sample ID: MW-3AR **York Sample ID:**

22G1127-04

York Project (SDG) No. 22G1127

Client Project ID 03C497-M

Matrix Water

Collection Date/Time July 25, 2022 12:40 pm Date Received 07/26/2022

Semi-volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes: EXT-EM

Sami	nle	Pre	nared	by	Method:	$FP\Delta$	3510C	
Sami	pic	110	pareu	υy	Method.	LIA	22100	

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	1.92	ug/L	0.500	1	EPA 8270D SIM	08/01/2022 08:15	08/01/2022 19:52	КН
							IELAC-NY10854,NJDI		
218-01-9	Chrysene	0.0500	ug/L	0.0500	1	EPA 8270D SIM	08/01/2022 08:15	08/01/2022 19:52	KH
						Certifications: CTDOH,N	IELAC-NY10854,NJDI	EP,PADEP	
53-70-3	Dibenzo(a,h)anthracene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP,PADEP	KH
206-44-0	Fluoranthene	0.110	ug/L	0.0500	1	EPA 8270D SIM	08/01/2022 08:15	08/01/2022 19:52	KH
						Certifications: CTDOH,N	IELAC-NY10854,NJDI	EP,PADEP	
86-73-7	Fluorene	0.200	ug/L	0.0500	1	EPA 8270D SIM	08/01/2022 08:15	08/01/2022 19:52	KH
						Certifications: CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
118-74-1	Hexachlorobenzene	ND	ug/L	0.0200	1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP	KH
87-68-3	Hexachlorobutadiene	ND	ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP	KH
67-72-1	Hexachloroethane	ND	ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP,PADEP	KH
91-20-3	Naphthalene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP,PADEP	KH
98-95-3	Nitrobenzene	ND	ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP	KH
62-75-9	N-Nitrosodimethylamine	ND	ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP	KH
87-86-5	Pentachlorophenol	ND	ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH,N	08/01/2022 08:15 ELAC-NY10854,NJDE	08/01/2022 19:52 EP	KH
85-01-8	Phenanthrene	0.0500	ug/L	0.0500	1	EPA 8270D SIM	08/01/2022 08:15	08/01/2022 19:52	KH
						Certifications: CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
129-00-0	Pyrene	0.0900	ug/L	0.0500	1	EPA 8270D SIM	08/01/2022 08:15	08/01/2022 19:52	KH
						Certifications: CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	

Sample Information

Client Sample ID: DUP **York Sample ID:** 22G1127-05 Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time

03C497-M Water July 25, 2022 3:00 pm 22G1127

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

Reported to LOD/MDL Date/Time Date/Time CAS No. Parameter Result Flag Units Dilution Reference Method Prepared Analyzed Analyst

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

Page 31 of 66

07/26/2022

Client Sample ID: DUP

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 22G1127
 03C497-M
 Water
 July 25, 2022 3:00 pm
 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

York Sample ID:

22G1127-05

Sample Prepared by Method: EPA 50

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		te/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/ CTDOH,NELAC-NY10854,NELAC-NY	8/2022 19:50 12058,NJDEP	PD PADEP,
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/ CTDOH,NELAC-NY10854,NELAC-NY	8/2022 19:50 12058,NJDEP	PD PADEP,
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/ CTDOH,NELAC-NY10854,NELAC-NY	8/2022 19:50 12058,NJDEP	PD PADEP,
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/ CTDOH,NELAC-NY10854,NELAC-NY	8/2022 19:50 12058,NJDEP	PD PADEP,
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28 CTDOH,NELAC-NY10854,NELAC-NY	8/2022 19:50 12058,NJDEP	PD PADEP,
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28 CTDOH,NELAC-NY10854,NELAC-NY	8/2022 19:50 12058,NJDEP	PD PADEP,
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28 CTDOH,NELAC-NY10854,NELAC-NY	8/2022 19:50 12058,NJDEP	PD PADEP,
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/NELAC-NY10854,NELAC-NY12058,N	8/2022 19:50 JDEP,PADEP	PD
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28 NELAC-NY10854,NELAC-NY12058,N.	8/2022 19:50 JDEP,PADEP	PD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/NELAC-NY10854,NELAC-NY12058,N	8/2022 19:50 JDEP,PADEP	PD
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		8/2022 19:50	PD PADEP,
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28 CTDOH,NELAC-NY10854,NELAC-NY	8/2022 19:50 12058,NJDEP	PD PADEP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		8/2022 19:50	PD
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28 CTDOH,NELAC-NY10854,NELAC-NY	8/2022 19:50 12058,NJDEP	PD PADEP,
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28 CTDOH,NELAC-NY10854,NELAC-NY	8/2022 19:50 12058,NJDEP	PD PADEP,
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28 CTDOH,NELAC-NY10854,NELAC-NY	8/2022 19:50 12058,NJDEP	PD PADEP,
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28 CTDOH,NELAC-NY10854,NELAC-NY	8/2022 19:50 12058,NJDEP	PD PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/CTDOH,NELAC-NY10854,NELAC-NY	8/2022 19:50 12058,NJDEP	PD PADEP,
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		8/2022 19:50	PD
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		8/2022 19:50	PD PADEP,
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C Certifications:		8/2022 19:50	PD
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		8/2022 19:50	PD PADEP
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/2	8/2022 19:50	PD PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 32 of 66

Client Sample ID: York Sample ID:

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 22G1127
 03C497-M
 Water
 July 25, 2022 3:00 pm
 07/26/2022

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:	San	nple Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Method Prepared		Analyst
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		
67-64-1	Acetone	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 19:50	PD
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 19:50	PD
71-43-2	Benzene	0.250	J	ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:0		
		0.200						Certifications:	CTDOH,NELAC-NY10854,1	NELAC-NY12058,NJDI	EP,PADEP
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 NELAC-NY10854,NELAC-N		
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N		
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 19:50	PD
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 19:50	PD
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 19:50	PD
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 19:50	PD
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 19:50	PD
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 19:50	PD
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 19:50	PD
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 19:50	PD
110-82-7	Cyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 NELAC-NY10854,NELAC-N	0 07/28/2022 19:50	PD
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 19:50	PD
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 NELAC-NY10854,NELAC-N	0 07/28/2022 19:50	PD
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 NELAC-NY10854,NELAC-N	0 07/28/2022 19:50	PD
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 CTDOH,NELAC-NY10854,N	0 07/28/2022 19:50	PD
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:0 NELAC-NY10854,NELAC-N	0 07/28/2022 19:50	PD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 33 of 66

22G1127-05

Client Sample ID: York Sample ID: 22G1127-05

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 22G1127
 03C497-M
 Water
 July 25, 2022 3:00 pm
 07/26/2022

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

98-82-8

npie i repare	d by Method. ETA 3030B									
CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed
82-8	Isopropylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications: CTDOH,N	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:50 AC-NY12058,NJDEP,PA
20-9	Mathyl acatata	ND		ng/I	0.200	0.500	1	EPA 8260C	07/28/2022 08:00	07/28/2022 19:50

Log-in Notes:

Sample Notes:

Analyst

PD

70-02-0	isopropytoenzene	ND		ug/L	0.200	0.500	1	Certifications:	CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
79-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	0.720		ug/L	0.200	0.500	1	EPA 8260C	07/28/2022 08:00
								Certifications:	CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
108-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
75-09-2	Methylene chloride	3.49	В	ug/L	1.00	2.00	1	EPA 8260C	07/28/2022 08:00
								Certifications:	CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
91-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
104-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
95-47-6	o-Xylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,PADEP
179601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,PADEP
105-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00
99-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
100-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
127-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
108-88-3	Toluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
75-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/28/2022 08:00 07/28/2022 19:50 PD CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

120 RESEARCH DRIVE STRATFORD, CT 06615 • 132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 34 of 66

www.YORKLAB.com (203) 325-1371

Client Sample ID: DUP

York Sample ID: 22G1127-05

York Project (SDG) No. Client Project ID 22G1127 03C497-M

Matrix Collection Date/Time July 25, 2022 3:00 pm Water

Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:
---------------	---------------

CAS N	vo. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:50 AC-NY12058,NJDEP	PD PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH,NI	07/28/2022 08:00 ELAC-NY10854,NEL	07/28/2022 19:50 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	97.2 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	102 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	99.3 %			79-122							

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:	Sample Notes: EXT-D

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-N	07/28/2022 09:08 Y10854,NJDEP,PADEP	07/29/2022 00:12	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-N	07/28/2022 09:08 Y10854,NJDEP,PADEP	07/29/2022 00:12	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	NELAC-N	07/28/2022 09:08 Y10854,NJDEP,PADEP	07/29/2022 00:12	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 P,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 P,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 P,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 P,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 P,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 P,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 P,PADEP	KH
91-58-7	2-Chloronaphthalene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 P,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 P,PADEP	KH
91-57-6	2-Methylnaphthalene	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 P,PADEP	KH
95-48-7	2-Methylphenol	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 P,PADEP	КН
88-74-4	2-Nitroaniline	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 P,PADEP	КН

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@ Page 35 of 66

Client Sample ID: DUP

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 22G1127 03C497-M Water July 25, 2022 3:00 pm 07/26/2022

Log-in Notes:

York Sample ID:

Sample Notes: EXT-D

22G1127-05

Semi-Volatiles, 8270 - Comprehensive

Sample Prepar	red by Method: EPA 3510C									D 4 //E!	D (//E!	
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
88-75-5	2-Nitrophenol	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12 EP,PADEP	KH
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12 EP,PADEP	KH
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12 EP,PADEP	KH
99-09-2	3-Nitroaniline	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12 EP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12 EP,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12 EP,PADEP	КН
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12 EP,PADEP	КН
106-47-8	4-Chloroaniline	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12 EP,PADEP	КН
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12 EP.PADEP	KH
100-01-6	4-Nitroaniline	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:		07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12	KH
100-02-7	4-Nitrophenol	ND		ug/L	5.88	5.88	1	EPA 8270D Certifications:		07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12	KH
98-86-2	Acetophenone	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:		07/28/2022 09:08 Y10854,NJDEP,PADE	07/29/2022 00:12	КН
100-52-7	Benzaldehyde	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:		07/28/2022 09:08 Y10854,NJDEP,PADE	07/29/2022 00:12	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:		07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12	КН
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:		07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.18	5.88	1	EPA 8270D Certifications:		07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:		07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12	KH
105-60-2	Caprolactam	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:		07/28/2022 09:08 Y10854,NJDEP,PADE	07/29/2022 00:12	KH
86-74-8	Carbazole	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:		07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12	KH
132-64-9	Dibenzofuran	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:		07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.94	5.88	1	EPA 8270D		07/28/2022 09:08	07/29/2022 00:12	КН
131-11-3	Dimethyl phthalate	ND		ug/L	2.94	5.88	1	Certifications:		07/28/2022 09:08	07/29/2022 00:12	KH
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.94	5.88	1	Certifications:		07/28/2022 09:08	07/29/2022 00:12	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418

(203) 325-1371 www.YORKLAB.com FAX (203) 357-0166 ClientServices@ Page 36 of 66

Client Sample ID: York Sample ID: 22G1127-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22G112703C497-MWaterJuly 25, 2022 3:00 pm07/26/2022

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes: EXT-D
---------------	---------------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDF	07/29/2022 00:12 EP,PADEP	КН
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.88	11.8	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDF	07/29/2022 00:12 EP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 EP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 EP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDF	07/29/2022 00:12 EP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDE	07/29/2022 00:12 EP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:		07/28/2022 09:08	07/29/2022 00:12	KH
110-86-1	Pyridine	ND		ug/L	2.94	5.88	1	EPA 8270D Certifications:	CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/29/2022 00:12 EP,PADEP	KH
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	30.0 %			19.7-63.1							
4165-62-2	Surrogate: SURR: Phenol-d5	16.9 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	61.7 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	63.0 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	92.3 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	86.9 %			30.7-106							

Semi-volatiles, 8270 - Comprehensive

ample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes: EXT-D

CAS No	o. Parameter	Result	Flag Uni	Reported LOQ	o Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND	ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/28/2022 19:43 EP,PADEP	КН
208-96-8	Acenaphthylene	ND	ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/28/2022 19:43 EP,PADEP	KH
120-12-7	Anthracene	ND	ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/28/2022 19:43 EP,PADEP	КН
1912-24-9	Atrazine	ND	ug/L	0.588	1	EPA 8270D SIM Certifications: CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/28/2022 19:43 EP	KH
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/28/2022 19:43 EP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/28/2022 19:43 EP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/28/2022 19:43 EP,PADEP	КН
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,N	07/28/2022 09:08 ELAC-NY10854,NJDI	07/28/2022 19:43 EP,PADEP	КН

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166 ClientServices@

Page 37 of 66

Client Sample ID: York Sample ID: 22G1127-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22G112703C497-MWaterJuly 25, 2022 3:00 pm07/26/2022

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

•		* T .	
	ωσ-in	Notes:	

Sample Notes: EXT-D

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P,PADEP	KH
117-81-7	Bis(2-ethylhexyl)phthalate	2.33	В	ug/L	0.588	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 ELAC-NY10854,NJDI	07/28/2022 19:43 EP	KH
218-01-9	Chrysene	ND		ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P,PADEP	КН
206-44-0	Fluoranthene	ND		ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P,PADEP	КН
86-73-7	Fluorene	ND		ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P,PADEP	KH
118-74-1	Hexachlorobenzene	ND		ug/L	0.0235	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	0.588	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P	KH
67-72-1	Hexachloroethane	ND		ug/L	0.588	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P,PADEP	KH
98-95-3	Nitrobenzene	ND		ug/L	0.294	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P	KH
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.588	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P	KH
87-86-5	Pentachlorophenol	ND		ug/L	0.294	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P	КН
35-01-8	Phenanthrene	0.0588		ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 ELAC-NY10854,NJDI	07/28/2022 19:43 EP,PADEP	КН
129-00-0	Pyrene	ND		ug/L	0.0588	1	EPA 8270D SIM Certifications: CTDOH,NE	07/28/2022 09:08 LAC-NY10854,NJDE	07/28/2022 19:43 P,PADEP	КН

Sample Information

Client Sample ID: Trip Blank 22G1127-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22G112703C497-MWaterJuly 25, 2022 3:00 pm07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared	by	Method:	EPA	5030B	
-----------------	----	---------	-----	-------	--

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH	DRIVE	STRATFORD, C	CT 06615		•	132	2-02 89th AV	'ENUE	RICHMOND HILL	., NY 11418	
WWW YORKI AR C	rom	(203) 325-1371				FΔ	X (203) 357-	.0166	ClientServices@	Dage 38	of 66

Client Sample ID: Trip Blank

York Sample ID: 22G1127-06

York Project (SDG) No. 22G1127 Client Project ID 03C497-M Matrix Water Collection Date/Time
July 25, 2022 3:00 pm

Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/29/2022 08:00 LAC-NY10854,NEL	07/29/2022 11:43 AC-NY12058,NJDE	
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 AC-NY12058,NJDE	PD
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 AC-NY12058,NJDE	PD
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 AC-NY12058,NJDE	PD
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/29/2022 08:00 LAC-NY10854,NEL	07/29/2022 11:43 .AC-NY12058,NJDE	
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 AC-NY12058,NJDE	PD
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 AC-NY12058,NJDE	PD
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 2058,NJDEP,PADEP	PD
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/29/2022 08:00 10854,NELAC-NY1	07/29/2022 11:43 2058,NJDEP,PADEP	
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 2058,NJDEP,PADEP	PD
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/29/2022 08:00 LAC-NY10854,NEL	07/29/2022 11:43 .AC-NY12058,NJDE	
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 .AC-NY12058,NJDE	PD
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 AC-NY12058,NJDE	PD
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/29/2022 08:00 LAC-NY10854,NEI	07/29/2022 11:43 .AC-NY12058,NJDE	
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/29/2022 08:00 LAC-NY10854,NEI	07/29/2022 11:43 AC-NY12058,NJDE	
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/29/2022 08:00 LAC-NY10854,NEI	07/29/2022 11:43 .AC-NY12058,NJDE	
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/29/2022 08:00 LAC-NY10854,NEI	07/29/2022 11:43 .AC-NY12058,NJDE	
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/29/2022 08:00 LAC-NY10854,NEI	07/29/2022 11:43 AC-NY12058,NJDE	
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	07/29/2022 08:00 10854,NELAC-NY1	07/29/2022 11:43 2058,NJDEP,PADEP	
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/29/2022 08:00 LAC-NY10854,NEL	07/29/2022 11:43 AC-NY12058,NJDE	
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C Certifications:	NELAC-NY	07/29/2022 08:00 10854,NELAC-NY1	07/29/2022 11:43 2058,NJDEP,PADEP	
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/29/2022 08:00 LAC-NY10854,NEI	07/29/2022 11:43 AC-NY12058,NJDE	
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00 LAC-NY10854,NEL	07/29/2022 11:43	PD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 39 of 66

Client Sample ID: Trip Blank

York Sample ID: 22G1127-06

York Project (SDG) No. 22G1127

Sample Prepared by Method: EPA 5030B

Client Project ID 03C497-M Matrix Water Collection Date/Time
July 25, 2022 3:00 pm

Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NE	07/29/2022 08:00 LAC-NY10854,NEI	07/29/2022 11:43 AC-NY12058,NJDE	
67-64-1	Acetone	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	CTDOH,NE	07/29/2022 08:00 LAC-NY10854,NEI	07/29/2022 11:43 AC-NY12058,NJDE	
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 .AC-NY12058,NJDE	PD
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 .AC-NY12058,NJDE	PD
71-43-2	Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 .AC-NY12058,NJDE	PD
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 12058,NJDEP,PADEF	PD
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 .AC-NY12058,NJDE	PD
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 AC-NY12058,NJDE	PD
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 AC-NY12058,NJDE	PD
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 AC-NY12058,NJDE	PD
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 .AC-NY12058,NJDE	PD
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 .AC-NY12058,NJDE	PD
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 AC-NY12058,NJDE	PD
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 .AC-NY12058,NJDE	PD
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 .AC-NY12058,NJDE	PD
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43 AC-NY12058,NJDE	PD
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	07/29/2022 11:43	PD
110-82-7	Cyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		07/29/2022 08:00	AC-NY12058,NJDE 07/29/2022 11:43 12058,NJDEP,PADEF	PD
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C		07/29/2022 08:00	07/29/2022 11:43	PD
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	Certifications:		07/29/2022 08:00	07/29/2022 11:43	PD
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	Certifications:		07/29/2022 08:00	07/29/2022 11:43	PD
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	Certifications: EPA 8260C		07/29/2022 08:00	07/29/2022 11:43	PD
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	Certifications: EPA 8260C Certifications:		07/29/2022 08:00	.AC-NY12058,NJDE 07/29/2022 11:43 12058,NJDEP,PADEF	PD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 40 of 66

Client Sample ID: Trip Blank

York Sample ID: 22G1127-06

York Project (SDG) No. 22G1127

Sample Prepared by Method: EPA 5030B

Client Project ID 03C497-M Matrix Water Collection Date/Time
July 25, 2022 3:00 pm

Date Received 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Ti e Method Prepa		Date/Time Analyzed	Analyst
98-82-8	Isopropylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085		07/29/2022 11:43 AC-NY12058,NJDEI	PD P,PADEP
79-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 NELAC-NY10854,NELA		07/29/2022 11:43 058,NJDEP,PADEP	PD
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085		07/29/2022 11:43 AC-NY12058,NJDEF	PD P,PADEP
108-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 NELAC-NY10854,NELA		07/29/2022 11:43 058,NJDEP,PADEP	PD
75-09-2	Methylene chloride	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085		07/29/2022 11:43 AC-NY12058,NJDEI	PD P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	07/29/2022 NELAC-NY10854,NELA	08:00	07/29/2022 11:43	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085	08:00	07/29/2022 11:43	PD
103-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085	08:00	07/29/2022 11:43	PD
95-47-6	o-Xylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085	08:00	07/29/2022 11:43	PD
179601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085	08:00	07/29/2022 11:43	PD
105-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022		07/29/2022 11:43	PD
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022	08:00	07/29/2022 11:43	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085		07/29/2022 11:43 AC-NY12058.NJDEI	PD P.PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085	08:00	07/29/2022 11:43	PD
100-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085	08:00	07/29/2022 11:43	PD
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	07/29/2022 NELAC-NY10854,NELA	08:00	07/29/2022 11:43	PD
98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085	08:00	07/29/2022 11:43	PD
127-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085	08:00	07/29/2022 11:43	PD
108-88-3	Toluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085	08:00	07/29/2022 11:43	PD
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085	08:00	07/29/2022 11:43	PD
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085	08:00	07/29/2022 11:43	PD
79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085	08:00	07/29/2022 11:43	PD
75-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	07/29/2022 CTDOH,NELAC-NY1085	08:00	07/29/2022 11:43	PD

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 41 of 66

Client Sample ID: Trip Blank

York Sample ID: 22G1127-06

York Project (SDG) No. 22G1127 Client Project ID 03C497-M Matrix Water Collection Date/Time
July 25, 2022 3:00 pm

<u>Date Received</u> 07/26/2022

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Samr	ole	Pre	nared	bv	Method:	EPA	5030B	

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH,NI	07/29/2022 08:00 ELAC-NY10854,NEL	07/29/2022 11:43 AC-NY12058,NJDEP	PD P,PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH,NI	07/29/2022 08:00 ELAC-NY10854,NEL	07/29/2022 11:43 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	105 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	97.6 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	103 %			79-122							

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 42 of 66

Analytical Batch Summary

Batch ID: BG21534	Preparation Method:	EPA 3510C	Prepared By:	KNL
YORK Sample ID	Client Sample ID	Preparation Date		
22G1127-05	DUP	07/28/22		
BG21534-BLK1	Blank	07/28/22		
BG21534-BLK2	Blank	07/28/22		
BG21534-BS1	LCS	07/28/22		
BG21534-BS2	LCS	07/28/22		
BG21534-BSD1	LCS Dup	07/28/22		
Batch ID: BG21549	Preparation Method:	EPA 5030B	Prepared By:	PD
YORK Sample ID	Client Sample ID	Preparation Date		
22G1127-01	MW-4AR	07/28/22		
22G1127-02	MW-5AR	07/28/22		
22G1127-03	MW-1AR	07/28/22		
22G1127-04	MW-3AR	07/28/22		
22G1127-05	DUP	07/28/22		
BG21549-BLK1	Blank	07/28/22		
BG21549-BS1	LCS	07/28/22		
BG21549-BSD1	LCS Dup	07/28/22		
Batch ID: BG21620	Preparation Method:	EPA 5030B	Prepared By:	PD
YORK Sample ID	Client Sample ID	Preparation Date		
22G1127-06	Trip Blank	07/29/22		
BG21620-BLK1	Blank	07/29/22		
BG21620-BS1	LCS	07/29/22		
BG21620-BSD1	LCS Dup	07/29/22		
Batch ID: BH20010	Preparation Method:	EPA 3510C	Prepared By:	ССН
YORK Sample ID	Client Sample ID	Preparation Date		
22G1127-01	MW-4AR	08/01/22		
22G1127-02	MW-5AR	08/01/22		
22G1127-03	11111 01111			
	MW-1AR	08/01/22		
22G1127-04	MW-1AR MW-3AR	08/01/22 08/01/22		
22G1127-04 BH20010-BLK1	MW-1AR MW-3AR Blank	08/01/22 08/01/22 08/01/22		
22G1127-04 BH20010-BLK1 BH20010-BLK2	MW-1AR MW-3AR Blank Blank	08/01/22 08/01/22 08/01/22 08/01/22		
22G1127-04 BH20010-BLK1 BH20010-BLK2 BH20010-BS1	MW-1AR MW-3AR Blank Blank LCS	08/01/22 08/01/22 08/01/22 08/01/22 08/01/22		
22G1127-04 BH20010-BLK1 BH20010-BLK2 BH20010-BS1 BH20010-BS2	MW-1AR MW-3AR Blank Blank LCS LCS	08/01/22 08/01/22 08/01/22 08/01/22 08/01/22 08/01/22		
22G1127-04 BH20010-BLK1 BH20010-BLK2 BH20010-BS1 BH20010-BS2 BH20010-MS1	MW-1AR MW-3AR Blank Blank LCS LCS Matrix Spike	08/01/22 08/01/22 08/01/22 08/01/22 08/01/22 08/01/22 08/01/22		
22G1127-04 BH20010-BLK1 BH20010-BLK2 BH20010-BS1 BH20010-BS2	MW-1AR MW-3AR Blank Blank LCS LCS	08/01/22 08/01/22 08/01/22 08/01/22 08/01/22 08/01/22		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 43 of 66

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Result	Limit	Units	Level	Result	%REC	Limits	riag	KFD	Liiiit	riag
						Prep	ared & Anal	yzed: 07/28/	2022	
ND	0.500	ug/L								
ND	0.500	"								
ND	0.500	"								
ND	0.500	"								
	0.500									
	0.500									
	0.500									
	0.500	"								
		"								
		"								
ND	0.500	"								
	ND ND ND	ND	ND	ND	ND	ND 0.500 ug/L ND 0.500 "	ND	ND	ND	Prepared & Analyzed: 07/28/2022

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE

RICHMOND HILL, NY 11418

Page 44 of 66 ClientServices@

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BG21549 - EPA 5030B											
Blank (BG21549-BLK1)							Prep	ared & Anal	yzed: 07/28/	2022	
Methylcyclohexane	ND	0.500	ug/L								
Methylene chloride	1.74	2.00	"								
Naphthalene	ND	2.00	"								
n-Butylbenzene	ND	0.500	"								
n-Propylbenzene	ND	0.500	"								
o-Xylene	ND	0.500	"								
p- & m- Xylenes	ND	1.00	"								
p-Diethylbenzene	ND	0.500	"								
p-Ethyltoluene	ND	0.500	"								
p-Isopropyltoluene	ND	0.500	"								
sec-Butylbenzene	ND	0.500	"								
Styrene	ND	0.500	"								
tert-Butyl alcohol (TBA)	ND	1.00	"								
tert-Butylbenzene	ND	0.500	"								
Tetrachloroethylene	ND	0.500	"								
Toluene	ND	0.500	"								
trans-1,2-Dichloroethylene	ND	0.500	"								
trans-1,3-Dichloropropylene	ND	0.500	"								
Trichloroethylene	ND	0.500	"								
Trichlorofluoromethane	ND	0.500	"								
Vinyl Chloride	ND	0.500	"								
Xylenes, Total	ND	1.50	"								
Surrogate: SURR: 1,2-Dichloroethane-d4	10.1		"	10.0		101	69-130				
Surrogate: SURR: Toluene-d8	10.1		"	10.0		101	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.92		"	10.0		99.2	79-122				
LCS (BG21549-BS1)							Prep	ared & Anal	yzed: 07/28/	2022	
1,1,1,2-Tetrachloroethane	8.16		ug/L	10.0		81.6	82-126	Low Bias			
1,1,1-Trichloroethane	8.23		"	10.0		82.3	78-136				
1,1,2,2-Tetrachloroethane	8.72		"	10.0		87.2	76-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.13		"	10.0		91.3	54-165				
113) 1,1,2-Trichloroethane	8.29		,,	10.0		82.9	82-123				
1,1-Dichloroethane	8.14		,,	10.0		81.4	82-129	Low Bias			
1,1-Dichloroethylene	8.42		,,	10.0		84.2	68-138	Low Dias			
1,2,3-Trichlorobenzene	11.2		,,	10.0		112	76-136				
1,2,3-Trichloropropane	6.91		,,	10.0		69.1	77-128	Low Bias			
1,2,4-Trichlorobenzene	10.6		"	10.0		106	76-137	Lon Dias			
1,2,4-Trimethylbenzene	8.62		"	10.0		86.2	82-132				
1,2-Dibromo-3-chloropropane	9.95		"	10.0		99.5	45-147				
1,2-Dibromoethane	8.04		"	10.0		80.4	83-124	Low Bias			
1,2-Dichlorobenzene	8.56		"	10.0		85.6	79-123				
1,2-Dichloroethane	8.24		"	10.0		82.4	73-132				
1,2-Dichloropropane	9.41		"	10.0		94.1	78-126				
1,3,5-Trimethylbenzene	8.58		"	10.0		85.8	80-131				
1,3-Dichlorobenzene	8.63		"	10.0		86.3	86-122				
1,3-Dichloropropane	8.15		"	10.0		81.5	81-125				
1,4-Dichlorobenzene	8.61		"	10.0		86.1	85-124				
1,4-Dioxane	131		"	210		62.3	10-349				
2-Butanone	6.02		"	10.0		60.2	49-152				
2-Hexanone	6.23			10.0		62.3	51-146				

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 45 of 66

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Allalyte	Result	Limit Omis	Levei	Kesuit	/0KEC	Lillits	riag	KI D	Liiiit	Tiag
Batch BG21549 - EPA 5030B										
LCS (BG21549-BS1)						Pre	pared & Analy	zed: 07/28	/2022	
4-Methyl-2-pentanone	6.67	ug/L	10.0		66.7	57-145				
Acetone	3.78	"	10.0		37.8	14-150				
Acrolein	0.210	"	100		0.210	10-153	Low Bias			
Acrylonitrile	5.70	··	10.0		57.0	51-150				
Benzene	8.44	"	10.0		84.4	85-126	Low Bias			
Bromochloromethane	8.41	··	10.0		84.1	77-128				
Bromodichloromethane	8.49	"	10.0		84.9	79-128				
Bromoform	8.06	"	10.0		80.6	78-133				
Bromomethane	7.67	"	10.0		76.7	43-168				
Carbon disulfide	8.78	"	10.0		87.8	68-146				
Carbon tetrachloride	8.37	"	10.0		83.7	77-141				
Chlorobenzene	9.05	"	10.0		90.5	88-120				
Chloroethane	8.56	"	10.0		85.6	65-136				
Chloroform	8.41	"	10.0		84.1	82-128				
Chloromethane	8.47	"	10.0		84.7	43-155				
cis-1,2-Dichloroethylene	8.43	"	10.0		84.3	83-129				
cis-1,3-Dichloropropylene	8.24	"	10.0		82.4	80-131				
Cyclohexane	9.28	"	10.0		92.8	63-149				
Dibromochloromethane	7.86	"	10.0		78.6	80-130	Low Bias			
Dibromomethane		"					LOW Dias			
Dichlorodifluoromethane	7.94	"	10.0		79.4	72-134				
Ethyl Benzene	8.24	"	10.0		82.4	44-144				
-	8.69	"	10.0		86.9	80-131				
Hexachlorobutadiene	9.81	"	10.0		98.1	67-146				
Isopropylbenzene	8.85		10.0		88.5	76-140				
Methyl acetate	7.53	"	10.0		75.3	51-139				
Methyl tert-butyl ether (MTBE)	7.90	"	10.0		79.0	76-135				
Methylcyclohexane	9.17	"	10.0		91.7	72-143				
Methylene chloride	8.18	"	10.0		81.8	55-137				
Naphthalene	10.4	"	10.0		104	70-147				
n-Butylbenzene	8.81	"	10.0		88.1	79-132				
n-Propylbenzene	8.70	"	10.0		87.0	78-133				
o-Xylene	8.86	"	10.0		88.6	78-130				
p- & m- Xylenes	17.6	"	20.0		87.9	77-133				
p-Diethylbenzene	8.94	"	10.0		89.4	84-134				
p-Ethyltoluene	8.92	"	10.0		89.2	88-129				
p-Isopropyltoluene	8.75	"	10.0		87.5	81-136				
sec-Butylbenzene	8.72	"	10.0		87.2	79-137				
Styrene	8.94	"	10.0		89.4	67-132				
tert-Butyl alcohol (TBA)	33.2	"	50.0		66.5	25-162				
tert-Butylbenzene	8.38	"	10.0		83.8	77-138				
Tetrachloroethylene	5.22	"	10.0		52.2	82-131	Low Bias			
Toluene	8.61	"	10.0		86.1	80-127				
trans-1,2-Dichloroethylene	8.51	"	10.0		85.1	80-132				
trans-1,3-Dichloropropylene	8.14	"	10.0		81.4	78-131				
Trichloroethylene	8.48	"	10.0		84.8	82-128				
Trichlorofluoromethane	9.03	"	10.0		90.3	67-139				
Vinyl Chloride	8.58	"	10.0		85.8	58-145				
Surrogate: SURR: 1,2-Dichloroethane-d4	9.76	"	10.0		97.6	69-130				
Surrogate: SURR: Toluene-d8	10.0	"	10.0		100	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.84	"	10.0		98.4	79-122				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 46 of 66

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BG21549 - EPA 5030B										
LCS Dup (BG21549-BSD1)						Pre	pared & Analy	zed: 07/28/	2022	
1,1,1,2-Tetrachloroethane	8.81	ug/L	10.0		88.1	82-126		7.66	30	
1,1,1-Trichloroethane	9.31	"	10.0		93.1	78-136		12.3	30	
1,1,2,2-Tetrachloroethane	9.09	"	10.0		90.9	76-129		4.15	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.3	"	10.0		103	54-165		12.1	30	
1,1,2-Trichloroethane	8.66	"	10.0		86.6	82-123		4.37	30	
1,1-Dichloroethane	9.36	"	10.0		93.6	82-129		13.9	30	
1,1-Dichloroethylene	9.58	"	10.0		95.8	68-138		12.9	30	
1,2,3-Trichlorobenzene	11.7	"	10.0		117	76-136		3.93	30	
1,2,3-Trichloropropane	7.42	"	10.0		74.2	77-128	Low Bias	7.12	30	
1,2,4-Trichlorobenzene	11.1	"	10.0		111	76-137		4.90	30	
1,2,4-Trimethylbenzene	9.70	"	10.0		97.0	82-132		11.8	30	
1,2-Dibromo-3-chloropropane	9.29	"	10.0		92.9	45-147		6.86	30	
1,2-Dibromoethane	8.57	"	10.0		85.7	83-124		6.38	30	
1,2-Dichlorobenzene	9.38	"	10.0		93.8	79-123		9.14	30	
1,2-Dichloroethane	8.82	"	10.0		88.2	73-132		6.80	30	
1,2-Dichloropropane	10.2	"	10.0		102	78-126		7.57	30	
1,3,5-Trimethylbenzene	9.66	"	10.0		96.6	80-131		11.8	30	
1,3-Dichlorobenzene	9.38	"	10.0		93.8	86-122		8.33	30	
1,3-Dichloropropane	8.57	"	10.0		85.7	81-125		5.02	30	
1,4-Dichlorobenzene	9.46	"	10.0		94.6	85-124		9.41	30	
1,4-Dioxane	108	"	210		51.2	10-349		19.6	30	
2-Butanone	6.54	"	10.0		65.4	49-152		8.28	30	
2-Hexanone	5.99	,,	10.0		59.9			3.93	30	
4-Methyl-2-pentanone	6.19	"	10.0		61.9	51-146 57-145		7.47	30	
Acetone Acetone	3.03	"	10.0		30.3	14-150		22.0	30	
Acrolein	5.87	,,	10.0			10-153	Low Bias	186	30	Non-dir.
Acrylonitrile		,,			5.87		LOW DIAS	8.08	30	Non-un.
Benzene	6.18	"	10.0		61.8	51-150		11.3	30	
Bromochloromethane	9.45	"	10.0		94.5	85-126				
Bromodichloromethane	9.02	"	10.0		90.2	77-128		7.00	30	
Bromoform	9.14	"	10.0		91.4	79-128		7.37	30	
	8.53	"	10.0		85.3	78-133		5.67	30	NT 11
Bromomethane	11.7		10.0		117	43-168		41.6	30	Non-dir.
Carbon disulfide	9.87	"	10.0		98.7	68-146		11.7	30	
Carbon tetrachloride	9.26		10.0		92.6	77-141		10.1	30	
Chlorobenzene	9.77	"	10.0		97.7	88-120		7.65	30	
Chloroethane	9.78	"	10.0		97.8	65-136		13.3	30	
Chloroform	9.12	"	10.0		91.2	82-128		8.10	30	
Chloromethane	9.05	"	10.0		90.5	43-155		6.62	30	
cis-1,2-Dichloroethylene	9.51	"	10.0		95.1	83-129		12.0	30	
cis-1,3-Dichloropropylene	8.90	"	10.0		89.0	80-131		7.70	30	
Cyclohexane	10.5	"	10.0		105	63-149		12.2	30	
Dibromochloromethane	8.44	"	10.0		84.4	80-130		7.12	30	
Dibromomethane	8.57	"	10.0		85.7	72-134		7.63	30	
Dichlorodifluoromethane	9.24	"	10.0		92.4	44-144		11.4	30	
Ethyl Benzene	9.73	"	10.0		97.3	80-131		11.3	30	
Hexachlorobutadiene	10.2	"	10.0		102	67-146		4.29	30	
Isopropylbenzene	10.0	"	10.0		100	76-140		12.2	30	
Methyl acetate	8.04	"	10.0		80.4	51-139		6.55	30	
Methyl tert-butyl ether (MTBE)	8.07	"	10.0		80.7	76-135		2.13	30	
Methylcyclohexane	10.3	"	10.0		103	72-143		11.8	30	

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc.

Spike

Source*

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BG21549 - EPA 5030B											
LCS Dup (BG21549-BSD1)							Prej	pared & Analy	zed: 07/28/	2022	
Methylene chloride	8.95		ug/L	10.0		89.5	55-137		8.99	30	
Naphthalene	10.4		"	10.0		104	70-147		0.769	30	
n-Butylbenzene	9.91		"	10.0		99.1	79-132		11.8	30	
n-Propylbenzene	9.88		"	10.0		98.8	78-133		12.7	30	
o-Xylene	9.79		"	10.0		97.9	78-130		9.97	30	
p- & m- Xylenes	19.5		"	20.0		97.4	77-133		10.3	30	
p-Diethylbenzene	10.0		"	10.0		100	84-134		11.4	30	
p-Ethyltoluene	10.0		"	10.0		100	88-129		11.8	30	
p-Isopropyltoluene	9.78		"	10.0		97.8	81-136		11.1	30	
sec-Butylbenzene	9.96		"	10.0		99.6	79-137		13.3	30	
Styrene	9.63		"	10.0		96.3	67-132		7.43	30	
tert-Butyl alcohol (TBA)	31.8		"	50.0		63.6	25-162		4.43	30	
tert-Butylbenzene	9.43		"	10.0		94.3	77-138		11.8	30	
Tetrachloroethylene	5.75		"	10.0		57.5	82-131	Low Bias	9.66	30	
Toluene	9.52		"	10.0		95.2	80-127		10.0	30	
trans-1,2-Dichloroethylene	9.55		"	10.0		95.5	80-132		11.5	30	
trans-1,3-Dichloropropylene	8.60		"	10.0		86.0	78-131		5.50	30	
Trichloroethylene	9.32		"	10.0		93.2	82-128		9.44	30	
Trichlorofluoromethane	10.3		"	10.0		103	67-139		13.1	30	
Vinyl Chloride	9.78		"	10.0		97.8	58-145		13.1	30	
Surrogate: SURR: 1,2-Dichloroethane-d4	9.69		"	10.0		96.9	69-130				
Surrogate: SURR: Toluene-d8	10.0		"	10.0		100	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.91		"	10.0		99.1	79-122				
Blank (BG21620-BLK1)							Prep	pared & Analy	zed: 07/29/	2022	
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L "								
1,1,1-Trichloroethane	ND	0.500	,,								
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.500	,,								
113)	ND	0.500									
1,1,2-Trichloroethane	ND	0.500	"								
1,1-Dichloroethane	ND	0.500	"								
1,1-Dichloroethylene	ND	0.500	"								
1,2,3-Trichlorobenzene	ND	0.500	"								
1,2,3-Trichloropropane	ND	0.500	"								
1,2,4-Trichlorobenzene	ND	0.500	"								
1,2,4-Trimethylbenzene	ND	0.500	"								
1,2-Dibromo-3-chloropropane	ND	0.500	"								
1,2-Dibromoethane	ND	0.500	"								
1,2-Dichlorobenzene	ND	0.500	"								
1,2-Dichloroethane	ND	0.500	"								
1,2-Dichloropropane	ND	0.500	"								
1,3,5-Trimethylbenzene	ND	0.500	"								
1,3-Dichlorobenzene	ND	0.500	"								
1,3-Dichloropropane			"								
	ND	0.500									
	ND	0.500	"								
1,4-Dioxane	ND ND	0.500 80.0	"								
1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone	ND ND ND	0.500 80.0 0.500	"								
1,4-Dioxane 2-Butanone 2-Hexanone	ND ND ND ND	0.500 80.0 0.500 0.500	"								
1,4-Dioxane	ND ND ND	0.500 80.0 0.500	"								

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

ClientServices@

Page 48 of 66

RPD

%REC

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
•											

lank (BG21620-BLK1)						Prepared & Analyzed: 07/29/2022
cetone	ND	2.00	ug/L			1 7
crolein	ND	0.500	"			
crylonitrile	ND	0.500	"			
enzene	ND	0.500	"			
romochloromethane	ND	0.500	"			
romodichloromethane	ND	0.500	"			
romoform	ND	0.500	"			
romomethane	ND	0.500	"			
arbon disulfide	ND	0.500	"			
arbon tetrachloride	ND	0.500				
hlorobenzene	ND	0.500	"			
hloroethane	ND	0.500	"			
hloroform	ND	0.500	"			
hloromethane	ND ND	0.500	"			
s-1,2-Dichloroethylene	ND ND	0.500	"			
s-1,3-Dichloropropylene	ND ND	0.500	"			
yclohexane	ND ND	0.500				
bibromochloromethane	ND ND	0.500	,,			
ibromomethane	ND ND	0.500	,,			
ichlorodifluoromethane	ND ND	0.500	"			
thyl Benzene	ND ND	0.500	"			
exachlorobutadiene	ND ND	0.500	,,			
opropylbenzene			,,			
lethyl acetate	ND	0.500	,,			
	ND	0.500				
ethyl tert-butyl ether (MTBE) ethylcyclohexane	ND ND	0.500	,,			
ethylene chloride		0.500	,,			
aphthalene	ND	2.00	,,			
•	ND	2.00	,,			
Butylbenzene Propylbenzene	ND	0.500				
	ND	0.500				
Xylene & m- Xylenes	ND	0.500	,,			
-	ND	1.00				
Diethylbenzene	ND	0.500				
Ethyltoluene	ND	0.500	,,			
-Isopropyltoluene	ND	0.500	,,			
ec-Butylbenzene	ND	0.500				
tyrene	ND	0.500	,,			
rt-Butyl alcohol (TBA)	ND	1.00				
rt-Butylbenzene	ND	0.500				
etrachloroethylene	ND	0.500	"			
bluene	ND	0.500				
ans-1,2-Dichloroethylene	ND	0.500	"			
ans-1,3-Dichloropropylene	ND	0.500	"			
richloroethylene	ND	0.500	"			
richlorofluoromethane	ND	0.500	"			
inyl Chloride	ND	0.500	"			
ylenes, Total	ND	1.50	"			
urrogate: SURR: 1,2-Dichloroethane-d4	10.5		"	10.0	105	69-130
urrogate: SURR: Toluene-d8	9.84		"	10.0	98.4	81-117
urrogate: SURR: p-Bromofluorobenzene	10.2		"	10.0	102	79-122

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 49 of 66

$\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

		Reporting	Spike	Source*		%REC				
Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BG21620 - EPA 5030B										
LCS (BG21620-BS1)						Prep	ared & Analy	zed: 07/29/	2022	
,1,1,2-Tetrachloroethane	9.37	ug/L	10.0		93.7	82-126				
,1,1-Trichloroethane	9.81	"	10.0		98.1	78-136				
,1,2,2-Tetrachloroethane	10.2	"	10.0		102	76-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.78	"	10.0		97.8	54-165				
,1,2-Trichloroethane	9.29	"	10.0		92.9	82-123				
,1-Dichloroethane	9.43	"	10.0		94.3	82-129				
,1-Dichloroethylene	9.65	"	10.0		96.5	68-138				
,2,3-Trichlorobenzene	8.64	"	10.0		86.4	76-136				
,2,3-Trichloropropane	9.53	"	10.0		95.3	77-128				
,2,4-Trichlorobenzene	8.74	"	10.0		87.4	76-137				
,2,4-Trimethylbenzene	9.52	"	10.0		95.2	82-132				
,2-Dibromo-3-chloropropane	9.27	"	10.0		92.7	45-147				
,2-Dibromoethane	9.41	"	10.0		94.1	83-124				
,2-Dichlorobenzene	9.25	"	10.0		92.5	79-123				
,2-Dichloroethane	9.86	"	10.0		98.6	73-132				
,2-Dichloropropane	9.39	"	10.0		93.9	78-126				
,3,5-Trimethylbenzene	9.29	"	10.0		92.9	80-131				
,3-Dichlorobenzene	9.37	"	10.0		93.7	86-122				
,3-Dichloropropane	9.22	"	10.0		92.2	81-125				
,4-Dichlorobenzene	9.40	"	10.0		94.0	85-124				
,4-Dioxane	214	"	210		102	10-349				
-Butanone	8.74	"	10.0		87.4	49-152				
-Hexanone	8.24	"	10.0		82.4	51-146				
-Methyl-2-pentanone	9.26	"	10.0		92.6	57-145				
cetone	6.05	"	10.0		60.5	14-150				
crolein	3.23	"	100		3.23	10-153	Low Bias			
crylonitrile	9.16	"	10.0		91.6	51-150				
Benzene	9.58	"	10.0		95.8	85-126				
Bromochloromethane	9.36	"	10.0		93.6	77-128				
Bromodichloromethane	9.43	"	10.0		94.3	79-128				
Bromoform	9.61	"	10.0		96.1	78-133				
Bromomethane	0.660	"	10.0		6.60	43-168	Low Bias			
Carbon disulfide	10.1	"	10.0		101	68-146				
Carbon tetrachloride	10.0	"	10.0		100	77-141				
Chlorobenzene	9.93	"	10.0		99.3	88-120				
Chloroethane	9.41	"	10.0		94.1	65-136				
Chloroform	9.60	"	10.0		96.0	82-128				
Chloromethane	5.26	"	10.0		52.6	43-155				
is-1,2-Dichloroethylene	9.63	"	10.0		96.3	83-129				
is-1,3-Dichloropropylene	9.52	"	10.0		95.2	80-131				
Cyclohexane	9.49	"	10.0		94.9	63-149				
Dibromochloromethane	9.42	"	10.0		94.2	80-130				
Dibromomethane	9.52	"	10.0		95.2	72-134				
Dichlorodifluoromethane	8.11	"	10.0		81.1	44-144				
Ethyl Benzene	9.63	"	10.0		96.3	80-131				
Hexachlorobutadiene	8.22	"	10.0		82.2	67-146				
sopropylbenzene	9.66	"	10.0		96.6	76-140				
Methyl acetate	8.77	"	10.0		87.7	51-139				
Methyl tert-butyl ether (MTBE)	9.71	"	10.0		97.1	76-135				
	2./1		10.0		11.1	10-133				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 50 of 66

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

CS (BG21620-BS1)					Prei	pared & Analyzed: 07/29/2	2022
Methylene chloride	9.30	ug/L	10.0	93.0	55-137	Sarea & Finalyzea. 67/25/2	.022
aphthalene	9.43	ug/L	10.0	94.3	70-147		
Butylbenzene	8.91	,,	10.0	89.1	79-132		
Propylbenzene	9.40	,,	10.0	94.0	78-133		
Xylene	9.69	,,	10.0	96.9	78-133		
& m- Xylenes	19.7	,,	20.0	98.7	77-133		
Diethylbenzene	9.18	,,	10.0	91.8	84-134		
Ethyltoluene	9.86	,,	10.0	98.6	88-129		
sopropyltoluene	9.24	,,	10.0	92.4	81-136		
-Butylbenzene	9.24	,,	10.0	92.4	79-137		
rene	9.38	,,	10.0		67-132		
e-Butyl alcohol (TBA)		,,		93.8			
-Butylbenzene	49.5	,,	50.0	99.1	25-162		
· · ·	9.32		10.0	93.2	77-138	Law Diag	
rachloroethylene	5.31	,,	10.0	53.1	82-131	Low Bias	
uene	9.45	"	10.0	94.5	80-127		
ns-1,2-Dichloroethylene	9.61	"	10.0	96.1	80-132		
ns-1,3-Dichloropropylene	9.58		10.0	95.8	78-131		
chloroethylene	8.92	"	10.0	89.2	82-128		
chlorofluoromethane	9.82	"	10.0	98.2	67-139		
nyl Chloride	7.43	"	10.0	74.3	58-145		
rogate: SURR: 1,2-Dichloroethane-d4	10.4	"	10.0	104	69-130		
rogate: SURR: Toluene-d8	9.85	"	10.0	98.5	81-117		
rogate: SURR: p-Bromofluorobenzene	10.1	"	10.0	101	79-122		
CS Dup (BG21620-BSD1)					Prei	pared & Analyzed: 07/29/2	2022
,1,2-Tetrachloroethane	9.20	ug/L	10.0	92.0	82-126	1.83	30
,1-Trichloroethane	9.33	ug/L	10.0	93.3	78-136	5.02	30
,2,2-Tetrachloroethane	10.1	"	10.0	101	76-130	0.691	30
,2-Trichloro-1,2,2-trifluoroethane (Freon	9.28	"	10.0	92.8	54-165	5.25	30
3)	7.20		10.0	72.0	34-103	0.20	50
,2-Trichloroethane	9.03	"	10.0	90.3	82-123	2.84	30
-Dichloroethane	9.02	"	10.0	90.2	82-129	4.44	30
-Dichloroethylene	8.99	"	10.0	89.9	68-138	7.08	30
,3-Trichlorobenzene	8.93	"	10.0	89.3	76-136	3.30	30
,3-Trichloropropane	9.41	"	10.0	94.1	77-128	1.27	30
,4-Trichlorobenzene	8.73	"	10.0	87.3	76-137	0.114	30
,4-Trimethylbenzene	9.30	"	10.0	93.0	82-132	2.34	30
-Dibromo-3-chloropropane	9.35	"	10.0	93.5	45-147	0.859	30
-Dibromoethane	9.40	"	10.0	94.0	83-124	0.106	30
-Dichlorobenzene	9.15	"	10.0	91.5	79-123	1.09	30
-Dichloroethane	9.81	"	10.0	98.1	73-132	0.508	30
-Dichloropropane	9.09	"	10.0	90.9	78-126	3.25	30
,5-Trimethylbenzene	9.09	"	10.0	90.9	80-131	2.18	30
-Dichlorobenzene	9.13	"	10.0	91.3	86-122	2.59	30
-Dichloropropane	8.97	"	10.0	89.7	81-125	2.75	30
-Dichlorobenzene	9.22	,,	10.0	92.2	85-124	1.93	30
-Dioxane	212	"	210	101	10-349	1.17	30
Butanone	8.61		10.0		49-152	1.50	30
Hexanone				86.1		1.22	30
	8.14	,,	10.0	81.4	51-146		30
Methyl-2-pentanone	9.04	"	10.0	90.4	57-145	2.40	30

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 51 of 66 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com (203) 325-1371

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

•									
Batch BG21620 - EPA 5030B									
LCS Dup (BG21620-BSD1)					Pre	pared & Analy	zed: 07/29/2	2022	
Acrolein	3.51	ug/L	100	3.51	10-153	Low Bias	8.31	30	
Acrylonitrile	9.12	"	10.0	91.2	51-150		0.438	30	
Benzene	9.20	"	10.0	92.0	85-126		4.05	30	
Bromochloromethane	9.25	"	10.0	92.5	77-128		1.18	30	
Bromodichloromethane	9.13	"	10.0	91.3	79-128		3.23	30	
Bromoform	9.41	"	10.0	94.1	78-133		2.10	30	
Bromomethane	1.09	"	10.0	10.9	43-168	Low Bias	49.1	30	Non-di
Carbon disulfide	9.41	"	10.0	94.1	68-146		6.68	30	
Carbon tetrachloride	9.54	"	10.0	95.4	77-141		5.01	30	
Chlorobenzene	9.56	"	10.0	95.6	88-120		3.80	30	
Chloroethane	8.92	"	10.0	89.2	65-136		5.35	30	
Chloroform	9.29	"	10.0	92.9	82-128		3.28	30	
Chloromethane	5.10	"	10.0	51.0	43-155		3.09	30	
cis-1,2-Dichloroethylene	9.23	"	10.0	92.3	83-129		4.24	30	
cis-1,3-Dichloropropylene	9.32	"	10.0	93.2	80-131		2.12	30	
Cyclohexane	8.98	"	10.0	89.8	63-149		5.52	30	
Dibromochloromethane	9.24	"	10.0	92.4	80-130		1.93	30	
Dibromomethane	9.38	"	10.0	93.8	72-134		1.48	30	
Dichlorodifluoromethane	7.63	"	10.0	76.3	44-144		6.10	30	
Ethyl Benzene	9.23	"	10.0	92.3	80-131		4.24	30	
Hexachlorobutadiene	8.56	"	10.0	85.6	67-146		4.05	30	
Isopropylbenzene	9.35	"	10.0	93.5	76-140		3.26	30	
Methyl acetate	8.73	"	10.0	87.3	51-139		0.457	30	
Methyl tert-butyl ether (MTBE)	9.73	"	10.0	97.3	76-135		0.206	30	
Methylcyclohexane	8.91	"	10.0	89.1	72-143		3.96	30	
Methylene chloride	9.24	"	10.0	92.4	55-137		0.647	30	
Naphthalene	9.14	"	10.0	91.4	70-147		3.12	30	
n-Butylbenzene	8.94	"	10.0	89.4	79-132		0.336	30	
n-Propylbenzene	9.13	"	10.0	91.3	78-133		2.91	30	
o-Xylene	9.40	"	10.0	94.0	78-130		3.04	30	
p- & m- Xylenes	18.9	"	20.0	94.6	77-133		4.19	30	
p-Diethylbenzene	9.18	"	10.0	91.8	84-134		0.00	30	
p-Ethyltoluene	9.59	"	10.0	95.9	88-129		2.78	30	
p-Isopropyltoluene	9.18	"	10.0	91.8	81-136		0.651	30	
sec-Butylbenzene	9.12	"	10.0	91.2	79-137		0.873	30	
Styrene	9.15	"	10.0	91.5	67-132		2.48	30	
tert-Butyl alcohol (TBA)	49.3	"	50.0	98.6	25-162		0.465	30	
tert-Butylbenzene	9.19	"	10.0	91.9	77-138		1.40	30	
Tetrachloroethylene	5.04	"	10.0	50.4	82-131	Low Bias	5.22	30	
Toluene	9.05	"	10.0	90.5	80-127		4.32	30	
trans-1,2-Dichloroethylene	9.01	"	10.0	90.1	80-132		6.44	30	
trans-1,3-Dichloropropylene	9.37	"	10.0	93.7	78-131		2.22	30	
Trichloroethylene	8.45	"	10.0	84.5	82-128		5.41	30	
Trichlorofluoromethane	9.36	"	10.0	93.6	67-139		4.80	30	
Vinyl Chloride	7.39	"	10.0	73.9	58-145		0.540	30	
Surrogate: SURR: 1,2-Dichloroethane-d4	10.4	"	10.0	104	69-130				
Surrogate: SURR: Toluene-d8	9.85	"	10.0	98.5	81-117				
Surrogate: SURR: p-Bromofluorobenzene	10.2	"	10.0	102	79-122				

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 52 of 66

$Semivolatile\ Organic\ Compounds\ by\ GC/MS\ -\ Quality\ Control\ Data$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Blank (BG21534-BLK1)						Prepared & Analyzed: 07/28/2022
1,1-Biphenyl	ND	5.00	ug/L			-
1,2,4,5-Tetrachlorobenzene	ND	5.00	"			
2,3,4,6-Tetrachlorophenol	ND	5.00	"			
2,4,5-Trichlorophenol	ND	5.00	"			
2,4,6-Trichlorophenol	ND	5.00	"			
2,4-Dichlorophenol	ND	5.00	"			
2,4-Dimethylphenol	ND	5.00	"			
2,4-Dinitrophenol	ND	5.00	"			
2,4-Dinitrotoluene	ND	5.00	"			
2,6-Dinitrotoluene	ND	5.00	"			
2-Chloronaphthalene	ND	5.00	"			
2-Chlorophenol	ND	5.00	"			
!-Methylnaphthalene	ND	5.00	"			
2-Methylphenol	ND	5.00	"			
2-Nitroaniline	ND	5.00	"			
2-Nitrophenol	ND ND	5.00	,,			
3- & 4-Methylphenols	ND ND	5.00	,,			
3,3-Dichlorobenzidine	ND ND	5.00	"			
-Nitroaniline	ND ND	5.00	"			
4,6-Dinitro-2-methylphenol	ND ND	5.00	"			
-Bromophenyl phenyl ether	ND ND	5.00	"			
-Chloro-3-methylphenol	ND ND	5.00	"			
-Chloroaniline			,,			
-Chlorophenyl phenyl ether	ND ND	5.00	,,			
-Nitroaniline		5.00	,,			
-Nitrophenol	ND ND	5.00	,,			
		5.00	,,			
Acetophenone	ND	5.00	,,			
Benzaldehyde	ND	5.00	,,			
Benzyl butyl phthalate	ND	5.00	,,			
Bis(2-chloroethoxy)methane	ND	5.00	,,			
Bis(2-chloroethyl)ether	ND	5.00				
Bis(2-chloroisopropyl)ether	ND	5.00	"			
Caprolactam	ND	5.00	"			
Carbazole	ND	5.00	"			
Dibenzofuran	ND	5.00	"			
Diethyl phthalate	ND	5.00	"			
Dimethyl phthalate	ND	5.00	"			
Di-n-butyl phthalate	ND	5.00	"			
Di-n-octyl phthalate	ND	5.00	"			
Hexachlorocyclopentadiene	ND	10.0	"			
sophorone	ND	5.00	"			
N-nitroso-di-n-propylamine	ND	5.00	"			
N-Nitrosodiphenylamine	ND	5.00	"			
Phenol	ND	5.00	"			
Propargite	ND	5.00	"			
yridine	ND	5.00	"			
Surrogate: SURR: 2-Fluorophenol	16.9		"	50.0	33.8	19.7-63.1
Surrogate: SURR: Phenol-d5	8.83		"	50.0	17.7	10.1-41.7
Surrogate: SURR: Nitrobenzene-d5	17.5		"	25.0	69.9	50.2-113
Surrogate: SURR: 2-Fluorobiphenyl	17.4		"	25.0	69.6	39.9-105
Surrogate: SURR: 2,4,6-Tribromophenol	51.8		"	50.0	104	39.3-151

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 53 of 66

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Datab	DC215	34 - FP4	25100
Katch	RECOLL	34 - H PA	451111

Blank (BG21534-BLK1)						Prepared & Analyzed: 07/28/2022
Surrogate: SURR: Terphenyl-d14	24.6		ug/L	25.0	98.4	30.7-106
Blank (BG21534-BLK2)						Prepared & Analyzed: 07/28/2022
Acenaphthene	ND	0.0500	ug/L			
Acenaphthylene	ND	0.0500	"			
Anthracene	ND	0.0500	"			
Atrazine	ND	0.500	"			
Benzo(a)anthracene	ND	0.0500	"			
Benzo(a)pyrene	ND	0.0500	"			
Benzo(b)fluoranthene	ND	0.0500	"			
Benzo(g,h,i)perylene	ND	0.0500	"			
Benzo(k)fluoranthene	ND	0.0500	"			
Bis(2-ethylhexyl)phthalate	0.520	0.500	"			
Chrysene	ND	0.0500	"			
Dibenzo(a,h)anthracene	ND	0.0500	"			
Fluoranthene	ND	0.0500	"			
Fluorene	ND	0.0500	"			
Hexachlorobenzene	ND	0.0200	"			
Hexachlorobutadiene	ND	0.500	"			
Hexachloroethane	ND	0.500	"			
Indeno(1,2,3-cd)pyrene	ND	0.0500	"			
Naphthalene	ND	0.0500	"			
Nitrobenzene	ND	0.250	"			
N-Nitrosodimethylamine	ND	0.500	"			
Pentachlorophenol	ND	0.250	"			
Phenanthrene	ND	0.0500	"			
Pyrene	ND	0.0500	"			

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 54 of 66 (203) 325-1371 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

.CS (BG21534-BS1)						Prepared & Analyzed: 07/28/2022
,1-Biphenyl	15.5	5.00	ug/L	25.0	61.9	33-95
,2,4,5-Tetrachlorobenzene	16.8	5.00	"	25.0	67.2	26-120
,3,4,6-Tetrachlorophenol	26.9	5.00	"	25.0	108	30-130
,4,5-Trichlorophenol	20.4	5.00	"	25.0	81.7	32-114
,4,6-Trichlorophenol	19.5	5.00	"	25.0	78.0	35-118
,4-Dichlorophenol	18.7	5.00	"	25.0	74.6	25-116
,4-Dimethylphenol	17.3	5.00	"	25.0	69.4	15-116
,4-Dinitrophenol	35.4	5.00	"	25.0	142	10-170
,4-Dinitrotoluene	20.2	5.00	"	25.0	80.9	41-128
,6-Dinitrotoluene	22.2	5.00	"	25.0	89.0	45-116
-Chloronaphthalene	16.5	5.00	"	25.0	66.1	33-112
-Chlorophenol	13.9	5.00	"	25.0	55.4	15-120
-Methylnaphthalene	17.9	5.00	"	25.0	71.5	24-118
-Methylphenol	12.4	5.00	"	25.0	49.6	10-110
-Nitroaniline	20.2	5.00	"	25.0	80.8	34-129
-Nitrophenol	17.1	5.00	"	25.0	68.3	28-118
- & 4-Methylphenols	9.45	5.00	"	25.0	37.8	10-107
,3-Dichlorobenzidine	11.2	5.00	"	25.0	44.8	15-187
-Nitroaniline	17.4	5.00	"	25.0	69.7	24-134
,6-Dinitro-2-methylphenol	23.0	5.00	"	25.0	92.2	10-153
Bromophenyl phenyl ether	18.7	5.00	"	25.0	74.6	34-120
-Chloro-3-methylphenol	20.2	5.00	"	25.0	80.8	20-120
Chloroaniline	16.2	5.00	"	25.0	64.8	10-147
Chlorophenyl phenyl ether	19.3	5.00	"	25.0	77.4	27-121
Nitroaniline	16.5	5.00	"	25.0	66.2	13-134
Nitrophenol	7.19	5.00	"	25.0	28.8	10-131
cetophenone	15.6	5.00	"	25.0	62.2	25-110
enzaldehyde	14.2	5.00	"	25.0	57.0	29-117
enzyl butyl phthalate	21.0	5.00	"	25.0	84.0	29-117
is(2-chloroethoxy)methane	16.1		"			
is(2-chloroethyl)ether	6.34	5.00 5.00	"	25.0 25.0	64.4 25.4	10-154 17-125
is(2-chloroisopropyl)ether	14.1		"	25.0		10-139
		5.00	"		56.3	
aprolactam arbazole	4.28	5.00		25.0	17.1	10-137
ibenzofuran	20.6	5.00	,,	25.0	82.5	42-126
	18.9	5.00	,,	25.0	75.4	36-113
iethyl phthalate imethyl phthalate	19.9	5.00		25.0	79.4	38-115
	19.1	5.00	,,	25.0	76.2	38-129
i-n-butyl phthalate	20.7	5.00	,,	25.0	82.9	31-120
i-n-octyl phthalate	22.2	5.00		25.0	88.8	21-149
exachlorocyclopentadiene	14.1	10.0		25.0	56.3	10-130
ophorone	18.2	5.00		25.0	72.7	25-127
-nitroso-di-n-propylamine	15.4	5.00	"	25.0	61.6	26-122
-Nitrosodiphenylamine	20.5	5.00	"	25.0	82.0	23-149
henol	5.60	5.00	"	25.0	22.4	10-110
yridine	9.22	5.00	"	25.5	36.2	10-90
urrogate: SURR: 2-Fluorophenol	15.0		"	50.0	29.9	19.7-63.1
urrogate: SURR: Phenol-d5	9.65		"	50.0	19.3	10.1-41.7
urrogate: SURR: Nitrobenzene-d5	15.0		"	25.0	59.9	50.2-113
urrogate: SURR: 2-Fluorobiphenyl	16.5		"	25.0	66.0	39.9-105
urrogate: SURR: 2,4,6-Tribromophenol	48.9		"	50.0	97.7	39.3-151
urrogate: SURR: Terphenyl-d14	20.9		"	25.0	83.6	30.7-106

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 55 of 66

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

Spike

Source*

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	Flag	RPD	Limit	Flag
Batch BG21534 - EPA 3510C											
LCS (BG21534-BS2)							Prep	pared & Analy	zed: 07/28/	2022	
Acenaphthene	0.610	0.0500	ug/L	1.00		61.0	25-116				
Acenaphthylene	0.630	0.0500	"	1.00		63.0	26-116				
Anthracene	0.500	0.0500	"	1.00		50.0	25-123				
Benzo(a)anthracene	0.680	0.0500	"	1.00		68.0	33-125				
Benzo(a)pyrene	0.500	0.0500	"	1.00		50.0	32-132				
Benzo(b)fluoranthene	0.800	0.0500	"	1.00		80.0	22-137				
Benzo(g,h,i)perylene	0.650	0.0500	"	1.00		65.0	10-138				
Benzo(k)fluoranthene	0.730	0.0500	"	1.00		73.0	20-137				
Bis(2-ethylhexyl)phthalate	1.74	0.500	"	1.00		174	10-189				
Chrysene	0.660	0.0500	"	1.00		66.0	32-124				
Dibenzo(a,h)anthracene	0.630	0.0500	"	1.00		63.0	16-133				
Fluoranthene	0.720	0.0500	"	1.00		72.0	32-121				
Fluorene	0.670	0.0500	"	1.00		67.0	28-118				
Hexachlorobenzene	0.770	0.0200	"	1.00		77.0	23-124				
Hexachlorobutadiene	0.690	0.500	"	1.00		69.0	15-123				
Hexachloroethane	3.13	0.500	"	1.00		313	18-115	High Bias			
Indeno(1,2,3-cd)pyrene	0.620	0.0500	"	1.00		62.0	15-135	-			
Naphthalene	0.590	0.0500	"	1.00		59.0	18-120				
Nitrobenzene	0.990	0.250	"	1.00		99.0	21-121				
N-Nitrosodimethylamine	ND	0.500	"	1.00		,,.0	10-124	Low Bias			
Pentachlorophenol	1.26	0.250	"	1.00		126	10-124	Don Dias			
Phenanthrene	0.690	0.0500	"	1.00		69.0	24-127				
Pyrene	0.880	0.0500	"	1.00		88.0	31-132				
	0.000	0.0300		1.00		00.0					
LCS Dup (BG21534-BSD1)								pared & Analy			
1,1-Biphenyl	17.2	5.00	ug/L	25.0		68.9	33-95		10.7	20	
1,2,4,5-Tetrachlorobenzene	18.0	5.00	"	25.0		72.1	26-120		7.01	20	
2,3,4,6-Tetrachlorophenol	23.6	5.00	"	25.0		94.4	30-130		13.1	20	
2,4,5-Trichlorophenol	20.7	5.00	"	25.0		82.8	32-114		1.26	20	
2,4,6-Trichlorophenol	19.3	5.00	"	25.0		77.2	35-118		1.03	20	
2,4-Dichlorophenol	19.6	5.00	"	25.0		78.5	25-116		5.02	20	
2,4-Dimethylphenol	17.2	5.00	"	25.0		68.7	15-116		0.985	20	
2,4-Dinitrophenol	35.9	5.00	"	25.0		144	10-170		1.26	20	
2,4-Dinitrotoluene	20.0	5.00	"	25.0		80.2	41-128		0.944	20	
2,6-Dinitrotoluene	20.2	5.00	"	25.0		80.7	45-116		9.76	20	
2-Chloronaphthalene	17.8	5.00	"	25.0		71.2	33-112		7.45	20	
2-Chlorophenol	15.6	5.00	"	25.0		62.6	15-120		12.1	20	
2-Methylnaphthalene	18.6	5.00	"	25.0		74.5	24-118		4.11	20	
2-Methylphenol	13.7	5.00	"	25.0		54.7	10-110		9.82	20	
2-Nitroaniline	20.0	5.00	"	25.0		80.0	34-129		0.996	20	
2-Nitrophenol	18.1	5.00	"	25.0		72.3	28-118		5.63	20	
3- & 4-Methylphenols	10.2	5.00	"	25.0		40.8	10-107		7.54	20	
3,3-Dichlorobenzidine	10.8	5.00	"	25.0		43.1	15-187		3.91	20	
3-Nitroaniline	17.6	5.00	"	25.0		70.4	24-134		1.03	20	
4,6-Dinitro-2-methylphenol	22.8	5.00	"	25.0		91.0	10-153		1.31	20	
4-Bromophenyl phenyl ether	20.2	5.00	"	25.0		80.6	34-120		7.73	20	
4-Chloro-3-methylphenol	19.1	5.00	"	25.0		76.5	20-120		5.49	20	
4-Chloroaniline	17.4	5.00	"	25.0		69.5	10-147		7.09	20	
4-Chlorophenyl phenyl ether	20.0	5.00	"	25.0		80.1	27-121		3.46	20	
4-Nitroaniline	16.7	5.00	"	25.0		66.7	13-134		0.783	20	
4-Nitrophenol	7.75	5.00	"	25.0		31.0	10-131		7.50	20	
-						-	-				
120 PESEARCH DRIVE	STRATEORD CT	06615		19	2_02 80th A\	/ENITE		BICHMOND		11/10	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 56 of 66

RPD

%REC

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

Spike

Source*

Reporting

RPD

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	Flag	RPD	Limit	Flag
Batch BG21534 - EPA 3510C											
LCS Dup (BG21534-BSD1)							Prepa	ared & Anal	yzed: 07/28/	/2022	
Acetophenone	16.6	5.00	ug/L	25.0		66.6	25-110		6.77	20	
Benzaldehyde	16.7	5.00	"	25.0		66.8	29-117		15.8	20	
Benzyl butyl phthalate	20.9	5.00	"	25.0		83.6	29-133		0.382	20	
Bis(2-chloroethoxy)methane	16.6	5.00	"	25.0		66.2	10-154		2.75	20	
Bis(2-chloroethyl)ether	6.65	5.00	"	25.0		26.6	17-125		4.77	20	
Bis(2-chloroisopropyl)ether	16.6	5.00	"	25.0		66.2	10-139		16.2	20	
Caprolactam	4.30	5.00	"	25.0		17.2	10-137		0.466	20	
Carbazole	20.5	5.00	"	25.0		82.2	42-126		0.437	20	
Dibenzofuran	18.6	5.00	"	25.0		74.5	36-113		1.23	20	
Diethyl phthalate	19.4	5.00	"	25.0		77.6	38-115		2.34	20	
Dimethyl phthalate	19.5	5.00	"	25.0		77.9	38-129		2.18	20	
Di-n-butyl phthalate	21.4	5.00	"	25.0		85.5	31-120		3.04	20	
Di-n-octyl phthalate	22.1	5.00	"	25.0		88.4	21-149		0.451	20	
Hexachlorocyclopentadiene	14.9	10.0	"	25.0		59.5	10-130		5.60	20	
Isophorone	18.5	5.00	"	25.0		73.9	25-127		1.58	20	
N-nitroso-di-n-propylamine	16.7	5.00	"	25.0		66.9	26-122		8.22	20	
N-Nitrosodiphenylamine	21.7	5.00	"	25.0		86.8	23-149		5.69	20	
Phenol	6.27	5.00	"	25.0		25.1	10-110		11.3	20	
Pyridine	11.0	5.00	"	25.5		43.0	10-90		17.3	20	
Surrogate: SURR: 2-Fluorophenol	17.1		"	50.0		34.1	19.7-63.1				
Surrogate: SURR: Phenol-d5	10.2		"	50.0		20.4	10.1-41.7				
Surrogate: SURR: Nitrobenzene-d5	17.0		"	25.0		68.0	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	17.0		"	25.0		69.0	39.9-105				
Surrogate: SURR: 2,4,6-Tribromophenol	49.4		"	50.0		98.7	39.3-151				
Surrogate: SURR: Terphenyl-d14	21.6		"	25.0		86.5	30.7-106				
Batch BH20010 - EPA 3510C											
Blank (BH20010-BLK1)							Prepa	ared & Anal	yzed: 08/01/	/2022	
1,1-Biphenyl	ND	5.00	ug/L								
1,2,4,5-Tetrachlorobenzene	ND	5.00	"								
2,3,4,6-Tetrachlorophenol	ND	5.00	"								
2,4,5-Trichlorophenol	ND	5.00	"								
2,4,6-Trichlorophenol	ND	5.00	"								
2,4-Dichlorophenol	ND	5.00	"								
2,4-Dimethylphenol	ND	5.00	,,								
2,4-Dinitrophenol	ND	5.00	,,								
2,4-Dinitrotoluene	ND	5.00	"								
2,6-Dinitrotoluene	ND	5.00	,,								
2-Chloronaphthalene	ND	5.00	"								
2-Chlorophenol	ND	5.00	,,								
2-Methylnaphthalene	ND	5.00	"								
2-Methylphenol	ND ND	5.00									
2-Nitroaniline	ND ND	5.00									
2-Nitrophenol	ND ND	5.00									
3- & 4-Methylphenols	ND ND	5.00	"								
3,3-Dichlorobenzidine	ND ND	5.00	,,								
3-Nitroaniline	ND ND	5.00	,,								
4,6-Dinitro-2-methylphenol	ND ND		,,								
4-Bromophenyl phenyl ether	ND ND	5.00 5.00	,,								
4-Chloro-3-methylphenol	ND ND	5.00	"								
120 RESEARCH DRIVE	STRATFORD, CT (06615		12	2-02 89th A\	/FNUF	P	ICHMOND	HIII NV	11418	
LO NEGENITORI DINIVE	STATE OND, OT	.5010	_	13	_ 0_ 000170		IX.				100

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 57 of 66

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BH20010 - EPA 3510C

Surrogate: SURR: Terphenyl-d14

Blank (BH20010-BLK1)				Prepared & Analyzed: 08/01/2022
4-Chloroaniline	ND	5.00	ug/L	
4-Chlorophenyl phenyl ether	ND	5.00	"	
4-Nitroaniline	ND	5.00	"	
4-Nitrophenol	ND	5.00	"	
Acetophenone	ND	5.00	"	
Benzaldehyde	ND	5.00	"	
Benzyl butyl phthalate	ND	5.00	"	
Bis(2-chloroethoxy)methane	ND	5.00	"	
Bis(2-chloroethyl)ether	ND	5.00	"	
Bis(2-chloroisopropyl)ether	ND	5.00	"	
Caprolactam	ND	5.00	"	
Carbazole	ND	5.00	"	
Dibenzofuran	ND	5.00	"	
Diethyl phthalate	ND	5.00	"	
Dimethyl phthalate	ND	5.00	"	
Di-n-butyl phthalate	ND	5.00	"	
Di-n-octyl phthalate	ND	5.00	"	
Hexachlorocyclopentadiene	ND	10.0	"	
Isophorone	ND	5.00	"	
N-nitroso-di-n-propylamine	ND	5.00	"	
N-Nitrosodiphenylamine	ND	5.00	"	

Phenol ND 5.00 Propargite ND 5.00 Pyridine ND 5.00 Surrogate: SURR: 2-Fluorophenol 19.4 50.0 38.8 19.7-63.1 Surrogate: SURR: Phenol-d5 9.31 50.0 18.6 10.1-41.7 Surrogate: SURR: Nitrobenzene-d5 50.2-113 19.0 25.0 76.0 Surrogate: SURR: 2-Fluorobiphenyl 39.9-105 18.2 25.0 72.9 Surrogate: SURR: 2,4,6-Tribromophenol 108 39.3-151 53.8 50.0

25.0

95.2

30.7-106

23.8

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 58 of 66

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BH20010-BLK2)						Pre	pared & Analyzed: 08/01/2022
Acenaphthene	ND	0.0500	ug/L			110	pared & Finally Zed. 00/01/2022
cenaphthylene	ND ND	0.0500	ug/L "				
Anthracene	ND ND	0.0500	"				
Atrazine	ND ND	0.500	"				
Senzo(a)anthracene	ND ND		"				
Senzo(a)pyrene	ND ND	0.0500 0.0500	"				
Senzo(b)fluoranthene	ND ND		,,				
Senzo(g,h,i)perylene		0.0500	,,				
Benzo(k)fluoranthene	ND	0.0500	,,				
sis(2-ethylhexyl)phthalate	ND ND	0.0500	,,				
		0.500	,,				
Chrysene Dibenzo(a,h)anthracene	ND	0.0500	,,				
	ND	0.0500					
luoranthene	ND	0.0500					
luorene	ND	0.0500	"				
[exachlorobenzene	ND	0.0200					
exachlorobutadiene	ND	0.500					
exachloroethane	ND	0.500	"				
ndeno(1,2,3-cd)pyrene	ND	0.0500					
aphthalene	ND	0.0500	"				
itrobenzene	ND	0.250	"				
I-Nitrosodimethylamine	ND	0.500	"				
entachlorophenol	ND	0.250	"				
henanthrene	ND	0.0500	"				
yrene	ND	0.0500	"				
.CS (BH20010-BS1)						Pre	pared & Analyzed: 08/01/2022
1-Biphenyl	17.3	5.00	ug/L	50.0	34.6	33-95	
2,4,5-Tetrachlorobenzene	19.5	5.00	"	25.0	77.8	26-120	
3,4,6-Tetrachlorophenol	25.9	5.00	"	25.0	104	30-130	
4,5-Trichlorophenol	19.6	5.00	"	25.0	78.6	32-114	
,4,6-Trichlorophenol	21.9	5.00	"	25.0	87.6	35-118	
4-Dichlorophenol	19.4	5.00	"	25.0	77.6	25-116	
,4-Dimethylphenol	17.6	5.00	"	25.0	70.2	15-116	
4-Dinitrophenol	44.0	5.00	"	25.0	176	10-170	High Bias
,4-Dinitrotoluene	19.2	5.00	"	25.0	76.9	41-128	
,6-Dinitrotoluene	21.7	5.00	"	25.0	86.9	45-116	
-Chloronaphthalene	17.6	5.00	"	25.0	70.6	33-112	
-Chlorophenol	15.4	5.00	"	25.0	61.4	15-120	
-Methylnaphthalene	19.0	5.00	"	25.0	76.1	24-118	
-Methylphenol	13.9	5.00	"	25.0	55.4	10-110	
-Nitroaniline	20.8	5.00	"	25.0	83.0	34-129	
-Nitrophenol	18.9	5.00	"	25.0	75.7	28-118	
- & 4-Methylphenols	10.6	5.00	"	25.0	42.3	10-107	
,3-Dichlorobenzidine	12.0	5.00	"	25.0	48.0	15-187	
-Nitroaniline	16.1	5.00	"	25.0	64.4	24-134	
,6-Dinitro-2-methylphenol	29.1	5.00	"	25.0	117	10-153	
-Bromophenyl phenyl ether	19.7	5.00	"	25.0	78.8	34-120	
-Chloro-3-methylphenol	21.2	5.00	"	25.0	78.6 84.6	20-120	
-Chloroaniline	14.2		,,	25.0		10-147	
-Chlorophenyl phenyl ether	14.2	5.00		25.0	56.7 78.7		
-Chlorophenyl phenyl ether -Nitroaniline		5.00			78.7	27-121	
MINIOAIIIIIIC	17.7	5.00		25.0	70.9	13-134	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 59 of 66

Spike

Source*

%REC

Reporting

Batch BH20010 - EPA 3510C			<u> </u>								
LCS (BH20010-BS1)							Prep	ared & Analy	zed: 08/01/	2022	
4-Nitrophenol	9.13	5.00	ug/L	25.0		36.5	10-131				_
Acetophenone	16.6	5.00	"	50.0		33.2	25-110				
Benzaldehyde	15.5	5.00	"	50.0		31.0	29-117				
Benzyl butyl phthalate	20.5	5.00	"	25.0		82.0	29-133				
Bis(2-chloroethoxy)methane	16.5	5.00	"	25.0		66.2	10-154				
Bis(2-chloroethyl)ether	12.6	5.00	"	25.0		50.3	17-125				
Bis(2-chloroisopropyl)ether	16.0	5.00	"	25.0		63.8	10-139				
Caprolactam	3.23	5.00	"	50.0		6.46	10-137	Low Bias			
Carbazole	21.7	5.00	"	25.0		86.7	42-126				
Dibenzofuran	19.5	5.00	"	25.0		77.9	36-113				
Diethyl phthalate	20.0	5.00	"	25.0		80.2	38-115				
Dimethyl phthalate	19.9	5.00	"	25.0		79.7	38-129				
Di-n-butyl phthalate	21.4	5.00	"	25.0		85.7	31-120				
Di-n-octyl phthalate	21.4	5.00	"	25.0		85.8	21-149				
Hexachlorocyclopentadiene	15.3	10.0	"	25.0		61.2	10-130				
Isophorone	18.6	5.00	"	25.0		74.5	25-127				
N-nitroso-di-n-propylamine	15.5	5.00	"	25.0		62.2	26-122				
N-Nitrosodiphenylamine	21.2	5.00	"	25.0		84.8	23-149				
Phenol	5.91	5.00	"	25.0		23.6	10-110				
Pyridine	5.66	5.00	"	25.5		22.2	10-90				
Surrogate: SURR: 2-Fluorophenol	18.5		"	50.0		36.9	19.7-63.1				
Surrogate: SURR: Phenol-d5	11.0		"	50.0		22.1	10.1-41.7				
Surrogate: SURR: Nitrobenzene-d5	17.7		"	25.0		70.7	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	18.5		"	25.0		74.1	39.9-105				
Surrogate: SURR: 2,4,6-Tribromophenol	52.6		"	50.0		105	39.3-151				
Surrogate: SURR: Terphenyl-d14	22.8		"	25.0		91.4	30.7-106				
LCS (BH20010-BS2)	0.500							ared & Analy	zed: 08/01/	2022	
Acenaphthene	0.680	0.0500	ug/L				25-116				
Acenaphthylene Anthracene	0.710	0.0500	,,				26-116				
Benzo(a)anthracene	0.590	0.0500	,,				25-123				
Benzo(a)pyrene	0.770 0.570	0.0500 0.0500	,,				33-125 32-132				
Benzo(b)fluoranthene	0.820	0.0500	,,				22-137				
Benzo(g,h,i)perylene	0.860	0.0500	,,				10-138				
Benzo(k)fluoranthene	0.780	0.0500	"				20-137				
Bis(2-ethylhexyl)phthalate	1.26	0.500	"				10-189				
Chrysene	0.730	0.0500	"				32-124				
Dibenzo(a,h)anthracene	0.860	0.0500	"				16-133				
Fluoranthene	0.860	0.0500	"				32-121				
Fluorene	0.770	0.0500	"				28-118				
Hexachlorobenzene	0.780	0.0200	"				23-124				
Hexachlorobutadiene	0.830	0.500	"				15-123				
Hexachloroethane	4.13	0.500	"				18-115				
Indeno(1,2,3-cd)pyrene	0.840	0.0500	"				15-135				
Naphthalene	0.690	0.0500	"				18-120				
Nitrobenzene	1.17	0.250	"				21-121				
N-Nitrosodimethylamine	ND	0.500	"				10-124				
Pentachlorophenol	1.82	0.250	"				10-156				
Phenanthrene	0.760	0.0500	"				24-127				
Pyrene	0.730	0.0500	"				31-132				
120 RESEARCH DRIVE	STRATFORD, CT 0	06615		133	2-02 89th A	VENUE	F	RICHMOND	HILL, NY	11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 60 of 66

RPD

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Ratch	RH20010.	_ FPA	3510C

Matrix Spike (BH20010-MS1)	*Source sample: 220	61279-01 (M	atrix Spike)		Prep	pared & Analyzed: 08/01/2022
1,1-Biphenyl	21.7	6.06	ug/L	60.6	35.8	26-79	
,2,4,5-Tetrachlorobenzene	22.9	6.06	"	30.3	75.7	33-90	
2,3,4,6-Tetrachlorophenol	30.9	6.06	"	30.3	102	30-130	
,4,5-Trichlorophenol	27.5	6.06	"	30.3	90.6	43-96	
,4,6-Trichlorophenol	25.2	6.06	"	30.3	83.2	46-94	
,4-Dichlorophenol	26.1	6.06	"	30.3	86.2	26-101	
,4-Dimethylphenol	23.9	6.06	"	30.3	78.9	10-104	
,4-Dinitrophenol	53.6	6.06	"	30.3	177	10-146	High Bias
,4-Dinitrotoluene	24.8	6.06	"	30.3	82.0	30-108	
,6-Dinitrotoluene	26.6	6.06	"	30.3	87.9	38-98	
-Chloronaphthalene	22.3	6.06	"	30.3	73.7	30-89	
-Chlorophenol	20.1	6.06	"	30.3	66.4	24-98	
-Methylnaphthalene	24.0	6.06	"	30.3	79.2	10-112	
-Methylphenol	17.9	6.06	"	30.3	59.0	10-134	
-Nitroaniline	25.1	6.06	"	30.3	82.9	25-110	
-Nitrophenol	24.7	6.06	"	30.3	81.5	10-139	
- & 4-Methylphenols	14.8	6.06	"	30.3	48.9	10-139	
,3-Dichlorobenzidine	14.4	6.06	"	30.3	47.5	10-140	
-Nitroaniline	19.9	6.06	"	30.3	65.7	22-111	
,6-Dinitro-2-methylphenol	30.9	6.06	,,	30.3	102	10-140	
-Bromophenyl phenyl ether	22.9	6.06	"	30.3	75.7	30-108	
-Chloro-3-methylphenol	26.8	6.06	"	30.3	88.3	11-109	
-Chloroaniline	20.5		"				
-Chlorophenyl phenyl ether		6.06	,,	30.3	67.7	10-116	
-Nitroaniline	24.1	6.06	,,	30.3	79.4	39-85	
-Nitrophenol	22.5	6.06	"	30.3	74.3	11-132	
cetophenone	14.1	6.06	"	30.3	46.4	10-82	
enzaldehyde	20.9	6.06	"	60.6	34.6	14-102	
-	19.6	6.06	"	60.6	32.3	13-87	
Benzyl butyl phthalate	24.7	6.06	"	30.3	81.4	10-133	
Bis(2-chloroethoxy)methane	22.0	6.06	"	30.3	72.7	18-105	
sis(2-chloroethyl)ether	9.88	6.06		30.3	32.6	10-108	
sis(2-chloroisopropyl)ether	21.0	6.06	"	30.3	69.4	13-116	I D.
aprolactam	4.44	6.06		60.6	7.32	10-75	Low Bias
Carbazole	26.6	6.06	"	30.3	87.9	36-108	
Dibenzofuran	24.2	6.06	"	30.3	79.8	34-92	
Diethyl phthalate	23.5	6.06	"	30.3	77.4	33-98	
Dimethyl phthalate	23.8	6.06	"	30.3	78.5	18-116	
Di-n-butyl phthalate	25.1	6.06	"	30.3	82.8	25-97	
bi-n-octyl phthalate	26.0	6.06	"	30.3	85.8	10-137	
Iexachlorocyclopentadiene	19.9	12.1	"	30.3	65.8	10-79	
sophorone	24.1	6.06	"	30.3	79.6	25-103	
I-nitroso-di-n-propylamine	19.9	6.06	"	30.3	65.5	19-115	
I-Nitrosodiphenylamine	26.4	6.06	"	30.3	87.2	31-112	
henol	8.90	6.06	"	30.3	29.4	10-61	
yridine	8.69	6.06	"	30.9	28.1	10-78	
urrogate: SURR: 2-Fluorophenol	25.9		"	60.6	42.7	19.7-63.1	
urrogate: SURR: Phenol-d5	16.9		"	60.6	27.9	10.1-41.7	
urrogate: SURR: Nitrobenzene-d5	24.1		"	30.3	79.6	50.2-113	
Surrogate: SURR: 2-Fluorobiphenyl	23.6		"	30.3	77.7	39.9-105	
urrogate: SURR: 2,4,6-Tribromophenol	61.9		"	60.6	102	39.3-151	
Surrogate: SURR: Terphenyl-d14	27.4		"	30.3	90.6	30.7-106	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

(203) 325-1371 FAX (203) 357-0166

ClientServices@

Page 61 of 66

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BH20010 - EPA 3510C										
Matrix Spike Dup (BH20010-MSD1)	*Source sample: 22G1	279-01 (M	atrix Spike	Dup)		Prep	pared & Analy	zed: 08/01/	2022	
1,1-Biphenyl	20.6	5.88	ug/L	58.8	35.1	26-79		5.07	25	
1,2,4,5-Tetrachlorobenzene	23.8	5.88	"	29.4	80.9	33-90		3.71	25	
2,3,4,6-Tetrachlorophenol	31.8	5.88	"	29.4	108	30-130		2.95	25	
2,4,5-Trichlorophenol	27.4	5.88	"	29.4	93.1	43-96		0.286	25	
2,4,6-Trichlorophenol	24.9	5.88	"	29.4	84.6	46-94		1.32	25	
2,4-Dichlorophenol	25.3	5.88	"	29.4	86.1	26-101		3.08	25	
2,4-Dimethylphenol	22.4	5.88	"	29.4	76.1	10-104		6.60	25	
2,4-Dinitrophenol	55.0	5.88	"	29.4	187	10-146	High Bias	2.56	25	
2,4-Dinitrotoluene	26.5	5.88	"	29.4	90.2	30-108		6.55	25	
2,6-Dinitrotoluene	26.1	5.88	"	29.4	88.8	38-98		1.94	25	
2-Chloronaphthalene	21.0	5.88	"	29.4	71.4	30-89		6.12	25	
2-Chlorophenol	20.0	5.88	"	29.4	68.1	24-98		0.488	25	
2-Methylnaphthalene	23.4	5.88	"	29.4	79.7	10-112		2.38	25	
2-Methylphenol	17.4	5.88	"	29.4	59.2	10-134		2.58	25	
2-Nitroaniline	24.8	5.88	"	29.4	84.4	25-110		1.12	25	
2-Nitrophenol	23.8	5.88	"	29.4	80.9	10-139		3.67	25	
3- & 4-Methylphenols	13.3	5.88	"	29.4	45.2	10-91		10.9	25	
3,3-Dichlorobenzidine	14.3	5.88	"	29.4	48.5	10-140		0.819	25	
3-Nitroaniline	21.1	5.88	"	29.4	71.8	22-111		5.81	25	
4,6-Dinitro-2-methylphenol	34.7	5.88	"	29.4	118	10-140		11.6	25	
4-Bromophenyl phenyl ether	23.2	5.88	"	29.4	78.7	30-108		0.953	25	
4-Chloro-3-methylphenol	25.5	5.88	"	29.4	86.7	11-109		4.77	25	
4-Chloroaniline	19.2	5.88	"	29.4	65.2	10-116		6.65	25	
4-Chlorophenyl phenyl ether	23.2	5.88	"	29.4	78.9	39-85		3.64	25	
4-Nitroaniline	22.2	5.88	"	29.4	75.3	11-132		1.65	25	
4-Nitrophenol	13.6	5.88	"	29.4	46.2	10-82		3.42	25	
Acetophenone	20.9	5.88	"	58.8	35.6	14-102		0.0766	25	
Benzaldehyde	20.2	5.88	"	58.8	34.3	13-87		3.02	25	
Benzyl butyl phthalate	24.8	5.88	"	29.4	84.2	10-133		0.493	25	
Bis(2-chloroethoxy)methane	21.2	5.88	"	29.4	72.0	18-105		3.87	25	
Bis(2-chloroethyl)ether	17.1	5.88	"	29.4	58.2	10-108		53.6	25	Non-dir.
Bis(2-chloroisopropyl)ether	20.7	5.88	"	29.4	70.5	13-116		1.44	25	
Caprolactam	3.91	5.88	"	58.8	6.64	10-75	Low Bias	12.7	25	
Carbazole	26.7	5.88	"	29.4	90.8	36-108		0.283	25	
Dibenzofuran	22.9	5.88	"	29.4	77.9	34-92		5.42	25	
Diethyl phthalate	24.2	5.88	"	29.4	82.4	33-98		3.23	25	
Dimethyl phthalate	23.8	5.88	"	29.4	81.0	18-116		0.225	25	
Di-n-butyl phthalate	25.9	5.88	"	29.4	88.0	25-97		3.15	25	
Di-n-octyl phthalate	26.3	5.88	"	29.4	89.4	10-137		1.08	25	
Hexachlorocyclopentadiene	20.8	11.8	"	29.4	70.8	10-137		4.34	25	
Isophorone	23.5	5.88	"	29.4	80.0	25-103		2.38	25	
N-nitroso-di-n-propylamine	20.2	5.88	"	29.4	68.8	19-115		1.96	25	
N-Nitrosodiphenylamine	26.4	5.88	,,	29.4	89.6	31-112		0.224	25	
Phenol	8.62	5.88	"	29.4	29.3	10-61		3.12	25	
Pyridine	8.89	5.88	"	30.0	29.6	10-78		2.31	25	
Surrogate: SURR: 2-Fluorophenol	23.8		"	58.8	40.4	19.7-63.1				
Surrogate: SURR: Phenol-d5	15.5		"	58.8	26.4	10.1-41.7				
Surrogate: SURR: Nitrobenzene-d5	23.7		"	29.4	80.4	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	22.6		"	29.4	76.8	39.9-105				
Surrogate: SURR: 2,4,6-Tribromophenol	64.6		"	58.8	110	39.3-151				
Surrogate: SURR: Terphenyl-d14	27.1		"	29.4	92.2	30.7-106				
120 DESEABOU DRIVE	STEATEOED OT 166	45		40	22 02 80th AVENUE		DICHMOND	LIII L. NIX	44.440	

120 RESEARCH DRIVE

www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 62 of 66

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
22G1127-01	MW-4AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
22G1127-02	MW-5AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
22G1127-03	MW-1AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
22G1127-04	MW-3AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
22G1127-05	DUP	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
22G1127-06	Trip Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

QR-04	The RPD exceeded control limits for the LCS/LCSD QC.
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data are acceptable.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
EXT-EM	The sample exhibited emulsion formation during the extraction process. This may affect surrogate recoveries.
EXT-D	The sample submitted contained sediment. The aqueous portion was decanted off, the volume measured and used for the extraction. The sediment was not included in the extraction.
E	The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate.
CCV-E	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 64 of 66

Non-Dir.

Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

ClientServices@

Page 65 of 66

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

Field Chain-of-Custody Record

York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.

226/127

YORK Project No.

Turn-Around Time YORK Reg. Comp. Container Description Compared to the following Regulation(s): (please fill in) Special Instruction of Standard (5-7 Day) RUSH - Three Day RUSH - Next Day RUSH - Two Day RUSH - Four Day Field Filtered Lab to Filter Page 1 7126 8:50 36 30 Standard Excel EDD NJDEP SRP HazSite CT RCP DQA/DUE EQuIS (Standard) NYSDEC EQuIS YOUR Project Number YOUR Project Name 800-306-9675 Report / EDD Type (circle selections) NaOH 03C497-M Preservation: (check all that apply) Analysis Requested /H2S04 NJDEP Reduced 800-306-YORK YOUR PO#: Deliverables NJDKQP CT RCP VOCS/8260 VBCs (8260 HN03 Ascorbic Acid NY ASP A Package NY ASP B Package clientservices@yorklab.com www.yorklab.com Summary Report HCI / MeOH Invoice To: Samples iced/chilled at time of lab pickup? of le Yes or No ZnAc_ 7/25/22 Samo Date/Time Sampled Samples From 3925 Pennsylvania 035 240 7/25/ Connecticut New Jersey New York ompany: Other: Samples Received by / Company 15 BL Fridge Matrix Codes DW - drinking water Sample Matrix GW - groundwater WW - wastewater Other 132-02 89th Ave Queens, NY 11418 S - soil / solid 30 0-0il Report To: Samo SVOCS Analyzed in Full Samples will not be logged in and the turn-around-time clock will not 22 Please print clearly and legibly. All information must be complete. Samples Collected by: (print AND sign your name) /22/ company Contact: hone.: 13L compartes, com begin until any questions by YORK are resolved. Sample Identification Report Parkway 120 Research Drive Stratford, CT 06615 MW-5AR MW-14R MW - 4AR 06450 YOUR Information - MW mail: BLown Contact Brian npany: BC ddress: 355 Comments: Menden Page 66 of 66

Technical Report

prepared for:

BL Companies 355 Research Parkway Meriden CT, 06450 Attention: Brian Lowry

Report Date: 11/09/2022

Client Project ID: 03C497-M

York Project (SDG) No.: 22J1423

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 11/09/2022 Client Project ID: 03C497-M York Project (SDG) No.: 22J1423

BL Companies

355 Research Parkway Meriden CT, 06450

Attention: Brian Lowry

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on October 27, 2022 and listed below. The project was identified as your project: 03C497-M.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
22J1423-01	MW-4AR	Water	10/25/2022	10/27/2022
22J1423-02	MW-5AR	Water	10/25/2022	10/27/2022
22J1423-03	MW-3AR	Water	10/25/2022	10/27/2022
22J1423-04	MW-1AR	Water	10/25/2022	10/27/2022
22J1423-05	DUP	Water	10/25/2022	10/27/2022
22J1423-06	TB	Water	10/26/2022	10/27/2022

General Notes for York Project (SDG) No.: 22J1423

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Cassie L. Mosher Laboratory Manager

Och I most

Date: 11/09/2022

Client Sample ID: MW-4AR 22J1423-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22J142303C497-MWaterOctober 25, 2022 11:25 am10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:
Luz-III I tutes.	Sample note

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 58,NJDEP,PA
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 58,NJDEP,PA
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 58,NJDEP,P/
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PF	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 8,NJDEP,PA
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 58,NJDEP,PA
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 8,NJDEP,PA
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 58,NJDEP,PA
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY12	11/04/2022 08:45 2058,NJDEP,PADEP	JTG
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 / 10854,NELAC-NY12	11/04/2022 08:45 2058,NJDEP,PADEP	JTG
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY12	11/04/2022 08:45 2058,NJDEP,PADEP	JTG
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 58,NJDEP,PA
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 8,NJDEP,PA
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PF	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 8,NJDEP,PA
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PF	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 8,NJDEP,PA
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PF	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 8,NJDEP,PA
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PF	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 8,NJDEP,PA
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PF	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 8,NJDEP,PA
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PF	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 8,NJDEP,PA
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 / 10854,NELAC-NY12	11/04/2022 08:45 2058,NJDEP,PADEP	JTG
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY1205	JTG 8,NJDEP,PA
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 / 10854,NELAC-NY12	11/04/2022 08:45 2058,NJDEP,PADEP	JTG
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PF	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 08:45 854.NELAC-NY1205	JTG 8.NJDEP.PA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 61

Client Sample ID: MW-4AR

York Sample ID: 22J1423-01

 York Project (SDG) No.
 Client Project ID

 22J1423
 03C497-M

Matrix Water Collection Date/Time
October 25, 2022 11:25 am

Date Received 10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:
---------------	---------------

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method Date/Time Prepared	Date/Time Analyzed	Analyst
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
67-64-1	Acetone	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
71-43-2	Benzene	0.210	J	ug/L	0.200	0.500	1	EPA 8260C	11/03/2022 06:14	11/04/2022 08:45	JTG
								Certifications:	CTDOH-PH-0723,NELAC-NY10	0854,NELAC-NY120)58,NJDEP,PA
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 NELAC-NY10854,NELAC-NY12	11/04/2022 08:45 2058,NJDEP,PADEP	JTG
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
110-82-7	Cyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 NELAC-NY10854,NELAC-NY12	11/04/2022 08:45 2058,NJDEP,PADEP	JТG
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PA
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 NELAC-NY10854,NELAC-NY12	11/04/2022 08:45 2058,NJDEP,PADEP	JТG
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 NELAC-NY10854,NELAC-NY12	11/04/2022 08:45 2058,NJDEP,PADEP	JTG
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY10	11/04/2022 08:45	JTG

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 5 of 61

FAX (203) 357-0166

Client Sample ID: MW-4AR

<u>York Sample ID:</u> 22J1423-01

York Project (SDG) No. 22J1423

Client Project ID 03C497-M Matrix Water Collection Date/Time
October 25, 2022 11:25 am

Date Received 10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method Date/Time Prepared	Date/Time Analyzed	Analyst
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 NELAC-NY10854,NELAC-NY120	11/04/2022 08:45 058,NJDEP,PADEP	JTG
98-82-8	Isopropylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY108	11/04/2022 08:45 854,NELAC-NY1205	JTG 58,NJDEP,PAI
79-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 NELAC-NY10854,NELAC-NY120	11/04/2022 08:45 058,NJDEP,PADEP	JTG
1634-04-4	Methyl tert-butyl ether (MTBE)	0.580		ug/L	0.200	0.500	1	EPA 8260C	11/03/2022 06:14	11/04/2022 08:45	JTG
								Certifications:	CTDOH-PH-0723,NELAC-NY10	854,NELAC-NY120	58,NJDEP,PA
108-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 NELAC-NY10854,NELAC-NY120	11/04/2022 08:45 058,NJDEP,PADEP	JTG
75-09-2	Methylene chloride	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY108	11/04/2022 08:45 354,NELAC-NY1205	JTG 58,NJDEP,PAI
91-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	11/03/2022 06:14 NELAC-NY10854,NELAC-NY120	11/04/2022 08:45 058,NJDEP,PADEP	JTG
104-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY108	11/04/2022 08:45	JTG 58 NIDEP PAL
103-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C	11/03/2022 06:14	11/04/2022 08:45	JTG
95-47-6	o-Xylene	ND		ug/L	0.200	0.500	1	Certifications: EPA 8260C	CTDOH-PH-0723,NELAC-NY108 11/03/2022 06:14	11/04/2022 08:45	JTG
								Certifications:	CTDOH-PH-0723,NELAC-NY108		
179601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY108	11/04/2022 08:45 854,NELAC-NY1205	JTG 58,PADEP
105-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14	11/04/2022 08:45	JTG
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14	11/04/2022 08:45	JTG
99-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY108	11/04/2022 08:45 354,NELAC-NY1205	JTG 58,NJDEP,PAI
135-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY108	11/04/2022 08:45 854,NELAC-NY1205	JTG 58,NJDEP,PAI
100-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY108	11/04/2022 08:45 354.NELAC-NY1205	JTG 58.NJDEP.PAI
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	11/03/2022 06:14 NELAC-NY10854,NELAC-NY120	11/04/2022 08:45	JTG
98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY108	11/04/2022 08:45	JTG
127-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C	11/03/2022 06:14	11/04/2022 08:45	JTG
108-88-3	Toluene	ND		ug/L	0.200	0.500	1	Certifications: EPA 8260C	CTDOH-PH-0723,NELAC-NY108 11/03/2022 06:14	11/04/2022 08:45	JTG
156 60 5	10011) ID		/T	0.200	0.500	1	Certifications:	CTDOH-PH-0723,NELAC-NY108		
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY108	11/04/2022 08:45 354,NELAC-NY1205	JTG 58,NJDEP,PAI
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY108	11/04/2022 08:45 354,NELAC-NY1205	JTG 58,NJDEP,PAI
79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/03/2022 06:14 CTDOH-PH-0723,NELAC-NY108	11/04/2022 08:45 854,NELAC-NY1205	JTG 58,NJDEP,PAI

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 6 of 61

Client Sample ID: MW-4AR

York Sample ID:

22J1423-01

York Project (SDG) No. 22J1423 Client Project ID 03C497-M Matrix Water Collection Date/Time
October 25, 2022 11:25 am

Date Received 10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log-in	Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP,PAI
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 08:45 9854,NELAC-NY120	JTG 58,NJDEP,PA1
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 08:45 854,NELAC-NY120	JTG 58,NJDEP
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	128 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	98.3 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	104 %			79-122							

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

<u>Log-in Notes:</u> <u>Sample Notes:</u>

95-94-3	1,1-Biphenyl 1,2,4,5-Tetrachlorobenzene	ND	ug/L						
	1,2,4,5-Tetrachlorobenzene			2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 NELAC-NY10854,NJDEP,PAD	KH
0.00.2		ND	ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 NELAC-NY10854,NJDEP,PAD	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND	ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 NELAC-NY10854,NJDEP,PAD	KH
95-95-4	2,4,5-Trichlorophenol	ND	ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY	KH
38-06-2	2,4,6-Trichlorophenol	ND	ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY	КН
120-83-2	2,4-Dichlorophenol	ND	ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY	КН
105-67-9	2,4-Dimethylphenol	ND	ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY	КН
51-28-5	2,4-Dinitrophenol	ND	ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY	KH
121-14-2	2,4-Dinitrotoluene	ND	ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY	KH
606-20-2	2,6-Dinitrotoluene	ND	ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY	KH
01-58-7	2-Chloronaphthalene	ND	ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY	KH
95-57-8	2-Chlorophenol	ND	ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY	KH
01-57-6	2-Methylnaphthalene	ND	ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY	КН
95-48-7 2	2-Methylphenol	ND	ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 7 of 61

Client Sample ID: MW-4AR

York Sample ID: 22J1423-01

York Project (SDG) No. 22J1423

Client Project ID 03C497-M Matrix Water Collection Date/Time
October 25, 2022 11:25 am

Date Received 10/27/2022

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		ate/Time Prepared	Date/Time Analyzed	Analyst
88-74-4	2-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	КН
88-75-5	2-Nitrophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
99-09-2	3-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	КН
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
100-01-6	4-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
100-02-7	4-Nitrophenol	ND		ug/L	5.13	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
98-86-2	Acetophenone	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/0 NELAC-NY10854	1/2022 08:13 ,NJDEP,PADE	11/01/2022 19:35 P	KH
100-52-7	Benzaldehyde	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/0 NELAC-NY10854	1/2022 08:13 ,NJDEP,PADE	11/01/2022 19:35 P	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.03	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
105-60-2	Caprolactam	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/0 NELAC-NY10854	1/2022 08:13 ,NJDEP,PADE	11/01/2022 19:35 P	KH
86-74-8	Carbazole	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
132-64-9	Dibenzofuran	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		1/2022 08:13 NELAC-NY10	11/01/2022 19:35 0854,NJDEP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 8 of 61

Client Sample ID: MW-4AR

York Sample ID:

22J1423-01

York Project (SDG) No. 22J1423

Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> October 25, 2022 11:25 am Date Received 10/27/2022

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH-	11/01/2022 08:13 -0723,NELAC-NY10	11/01/2022 19:35 854,NJDEP,PADEP	KH
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH-	11/01/2022 08:13 -0723,NELAC-NY10	11/01/2022 19:35 854,NJDEP,PADEP	KH
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.13	10.3	1	EPA 8270D Certifications:	CTDOH-PH-	11/01/2022 08:13 -0723,NELAC-NY10	11/01/2022 19:35 854,NJDEP,PADEP	КН
78-59-1	Isophorone	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH-	11/01/2022 08:13 -0723,NELAC-NY10	11/01/2022 19:35 854,NJDEP,PADEP	КН
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH-	11/01/2022 08:13 -0723,NELAC-NY10	11/01/2022 19:35 854,NJDEP,PADEP	КН
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH-	11/01/2022 08:13 -0723,NELAC-NY10	11/01/2022 19:35 854,NJDEP,PADEP	КН
108-95-2	Phenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH-	11/01/2022 08:13 -0723,NELAC-NY10	11/01/2022 19:35 854,NJDEP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13	11/01/2022 19:35	КН
110-86-1	Pyridine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH-	11/01/2022 08:13 -0723,NELAC-NY10	11/01/2022 19:35 854,NJDEP,PADEP	КН
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	22.5 %			19.7-63.1							
4165-62-2	Surrogate: SURR: Phenol-d5	11.9 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	39.3 %	S-08		50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	41.4 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	101 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	61.8 %			30.7-106							

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag Units	Reported to LOQ Diluti	ion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND	ug/L	0.0513 1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 15:46 854,NJDEP,PADEP	KH
208-96-8	Acenaphthylene	ND	ug/L	0.0513 1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 15:46 854,NJDEP,PADEP	KH
120-12-7	Anthracene	ND	ug/L	0.0513 1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 15:46 854,NJDEP,PADEP	KH
1912-24-9	Atrazine	ND	ug/L	0.513 1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 15:46 854,NJDEP	KH
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0513 1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 15:46 854,NJDEP,PADEP	КН
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0513 1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 15:46 854,NJDEP,PADEP	КН
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0513 1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 15:46 854,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 9 of 61

Client Sample ID: MW-4AR **York Sample ID:**

22J1423-01

York Project (SDG) No. 22J1423

Client Project ID 03C497-M

Matrix Water

Collection Date/Time October 25, 2022 11:25 am Date Received 10/27/2022

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log	-in	N	01	es:	

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0513	1		/01/2022 08:13 23,NELAC-NY108	11/01/2022 15:46 54,NJDEP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0513	1		/01/2022 08:13 23,NELAC-NY108	11/01/2022 15:46 54,NJDEP,PADEP	KH
117-81-7	Bis(2-ethylhexyl)phthalate	2.54	В	ug/L	0.513	1	EPA 8270D SIM 11	/01/2022 08:13	11/01/2022 15:46	KH
							Certifications: CTDOH-PH-07	23,NELAC-NY108	354,NJDEP	
218-01-9	Chrysene	ND		ug/L	0.0513	1		/01/2022 08:13 23,NELAC-NY108:	11/01/2022 15:46 54,NJDEP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0513	1		/01/2022 08:13 23,NELAC-NY108:	11/01/2022 15:46 54,NJDEP,PADEP	KH
206-44-0	Fluoranthene	ND		ug/L	0.0513	1		/01/2022 08:13 23,NELAC-NY108:	11/01/2022 15:46 54,NJDEP,PADEP	KH
86-73-7	Fluorene	ND		ug/L	0.0513	1		/01/2022 08:13 23,NELAC-NY108	11/01/2022 15:46 54,NJDEP,PADEP	KH
118-74-1	Hexachlorobenzene	ND		ug/L	0.0205	1		/01/2022 08:13 23,NELAC-NY108	11/01/2022 15:46 54,NJDEP	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	0.513	1		/01/2022 08:13 23,NELAC-NY108	11/01/2022 15:46 54,NJDEP	KH
67-72-1	Hexachloroethane	ND		ug/L	0.513	1		/01/2022 08:13 23,NELAC-NY108	11/01/2022 15:46 54,NJDEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0513	1		/01/2022 08:13 23,NELAC-NY108	11/01/2022 15:46 54,NJDEP,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.0513	1		/01/2022 08:13 23,NELAC-NY108	11/01/2022 15:46 54,NJDEP,PADEP	KH
98-95-3	Nitrobenzene	ND		ug/L	0.256	1		/01/2022 08:13 23,NELAC-NY108:	11/01/2022 15:46 54,NJDEP	KH
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.513	1		/01/2022 08:13 23,NELAC-NY108	11/01/2022 15:46 54,NJDEP	KH
87-86-5	Pentachlorophenol	ND		ug/L	0.256	1		/01/2022 08:13 23,NELAC-NY108:	11/01/2022 15:46 54,NJDEP	КН
85-01-8	Phenanthrene	0.0615		ug/L	0.0513	1	EPA 8270D SIM 11	/01/2022 08:13	11/01/2022 15:46	KH
							Certifications: CTDOH-PH-07	23,NELAC-NY108	354,NJDEP,PADEP	
129-00-0	Pyrene	ND		ug/L	0.0513	1		/01/2022 08:13 23,NELAC-NY108:	11/01/2022 15:46 54,NJDEP,PADEP	KH

Sample Information

Client Sample ID: MW-5AR **York Sample ID:**

22J1423-02

10/27/2022

York Project (SDG) No. 22J1423

Client Project ID 03C497-M

Matrix Water

Collection Date/Time October 25, 2022 12:15 pm Date Received

VOA, 8260 LOW MASTER

Log-in Notes:

Sample Notes:

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 10 of 61

Client Sample ID: MW-5AR **York Sample ID:** 22J1423-02

York Project (SDG) No. 22J1423

Client Project ID 03C497-M

Matrix Water

Collection Date/Time October 25, 2022 12:15 pm Date Received 10/27/2022

Sample Prepare	ed by Method: EPA 5030B									Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14 854,NELAC-NY1205	JTG 58,NJDEP,PAI
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14 854,NELAC-NY1205	JTG 58,NJDEP,PAI
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14 854,NELAC-NY1205	JTG 8,NJDEP,PAI
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14 854,NELAC-NY1205	JTG 58,NJDEP,PAI
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14 854,NELAC-NY1205	JTG 8,NJDEP,PAI
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14 854,NELAC-NY1205	JTG 58,NJDEP,PAI
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14 854,NELAC-NY1205	JTG 58,NJDEP,PAI
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	11/08/2022 06:10 Y10854,NELAC-NY12	11/08/2022 15:14 2058,NJDEP,PADEP	JTG
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	11/08/2022 06:10 Y10854,NELAC-NY12	11/08/2022 15:14 2058,NJDEP,PADEP	JTG
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	11/08/2022 06:10 Y10854,NELAC-NY12	11/08/2022 15:14 2058,NJDEP,PADEP	JTG
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14 854,NELAC-NY1205	JTG 58,NJDEP,PAI
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14 854,NELAC-NY1205	JTG 8,NJDEP,PAI
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14 854,NELAC-NY1205	JTG 8,NJDEP,PAI
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14 854,NELAC-NY1205	JTG 8,NJDEP,PAI
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14	JTG
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14	JTG
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10 I-0723,NELAC-NY10	11/08/2022 15:14	JTG
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14	JTG
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10 Y10854,NELAC-NY12	11/08/2022 15:14	JTG
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14	JTG
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C Certifications:		11/08/2022 06:10 Y10854,NELAC-NY12	11/08/2022 15:14	JTG
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14	JTG
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:14	JTG
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C		H-0723,NELAC-NY10 11/08/2022 06:10	11/08/2022 15:14	JTG
								Certifications:	CIDOH-PI	I-0723,NELAC-NY10	854,NELAC-NY 1205	08,NJDEP,PAl

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 11 of 61

Client Sample ID: MW-5AR

York Sample ID: 22J1423-02

 York Project (SDG) No.
 Client Project ID

 22J1423
 03C497-M

MatrixCollection Date/TimeWaterOctober 25, 2022 12:15 pm

Date Received 10/27/2022

VOA, 8260 LOW MASTER Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	СТДОН-РН-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120	JTG 058,NJDEP,PA
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120	JTG 058,NJDEP,PA1
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:14 0854,NELAC-NY120	JTG
71-43-2	Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:14 0854,NELAC-NY120	JTG
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:14 2058,NJDEP,PADEP	JTG
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:14 0854,NELAC-NY120	JTG
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:14 0854,NELAC-NY120	JTG
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:14 0854,NELAC-NY120	JTG
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:14	JTG
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C		11/08/2022 06:10	11/08/2022 15:14	JTG
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	Certifications:		11/08/2022 06:10	11/08/2022 15:14	JTG
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	Certifications:		11/08/2022 06:10	11/08/2022 15:14	JTG
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	Certifications:		11/08/2022 06:10	11/08/2022 15:14	JTG
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	Certifications:		11/08/2022 06:10	11/08/2022 15:14	JTG
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	Certifications:		11/08/2022 06:10	11/08/2022 15:14	JTG
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	Certifications:		11/08/2022 06:10	11/08/2022 15:14	JTG
110-82-7	Cyclohexane	ND		ug/L	0.200	0.500	1	Certifications: EPA 8260C		11/08/2022 06:10	0854,NELAC-NY120 11/08/2022 15:14	JTG
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	Certifications:		11/08/2022 06:10	2058,NJDEP,PADEP 11/08/2022 15:14	JTG
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	Certifications:		11/08/2022 06:10	0854,NELAC-NY120 11/08/2022 15:14	JTG
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	Certifications: EPA 8260C		11/08/2022 06:10	2058,NJDEP,PADEP 11/08/2022 15:14	JTG
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	Certifications: EPA 8260C		11/08/2022 06:10	2058,NJDEP,PADEP 11/08/2022 15:14	JTG
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	Certifications: EPA 8260C		0723,NELAC-NY10 11/08/2022 06:10	0854,NELAC-NY120 11/08/2022 15:14	JTG
98-82-8	Isopropylbenzene	ND		ug/L	0.200	0.500	1	Certifications: EPA 8260C		0854,NELAC-NY1: 11/08/2022 06:10	2058,NJDEP,PADEP 11/08/2022 15:14	JTG
	,			-				Certifications:	CTDOH-PH-	0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP,PAI

Client Sample ID: MW-5AR

York Sample ID: 22J1423-02

York Project (SDG) No. 22J1423

Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> October 25, 2022 12:15 pm Date Received 10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

<u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/08/2022 06:10 10854,NELAC-NY12	11/08/2022 15:14 2058,NJDEP,PADEP	JTG
1634-04-4	Methyl tert-butyl ether (MTBE)	0.530		ug/L	0.200	0.500	1	EPA 8260C		11/08/2022 06:10	11/08/2022 15:14	JTG
								Certifications:	CTDOH-PI	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP,PA
108-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/08/2022 06:10 10854,NELAC-NY12	11/08/2022 15:14 2058,NJDEP,PADEP	JTG
75-09-2	Methylene chloride	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120	JTG 58,NJDEP,PA
91-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	NELAC-NY	11/08/2022 06:10 10854,NELAC-NY12	11/08/2022 15:14 2058,NJDEP,PADEP	JTG
104-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,NJDEP,PA
103-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,NJDEP,PAI
95-47-6	o-Xylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,PADEP
179601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,PADEP
105-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:14	JTG
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:14	JTG
99-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,NJDEP,PA1
135-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,NJDEP,PAI
100-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,NJDEP,PAI
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	NELAC-NY	11/08/2022 06:10 10854,NELAC-NY12	11/08/2022 15:14 2058,NJDEP,PADEP	JTG
98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,NJDEP,PA
127-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,NJDEP,PA
108-88-3	Toluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,NJDEP,PA
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120	JTG 58,NJDEP,PA
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,NJDEP,PA
79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,NJDEP,PA
75-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,NJDEP,PA
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:14	JTG 58,NJDEP,PAI

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 13 of 61

Client Sample ID: MW-5AR

York Sample ID:

22J1423-02

York Project (SDG) No. 22J1423

Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> October 25, 2022 12:15 pm Date Received 10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

	<u>Log-in</u>	Not	tes:
--	---------------	-----	------

Sample Notes:

CAS N	To. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH-PI	11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:14 0854,NELAC-NY120:	JTG 58,NJDEP
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	102 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	102 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	97.2 %			79-122							

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADEP	11/01/2022 20:05	KH
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADEP	11/01/2022 20:05	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADEP	11/01/2022 20:05	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:05 54,NJDEP,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:05 54,NJDEP,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:05 54,NJDEP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:05 54,NJDEP,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:05 54,NJDEP,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:05 54,NJDEP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:05 54,NJDEP,PADEP	KH
91-58-7	2-Chloronaphthalene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:05 54,NJDEP,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:05 54,NJDEP,PADEP	KH
91-57-6	2-Methylnaphthalene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:05 54,NJDEP,PADEP	КН
95-48-7	2-Methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:05 54,NJDEP,PADEP	KH
88-74-4	2-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:05 54,NJDEP,PADEP	KH
88-75-5	2-Nitrophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:05 54,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Pa

Page 14 of 61

Log-in Notes:

Client Sample ID: MW-5AR **York Sample ID:** 22J1423-02

York Project (SDG) No. 22J1423

Client Project ID 03C497-M

Matrix Water

Collection Date/Time October 25, 2022 12:15 pm

Sample Notes:

Date Received 10/27/2022

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	КН
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
99-09-2	3-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
100-01-6	4-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
100-02-7	4-Nitrophenol	ND		ug/L	5.13	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
98-86-2	Acetophenone	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADE	11/01/2022 20:05 P	KH
100-52-7	Benzaldehyde	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADE	11/01/2022 20:05 P	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.03	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	КН
105-60-2	Caprolactam	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADE	11/01/2022 20:05 P	КН
86-74-8	Carbazole	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	КН
132-64-9	Dibenzofuran	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	КН
84-66-2	Diethyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	КН
131-11-3	Dimethyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05	КН

2.56

2.56

ug/L

ug/L

120 RESEARCH DRIVE www.YORKLAB.com

Di-n-butyl phthalate

Di-n-octyl phthalate

84-74-2

117-84-0

STRATFORD, CT 06615 (203) 325-1371

ND

ND

132-02 89th AVENUE FAX (203) 357-0166

5.13

5.13

EPA 8270D

EPA 8270D

RICHMOND HILL, NY 11418

11/01/2022 08:13 11/01/2022 20:05

CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

KH

KΗ

ClientServices@ Page 15 of 61

Client Sample ID: MW-5AR **York Sample ID:**

22J1423-02

York Project (SDG) No. 22J1423

Client Project ID 03C497-M

Matrix Water

Collection Date/Time October 25, 2022 12:15 pm Date Received 10/27/2022

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log	-in	No	tes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.13	10.3	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13	11/01/2022 20:05	KH
110-86-1	Pyridine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:05 854,NJDEP,PADEP	KH
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	26.2 %			19.7-63.1							
4165-62-2	Surrogate: SURR: Phenol-d5	13.2 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	42.3 %	S-08		50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	47.9 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	112 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	67.3 %			30.7-106							

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	1.41	ug/L	0.0513	1	EPA 8270D SIM	11/01/2022 08:13	11/01/2022 16:18	КН
208-96-8	Acenaphthylene	ND	ug/L	0.0513	1	EPA 8270D SIM	H-0723,NELAC-NY10 11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 16:18	КН
120-12-7	Anthracene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 16:18 854,NJDEP,PADEP	КН
1912-24-9	Atrazine	ND	ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 16:18 854,NJDEP	КН
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 16:18 854,NJDEP,PADEP	КН
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 16:18 854,NJDEP,PADEP	КН
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 16:18 854,NJDEP,PADEP	КН
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 16:18 854,NJDEP,PADEP	КН
207-08-9	Benzo(k)fluoranthene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 16:18 854,NJDEP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 16 of 61

Client Sample ID: MW-5AR **York Sample ID:**

22J1423-02

York Project (SDG) No. 22J1423

Client Project ID 03C497-M

Matrix Water

Collection Date/Time October 25, 2022 12:15 pm Date Received 10/27/2022

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes	:
--------------	---

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported t LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	1.64	В	ug/L	0.513	1	EPA 8270D SIM	11/01/2022 08:13	11/01/2022 16:18	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	854,NJDEP	
218-01-9	Chrysene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 854,NJDEP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 854,NJDEP,PADEP	KH
206-44-0	Fluoranthene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 854,NJDEP,PADEP	KH
86-73-7	Fluorene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PR	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 354,NJDEP,PADEP	KH
118-74-1	Hexachlorobenzene	ND		ug/L	0.0205	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 854,NJDEP	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 854,NJDEP	KH
67-72-1	Hexachloroethane	ND		ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 854,NJDEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 854,NJDEP,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 854,NJDEP,PADEP	KH
98-95-3	Nitrobenzene	ND		ug/L	0.256	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 854,NJDEP	KH
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 354,NJDEP	KH
87-86-5	Pentachlorophenol	ND		ug/L	0.256	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 854,NJDEP	КН
85-01-8	Phenanthrene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 354,NJDEP,PADEP	KH
129-00-0	Pyrene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:18 354,NJDEP,PADEP	КН

Sample Information

Client Sample ID: MW-3AR **York Sample ID:** 22J1423-03

York Project (SDG) No. Collection Date/Time Date Received Client Project ID Matrix 22J1423 03C497-M Water October 25, 2022 12:50 pm 10/27/2022

VOA, 8260 LOW MASTER

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 354,NELAC-NY1205	JTG 58,NJDEP,PAI

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

(203) 325-1371

ClientServices@

www.YORKLAB.com

FAX (203) 357-0166

Page 17 of 61

Client Sample ID: MW-3AR

York Sample ID: 22J1423-03

York Project (SDG) No. 22J1423

Client Project ID 03C497-M Matrix Water Collection Date/Time
October 25, 2022 12:50 pm

Date Received 10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log-in Notes:	<u>Sa</u>	mple N	otes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/08/2022 06:10 10854,NELAC-NY1	11/08/2022 15:41 2058,NJDEP,PADEP	JTG
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/08/2022 06:10 10854,NELAC-NY1	11/08/2022 15:41 2058,NJDEP,PADEP	JTG
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/08/2022 06:10 10854,NELAC-NY1	11/08/2022 15:41 2058,NJDEP,PADEP	JТG
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/08/2022 06:10 10854,NELAC-NY1	11/08/2022 15:41 2058,NJDEP,PADEP	JTG
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C Certifications:	NELAC-NY	11/08/2022 06:10 10854,NELAC-NY1	11/08/2022 15:41 2058,NJDEP,PADEP	JТG
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY120	JTG 58,NJDEP,PAI
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10 -0723,NELAC-NY10	11/08/2022 15:41	JTG

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 18 of 61

Client Sample ID: MW-3AR

<u>York Sample ID:</u> 22J1423-03

 York Project (SDG) No.
 Client Project ID

 22J1423
 03C497-M

MatrixCollection Date/TimeWaterOctober 25, 2022 12:50 pm

Date Received 10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

<u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
71-43-2	Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 NELAC-NY10854,NELAC-NY1	11/08/2022 15:41 2058,NJDEP,PADEP	JTG
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
110-82-7	Cyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 NELAC-NY10854,NELAC-NY1	11/08/2022 15:41 2058,NJDEP,PADEP	JTG
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 NELAC-NY10854,NELAC-NY1	11/08/2022 15:41 2058,NJDEP,PADEP	JTG
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 NELAC-NY10854,NELAC-NY1	11/08/2022 15:41 2058,NJDEP,PADEP	JTG
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854,NELAC-NY120	JTG 58,NJDEP,PAI
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 NELAC-NY10854,NELAC-NY1	11/08/2022 15:41 2058,NJDEP,PADEP	JTG
98-82-8	Isopropylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	11/08/2022 06:10 CTDOH-PH-0723,NELAC-NY1	11/08/2022 15:41 0854.NELAC-NY120	JTG 58.NJDEP.PAI

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 19 of 61

Client Sample ID: MW-3AR

York Sample ID: 22J1423-03

York Project (SDG) No. 22J1423

Client Project ID 03C497-M Matrix Water Collection Date/Time
October 25, 2022 12:50 pm

Date Received 10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:
---------------	---------------

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY1	11/08/2022 06:10 0854,NELAC-NY12	11/08/2022 15:41 2058,NJDEP,PADEP	JTG
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,NJDEP,PA
108-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NYI	11/08/2022 06:10 0854,NELAC-NY12	11/08/2022 15:41 2058,NJDEP,PADEP	JTG
75-09-2	Methylene chloride	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,NJDEP,PA
91-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	NELAC-NYI	11/08/2022 06:10 0854,NELAC-NY12	11/08/2022 15:41 2058,NJDEP,PADEP	JTG
104-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,NJDEP,PA
103-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,NJDEP,PA
95-47-6	o-Xylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,PADEP
179601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,PADEP
105-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:41	JTG
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:41	JTG
99-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,NJDEP,PA
135-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,NJDEP,PA
100-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,NJDEP,PA
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	NELAC-NY1	11/08/2022 06:10 0854,NELAC-NY12	11/08/2022 15:41 2058,NJDEP,PADEP	JTG
98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,NJDEP,PA
127-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,NJDEP,PA
108-88-3	Toluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,NJDEP,PA
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,NJDEP,PA
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10 0723,NELAC-NY10	11/08/2022 15:41 854,NELAC-NY1205	JTG 58,NJDEP,PA
79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:41 854,NELAC-NY1205	JTG
75-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/08/2022 06:10	11/08/2022 15:41 854,NELAC-NY1205	JTG
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/08/2022 06:10	11/08/2022 15:41	JTG

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 20 of 61

Client Sample ID: MW-3AR

York Sample ID:

22J1423-03

York Project (SDG) No. 22J1423

Client Project ID 03C497-M Matrix Water Collection Date/Time
October 25, 2022 12:50 pm

Date Received 10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

	<u>Log-in</u>	Not	tes:
--	---------------	-----	------

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH-PI	11/08/2022 06:10 H-0723,NELAC-NY10	11/08/2022 15:41 0854,NELAC-NY120:	JTG 58,NJDEP
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	101 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	102 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	100 %			79-122							

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Samı	ole	No	tes	:

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADEP	11/01/2022 20:36	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADEP	11/01/2022 20:36	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADEP	11/01/2022 20:36	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:36 354,NJDEP,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:36 354,NJDEP,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:36 354,NJDEP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:36 354,NJDEP,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:36 854,NJDEP,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:36 854,NJDEP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:36 854,NJDEP,PADEP	KH
91-58-7	2-Chloronaphthalene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:36 854,NJDEP,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:36 854,NJDEP,PADEP	KH
91-57-6	2-Methylnaphthalene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:36 354,NJDEP,PADEP	KH
95-48-7	2-Methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:36 354,NJDEP,PADEP	KH
88-74-4	2-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:36 854,NJDEP,PADEP	KH
88-75-5	2-Nitrophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 20:36 854,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 21 of 61

Client Sample ID: MW-3AR **York Sample ID:** 22J1423-03

York Project (SDG) No. 22J1423

Client Project ID 03C497-M

Matrix Water

Collection Date/Time October 25, 2022 12:50 pm Date Received 10/27/2022

SVOA 9270 LOW MASTED

	ample Prepared by Method: EPA 3510C				Log-in	Notes:		<u>Sam</u>	ple Note	<u>s:</u>		
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 0854.NJDEP.PADEP	КН
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36	КН
99-09-2	3-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 0854,NJDEP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13 H-0723,NELAC-NY1	11/01/2022 20:36	КН
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13 H-0723,NELAC-NY1	11/01/2022 20:36	КН
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 0854,NJDEP,PADEP	КН
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 0854,NJDEP,PADEP	КН
100-01-6	4-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 0854,NJDEP,PADEP	КН
100-02-7	4-Nitrophenol	ND		ug/L	5.13	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 0854,NJDEP,PADEP	КН
98-86-2	Acetophenone	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADE	11/01/2022 20:36 EP	КН
100-52-7	Benzaldehyde	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADE	11/01/2022 20:36 EP	КН
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 0854,NJDEP,PADEP	КН
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 0854,NJDEP,PADEP	КН
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.03	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 0854,NJDEP,PADEP	КН
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 0854,NJDEP,PADEP	КН
105-60-2	Caprolactam	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADE	11/01/2022 20:36 EP	КН
86-74-8	Carbazole	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 0854,NJDEP,PADEP	КН
132-64-9	Dibenzofuran	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 0854,NJDEP,PADEP	КН
84-66-2	Diethyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 0854,NJDEP,PADEP	КН
131-11-3	Dimethyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36	KH
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13 H-0723,NELAC-NY1	11/01/2022 20:36	КН
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

ClientServices@ Page 22 of 61

Client Sample ID: MW-3AR **York Sample ID:**

22J1423-03

York Project (SDG) No. 22J1423

Client Project ID 03C497-M

Matrix Water

Collection Date/Time October 25, 2022 12:50 pm Date Received 10/27/2022

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

	<u>Log-in</u>	Not	tes:
--	---------------	-----	------

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.13	10.3	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 854,NJDEP,PADEP	КН
78-59-1	Isophorone	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 854,NJDEP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 854,NJDEP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 854,NJDEP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 854,NJDEP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13	11/01/2022 20:36	KH
110-86-1	Pyridine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 20:36 854,NJDEP,PADEP	KH
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	26.5 %			19.7-63.1							
4165-62-2	Surrogate: SURR: Phenol-d5	13.2 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	47.6 %	S-08		50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	51.6 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	116 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	67.1 %			30.7-106							

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ D	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 16:50 854,NJDEP,PADEP	KH
208-96-8	Acenaphthylene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 16:50 854,NJDEP,PADEP	KH
120-12-7	Anthracene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 16:50 854,NJDEP,PADEP	KH
1912-24-9	Atrazine	ND	ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 16:50 854,NJDEP	KH
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 16:50 854,NJDEP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 16:50 854,NJDEP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 16:50 854,NJDEP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 16:50 854,NJDEP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 16:50 854,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 23 of 61

Client Sample ID: MW-3AR

York Sample ID:

22J1423-03

York Project (SDG) No. 22J1423

Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> October 25, 2022 12:50 pm Date Received 10/27/2022

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:	:
---------------	---

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	3.01	В	ug/L	0.513	1	EPA 8270D SIM	11/01/2022 08:13	11/01/2022 16:50	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	854,NJDEP	
218-01-9	Chrysene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:50 354,NJDEP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:50 354,NJDEP,PADEP	KH
206-44-0	Fluoranthene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 16:50 854,NJDEP,PADEP	KH
86-73-7	Fluorene	0.174		ug/L	0.0513	1	EPA 8270D SIM	11/01/2022 08:13	11/01/2022 16:50	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	854,NJDEP,PADEP	
118-74-1	Hexachlorobenzene	ND		ug/L	0.0205	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:50 354,NJDEP	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:50 854,NJDEP	KH
67-72-1	Hexachloroethane	ND		ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:50 854,NJDEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 16:50 854,NJDEP,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 16:50 854,NJDEP,PADEP	KH
98-95-3	Nitrobenzene	ND		ug/L	0.256	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 16:50 854,NJDEP	КН
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 16:50 854,NJDEP	KH
87-86-5	Pentachlorophenol	ND		ug/L	0.256	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 16:50 354,NJDEP	КН
85-01-8	Phenanthrene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 16:50 354,NJDEP,PADEP	КН
129-00-0	Pyrene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY108	11/01/2022 16:50 854,NJDEP,PADEP	KH

Sample Information

Client Sample ID: MW-1AR 22J1423-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22J142303C497-MWaterOctober 25, 2022 2:20 pm10/27/2022

VOA, 8260 LOW MASTER

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B	
--------------------------------------	--

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6 1,	1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 354,NELAC-NY1205	JTG 58,NJDEP,PAI

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 24 of 61

Client Sample ID: MW-1AR **York Sample ID:** 22J1423-04

York Project (SDG) No. 22J1423

Client Project ID 03C497-M

Matrix Water

Collection Date/Time October 25, 2022 2:20 pm Date Received 10/27/2022

VOA, 8260 LOW MASTER

	to LOW MASTER ed by Method: EPA 5030B		<u>Log-in Notes:</u> <u>San</u>						Sample Notes:				
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120	JTG 058,NJDEP,PAI	
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01	JTG	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120	JTG 058,NJDEP,PAI	
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120	JTG 058,NJDEP,PAI	
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01	JTG	
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01	JTG	
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	11/03/2022 06:14 Y10854,NELAC-NY1	11/04/2022 10:01 2058,NJDEP,PADEF	JTG	
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	11/03/2022 06:14 Y10854,NELAC-NY1	11/04/2022 10:01 2058,NJDEP,PADEF	JTG	
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 Y10854,NELAC-NY1	11/04/2022 10:01 2058,NJDEP,PADEF	JTG	
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120	JTG 058,NJDEP,PAI	
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120	JTG 058,NJDEP,PAI	
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120	JTG 058,NJDEP,PAI	
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120	JTG 058,NJDEP,PAI	
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120	JTG 058,NJDEP,PAI	
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120	JTG 058,NJDEP,PAI	
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120	JTG 058,NJDEP,PAI	
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120	JTG 058,NJDEP,PAI	
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 Y10854,NELAC-NY1	11/04/2022 10:01 2058,NJDEP,PADEF	JTG	
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120		
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 Y10854,NELAC-NY1		JTG	
78-93-3	2-Butanone	0.670		ug/L	0.200	0.500	1	EPA 8260C			11/04/2022 10:01	JTG	
								Certifications:	CTDOH-P	H-0723,NELAC-NY1			
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120	JTG 058,NJDEP,PAI	
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C	СТРОН В	11/03/2022 06:14		JTG	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

Certifications:

RICHMOND HILL, NY 11418

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PAI

FAX (203) 357-0166 ClientServices@ Page 25 of 61

Client Sample ID: MW-1AR

York Sample ID: 22J1423-04

York Project (SDG) No. 22J1423 Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> October 25, 2022 2:20 pm Date Received 10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sam	ole I	No	tes:	:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	5.64	CCVE, ICVE, QL-02	ug/L	1.00	2.00	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:01 0854,NELAC-NY120	JTG 58,NJDEP,P₽
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 8,NJDEP,PA
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PA
71-43-2	Benzene	45.0		ug/L	0.200	0.500	1	EPA 8260C		11/03/2022 06:14	11/04/2022 10:01	JTG
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP,PA
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 10854,NELAC-NY12	11/04/2022 10:01 2058,NJDEP,PADEP	JTG
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PA
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PAI
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PAI
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PAI
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PAI
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PAI
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PAI
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PAI
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PAI
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PAI
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PAI
110-82-7	Cyclohexane	7.03	ICVE,	ug/L	0.200	0.500	1	EPA 8260C		11/03/2022 06:14	11/04/2022 10:01	JTG
			QL-02					Certifications:	NELAC-NY	Y10854,NELAC-NY1	2058,NJDEP,PADEP	
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PAI
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 10854,NELAC-NY12	11/04/2022 10:01 2058,NJDEP,PADEP	JTG
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 10854,NELAC-NY12	11/04/2022 10:01 2058,NJDEP,PADEP	JTG
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 8,NJDEP,PAI
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 10854,NELAC-NY12	11/04/2022 10:01 2058,NJDEP,PADEP	JTG
98-82-8	Isopropylbenzene	1.24		ug/L	0.200	0.500	1	EPA 8260C		11/03/2022 06:14	11/04/2022 10:01	JTG
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP,PA
100 050	EARCH DRIVE	STRATEORD CT	00015			100	2_02 89th A	WENTE		RICHMOND HII	L NIV 11.110	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 26 of 61

Client Sample ID: MW-1AR

York Sample ID: 22J1423-04

York Project (SDG) No. 22J1423

Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> October 25, 2022 2:20 pm Date Received 10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 10854,NELAC-NY12	11/04/2022 10:01 2058,NJDEP,PADEP	JTG
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PA
08-87-2	Methylcyclohexane	5.25		ug/L	0.200	0.500	1	EPA 8260C		11/03/2022 06:14	11/04/2022 10:01	JTG
								Certifications:	NELAC-NY	'10854,NELAC-NY1	2058,NJDEP,PADEP	
75-09-2	Methylene chloride	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	СТDOH-PH-	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120	JTG 58,NJDEP,PA
91-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 10854,NELAC-NY12	11/04/2022 10:01 2058,NJDEP,PADEP	JTG
04-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PA
03-65-1	n-Propylbenzene	0.740		ug/L	0.200	0.500	1	EPA 8260C		11/03/2022 06:14	11/04/2022 10:01	JTG
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP,P/
5-47-6	o-Xylene	0.240	J	ug/L	0.200	0.500	1	EPA 8260C		11/03/2022 06:14	11/04/2022 10:01	JTG
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	0854,NELAC-NY120	58,PADEP
79601-23-1	p- & m- Xylenes	0.510	J	ug/L	0.500	1.00	1	EPA 8260C		11/03/2022 06:14	11/04/2022 10:01	JTG
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	0854,NELAC-NY120	58,PADEP
05-05-5	* p-Diethylbenzene	0.350	J	ug/L	0.200	0.500	1	EPA 8260C		11/03/2022 06:14	11/04/2022 10:01	JTG
								Certifications:				
22-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14	11/04/2022 10:01	JTG
9-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТDOH-PH-	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PA
35-98-8	sec-Butylbenzene	0.280	J	ug/L	0.200	0.500	1	EPA 8260C		11/03/2022 06:14	11/04/2022 10:01	JTG
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP,P.
00-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТDOH-PH-	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PA
5-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 10854,NELAC-NY12	11/04/2022 10:01 2058,NJDEP,PADEP	JTG
98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PA
27-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PA
08-88-3	Toluene	0.640		ug/L	0.200	0.500	1	EPA 8260C		11/03/2022 06:14	11/04/2022 10:01	JTG
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP,P
56-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PA
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PA
79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PA
5-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH-	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:01 854,NELAC-NY120:	JTG 58,NJDEP,PA
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14	11/04/2022 10:01	JTG 58,NJDEP,PA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 27 of 61

Client Sample ID: MW-1AR **York Sample ID:** 22J1423-04

York Project (SDG) No. 22J1423

Client Project ID 03C497-M

Matrix Water

Collection Date/Time October 25, 2022 2:20 pm Date Received 10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

|--|

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	0.750	J	ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH-P	11/03/2022 06:14 H-0723,NELAC-NY1	11/04/2022 10:01 0854,NELAC-NY120	JTG 58,NJDEP
	Surrogate Recoveries	Result		Acco	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	128 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	97.9 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	99.0 %			79-122							

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-NY	11/01/2022 08:13 710854,NJDEP,PADEP	11/01/2022 21:06	KH
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-NY	11/01/2022 08:13 710854,NJDEP,PADEP	11/01/2022 21:06	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-NY	11/01/2022 08:13 710854,NJDEP,PADEP	11/01/2022 21:06	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	СТДОН-РН	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 21:06 54,NJDEP,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 21:06 54,NJDEP,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 21:06 54,NJDEP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 21:06 54,NJDEP,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 21:06 54,NJDEP,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 21:06 54,NJDEP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 21:06 54,NJDEP,PADEP	KH
91-58-7	2-Chloronaphthalene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	СТДОН-РН	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 21:06 54,NJDEP,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	СТДОН-РН	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 21:06 54,NJDEP,PADEP	KH
91-57-6	2-Methylnaphthalene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	СТДОН-РН	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 21:06 54,NJDEP,PADEP	KH
95-48-7	2-Methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	СТДОН-РН	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 21:06 54,NJDEP,PADEP	KH
88-74-4	2-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	СТДОН-РН	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 21:06 54,NJDEP,PADEP	KH
88-75-5	2-Nitrophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY108	11/01/2022 21:06 54,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

Page 28 of 61

ClientServices@

Log-in Notes:

Client Sample ID: MW-1AR

York Sample ID: 22J1423-04

York Project (SDG) No. 22J1423

Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> October 25, 2022 2:20 pm

Sample Notes:

Date Received 10/27/2022

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	КН
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
99-09-2	3-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	КН
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	КН
100-01-6	4-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
100-02-7	4-Nitrophenol	ND		ug/L	5.13	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
98-86-2	Acetophenone	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADE	11/01/2022 21:06 P	KH
100-52-7	Benzaldehyde	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADE	11/01/2022 21:06 P	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.03	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 0854,NJDEP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 0854,NJDEP,PADEP	KH
105-60-2	Caprolactam	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADE	11/01/2022 21:06 P	KH
86-74-8	Carbazole	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06	KH
132-64-9	Dibenzofuran	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06	KH
131-11-3	Dimethyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D		11/01/2022 08:13	11/01/2022 21:06	KH

2.56

2.56

ug/L

ug/L

120 RESEARCH DRIVE www.YORKLAB.com

Di-n-butyl phthalate

Di-n-octyl phthalate

84-74-2

117-84-0

STRATFORD, CT 06615 (203) 325-1371

ND

ND

132-02 89th AVENUE FAX (203) 357-0166

5.13

5.13

Certifications:

EPA 8270D

EPA 8270D

RICHMOND HILL, NY 11418

11/01/2022 08:13 11/01/2022 21:06

11/01/2022 08:13 11/01/2022 21:06

KH

KΗ

CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

ClientServices@ Page 29 of 61

Client Sample ID: MW-1AR

York Sample ID:

22J1423-04

York Project (SDG) No. 22J1423

Client Project ID 03C497-M Matrix Water <u>Collection Date/Time</u> October 25, 2022 2:20 pm Date Received 10/27/2022

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

|--|

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.13	10.3	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13	11/01/2022 21:06	KH
110-86-1	Pyridine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:06 854,NJDEP,PADEP	KH
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	26.0 %			19.7-63.1							
4165-62-2	Surrogate: SURR: Phenol-d5	13.6 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	44.5 %	S-08		50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	50.0 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	130 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	76.8 %			30.7-106							

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ 1	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	0.133	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 0854,NJDEP,PADEP	KH
208-96-8	Acenaphthylene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH
120-12-7	Anthracene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH
1912-24-9	Atrazine	ND	ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP	KH
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND	ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 I-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Pa

Page 30 of 61

Client Sample ID: MW-1AR

York Sample ID:

22J1423-04

York Project (SDG) No. 22J1423

Client Project ID 03C497-M Matrix Water Collection Date/Time
October 25, 2022 2:20 pm

Date Received 10/27/2022

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

r	•	TAT 4	
ωO.	-in	Notes:	

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	1.34	В	ug/L	0.513	1	EPA 8270D SIM	11/01/2022 08:13	11/01/2022 17:22	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP	
218-01-9	Chrysene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH
206-44-0	Fluoranthene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH
86-73-7	Fluorene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-Pl	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH
118-74-1	Hexachlorobenzene	ND		ug/L	0.0205	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP	KH
67-72-1	Hexachloroethane	ND		ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH
91-20-3	Naphthalene	0.154		ug/L	0.0513	1	EPA 8270D SIM	11/01/2022 08:13	11/01/2022 17:22	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP,PADEP	
98-95-3	Nitrobenzene	ND		ug/L	0.256	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP	KH
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP	KH
87-86-5	Pentachlorophenol	ND		ug/L	0.256	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP	KH
85-01-8	Phenanthrene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH
129-00-0	Pyrene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:22 854,NJDEP,PADEP	KH

Sample Information

Client Sample ID: DUP 22J1423-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22J142303C497-MWaterOctober 25, 2022 12:00 am10/27/2022

VOA, 8260 LOW MASTER

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030E

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6 1,1,1	,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 -0723,NELAC-NY108	11/04/2022 10:26 354,NELAC-NY1205	JTG 58,NJDEP,PAI

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 31 of 61

Client Sample ID: DUP 22J1423-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22J142303C497-MWaterOctober 25, 2022 12:00 am10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 0854,NELAC-NY1205	JTG 8,NJDEP,PA
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 0854,NELAC-NY1205	JTG 58,NJDEP,PA
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26	JTG
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 0854,NELAC-NY1205	JTG 8,NJDEP,PA
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 0854,NELAC-NY1205	JTG 8,NJDEP,PA
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 0854,NELAC-NY1205	JTG 8,NJDEP,PA
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 /10854,NELAC-NY12	11/04/2022 10:26	JТG
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 /10854,NELAC-NY12	11/04/2022 10:26	JTG
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY12	11/04/2022 10:26 2058,NJDEP,PADEP	JTG
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 0854,NELAC-NY1205	JTG 8,NJDEP,PA
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26	JTG
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 0854,NELAC-NY1205	JTG 58,NJDEP,PA
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 0854,NELAC-NY1205	JTG 58,NJDEP,PA
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY1205	JTG 58,NJDEP,PA
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY1205	JTG 58,NJDEP,PA
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY1205	JTG 8,NJDEP,PA
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY1205	JTG 8,NJDEP,PA
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY12	11/04/2022 10:26 2058,NJDEP,PADEP	JTG
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY1205	JTG 58,NJDEP,PA
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY12	11/04/2022 10:26 2058,NJDEP,PADEP	JTG
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 0854,NELAC-NY1205	JTG 8,NJDEP,PA
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26	JTG
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26	JTG

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 32 of 61

Client Sample ID: DUP

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22J142303C497-MWaterOctober 25, 2022 12:00 am10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

<u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
71-43-2	Benzene	0.220	J	ug/L	0.200	0.500	1	EPA 8260C		11/03/2022 06:14	11/04/2022 10:26	JTG
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP,PA
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 10854,NELAC-NY12	11/04/2022 10:26 2058,NJDEP,PADEP	JTG
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26	JTG
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
110-82-7	Cyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 10854,NELAC-NY12	11/04/2022 10:26 2058,NJDEP,PADEP	JTG
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 10854,NELAC-NY12	11/04/2022 10:26 2058,NJDEP,PADEP	JTG
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 10854,NELAC-NY12	11/04/2022 10:26 2058,NJDEP,PADEP	JTG
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 -0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PAI
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 10854,NELAC-NY12	11/04/2022 10:26 2058,NJDEP,PADEP	JTG
98-82-8	Isopropylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14	11/04/2022 10:26	JTG

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

York Sample ID:

22J1423-05

ClientServices@ Page 33 of 61

Client Sample ID: York Sample ID: 22J1423-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22J142303C497-MWaterOctober 25, 2022 12:00 am10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

<u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 710854,NELAC-NY12	11/04/2022 10:26 2058,NJDEP,PADEP	JTG
1634-04-4	Methyl tert-butyl ether (MTBE)	0.600		ug/L	0.200	0.500	1	EPA 8260C		11/03/2022 06:14	11/04/2022 10:26	JTG
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP,PA
108-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 710854,NELAC-NY12	11/04/2022 10:26 2058,NJDEP,PADEP	JTG
75-09-2	Methylene chloride	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 9854,NELAC-NY120	JTG 58,NJDEP,PA
91-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY12	11/04/2022 10:26 2058,NJDEP,PADEP	JTG
104-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120	JTG 58,NJDEP,PA
103-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 9854,NELAC-NY120	JTG 58,NJDEP,PA
95-47-6	o-Xylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 9854,NELAC-NY120	JTG 58,PADEP
179601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 9854,NELAC-NY120	JTG 58,PADEP
105-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14	11/04/2022 10:26	JTG
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14	11/04/2022 10:26	JTG
99-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 0854,NELAC-NY120:	JTG 58,NJDEP,PA1
135-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 0854,NELAC-NY120	JTG 58,NJDEP,PA
100-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 0854,NELAC-NY120	JTG 58,NJDEP,PA
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 710854,NELAC-NY12	11/04/2022 10:26 2058,NJDEP,PADEP	JTG
98-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120	JTG 58,NJDEP,PA
127-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120	JTG 58,NJDEP,PA
108-88-3	Toluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120:	JTG 58,NJDEP,PA
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120	JTG 58,NJDEP,PA
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 854,NELAC-NY120	JTG 58,NJDEP,PA
79-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 9854,NELAC-NY120:	JTG 58,NJDEP,PA
75-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РН	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 10:26 9854,NELAC-NY120	JTG 58,NJDEP,PA
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTPOH NU	11/03/2022 06:14	11/04/2022 10:26 0854,NELAC-NY120	JTG

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 34 of 61

Client Sample ID: DUP

York Sample ID:

22J1423-05

York Project (SDG) No. 22J1423 Client Project ID 03C497-M Matrix Water Collection Date/Time
October 25, 2022 12:00 am

<u>Date Received</u> 10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 10:26 0854,NELAC-NY1205	JTG 58,NJDEP
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	126 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	97.4 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	106 %			79-122							

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-NY	11/01/2022 08:13 Y10854,NJDEP,PADEF	11/01/2022 21:37	KH
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADEF	11/01/2022 21:37	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	NELAC-N	11/01/2022 08:13 Y10854,NJDEP,PADEF	11/01/2022 21:37	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 354,NJDEP,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 354,NJDEP,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	КН
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	КН
91-58-7	2-Chloronaphthalene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	КН
91-57-6	2-Methylnaphthalene	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 354,NJDEP,PADEP	КН
95-48-7	2-Methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 354,NJDEP,PADEP	КН
88-74-4	2-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	КН
88-75-5	2-Nitrophenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@ Page 35 of 61

Client Sample ID: DUP

York Sample ID:

22J1423-05

York Project (SDG) No. 22J1423 Client Project ID 03C497-M Matrix Water Collection Date/Time
October 25, 2022 12:00 am

Date Received 10/27/2022

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Date/Time Method Prepared	Date/Time Analyzed	Analyst
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	КН
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	КН
99-09-2	3-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH
100-01-6	4-Nitroaniline	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH
100-02-7	4-Nitrophenol	ND		ug/L	5.13	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH
98-86-2	Acetophenone	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 NELAC-NY10854,NJDEP,PADI	11/01/2022 21:37 EP	KH
100-52-7	Benzaldehyde	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 NELAC-NY10854,NJDEP,PADI	11/01/2022 21:37 EP	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.03	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	КН
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	КН
105-60-2	Caprolactam	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 NELAC-NY10854,NJDEP,PADI	11/01/2022 21:37 EP	КН
86-74-8	Carbazole	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	КН
132-64-9	Dibenzofuran	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	КН
131-11-3	Dimethyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	11/01/2022 08:13 CTDOH-PH-0723,NELAC-NY1	11/01/2022 21:37 0854,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 36 of 61

Client Sample ID: DUP **York Sample ID:** 22J1423-05

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 03C497-M October 25, 2022 12:00 am 22J1423 Water 10/27/2022

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.13	10.3	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:		11/01/2022 08:13	11/01/2022 21:37	KH
110-86-1	Pyridine	ND		ug/L	2.56	5.13	1	EPA 8270D Certifications:	CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 21:37 854,NJDEP,PADEP	KH
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	39.3 %			19.7-63.1							
4165-62-2	Surrogate: SURR: Phenol-d5	19.9 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	70.7 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	73.8 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	155 %	S-08		39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	92.5 %			30.7-106							

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	0.0513		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-P	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 0854,NJDEP,PADEP	КН
208-96-8	Acenaphthylene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP,PADEP	КН
120-12-7	Anthracene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PI	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP,PADEP	KH
1912-24-9	Atrazine	ND		ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP	KH
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 37 of 61

Client Sample ID: York Sample ID: 22J1423-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22J142303C497-MWaterOctober 25, 2022 12:00 am10/27/2022

SVOA, 8270 SIM MASTERSample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	1.64	В	ug/L	0.513	1	EPA 8270D SIM	11/01/2022 08:13	11/01/2022 17:54	KH
							Certifications: CTDOH-Pl	H-0723,NELAC-NY1	0854,NJDEP	
218-01-9	Chrysene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PE	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP,PADEP	KH
206-44-0	Fluoranthene	0.0615		ug/L	0.0513	1	EPA 8270D SIM	11/01/2022 08:13	11/01/2022 17:54	KH
							Certifications: CTDOH-Pl	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
86-73-7	Fluorene	0.0615		ug/L	0.0513	1	EPA 8270D SIM	11/01/2022 08:13	11/01/2022 17:54	KH
							Certifications: CTDOH-Pl	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
118-74-1	Hexachlorobenzene	ND		ug/L	0.0205	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PE	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP	KH
67-72-1	Hexachloroethane	ND		ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PF	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP,PADEP	КН
91-20-3	Naphthalene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PE	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854 NIDEPPA DEP	KH
98-95-3	N''	ND		ug/L	0.256	1	EPA 8270D SIM	11/01/2022 08:13	11/01/2022 17:54	KH
70-73-3	Nitrobenzene	ND		ug/L	0.230	1		I-0723,NELAC-NY10		KII
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.513	1	EPA 8270D SIM Certifications: CTDOH-PE	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP	KH
87-86-5	Pentachlorophenol	ND		ug/L	0.256	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP	KH
85-01-8	Phenanthrene	0.0923		ug/L	0.0513	1	EPA 8270D SIM	11/01/2022 08:13	11/01/2022 17:54	KH
							Certifications: CTDOH-Pl	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
129-00-0	Pyrene	ND		ug/L	0.0513	1	EPA 8270D SIM Certifications: CTDOH-PH	11/01/2022 08:13 H-0723,NELAC-NY10	11/01/2022 17:54 854,NJDEP,PADEP	КН

Sample Information

Client Sample ID: TB 22J1423-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22J142303C497-MWaterOctober 26, 2022 12:00 am10/27/2022

VOA, 8260 LOW MASTER
Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS No. Parameter Result Flag Units Reported to Reference Method Prepared Analyzed Analyst

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 38 of 61

Client Sample ID: TB

York Sample ID:

22J1423-06

York Project (SDG) No. 22J1423 Client Project ID 03C497-M Matrix Water Collection Date/Time
October 26, 2022 12:00 am

Date Received 10/27/2022

VOA, 8260 LOW MASTER

Log-in Notes:

Sample Notes:

					Reported to					Date/Time	Date/Time	
CAS No.	. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120:	JTG 58,NJDEP,PA
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120:	JTG 58,NJDEP,PA
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120:	JTG 58,NJDEP,PA
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120:	JTG 58,NJDEP,PA
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120:	JTG 58,NJDEP,PA
75-34-3	1,1-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120:	JTG 58,NJDEP,PA
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120:	JTG 58,NJDEP,PA
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	11/03/2022 06:14 Y10854,NELAC-NY12	11/04/2022 02:51 058,NJDEP,PADEP	JTG
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	11/03/2022 06:14 Y10854,NELAC-NY12	11/04/2022 02:51 058,NJDEP,PADEP	JTG
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-N	11/03/2022 06:14 Y10854,NELAC-NY12	11/04/2022 02:51 058,NJDEP,PADEP	JTG
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120:	JTG 58,NJDEP,PA
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120:	JTG 58,NJDEP,PA
106-93-4	1,2-Dibromoethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120:	JTG 58,NJDEP,PA
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120:	JTG 58,NJDEP,PA
107-06-2	1,2-Dichloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120:	JTG 58,NJDEP,PA
78-87-5	1,2-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	СТДОН-РІ	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 854.NELAC-NY120	JTG 58.NJDEP.PA
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51	JTG
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51	JTG
142-28-9	1,3-Dichloropropane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 Y10854,NELAC-NY12	11/04/2022 02:51	JTG
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51	JTG 58.NJDEP.PA
123-91-1	1,4-Dioxane	ND		ug/L	40.0	80.0	1	EPA 8260C Certifications:		11/03/2022 06:14 Y10854,NELAC-NY12	11/04/2022 02:51	JТG
78-93-3	2-Butanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:			11/04/2022 02:51	JTG 58 NIDEP PA
591-78-6	2-Hexanone	ND		ug/L	0.200	0.500	1	EPA 8260C	5.201111	11/03/2022 06:14		JTG

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 39 of 61

Client Sample ID: York Sample ID: 22J1423-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22J142303C497-MWaterOctober 26, 2022 12:00 am10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

<u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 9854,NELAC-NY120	JTG 58,NJDEP,PA
67-64-1	Acetone	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY120	JTG 58,NJDEP,PA
107-02-8	Acrolein	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY120	JTG 58,NJDEP,PA
107-13-1	Acrylonitrile	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 9854,NELAC-NY120	JTG 58,NJDEP,PA
71-43-2	Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY120	JTG 58,NJDEP,PA
74-97-5	Bromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY12	11/04/2022 02:51 2058,NJDEP,PADEP	JTG
75-27-4	Bromodichloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51	JTG 58,NJDEP,PA
75-25-2	Bromoform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51	JTG
74-83-9	Bromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY120	JTG 58,NJDEP,PA
75-15-0	Carbon disulfide	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51	JTG
56-23-5	Carbon tetrachloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY120	JTG 58,NJDEP,PA
108-90-7	Chlorobenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY120	JTG 58,NJDEP,PA
75-00-3	Chloroethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 9854,NELAC-NY120	JTG 58,NJDEP,PA
67-66-3	Chloroform	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 9854,NELAC-NY120	JTG 58,NJDEP,PA
74-87-3	Chloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 9854,NELAC-NY120	JTG 58,NJDEP,PA
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120	JTG 58,NJDEP,PA
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120	JTG 58,NJDEP,PA
110-82-7	Cyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY12	11/04/2022 02:51 2058,NJDEP,PADEP	JTG
124-48-1	Dibromochloromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 854,NELAC-NY120	JTG 58,NJDEP,PA
74-95-3	Dibromomethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY12	11/04/2022 02:51 2058,NJDEP,PADEP	JTG
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY12	11/04/2022 02:51 2058,NJDEP,PADEP	JTG
100-41-4	Ethyl Benzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY120	JTG 58,NJDEP,PA
87-68-3	Hexachlorobutadiene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14 /10854,NELAC-NY12	11/04/2022 02:51	JTG

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 40 of 61

Client Sample ID: York Sample ID: 22J1423-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22J142303C497-MWaterOctober 26, 2022 12:00 am10/27/2022

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
8-82-8	Isopropylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
9-20-9	Methyl acetate	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY1:	11/04/2022 02:51 2058,NJDEP,PADEP	JTG
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
08-87-2	Methylcyclohexane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY1	11/04/2022 02:51 2058,NJDEP,PADEP	JTG
5-09-2	Methylene chloride	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
1-20-3	Naphthalene	ND		ug/L	1.00	2.00	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY1	11/04/2022 02:51 2058,NJDEP,PADEP	JTG
04-51-8	n-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
03-65-1	n-Propylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
5-47-6	o-Xylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,PADEP
79601-23-1	p- & m- Xylenes	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,PADEP
05-05-5	* p-Diethylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14	11/04/2022 02:51	JTG
22-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		11/03/2022 06:14	11/04/2022 02:51	JTG
9-87-6	p-Isopropyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
35-98-8	sec-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
00-42-5	Styrene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
5-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.500	1.00	1	EPA 8260C Certifications:	NELAC-NY	11/03/2022 06:14 /10854,NELAC-NY1	11/04/2022 02:51 2058,NJDEP,PADEP	JTG
8-06-6	tert-Butylbenzene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
27-18-4	Tetrachloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
08-88-3	Toluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
56-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
9-01-6	Trichloroethylene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PH	11/03/2022 06:14 I-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY1205	JTG 58,NJDEP,PA
5-69-4	Trichlorofluoromethane	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PF	11/03/2022 06:14	11/04/2022 02:51 0854,NELAC-NY1205	JTG

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 41 of 61

Client Sample ID: TB **York Sample ID:** 22J1423-06

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 22J1423 03C497-M Water October 26, 2022 12:00 am 10/27/2022

VOA, 8260 LOW MASTER

Log-in Notes: Sample Notes:

Sample Prepar	red by Method: EPA 5030B											
CAS N	Vo. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY120	JTG 58,NJDEP,PAI
1330-20-7	Xylenes, Total	ND		ug/L	0.600	1.50	1	EPA 8260C Certifications:	CTDOH-PI	11/03/2022 06:14 H-0723,NELAC-NY10	11/04/2022 02:51 0854,NELAC-NY120	JTG 58,NJDEP
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	124 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	97.2 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	105 %			79-122							

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 FAX (203) 357-0166 ClientServices@ Page 42 of 61

www.YORKLAB.com (203) 325-1371

Analytical Batch Summary

Batch ID: BK20005	Preparation Method:	EPA 3510C	Prepared By:	ССН
YORK Sample ID	Client Sample ID	Preparation Date		_
22J1423-01	MW-4AR	11/01/22		_
22J1423-02	MW-5AR	11/01/22		
22J1423-03	MW-3AR	11/01/22		
22J1423-04	MW-1AR	11/01/22		
22J1423-05	DUP	11/01/22		
BK20005-BLK1	Blank	11/01/22		
BK20005-BLK2	Blank	11/01/22		
BK20005-BS1	LCS	11/01/22		
BK20005-BS2	LCS	11/01/22		
BK20005-BSD1	LCS Dup	11/01/22		
Batch ID: BK20295	Preparation Method:	EPA 5030B	Prepared By:	JTG
YORK Sample ID	Client Sample ID	Preparation Date		
22J1423-01	MW-4AR	11/03/22		
22J1423-04	MW-1AR	11/03/22		
22J1423-05	DUP	11/03/22		
22J1423-06	TB	11/03/22		
BK20295-BLK1	Blank	11/03/22		
BK20295-BS1	LCS	11/03/22		
BK20295-BSD1	LCS Dup	11/03/22		
Batch ID: BK20326	Preparation Method:	EPA 5030B	Prepared By:	JTG
YORK Sample ID	Client Sample ID	Preparation Date		
22J1423-02	MW-5AR	11/08/22		
22J1423-03	MW-3AR	11/08/22		
BK20326-BLK1	Blank	11/08/22		
BK20326-BS1	LCS	11/08/22		
BK20326-BSD1	LCS Dup	11/08/22		

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BK20295 - EPA 5030B											
Blank (BK20295-BLK1)							Prep	ared: 11/03/2	2022 Analyz	ed: 11/04/2	:022
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L								
1,1,1-Trichloroethane	ND	0.500	"								
1,1,2,2-Tetrachloroethane	ND	0.500	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.500	"								
113)											
1,1,2-Trichloroethane	ND	0.500	"								
1,1-Dichloroethane	ND	0.500	"								
1,1-Dichloroethylene	ND	0.500	"								
1,2,3-Trichlorobenzene	ND	0.500	"								
1,2,3-Trichloropropane	ND	0.500	"								
1,2,4-Trichlorobenzene	ND	0.500	"								
1,2,4-Trimethylbenzene	ND	0.500	"								
1,2-Dibromo-3-chloropropane	ND	0.500	"								
1,2-Dibromoethane	ND	0.500	"								
1,2-Dichlorobenzene	ND	0.500	"								
1,2-Dichloroethane	ND	0.500	"								
1,2-Dichloropropane	ND	0.500	"								
1,3,5-Trimethylbenzene	ND	0.500	"								
1,3-Dichlorobenzene	ND	0.500	"								
1,3-Dichloropropane	ND	0.500	"								
1,4-Dichlorobenzene	ND	0.500	"								
1,4-Dioxane	ND	80.0	"								
2-Butanone	ND	0.500	"								
2-Hexanone	ND	0.500	"								
4-Methyl-2-pentanone	ND	0.500	"								
Acetone	ND	2.00	"								
Acrolein	ND	0.500	"								
Acrylonitrile	ND	0.500	"								
Benzene	ND	0.500	"								
Bromochloromethane	ND	0.500	"								
Bromodichloromethane	ND	0.500	"								
Bromoform	ND	0.500	"								
Bromomethane	ND	0.500	"								
Carbon disulfide	ND	0.500	"								
Carbon tetrachloride	ND	0.500	"								
Chlorobenzene	ND	0.500	"								
Chloroethane	ND	0.500	"								
Chloroform	ND	0.500	"								
Chloromethane	ND	0.500	"								
cis-1,2-Dichloroethylene	ND	0.500	"								
cis-1,3-Dichloropropylene	ND	0.500	"								
Cyclohexane	ND	0.500	"								
Dibromochloromethane	ND	0.500	"								
Dibromomethane	ND	0.500	"								
Dichlorodifluoromethane	ND	0.500	"								
Ethyl Benzene	ND	0.500	"								
Hexachlorobutadiene	ND	0.500	"								
Isopropylbenzene	ND	0.500	"								
Methyl acetate	ND	0.500	"								
Methyl tert-butyl ether (MTBE)	ND	0.500	"								
, , , , , , , , , , , , , , , , , , , ,	11.5	3.500									

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 44 of 61

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

%REC

Reporting

Paper Pape	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Methylame chiname	Batch BK20295 - EPA 5030B											
Selection ND	Blank (BK20295-BLK1)							Prep	ared: 11/03/2	022 Analyz	ed: 11/04/2	2022
Superhalmonics ND	Methylcyclohexane	ND	0.500	ug/L								
Billy Nationaries ND	Methylene chloride	ND	2.00	"								
Propy Neurone ND	Naphthalene	ND	2.00	"								
Note	n-Butylbenzene	ND	0.500	"								
No. 1.00	n-Propylbenzene	ND	0.500	"								
Definy Processor ND	o-Xylene	ND	0.500	"								
Elly blothers	p- & m- Xylenes	ND	1.00	"								
Seprengs ND	p-Diethylbenzene	ND	0.500	"								
No	p-Ethyltoluene	ND	0.500	"								
No. 1.50 1.50 1.50 1.50	p-Isopropyltoluene	ND	0.500	"								
set Bally Jacobol (TBA)	sec-Butylbenzene	ND	0.500	"								
ert Bully Microser	Styrene	ND	0.500	"								
Principal controlled ND	ert-Butyl alcohol (TBA)	ND	1.00	"								
Table ND	ert-Butylbenzene	ND	0.500	"								
rans-1,2-Dichloroethylene ND 0.500 " rans-1,3-Dichloroptopylene ND 0.500 " richlorofluoromethane ND 0.500 " richloromethane ND 0.500	Tetrachloroethylene	ND	0.500	"								
ND	Гoluene	ND	0.500	"								
rifichloroethylene ND 0.500 " rifichlorouthuromethane ND 0.500 " rificyll Chloride ND 0.500 " Sylenes, Total ND 1.50 " hurrogate: SURR: 1,2-Dichloroethane-d4 12.0 " 10.0 120 69-130 hurrogate: SURR: robene-d8 9.88 " 10.0 108 79-122 CS (BK2) Operation 10.8 " 10.0 108 79-122 L1, 12-Tetrachloroethane 9.69 ug/L 10.0 96.9 82-126 1, 11, 22-Tetrachloroethane 9.69 ug/L 10.0 96.9 82-126 1, 11, 22-Tetrachloroethane 9.51 " 10.0 96.9 82-126 1, 12, 22-Tetrachloroethane (Freen 9.12 " 10.0 95.1 76-129 1, 12-Teichloroethane (Freen 9.13 " 10.0 96.1 82-123 1, 12-Teichloroethylene 9.13 " 10.0 96.1 82-123	rans-1,2-Dichloroethylene	ND	0.500	"								
trichloroducomethane ND	rans-1,3-Dichloropropylene	ND	0.500	"								
Vignes, Fotal ND 0.500 " Vignes, Fotal ND 1.50 " ***Torogate: SURR: 1,2-Dichloroethane-44	Trichloroethylene	ND	0.500	"								
ND	Trichlorofluoromethane	ND	0.500	"								
	√inyl Chloride	ND	0.500	"								
10.0 98.8 81-117 10.0 108 79-122 10.0 208 81-117 10.0 208 81-117 10.0 208 81-117 10.0 208 81-117 10.0 208 81-117 10.0 208 81-117 10.0 208 209 208 209 208 209 208 209 208 209 208 209 208 209 208 209 208 209 208 209 208 209 208 208 209 208	Kylenes, Total	ND	1.50	"								
CS (BK20295-BS1) Prepared: 11/03/2022 Analyzed: 11/04/2022 1,1,2-Tetrachloroethane 9,69 ug/L 10,0 96.9 82-126 1,1-Trichloroethane 10,7 " 10,0 107 78-136 1,2-Z-Tetrachloroethane 9,51 " 10,0 95.1 76-129 1,2-Z-Tetrachloroethane 9,51 " 10,0 91.2 54-165 1,2-Z-Tetrachloroethane 9,51 " 10,0 91.2 54-165 1,2-Z-Tetrachloroethane 9,51 " 10,0 96.1 82-123 1,2-Z-Tetrachloroethane 9,51 " 10,0 97.4 68-138 1,2-Z-Tetrachloroethane 9,13 " 10,0 97.4 68-138 1,2-Z-Tetrachloroethane 9,14 " 10,0 84.1 76-136 1,2-Z-Tetrachloroethane 10,6 " 10,0 84.1 76-136 1,2-Z-Tetrachloroethane 10,6 " 10,0 106 77-128 1,2-Z-Tetrachloroethane 10,1 " 10,0 106 77-128 1,2-Z-Tetrachloroethane 10,1 " 10,0 10 85.6 76-137 1,2-Z-Tetrachloroethane 10,1 " 10,0 10 82-132 1,2-Z-Tetrachloroethane 9,29 " 10,0 92.9 45-147 1,2-Z-Dichloroethane 9,40 " 10,0 99.2 79-123 1,2-Z-Dichloroethane 9,40 " 10,0 99.2 79-123 1,2-Z-Dichloroethane 10,8 " 10,0 108 73-132 1,2-Z-Dichloroethane 10,8 " 10,0 86.8 78-126 1,2-Z-Dichloroethane 10,1 " 10,0 101 80-131 1,2-Z-Dichloroethane 10,1 " 10,0 10,0 86.8 78-126 1,2-Z-Dichloroethane 9,90 " 10,0 99.0 85-124 1,2-Z-Dichloroethane 9,90 " 10,0 9	Surrogate: SURR: 1,2-Dichloroethane-d4	12.0		"	10.0		120	69-130				
CSG (BK20295-BS1)	Surrogate: SURR: Toluene-d8	9.88		"	10.0		98.8	81-117				
1,1,2-Tetrachloroethane	Surrogate: SURR: p-Bromofluorobenzene	10.8		"	10.0		108	79-122				
1,1,2-Tetrachloroethane	LCS (BK20295-BS1)							Prep	ared: 11/03/2	022 Analyz	ed: 11/04/2	2022
1,1-Trichloroethane		9.69		ug/L	10.0		96.9	82-126				
1,1,2,2-Tetrachloroethane	1,1,1-Trichloroethane											
1,12-Trichloro-1,2,2-trifluoroethane (Freon 13)				"								
13)				"								
1-Dichloroethane	113)											
1-Dichloroethylene	1,1,2-Trichloroethane	9.61		"	10.0		96.1	82-123				
2,3-Trichlorobenzene 8.41 " 10.0 84.1 76-136 2,3-Trichloropropane 10.6 " 10.0 106 77-128 2,4-Trichlorobenzene 8.56 " 10.0 85.6 76-137 2,4-Trimethylbenzene 10.1 " 10.0 101 82-132 2,2-Dibromo-3-chloropropane 9.29 " 10.0 92.9 45-147 2-Dibromo-denane 9.40 " 10.0 94.0 83-124 2-Dichlorobenzene 9.92 " 10.0 99.2 79-123 2-Dichlorobenzene 9.92 " 10.0 108 73-132 2-Dichloropropane 8.68 " 10.0 86.8 78-126 3,5-Trimethylbenzene 10.1 " 10.0 86.8 78-126 3,5-Trimethylbenzene 10.1 " 10.0 85.0 86-122 Low Bias 3-Dichloropropane 9.10 " 10.0 99.0 85-124 4-Dichlorobenzene 9.90 " 10.0 99.0 85-124 4-Dichlorobenzene 9.90 " 10.0 107 49-152 -Butanone 10.7 " 10.0 <	1,1-Dichloroethane	9.13		"	10.0		91.3	82-129				
10.6 " 10.0 106 77-128	,1-Dichloroethylene	9.74		"	10.0		97.4	68-138				
2,4-Trichlorobenzene 8.56 " 10.0 85.6 76-137 2,2-Trimethylbenzene 10.1 " 10.0 101 82-132 2,2-Dibromo-3-chloropropane 9.29 " 10.0 92.9 45-147 2,2-Dibromoethane 9.40 " 10.0 94.0 83-124 2,2-Dichlorobenzene 9.92 " 10.0 99.2 79-123 2,2-Dichloroptopane 8.68 " 10.0 108 73-132 2,2-Dichloropropane 8.68 " 10.0 86.8 78-126 3,5-Trimethylbenzene 10.1 " 10.0 85.0 86-122 Low Bias 3,1-Dichlorobenzene 8.50 " 10.0 91.0 81-125 4-Dichlorobenzene 9.90 " 10.0 99.0 85-124 4-Dichlorobenzene 299 " 210 142 10-349 2-Butanone 10.7 " 10.0 97.0 51-146	1,2,3-Trichlorobenzene	8.41		"	10.0		84.1	76-136				
10.1 10.0 101 82-132	1,2,3-Trichloropropane	10.6		"			106					
,2-Dibromo-3-chloropropane 9.29 " 10.0 92.9 45-147 ,2-Dibromoethane 9.40 " 10.0 94.0 83-124 ,2-Dichlorobenzene 9.92 " 10.0 99.2 79-123 ,2-Dichloroethane 10.8 " 10.0 108 73-132 ,2-Dichloropropane 8.68 " 10.0 86.8 78-126 ,3,5-Trimethylbenzene 10.1 " 10.0 85.0 86-122 Low Bias ,3-Dichlorobenzene 9.10 " 10.0 91.0 81-125 ,4-Dichlorobenzene 9.90 " 10.0 99.0 85-124 ,4-Dioxane 299 " 210 142 10-349 2-Butanone 10.7 " 10.0 97.0 51-146	1,2,4-Trichlorobenzene	8.56		"	10.0		85.6	76-137				
,2-Dibromoethane 9.40 " 10.0 94.0 83-124 ,2-Dichlorobenzene 9.92 " 10.0 99.2 79-123 ,2-Dichloroethane 10.8 " 10.0 108 73-132 ,2-Dichloropropane 8.68 " 10.0 86.8 78-126 ,3,5-Trimethylbenzene 10.1 " 10.0 85.0 86-122 Low Bias ,3-Dichlorobenzene 9.10 " 10.0 91.0 81-125 ,4-Dichlorobenzene 9.90 " 10.0 99.0 85-124 ,4-Dioxane 299 " 210 142 10-349 2-Butanone 10.7 " 10.0 97.0 51-146 2-Hexanone 9.70 " 10.0 97.0 51-146	1,2,4-Trimethylbenzene			"	10.0		101					
,2-Dichlorobenzene 9.92 " 10.0 99.2 79-123 ,2-Dichloroethane 10.8 " 10.0 108 73-132 ,2-Dichloropropane 8.68 " 10.0 86.8 78-126 ,3,5-Trimethylbenzene 10.1 " 10.0 101 80-131 ,3-Dichlorobenzene 8.50 " 10.0 85.0 86-122 Low Bias ,3-Dichloropropane 9.10 " 10.0 91.0 81-125 ,4-Dichlorobenzene 9.90 " 10.0 99.0 85-124 ,4-Dioxane 299 " 210 142 10-349 2-Butanone 10.7 " 10.0 97.0 51-146		9.29		"	10.0		92.9	45-147				
,2-Dichloroethane 10.8 " 10.0 108 73-132 ,2-Dichloropropane 8.68 " 10.0 86.8 78-126 ,3,5-Trimethylbenzene 10.1 " 10.0 101 80-131 ,3-Dichlorobenzene 8.50 " 10.0 85.0 86-122 Low Bias ,3-Dichloropropane 9.10 " 10.0 91.0 81-125 ,4-Dichlorobenzene 9.90 " 10.0 99.0 85-124 ,4-Dioxane 299 " 210 142 10-349 2-Butanone 10.7 " 10.0 107 49-152 2-Hexanone 9.70 " 10.0 97.0 51-146				"	10.0		94.0					
,2-Dichloropropane 8.68 " 10.0 86.8 78-126 ,3,5-Trimethylbenzene 10.1 " 10.0 101 80-131 ,3-Dichlorobenzene 8.50 " 10.0 85.0 86-122 Low Bias ,3-Dichloropropane 9.10 " 10.0 91.0 81-125 ,4-Dichlorobenzene 9.90 " 10.0 99.0 85-124 ,4-Dioxane 299 " 210 142 10-349 2-Butanone 10.7 " 10.0 107 49-152 2-Hexanone 9.70 " 10.0 97.0 51-146	<i>'</i>						99.2					
3,3-Trimethylbenzene 10.1							108					
,3-Dichlorobenzene 8.50 " 10.0 85.0 86-122 Low Bias ,3-Dichloropropane 9.10 " 10.0 91.0 81-125 ,4-Dichlorobenzene 9.90 " 10.0 99.0 85-124 ,4-Dioxane 299 " 210 142 10-349 2-Butanone 10.7 " 10.0 107 49-152 2-Hexanone 9.70 " 10.0 97.0 51-146							86.8					
3-Dichloropropane 9.10 " 10.0 91.0 81-125 ,4-Dichlorobenzene 9.90 " 10.0 99.0 85-124 ,4-Dioxane 299 " 210 142 10-349 -Butanone 10.7 " 10.0 107 49-152 -Hexanone 9.70 " 10.0 97.0 51-146	-								_			
,4-Dichlorobenzene 9.90 " 10.0 99.0 85-124 ,4-Dioxane 299 " 210 142 10-349 !-Butanone 10.7 " 10.0 107 49-152 !-Hexanone 9.70 " 10.0 97.0 51-146									Low Bias			
,4-Dioxane 299 " 210 142 10-349 1-Butanone 10.7 " 10.0 107 49-152 1-Hexanone 9.70 " 10.0 97.0 51-146												
-Butanone 10.7 " 10.0 107 49-152 -Hexanone 9.70 " 10.0 97.0 51-146												
I-Hexanone 9.70 " 10.0 97.0 51-146												
	2-Butanone											
120 DESEADON DRIVE STRATEORD OT 06615 = 132 02 90th AVENUE DICHMOND HILL NV 11410	?-Hexanone	9.70		"	10.0		97.0	51-146				
	120 DESEADOU DDIVE	STRATEORN OT 06641	5		40	2_02 80th ^	VENITE	-	SICHMOND	HILL NIV	11//10	

120 RESEARCH DRIVE www.YORKLAB.com

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

ClientServices@ Page 45 of 61

RPD

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

,						
Batch BK20295 - EPA 5030B						
LCS (BK20295-BS1)					Pre	pared: 11/03/2022 Analyzed: 11/04/2022
4-Methyl-2-pentanone	8.86	ug/L	10.0	88.6	57-145	
Acetone	29.6	"	10.0	296	14-150	High Bias
Acrolein	6.55	"	10.0	65.5	10-153	
Acrylonitrile	8.38	"	10.0	83.8	51-150	
Benzene	8.73	"	10.0	87.3	85-126	
Bromochloromethane	9.97	"	10.0	99.7	77-128	
Bromodichloromethane	9.89	"	10.0	98.9	79-128	
Bromoform	10.6	"	10.0	106	78-133	
Bromomethane	5.37	"	10.0	53.7	43-168	
Carbon disulfide	9.14	"	10.0	91.4	68-146	
Carbon tetrachloride	11.1	"	10.0	111	77-141	
Chlorobenzene	9.43	"	10.0	94.3	88-120	
Chloroethane	12.7	"	10.0	127	65-136	
Chloroform	10.1	"	10.0	101	82-128	
Chloromethane	11.6	"	10.0	116	43-155	
cis-1,2-Dichloroethylene	9.29	"	10.0	92.9	43-133 83-129	
cis-1,3-Dichloropropylene	9.29	"				
Cyclohexane		"	10.0	91.9	80-131	Low Bias
Dibromochloromethane	3.42	"	10.0	34.2	63-149	Low bias
	9.87		10.0	98.7	80-130	
Dibromomethane	9.47	,	10.0	94.7	72-134	
Dichlorodifluoromethane	14.0		10.0	140	44-144	
Ethyl Benzene	9.51	"	10.0	95.1	80-131	
Hexachlorobutadiene	8.78	"	10.0	87.8	67-146	
Isopropylbenzene	9.86	"	10.0	98.6	76-140	
Methyl acetate	8.09	"	10.0	80.9	51-139	
Methyl tert-butyl ether (MTBE)	9.74	"	10.0	97.4	76-135	
Methylcyclohexane	8.28	"	10.0	82.8	72-143	
Methylene chloride	10.4	"	10.0	104	55-137	
Naphthalene	8.33	"	10.0	83.3	70-147	
n-Butylbenzene	9.01	"	10.0	90.1	79-132	
n-Propylbenzene	9.87	"	10.0	98.7	78-133	
o-Xylene	10.1	"	10.0	101	78-130	
p- & m- Xylenes	19.8	"	20.0	98.8	77-133	
p-Diethylbenzene	8.97	"	10.0	89.7	84-134	
p-Ethyltoluene	10.5	"	10.0	105	88-129	
p-Isopropyltoluene	8.58	"	10.0	85.8	81-136	
sec-Butylbenzene	8.49	"	10.0	84.9	79-137	
Styrene	9.29	"	10.0	92.9	67-132	
tert-Butyl alcohol (TBA)	49.2	"	50.0	98.4	25-162	
tert-Butylbenzene	7.54	"	10.0	75.4	77-138	Low Bias
Tetrachloroethylene	9.05	"	10.0	90.5	82-131	
Toluene	9.88	"	10.0	98.8	80-127	
trans-1,2-Dichloroethylene	9.41	"	10.0	94.1	80-132	
trans-1,3-Dichloropropylene	9.66	"	10.0	96.6	78-131	
Trichloroethylene	9.21	"	10.0	92.1	82-128	
Trichlorofluoromethane	14.3	"	10.0	143	67-139	High Bias
Vinyl Chloride	12.7	"	10.0	127	58-145	
Surrogate: SURR: 1,2-Dichloroethane-d4	12.2	"	10.0	122	69-130	
Surrogate: SURR: Toluene-d8	9.70	"	10.0	97.0	81-117	
Surrogate: SURR: p-Bromofluorobenzene	9.72	"	10.0	97.2	79-122	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 46 of 61

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Allaryte	Result	Lillit Ollits	Level	Result	70KEC	Lillits	Tag	KI D	Liiiit	Tag
Batch BK20295 - EPA 5030B										
LCS Dup (BK20295-BSD1)						Prep	pared: 11/03/20)22 Analyz	ed: 11/04/20	022
1,1,1,2-Tetrachloroethane	9.63	ug/L	10.0		96.3	82-126		0.621	30	
1,1,1-Trichloroethane	10.4	"	10.0		104	78-136		2.95	30	
1,1,2,2-Tetrachloroethane	10.0	"	10.0		100	76-129		5.12	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	8.95	"	10.0		89.5	54-165		1.88	30	
113)										
1,1,2-Trichloroethane	9.59	"	10.0		95.9	82-123		0.208	30	
1,1-Dichloroethane	9.01	"	10.0		90.1	82-129		1.32	30	
1,1-Dichloroethylene	9.35	"	10.0		93.5	68-138		4.09	30	
1,2,3-Trichlorobenzene	8.85	"	10.0		88.5	76-136		5.10	30	
1,2,3-Trichloropropane	10.4	"	10.0		104	77-128		1.80	30	
1,2,4-Trichlorobenzene	8.82	"	10.0		88.2	76-137		2.99	30	
1,2,4-Trimethylbenzene	10.2	"	10.0		102	82-132		1.28	30	
1,2-Dibromo-3-chloropropane	9.68	"	10.0		96.8	45-147		4.11	30	
1,2-Dibromoethane	9.22	"	10.0		92.2	83-124		1.93	30	
1,2-Dichlorobenzene	10.0	"	10.0		100	79-123		1.00	30	
1,2-Dichloroethane	10.8	"	10.0		108	73-132		0.462	30	
1,2-Dichloropropane	8.79	"	10.0		87.9	78-126		1.26	30	
1,3,5-Trimethylbenzene	10.1	"	10.0		101	80-131		0.595	30	
1,3-Dichlorobenzene	8.51	"	10.0		85.1	86-122	Low Bias	0.118	30	
1,3-Dichloropropane	9.27	"	10.0		92.7	81-125		1.85	30	
1,4-Dichlorobenzene	9.93	"	10.0		99.3	85-124		0.303	30	
1,4-Dioxane	361	"	210		172	10-349		18.9	30	
2-Butanone	11.3	"	10.0		113	49-152		5.18	30	
2-Hexanone	9.90	"	10.0		99.0	51-146		2.04	30	
4-Methyl-2-pentanone	9.09	"	10.0		90.9	57-145		2.56	30	
Acetone	31.0	"	10.0		310	14-150	High Bias	4.45	30	
Acrolein	6.60	"	10.0		66.0	10-153		0.760	30	
Acrylonitrile	8.95	"	10.0		89.5	51-150		6.58	30	
Benzene	8.71	"	10.0		87.1	85-126		0.229	30	
Bromochloromethane	9.93	"	10.0		99.3	77-128		0.402	30	
Bromodichloromethane	9.77	"	10.0		97.7	79-128		1.22	30	
Bromoform	10.4	"	10.0		104	78-133		1.72	30	
Bromomethane	5.84	"	10.0		58.4	43-168		8.39	30	
Carbon disulfide	9.00	"	10.0		90.0	68-146		1.54	30	
Carbon tetrachloride	10.7	"	10.0		107	77-141		3.85	30	
Chlorobenzene	9.41	"	10.0		94.1	88-120		0.212	30	
Chloroethane	12.4	"	10.0		124	65-136		1.83	30	
Chloroform	9.95	"	10.0		99.5	82-128		1.20	30	
Chloromethane	11.5	"	10.0		115	43-155		1.47	30	
cis-1,2-Dichloroethylene	9.19	"	10.0		91.9	83-129		1.08	30	
cis-1,3-Dichloropropylene	9.15	"	10.0		91.5	80-131		0.436	30	
Cyclohexane	3.34	"	10.0		33.4	63-149	Low Bias	2.37	30	
Dibromochloromethane	9.81	"	10.0		98.1	80-130		0.610	30	
Dibromomethane	9.64	"	10.0		96.4	72-134		1.78	30	
Dichlorodifluoromethane	13.3	"	10.0		133	44-144		5.14	30	
Ethyl Benzene	9.30	"	10.0		93.0	80-131		2.23	30	
Hexachlorobutadiene	8.76	"	10.0		87.6	67-146		0.228	30	
Isopropylbenzene	9.84	"	10.0		98.4	76-140		0.203	30	
Methyl acetate	8.73	"	10.0		87.3	51-139		7.61	30	
Methyl tert-butyl ether (MTBE)	9.74	"	10.0		97.4	76-135		0.00	30	

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

Page 47 of 61 ClientServices@

York Analytical Laboratories, Inc. - Stratford

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BK20295 - EPA 5030B											
LCS Dup (BK20295-BSD1)							Prep	pared: 11/03/2	022 Analyz	ed: 11/04/2	2022
Methylene chloride	10.2		ug/L	10.0		102	55-137		1.17	30	
Naphthalene	8.69		"	10.0		86.9	70-147		4.23	30	
n-Butylbenzene	8.98		"	10.0		89.8	79-132		0.334	30	
-Propylbenzene	9.89		"	10.0		98.9	78-133		0.202	30	
o-Xylene	9.87		"	10.0		98.7	78-130		2.11	30	
- & m- Xylenes	19.3		"	20.0		96.6	77-133		2.25	30	
p-Diethylbenzene	9.00		"	10.0		90.0	84-134		0.334	30	
p-Ethyltoluene	10.6		"	10.0		106	88-129		1.33	30	
p-Isopropyltoluene	8.68		"	10.0		86.8	81-136		1.16	30	
sec-Butylbenzene	8.53		"	10.0		85.3	79-137		0.470	30	
Styrene	9.28		"	10.0		92.8	67-132		0.108	30	
ert-Butyl alcohol (TBA)	54.9		"	50.0		110	25-162		10.9	30	
tert-Butylbenzene	7.51		"	10.0		75.1	77-138	Low Bias	0.399	30	
Tetrachloroethylene	8.96		"	10.0		89.6	82-131		0.999	30	
Toluene	9.68		"	10.0		96.8	80-127		2.04	30	
rans-1,2-Dichloroethylene	9.17		"	10.0		91.7	80-127		2.58	30	
rans-1,3-Dichloropropylene	9.79		"	10.0		97.9	78-131		1.34	30	
Frichloroethylene			,,	10.0					1.64	30	
Trichlorofluoromethane	9.06		,,			90.6	82-128		5.39	30	
	13.5		,,	10.0		135	67-139				
Vinyl Chloride	12.4			10.0		124	58-145		2.32	30	
Surrogate: SURR: 1,2-Dichloroethane-d4	12.1		"	10.0		121	69-130				
Surrogate: SURR: Toluene-d8	9.92		"	10.0		99.2	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.85		"	10.0		98.5	79-122				
Blank (BK20326-BLK1) ,1,1,2-Tetrachloroethane	ND	0.500	ug/L				Prep	pared & Analy	zed: 11/08/	2022	
1,1,1-Trichloroethane	ND	0.500	"								
1,1,2,2-Tetrachloroethane	ND	0.500	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.500	"								
113)	T(D	0.500									
1,1,2-Trichloroethane	ND	0.500	"								
,1-Dichloroethane	ND	0.500	"								
,1-Dichloroethylene	ND	0.500	"								
1,2,3-Trichlorobenzene	ND	0.500	"								
1,2,3-Trichloropropane	ND	0.500	"								
,2,4-Trichlorobenzene	ND	0.500	"								
,2,4-Trimethylbenzene	ND	0.500	"								
,2-Dibromo-3-chloropropane	ND	0.500	"								
,2-Dibromoethane	ND	0.500	"								
,2-Dichlorobenzene	ND	0.500	"								
1,2-Dichloroethane	ND	0.500	"								
1,2-Dichloropropane	ND	0.500	"								
1,3,5-Trimethylbenzene	ND ND	0.500	"								
1,3-Dichlorobenzene	ND ND	0.500	"								
1,3-Dichloropropane	ND ND	0.500	"								
1,4-Dichlorobenzene	ND ND	0.500	,,								
1,4-Dioxane			,,								
2-Butanone	ND	80.0	,,								
-muanone	ND	0.500									
	3.79%	0 =00									
2-Hexanone	ND	0.500	"								
2-Hexanone 4-Methyl-2-pentanone	ND ND STRATFORD, CT	0.500	"								

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 48 of 61

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

lank (BK20326-BLK1)						Prepared & Analyzed: 11/08/2022
cetone	ND	2.00	ug/L			
crolein	ND	0.500	"			
crylonitrile	ND	0.500	"			
enzene	ND	0.500	"			
romochloromethane	ND	0.500	"			
romodichloromethane	ND	0.500	"			
romoform	ND	0.500	"			
romomethane	ND	0.500	"			
arbon disulfide	ND	0.500	"			
arbon tetrachloride	ND	0.500	"			
hlorobenzene	ND	0.500	"			
hloroethane	ND	0.500	"			
hloroform	ND	0.500	"			
hloromethane	ND	0.500	"			
s-1,2-Dichloroethylene	ND	0.500	"			
s-1,3-Dichloropropylene	ND ND	0.500	"			
yclohexane	ND ND	0.500	"			
ibromochloromethane	ND ND	0.500	"			
ibromomethane	ND ND	0.500	"			
ichlorodifluoromethane	ND ND	0.500	"			
hyl Benzene	ND ND	0.500	"			
exachlorobutadiene	ND ND	0.500	"			
opropylbenzene	ND ND	0.500	,,			
ethyl acetate	ND ND	0.500	,,			
ethyl tert-butyl ether (MTBE)	ND ND	0.500	"			
ethylcyclohexane	ND ND	0.500	"			
ethylene chloride	ND ND	2.00	,,			
aphthalene	ND ND	2.00	,,			
Butylbenzene	ND ND	0.500	,,			
Propylbenzene	ND ND	0.500	"			
Xylene	ND ND	0.500	,,			
& m- Xylenes	ND ND		,,			
Diethylbenzene	ND ND	1.00 0.500	,,			
Ethyltoluene	ND ND	0.500	,,			
Isopropyltoluene	ND ND	0.500	"			
c-Butylbenzene	ND ND	0.500	,,			
yrene	ND ND	0.500	,,			
rt-Butyl alcohol (TBA)	ND ND	1.00	"			
rt-Butylbenzene			,,			
	ND	0.500	"			
etrachloroethylene oluene	ND ND	0.500	,,			
ans-1,2-Dichloroethylene		0.500	,,			
ans-1,2-Dichloroethylene	ND	0.500	"			
nis-1,3-Dichloropropylene	ND	0.500	"			
•	ND	0.500	"			
richlorofluoromethane	ND	0.500	"			
inyl Chloride	ND	0.500				
ylenes, Total	ND	1.50	"			
urrogate: SURR: 1,2-Dichloroethane-d4	10.2		"	10.0	102	69-130
urrogate: SURR: Toluene-d8	10.1		"	10.0	101	81-117
urrogate: SURR: p-Bromofluorobenzene	10.0		"	10.0	100	79-122

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 49 of 61

(203) 325-1371

ClientServices@

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BK20326 - EPA 5030B											
LCS (BK20326-BS1)							Prej	pared & Analy	zed: 11/08/	2022	
1,1,1,2-Tetrachloroethane	9.70		ug/L	10.0		97.0	82-126				
1,1,1-Trichloroethane	9.87		"	10.0		98.7	78-136				
1,1,2,2-Tetrachloroethane	6.95		"	10.0		69.5	76-129	Low Bias			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.50		"	10.0		95.0	54-165				
113)											
1,1,2-Trichloroethane	8.86		"	10.0		88.6	82-123				
1,1-Dichloroethane	8.33		"	10.0		83.3	82-129				
1,1-Dichloroethylene	9.76		"	10.0		97.6	68-138				
1,2,3-Trichlorobenzene	3.33		"	10.0		33.3	76-136	Low Bias			
1,2,3-Trichloropropane	8.52		"	10.0		85.2	77-128				
1,2,4-Trichlorobenzene	8.72		"	10.0		87.2	76-137				
1,2,4-Trimethylbenzene	10.4		"	10.0		104	82-132				
1,2-Dibromo-3-chloropropane	6.86		"	10.0		68.6	45-147				
1,2-Dibromoethane	8.34		"	10.0		83.4	83-124				
1,2-Dichlorobenzene	8.83		"	10.0		88.3	79-123				
1,2-Dichloroethane	9.34		"	10.0		93.4	73-132				
1,2-Dichloropropane	9.50		"	10.0		95.0	78-126				
1,3,5-Trimethylbenzene	9.75		"	10.0		97.5	80-131				
1,3-Dichlorobenzene	9.67		"	10.0		96.7	86-122				
1,3-Dichloropropane	8.13		"	10.0		81.3	81-125				
1,4-Dichlorobenzene	9.60		"	10.0		96.0	85-124				
1,4-Dioxane	263		"	210		125	10-349				
2-Butanone	7.89		"	10.0		78.9	49-152				
2-Hexanone	7.77		"	10.0		77.7	51-146				
4-Methyl-2-pentanone	9.94		"	10.0		99.4	57-145				
Acetone	26.4		"	10.0		264	14-150	High Bias			
Acrolein	5.93		"	10.0		59.3	10-153	-			
Acrylonitrile	8.46		"	10.0		84.6	51-150				
Benzene	7.75		"	10.0		77.5	85-126	Low Bias			
Bromochloromethane	7.20		"	10.0		72.0	77-128	Low Bias			
Bromodichloromethane	10.9		"	10.0		109	79-128				
Bromoform	9.69		"	10.0		96.9	78-133				
Bromomethane	1.33		"	10.0		13.3	43-168	Low Bias			
Carbon disulfide	9.49		"	10.0		94.9	68-146				
Carbon tetrachloride	10.5		"	10.0		105	77-141				
Chlorobenzene	9.19		"	10.0		91.9	88-120				
Chloroethane	8.53		,,	10.0		85.3	65-136				
Chloroform	9.26		"	10.0		92.6	82-128				
Chloromethane	9.19		"	10.0		91.9	43-155				
cis-1,2-Dichloroethylene	8.59		"	10.0		85.9	83-129				
cis-1,3-Dichloropropylene	10.1		"	10.0		101	80-131				
Cyclohexane	3.83		,,	10.0		38.3	63-149	Low Bias			
Dibromochloromethane	9.36		,,				80-130	Low Dias			
Dibromomethane	9.66		,,	10.0 10.0		93.6	72-134				
Dichlorodifluoromethane	9.66 12.8		,,	10.0		96.6	72-134 44-144				
Ethyl Benzene			,,			128					
Etnyl Benzene Hexachlorobutadiene	9.13		.,	10.0		91.3	80-131	Low Dies			
	6.57		"	10.0		65.7	67-146	Low Bias			
Isopropylbenzene Methyl coetete	9.44			10.0		94.4	76-140				
Methyl acetate	8.06		"	10.0		80.6	51-139				
Methyl tert-butyl ether (MTBE)	8.99		"	10.0		89.9	76-135				
Methylcyclohexane	9.94		"	10.0		99.4	72-143				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 50 of 61

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

%REC

Reporting

		Reporting	Spike	Source*		%REC			IG D	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BK20326 - EPA 5030B										
LCS (BK20326-BS1)						Pre	pared & Analy	zed: 11/08/	2022	
Methylene chloride	9.11	ug/L	10.0		91.1	55-137				
Naphthalene	3.78	"	10.0		37.8	70-147	Low Bias			
n-Butylbenzene	9.91	· ·	10.0		99.1	79-132				
n-Propylbenzene	9.10	"	10.0		91.0	78-133				
o-Xylene	9.85	"	10.0		98.5	78-130				
p- & m- Xylenes	18.9	"	20.0		94.4	77-133				
p-Diethylbenzene	9.98	"	10.0		99.8	84-134				
p-Ethyltoluene	10.9	"	10.0		109	88-129				
p-Isopropyltoluene	10.3	· ·	10.0		103	81-136				
sec-Butylbenzene	10.7	"	10.0		107	79-137				
Styrene	9.18	"	10.0		91.8	67-132				
tert-Butyl alcohol (TBA)	39.6	"	50.0		79.1	25-162				
tert-Butylbenzene	8.27	"	10.0		82.7	77-138				
Tetrachloroethylene	9.27	"	10.0		92.7	82-131				
Toluene	9.74	"	10.0		97.4	80-127				
trans-1,2-Dichloroethylene	9.74 8.99	"	10.0		97.4 89.9	80-127				
trans-1,3-Dichloropropylene	10.4	"	10.0		104	78-131				
Trichloroethylene	10.4	"	10.0		104	82-128				
Trichlorofluoromethane		,,								
Vinyl Chloride	11.5	"	10.0		115	67-139				
	11.2		10.0		112	58-145				
Surrogate: SURR: 1,2-Dichloroethane-d4	11.1	"	10.0		111	69-130				
Surrogate: SURR: Toluene-d8	11.4	"	10.0		114	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.96	"	10.0		99.6	79-122				
LCS Dup (BK20326-BSD1)						Pre	pared & Analy:	zed: 11/08/	2022	
1,1,1,2-Tetrachloroethane	9.04	ug/L	10.0		90.4	82-126		7.04	30	
1,1,1-Trichloroethane	9.04	ug/L	10.0		90.4	78-136		8.78	30	
1,1,2,2-Tetrachloroethane	8.73	"	10.0		87.3	76-130		22.7	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	8.95	"	10.0		89.5	54-165		5.96	30	
113)	6.93		10.0		67.3	34-103		3.70	30	
1,1,2-Trichloroethane	8.48	"	10.0		84.8	82-123		4.38	30	
1,1-Dichloroethane	8.92	"	10.0		89.2	82-129		6.84	30	
1,1-Dichloroethylene	9.19	"	10.0		91.9	68-138		6.02	30	
1,2,3-Trichlorobenzene	3.67	"	10.0		36.7	76-136	Low Bias	9.71	30	
1,2,3-Trichloropropane	8.86	"	10.0		88.6	77-128		3.91	30	
1,2,4-Trichlorobenzene	8.11	"	10.0		81.1	76-137		7.25	30	
1,2,4-Trimethylbenzene	10.3	"	10.0		103	82-132		1.16	30	
1,2-Dibromo-3-chloropropane	6.99	"	10.0		69.9	45-147		1.88	30	
1,2-Dibromoethane	8.66	"	10.0		86.6	83-124		3.76	30	
1,2-Dichlorobenzene	9.34	,,	10.0		93.4	79-123		5.61	30	
1,2-Dichloroethane		"						6.29	30	
	8.77	"	10.0		87.7	73-132				
1,2-Dichloropropane	9.48	"	10.0		94.8	78-126		0.211	30	
1,3,5-Trimethylbenzene	10.4	"	10.0		104	80-131		6.45	30	
1,3-Dichlorobenzene	10.2		10.0		102	86-122		5.63	30	
1,3-Dichloropropane	8.74	"	10.0		87.4	81-125		7.23	30	
1,4-Dichlorobenzene	10.1	"	10.0		101	85-124		5.37	30	
1,4-Dioxane	246	"	210		117	10-349		6.47	30	
2-Butanone	8.44	"	10.0		84.4	49-152		6.74	30	
2-Hexanone	9.58	"	10.0		95.8	51-146		20.9	30	
4-Methyl-2-pentanone	9.76	"	10.0		97.6	57-145		1.83	30	
Acetone	25.2	"	10.0		252	14-150	High Bias	4.77	30	
120 RESEARCH DRIVE	STRATFORD, CT 066	S15 ■	13	32-02 89th AV	ENUE		RICHMOND	HILL, NY	11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

Page 51 of 61 ClientServices@

RPD

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
•											

LCS Dup (BK20326-BSD1)					Prep	pared & Analy	zed: 11/08/2	2022	
Acrolein	5.73	ug/L	10.0	57.3	10-153		3.43	30	
Acrylonitrile	8.91	"	10.0	89.1	51-150		5.18	30	
Benzene	8.89	"	10.0	88.9	85-126		13.7	30	
Bromochloromethane	7.63	"	10.0	76.3	77-128	Low Bias	5.80	30	
Bromodichloromethane	9.15	"	10.0	91.5	79-128		17.1	30	
Bromoform	8.62	"	10.0	86.2	78-133		11.7	30	
Bromomethane	1.07	"	10.0	10.7	43-168	Low Bias	21.7	30	
Carbon disulfide	9.91	"	10.0	99.1	68-146		4.33	30	
Carbon tetrachloride	9.25	"	10.0	92.5	77-141		12.9	30	
Chlorobenzene	9.55	"	10.0	95.5	88-120		3.84	30	
Chloroethane	7.08	"	10.0	70.8	65-136		18.6	30	
Chloroform	8.92	"	10.0	89.2	82-128		3.74	30	
Chloromethane	6.38	"	10.0	63.8	43-155		36.1	30	Non-dii
cis-1,2-Dichloroethylene	8.84	"	10.0	88.4	83-129		2.87	30	
cis-1,3-Dichloropropylene	9.23	"	10.0	92.3	80-131		8.70	30	
Cyclohexane	4.19	"	10.0	41.9	63-149	Low Bias	8.98	30	
Dibromochloromethane	8.59	"	10.0	85.9	80-130		8.58	30	
Dibromomethane	8.65	"	10.0	86.5	72-134		11.0	30	
Dichlorodifluoromethane	8.97	,,	10.0	89.7	44-144		35.3	30	Non-di
Ethyl Benzene	9.69	,,	10.0	96.9	80-131		5.95	30	Non-un
Hexachlorobutadiene	5.73	,,	10.0	57.3	67-146	Low Bias	13.7	30	
Isopropylbenzene	10.2	,,	10.0	102	76-140	LOW Dias	7.64	30	
Methyl acetate		"					6.95	30	
Methyl tert-butyl ether (MTBE)	8.64	"	10.0	86.4	51-139		3.51		
	8.68	"	10.0	86.8	76-135			30	
Methylcyclohexane Methylene chloride	9.16	"	10.0	91.6	72-143		8.17	30	
-	9.71	"	10.0	97.1	55-137	I D'	6.38	30	
Naphthalene	4.34		10.0	43.4	70-147	Low Bias	13.8	30	
n-Butylbenzene	10.8		10.0	108	79-132		8.96	30	
n-Propylbenzene	10.3	"	10.0	103	78-133		12.5	30	
o-Xylene	9.50	"	10.0	95.0	78-130		3.62	30	
p- & m- Xylenes	19.5	"	20.0	97.4	77-133		3.18	30	
p-Diethylbenzene	10.7	"	10.0	107	84-134		7.15	30	
p-Ethyltoluene	11.6	"	10.0	116	88-129		6.49	30	
p-Isopropyltoluene	10.7	"	10.0	107	81-136		3.43	30	
sec-Butylbenzene	10.6	"	10.0	106	79-137		0.753	30	
Styrene	9.23	"	10.0	92.3	67-132		0.543	30	
tert-Butyl alcohol (TBA)	39.0	"	50.0	78.0	25-162		1.45	30	
tert-Butylbenzene	8.52	"	10.0	85.2	77-138		2.98	30	
Tetrachloroethylene	8.91	"	10.0	89.1	82-131		3.96	30	
Toluene	8.96	"	10.0	89.6	80-127		8.34	30	
trans-1,2-Dichloroethylene	9.16	"	10.0	91.6	80-132		1.87	30	
trans-1,3-Dichloropropylene	8.89	"	10.0	88.9	78-131		15.4	30	
Trichloroethylene	9.20	"	10.0	92.0	82-128		12.6	30	
Trichlorofluoromethane	8.28	"	10.0	82.8	67-139		32.7	30	Non-di
Vinyl Chloride	8.62	"	10.0	86.2	58-145		25.9	30	
Surrogate: SURR: 1,2-Dichloroethane-d4	9.94	"	10.0	99.4	69-130				
Surrogate: SURR: Toluene-d8	9.88	"	10.0	98.8	81-117				
Surrogate: SURR: p-Bromofluorobenzene	10.5	"	10.0	105	79-122				

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

www.YORKLAB.com (203) 325-1371

ClientServices@ Page 52 of 61

York Analytical Laboratories, Inc. - Stratford

		Report	ing		Spike	Source*		%REC			RPD	
4	Analyte Re:	sult Li	mit U	Inits	Level		%REC		Flag	RPD	Limit	Flag

Blank (BK20005-BLK1)						Prepared & Analyzed: 11/01/2022
1,1-Biphenyl	ND	5.00	ug/L			
1,2,4,5-Tetrachlorobenzene	ND	5.00	"			
2,3,4,6-Tetrachlorophenol	ND	5.00	"			
2,4,5-Trichlorophenol	ND	5.00	"			
2,4,6-Trichlorophenol	ND	5.00	"			
2,4-Dichlorophenol	ND	5.00	"			
2,4-Dimethylphenol	ND	5.00	"			
2,4-Dinitrophenol	ND	5.00	"			
2,4-Dinitrotoluene	ND	5.00	"			
2,6-Dinitrotoluene	ND	5.00	"			
2-Chloronaphthalene	ND	5.00	"			
2-Chlorophenol	ND	5.00	"			
!-Methylnaphthalene	ND	5.00	"			
2-Methylphenol	ND	5.00	"			
2-Nitroaniline	ND	5.00	"			
2-Nitrophenol	ND	5.00	"			
3- & 4-Methylphenols	ND	5.00	"			
3,3-Dichlorobenzidine	ND	5.00	"			
3-Nitroaniline	ND	5.00	,,			
4,6-Dinitro-2-methylphenol	ND	5.00	"			
I-Bromophenyl phenyl ether	ND	5.00	"			
-Chloro-3-methylphenol	ND	5.00	"			
-Chloroaniline	ND ND	5.00	,,			
l-Chlorophenyl phenyl ether	ND ND	5.00	"			
-Nitroaniline	ND ND	5.00	"			
Nitrophenol	ND ND		,,			
Acetophenone	ND ND	5.00	"			
Benzaldehyde		5.00	,,			
Benzaldenyde Benzyl butyl phthalate	ND	5.00	,,			
Bis(2-chloroethoxy)methane	ND	5.00	,,			
Bis(2-chloroethyl)ether	ND ND	5.00	,,			
Bis(2-chloroisopropyl)ether		5.00	,,			
	ND	5.00	"			
Caprolactam	ND	5.00	,,			
Carbazole	ND	5.00				
Dibenzofuran	ND	5.00	"			
Diethyl phthalate	ND	5.00	,,			
Dimethyl phthalate	ND	5.00				
Di-n-butyl phthalate	ND	5.00	"			
Di-n-octyl phthalate	ND	5.00	"			
Hexachlorocyclopentadiene	ND	10.0				
sophorone	ND	5.00	"			
N-nitroso-di-n-propylamine	ND	5.00	"			
N-Nitrosodiphenylamine	ND	5.00	"			
Phenol	ND	5.00	"			
Propargite	ND	5.00	"			
yridine	ND	5.00	"			
urrogate: SURR: 2-Fluorophenol	15.1		"	50.0	30.2	19.7-63.1
Surrogate: SURR: Phenol-d5	7.39		"	50.0	14.8	10.1-41.7
Surrogate: SURR: Nitrobenzene-d5	10.6		"	25.0	42.5	50.2-113
Surrogate: SURR: 2-Fluorobiphenyl	13.9		"	25.0	55.7	39.9-105
Surrogate: SURR: 2,4,6-Tribromophenol	57.4		"	50.0	115	39.3-151

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 53 of 61

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BK20005-BLK1)						Prepared & Analyzed: 11/01/2022
Surrogate: SURR: Terphenyl-d14	19.4		ug/L	25.0	77.7	30.7-106
Blank (BK20005-BLK2)						Prepared & Analyzed: 11/01/2022
Acenaphthene	ND	0.0500	ug/L			
Acenaphthylene	ND	0.0500	"			
Anthracene	ND	0.0500	"			
Atrozino	ND	0.500	,,			

Anthracene	ND	0.0500	"
Atrazine	ND	0.500	"
Benzo(a)anthracene	ND	0.0500	"
Benzo(a)pyrene	ND	0.0500	"
Benzo(b)fluoranthene	ND	0.0500	"
Benzo(g,h,i)perylene	ND	0.0500	"
Benzo(k)fluoranthene	ND	0.0500	"
Bis(2-ethylhexyl)phthalate	0.690	0.500	"
Chrysene	ND	0.0500	"
Dibenzo(a,h)anthracene	ND	0.0500	"
Fluoranthene	ND	0.0500	"
Fluorene	ND	0.0500	"
Hexachlorobenzene	ND	0.0200	"
Hexachlorobutadiene	ND	0.500	"
Hexachloroethane	ND	0.500	"
Indeno(1,2,3-cd)pyrene	ND	0.0500	"
Naphthalene	ND	0.0500	"
Nitrobenzene	ND	0.250	"
N-Nitrosodimethylamine	ND	0.500	"
Pentachlorophenol	ND	0.250	"
Phenanthrene	ND	0.0500	"
Pyrene	ND	0.0500	"

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 FAX (203) 357-0166 ClientServices@ Page 54 of 61

www.YORKLAB.com (203) 325-1371

Batch BK20005 - EPA 3510C

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BK20005 - EPA 3510C											
LCS (BK20005-BS1)							Prep	ared & Analy	zed: 11/01/	2022	
1,1-Biphenyl	14.4	5.00	ug/L	25.0		57.4	33-95				
1,2,4,5-Tetrachlorobenzene	20.6	5.00	"	25.0		82.3	26-120				
2,3,4,6-Tetrachlorophenol	20.8	5.00	"	25.0		83.1	30-130				
2,4,5-Trichlorophenol	18.9	5.00	"	25.0		75.4	32-114				
2,4,6-Trichlorophenol	18.4	5.00	"	25.0		73.6	35-118				
2,4-Dichlorophenol	17.8	5.00	"	25.0		71.4	25-116				
2,4-Dimethylphenol	14.2	5.00	"	25.0		56.6	15-116				
2,4-Dinitrophenol	ND	5.00	"	25.0			10-170	Low Bias			
2,4-Dinitrotoluene	11.1	5.00	"	25.0		44.3	41-128				
2,6-Dinitrotoluene	12.1	5.00	"	25.0		48.4	45-116				
2-Chloronaphthalene	14.7	5.00	"	25.0		59.0	33-112				
2-Chlorophenol	13.0	5.00	"	25.0		51.9	15-120				
2-Methylnaphthalene	15.2	5.00	"	25.0		60.7	24-118				
2-Methylphenol	10.6	5.00	"	25.0		42.4	10-110				
2-Nitroaniline	17.7	5.00	"	25.0		70.7	34-129				
2-Nitrophenol	5.80	5.00	"	25.0		23.2	28-118	Low Bias			
3- & 4-Methylphenols	8.71	5.00	"	25.0		34.8	10-107				
3,3-Dichlorobenzidine	15.5	5.00	"	25.0		62.0	15-187				
3-Nitroaniline	19.1	5.00	"	25.0		76.2	24-134				
4,6-Dinitro-2-methylphenol	ND	5.00	"	25.0			10-153	Low Bias			
4-Bromophenyl phenyl ether	18.0	5.00	"	25.0		71.8	34-120				
4-Chloro-3-methylphenol	16.5	5.00	"	25.0		66.1	20-120				
4-Chloroaniline	13.0	5.00	"	25.0		52.0	10-147				
4-Chlorophenyl phenyl ether	16.7	5.00	"	25.0		66.9	27-121				
4-Nitroaniline	21.8	5.00	"	25.0		87.4	13-134				
4-Nitrophenol	5.97	5.00	"	25.0		23.9	10-131				
Acetophenone	13.6	5.00	"	25.0		54.4	25-110				
Benzaldehyde	12.8	5.00	"	25.0		51.4	29-117				
Benzyl butyl phthalate	15.6	5.00	"	25.0		62.3	29-133				
Bis(2-chloroethoxy)methane	13.7	5.00	"	25.0		54.8	10-154				
Bis(2-chloroethyl)ether	13.4	5.00	"	25.0		53.7	17-125				
Bis(2-chloroisopropyl)ether	11.6	5.00	"	25.0		46.4	10-139				
Caprolactam	2.56	5.00	"	25.0		10.2	10-137				
Carbazole	17.3	5.00	"	25.0		69.2	42-126				
Dibenzofuran	15.8	5.00	"	25.0		63.3	36-113				
Diethyl phthalate	15.6	5.00	"	25.0		62.4	38-115				
Dimethyl phthalate	15.7	5.00	"	25.0		62.9	38-129				
Di-n-butyl phthalate	16.0	5.00	"	25.0		64.0	31-120				
Di-n-octyl phthalate	16.5	5.00	"	25.0		66.1	21-149				
Hexachlorocyclopentadiene	ND	10.0	"	25.0			10-130	Low Bias			
Isophorone	14.0	5.00	"	25.0		56.0	25-127				
N-nitroso-di-n-propylamine	13.3	5.00	"	25.0		53.1	26-122				
N-Nitrosodiphenylamine	17.0	5.00	"	25.0		68.1	23-149				
Phenol	5.45	5.00	"	25.0		21.8	10-110				
Pyridine	6.43	5.00	"	25.5		25.2	10-90				
Surrogate: SURR: 2-Fluorophenol	14.6		"	50.0		29.2	19.7-63.1				
Surrogate: SURR: Phenol-d5	7.90		"	50.0		15.8	10.1-41.7				
Surrogate: SURR: Nitrobenzene-d5	12.5		"	25.0		50.2	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	14.1		"	25.0		56.5	39.9-105				
Surrogate: SURR: 2,4,6-Tribromophenol	57.4		"	50.0		115	39.3-151				
Surrogate: SURR: Terphenyl-d14	18.2		"	25.0		72.7	30.7-106				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 55 of 61

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

%REC

Reporting

		Reporting		Spike	Source*		%REC			KI D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Fla
Batch BK20005 - EPA 3510C											
LCS (BK20005-BS2)							Prep	pared & Analyz	red: 11/01/	2022	
Acenaphthene	0.540	0.0500	ug/L	1.00		54.0	25-116				
Acenaphthylene	0.550	0.0500	"	1.00		55.0	26-116				
Anthracene	0.680	0.0500	"	1.00		68.0	25-123				
Benzo(a)anthracene	0.750	0.0500	"	1.00		75.0	33-125				
Benzo(a)pyrene	0.710	0.0500	"	1.00		71.0	32-132				
Benzo(b)fluoranthene	0.740	0.0500	"	1.00		74.0	22-137				
Benzo(g,h,i)perylene	0.800	0.0500	"	1.00		80.0	10-138				
Benzo(k)fluoranthene	0.750	0.0500	"	1.00		75.0	20-137				
Bis(2-ethylhexyl)phthalate	1.40	0.500	"	1.00		140	10-189				
Chrysene	0.650	0.0500	"	1.00		65.0	32-124				
Dibenzo(a,h)anthracene	0.860	0.0500	"	1.00		86.0	16-133				
luoranthene	0.840	0.0500	"	1.00		84.0	32-121				
luorene	0.670	0.0500	"	1.00		67.0	28-118				
Hexachlorobenzene	0.640	0.0200	"	1.00		64.0	23-124				
· Hexachlorobutadiene	0.610	0.500	"	1.00		61.0	15-123				
Hexachloroethane	2.27	0.500	"	1.00		227	18-115	High Bias			
ndeno(1,2,3-cd)pyrene	0.820	0.0500	"	1.00		82.0	15-135	8			
Vaphthalene	0.560	0.0500	"	1.00		56.0	18-120				
Vitrobenzene	0.770	0.250	"	1.00		77.0	21-121				
J-Nitrosodimethylamine	0.770 ND	0.500	"	1.00		77.0	10-124	Low Bias			
Pentachlorophenol	0.380	0.250	"	1.00		38.0	10-124	Low Dias			
Phenanthrene	0.620		"	1.00		62.0	24-127				
		0.0500	,,								
Pyrene	0.640	0.0500		1.00		64.0	31-132				
LCS Dup (BK20005-BSD1)							Prep	pared & Analyz	red: 11/01/	2022	
,1-Biphenyl	15.4	5.00	ug/L	25.0		61.5	33-95		6.86	20	
,2,4,5-Tetrachlorobenzene	21.1	5.00	"	25.0		84.4	26-120		2.54	20	
,3,4,6-Tetrachlorophenol	22.7	5.00	"	25.0		90.8	30-130		8.79	20	
,4,5-Trichlorophenol	20.4	5.00	"	25.0		81.6	32-114		7.80	20	
,4,6-Trichlorophenol	19.2	5.00	"	25.0		76.8	35-118		4.31	20	
,4-Dichlorophenol	19.0	5.00	"	25.0		76.0	25-116		6.35	20	
2,4-Dimethylphenol	14.4	5.00	"	25.0		57.4	15-116		1.40	20	
2,4-Dinitrophenol	ND	5.00	"	25.0			10-170	Low Bias		20	
2,4-Dinitrotoluene	11.6	5.00	"	25.0		46.3	41-128		4.42	20	
,6-Dinitrotoluene	12.4	5.00	"	25.0		49.5	45-116		2.21	20	
-Chloronaphthalene	15.3	5.00	"	25.0		61.0	33-112		3.47	20	
2-Chlorophenol	14.2	5.00	"	25.0		56.8	15-120		9.05	20	
-Methylnaphthalene	15.8	5.00	"	25.0		63.0	24-118		3.82	20	
-Methylphenol	11.5	5.00	"	25.0		45.8	10-110		7.70	20	
-Nitroaniline	18.2	5.00	"	25.0		72.8	34-129		2.95	20	
-Nitrophenol	5.72	5.00	,,	25.0		22.9	28-118	Low Bias	1.39	20	
- & 4-Methylphenols	9.26	5.00	"	25.0		37.0	10-107		6.12	20	
,3-Dichlorobenzidine	16.7	5.00	"	25.0		66.8	15-187		7.45	20	
-Nitroaniline	19.7	5.00	"	25.0		78.6	24-134		3.10	20	
,6-Dinitro-2-methylphenol	ND	5.00	"	25.0		76.0	10-153	Low Bias	3.10	20	
-Bromophenyl phenyl ether	18.3	5.00	"	25.0		73.2	34-120	Lo Dias	1.93	20	
-Chloro-3-methylphenol	17.8	5.00	"	25.0		71.0	20-120		7.17	20	
-Chloroaniline			,,						2.88	20	
-Chlorophenyl phenyl ether	13.4	5.00	,,	25.0		53.5	10-147		3.41	20	
Chiorophenyi phenyi ether Nitroaniline	17.3	5.00	,,	25.0		69.2	27-121				
I-Nitroaniline I-Nitrophenol	22.3 5.83	5.00 5.00	"	25.0 25.0		89.2 23.3	13-134 10-131		2.13 2.37	20 20	
	3.63	3.00		25.0		23.3	10-131		2.51	20	
400 DECEADOU DEN /5	CTDATEODD OT	00015	_	40	0 00 00th W	/ENILIE		DICLIMOND !	III I NINZ	11110	
120 RESEARCH DRIVE	STRATFORD, CT	00015		13	2-02 89th A\	ZINUE		RICHMOND I	TILL, INY	11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

Page 56 of 61 ClientServices@

RPD

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BK20005 - EPA 3510C											
LCS Dup (BK20005-BSD1)							Prep	ared & Analy	zed: 11/01/	2022	
Acetophenone	14.4	5.00	ug/L	25.0		57.6	25-110		5.64	20	
Benzaldehyde	13.8	5.00	"	25.0		55.3	29-117		7.35	20	
Benzyl butyl phthalate	15.9	5.00	"	25.0		63.7	29-133		2.29	20	
Bis(2-chloroethoxy)methane	14.6	5.00	"	25.0		58.4	10-154		6.36	20	
Bis(2-chloroethyl)ether	25.3	5.00	"	25.0		101	17-125		61.4	20	Non-dir.
Bis(2-chloroisopropyl)ether	11.7	5.00	"	25.0		47.0	10-139		1.29	20	
Caprolactam	2.69	5.00	"	25.0		10.8	10-137		4.95	20	
Carbazole	17.8	5.00	"	25.0		71.2	42-126		2.85	20	
Dibenzofuran	16.5	5.00	"	25.0		65.9	36-113		3.96	20	
Diethyl phthalate	16.2	5.00	"	25.0		64.7	38-115		3.52	20	
Dimethyl phthalate	16.3	5.00	"	25.0		65.1	38-129		3.38	20	
Di-n-butyl phthalate	16.5	5.00	"	25.0		66.0	31-120		3.02	20	
Di-n-octyl phthalate	16.6	5.00	"	25.0		66.3	21-149		0.363	20	
Hexachlorocyclopentadiene	ND	10.0	"	25.0			10-130	Low Bias		20	
Isophorone	14.4	5.00	"	25.0		57.7	25-127		2.95	20	
N-nitroso-di-n-propylamine	13.5	5.00	"	25.0		54.1	26-122		1.79	20	
N-Nitrosodiphenylamine	17.6	5.00	"	25.0		70.4	23-149		3.35	20	
Phenol	5.81	5.00	"	25.0		23.2	10-110		6.39	20	
Pyridine	6.30	5.00	"	25.5		24.7	10-90		2.04	20	
Surrogate: SURR: 2-Fluorophenol	15.3		"	50.0		30.6	19.7-63.1				
Surrogate: SURR: Phenol-d5	8.32		"	50.0		16.6	10.1-41.7				
C CLIDD. With. L 15	12.7		"	25.0		50.0	50 2 112				

Surrogate: SURR: Nitrobenzene-d5 12.7 25.0 50.8 50.2-113 Surrogate: SURR: 2-Fluorobiphenyl 14.3 25.0 57.2 39.9-105 Surrogate: SURR: 2,4,6-Tribromophenol 60.2 50.0 120 39.3-151 Surrogate: SURR: Terphenyl-d14 18.2 25.0 72.6 30.7-106

STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

120 RESEARCH DRIVE

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
22J1423-01	MW-4AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
22J1423-02	MW-5AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
22J1423-03	MW-3AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
22J1423-04	MW-1AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
22J1423-05	DUP	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
22J1423-06	TB	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

	The same of the sa
S-08	The recovery of this surrogate was outside of QC limits.
QR-04	The RPD exceeded control limits for the LCS/LCSD QC.
QR-02	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
ICVE	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration verification (recovery exceeded 30% of expected value).
CCVE	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 59 of 61

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418** www.YORKLAB.com FAX (203) 357-0166 ClientServices@ Page 60 of 61

(203) 325-1371

YORK Project No.

	3	,	of	nd Time	Day	Jay	• Day	Day	Day)	-AS)	1. Comp.	ne following	00000			\perp	ype No.	A							struction	red	Iter	543		Temperature
_	5241172Z		Page /	Turn-Around Time	RUSH - Next Day	RUSH - Two Day	RUSH - Three Day	RUSH - Four Day	Standard (5-7 Day)	(7-10 for PFAS)	YORK Reg. Comp.	Compared to the following	(0)			T. souloturo	Container Type	50 6	-			>	20		Special Instruction	Field Filtered	Lab to Filter	16 97-82	Date/Time	Date/Time
		with the analyses requested below.	www.yorklab.com 800-306-YORK	YOUR Project Number	03C497-M		YOUR Project Name			YOUR PO#:	EDD Type (circle selections)	CT RCP EQuIS (Standard)	CT RCP DQA/DUE NYSDEC EQUIS	NJDEP Reduced NJDKQP	ge Deliverables AUDEP SRP HazSite		Analyses Requested	VOCS 8260, SUCCS 8270				>	Cs 8260		Preservation: (check all that apply)	HNO3 H2SO4 NaOH	Ascorbic Acid Other:	2. Samples Relinquished by / Company	3. Samples Received by / Company	Samples Received in LAB by
-ield Chain-ot-Custody Record	York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document.	is as your written authorization for YORK to proceed with the analysis of your signature binds you to YORK's Standard Terms & Conditions.	clientservices@yorklab.com	Invoice To:	Company. Same	Address:		Phone.:	Contact:	E-mail:	Samples From Report	New York X Summary Report	New Jersey QA Report	Connecticut Standard Excel EDD	ylvania NY ASP-B Packa	Other: N	mpled	1125 10/25/22 100	1215 /	1250	1420	>	700		. Areserv	HCI / MeOH	ickup? circle Yes or No ZnAc	Frage 10/25/22 Siw	Company Date/Time Date/Time 1/56	Received by Company Color 10-21-22 (4.00
Field C	Analytical Laboratories,	nis document serves as Your	Church Hill Rd. #2 Newtown	Report To:	a)						Matrix Codes	S - soil / solid	GW - groundwater	DW - drinking water	Š	0 - Oil Other	Sample Matrix	S			>	>			full		Samples iced/chilled at time o	1. Samples Received by / Company	3. Samples Relinquished by / Company	4. Samples Received by / Cor
7	Y.Y		h Ave Queens, NY 11418 - 56	Repo	Company. Seve	Address:		Phone.:	Contact:	E-mail:	on must be complete.	round-time clock will not lved.				sign your name)	ion								7	alyzee III		Date/Time 10/25/22 -	Date/Time	127/22 1:58
1	A VOR	ANALTICAL LABORATORIES INC	120 Research Drive Stratford, CT 06615 - 132-02 89th Ave Queens, NY 11418 - 56 Church Hill Rd. #2 Newtown, CT 06470	YOUR Information	Company. BL Company &	Res	CT 0645		Contact R C.	3	Please print clearly and legibly. All information must be complete.	Samples will not be logged in and the turn-around-time clock will not beain until any questions by YORK are resolved.				Samples Collected by: (print AND sign your name)	Sample Identification	MW-CAR	MW-54R	MW-3AR	MW-141	DUP	TB		Comments:	5	"	Samples Relinguished by ! Whydry Burner Burn	a Samples Received by Company 19 3 A A A A A	samples Relinquished by / Company Of

Technical Report

prepared for:

BL Companies 355 Research Parkway Meriden CT, 06450 Attention: Brian Lowry

Report Date: 05/30/2023

Client Project ID: 03C497-M

York Project (SDG) No.: 23E1235

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 05/30/2023 Client Project ID: 03C497-M York Project (SDG) No.: 23E1235

BL Companies

355 Research Parkway Meriden CT, 06450

Attention: Brian Lowry

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on May 19, 2023 and listed below. The project was identified as your project: **03C497-M**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received	
23E1235-01	MW-5AR	Ground Water	05/18/2023	05/19/2023	
23E1235-02	MW-3AR	Ground Water	05/18/2023	05/19/2023	
23E1235-03	MW-4AR	Ground Water	05/18/2023	05/19/2023	
23E1235-04	MW-1AR	Ground Water	05/18/2023	05/19/2023	
23E1235-05	DUP	Ground Water	05/18/2023	05/19/2023	
23E1235-06	Trip Blank	Ground Water	05/18/2023	05/19/2023	

General Notes for York Project (SDG) No.: 23E1235

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

Och I most

- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Cassie L. Mosher Laboratory Manager **Date:** 05/30/2023

Client Sample ID: MW-5AR 23E1235-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23E123503C497-MGround WaterMay 18, 2023 7:40 am05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log in Notes	Comple Notes
Log-in Notes:	Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.216	0.500	1	EPA 8260C Certifications:	СТDОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.266	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.256	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.286	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
75-34-3	1,1-Dichloroethane	ND		ug/L	0.272	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.222	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 710854,NELAC-NY1	05/25/2023 13:15 2058,NJDEP,PADEP	SMA
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.273	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 710854,NELAC-NY1	05/25/2023 13:15 2058,NJDEP,PADEP	SMA
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.138	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 710854,NELAC-NY1	05/25/2023 13:15 2058,NJDEP,PADEP	SMA
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.310	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.432	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
106-93-4	1,2-Dibromoethane	ND		ug/L	0.215	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.270	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
107-06-2	1,2-Dichloroethane	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
78-87-5	1,2-Dichloropropane	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.347	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.283	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
142-28-9	1,3-Dichloropropane	ND		ug/L	0.260	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 710854,NELAC-NY1	05/25/2023 13:15 2058,NJDEP,PADEP	SMA
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.311	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA
123-91-1	1,4-Dioxane	ND		ug/L	35.3	80.0	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY1	05/25/2023 13:15 2058,NJDEP,PADEP	SMA
78-93-3	2-Butanone	ND		ug/L	0.421	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 8,NJDEP,PA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 57

Client Sample ID: MW-5AR

York Sample ID:

23E1235-01

York Project (SDG) No. 23E1235 Client Project ID 03C497-M <u>Matrix</u> Ground Water Collection Date/Time
May 18, 2023 7:40 am

Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		e/Time epared	Date/Time Analyzed	Analyst
591-78-6	2-Hexanone	ND		ug/L	0.320	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.365	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
67-64-1	Acetone	ND		ug/L	1.34	2.00	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
107-02-8	Acrolein	ND		ug/L	0.447	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
107-13-1	Acrylonitrile	ND		ug/L	0.422	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NR	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
71-43-2	Benzene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
74-97-5	Bromochloromethane	ND		ug/L	0.354	0.500	1	EPA 8260C Certifications:	05/25/2 NELAC-NY10854,N	:023 09:00 ELAC-NY1	05/25/2023 13:15 2058,NJDEP,PADEP	SMA
75-27-4	Bromodichloromethane	ND		ug/L	0.245	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
75-25-2	Bromoform	ND		ug/L	0.163	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
74-83-9	Bromomethane	ND		ug/L	0.119	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
75-15-0	Carbon disulfide	ND		ug/L	0.362	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
56-23-5	Carbon tetrachloride	ND		ug/L	0.204	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
108-90-7	Chlorobenzene	ND		ug/L	0.284	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
75-00-3	Chloroethane	ND		ug/L	0.448	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
67-66-3	Chloroform	ND		ug/L	0.243	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
74-87-3	Chloromethane	ND		ug/L	0.372	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NR	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.294	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.262	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NR	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
110-82-7	Cyclohexane	ND		ug/L	0.491	0.500	1	EPA 8260C Certifications:	05/25/2 NELAC-NY10854,N	:023 09:00 ELAC-NY1	05/25/2023 13:15 2058,NJDEP,PADEP	SMA
124-48-1	Dibromochloromethane	ND		ug/L	0.146	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00 ELAC-NY10	05/25/2023 13:15 0854,NELAC-NY120	SMA 58,NJDEP,PA
74-95-3	Dibromomethane	ND		ug/L	0.203	0.500	1	EPA 8260C Certifications:	05/25/2 NELAC-NY10854,N	:023 09:00 ELAC-NY1	05/25/2023 13:15 2058,NJDEP,PADEP	SMA
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.451	0.500	1	EPA 8260C Certifications:	05/25/2 NELAC-NY10854,N	:023 09:00 ELAC-NY1	05/25/2023 13:15 2058,NJDEP,PADEP	SMA
100-41-4	Ethyl Benzene	ND		ug/L	0.290	0.500	1	EPA 8260C Certifications:	05/25/2 CTDOH-PH-0723,NI	:023 09:00	05/25/2023 13:15	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 5 of 57

Client Sample ID: MW-5AR

York Sample ID:

23E1235-01

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time May 18, 2023 7:40 am Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/Time Method Prepared Analyzed Anal	ılyst
87-68-3	Hexachlorobutadiene	ND		ug/L	0.241	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP	MA
98-82-8	Isopropylbenzene	ND		ug/L	0.405	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDE	MA EP,PAl
79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP	MA
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.244	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDE	MA EP,PAl
108-87-2	Methylcyclohexane	ND		ug/L	0.477	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SN NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP	МA
75-09-2	Methylene chloride	ND		ug/L	0.397	2.00	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDE	MA EP,PAl
91-20-3	Naphthalene	ND		ug/L	0.212	2.00	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SN NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP	MA
104-51-8	n-Butylbenzene	ND		ug/L	0.399	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDE	MA EP,PAl
103-65-1	n-Propylbenzene	ND		ug/L	0.384	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDE	MA EP,PAl
95-47-6	o-Xylene	ND		ug/L	0.261	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,PADE	MA EP
179601-23-1	p- & m- Xylenes	ND		ug/L	0.578	1.00	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,PADE	
105-05-5	* p-Diethylbenzene	ND		ug/L	0.341	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM	MA
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM	MA
99-87-6	p-Isopropyltoluene	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDE	MA EP,PAl
135-98-8	sec-Butylbenzene	ND		ug/L	0.444	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDE	MA EP,PAl
100-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDE	MA EP,PAl
75-65-0	tert-Butyl alcohol (TBA)	1.00		ug/L	0.608	1.00	1	EPA 8260C	05/25/2023 09:00 05/25/2023 13:15 SM	MA
								Certifications:	NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP	
98-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDE	MA EP,PAl
127-18-4	Tetrachloroethylene	ND		ug/L	0.239	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDE	MA EP,PAl
108-88-3	Toluene	ND		ug/L	0.346	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDE	MA EP,PAl
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDE	MA EP,PAl
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:15 SM CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDE	
79-01-6	Trichloroethylene	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:		МA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 6 of 57

Client Sample ID: MW-5AR **York Sample ID:**

23E1235-01

York Project (SDG) No. 23E1235

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time May 18, 2023 7:40 am Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

	<u>Log-in</u>	Not	tes:
--	---------------	-----	------

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-69-4	Trichlorofluoromethane	ND		ug/L	0.337	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:15 854,NELAC-NY1205	SMA 58,NJDEP,PAI
75-01-4	Vinyl Chloride	ND		ug/L	0.469	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:15 0854,NELAC-NY1205	SMA 58,NJDEP,PAI
1330-20-7	Xylenes, Total	ND		ug/L	0.836	1.50	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:15 9854,NELAC-NY1205	SMA 58,NJDEP
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	103 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	98.4 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	96.1 %			79-122							

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	05/23/2023 09:23 Y10854,NJDEP,PADEP	05/24/2023 20:43	KH
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADEP	05/24/2023 20:43	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADEP	05/24/2023 20:43	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 20:43 354,NJDEP,PADEP	КН
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 20:43 354,NJDEP,PADEP	КН
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 20:43 354,NJDEP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 20:43 554,NJDEP,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 20:43 554,NJDEP,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 20:43 554,NJDEP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 20:43 54,NJDEP,PADEP	KH
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 20:43 554,NJDEP,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 20:43 354,NJDEP,PADEP	KH
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 20:43 354,NJDEP,PADEP	КН
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 20:43 354,NJDEP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 7 of 57

Client Sample ID: MW-5AR **York Sample ID:**

23E1235-01

York Project (SDG) No. 23E1235

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time May 18, 2023 7:40 am Date Received 05/19/2023

SVOA 9270 LOW MASTED

	270 LOW MASTER red by Method: EPA 3510C				Log-in	Notes:		Sam	ple Note	<u>es:</u>		
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РІ	05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43 0854.NJDEP.PADEP	KH
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43	КН
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43 0854,NJDEP,PADEP	KH
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43	KH
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43	КН
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43	КН
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43 0854,NJDEP,PADEP	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43 0854,NJDEP,PADEP	КН
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43	КН
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43	КН
100-02-7	4-Nitrophenol	ND		ug/L	5.00	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43	КН
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADE	05/24/2023 20:43 EP	KH
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADE	05/24/2023 20:43 EP	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43 0854,NJDEP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.00	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43 0854,NJDEP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43 0854,NJDEP,PADEP	KH
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADE	05/24/2023 20:43 EP	KH
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43 0854,NJDEP,PADEP	KH
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43	KH
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 H-0723,NELAC-NY1	05/24/2023 20:43	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 8 of 57

FAX (203) 357-0166

MW-5AR **Client Sample ID:**

York Sample ID:

23E1235-01

York Project (SDG) No. 23E1235

Client Project ID 03C497-M

Matrix Ground Water

EPA 8270D

Certifications:

Collection Date/Time May 18, 2023 7:40 am

05/23/2023 09:23

05/24/2023 20:43

05/24/2023 20:43

Sample Notes:

Date Received 05/19/2023

Analyst

KH

KH

KΗ

KH

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

CAS No

84-74-2

117-84-0

2312-35-8

0.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	
Di-n-butyl pł	hthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications: CTI	05/23/2023 09:23 DOH-PH-0723,NELAC-NY10	05/24/2023 20:43 0854,NJDEP,PADEP	
Di-n-octyl ph	nthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications: CTI	05/23/2023 09:23 DOH-PH-0723,NELAC-NY10	05/24/2023 20:43 0854,NJDEP,PADEP	
Uavaahlaraa	volonontadiono	ND		ng/I	5.00	10.0	1	EDA 9270D	05/23/2023 00:23	05/24/2023 20:43	

Log-in Notes:

77-47-4 KH Hexachlorocyclopentadiene ND CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP Certifications: 5.00 EPA 8270D 78-59-1 Isophorone ND 2.50 KH ug/L Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP 05/23/2023 09:23 05/24/2023 20:43 621-64-7 N-nitroso-di-n-propylamine ND ug/L 2.50 5.00 EPA 8270D KH Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP 05/23/2023 09:23 05/24/2023 20:43 86-30-6 N-Nitrosodiphenylamine ND ug/L 2.50 5.00 EPA 8270D KΗ CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP Certifications: 108-95-2 2.50 5.00 EPA 8270D 05/23/2023 09:23 05/24/2023 20:43 Phenol ND ug/L KΗ CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP Certifications:

110-86-1 2.50 5.00 EPA 8270D 05/23/2023 09:23 Pyridine ND ug/L Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP **Surrogate Recoveries** Result Acceptance Range 367-12-4 Surrogate: SURR: 2-Fluorophenol 40.5 % 19.7-63.1 13127-88-3 Surrogate: SURR: Phenol-d6 10.1-41.7 23.4 % 4165-60-0 75.0 % 50.2-113 Surrogate: SURR: Nitrobenzene-d5

ug/L

321-60-8 39.9-105 Surrogate: SURR: 2-Fluorobiphenyl 68.3 % 118-79-6 Surrogate: SURR: 94.1 % 39.3-151 2,4,6-Tribromophenol 1718-51-0 Surrogate: SURR: Terphenyl-d14 89.6 % 30.7-106

ND

SVOA, 8270 SIM MASTER

* Propargite

Sample Prepared by Method: FPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	0.340		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-P	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 02:02 0854,NJDEP,PADEP	КН
208-96-8	Acenaphthylene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PF	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	KH
120-12-7	Anthracene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PF	05/23/2023 09:23 I-0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	KH
1912-24-9	Atrazine	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH-PF	05/23/2023 09:23 I-0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP	KH
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PF	05/23/2023 09:23 I-0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PF	05/23/2023 09:23 I-0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PF	05/23/2023 09:23 I-0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 9 of 57

Client Sample ID: MW-5AR

York Sample ID:

23E1235-01

York Project (SDG) No. 23E1235

Client Project ID 03C497-M Matrix Ground Water Collection Date/Time May 18, 2023 7:40 am Date Received 05/19/2023

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes	:
--------------	---

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	КН
117-81-7	Bis(2-ethylhexyl)phthalate	0.860	В	ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH-PH	05/23/2023 09:23 I-0723,NELAC-NY10	05/30/2023 14:50 0854,NJDEP	КН
218-01-9	Chrysene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	КН
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	KH
206-44-0	Fluoranthene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	KH
86-73-7	Fluorene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	KH
118-74-1	Hexachlorobenzene	ND		ug/L	0.0200	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP	KH
67-72-1	Hexachloroethane	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	KH
98-95-3	Nitrobenzene	ND		ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP	KH
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP	KH
87-86-5	Pentachlorophenol	ND		ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP	KH
85-01-8	Phenanthrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	КН
129-00-0	Pyrene	ND		ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH-	05/23/2023 09:23 -0723,NELAC-NY10	05/25/2023 02:02 854,NJDEP,PADEP	KH

Sample Information

Client Sample ID: MW-3AR 23E1235-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23E123503C497-MGround WaterMay 18, 2023 8:45 am05/19/2023

VOA, 8260 LOW MASTER

Log-in Notes:

Sample Notes:

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 10 of 57

Client Sample ID: MW-3AR

<u>York Sample ID:</u> 23E1235-02

York Project (SDG) No. 23E1235 Client Project ID 03C497-M <u>Matrix</u> Ground Water Collection Date/Time May 18, 2023 8:45 am Date Received 05/19/2023

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.216	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43 0854,NELAC-NY120	SMA 58,NJDEP,PA
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.266	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43 0854,NELAC-NY120	SMA 58,NJDEP,PA
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.256	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43 0854,NELAC-NY120	SMA 58,NJDEP,PA
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.286	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43 0854,NELAC-NY120	SMA 58,NJDEP,PA
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43 0854,NELAC-NY120	SMA 58,NJDEP,PA
75-34-3	1,1-Dichloroethane	ND		ug/L	0.272	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43 0854,NELAC-NY120	SMA 58,NJDEP,PA
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43 0854,NELAC-NY1205	SMA 58,NJDEP,PA
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.222	0.500	1	EPA 8260C Certifications:	NELAC-N	05/25/2023 09:00 Y10854,NELAC-NY1	05/25/2023 13:43 2058,NJDEP,PADEP	SMA
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.273	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 Y10854,NELAC-NY1	05/25/2023 13:43	SMA
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.138	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 Y10854,NELAC-NY1	05/25/2023 13:43	SMA
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.310	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43 0854,NELAC-NY120	SMA 58,NJDEP,PA
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.432	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43 0854.NELAC-NY120:	SMA 58.NJDEP.PA
106-93-4	1,2-Dibromoethane	ND		ug/L	0.215	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43	SMA
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.270	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43	SMA
107-06-2	1,2-Dichloroethane	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43	SMA
78-87-5	1,2-Dichloropropane	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43	SMA
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.347	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43	SMA
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.283	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43	SMA
142-28-9	1,3-Dichloropropane	ND		ug/L	0.260	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 Y10854,NELAC-NY1:	05/25/2023 13:43	SMA
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.311	0.500	1	EPA 8260C		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43	SMA
123-91-1	1,4-Dioxane	ND		ug/L	35.3	80.0	1	Certifications: EPA 8260C		05/25/2023 09:00 Y10854,NELAC-NY1:	05/25/2023 13:43	SMA
78-93-3	2-Butanone	ND		ug/L	0.421	0.500	1	Certifications: EPA 8260C		05/25/2023 09:00	05/25/2023 13:43	SMA
591-78-6	2-Hexanone	ND		ug/L	0.320	0.500	1	Certifications: EPA 8260C		H-0723,NELAC-NY10 05/25/2023 09:00	05/25/2023 13:43	SMA
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.365	0.500	1	Certifications: EPA 8260C	CIDOH-PI	H-0723,NELAC-NY10 05/25/2023 09:00	05/25/2023 13:43	58,NJDEP,PA SMA

Log-in Notes:

LOO

Reported to

LOD/MDL

MW-3AR **Client Sample ID:**

York Sample ID:

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PAI

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PAI

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PAI

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PAI

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PAI

CTDOH-PH-0723, NELAC-NY10854, NELAC-NY12058, NJDEP, PAI

05/25/2023 09:00 05/25/2023 13:43

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PAI

05/25/2023 13:43

05/25/2023 13:43

05/25/2023 13:43

05/25/2023 13:43

05/25/2023 13:43

05/25/2023 13:43

05/25/2023 13:43

05/25/2023 13:43

05/25/2023 13:43

Page 12 of 57

SMA

05/25/2023 09:00

05/25/2023 09:00

05/25/2023 09:00

05/25/2023 09:00

05/25/2023 09:00

05/25/2023 09:00

05/25/2023 09:00

05/25/2023 09:00

05/25/2023 09:00

ClientServices@

NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

NELAC-NY10854.NELAC-NY12058.NJDEP.PADEP

NELAC-NY10854.NELAC-NY12058.NJDEP.PADEP

NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

Date/Time

Analyzed

23E1235-02

York Project (SDG) No. 23E1235

Client Project ID 03C497-M

Flag

Units

ug/L

0.372

0.294

0.262

0.491

0.146

0.203

0.451

0.290

0.241

0.405

0.500

0.500

0.500

0.500

0.500

0.500

0.500

0.500

0.500

0.500

Result

ND

Matrix Ground Water

Dilution

Collection Date/Time May 18, 2023 8:45 am

Date/Time

Prepared

Sample Notes:

Reference Method

Certifications:

EPA 8260C

Certifications: EPA 8260C

Certifications:

EPA 8260C

Certifications

EPA 8260C

Certifications:

EPA 8260C

Certifications:

EPA 8260C

Certifications

EPA 8260C

Certifications

EPA 8260C

Certifications:

EPA 8260C

Certifications

EPA 8260C

FAX (203) 357-0166

Date Received 05/19/2023

Analyst

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Parameter

CAS No.

74-87-3

156-59-2

10061-01-5

110-82-7

124-48-1

74-95-3

75-71-8

100-41-4

87-68-3

98-82-8

Chloromethane

Cyclohexane

cis-1,2-Dichloroethylene

cis-1,3-Dichloropropylene

Dibromochloromethane

Dichlorodifluoromethane

Hexachlorobutadiene

Isopropylbenzene

Dibromomethane

Ethyl Benzene

011011	or runumeter	resure ring	Circo	LOD/MIDL	LOQ	Dilution	11010101100	ricenou repureu	_
67-64-1	Acetone	ND	ug/L	1.34	2.00	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:43 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,P/	Al
107-02-8	Acrolein	ND	ug/L	0.447	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:43 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,P/	Al
107-13-1	Acrylonitrile	ND	ug/L	0.422	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:43 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,P/	Al
71-43-2	Benzene	ND	ug/L	0.279	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:43 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,P/	Al
74-97-5	Bromochloromethane	ND	ug/L	0.354	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:43 SMA NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP	
75-27-4	Bromodichloromethane	ND	ug/L	0.245	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:43 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,P/	Al
75-25-2	Bromoform	ND	ug/L	0.163	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:43 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PA	Al
74-83-9	Bromomethane	ND	ug/L	0.119	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:43 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PA	Al
75-15-0	Carbon disulfide	ND	ug/L	0.362	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:43 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PA	Al
56-23-5	Carbon tetrachloride	ND	ug/L	0.204	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:43 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,P/	Al
108-90-7	Chlorobenzene	ND	ug/L	0.284	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:43 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,P/	Al
75-00-3	Chloroethane	ND	ug/L	0.448	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/2023 13:43 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,P/	Al
67-66-3	Chloroform	ND	ug/L	0.243	0.500	1	EPA 8260C	05/25/2023 09:00	

www.YORKLAB.com (203) 325-1371

Client Sample ID: MW-3AR

York Sample ID: 23E1235-02

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time May 18, 2023 8:45 am Date Received 05/19/2023

VOA, 8260 LOW MASTER Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY1	05/25/2023 13:43 2058,NJDEP,PADEP	SMA
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.244	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:43 0854,NELAC-NY1205	SMA 8,NJDEP,PA
108-87-2	Methylcyclohexane	ND		ug/L	0.477	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY1:	05/25/2023 13:43 2058,NJDEP,PADEP	SMA
75-09-2	Methylene chloride	ND		ug/L	0.397	2.00	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:43 0854,NELAC-NY1205	SMA 8,NJDEP,PA
91-20-3	Naphthalene	ND		ug/L	0.212	2.00	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY1	05/25/2023 13:43 2058,NJDEP,PADEP	SMA
104-51-8	n-Butylbenzene	ND		ug/L	0.399	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43 0854,NELAC-NY1205	SMA 8,NJDEP,PA
103-65-1	n-Propylbenzene	ND		ug/L	0.384	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43 0854,NELAC-NY1205	SMA
95-47-6	o-Xylene	ND		ug/L	0.261	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43 0854,NELAC-NY1205	SMA
179601-23-1	p- & m- Xylenes	ND		ug/L	0.578	1.00	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43 0854,NELAC-NY1205	SMA
105-05-5	* p-Diethylbenzene	ND		ug/L	0.341	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43	SMA
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43	SMA
99-87-6	p-Isopropyltoluene	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:43 0854,NELAC-NY1205	SMA 8,NJDEP,PA
135-98-8	sec-Butylbenzene	ND		ug/L	0.444	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43 0854,NELAC-NY1205	SMA
100-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43 0854,NELAC-NY1205	SMA
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.608	1.00	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY1	05/25/2023 13:43 2058,NJDEP,PADEP	SMA
98-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:43 0854,NELAC-NY1205	SMA 8,NJDEP,PA
127-18-4	Tetrachloroethylene	ND		ug/L	0.239	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43 0854,NELAC-NY1205	SMA
108-88-3	Toluene	ND		ug/L	0.346	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 13:43 0854,NELAC-NY1205	SMA 8,NJDEP,PA
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43 0854,NELAC-NY1205	SMA
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43 0854,NELAC-NY1205	SMA
79-01-6	Trichloroethylene	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43 0854,NELAC-NY1205	SMA
75-69-4	Trichlorofluoromethane	ND		ug/L	0.337	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43 0854,NELAC-NY1205	SMA
75-01-4	Vinyl Chloride	ND		ug/L	0.469	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 13:43 0854,NELAC-NY1205	SMA
								Certifications.	CIDOII-PE	-0,23,NELAC-NTIC	105-4,14ELAC-14 I 1203	o,rader,ra

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 13 of 57

Client Sample ID: MW-3AR

York Sample ID: 2

23E1235-02

York Project (SDG) No. 23E1235

Client Project ID 03C497-M Matrix Ground Water Collection Date/Time May 18, 2023 8:45 am Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

	<u>Log-in</u>	Not	tes:
--	---------------	-----	------

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/L	0.836	1.50	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 13:43 854,NELAC-NY120	SMA 58,NJDEP
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	102 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	98.7 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	97.7 %			79-122							

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:
	Stringreinstest

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADEI	05/24/2023 21:12	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADEI	05/24/2023 21:12	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADEI	05/24/2023 21:12	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND	CAL-E	ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND	CAL-E	ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	КН
121-14-2	2,4-Dinitrotoluene	ND	CAL-E	ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	КН
91-58-7	2-Chloronaphthalene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	КН
95-57-8	2-Chlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	КН
91-57-6	2-Methylnaphthalene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
95-48-7	2-Methylphenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	КН
88-74-4	2-Nitroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
88-75-5	2-Nitrophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
								Certifications: EPA 8270D		H-0723,NELAC-NY10 05/23/2023 09:23	854,NJDEP,PADEP 05/24/2023 21:12	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 14 of 57

Client Sample ID: MW-3AR

York Sample ID:

23E1235-02

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time May 18, 2023 8:45 am

Sample Notes:

Date Received 05/19/2023

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
99-09-2	3-Nitroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	05/23/2023 09:23 I-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH

Log-in Notes:

101-55-3	4-Bromophenyl phenyl ether	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	КН
59-50-7	4-Chloro-3-methylphenol	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	KH
106-47-8	4-Chloroaniline	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	KH
100-01-6	4-Nitroaniline	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	KH
100-02-7	4-Nitrophenol	ND	ug/L	5.26	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	KH
98-86-2	Acetophenone	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 NELAC-NY10854,NJDEP,PADEP	KH
100-52-7	Benzaldehyde	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 NELAC-NY10854,NJDEP,PADEP	KH
85-68-7	Benzyl butyl phthalate	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND	ug/L	1.05	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	KH
105-60-2	Caprolactam	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23	KH
86-74-8	Carbazole	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	KH
132-64-9	Dibenzofuran	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	KH
84-66-2	Diethyl phthalate	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	KH
131-11-3	Dimethyl phthalate	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23 05/24/2023 21:12 CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	KH
84-74-2	Di-n-butyl phthalate	ND	ug/L	2.63	5.26	1	EPA 8270D Certifications:	05/23/2023 09:23	KH

120 RESEARCH DRIVE www.YORKLAB.com

Di-n-octyl phthalate

117-84-0

STRATFORD, CT 06615 (203) 325-1371 ug/L

2.63

ND

132-02 89th AVENUE FAX (203) 357-0166

5.26

EPA 8270D

RICHMOND HILL, NY 11418

CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

KH

ClientServices@ Page 15 of 57

Client Sample ID: MW-3AR **York Sample ID:**

23E1235-02

York Project (SDG) No. 23E1235

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time May 18, 2023 8:45 am Date Received 05/19/2023

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in	Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.26	10.5	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:		05/23/2023 09:23	05/24/2023 21:12	KH
110-86-1	Pyridine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:12 854,NJDEP,PADEP	KH
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	35.0 %			19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	20.7 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	62.1 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	58.3 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	81.2 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	78.2 %			30.7-106							

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ I	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 02:32 854,NJDEP,PADEP	КН
208-96-8	Acenaphthylene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 02:32 854,NJDEP,PADEP	KH
120-12-7	Anthracene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 02:32 854,NJDEP,PADEP	KH
1912-24-9	Atrazine	ND	ug/L	0.526	1	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 02:32 854,NJDEP	KH
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 02:32 854,NJDEP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 02:32 854,NJDEP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 02:32 854,NJDEP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 02:32 854,NJDEP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 02:32 854,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 16 of 57

Client Sample ID: MW-3AR

York Sample ID:

23E1235-02

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 8:45 am

Date Received 05/19/2023

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes	:
--------------	---

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported t LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/L	0.526	1		5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP	KH
218-01-9	Chrysene	ND		ug/L	0.0526	1		i/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0526	1		5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP,PADEP	KH
206-44-0	Fluoranthene	ND		ug/L	0.0526	1		5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP,PADEP	KH
86-73-7	Fluorene	ND		ug/L	0.0526	1		5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP,PADEP	KH
118-74-1	Hexachlorobenzene	ND		ug/L	0.0211	1		5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	0.526	1	EIII 02 / 0B BIIII	5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP	KH
67-72-1	Hexachloroethane	ND		ug/L	0.526	1		5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0526	1		5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.0526	1		5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP,PADEP	KH
98-95-3	Nitrobenzene	ND		ug/L	0.263	1		5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP	KH
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.526	1		5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP	KH
87-86-5	Pentachlorophenol	ND		ug/L	0.263	1		5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP	KH
85-01-8	Phenanthrene	ND		ug/L	0.0526	1		5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP,PADEP	KH
129-00-0	Pyrene	ND		ug/L	0.0526	1		5/23/2023 09:23 23,NELAC-NY108	05/25/2023 02:32 854,NJDEP,PADEP	KH

Sample Information

Client Sample ID: MW-4AR 23E1235-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23E123503C497-MGround WaterMay 18, 2023 10:05 am05/19/2023

VOA, 8260 LOW MASTER

Log-in Notes:

Sample Notes:

ample Prepared	l by	Method:	EPA	5030E

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.216	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:12 854,NELAC-NY1205	SMA 8,NJDEP,PAI

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 17 of 57

Client Sample ID: MW-4AR **York Sample ID:**

23E1235-03

York Project (SDG) No. 23E1235

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time May 18, 2023 10:05 am Date Received 05/19/2023

VOA, 8260 LOW MASTER

	50 LOW MASTER ed by Method: EPA 5030B	<u>Log-in Notes:</u> <u>Sample Notes:</u>							<u>s:</u>			
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.266	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120:	SMA 58,NJDEP,PAI
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.256	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120:	SMA 58,NJDEP,PAI
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.286	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:12 0854.NELAC-NY120:	SMA 58.NJDEP.PAI
75-34-3	1,1-Dichloroethane	ND		ug/L	0.272	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12	SMA
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12	SMA
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.222	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 14:12	SMA
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.273	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 14:12	SMA
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.138	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 14:12 2058,NJDEP,PADEP	SMA
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.310	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120:	SMA 58,NJDEP,PAI
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.432	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120:	SMA 58,NJDEP,PAI
106-93-4	1,2-Dibromoethane	ND		ug/L	0.215	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120:	SMA 58,NJDEP,PAI
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.270	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120:	SMA 58,NJDEP,PAI
107-06-2	1,2-Dichloroethane	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120:	SMA 58,NJDEP,PAI
78-87-5	1,2-Dichloropropane	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120:	SMA 58,NJDEP,PAI
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.347	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120:	SMA 58,NJDEP,PAI
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.283	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120:	SMA 58,NJDEP,PAI
142-28-9	1,3-Dichloropropane	ND		ug/L	0.260	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 14:12 2058,NJDEP,PADEP	SMA
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.311	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120:	SMA 58,NJDEP,PAI
123-91-1	1,4-Dioxane	ND		ug/L	35.3	80.0	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 14:12 2058,NJDEP,PADEP	SMA
78-93-3	2-Butanone	ND		ug/L	0.421	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12	SMA 58,NJDEP,PAI
591-78-6	2-Hexanone	ND		ug/L	0.320	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12	SMA
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.365	0.500	1	EPA 8260C	CTDOU PY	05/25/2023 09:00	05/25/2023 14:12	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PAI

ClientServices@ Page 18 of 57

Client Sample ID: MW-4AR

York Sample ID: 23E1235-03

York Project (SDG) No. 23E1235

Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 10:05 am

Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

CAS N	lo. Parameter	Result	Flag	Units Reporte LOD/N		Dilution	Reference	ate/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	ND	ι	ng/L 1.34	2.00	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
107-02-8	Acrolein	ND	υ	ng/L 0.447	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
107-13-1	Acrylonitrile	ND	υ	ng/L 0.422	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
71-43-2	Benzene	ND	υ	ng/L 0.279	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
74-97-5	Bromochloromethane	ND	υ	ng/L 0.354	0.500	1	EPA 8260C Certifications:	25/2023 09:00 4,NELAC-NY1	05/25/2023 14:12 2058,NJDEP,PADEP	SMA
75-27-4	Bromodichloromethane	ND	υ	ug/L 0.245	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
75-25-2	Bromoform	ND	υ	ug/L 0.163	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
74-83-9	Bromomethane	ND	υ	ng/L 0.119	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
75-15-0	Carbon disulfide	ND	υ	ng/L 0.362	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
56-23-5	Carbon tetrachloride	ND	ľ	ng/L 0.204	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
108-90-7	Chlorobenzene	ND	ľ	ng/L 0.284	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
75-00-3	Chloroethane	ND	υ	ng/L 0.448	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
67-66-3	Chloroform	ND	υ	ug/L 0.243	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
74-87-3	Chloromethane	ND	υ	ng/L 0.372	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
156-59-2	cis-1,2-Dichloroethylene	ND	υ	ng/L 0.294	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
10061-01-5	cis-1,3-Dichloropropylene	ND	υ	ug/L 0.262	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
110-82-7	Cyclohexane	ND	ľ	ng/L 0.491	0.500	1	EPA 8260C Certifications:	25/2023 09:00 4,NELAC-NY1	05/25/2023 14:12 2058,NJDEP,PADEP	SMA
124-48-1	Dibromochloromethane	ND	ľ	ng/L 0.146	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
74-95-3	Dibromomethane	ND	υ	ng/L 0.203	0.500	1	EPA 8260C Certifications:	25/2023 09:00 4,NELAC-NY1	05/25/2023 14:12 2058,NJDEP,PADEP	SMA
75-71-8	Dichlorodifluoromethane	ND	υ	ng/L 0.451	0.500	1	EPA 8260C Certifications:	25/2023 09:00 4,NELAC-NY1	05/25/2023 14:12 2058,NJDEP,PADEP	SMA
100-41-4	Ethyl Benzene	ND	υ	ng/L 0.290	0.500	1	EPA 8260C Certifications:	25/2023 09:00 ,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI
87-68-3	Hexachlorobutadiene	ND	υ	ng/L 0.241	0.500	1	EPA 8260C Certifications:	25/2023 09:00 4,NELAC-NY1	05/25/2023 14:12 2058,NJDEP,PADEP	SMA
98-82-8	Isopropylbenzene	ND	υ	ng/L 0.405	0.500	1	EPA 8260C Certifications:	25/2023 09:00 NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58.NJDEP.PAI

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 19 of 57

Client Sample ID: MW-4AR **York Sample ID:** 23E1235-03

York Project (SDG) No. 23E1235

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time May 18, 2023 10:05 am Date Received 05/19/2023

VOA. 8260 LOW MASTER

	60 LOW MASTER red by Method: EPA 5030B	<u>Log-in Notes:</u>							Sample Notes:					
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst		
79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY1	05/25/2023 14:12 2058.NJDEP.PADEP	SMA		
1634-04-4	Methyl tert-butyl ether (MTBE)	0.550		ug/L	0.244	0.500	1	EPA 8260C		05/25/2023 09:00	05/25/2023 14:12	SMA		
								Certifications:	CTDOH-PI	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP,PA		
108-87-2	Methylcyclohexane	ND		ug/L	0.477	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY1	05/25/2023 14:12 2058,NJDEP,PADEP	SMA		
75-09-2	Methylene chloride	ND		ug/L	0.397	2.00	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI		
91-20-3	Naphthalene	ND		ug/L	0.212	2.00	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY1	05/25/2023 14:12 2058,NJDEP,PADEP	SMA		
104-51-8	n-Butylbenzene	ND		ug/L	0.399	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 14:12 0854,NELAC-NY1205	SMA 58,NJDEP,PAI		
103-65-1	n-Propylbenzene	ND		ug/L	0.384	0.500	1	EPA 8260C		05/25/2023 09:00	05/25/2023 14:12	SMA		
	13							Certifications:	CTDOH-PH	I-0723,NELAC-NY10	0854,NELAC-NY1205	58,NJDEP,PAI		
95-47-6	o-Xylene	ND		ug/L	0.261	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY1205	SMA 58,PADEP		
179601-23-1	p- & m- Xylenes	ND		ug/L	0.578	1.00	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,PADEP		
105-05-5	* p-Diethylbenzene	ND		ug/L	0.341	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 14:12	SMA		
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 14:12	SMA		
99-87-6	p-Isopropyltoluene	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI		
135-98-8	sec-Butylbenzene	ND		ug/L	0.444	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI		
100-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI		
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.608	1.00	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY1	05/25/2023 14:12 2058,NJDEP,PADEP	SMA		
98-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI		
127-18-4	Tetrachloroethylene	ND		ug/L	0.239	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PAI		
108-88-3	Toluene	ND		ug/L	0.346	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY1205	SMA 58,NJDEP,PAI		
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY1205	SMA 58,NJDEP,PA1		
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PA1		
79-01-6	Trichloroethylene	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PA1		
75-69-4	Trichlorofluoromethane	ND		ug/L	0.337	0.500	1	EPA 8260C Certifications:	СТДОН-РЕ	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:12 0854,NELAC-NY120	SMA 58,NJDEP,PA1		
75-01-4	Vinyl Chloride	ND		ug/L	0.469	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 14:12 0854,NELAC-NY120	SMA		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 20 of 57

Client Sample ID: MW-4AR

York Sample ID:

23E1235-03

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 10:05 am

Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log-in Notes	:	•
--------------	---	---

Sample Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/L	0.836	1.50	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:12 854,NELAC-NY120	SMA 58,NJDEP
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	102 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	98.7 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.5 %			79-122							

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADEP	05/24/2023 21:42	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADEP	05/24/2023 21:42	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADEP	05/24/2023 21:42	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 21:42 854,NJDEP,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 21:42 854,NJDEP,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 21:42 854,NJDEP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 21:42 854,NJDEP,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 21:42 854,NJDEP,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 21:42 854,NJDEP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 21:42 854,NJDEP,PADEP	КН
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 21:42 854,NJDEP,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 21:42 854,NJDEP,PADEP	КН
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 21:42 354,NJDEP,PADEP	KH
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 21:42 854,NJDEP,PADEP	KH
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 21:42 854,NJDEP,PADEP	KH
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY108	05/24/2023 21:42 854,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 21 of 57

Client Sample ID: MW-4AR

York Sample ID: 23E1235-03

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time May 18, 2023 10:05 am Date Received 05/19/2023

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference !	Date/ Method Prep	Time pared	Date/Time Analyzed	Analyst
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 854,NJDEP,PADEP	КН
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 854,NJDEP,PADEP	КН
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 854,NJDEP,PADEP	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 9854,NJDEP,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 9854,NJDEP,PADEP	KH
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 9854,NJDEP,PADEP	KH
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 9854,NJDEP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 9854,NJDEP,PADEP	KH
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 9854,NJDEP,PADEP	KH
100-02-7	4-Nitrophenol	ND		ug/L	5.00	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 0854,NJDEP,PADEP	KH
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 NELAC-NY10854,NJD		05/24/2023 21:42 P	KH
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 NELAC-NY10854,NJD		05/24/2023 21:42 P	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 9854,NJDEP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 9854,NJDEP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.00	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 9854,NJDEP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 9854,NJDEP,PADEP	KH
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 NELAC-NY10854,NJD		05/24/2023 21:42 P	KH
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 9854,NJDEP,PADEP	KH
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 0854,NJDEP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 0854,NJDEP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 854,NJDEP,PADEP	KH
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 854,NJDEP,PADEP	КН
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NEL		05/24/2023 21:42 854,NJDEP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 22 of 57

Client Sample ID: MW-4AR **York Sample ID:**

23E1235-03

York Project (SDG) No. 23E1235

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time May 18, 2023 10:05 am Date Received 05/19/2023

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in	Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.00	10.0	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:42 854,NJDEP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:42 854,NJDEP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:42 854,NJDEP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:42 854,NJDEP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:42 854,NJDEP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23	05/24/2023 21:42	KH
110-86-1	Pyridine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 21:42 854,NJDEP,PADEP	KH
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	35.8 %			19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	19.9 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	68.7 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	61.3 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	83.5 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	77.4 %			30.7-106							

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:02 854,NJDEP,PADEP	КН
208-96-8	Acenaphthylene	ND		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:02 854,NJDEP,PADEP	KH
120-12-7	Anthracene	0.250		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-P	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:02 0854,NJDEP,PADEP	KH
1912-24-9	Atrazine	ND		ug/L	2.50	5	EPA 8270D SIM Certifications: CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:02 854,NJDEP	KH
56-55-3	Benzo(a)anthracene	ND		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:02 854,NJDEP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:02 854,NJDEP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:02 854,NJDEP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:02 854,NJDEP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-PF	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:02 854,NJDEP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 23 of 57

ClientServices@

Client Sample ID: MW-4AR

York Sample ID:

23E1235-03

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time May 18, 2023 10:05 am Date Received 05/19/2023

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes	:
--------------	---

Sample Notes:

CAS N	o. Parameter	Result	Flag Units	Reported to LOQ Dil	ution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	ND	ug/L	2.50	5		05/23/2023 09:23 723,NELAC-NY108	05/25/2023 03:02 354,NJDEP	KH
218-01-9	Chrysene	ND	ug/L	0.250	5		05/23/2023 09:23 723,NELAC-NY108	05/25/2023 03:02 354,NJDEP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND	ug/L	0.250	5		05/23/2023 09:23 723,NELAC-NY108	05/25/2023 03:02 354,NJDEP,PADEP	КН
206-44-0	Fluoranthene	ND	ug/L	0.250	5		05/23/2023 09:23 723,NELAC-NY108	05/25/2023 03:02 354,NJDEP,PADEP	KH
86-73-7	Fluorene	0.400	ug/L	0.250	5	EPA 8270D SIM	05/23/2023 09:23	05/25/2023 03:02	KH
						Certifications: CTDOH-PH-0	723,NELAC-NY10	854,NJDEP,PADEP	
118-74-1	Hexachlorobenzene	ND	ug/L	0.100	5		05/23/2023 09:23 723,NELAC-NY108	05/25/2023 03:02 354,NJDEP	KH
87-68-3	Hexachlorobutadiene	ND	ug/L	2.50	5		05/23/2023 09:23 723,NELAC-NY108	05/25/2023 03:02 354,NJDEP	KH
67-72-1	Hexachloroethane	ND	ug/L	2.50	5		05/23/2023 09:23 723,NELAC-NY108	05/25/2023 03:02 354,NJDEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ug/L	0.250	5		05/23/2023 09:23 723,NELAC-NY108	05/25/2023 03:02 354,NJDEP,PADEP	KH
91-20-3	Naphthalene	ND	ug/L	0.250	5		05/23/2023 09:23 723,NELAC-NY108	05/25/2023 03:02 354,NJDEP,PADEP	KH
98-95-3	Nitrobenzene	ND	ug/L	1.25	5		05/23/2023 09:23 723,NELAC-NY108	05/25/2023 03:02 354,NJDEP	KH
62-75-9	N-Nitrosodimethylamine	ND	ug/L	2.50	5		05/23/2023 09:23 723,NELAC-NY108	05/25/2023 03:02 354,NJDEP	KH
87-86-5	Pentachlorophenol	ND	ug/L	1.25	5		05/23/2023 09:23 723,NELAC-NY108	05/25/2023 03:02 354,NJDEP	КН
85-01-8	Phenanthrene	0.950	ug/L	0.250	5	EPA 8270D SIM	05/23/2023 09:23	05/25/2023 03:02	KH
						Certifications: CTDOH-PH-0	723,NELAC-NY10	854,NJDEP,PADEP	
129-00-0	Pyrene	0.250	ug/L	0.250	5	EPA 8270D SIM	05/23/2023 09:23	05/25/2023 03:02	KH
						Certifications: CTDOH-PH-0	723,NELAC-NY10	854,NJDEP,PADEP	

Sample Information

Client Sample ID: MW-1AR

23E1235-04

York Project (SDG) No. 23E1235

Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 11:35 am

York Sample ID:

Date Received 05/19/2023

VOA, 8260 LOW MASTER

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

					Reported to			Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

(203) 325-1371

FAX (203) 357-0166

ClientServices@

Page 24 of 57

Client Sample ID: MW-1AR **York Sample ID:**

23E1235-04

York Project (SDG) No. 23E1235

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time May 18, 2023 11:35 am Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log-in Notes:	<u> </u>	<u>sample</u>	No	<u>tes:</u>

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
530-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	2.16	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 8,NJDEP,PA
71-55-6	1,1,1-Trichloroethane	ND		ug/L	2.66	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 8,NJDEP,PA
79-34-5 1	1,1,2,2-Tetrachloroethane	ND		ug/L	2.56	5.00	10	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 8,NJDEP,PA
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	2.86	5.00	10	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 8,NJDEP,PA
· ·	1,1,2-Trichloroethane	ND		ug/L	2.49	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 8,NJDEP,PA
75-34-3	1,1-Dichloroethane	ND		ug/L	2.72	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 8,NJDEP,PA
75-35-4	1,1-Dichloroethylene	ND		ug/L	3.27	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 8,NJDEP,PA
37-61-6	1,2,3-Trichlorobenzene	ND		ug/L	2.22	5.00	10	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 14:40 2058,NJDEP,PADEP	SMA
96-18-4	1,2,3-Trichloropropane	ND		ug/L	2.73	5.00	10	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 14:40 2058,NJDEP,PADEP	SMA
20-82-1	1,2,4-Trichlorobenzene	ND		ug/L	1.38	5.00	10	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 14:40 2058,NJDEP,PADEP	SMA
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	3.10	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 8,NJDEP,PA
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	4.32	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 8,NJDEP,PA
06-93-4	1,2-Dibromoethane	ND		ug/L	2.15	5.00	10	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 8,NJDEP,PA
95-50-1 1	1,2-Dichlorobenzene	ND		ug/L	2.70	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 9854,NELAC-NY1205	SMA 8,NJDEP,PA
07-06-2	1,2-Dichloroethane	ND		ug/L	3.77	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 8,NJDEP,PA
'8-87-5 <u>1</u>	1,2-Dichloropropane	ND		ug/L	3.27	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 9854,NELAC-NY1205	SMA 8,NJDEP,PA
08-67-8	1,3,5-Trimethylbenzene	ND		ug/L	3.47	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 8,NJDEP,PA
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.83	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 8,NJDEP,PA
42-28-9 1	1,3-Dichloropropane	ND		ug/L	2.60	5.00	10	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 14:40 2058,NJDEP,PADEP	SMA
06-46-7 1	1,4-Dichlorobenzene	ND		ug/L	3.11	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 8,NJDEP,PA
23-91-1	1,4-Dioxane	ND		ug/L	353	800	10	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 14:40 2058,NJDEP,PADEP	SMA
78-93-3 2	2-Butanone	ND		ug/L	4.21	5.00	10	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 8,NJDEP,PA
591-78-6 2	2-Hexanone	ND		ug/L	3.20	5.00	10	EPA 8260C		05/25/2023 09:00	05/25/2023 14:40	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 25 of 57

Log-in Notes:

Client Sample ID: MW-1AR

York Sample ID: 23E1235-04

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time May 18, 2023 11:35 am

Sample Notes:

Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND		ug/L	3.65	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
67-64-1	Acetone	ND		ug/L	13.4	20.0	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 58,NJDEP,PAI
107-02-8	Acrolein	ND		ug/L	4.47	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 9854,NELAC-NY1205	SMA 58,NJDEP,PAI
107-13-1	Acrylonitrile	ND		ug/L	4.22	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
71-43-2	Benzene	74.6		ug/L	2.79	5.00	10	EPA 8260C		05/25/2023 09:00	05/25/2023 14:40	SMA
								Certifications:	CTDOH-PI	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP,PA
74-97-5	Bromochloromethane	ND		ug/L	3.54	5.00	10	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 710854,NELAC-NY12	05/25/2023 14:40 2058,NJDEP,PADEP	SMA
75-27-4	Bromodichloromethane	ND		ug/L	2.45	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
75-25-2	Bromoform	ND		ug/L	1.63	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PA1
74-83-9	Bromomethane	ND		ug/L	1.19	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 9854,NELAC-NY1205	SMA 58,NJDEP,PAI
75-15-0	Carbon disulfide	ND		ug/L	3.62	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 9854,NELAC-NY1205	SMA 58,NJDEP,PAI
56-23-5	Carbon tetrachloride	ND		ug/L	2.04	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 58,NJDEP,PAI
108-90-7	Chlorobenzene	ND		ug/L	2.84	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 58,NJDEP,PAI
75-00-3	Chloroethane	ND		ug/L	4.48	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 58,NJDEP,PAI
67-66-3	Chloroform	ND		ug/L	2.43	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
74-87-3	Chloromethane	ND		ug/L	3.72	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 58,NJDEP,PAI
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	2.94	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	2.62	5.00	10	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 58,NJDEP,PAI
110-82-7	Cyclohexane	54.7		ug/L	4.91	5.00	10	EPA 8260C		05/25/2023 09:00	05/25/2023 14:40	SMA
	•			Ü				Certifications:	NELAC-N	Y10854,NELAC-NY1	2058,NJDEP,PADEP	
124-48-1	Dibromochloromethane	ND		ug/L	1.46	5.00	10	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 14:40 0854,NELAC-NY1205	SMA 58,NJDEP,PAI
74-95-3	Dibromomethane	ND		ug/L	2.03	5.00	10	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 14:40 2058,NJDEP,PADEP	SMA

120 RESEARCH DRIVE www.YORKLAB.com

Dichlorodifluoromethane

Hexachlorobutadiene

Ethyl Benzene

75-71-8

100-41-4

87-68-3

STRATFORD, CT 06615 (203) 325-1371

ND

ND

ND

ug/L

ug/L

ug/L

4.51

132-02 89th AVENUE FAX (203) 357-0166

5.00

5.00

EPA 8260C

EPA 8260C

Certifications:

EPA 8260C

Certifications:

Certifications:

RICHMOND HILL, NY 11418

05/25/2023 09:00 05/25/2023 14:40 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PAI

NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

SMA

ClientServices@ Page 26 of 57

Client Sample ID: MW-1AR

York Sample ID: 23E1235-04

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 11:35 am

Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

79-20-9 Meth 1634-04-4 Meth 108-87-2 Meth 75-09-2 Meth	ropylbenzene nyl acetate nyl tert-butyl ether (MTBE) nylcyclohexane	ND ND ND		ug/L	4.05	5.00	10	EPA 8260C	05/25/2023 09:00	05/25/2023 14:40	SMA
1634-04-4 Meth 108-87-2 Meth 75-09-2 Meth	yl tert-butyl ether (MTBE)	ND		ug/L				Certifications:	CTDOH-PH-0723,NELAC-NY10	854,NELAC-NY1205	8,NJDEP,PAI
108-87-2 Meth					4.42	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 NELAC-NY10854,NELAC-NY12	05/25/2023 14:40 2058,NJDEP,PADEP	SMA
75-09-2 Meth	hylcyclohexane	46.		ug/L	2.44	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
		16.7		ug/L	4.77	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 NELAC-NY10854,NELAC-NY1	05/25/2023 14:40 2058 NIDEP PADEP	SMA
91-20-3 Naph	nylene chloride	5.10	J	ug/L	3.97	20.0	10	EPA 8260C	05/25/2023 09:00	05/25/2023 14:40	SMA
	nthalene	ND		ug/L	2.12	20.0	10	Certifications: EPA 8260C Certifications:	CTDOH-PH-0723,NELAC-NY10 05/25/2023 09:00 NELAC-NY10854,NELAC-NY12	05/25/2023 14:40	SMA
104-51-8 n-But	tylbenzene	ND		ug/L	3.99	5.00	10	EPA 8260C	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40	SMA 58,NJDEP,PAI
103-65-1 n-Pro	ppylbenzene	ND		ug/L	3.84	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
95-47-6 o-Xyl	lene	ND		ug/L	2.61	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,PADEP
179601-23-1 p- & 1	m- Xylenes	ND		ug/L	5.78	10.0	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,PADEP
105-05-5 * p-D	Diethylbenzene	ND		ug/L	3.41	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00	05/25/2023 14:40	SMA
622-96-8 * p-E	Ethyltoluene	ND		ug/L	2.00	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00	05/25/2023 14:40	SMA
99-87-6 p-Isop	propyltoluene	ND		ug/L	3.77	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
135-98-8 sec-B	Butylbenzene	ND		ug/L	4.44	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
100-42-5 Styres	ene	ND		ug/L	2.55	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
75-65-0 tert-B	Butyl alcohol (TBA)	ND		ug/L	6.08	10.0	10	EPA 8260C Certifications:	05/25/2023 09:00 NELAC-NY10854,NELAC-NY12	05/25/2023 14:40 2058,NJDEP,PADEP	SMA
98-06-6 tert-B	Butylbenzene	ND		ug/L	3.67	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
127-18-4 Tetrac	chloroethylene	ND		ug/L	2.39	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
108-88-3 Tolue	ene	ND		ug/L	3.46	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
156-60-5 trans-	-1,2-Dichloroethylene	ND		ug/L	2.79	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
10061-02-6 trans-	-1,3-Dichloropropylene	ND		ug/L	2.29	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
79-01-6 Trich	aloroethylene	ND		ug/L	2.49	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI
75-69-4 Trich	alorofluoromethane	ND		ug/L	3.37	5.00	10	EPA 8260C Certifications:	05/25/2023 09:00 CTDOH-PH-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PAI

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 27 of 57

Client Sample ID: MW-1AR

York Sample ID: 23E1235-04

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 11:35 am

Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

<u>Lo</u>	g-in	No	tes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/L	4.69	5.00	10	EPA 8260C Certifications: C	TDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP,PA1
1330-20-7	Xylenes, Total	ND		ug/L	8.36	15.0	10	EPA 8260C Certifications: C	TDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 14:40 854,NELAC-NY1205	SMA 58,NJDEP
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	103 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	98.0 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	95.0 %			79-122							

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/T Method Prep	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 NELAC-NY10854,NJDI	05/24/2023 22:12	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 NELAC-NY10854,NJDI	05/24/2023 22:12	КН
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/2023 NELAC-NY10854,NJDI	05/24/2023 22:12	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/2022 CTDOH-PH-0723,NELA	05/24/2023 22:12 854,NJDEP,PADEP	КН
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/2023 CTDOH-PH-0723,NELA	05/24/2023 22:12 854,NJDEP,PADEP	КН
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/2022 CTDOH-PH-0723,NELA	05/24/2023 22:12 854,NJDEP,PADEP	КН
105-67-9	2,4-Dimethylphenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/2023 CTDOH-PH-0723,NELA	05/24/2023 22:12 854,NJDEP,PADEP	КН
51-28-5	2,4-Dinitrophenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/2022 CTDOH-PH-0723,NELA	05/24/2023 22:12 854,NJDEP,PADEP	КН
121-14-2	2,4-Dinitrotoluene	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/2022 CTDOH-PH-0723,NELA	05/24/2023 22:12 854,NJDEP,PADEP	КН
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/202 CTDOH-PH-0723,NELA	05/24/2023 22:12 854,NJDEP,PADEP	КН
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/2022 CTDOH-PH-0723,NELA	05/24/2023 22:12 854,NJDEP,PADEP	KH
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/2022 CTDOH-PH-0723,NELA	05/24/2023 22:12 854,NJDEP,PADEP	KH
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/2022 CTDOH-PH-0723,NEL	05/24/2023 22:12 854,NJDEP,PADEP	KH
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/2023 CTDOH-PH-0723,NELA	05/24/2023 22:12 854,NJDEP,PADEP	КН
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	05/23/2022 CTDOH-PH-0723,NELA	05/24/2023 22:12 854,NJDEP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 28 of 57

Log-in Notes:

Client Sample ID: MW-1AR

<u>York Sample ID:</u> 23E1235-04

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 11:35 am

Sample Notes:

Date Received 05/19/2023

SVOA, 8270 LOW MASTER

	Sample Prepared by Method: EPA 3510C					Log in Notes.				Sample Potes:				
CAS No	·	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst		
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	КН		
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH		
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	КН		
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	КН		
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH		
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH		
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH		
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH		
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH		
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH		
100-02-7	4-Nitrophenol	ND		ug/L	5.00	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH		
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADE	05/24/2023 22:12 P	KH		
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADE	05/24/2023 22:12 P	KH		
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH		
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH		
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.00	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10		KH		
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH		
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADE	05/24/2023 22:12 P	KH		
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10		KH		
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10		KH		
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10		KH		
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH		

120 RESEARCH DRIVE www.YORKLAB.com

Di-n-butyl phthalate

84-74-2

STRATFORD, CT 06615 (203) 325-1371 ug/L

2.50

ND

132-02 89th AVENUE FAX (203) 357-0166

5.00

EPA 8270D

RICHMOND HILL, NY 11418

CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

KH

ClientServices@ Page 29 of 57

Client Sample ID: MW-1AR

York Sample ID:

23E1235-04

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 11:35 am

Date Received 05/19/2023

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:
----------------------	---------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 I-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.00	10.0	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PF	05/23/2023 09:23 I-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PF	05/23/2023 09:23 I-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 I-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23	05/24/2023 22:12	KH
110-86-1	Pyridine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PF	05/23/2023 09:23 I-0723,NELAC-NY10	05/24/2023 22:12 854,NJDEP,PADEP	KH
	Surrogate Recoveries	Result		Acce	ptance Range	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	34.9 %			19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	22.3 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	74.5 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	66.0 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	98.1 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	85.7 %			30.7-106							

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	1.05	ug/L	0.250 5	EPA 8270D SIM	05/23/2023 09:23	05/25/2023 03:33	КН
208-96-8	Acenaphthylene	ND	ug/L	0.250 5	EPA 8270D SIM	PH-0723,NELAC-NY10 05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:33	КН
120-12-7	Anthracene	ND	ug/L	0.250 5	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:33 854,NJDEP,PADEP	КН
1912-24-9	Atrazine	ND	ug/L	2.50 5	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:33 854,NJDEP	KH
56-55-3	Benzo(a)anthracene	ND	ug/L	0.250 5	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:33 854,NJDEP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND	ug/L	0.250 5	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:33 854,NJDEP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.250 5	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:33 854,NJDEP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.250 5	EPA 8270D SIM Certifications: CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 03:33 854,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 30 of 57

Client Sample ID: MW-1AR

York Sample ID:

23E1235-04

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 11:35 am

Date Received 05/19/2023

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:
----------------------	---------------

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ Dilution	Reference Method	Date/Time Date/Time Prepared Anal	
207-08-9	Benzo(k)fluoranthene	ND	ug/L	0.250 5		05/23/2023 09:23 05/25/202 0723,NELAC-NY10854,NJDEP	
117-81-7	Bis(2-ethylhexyl)phthalate	ND	ug/L	2.50 5		05/23/2023 09:23 05/25/20 0723,NELAC-NY10854,NJDEF	
218-01-9	Chrysene	ND	ug/L	0.250 5		05/23/2023 09:23 05/25/20: 0723,NELAC-NY10854,NJDEP	
53-70-3	Dibenzo(a,h)anthracene	ND	ug/L	0.250 5		05/23/2023 09:23 05/25/20: 0723,NELAC-NY10854,NJDEP	
206-44-0	Fluoranthene	ND	ug/L	0.250 5		05/23/2023 09:23 05/25/20 0723,NELAC-NY10854,NJDEF	
86-73-7	Fluorene	1.80	ug/L	0.250 5		05/23/2023 09:23 05/25/20 0723,NELAC-NY10854,NJDE	
118-74-1	Hexachlorobenzene	ND	ug/L	0.100 5		05/23/2023 09:23 05/25/20: 0723,NELAC-NY10854,NJDEP	
87-68-3	Hexachlorobutadiene	ND	ug/L	2.50 5		05/23/2023 09:23 05/25/20: 0723,NELAC-NY10854,NJDEF	
67-72-1	Hexachloroethane	ND	ug/L	2.50 5		05/23/2023 09:23 05/25/20 0723,NELAC-NY10854,NJDEF	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ug/L	0.250 5		05/23/2023 09:23 05/25/20: 0723,NELAC-NY10854,NJDEP	
91-20-3	Naphthalene	0.800	ug/L	0.250 5		05/23/2023 09:23 05/25/202 0723,NELAC-NY10854,NJDE	
98-95-3	Nitrobenzene	ND	ug/L	1.25 5		05/23/2023 09:23 05/25/202 0723,NELAC-NY10854,NJDEP	
62-75-9	N-Nitrosodimethylamine	ND	ug/L	2.50 5		05/23/2023 09:23 05/25/202 0723,NELAC-NY10854,NJDEP	
87-86-5	Pentachlorophenol	ND	ug/L	1.25 5		05/23/2023 09:23 05/25/20: 0723,NELAC-NY10854,NJDEP	
85-01-8	Phenanthrene	ND	ug/L	0.250 5		05/23/2023 09:23 05/25/202 0723,NELAC-NY10854,NJDEP	
129-00-0	Pyrene	ND	ug/L	0.250 5		05/23/2023 09:23 05/25/20: 0723,NELAC-NY10854,NJDEP	

Sample Information

Client Sample ID: DUP 23E1235-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23E123503C497-MGround WaterMay 18, 2023 3:00 pm05/19/2023

VOA, 8260 LOW MASTER

Log-in Notes:

Sample Notes:

Sample Prepared	by	Method:	EPA	5030B	
-----------------	----	---------	-----	-------	--

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH	DRIVE	STRATFORD, C	T 06615			132	2-02 89th AV	'ENUE	RICHMOND HILL	., NY 11418	
www.YORKI AB.c	eom	(203) 325-1371				FA	X (203) 357-	0166	ClientServices@	Page 31	of 57

Client Sample ID: DUP

York Sample ID:

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23E123503C497-MGround WaterMay 18, 2023 3:00 pm05/19/2023

VOA, 8260 LOW MASTER
Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

23E1235-05

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.216	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PA
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.266	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.256	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.286	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
75-34-3	1,1-Dichloroethane	ND		ug/L	0.272	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.222	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 15:09 2058,NJDEP,PADEP	SMA
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.273	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 15:09 2058,NJDEP,PADEP	SMA
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.138	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 710854,NELAC-NY12	05/25/2023 15:09 2058,NJDEP,PADEP	SMA
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.310	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.432	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
106-93-4	1,2-Dibromoethane	ND		ug/L	0.215	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.270	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
107-06-2	1,2-Dichloroethane	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
78-87-5	1,2-Dichloropropane	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.347	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.283	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
142-28-9	1,3-Dichloropropane	ND		ug/L	0.260	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 710854,NELAC-NY12	05/25/2023 15:09 2058,NJDEP,PADEP	SMA
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.311	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY120	SMA 58,NJDEP,PAI
123-91-1	1,4-Dioxane	ND		ug/L	35.3	80.0	1	EPA 8260C Certifications:		05/25/2023 09:00 (10854,NELAC-NY12	05/25/2023 15:09	SMA
78-93-3	2-Butanone	ND		ug/L	0.421	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09	SMA 58,NJDEP,PAI
591-78-6	2-Hexanone	ND		ug/L	0.320	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09	SMA 58,NJDEP,PAI

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 32 of 57

Client Sample ID: DUP

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23E123503C497-MGround WaterMay 18, 2023 3:00 pm05/19/2023

VOA, 8260 LOW MASTER
Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

York Sample ID:

23E1235-05

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.365	0.500	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,NJDEP,PAI
67-64-1	Acetone	ND		ug/L	1.34	2.00	1	EPA 8260C Certifications:	СТДОН-РН	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,NJDEP,PAI
107-02-8	Acrolein	ND		ug/L	0.447	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
107-13-1	Acrylonitrile	ND		ug/L	0.422	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
71-43-2	Benzene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
74-97-5	Bromochloromethane	ND		ug/L	0.354	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 (10854,NELAC-NY1)	05/25/2023 15:09	SMA
75-27-4	Bromodichloromethane	ND		ug/L	0.245	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
75-25-2	Bromoform	ND		ug/L	0.163	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
74-83-9	Bromomethane	ND		ug/L	0.119	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
75-15-0	Carbon disulfide	ND		ug/L	0.362	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09	SMA
56-23-5	Carbon tetrachloride	ND		ug/L	0.204	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09	SMA
108-90-7	Chlorobenzene	ND		ug/L	0.284	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	0854,NELAC-NY1205 05/25/2023 15:09 0854,NELAC-NY1205	SMA
75-00-3	Chloroethane	ND		ug/L	0.448	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
67-66-3	Chloroform	ND		ug/L	0.243	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
74-87-3	Chloromethane	ND		ug/L	0.372	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.294	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.262	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
110-82-7	Cyclohexane	ND		ug/L	0.491	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00 710854,NELAC-NY1:	05/25/2023 15:09	SMA
124-48-1	Dibromochloromethane	ND		ug/L	0.146	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
74-95-3	Dibromomethane	ND		ug/L	0.203	0.500	1	EPA 8260C		05/25/2023 09:00	05/25/2023 15:09	SMA
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.451	0.500	1	Certifications:		710854,NELAC-NY1: 05/25/2023 09:00	05/25/2023 15:09	SMA
100-41-4	Ethyl Benzene	ND		ug/L	0.290	0.500	1	Certifications:		710854,NELAC-NY1: 05/25/2023 09:00	05/25/2023 15:09	SMA
87-68-3	Hexachlorobutadiene	ND		ug/L	0.241	0.500	1	Certifications: EPA 8260C		05/25/2023 09:00	05/25/2023 15:09	8,NJDEP,PAI SMA
								Certifications:	NELAC-NY	710854,NELAC-NY1	2058,NJDEP,PADEP	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 33 of 57

Client Sample ID: DUP

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23E123503C497-MGround WaterMay 18, 2023 3:00 pm05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

York Sample ID:

23E1235-05

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
98-82-8	Isopropylbenzene	ND		ug/L	0.405	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,NJDEP,PA
79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 15:09 2058,NJDEP,PADEP	SMA
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.244	0.500	1	EPA 8260C Certifications:	CTDOH-PF	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,NJDEP,PA
108-87-2	Methylcyclohexane	ND		ug/L	0.477	0.500	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 15:09 2058,NJDEP,PADEP	SMA
75-09-2	Methylene chloride	ND		ug/L	0.397	2.00	1	EPA 8260C Certifications:	CTDOH-PF	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,NJDEP,PA
01-20-3	Naphthalene	ND		ug/L	0.212	2.00	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 15:09 2058,NJDEP,PADEP	SMA
104-51-8	n-Butylbenzene	ND		ug/L	0.399	0.500	1	EPA 8260C		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,NJDEP,PA
103-65-1	n-Propylbenzene	ND		ug/L	0.384	0.500	1	EPA 8260C		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
95-47-6	o-Xylene	ND		ug/L	0.261	0.500	1	EPA 8260C Certifications:	CTDOH-PF	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,PADEP
179601-23-1	p- & m- Xylenes	ND		ug/L	0.578	1.00	1	EPA 8260C	CTDOH-PF	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,PADEP
105-05-5	* p-Diethylbenzene	ND		ug/L	0.341	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09	SMA
522-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		05/25/2023 09:00	05/25/2023 15:09	SMA
99-87-6	p-Isopropyltoluene	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:	CTDOH-PF	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,NJDEP,PA
135-98-8	sec-Butylbenzene	ND		ug/L	0.444	0.500	1	EPA 8260C Certifications:	CTDOH-PF	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,NJDEP,PA
100-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260C Certifications:	CTDOH-PF	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,NJDEP,PA
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.608	1.00	1	EPA 8260C Certifications:	NELAC-NY	05/25/2023 09:00 /10854,NELAC-NY12	05/25/2023 15:09 2058,NJDEP,PADEP	SMA
98-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260C Certifications:	CTDOH-PF	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,NJDEP,PA
27-18-4	Tetrachloroethylene	ND		ug/L	0.239	0.500	1	EPA 8260C Certifications:	CTDOH-PF	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,NJDEP,PA
08-88-3	Toluene	ND		ug/L	0.346	0.500	1	EPA 8260C Certifications:	CTDOH-PF	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,NJDEP,PA
56-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:	CTDOH-PF	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 15:09 0854,NELAC-NY1205	SMA 8,NJDEP,PA
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.500	1	EPA 8260C		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
79-01-6	Trichloroethylene	ND		ug/L	0.249	0.500	1	EPA 8260C		05/25/2023 09:00	05/25/2023 15:09 0854,NELAC-NY1205	SMA
75-69-4	Trichlorofluoromethane	ND		ug/L	0.337	0.500	1	EPA 8260C		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 15:09	SMA

120 RESEARCH DRIVE
www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 34 of 57

Client Sample ID: DUP

York Sample ID:

23E1235-05

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 3:00 pm

Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

	<u>Log-in</u>	Not	tes:
--	---------------	-----	------

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/L	0.469	0.500	1	EPA 8260C Certifications: C	TDOH-PF	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY1205	SMA 58,NJDEP,PAI
1330-20-7	Xylenes, Total	ND		ug/L	0.836	1.50	1	EPA 8260C Certifications: C	TDOH-PF	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 15:09 854,NELAC-NY1205	SMA 58,NJDEP
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	106 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	98.0 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	97.0 %			79-122							

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0854,NJDEP,PADEP	05/24/2023 22:43	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0854,NJDEP,PADEP	05/24/2023 22:43	КН
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0854,NJDEP,PADEP	05/24/2023 22:43	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0723,NELAC-NY108	05/24/2023 22:43 354,NJDEP,PADEP	КН
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0723,NELAC-NY108	05/24/2023 22:43 554,NJDEP,PADEP	КН
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0723,NELAC-NY108	05/24/2023 22:43 554,NJDEP,PADEP	КН
105-67-9	2,4-Dimethylphenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0723,NELAC-NY108	05/24/2023 22:43 554,NJDEP,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0723,NELAC-NY108	05/24/2023 22:43 554,NJDEP,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0723,NELAC-NY108	05/24/2023 22:43 554,NJDEP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0723,NELAC-NY108	05/24/2023 22:43 554,NJDEP,PADEP	KH
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0723,NELAC-NY108	05/24/2023 22:43 554,NJDEP,PADEP	КН
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0723,NELAC-NY108	05/24/2023 22:43 354,NJDEP,PADEP	KH
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0723,NELAC-NY108	05/24/2023 22:43 354,NJDEP,PADEP	KH
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0723,NELAC-NY108	05/24/2023 22:43 354,NJDEP,PADEP	КН
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 0723,NELAC-NY108	05/24/2023 22:43 354,NJDEP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 35 of 57

Client Sample ID: DUP

York Sample ID: 23E1235-05

York Project (SDG) No. Client Project ID 23E1235 03C497-M

Matrix Ground Water

Collection Date/Time May 18, 2023 3:00 pm Date Received 05/19/2023

SVOA, 8270 LOW MASTER

	270 LOW MASTER red by Method: EPA 3510C				Log-in	Notes:		Sam	ple Note	<u>s:</u>		
CAS N	<u> </u>	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	KH
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43	KH
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	КН
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	КН
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	КН
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	КН
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	КН
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	КН
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	KH
100-02-7	4-Nitrophenol	ND		ug/L	5.00	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	KH
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	05/23/2023 09:23 Y10854,NJDEP,PADE	05/24/2023 22:43	KH
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADE	05/24/2023 22:43 P	KH
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.00	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	KH
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	05/23/2023 09:23 Y10854,NJDEP,PADE	05/24/2023 22:43 P	KH
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	KH
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	KH
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	KH
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 854,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 36 of 57

Client Sample ID: York Sample ID: 23E1235-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23E123503C497-MGround WaterMay 18, 2023 3:00 pm05/19/2023

SVOA, 8270 LOW MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 0854,NJDEP,PADEP	KH
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.00	10.0	1	EPA 8270D Certifications:	CTDOH-P	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 0854,NJDEP,PADEP	KH
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 0854,NJDEP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 0854,NJDEP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 0854,NJDEP,PADEP	KH
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 0854,NJDEP,PADEP	KH
2312-35-8	* Propargite	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		05/23/2023 09:23	05/24/2023 22:43	KH
110-86-1	Pyridine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	05/23/2023 09:23 H-0723,NELAC-NY10	05/24/2023 22:43 0854,NJDEP,PADEP	КН
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	37.0 %			19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	20.3 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	80.8 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	72.8 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	100 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	87.1 %			30.7-106							

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	5.10		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-P	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 04:03 0854,NJDEP,PADEP	KH
208-96-8	Acenaphthylene	ND		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-PF	05/23/2023 09:23 I-0723,NELAC-NY10	05/25/2023 04:03 854,NJDEP,PADEP	KH
120-12-7	Anthracene	0.350		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-P	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 04:03 0854,NJDEP,PADEP	KH
1912-24-9	Atrazine	ND		ug/L	2.50	5	EPA 8270D SIM Certifications: CTDOH-PF	05/23/2023 09:23 I-0723,NELAC-NY10	05/25/2023 04:03 854,NJDEP	KH
56-55-3	Benzo(a)anthracene	ND		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-PH	05/23/2023 09:23 I-0723,NELAC-NY10	05/25/2023 04:03 854,NJDEP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-PH	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 04:03 854,NJDEP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-PH	05/23/2023 09:23 I-0723,NELAC-NY10	05/25/2023 04:03 854,NJDEP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.250	5	EPA 8270D SIM Certifications: CTDOH-PF	05/23/2023 09:23 H-0723,NELAC-NY10	05/25/2023 04:03 854,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 37 of 57

Client Sample ID: DUP

York Sample ID:

23E1235-05

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 3:00 pm

Date Received 05/19/2023

SVOA, 8270 SIM MASTER

Sample Prepared by Method: EPA 3510C

Log-in Notes	:
--------------	---

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.250	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP,PADEP	KH
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/L	2.50	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP	КН
218-01-9	Chrysene	ND		ug/L	0.250	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP,PADEP	КН
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.250	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP,PADEP	KH
206-44-0	Fluoranthene	ND		ug/L	0.250	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP,PADEP	KH
86-73-7	Fluorene	ND		ug/L	0.250	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP,PADEP	KH
118-74-1	Hexachlorobenzene	ND		ug/L	0.100	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	2.50	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP	KH
67-72-1	Hexachloroethane	ND		ug/L	2.50	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.250	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.250	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP,PADEP	KH
98-95-3	Nitrobenzene	ND		ug/L	1.25	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP	KH
62-75-9	N-Nitrosodimethylamine	ND		ug/L	2.50	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP	KH
87-86-5	Pentachlorophenol	ND		ug/L	1.25	5		05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03 854,NJDEP	КН
85-01-8	Phenanthrene	0.300		ug/L	0.250	5		05/23/2023 09:23	05/25/2023 04:03	KH
129-00-0	Pyrene	ND		ug/L	0.250	5	EPA 8270D SIM	0723,NELAC-NY10 05/23/2023 09:23 0723,NELAC-NY108	05/25/2023 04:03	КН

Sample Information

 Client Sample ID:
 Trip Blank
 York Sample ID:
 23E1235-06

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 23E1235
 03C497-M
 Ground Water
 May 18, 2023 3:00 pm
 05/19/2023

VOA, 8260 LOW MASTER

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH DRIVE		STRATFORD, CT 06615				132-02 89th AVENUE			RICHMOND HILL	_, NY 11418	

www.YORKLAB.com (203) 325-1371

_...

TRIOTIMOND THEE, IVI 11410

FAX (203) 357-0166

ClientServices@ Page 38 of 57

Client Sample ID: Trip Blank

York Sample ID: 23E1235-06

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 3:00 pm

Date Received 05/19/2023

VOA, 8260 LOW MASTER

Log-in Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Unite	Reported to	100	Dilutia:	Reference N	Mathad	Date/Time	Date/Time Analyzed	Analyst
630-20-6		ND	riag	Units	0.216	0.500	Dilution 1	EPA 8260C	vietnod	05/25/2023 09:00	05/25/2023 11:49	Analyst SMA
030-20-0	1,1,1,2-Tetrachloroethane	ND		ug/L	0.216	0.300	1		CTDOH-PI	H-0723,NELAC-NY10		
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.266	0.500	1	EPA 8260C Certifications:	CTDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49 854,NELAC-NY120	SMA 58,NJDEP,PA
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.256	0.500	1	EPA 8260C Certifications:	CTDOU N	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49	SMA
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.286	0.500	1	EPA 8260C		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49	SMA
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:	СТДОН-РЕ	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49 854 NELAC-NY120	SMA 58 NIDEP PA
75-34-3	1,1-Dichloroethane	ND		ug/L	0.272	0.500	1	EPA 8260C		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49	SMA
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.327	0.500	1	EPA 8260C		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49	SMA
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.222	0.500	1	EPA 8260C		05/25/2023 09:00 Y10854,NELAC-NY12	05/25/2023 11:49	SMA
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.273	0.500	1	EPA 8260C		05/25/2023 09:00 Y10854,NELAC-NY12	05/25/2023 11:49	SMA
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.138	0.500	1	EPA 8260C		05/25/2023 09:00 Y10854,NELAC-NY12	05/25/2023 11:49	SMA
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.310	0.500	1	EPA 8260C		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49	SMA 58 NIDEP PA
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.432	0.500	1	EPA 8260C		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49	SMA
106-93-4	1,2-Dibromoethane	ND		ug/L	0.215	0.500	1	EPA 8260C		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49	SMA
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.270	0.500	1	EPA 8260C		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49	SMA
107-06-2	1,2-Dichloroethane	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49 854,NELAC-NY120	SMA 58,NJDEP,PA
78-87-5	1,2-Dichloropropane	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49 854,NELAC-NY120	SMA 58,NJDEP,PA
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.347	0.500	1	EPA 8260C Certifications:	CTDOH-PF	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49 854,NELAC-NY120	SMA 58,NJDEP,PA
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.283	0.500	1	EPA 8260C Certifications:	CTDOH-PI	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49 854,NELAC-NY120	SMA 58,NJDEP,PA
142-28-9	1,3-Dichloropropane	ND		ug/L	0.260	0.500	1	EPA 8260C Certifications:	NELAC-N	05/25/2023 09:00 Y10854,NELAC-NY12	05/25/2023 11:49 2058,NJDEP,PADEP	SMA
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.311	0.500	1	EPA 8260C			05/25/2023 11:49	SMA 58,NJDEP,PA
123-91-1	1,4-Dioxane	ND		ug/L	35.3	80.0	1	EPA 8260C		05/25/2023 09:00 Y10854,NELAC-NY12	05/25/2023 11:49	SMA
78-93-3	2-Butanone	ND		ug/L	0.421	0.500	1	EPA 8260C		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49	SMA 58.NJDEP.PA
591-78-6	2-Hexanone	ND		ug/L	0.320	0.500	1	EPA 8260C		05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 39 of 57

FAX (203) 357-0166

Client Sample ID: Trip Blank

York Sample ID: 23E1235-06

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 3:00 pm

Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.365	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	i/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
67-64-1	Acetone	ND		ug/L	1.34	2.00	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
107-02-8	Acrolein	ND		ug/L	0.447	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
107-13-1	Acrylonitrile	ND		ug/L	0.422	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
71-43-2	Benzene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
74-97-5	Bromochloromethane	ND		ug/L	0.354	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 NELAC-NY10854,NELAC-NY12058	5/25/2023 11:49 NJDEP,PADEP	SMA
75-27-4	Bromodichloromethane	ND		ug/L	0.245	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
75-25-2	Bromoform	ND		ug/L	0.163	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
74-83-9	Bromomethane	ND		ug/L	0.119	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
75-15-0	Carbon disulfide	ND		ug/L	0.362	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
56-23-5	Carbon tetrachloride	ND		ug/L	0.204	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
108-90-7	Chlorobenzene	ND		ug/L	0.284	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
75-00-3	Chloroethane	ND		ug/L	0.448	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
67-66-3	Chloroform	ND		ug/L	0.243	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	i/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
74-87-3	Chloromethane	ND		ug/L	0.372	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.294	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.262	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	5/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
110-82-7	Cyclohexane	ND		ug/L	0.491	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 NELAC-NY10854,NELAC-NY12058	i/25/2023 11:49 NJDEP,PADEP	SMA
124-48-1	Dibromochloromethane	ND		ug/L	0.146	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 CTDOH-PH-0723,NELAC-NY10854,	i/25/2023 11:49 NELAC-NY1205	SMA 8,NJDEP,PAI
74-95-3	Dibromomethane	ND		ug/L	0.203	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05 NELAC-NY10854,NELAC-NY12058	i/25/2023 11:49 ,NJDEP,PADEP	SMA
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.451	0.500	1	EPA 8260C Certifications:		5/25/2023 11:49	SMA
100-41-4	Ethyl Benzene	ND		ug/L	0.290	0.500	1	EPA 8260C Certifications:		5/25/2023 11:49	SMA 8,NJDEP,PAI
87-68-3	Hexachlorobutadiene	ND		ug/L	0.241	0.500	1	EPA 8260C Certifications:		5/25/2023 11:49	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 40 of 57

Client Sample ID: Trip Blank

York Sample ID: 23E1235-06

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 3:00 pm

Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/ Method Prepared Ana	Time lyzed	Analyst
98-82-8	Isopropylbenzene	ND		ug/L	0.405	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,NJDEP,PAI
79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 NELAC-NY10854,NELAC-NY12058,NJDE		SMA
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.244	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,NJDEP,PAI
108-87-2	Methylcyclohexane	ND		ug/L	0.477	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 NELAC-NY10854,NELAC-NY12058,NJDE		SMA
75-09-2	Methylene chloride	ND		ug/L	0.397	2.00	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,NJDEP,PAI
91-20-3	Naphthalene	ND		ug/L	0.212	2.00	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 NELAC-NY10854,NELAC-NY12058,NJDE		SMA
104-51-8	n-Butylbenzene	ND		ug/L	0.399	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,NJDEP,PAI
103-65-1	n-Propylbenzene	ND		ug/L	0.384	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,NJDEP,PAI
95-47-6	o-Xylene	ND		ug/L	0.261	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,PADEP
179601-23-1	p- & m- Xylenes	ND		ug/L	0.578	1.00	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,PADEP
105-05-5	* p-Diethylbenzene	ND		ug/L	0.341	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00	23 11:49	SMA
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20	23 11:49	SMA
99-87-6	p-Isopropyltoluene	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,NJDEP,PAI
135-98-8	sec-Butylbenzene	ND		ug/L	0.444	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,NJDEP,PAI
100-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,NJDEP,PAI
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.608	1.00	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 NELAC-NY10854,NELAC-NY12058,NJDE		SMA
98-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,NJDEP,PAI
127-18-4	Tetrachloroethylene	ND		ug/L	0.239	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,NJDEP,PAI
108-88-3	Toluene	ND		ug/L	0.346	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,NJDEP,PAI
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA		SMA 8,NJDEP,PAI
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA	23 11:49	SMA
79-01-6	Trichloroethylene	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA	23 11:49	SMA
75-69-4	Trichlorofluoromethane	ND		ug/L	0.337	0.500	1	EPA 8260C Certifications:	05/25/2023 09:00 05/25/20 CTDOH-PH-0723,NELAC-NY10854,NELA	23 11:49	SMA
										1.1200	.,

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 41 of 57

FAX (203) 357-0166

Client Sample ID: Trip Blank

York Sample ID: 23E1235-06

York Project (SDG) No. 23E1235 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
May 18, 2023 3:00 pm

Date Received 05/19/2023

VOA, 8260 LOW MASTER

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:
---------------	---------------

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/L	0.469	0.500	1	EPA 8260C Certifications: C	TDOH-PH	05/25/2023 09:00 I-0723,NELAC-NY10	05/25/2023 11:49 854,NELAC-NY1205	SMA 58,NJDEP,PA
1330-20-7	Xylenes, Total	ND		ug/L	0.836	1.50	1	EPA 8260C Certifications: C	TDOH-PH	05/25/2023 09:00 H-0723,NELAC-NY10	05/25/2023 11:49 854,NELAC-NY1205	SMA 58,NJDEP
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	104 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	98.3 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.0 %			79-122							

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@ Page 42 of 57

Analytical Batch Summary

Batch ID: BE31539	Preparation Method:	EPA 3510C	Prepared By:	moa
YORK Sample ID	Client Sample ID	Preparation Date		
23E1235-01	MW-5AR	05/23/23		
23E1235-01RE1	MW-5AR	05/23/23		
23E1235-02	MW-3AR	05/23/23		
23E1235-03	MW-4AR	05/23/23		
23E1235-04	MW-1AR	05/23/23		
23E1235-05	DUP	05/23/23		
BE31539-BLK1	Blank	05/23/23		
BE31539-BLK2	Blank	05/23/23		
BE31539-BS1	LCS	05/23/23		
BE31539-BS2	LCS	05/23/23		
BE31539-BSD1	LCS Dup	05/23/23		
Batch ID: BE31702	Preparation Method:	EPA 5030B	Prepared By:	SMA
YORK Sample ID	Client Sample ID	Preparation Date		
23E1235-01	MW-5AR	05/25/23		
23E1235-02	MW-3AR	05/25/23		
23E1235-03	MW-4AR	05/25/23		
23E1235-04	MW-1AR	05/25/23		
23E1235-05	DUP	05/25/23		
23E1235-06	Trip Blank	05/25/23		
BE31702-BLK1	Blank	05/25/23		

05/25/23

05/25/23

BE31702-BS1

BE31702-BSD1

LCS

LCS Dup

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE31702 - EPA 5030B											
Blank (BE31702-BLK1)							Prep	ared & Analy	yzed: 05/25/	2023	
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L								
1,1,1-Trichloroethane	ND	0.500	"								
1,1,2,2-Tetrachloroethane	ND	0.500	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.500	"								
113)											
1,1,2-Trichloroethane	ND	0.500	"								
1,1-Dichloroethane	ND	0.500	"								
1,1-Dichloroethylene	ND	0.500	"								
1,2,3-Trichlorobenzene	ND	0.500	"								
1,2,3-Trichloropropane	ND	0.500	"								
1,2,4-Trichlorobenzene	ND	0.500	"								
1,2,4-Trimethylbenzene	ND	0.500	"								
1,2-Dibromo-3-chloropropane	ND	0.500	"								
1,2-Dibromoethane	ND	0.500	"								
1,2-Dichlorobenzene	ND	0.500	"								
1,2-Dichloroethane	ND	0.500	"								
1,2-Dichloropropane	ND	0.500	"								
1,3,5-Trimethylbenzene	ND	0.500	"								
1,3-Dichlorobenzene	ND	0.500	"								
1,3-Dichloropropane	ND	0.500	"								
1,4-Dichlorobenzene	ND	0.500	"								
1,4-Dioxane	ND	80.0	"								
2-Butanone	ND	0.500	"								
2-Hexanone	ND	0.500	"								
4-Methyl-2-pentanone	ND	0.500	"								
Acetone	ND	2.00	"								
Acrolein	ND	0.500	"								
Acrylonitrile	ND	0.500	"								
Benzene	ND	0.500	"								
Bromochloromethane	ND	0.500	"								
Bromodichloromethane	ND	0.500	"								
Bromoform	ND	0.500	"								
Bromomethane	ND	0.500	"								
Carbon disulfide	ND	0.500	"								
Carbon tetrachloride	ND	0.500	"								
Chlorobenzene	ND	0.500	"								
Chloroethane	ND	0.500	"								
Chloroform	ND	0.500	"								
Chloromethane	ND	0.500	"								
cis-1,2-Dichloroethylene	ND	0.500	"								
cis-1,3-Dichloropropylene	ND	0.500	"								
Cyclohexane	ND	0.500	"								
Dibromochloromethane	ND	0.500	"								
Dibromomethane	ND	0.500	"								
Dichlorodifluoromethane	ND	0.500	"								
Ethyl Benzene	ND	0.500	"								
Hexachlorobutadiene	ND	0.500	"								
Isopropylbenzene	ND	0.500	"								
Methyl acetate	ND	0.500	"								
Methyl tert-butyl ether (MTBE)	ND	0.500	"								
- , , ,		*****									

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 44 of 57

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	Limit	Flag
·	Result	Ziiiii	- Carto	20,01	TODAIL	, 11420	2	6			- 145
Batch BE31702 - EPA 5030B											
Blank (BE31702-BLK1)							Prep	ared & Analy	zed: 05/25/	2023	
Methylcyclohexane	ND	0.500	ug/L								
Methylene chloride	ND	2.00	"								
Naphthalene	ND	2.00	"								
n-Butylbenzene	ND	0.500	"								
n-Propylbenzene	ND	0.500	"								
o-Xylene	ND	0.500	"								
p- & m- Xylenes	ND	1.00	"								
p-Diethylbenzene	ND	0.500	"								
p-Ethyltoluene	ND	0.500	"								
p-Isopropyltoluene	ND	0.500	"								
sec-Butylbenzene	ND	0.500	"								
Styrene	ND	0.500	"								
tert-Butyl alcohol (TBA)	ND	1.00	"								
tert-Butylbenzene	ND	0.500	"								
Tetrachloroethylene	ND	0.500	"								
Toluene	ND	0.500	"								
trans-1,2-Dichloroethylene	ND	0.500	"								
trans-1,3-Dichloropropylene	ND	0.500	"								
Trichloroethylene	ND	0.500	"								
Trichlorofluoromethane	ND	0.500	,,								
Vinyl Chloride	ND ND	0.500	,,								
Xylenes, Total	ND	1.50	"								
Surrogate: SURR: 1,2-Dichloroethane-d4	10.1		"	10.0		101	69-130				
Surrogate: SURR: Toluene-d8	9.86		"	10.0		98.6	81-117				
-	9.97		"	10.0		99.7	79-122				
Surrogate: SURR: p-Bromofluorobenzene	9.9/			10.0		99.7					
LCS (BE31702-BS1)								ared & Analy	zed: 05/25/	2023	
1,1,1,2-Tetrachloroethane	10.4		ug/L	10.0		104	82-126				
1,1,1-Trichloroethane	11.0		"	10.0		110	78-136				
1,1,2,2-Tetrachloroethane	11.2		"	10.0		112	76-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	11.7		"	10.0		117	54-165				
113) 1,1,2-Trichloroethane	10.0		,,	10.0		100	82-123				
1,1-Dichloroethane	10.2		"	10.0		102	82-129				
1,1-Dichloroethylene	10.2		,,	10.0		102	68-138				
1,2,3-Trichlorobenzene	9.51		,,	10.0		95.1	76-136				
1,2,3-Trichloropropane	9.99		,,	10.0		99.9	77-128				
1,2,4-Trichlorobenzene	9.67		,,	10.0							
1,2,4-Trimethylbenzene			,,			96.7	76-137				
1,2-Dibromo-3-chloropropane	10.4		,,	10.0		104	82-132				
	9.20		,,	10.0		92.0	45-147				
1,2-Dibromoethane	10.4			10.0		104	83-124				
1,2-Dichlorosthoro	10.2		"	10.0		102	79-123				
1,2-Dichloroethane	10.6			10.0		106	73-132				
1,2-Dichloropropane	10.4			10.0		104	78-126				
1,3,5-Trimethylbenzene	10.2			10.0		102	80-131				
1,3-Dichlorobenzene	10.2		"	10.0		102	86-122				
1,3-Dichloropropane	10.2		"	10.0		102	81-125				
1,4-Dichlorobenzene	10.2		"	10.0		102	85-124				
1,4-Dioxane	17.7		"	210		8.44	10-349	Low Bias			
2-Butanone	9.41		"	10.0		94.1	49-152				
2-Hexanone	8.88		"	10.0		88.8	51-146				
	OTD:=====				0.00.00	(=\tau=				44.4.5	
120 RESEARCH DRIVE	STRATFORD, CT 066	515		13	32-02 89th A	VENUE	F	RICHMOND	HILL, NY	11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

Page 45 of 57 ClientServices@

RPD

%REC

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit C	Jnits	Level	Result	%REC	Limits	Flag	KPD	Limit	Flag
Batch BE31702 - EPA 5030B											
LCS (BE31702-BS1)							Prep	ared & Analy	zed: 05/25/	2023	
4-Methyl-2-pentanone	10.0	ι	ıg/L	10.0		100	57-145				
Acetone	6.15		"	10.0		61.5	14-150				
Acrolein	12.5		"	10.0		125	10-153				
Acrylonitrile	10.6		"	10.0		106	51-150				
Benzene	10.8		"	10.0		108	85-126				
Bromochloromethane	10.9		"	10.0		109	77-128				
Bromodichloromethane	10.2		"	10.0		102	79-128				
Bromoform	11.1		"	10.0		111	78-133				
Bromomethane	8.67		"	10.0		86.7	43-168				
Carbon disulfide	11.3		"	10.0		113	68-146				
Carbon tetrachloride	11.2		"	10.0		112	77-141				
Chlorobenzene	10.8		"	10.0		108	88-120				
Chloroethane	10.3		"	10.0		103	65-136				
Chloroform	10.5		"	10.0		105	82-128				
Chloromethane	8.59		"	10.0		85.9	43-155				
cis-1,2-Dichloroethylene	10.6		"	10.0		106	83-129				
cis-1,3-Dichloropropylene	10.2		"	10.0		102	80-131				
Cyclohexane	11.1		"	10.0		111	63-149				
Dibromochloromethane	10.4		"	10.0		104	80-130				
Dibromomethane	10.1		"	10.0		101	72-134				
Dichlorodifluoromethane	7.59		"	10.0		75.9	44-144				
Ethyl Benzene	10.6		"	10.0		106	80-131				
Hexachlorobutadiene	10.9		"	10.0		109	67-146				
Isopropylbenzene	10.0		"	10.0		100	76-140				
Methyl acetate	9.81		"	10.0		98.1	51-139				
Methyl tert-butyl ether (MTBE)	10.1		"	10.0		101	76-135				
Methylcyclohexane	10.8		"	10.0		108	72-143				
Methylene chloride	10.0		"	10.0		100	55-137				
Naphthalene	9.58		"	10.0		95.8	70-147				
n-Butylbenzene	10.8		"	10.0		108	79-132				
n-Propylbenzene	10.2		"	10.0		102	78-133				
o-Xylene	10.7		"	10.0		107	78-130				
p- & m- Xylenes	21.8		"	20.0		109	77-133				
p-Diethylbenzene	11.0		"	10.0		110	84-134				
p-Ethyltoluene	10.5		"	10.0		105	88-129				
p-Isopropyltoluene	10.8		"	10.0		108	81-136				
sec-Butylbenzene	10.9		"	10.0		109	79-137				
Styrene	10.8		"	10.0		108	67-132				
tert-Butyl alcohol (TBA)	50.8		"	50.0		102	25-162				
tert-Butylbenzene	10.6		"	10.0		106	77-138				
Tetrachloroethylene	5.63		"	10.0		56.3	82-131	Low Bias			
Toluene	10.4		"	10.0		104	80-127				
trans-1,2-Dichloroethylene	10.7		"	10.0		107	80-132				
trans-1,3-Dichloropropylene	10.2		"	10.0		102	78-131				
Trichloroethylene	9.47		"	10.0		94.7	82-128				
Trichlorofluoromethane	11.0		"	10.0		110	67-139				
Vinyl Chloride	9.56		"	10.0		95.6	58-145				
Surrogate: SURR: 1,2-Dichloroethane-d4	10.0		"	10.0		100	69-130				
Surrogate: SURR: Toluene-d8	9.78		"	10.0		97.8	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.46		"	10.0		94.6	79-122				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 46 of 57

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Allalyte	Kesuit	Lillit Ollits	Level	Result	70KEC	Lillits	Tag	KI D	Liiiit	Tag
Batch BE31702 - EPA 5030B										
LCS Dup (BE31702-BSD1)						Prep	oared & Anal	yzed: 05/25/	2023	
1,1,1,2-Tetrachloroethane	10.4	ug/L	10.0		104	82-126		0.289	30	
1,1,1-Trichloroethane	10.5	"	10.0		105	78-136		5.21	30	
1,1,2,2-Tetrachloroethane	11.3	"	10.0		113	76-129		0.798	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.9	"	10.0		109	54-165		6.46	30	
113)										
1,1,2-Trichloroethane	10.2	"	10.0		102	82-123		1.98	30	
1,1-Dichloroethane	9.75	"	10.0		97.5	82-129		4.32	30	
1,1-Dichloroethylene	10.3	"	10.0		103	68-138		5.85	30	
1,2,3-Trichlorobenzene	9.51	"	10.0		95.1	76-136		0.00	30	
1,2,3-Trichloropropane	10.1	"	10.0		101	77-128		1.10	30	
1,2,4-Trichlorobenzene	9.54	"	10.0		95.4	76-137		1.35	30	
1,2,4-Trimethylbenzene	10.4	"	10.0		104	82-132		0.770	30	
1,2-Dibromo-3-chloropropane	8.81	"	10.0		88.1	45-147		4.33	30	
1,2-Dibromoethane	10.5	"	10.0		105	83-124		1.44	30	
1,2-Dichlorobenzene	10.3	"	10.0		103	79-123		0.781	30	
1,2-Dichloroethane	10.4	"	10.0		104	73-132		2.19	30	
1,2-Dichloropropane	10.3	"	10.0		103	78-126		0.772	30	
1,3,5-Trimethylbenzene	10.1	"	10.0		101	80-131		1.38	30	
1,3-Dichlorobenzene	10.2	"	10.0		102	86-122		0.0976	30	
1,3-Dichloropropane	10.3	"	10.0		103	81-125		1.17	30	
1,4-Dichlorobenzene	10.4	"	10.0		104	85-124		1.26	30	
1,4-Dioxane	16.9	"	210		8.04	10-349	Low Bias	4.86	30	
2-Butanone	9.50	"	10.0		95.0	49-152		0.952	30	
2-Hexanone	9.02	"	10.0		90.2	51-146		1.56	30	
4-Methyl-2-pentanone	10.3	"	10.0		103	57-145		2.47	30	
Acetone	6.18	"	10.0		61.8	14-150		0.487	30	
Acrolein	12.2	"	10.0		122	10-153		2.44	30	
Acrylonitrile	10.5	"	10.0		105	51-150		0.190	30	
Benzene	10.4	"	10.0		104	85-126		3.79	30	
Bromochloromethane	10.7	"	10.0		107	77-128		2.32	30	
Bromodichloromethane	10.2	"	10.0		102	79-128		0.196	30	
Bromoform	11.4	"	10.0		114	78-133		2.14	30	
Bromomethane	8.66	"	10.0		86.6	43-168		0.115	30	
Carbon disulfide	10.5	"	10.0		105	68-146		7.25	30	
Carbon tetrachloride	10.6	"	10.0		106	77-141		5.48	30	
Chlorobenzene	10.8	"	10.0		108	88-120		0.555	30	
Chloroethane	9.58	"	10.0		95.8	65-136		7.44	30	
Chloroform	10.1	"	10.0		101	82-128		3.30	30	
Chloromethane	7.87	"	10.0		78.7	43-155		8.75	30	
cis-1,2-Dichloroethylene	10.2	"	10.0		102	83-129		4.23	30	
cis-1,3-Dichloropropylene	10.3	"	10.0		103	80-131		0.585	30	
Cyclohexane	10.5	"	10.0		105	63-149		5.66	30	
Dibromochloromethane	10.4	"	10.0		104	80-130		0.0957	30	
Dibromomethane	10.2	"	10.0		102	72-134		1.38	30	
Dichlorodifluoromethane	7.15	"	10.0		71.5	44-144		5.97	30	
Ethyl Benzene	10.5	"	10.0		105	80-131		0.853	30	
Hexachlorobutadiene	10.3	"	10.0		103	67-146		5.46	30	
Isopropylbenzene	9.81	"	10.0		98.1	76-140		2.12	30	
Methyl acetate	9.75	"	10.0		97.5	51-139		0.614	30	
-										
Methyl tert-butyl ether (MTBE)	9.95	"	10.0		99.5	76-135		1.10	30	

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientService

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BE31702	- EPA	5030R

LCS Dup (BE31702-BSD1)					Prepared & Ana	lyzed: 05/25/2	2023
Methylene chloride	9.85	ug/L	10.0	98.5	55-137	2.01	30
Naphthalene	9.50	"	10.0	95.0	70-147	0.839	30
n-Butylbenzene	10.7	"	10.0	107	79-132	1.21	30
n-Propylbenzene	10.1	"	10.0	101	78-133	1.38	30
o-Xylene	10.6	"	10.0	106	78-130	0.753	30
p- & m- Xylenes	21.6	"	20.0	108	77-133	0.920	30
p-Diethylbenzene	11.0	"	10.0	110	84-134	0.182	30
p-Ethyltoluene	10.3	"	10.0	103	88-129	1.73	30
p-Isopropyltoluene	10.8	"	10.0	108	81-136	0.278	30
sec-Butylbenzene	10.9	"	10.0	109	79-137	0.00	30
Styrene	10.7	"	10.0	107	67-132	0.840	30
tert-Butyl alcohol (TBA)	51.5	"	50.0	103	25-162	1.47	30
tert-Butylbenzene	10.5	"	10.0	105	77-138	0.662	30
Tetrachloroethylene	5.49	"	10.0	54.9	82-131 Low Bias	2.52	30
Toluene	10.3	"	10.0	103	80-127	1.26	30
trans-1,2-Dichloroethylene	10.2	"	10.0	102	80-132	4.67	30
trans-1,3-Dichloropropylene	10.3	"	10.0	103	78-131	0.488	30
Trichloroethylene	9.35	"	10.0	93.5	82-128	1.28	30
Trichlorofluoromethane	10.3	"	10.0	103	67-139	5.82	30
Vinyl Chloride	8.97	"	10.0	89.7	58-145	6.37	30
Surrogate: SURR: 1,2-Dichloroethane-d4	9.87	"	10.0	98.7	69-130		
Surrogate: SURR: Toluene-d8	9.89	"	10.0	98.9	81-117		
Surrogate: SURR: p-Bromofluorobenzene	9.39	"	10.0	93.9	79-122		

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 48 of 57 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BE31539-BLK1)						Prepared: 05/23/2023 Analyzed: 05/24
1,1-Biphenyl	ND	5.00	ug/L			
1,2,4,5-Tetrachlorobenzene	ND	5.00	"			
2,3,4,6-Tetrachlorophenol	ND	5.00	"			
2,4,5-Trichlorophenol	ND	5.00	"			
2,4,6-Trichlorophenol	ND	5.00	"			
2,4-Dichlorophenol	ND	5.00	"			
2,4-Dimethylphenol	ND	5.00	"			
2,4-Dinitrophenol	ND	5.00	"			
2,4-Dinitrotoluene	ND	5.00				
2,6-Dinitrotoluene	ND	5.00	"			
2-Chloronaphthalene	ND	5.00	"			
2-Chlorophenol	ND	5.00	"			
2-Methylnaphthalene	ND	5.00	,,			
2-Methylphenol	ND ND	5.00	"			
2-Nitroaniline	ND ND	5.00				
2-Nitrophenol	ND ND	5.00				
3- & 4-Methylphenols	ND ND	5.00				
3,3-Dichlorobenzidine	ND ND	5.00	,,			
3-Nitroaniline	ND ND	5.00	,,			
4,6-Dinitro-2-methylphenol	ND ND					
4-Bromophenyl phenyl ether	ND ND	5.00 5.00	,,			
4-Chloro-3-methylphenol			,,			
I-Chloroaniline	ND	5.00	,,			
	ND	5.00	,,			
4-Chlorophenyl phenyl ether 4-Nitroaniline	ND	5.00	,,			
	ND	5.00	,,			
l-Nitrophenol	ND	5.00	,,			
Acetophenone	ND	5.00	,,			
Benzaldehyde	ND	5.00				
Benzyl butyl phthalate	ND	5.00	"			
Bis(2-chloroethoxy)methane	ND	5.00	"			
Bis(2-chloroethyl)ether	ND	5.00	"			
Bis(2-chloroisopropyl)ether	ND	5.00	"			
Caprolactam	ND	5.00	"			
Carbazole	ND	5.00	"			
Dibenzofuran	ND	5.00	"			
Diethyl phthalate	ND	5.00	"			
Dimethyl phthalate	ND	5.00	"			
Di-n-butyl phthalate	ND	5.00	"			
Di-n-octyl phthalate	ND	5.00	"			
Hexachlorocyclopentadiene	ND	10.0	"			
sophorone	ND	5.00	"			
N-nitroso-di-n-propylamine	ND	5.00	"			
N-Nitrosodiphenylamine	ND	5.00	"			
Phenol	ND	5.00	"			
Propargite	ND	5.00	"			
Pyridine	ND	5.00	"			
Surrogate: SURR: 2-Fluorophenol	21.8		"	50.0	43.5	19.7-63.1
Surrogate: SURR: Phenol-d6	12.2		"	50.0	24.5	10.1-41.7
Surrogate: SURR: Nitrobenzene-d5	21.0		"	25.0	84.0	50.2-113
Surrogate: SURR: 2-Fluorobiphenyl	18.6		"	25.0	74.6	39.9-105
Surrogate: SURR: 2,4,6-Tribromophenol	53.7		"	50.0	107	39.3-151
2, 1,0 11 to to mophenoi	55.7			20.0	107	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

Page 49 of 57 ClientServices@

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BE31539-BLK1)						Prepared: 05/23/2023 Analyzed: 05/24/2023
Surrogate: SURR: Terphenyl-d14	24.9		ug/L	25.0	99.5	30.7-106
Blank (BE31539-BLK2)						Prepared: 05/23/2023 Analyzed: 05/30/2023
Acenaphthene	ND	0.0500	ug/L			
Acenaphthylene	ND	0.0500	"			
Anthracene	ND	0.0500	"			
Atrazine	ND	0.500	"			
Benzo(a)anthracene	ND	0.0500	"			
Benzo(a)pyrene	ND	0.0500	"			
Benzo(b)fluoranthene	ND	0.0500	"			
Benzo(g,h,i)perylene	ND	0.0500	"			
Benzo(k)fluoranthene	ND	0.0500	"			
Bis(2-ethylhexyl)phthalate	0.890	0.500	"			
Chrysene	ND	0.0500	"			
Dibenzo(a,h)anthracene	ND	0.0500	"			
Fluoranthene	ND	0.0500	"			
Fluorene	ND	0.0500	"			
Hexachlorobenzene	ND	0.0200	"			
Hexachlorobutadiene	ND	0.500	"			
Iexachloroethane	ND	0.500	"			
ndeno(1,2,3-cd)pyrene	ND	0.0500	"			
Naphthalene	ND	0.0500	"			
Nitrobenzene	ND	0.250	"			

ND

ND

ND

ND

0.500

0.250

0.0500

0.0500

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 FAX (203) 357-0166 ClientServices@ Page 50 of 57

www.YORKLAB.com (203) 325-1371

N-Nitrosodimethylamine

Pentachlorophenol

Phenanthrene

Pyrene

$Semivolatile\ Organic\ Compounds\ by\ GC/MS\ -\ Quality\ Control\ Data$

York Analytical Laboratories, Inc. - Stratford

Reporting

Spike

Source*

		Reporting		Spike	Source*		%REC				
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE31539 - EPA 3510C											
LCS (BE31539-BS1)							Prep	ared: 05/23/2	2023 Analyz	red: 05/24/2	2023
1,1-Biphenyl	21.5	5.00	ug/L	25.0		86.1	33-95				
1,2,4,5-Tetrachlorobenzene	18.0	5.00	"	25.0		72.2	26-120				
2,3,4,6-Tetrachlorophenol	20.8	5.00	"	25.0		83.3	30-130				
2,4,5-Trichlorophenol	17.0	5.00	"	25.0		67.8	32-114				
2,4,6-Trichlorophenol	17.0	5.00	"	25.0		68.1	35-118				
2,4-Dichlorophenol	16.2	5.00	"	25.0		64.8	25-116				
2,4-Dimethylphenol	13.0	5.00	"	25.0		51.8	15-116				
,4-Dinitrophenol	29.2	5.00	"	25.0		117	10-170				
2,4-Dinitrotoluene	20.1	5.00	"	25.0		80.4	41-128				
,6-Dinitrotoluene	19.5	5.00	"	25.0		78.2	45-116				
-Chloronaphthalene	14.2	5.00	"	25.0		56.8	33-112				
-Chlorophenol	15.0	5.00	"	25.0		60.2	15-120				
-Methylnaphthalene	14.2	5.00	"	25.0		57.0	24-118				
-Methylphenol	13.3	5.00	"	25.0		53.2	10-110				
-Nitroaniline	18.8	5.00	"	25.0		75.3	34-129				
-Nitrophenol	19.1	5.00	"	25.0		76.5	28-118				
- & 4-Methylphenols	11.1	5.00	"	25.0		44.5	10-107				
,3-Dichlorobenzidine	9.80	5.00	"	25.0		39.2	15-187				
-Nitroaniline	14.9	5.00	"	25.0		59.6	24-134				
,6-Dinitro-2-methylphenol	24.8	5.00	"	25.0		99.0	10-153				
-Bromophenyl phenyl ether	14.5	5.00	"	25.0		57.9	34-120				
-Chloro-3-methylphenol	16.7	5.00	"	25.0		66.8	20-120				
-Chloroaniline	10.0	5.00	"	25.0		40.0	10-147				
-Chlorophenyl phenyl ether	14.4	5.00	"	25.0		57.6	27-121				
-Nitroaniline	15.4	5.00	"	25.0		61.7	13-134				
-Nitrophenol	9.85	5.00	"	25.0		39.4	10-131				
Acetophenone	22.4	5.00	"	25.0		89.8	25-110				
Benzaldehyde	22.0	5.00	"	25.0		88.0	29-117				
Benzyl butyl phthalate	17.7	5.00	"	25.0		70.8	29-133				
Bis(2-chloroethoxy)methane	16.3	5.00	"	25.0		65.2	10-154				
Bis(2-chloroethyl)ether	15.0	5.00	"	25.0		60.0	17-125				
sis(2-chloroisopropyl)ether	14.7	5.00	"	25.0		58.9	10-139				
Caprolactam	6.10	5.00	"	25.0		24.4	10-137				
Carbazole	16.4	5.00	"	25.0		65.7	42-126				
Dibenzofuran	14.9	5.00	"	25.0		59.5	36-113				
Diethyl phthalate	16.4	5.00	"	25.0		65.4	38-115				
Dimethyl phthalate	16.0	5.00	"	25.0		63.8	38-119				
Amony i phinarace	10.0	5.00		25.0		05.0	30-129				

Surrogate: SURR: 2-Fluorophenol 41.7 50.0 83.4 19.7-63.1 Surrogate: SURR: Phenol-d6 26.2 50.0 52.3 10.1-41.7 Surrogate: SURR: Nitrobenzene-d5 138 50.2-113 34.5 25.0 Surrogate: SURR: 2-Fluorobiphenyl 39.9-105 31.7 25.0 127 Surrogate: SURR: 2,4,6-Tribromophenol 93.4 50.0 187 39.3-151 Surrogate: SURR: Terphenyl-d14 37.8 25.0 151 30.7-106

5.00

5.00

10.0

5.00

5.00

5.00

5.00

5.00

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.5

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE

(203) 325-1371

17.1

17.6

7.54

17.0

14.7

17.8

6.59

4.10

Di-n-butyl phthalate

Di-n-octyl phthalate

Isophorone

Phenol

Pyridine

Hexachlorocyclopentadiene

N-nitroso-di-n-propylamine

www.YORKLAB.com

N-Nitrosodiphenylamine

32-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

68.5

70.4

30.2

68.0

58.7

71.0

26.4

16.1

31-120

21-149

10-130

25-127

26-122

23-149

10-110

10-90

ClientServices@ Page 51 of 57

RPD

%REC

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

%REC

Reporting

		Reporting		Spike	Source*		%REC			KI D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE31539 - EPA 3510C											
LCS (BE31539-BS2)							Prep	pared: 05/23/20)23 Analyz	ed: 05/30/2	2023
Acenaphthene	0.290	0.0500	ug/L	1.00		29.0	25-116				
Acenaphthylene	0.340	0.0500	"	1.00		34.0	26-116				
Anthracene	0.320	0.0500	"	1.00		32.0	25-123				
Benzo(a)anthracene	0.360	0.0500	"	1.00		36.0	33-125				
Benzo(a)pyrene	0.290	0.0500	"	1.00		29.0	32-132	Low Bias			
Benzo(b)fluoranthene	0.320	0.0500	"	1.00		32.0	22-137				
Benzo(g,h,i)perylene	0.380	0.0500	"	1.00		38.0	10-138				
Benzo(k)fluoranthene	0.310	0.0500	"	1.00		31.0	20-137				
Bis(2-ethylhexyl)phthalate	1.05	0.500	"	1.00		105	10-189				
Chrysene	0.350	0.0500	"	1.00		35.0	32-124				
Dibenzo(a,h)anthracene	0.380	0.0500	"	1.00		38.0	16-133				
Fluoranthene	0.280	0.0500	"	1.00		28.0	32-121	Low Bias			
Fluorene	0.340	0.0500	"	1.00		34.0	28-118				
Hexachlorobenzene	0.310	0.0200	"	1.00		31.0	23-124				
Hexachlorobutadiene	ND	0.500	"	1.00			15-123	Low Bias			
Hexachloroethane	1.91	0.500	"	1.00		191	18-115	High Bias			
Indeno(1,2,3-cd)pyrene	0.390	0.0500	"	1.00		39.0	15-135	ū			
Naphthalene	0.300	0.0500	"	1.00		30.0	18-120				
Nitrobenzene	0.610	0.250	"	1.00		61.0	21-121				
N-Nitrosodimethylamine	ND	0.500	"	1.00		01.0	10-124	Low Bias			
Pentachlorophenol	0.790	0.250	,,	1.00		79.0	10-156				
Phenanthrene	0.330	0.0500	"	1.00		33.0	24-127				
Pyrene	0.340	0.0500	"	1.00		34.0	31-132				
	0.510	0.0500		1.00		51.0					
LCS Dup (BE31539-BSD1)							Prep	pared: 05/23/20)23 Analyz	ed: 05/24/2	2023
1,1-Biphenyl	15.6	5.00	ug/L	25.0		62.4	33-95		31.9	20	Non-dir.
1,2,4,5-Tetrachlorobenzene	16.3	5.00	"	25.0		65.3	26-120		10.1	20	
2,3,4,6-Tetrachlorophenol	18.4	5.00	"	25.0		73.7	30-130		12.3	20	
2,4,5-Trichlorophenol	14.9	5.00	"	25.0		59.6	32-114		12.8	20	
2,4,6-Trichlorophenol	15.0	5.00	"	25.0		59.9	35-118		12.8	20	
2,4-Dichlorophenol	13.9	5.00	"	25.0		55.5	25-116		15.5	20	
2,4-Dimethylphenol	10.8	5.00	"	25.0		43.0	15-116		18.5	20	
2,4-Dinitrophenol	24.8	5.00	"	25.0		99.1	10-170		16.4	20	
2,4-Dinitrotoluene	17.7	5.00	"	25.0		70.6	41-128		12.9	20	
2,6-Dinitrotoluene	17.4	5.00	"	25.0		69.6	45-116		11.6	20	
2-Chloronaphthalene	12.6	5.00	"	25.0		50.5	33-112		11.9	20	
2-Chlorophenol	13.3	5.00	"	25.0		53.2	15-120		12.3	20	
2-Methylnaphthalene	12.6	5.00	"	25.0		50.5	24-118		12.1	20	
2-Methylphenol	11.2	5.00	"	25.0		44.8	10-110		17.2	20	
2-Nitroaniline	16.6	5.00	"	25.0		66.2	34-129		12.8	20	
2-Nitrophenol	16.6	5.00	"	25.0		66.3	28-118		14.2	20	
3- & 4-Methylphenols	9.43	5.00	"	25.0		37.7	10-107		16.5	20	
3,3-Dichlorobenzidine	7.22	5.00	"	25.0		28.9	15-187		30.3	20	Non-dir.
3-Nitroaniline	13.2	5.00	"	25.0		52.7	24-134		12.3	20	
4,6-Dinitro-2-methylphenol	21.9	5.00	"	25.0		87.5	10-153		12.3	20	
4-Bromophenyl phenyl ether	12.9	5.00	"	25.0		51.4	34-120		11.8	20	
4-Chloro-3-methylphenol	14.6	5.00	"	25.0		58.4	20-120		13.5	20	
4-Chloroaniline	8.69	5.00	"	25.0		34.8	10-147		14.0	20	
4-Chlorophenyl phenyl ether	12.5	5.00	,,	25.0		50.0	27-121		14.1	20	
4-Nitroaniline	13.8	5.00	,,	25.0		55.0	13-134		11.5	20	
4-Nitrophenol	8.47	5.00	"	25.0		33.9	10-131		15.1	20	
r	7.50	5.00		23.0		55.7	10.131				
120 PESEAPOH DRIVE	STRATEORD CT	06615		40	2-02 80th Δ\/	ENILIE		RICHMOND	LIII I KIY	11/10	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 52 of 57

RPD

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE31539 - EPA 3510C											
LCS Dup (BE31539-BSD1)							Prepa	ared: 05/23/2	023 Analyz	ed: 05/24/	2023
Acetophenone	16.1	5.00	ug/L	25.0		64.4	25-110		32.8	20	Non-dir.
Benzaldehyde	16.0	5.00	"	25.0		64.1	29-117		31.4	20	Non-dir.
Benzyl butyl phthalate	16.6	5.00	"	25.0		66.4	29-133		6.30	20	
Bis(2-chloroethoxy)methane	14.1	5.00	"	25.0		56.4	10-154		14.3	20	
Bis(2-chloroethyl)ether	13.7	5.00	"	25.0		54.9	17-125		8.91	20	
Bis(2-chloroisopropyl)ether	12.8	5.00	"	25.0		51.0	10-139		14.3	20	
Caprolactam	5.22	5.00	"	25.0		20.9	10-137		15.5	20	
Carbazole	15.0	5.00	"	25.0		60.0	42-126		9.10	20	
Dibenzofuran	13.3	5.00	"	25.0		53.1	36-113		11.4	20	
Diethyl phthalate	14.5	5.00	"	25.0		58.0	38-115		12.1	20	
Dimethyl phthalate	14.2	5.00	"	25.0		56.7	38-129		11.7	20	
Di-n-butyl phthalate	16.2	5.00	"	25.0		64.7	31-120		5.65	20	
Di-n-octyl phthalate	17.0	5.00	"	25.0		67.9	21-149		3.53	20	
Hexachlorocyclopentadiene	6.66	10.0	"	25.0		26.6	10-130		12.4	20	
Isophorone	14.6	5.00	"	25.0		58.6	25-127		14.9	20	
N-nitroso-di-n-propylamine	12.6	5.00	"	25.0		50.2	26-122		15.6	20	
N-Nitrosodiphenylamine	15.7	5.00	"	25.0		62.8	23-149		12.2	20	
Phenol	5.66	5.00	"	25.0		22.6	10-110		15.2	20	
Pyridine	4.22	5.00	"	25.5		16.5	10-90		2.88	20	
Surrogate: SURR: 2-Fluorophenol	26.4		"	50.0		52.8	19.7-63.1				
Surrogate: SURR: Phenol-d6	16.2		"	50.0		32.3	10.1-41.7				

25.0

25.0

50.0

25.0

85.2

77.8

107

95.5

50.2-113

39.9-105

39.3-151

30.7-106

120 RESEARCH DRIVE STRATFORD, CT 06615 • 132-02 89th AVENUE RICHMOND HILL, NY 11418

(203) 325-1371

21.3

19.4

53.5

23.9

Surrogate: SURR: Nitrobenzene-d5

Surrogate: SURR: 2-Fluorobiphenyl

Surrogate: SURR: Terphenyl-d14

www.YORKLAB.com

Surrogate: SURR: 2,4,6-Tribromophenol

FAX (203) 357-0166

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
23E1235-01	MW-5AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23E1235-02	MW-3AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23E1235-03	MW-4AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23E1235-04	MW-1AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23E1235-05	DUP	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23E1235-06	Trip Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference
	method has certain limitations with respect to analytes of this nature

J Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.

CAL-E The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%)

Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.

Definitions and Other Explanations

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect.

This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

NR Not reported

B

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 55 of 57

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 56 of 57

TOP TOBER

Field Chain-of-Custody Record

York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.

YORK Project No.

YOUR Information Report To:	Report To:	To:	Invoice To:		YOUR Project Number	Turn-Around Time
Company: Be Company es	Company:		Company:		W 101000	RUSH - Next Day
Addigs 25 Restant Parkway	Address: SQM	2	Address: SOUME		いっしていいの	RUSH - Two Day
Menden, CT OUGSO					YOUR Project Name	RUSH - Three Day
Phone.:	Phone.:	0	Phone.:	*		RUSH - Four Day
bran Lowing	Contact: CLW	3	Contact: \ ()\ \ \	le		Standard (5-7 Day)
E-mail: BLCOMP ANICE. CON-	E-mail:		E-mail:		YOUR PO#:	(7-10 for PFAS)
Please print clearly and legibly! All information must be complete. Samples will not be loaded in and the turn-around-time clock will not	tor.	Matrix Codes	Samples From	Report / El	Report / EDD Type (circle selections)	YORK Reg. Comp.
begin until any questions by YORK are resolved.		S - soil / solid	New York	Summary Report	CT RCP EQuIS (Standard)	Compared to the following
Christina Rizzo	O	GW - groundwater		QA Report	CT RCP DQA/DUE NYSDEC EQUIS	Kegulation(s): (please fill in)
Chairting One		DW - drinking water			peor	
Complete Collected but (white AND effect agent come		WW - wastewater	Pennsylvania NY ASI	B Package	Deliverables NJDEP SRP HazSite	te
Sample Identification		-	Fime Sampled	4	Analyses Reguested	Confainer Type No
MW/- SAD		14.5	000	0	2010	200
0 00			7113 440ES 0170	7002 18 2	\$ 4001, FULL SVIKS (\$2.10)	(5210) 2 VOLE, 2 ambers
W. JAR		32	0845	1		
MW-4AK		3.5	1005			
MW-1AR		3	11.35			
DVP		G K			K	K
Trip Blank		5	k	7		2 VOAs
Comments:				Preservati	Preservation: (check all that apply)	Special Instruction
		to any to believe how as action	HCI NO. 200V starting Countries shall be a south on bellished be leader to be a south of the sou	Z V	103	Field Filtered
1. Samples Refinduished by / Company	9	1. Samples Received by / Company	nab pickupit circle 163 of 140 ZTIPAC	ASCORDICA	Acid Other:	Defections
Christian Page 5/19/2023		Shanurt	5-19-3	3:30		5-19-20,3 @ 6:00
2. Samples Received by / Company	60	amples Relinquished by / Company	Date/T	ime.	pany	Date/Time
4. Samples Relinquished by / Company	Date/Time 4. S.	4. Samples Received by / Company	pany Date/Time		Samples Received in LAB by	Date/Time Temperature
7		The state of the s	WHAT IS NOT THE PARTY OF THE PA			O saaiban

Technical Report

prepared for:

BL Companies 355 Research Parkway Meriden CT, 06450 Attention: Brian Lowry

Report Date: 10/30/2023

Client Project ID: 03C497-M

York Project (SDG) No.: 23J1357

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 10/30/2023 Client Project ID: 03C497-M York Project (SDG) No.: 23J1357

BL Companies

355 Research Parkway Meriden CT, 06450

Attention: Brian Lowry

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on October 20, 2023 and listed below. The project was identified as your project: 03C497-M.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
23J1357-01	MW-1AR	Ground Water	10/19/2023	10/20/2023
23J1357-02	MW-3AR	Ground Water	10/19/2023	10/20/2023
23J1357-03	MW-4AR	Ground Water	10/19/2023	10/20/2023
23J1357-04	MW-5AR	Ground Water	10/19/2023	10/20/2023
23J1357-05	DUP	Ground Water	10/19/2023	10/20/2023

General Notes for York Project (SDG) No.: 23J1357

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Cassie L. Mosher Laboratory Manager

Och I most

Date: 10/30/2023

Client Sample ID: MW-1AR York Sample ID:

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23J135703C497-MGround WaterOctober 19, 2023 11:58 am10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

23J1357-01

Sample Prepared	1 by Method: EPA 5030B											
CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
30-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	1.08	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 9854,NELAC-NY120	SMA 58,NJDEP-C
1-55-6	1,1,1-Trichloroethane	ND		ug/L	1.33	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 854,NELAC-NY120	SMA 58,NJDEP-C
9-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	1.28	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 854,NELAC-NY120	SMA 58,NJDEP-C
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	1.43	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 854,NELAC-NY120	SMA 58,NJDEP-C
9-00-5	1,1,2-Trichloroethane	ND		ug/L	1.24	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:13 9854,NELAC-NY120	SMA 58,NJDEP-C
5-34-3	1,1-Dichloroethane	ND		ug/L	1.36	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 9854,NELAC-NY120	SMA 58,NJDEP-C
5-35-4	1,1-Dichloroethylene	ND		ug/L	1.64	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:13	SMA
7-61-6	1,2,3-Trichlorobenzene	ND		ug/L	1.11	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 /10854,NELAC-NY12	10/26/2023 16:13	SMA
6-18-4	1,2,3-Trichloropropane	ND		ug/L	1.36	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 /10854,NELAC-NY12	10/26/2023 16:13	SMA
20-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.690	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 /10854,NELAC-NY12	10/26/2023 16:13	SMA
5-63-6	1,2,4-Trimethylbenzene	ND		ug/L	1.55	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13	SMA
6-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	2.16	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13	SMA
06-93-4	1,2-Dibromoethane	ND		ug/L	1.08	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13	SMA
5-50-1	1,2-Dichlorobenzene	ND		ug/L	1.35	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13	SMA
07-06-2	1,2-Dichloroethane	ND		ug/L	1.88	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13	SMA
8-87-5	1,2-Dichloropropane	ND		ug/L	1.64	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13	SMA
08-67-8	1,3,5-Trimethylbenzene	ND		ug/L	1.74	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13	SMA
41-73-1	1,3-Dichlorobenzene	ND		ug/L	1.42	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13	SMA
42-28-9	1,3-Dichloropropane	ND		ug/L	1.30	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 /10854,NELAC-NY12	10/26/2023 16:13	SMA
06-46-7	1,4-Dichlorobenzene	ND		ug/L	1.56	2.50	5	EPA 8260C Certifications:	CTDOH-PF	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 0854,NELAC-NY120	SMA 58,NJDEP-C
23-91-1	1,4-Dioxane	ND	CCVE	ug/L	176	400	5	EPA 8260C Certifications:		10/26/2023 09:00 /10854,NELAC-NY12	10/26/2023 16:13	SMA
3-93-3	2-Butanone	ND		ug/L	2.10	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:13	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 61

Client Sample ID: MW-1AR

<u>York Sample ID:</u> 23J1357-01

York Project (SDG) No. 23J1357

Sample Prepared by Method: EPA 5030B

Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
October 19, 2023 11:58 am

Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		Date/Time Analyzed	Analyst
591-78-6	2-Hexanone	ND		ug/L	1.60	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 4,NELAC-NY1205	SMA 8,NJDEP-CT
108-10-1	4-Methyl-2-pentanone	ND		ug/L	1.82	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 4,NELAC-NY1205	SMA 8,NJDEP-CT
67-64-1	Acetone	ND		ug/L	6.70	10.0	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 4,NELAC-NY1205	SMA 8,NJDEP-CT
107-02-8	Acrolein	ND		ug/L	2.24	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 4,NELAC-NY1205	SMA 8,NJDEP-CT
107-13-1	Acrylonitrile	ND		ug/L	2.11	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 4,NELAC-NY1205	SMA 8,NJDEP-CT
71-43-2	Benzene	65.0		ug/L	1.40	2.50	5	EPA 8260C	10/26/2023 09:00 1	0/26/2023 16:13	SMA
								Certifications:	CTDOH-PH-0723,NELAC-NY1085	4,NELAC-NY1205	58,NJDEP-C
74-97-5	Bromochloromethane	ND		ug/L	1.77	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 NELAC-NY10854,NELAC-NY1205	0/26/2023 16:13 8,NJDEP-CT005,P	SMA ADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	1.22	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 4,NELAC-NY1205	SMA 8,NJDEP-CT
75-25-2	Bromoform	ND		ug/L	0.815	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 4,NELAC-NY1205	SMA 8,NJDEP-CT
74-83-9	Bromomethane	ND	CCVE	ug/L	0.595	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 1,NELAC-NY1205	SMA 8,NJDEP-CT
75-15-0	Carbon disulfide	ND		ug/L	1.81	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 4,NELAC-NY1205	SMA 8,NJDEP-CT
56-23-5	Carbon tetrachloride	ND		ug/L	1.02	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	.0/26/2023 16:13 4,NELAC-NY1205	SMA 8,NJDEP-CT
108-90-7	Chlorobenzene	ND		ug/L	1.42	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 4,NELAC-NY1205	SMA 8,NJDEP-CT
75-00-3	Chloroethane	ND		ug/L	2.24	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 4,NELAC-NY1205	SMA 8,NJDEP-CT
67-66-3	Chloroform	ND		ug/L	1.22	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 4,NELAC-NY1205	SMA 8,NJDEP-CT
74-87-3	Chloromethane	ND		ug/L	1.86	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 1,NELAC-NY1205	SMA 8,NJDEP-CT
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	1.47	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 1,NELAC-NY1205	SMA 8,NJDEP-CT
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	1.31	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 CTDOH-PH-0723,NELAC-NY10854	0/26/2023 16:13 1,NELAC-NY1205	SMA 8,NJDEP-CT
110-82-7	Cyclohexane	47.5		ug/L	2.46	2.50	5	EPA 8260C Certifications:		0/26/2023 16:13	SMA
124 40 1	D2 11 3	ND.		/1	0.730	2.50	5			.0/26/2023 16:13	
124-48-1	Dibromochloromethane	ND		ug/L				EPA 8260C Certifications:	CTDOH-PH-0723,NELAC-NY10854	4,NELAC-NY1205	
74-95-3	Dibromomethane	ND		ug/L	1.02	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 NELAC-NY10854,NELAC-NY1205	.0/26/2023 16:13 8,NJDEP-CT005,P	SMA ADEP-68-04
75-71-8	Dichlorodifluoromethane	ND		ug/L	2.26	2.50	5	EPA 8260C Certifications:	10/26/2023 09:00 1 NELAC-NY10854,NELAC-NY1205	0/26/2023 16:13 8,NJDEP-CT005,P	SMA ADEP-68-04
100-41-4	Ethyl Benzene	1.95	J	ug/L	1.45	2.50	5	EPA 8260C		0/26/2023 16:13	SMA
								Certifications:	CTDOH-PH-0723,NELAC-NY1085	4,NELAC-NY120:	58,NJDEP-C

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 5 of 61

Client Sample ID: MW-1AR **York Sample ID:** 23J1357-01

York Project (SDG) No. 23J1357

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time October 19, 2023 11:58 am Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

	rganics, 8260 - Comprehensiv	<u>/e</u>			Log-in	Notes:		Sam	ple Note	<u>s:</u>		
CAS No	ob by Method: EPA 5030B Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-68-3	Hexachlorobutadiene	ND		ug/L	1.20	2.50	5	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 710854,NELAC-NY12	10/26/2023 16:13 2058,NJDEP-CT005,I	SMA PADEP-68-04
98-82-8	Isopropylbenzene	2.20	J	ug/L	2.02	2.50	5	EPA 8260C		10/26/2023 09:00	10/26/2023 16:13	SMA
								Certifications:	CTDOH-PI	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
79-20-9	Methyl acetate	ND		ug/L	2.21	2.50	5	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 710854,NELAC-NY12	10/26/2023 16:13 2058,NJDEP-CT005,I	SMA PADEP-68-04
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	1.22	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 9854,NELAC-NY120:	SMA 58,NJDEP-CT
108-87-2	Methylcyclohexane	14.9		ug/L	2.38	2.50	5	EPA 8260C		10/26/2023 09:00	10/26/2023 16:13	SMA
								Certifications:	NELAC-N	Y10854,NELAC-NY1	2058,NJDEP-CT005	PADEP-68-04
75-09-2	Methylene chloride	ND	CAL-E	ug/L	1.98	10.0	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 9854,NELAC-NY120:	SMA 58,NJDEP-CT
91-20-3	Naphthalene	ND		ug/L	1.06	10.0	5	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 710854,NELAC-NY12	10/26/2023 16:13 2058,NJDEP-CT005,I	SMA PADEP-68-04
104-51-8	n-Butylbenzene	ND		ug/L	2.00	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 9854,NELAC-NY120:	SMA 58,NJDEP-CT
103-65-1	n-Propylbenzene	2.00	J	ug/L	1.92	2.50	5	EPA 8260C		10/26/2023 09:00	10/26/2023 16:13	SMA
								Certifications:	CTDOH-PI	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
95-47-6	o-Xylene	ND		ug/L	1.30	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 854,NELAC-NY120	SMA 58,PADEP-68
179601-23-1	p- & m- Xylenes	ND		ug/L	2.89	5.00	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 9854,NELAC-NY120	SMA 58,PADEP-68
105-05-5	* p-Diethylbenzene	ND		ug/L	1.70	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00	10/26/2023 16:13	SMA
622-96-8	* p-Ethyltoluene	ND		ug/L	1.00	2.50	5	EPA 8260C Certifications:		10/26/2023 09:00	10/26/2023 16:13	SMA
99-87-6	p-Isopropyltoluene	ND		ug/L	1.88	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 9854,NELAC-NY120	SMA 58,NJDEP-CT
135-98-8	sec-Butylbenzene	ND		ug/L	2.22	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 9854,NELAC-NY120	SMA 58,NJDEP-CT
100-42-5	Styrene	ND		ug/L	1.28	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 9854,NELAC-NY120	SMA 58,NJDEP-CT
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	3.04	5.00	5	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 /10854,NELAC-NY12	10/26/2023 16:13 2058,NJDEP-CT005,I	SMA PADEP-68-04
98-06-6	tert-Butylbenzene	ND		ug/L	1.84	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 854,NELAC-NY120:	SMA 58,NJDEP-CT
127-18-4	Tetrachloroethylene	ND	CCVE, ICVE, QL-02	ug/L	1.20	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 854,NELAC-NY120	SMA 58,NJDEP-CT
108-88-3	Toluene	ND		ug/L	1.73	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 9854,NELAC-NY120	SMA 58,NJDEP-CT
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	1.40	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 854,NELAC-NY120	SMA 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	1.14	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 854,NELAC-NY120	SMA 58,NJDEP-CT
79-01-6	Trichloroethylene	ND		ug/L	1.24	2.50	5	EPA 8260C Certifications:	СТDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 854,NELAC-NY120:	SMA 58,NJDEP-CT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 6 of 61

Client Sample ID: MW-1AR

York Sample ID:

23J1357-01

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
October 19, 2023 11:58 am

Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-69-4	Trichlorofluoromethane	ND		ug/L	1.68	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 854,NELAC-NY1205	SMA 8,NJDEP-CT
75-01-4	Vinyl Chloride	ND		ug/L	2.34	2.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 854,NELAC-NY1205	SMA 8,NJDEP-CT
1330-20-7	Xylenes, Total	ND		ug/L	4.18	7.50	5	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:13 854,NELAC-NY1205	SMA 8,NJDEP-CT
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	104 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	97.3 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	94.7 %			79-122							

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 3510C										
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications: N	10/26/2023 08:35 NELAC-NY10854,NJDEP-CT00	10/27/2023 23:54 5,PADEP-68-04440	КН-
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications: N	10/26/2023 08:35 NELAC-NY10854,NJDEP-CT00	10/27/2023 23:54 5,PADEP-68-04440	КН-
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications: N	10/26/2023 08:35 NELAC-NY10854,NJDEP-CT00	10/27/2023 23:54 5,PADEP-68-04440	КН-
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications: C	10/26/2023 08:35 CTDOH-PH-0723,NELAC-NY10	10/27/2023 23:54 9854,NJDEP-CT005,P	KH- ADEP-68-04
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 CTDOH-PH-0723,NELAC-NY10	10/27/2023 23:54 9854,NJDEP-CT005,P	KH- ADEP-68-04
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications: C	10/26/2023 08:35 CTDOH-PH-0723,NELAC-NY10	10/27/2023 23:54 9854,NJDEP-CT005,P	KH- ADEP-68-04
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications: C	10/26/2023 08:35 CTDOH-PH-0723,NELAC-NY10	10/27/2023 23:54 9854,NJDEP-CT005,P	KH- ADEP-68-04
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications: C	10/26/2023 08:35 CTDOH-PH-0723,NELAC-NY10	10/27/2023 23:54 9854,NJDEP-CT005,P	KH- ADEP-68-04
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications: C	10/26/2023 08:35 CTDOH-PH-0723,NELAC-NY10	10/27/2023 23:54 9854,NJDEP-CT005,P	KH- ADEP-68-04
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications: C	10/26/2023 08:35 CTDOH-PH-0723,NELAC-NY10	10/27/2023 23:54 9854,NJDEP-CT005,P	KH- ADEP-68-04
91-58-7	2-Chloronaphthalene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications: C	10/26/2023 08:35 CTDOH-PH-0723,NELAC-NY10	10/27/2023 23:54 9854,NJDEP-CT005,P	KH- ADEP-68-04
95-57-8	2-Chlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications: C	10/26/2023 08:35 CTDOH-PH-0723,NELAC-NY10	10/27/2023 23:54 854,NJDEP-CT005,P	KH- ADEP-68-04
91-57-6	2-Methylnaphthalene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications: C	10/26/2023 08:35 CTDOH-PH-0723,NELAC-NY10	10/27/2023 23:54 854,NJDEP-CT005,P	KH- ADEP-68-04
95-48-7	2-Methylphenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications: C	10/26/2023 08:35 CTDOH-PH-0723,NELAC-NY10	10/27/2023 23:54 9854,NJDEP-CT005,P	KH- ADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 7 of 61

Client Sample ID: MW-1AR

York Sample ID: 23J1357-01

York Project (SDG) No. 23J1357 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
October 19, 2023 11:58 am

Date Received 10/20/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sam	<u>ple Notes:</u>
-------------------	-------------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/Tin Method Prepared Analyz	
88-74-4	2-Nitroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
88-75-5	2-Nitrophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
99-09-2	3-Nitroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
106-47-8	4-Chloroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
100-01-6	4-Nitroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
100-02-7	4-Nitrophenol	ND		ug/L	5.26	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
98-86-2	Acetophenone	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 NELAC-NY10854,NJDEP-CT005,PADEP-68-0	
100-52-7	Benzaldehyde	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 NELAC-NY10854,NJDEP-CT005,PADEP-68-0	
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.05	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
105-60-2	Caprolactam	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 NELAC-NY10854,NJDEP-CT005,PADEP-68-0	
86-74-8	Carbazole	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
132-64-9	Dibenzofuran	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
84-66-2	Diethyl phthalate	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	
131-11-3	Dimethyl phthalate	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	10/26/2023 08:35 10/27/2023 CTDOH-PH-0723,NELAC-NY10854,NJDEP-C	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 8 of 61

Client Sample ID: MW-1AR

York Sample ID:

23J1357-01

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
October 19, 2023 11:58 am

Date Received 10/20/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 23:54 854,NJDEP-CT005,P	KH- ADEP-68-044
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 23:54 854,NJDEP-CT005,P	KH- ADEP-68-044
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.26	10.5	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 23:54 854,NJDEP-CT005,P	KH- ADEP-68-044
78-59-1	Isophorone	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 23:54 854,NJDEP-CT005,P	KH- ADEP-68-044
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 23:54 854,NJDEP-CT005,P	KH- ADEP-68-044
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 23:54 854,NJDEP-CT005,P	KH- ADEP-68-044
108-95-2	Phenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 23:54 854,NJDEP-CT005,P	KH- ADEP-68-044
2312-35-8	* Propargite	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:		10/26/2023 08:35	10/27/2023 23:54	KH-
110-86-1	Pyridine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 23:54 854,NJDEP-CT005,P	KH- ADEP-68-044
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	25.8 %			19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	15.1 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	68.5 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	61.8 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	79.9 %			39.3-151							

Semi-volatiles, 8270 - Comprehensive

Surrogate: SURR: Terphenyl-d14

Sample Prepared by Method: EPA 3510C

1718-51-0

Log-in Notes:

30.7-106

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	0.200	CAL-E	ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-	PH-0723,NELAC-NY1	0854,NJDEP-CT005,I	PADEP-68-04
208-96-8	Acenaphthylene	ND	CAL-E	ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-F	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
120-12-7	Anthracene	ND	CAL-E	ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-F	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
1912-24-9	Atrazine	ND		ug/L	0.526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-F	H-0723,NELAC-NY10	854,NJDEP-CT005	
56-55-3	Benzo(a)anthracene	0.263		ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-	PH-0723,NELAC-NY1	0854,NJDEP-CT005,I	PADEP-68-04
50-32-8	Benzo(a)pyrene	0.379		ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-	PH-0723,NELAC-NY1	0854,NJDEP-CT005,I	PADEP-68-04
205-99-2	Benzo(b)fluoranthene	0.432		ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-	PH-0723,NELAC-NY1	0854,NJDEP-CT005,I	PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

46.8 %

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@

Page 9 of 61

Client Sample ID: MW-1AR

<u>York Sample ID:</u> 23J1357-01

2331337-01

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 11:58 am Date Received 10/20/2023

Semi-volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

191-24-2 207-08-9 117-81-7	Benzo(g,h,i)perylene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate	0.211		ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
	.,			ng/I						
	.,			no/I			Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
17-81-7	Bis(2-ethylhexyl)phthalate	160		ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
17-81-7	Bis(2-ethylhexyl)phthalate	16.0					Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,1	PADEP-68-04
		16.0		ug/L	5.26	10	EPA 8270D SIM	10/26/2023 08:35	10/28/2023 01:37	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005	
218-01-9	Chrysene	0.253	CAL-E	ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
53-70-3	Dibenzo(a,h)anthracene	0.0737		ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
206-44-0	Fluoranthene	0.0526	CAL-E	ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,1	PADEP-68-04
36-73-7	Fluorene	0.274	CAL-E	ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,1	PADEP-68-04
118-74-1	Hexachlorobenzene	ND		ug/L	0.0211	1	EPA 8270D SIM Certifications: CTDOH-PF	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 13:58 854,NJDEP-CT005	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	0.526	1	EPA 8270D SIM Certifications: CTDOH-PF	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 13:58 854,NJDEP-CT005	KH
67-72-1	Hexachloroethane	ND		ug/L	0.526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 13:58 854,NJDEP-CT005	KH
193-39-5	Indeno(1,2,3-cd)pyrene	0.200		ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
91-20-3	Naphthalene	0.232	CAL-E	ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
98-95-3	Nitrobenzene	ND		ug/L	0.263	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 13:58 854,NJDEP-CT005	KH
62-75-9	N-Nitrosodimethylamine	ND	QL-02	ug/L	0.526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 13:58 854,NJDEP-CT005	КН
87-86-5	Pentachlorophenol	ND	QL-02	ug/L	0.263	1	EPA 8270D SIM Certifications: CTDOH-PF	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 13:58 854,NJDEP-CT005	KH
85-01-8	Phenanthrene	ND	CAL-E	ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
				-				H-0723,NELAC-NY10		
129-00-0	Pyrene	0.0842	CAL-E	ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 13:58	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04

Sample Information

Client Sample ID: MW-3AR York Sample ID: 23J1357-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23J135703C497-MGround WaterOctober 19, 2023 7:45 am10/20/2023

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 10 of 61

Client Sample ID: MW-3AR

<u>York Sample ID:</u> 23J1357-02

<u>York Project (SDG) No.</u>
23J1357

<u>Client Project ID</u>
03C497-M

Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 7:45 am Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.216	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.266	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY1205	SMA 58,NJDEP-CT
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.256	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY1205	SMA 58,NJDEP-CT
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.286	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 9854,NELAC-NY1205	SMA 58,NJDEP-CT
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 9854,NELAC-NY1205	SMA 58,NJDEP-CT
75-34-3	1,1-Dichloroethane	ND		ug/L	0.272	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY1205	SMA 58,NJDEP-CT
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.222	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 54,NELAC-NY12	10/26/2023 16:39 2058,NJDEP-CT005,F	SMA PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.273	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 54,NELAC-NY12	10/26/2023 16:39 2058,NJDEP-CT005,F	SMA PADEP-68-04
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.138	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 54,NELAC-NY12	10/26/2023 16:39 2058,NJDEP-CT005,F	SMA PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.310	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.432	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT
106-93-4	1,2-Dibromoethane	ND		ug/L	0.215	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.270	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT
107-06-2	1,2-Dichloroethane	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT
78-87-5	1,2-Dichloropropane	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.347	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.283	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT
142-28-9	1,3-Dichloropropane	ND		ug/L	0.260	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 54,NELAC-NY12	10/26/2023 16:39 2058,NJDEP-CT005,F	SMA PADEP-68-04
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.311	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT
123-91-1	1,4-Dioxane	ND	CCVE	ug/L	35.3	80.0	1	EPA 8260C Certifications:		/26/2023 09:00 54,NELAC-NY12	10/26/2023 16:39 2058,NJDEP-CT005,F	SMA PADEP-68-04
78-93-3	2-Butanone	ND		ug/L	0.421	0.500	1	EPA 8260C Certifications:	10	/26/2023 09:00	10/26/2023 16:39 854,NELAC-NY1205	SMA
591-78-6	2-Hexanone	ND		ug/L	0.320	0.500	1	EPA 8260C Certifications:		/26/2023 09:00 23,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 11 of 61

Client Sample ID: MW-3AR

Sample Prepared by Method: EPA 5030B

<u>York Sample ID:</u> 23J1357-02

<u>York Project (SDG) No.</u>
23J1357

<u>Client Project ID</u>
03C497-M

Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 7:45 am Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.365	0.500	1	EPA 8260C Certifications:	СТДОН-РН	10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-C
67-64-1	Acetone	ND		ug/L	1.34	2.00	1	EPA 8260C Certifications:	СТДОН-РН	10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-C
107-02-8	Acrolein	ND		ug/L	0.447	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39	SMA
107-13-1	Acrylonitrile	ND		ug/L	0.422	0.500	1	EPA 8260C Certifications:	СТДОН-РН	10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-C
71-43-2	Benzene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39	SMA
74-97-5	Bromochloromethane	ND		ug/L	0.354	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 (10854,NELAC-NY1)	10/26/2023 16:39	SMA
75-27-4	Bromodichloromethane	ND		ug/L	0.245	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:39	SMA
75-25-2	Bromoform	ND		ug/L	0.163	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39	SMA
74-83-9	Bromomethane	ND	CCVE	ug/L	0.119	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39	SMA
75-15-0	Carbon disulfide	ND		ug/L	0.362	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39	SMA
56-23-5	Carbon tetrachloride	ND		ug/L	0.204	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 16:39	SMA
108-90-7	Chlorobenzene	ND		ug/L	0.284	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39	SMA
75-00-3	Chloroethane	ND		ug/L	0.448	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39	SMA
67-66-3	Chloroform	ND		ug/L	0.243	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39	SMA
74-87-3	Chloromethane	0.470	J	ug/L	0.372	0.500	1	EPA 8260C		10/26/2023 09:00	10/26/2023 16:39	SMA
								Certifications:	CTDOH-PI	H-0723,NELAC-NY1	0854,NELAC-NY12	058,NJDEP-C
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.294	0.500	1	EPA 8260C Certifications:	СТДОН-РН	10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-C
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.262	0.500	1	EPA 8260C Certifications:	СТДОН-РН	10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-C
110-82-7	Cyclohexane	ND		ug/L	0.491	0.500	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 10854,NELAC-NY1	10/26/2023 16:39 2058,NJDEP-CT005,	SMA PADEP-68-04
124-48-1	Dibromochloromethane	ND		ug/L	0.146	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-C
74-95-3	Dibromomethane	ND		ug/L	0.203	0.500	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 10854,NELAC-NY1		SMA PADEP-68-04
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.451	0.500	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 10854,NELAC-NY1	10/26/2023 16:39 2058,NJDEP-CT005,	SMA PADEP-68-04
100-41-4	Ethyl Benzene	ND		ug/L	0.290	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-C
87-68-3	Hexachlorobutadiene	ND		ug/L	0.241	0.500	1	EPA 8260C Certifications:	NEL AC-NV	10/26/2023 09:00	10/26/2023 16:39 2058,NJDEP-CT005,	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 12 of 61

Client Sample ID: MW-3AR

York Sample ID: 23J1357-02

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 7:45 am Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

	ed by Method: EPA 5030B	<u> </u>						<u> </u>				
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
98-82-8	Isopropylbenzene	ND		ug/L	0.405	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1	EPA 8260C Certifications:	NELAC-N	10/26/2023 09:00 Y10854,NELAC-NY1	10/26/2023 16:39 2058,NJDEP-CT005,	SMA PADEP-68-04
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.244	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
108-87-2	Methylcyclohexane	ND		ug/L	0.477	0.500	1	EPA 8260C Certifications:	NELAC-N	10/26/2023 09:00 Y10854,NELAC-NY1	10/26/2023 16:39 2058,NJDEP-CT005,	SMA PADEP-68-04
75-09-2	Methylene chloride	ND	CAL-E	ug/L	0.397	2.00	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
91-20-3	Naphthalene	ND		ug/L	0.212	2.00	1	EPA 8260C Certifications:	NELAC-N	10/26/2023 09:00 Y10854,NELAC-NY1	10/26/2023 16:39 2058,NJDEP-CT005,	SMA PADEP-68-04
104-51-8	n-Butylbenzene	ND		ug/L	0.399	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
103-65-1	n-Propylbenzene	ND		ug/L	0.384	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
95-47-6	o-Xylene	ND		ug/L	0.261	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,PADEP-68
179601-23-1	p- & m- Xylenes	ND		ug/L	0.578	1.00	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,PADEP-68
105-05-5	* p-Diethylbenzene	ND		ug/L	0.341	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00	10/26/2023 16:39	SMA
522-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00	10/26/2023 16:39	SMA
99-87-6	p-Isopropyltoluene	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
135-98-8	sec-Butylbenzene	ND		ug/L	0.444	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
100-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.608	1.00	1	EPA 8260C Certifications:	NELAC-N	10/26/2023 09:00 Y10854,NELAC-NY1	10/26/2023 16:39 2058,NJDEP-CT005,	SMA PADEP-68-04
98-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
127-18-4	Tetrachloroethylene	ND	CCVE, ICVE, QL-02	ug/L	0.239	0.500	1	EPA 8260C Certifications:	CTDOH-P.	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
108-88-3	Toluene	ND		ug/L	0.346	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
79-01-6	Trichloroethylene	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-69-4	Trichlorofluoromethane	ND		ug/L	0.337	0.500	1	EPA 8260C Certifications:	CTDOH-P	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 0854,NELAC-NY120	SMA 58,NJDEP-CT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 13 of 61

Client Sample ID: MW-3AR

York Sample ID: 23

23J1357-02

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 7:45 am <u>Date Received</u> 10/20/2023

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log	-in	N	01	es:	

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/L	0.469	0.500	1	EPA 8260C Certifications:	CTDOH-PI	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT
1330-20-7	Xylenes, Total	ND		ug/L	0.836	1.50	1	EPA 8260C Certifications:	CTDOH-PI	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 16:39 854,NELAC-NY1205	SMA 58,NJDEP-CT
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	103 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	97.7 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	94.0 %			79-122							

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-N	10/26/2023 08:35 Y10854,NJDEP-CT005	10/28/2023 00:25 5,PADEP-68-04440	КН-
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-N	10/26/2023 08:35 Y10854,NJDEP-CT005	10/28/2023 00:25 5,PADEP-68-04440	КН-
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-NY	10/26/2023 08:35 Y10854,NJDEP-CT005	10/28/2023 00:25 5,PADEP-68-04440	КН-
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,F	KH- PADEP-68-04
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,F	KH- PADEP-68-04
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,F	KH- PADEP-68-04
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,F	KH- PADEP-68-04
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,F	KH- PADEP-68-04
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,F	KH- PADEP-68-04
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,F	KH- PADEP-68-04
91-58-7	2-Chloronaphthalene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,F	KH- PADEP-68-04
95-57-8	2-Chlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,F	KH- PADEP-68-04
91-57-6	2-Methylnaphthalene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,F	KH- PADEP-68-04
95-48-7	2-Methylphenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,F	KH- PADEP-68-04
38-74-4	2-Nitroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,F	KH- PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 14 of 61

Client Sample ID: MW-3AR

York Sample ID: 23J1357-02

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 7:45 am Date Received 10/20/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
88-75-5	2-Nitrophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-04-
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
99-09-2	3-Nitroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
106-47-8	4-Chloroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
100-01-6	4-Nitroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
100-02-7	4-Nitrophenol	ND		ug/L	5.26	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
98-86-2	Acetophenone	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-NY	10/26/2023 08:35 710854,NJDEP-CT005	10/28/2023 00:25 5,PADEP-68-04440	КН-
100-52-7	Benzaldehyde	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-NY	10/26/2023 08:35 (10854,NJDEP-CT00	10/28/2023 00:25 5,PADEP-68-04440	КН-
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.05	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
105-60-2	Caprolactam	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-NY	10/26/2023 08:35 710854,NJDEP-CT005	10/28/2023 00:25 5,PADEP-68-04440	КН-
86-74-8	Carbazole	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
132-64-9	Dibenzofuran	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	СТДОН-РН	10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25 0854,NJDEP-CT005,I	KH- PADEP-68-044
84-66-2	Diethyl phthalate	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:		10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25	KH-
131-11-3	Dimethyl phthalate	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:		10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25	KH-
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:		10/26/2023 08:35 I-0723,NELAC-NY10	10/28/2023 00:25	КН-

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 15 of 61

Client Sample ID: MW-3AR

York Sample ID:

23J1357-02

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 7:45 am Date Received 10/20/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,P	KH- PADEP-68-044
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.26	10.5	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 9854,NJDEP-CT005,P	KH- ADEP-68-044
78-59-1	Isophorone	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 9854,NJDEP-CT005,P	KH- ADEP-68-044
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 854,NJDEP-CT005,P	KH- PADEP-68-044
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 9854,NJDEP-CT005,P	KH- PADEP-68-044
108-95-2	Phenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 9854,NJDEP-CT005,P	KH- PADEP-68-044
2312-35-8	* Propargite	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:		10/26/2023 08:35	10/28/2023 00:25	КН-
110-86-1	Pyridine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/26/2023 08:35 H-0723,NELAC-NY10	10/28/2023 00:25 9854,NJDEP-CT005,P	KH- PADEP-68-044
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	16.2 %	S-08		19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	9.40 %	S-08		10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	45.6 %	S-08		50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	44.2 %			39.9-105							
118-79-6	Surrogate: SURR:	56.1 %			39.3-151							

Semi-volatiles, 8270 - Comprehensive

2,4,6-Tribromophenol

Surrogate: SURR: Terphenyl-d14

Sample Prepared by Method: EPA 3510C

1718-51-0

Log-in Notes:

30.7-106

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ l	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND	CAL-E	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,PA	KH ADEP-68-044
208-96-8	Acenaphthylene	ND	CAL-E	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,PA	KH ADEP-68-044
120-12-7	Anthracene	ND	CAL-E	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,P	KH ADEP-68-044
1912-24-9	Atrazine	ND		ug/L	0.526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005	КН
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,PA	KH ADEP-68-044
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,PA	KH ADEP-68-044
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,P	KH ADEP-68-044
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,Pa	KH ADEP-68-044

120 RESEARCH DRIVE

STRATFORD, CT 06615

49.7 %

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 16 of 61

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

Client Sample ID: MW-3AR **York Sample ID:**

23J1357-02

York Project (SDG) No. 23J1357

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time October 19, 2023 7:45 am Date Received 10/20/2023

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log	-in	N	01	tes:	

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PF	10/26/2023 08:35 I-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,P	KH ADEP-68-044
17-81-7	Bis(2-ethylhexyl)phthalate	12.3		ug/L	5.26	10	EPA 8270D SIM	10/26/2023 08:35	10/28/2023 02:08	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005	
218-01-9	Chrysene	ND	CAL-E	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,P	KH ADEP-68-044
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,P.	KH ADEP-68-044
206-44-0	Fluoranthene	ND	CAL-E	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,P	KH ADEP-68-044
36-73-7	Fluorene	0.200	CAL-E	ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 14:29	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
118-74-1	Hexachlorobenzene	ND		ug/L	0.0211	1	EPA 8270D SIM Certifications: CTDOH-PF	10/26/2023 08:35 I-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005	KH
37-68-3	Hexachlorobutadiene	ND		ug/L	0.526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 H-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005	KH
57-72-1	Hexachloroethane	ND		ug/L	0.526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 I-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 I-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,P.	KH ADEP-68-044
91-20-3	Naphthalene	ND	CAL-E	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PF	10/26/2023 08:35 I-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,P	KH ADEP-68-044
98-95-3	Nitrobenzene	ND		ug/L	0.263	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 I-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005	KH
52-75-9	N-Nitrosodimethylamine	ND	QL-02	ug/L	0.526	1	EPA 8270D SIM Certifications: CTDOH-PH	10/26/2023 08:35 I-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005	KH
37-86-5	Pentachlorophenol	ND	QL-02	ug/L	0.263	1	EPA 8270D SIM Certifications: CTDOH-PF	10/26/2023 08:35 I-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005	KH
35-01-8	Phenanthrene	ND	CAL-E	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-PF	10/26/2023 08:35 I-0723,NELAC-NY10	10/27/2023 14:29 854,NJDEP-CT005,P	KH ADEP-68-044
29-00-0	Pyrene	0.0737	CAL-E	ug/L	0.0526	1	EPA 8270D SIM	10/26/2023 08:35	10/27/2023 14:29	KH
							Certifications: CTDOH-P	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04

Sample Information

Client Sample ID: MW-4AR

Matrix

23J1357-03

York Project (SDG) No. 23J1357

Client Project ID 03C497-M

Flag

Units

Ground Water

Collection Date/Time October 19, 2023 10:55 am

York Sample ID:

Date Received 10/20/2023

Analyst

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Reported to

LOD/MDL

Sample Notes:

Reference Method

120 RESEARCH DRIVE

CAS No.

Result STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

Date/Time

Prepared

www.YORKLAB.com (203) 325-1371

Parameter

FAX (203) 357-0166

Dilution

ClientServices@ Page 17 of 61

Date/Time

Analyzed

Client Sample ID: MW-4AR 23J1357-03

York Project (SDG) No. 23J1357		Client Project ID 03C497-M				<u>Matrix</u> Ground Water		Collection Date/Time Date Received October 19, 2023 10:55 am 10/20/2023
630-20-6	1,1,1,2-Tetrachloroethane	ND	ug/L	0.216	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
71-55-6	1,1,1-Trichloroethane	ND	ug/L	0.266	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
79-34-5	1,1,2,2-Tetrachloroethane	ND	ug/L	0.256	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ug/L	0.286	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
79-00-5	1,1,2-Trichloroethane	ND	ug/L	0.249	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
75-34-3	1,1-Dichloroethane	ND	ug/L	0.272	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
75-35-4	1,1-Dichloroethylene	ND	ug/L	0.327	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
87-61-6	1,2,3-Trichlorobenzene	ND	ug/L	0.222	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND	ug/L	0.273	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
120-82-1	1,2,4-Trichlorobenzene	ND	ug/L	0.138	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	ND	ug/L	0.310	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
96-12-8	1,2-Dibromo-3-chloropropane	ND	ug/L	0.432	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
106-93-4	1,2-Dibromoethane	ND	ug/L	0.215	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
95-50-1	1,2-Dichlorobenzene	ND	ug/L	0.270	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
107-06-2	1,2-Dichloroethane	ND	ug/L	0.377	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
78-87-5	1,2-Dichloropropane	ND	ug/L	0.327	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
108-67-8	1,3,5-Trimethylbenzene	ND	ug/L	0.347	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
541-73-1	1,3-Dichlorobenzene	ND	ug/L	0.283	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
142-28-9	1,3-Dichloropropane	ND	ug/L	0.260	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
106-46-7	1,4-Dichlorobenzene	ND	ug/L	0.311	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
123-91-1	1,4-Dioxane	ND	CCVE ug/L	35.3	80.0	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
78-93-3	2-Butanone	ND	ug/L	0.421	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
591-78-6	2-Hexanone	ND	ug/L	0.320	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
108-10-1	4-Methyl-2-pentanone	ND	ug/L	0.365	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
67-64-1	Acetone	ND	ug/L	1.34	2.00	1	EPA 8260C Certifications:	10/26/2023 09:00 10/26/2023 17:06 SMA CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 18 of 61

Client Sample ID: MW-4AR

<u>York Sample ID:</u> 23J1357-03

York Project (SDG) No. 23J1357 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
October 19, 2023 10:55 am

Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Parameter	Sample Prepare	ed by Method: EPA 5030B									D . (77)	D /FI	
1971-15	CAS No	o. Parameter	Result	Flag	Units		LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	107-02-8	Acrolein	ND		ug/L	0.447	0.500	1		CTDOH-PI			
Part	107-13-1	Acrylonitrile	ND		ug/L	0.422	0.500	1		CTDOH-PI			
	71-43-2	Benzene	ND		ug/L	0.279	0.500	1		CTDOH-PI			
Promofem ND	74-97-5	Bromochloromethane	ND		ug/L	0.354	0.500	1		NELAC-N			
Certifications	75-27-4	Bromodichloromethane	ND		ug/L	0.245	0.500	1		CTDOH-PI			
	75-25-2	Bromoform	ND		ug/L	0.163	0.500	1		CTDOH-PI			
Carbon tetrachloride	74-83-9	Bromomethane	ND	CCVE	ug/L	0.119	0.500	1		CTDOH-PI			
Certifications: CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12088,NDEP-C	75-15-0	Carbon disulfide	ND		ug/L	0.362	0.500	1		CTDOH-PI			
Certifications: CTDOH-PH-0723,NELAC-NY 10854,NELAC-NY 12088,NDEP-C CERTIFICATIONS: CTDOH-PH-0723,NELAC-NY 10854,NELAC-NY 12088,NDEP-C CERTIFICATIONS: CERTIFICATION:	56-23-5	Carbon tetrachloride	ND		ug/L	0.204	0.500	1		CTDOH-PI			
Certifications: CTDOH-PH-0723.NELAC-NY10854.NELAC-NY12058.NIDEP-C	108-90-7	Chlorobenzene	ND		ug/L	0.284	0.500	1		CTDOH-PI			
Certifications: CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NDEP-CT	75-00-3	Chloroethane	ND		ug/L	0.448	0.500	1		CTDOH-PI			
156-59-2 cis-1,2-Dichloroethylene ND	67-66-3	Chloroform	ND		ug/L	0.243	0.500	1		CTDOH-PI			
156-59-2 cis-1,2-Dichloroethylene ND	74-87-3	Chloromethane	0.650		ug/L	0.372	0.500	1	EPA 8260C		10/26/2023 09:00	10/26/2023 17:06	SMA
Certifications: CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT006,PADEP-68-C Certifications: CTDOH-PH-0723,NELAC-NY12058,NJDEP-CT005,PADEP-68-C Certifications: CTDOH-PH-0723									Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
Certifications: CTDOH-PH-0723,NELAC-NY10854,	156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.294	0.500	1		CTDOH-PI			
Certifications: NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-C Certifications: NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-C Certifications: CTDOH-PH-0723,NELAC-NY12058,NJDEP-CT005,PADEP-68-C Certifications: CTDOH-PH-0723,NELAC-NY12058,NJDEP-CT005,PADEP-68-C Certifications: NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-C ND Ug/L O.405 O.500 L EPA 8260C L026/2023 09-00 L026/2023 17-06 SMA Certifications: NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-C ND ND Ug/L O.405 O.500 L EPA 8260C L026/2023 09-00 L026/2023 17-06 SMA Certifications: NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-C ND ND Ug/L O.405 O.500 L EPA 8260C L026/2023 09-00 L026/2023 17-06 SMA Certifications: NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-C ND ND Ug/L O.405 O.500 L EPA 8260C L026/2023 09-00 L026/2023 17-06 SMA Certifications: ND ND Ug/L O.405 O.500 L EPA 8260C L026/2023 09-00 L026/2023 17-06 SMA ND ND Ug/L O.405 O.500 L EPA 8260C L026/2023 09-00 L026/2023 17-06 SMA ND ND Ug/L O.405 O.500 L EPA 8260C L026/2023 09-00 L026/2023 17-06 SMA ND ND Ug/L O.405 O.500 L EPA 8260C L026/2023 09-00 L026/2023 17-06 SMA ND ND Ug/L O.405 O.500 L EPA 8260C L026/2023 09-00 L026/2023 17-06 SMA ND ND Ug/L O.405 O.500 L EPA	10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.262	0.500	1		CTDOH-PI			
Certifications: CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C74-95-3 Dibromomethane ND ug/L 0.203 0.500 1 EPA 8260C 10/26/2023 09:00 10/26/2023 17:06 SMA Certifications: NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-C75-71-8 Dichlorodifluoromethane ND ug/L 0.451 0.500 1 EPA 8260C 10/26/2023 09:00 10/26/2023 17:06 SMA Certifications: NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-C75-71-8 Dichlorodifluoromethane ND ug/L 0.290 0.500 1 EPA 8260C 10/26/2023 09:00 10/26/2023 17:06 SMA Certifications: CTDOH-PH-0723,NELAC-NY12058,NJDEP-CT005,PADEP-68-C75-71-8 Dichlorodifluoromethane ND ug/L 0.290 0.500 1 EPA 8260C 10/26/2023 09:00 10/26/2023 17:06 SMA Certifications: CTDOH-PH-0723,NELAC-NY12058,NJDEP-CT005,PADEP-68-C75-71-8 Dichlorodifluoromethane ND ug/L 0.405 0.500 1 EPA 8260C 10/26/2023 09:00 10/26/2023 17:06 SMA Certifications: NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-C75-71-8 Dichlorodifluoromethane ND ug/L 0.405 0.500 1 EPA 8260C 10/26/2023 09:00 10/26/2023 17:06 SMA Certifications: CTDOH-PH-0723,NELAC-NY12058,NJDEP-CT005,PADEP-68-C75-71-8 Dichlorodifluoromethane ND ug/L 0.442 0.500 1 EPA 8260C 10/26/2023 09:00 10/26/2023 17:06 SMA Certifications: CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-C75-71-8 Dichlorodifluoromethane ND ug/L 0.442 0.500 1 EPA 8260C 10/26/2023 09:00 10/26/2023 17:06 SMA Certifications: CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADE	110-82-7	Cyclohexane	ND		ug/L	0.491	0.500	1		NELAC-N			
Certifications: NELAC-NY10854,NELAC-NY1085	124-48-1	Dibromochloromethane	ND		ug/L	0.146	0.500	1		CTDOH-PI			
Certifications: NELAC-NY10854,NELAC-NY1058,NJDEP-CT005,PADEP-68-0	74-95-3	Dibromomethane	ND		ug/L	0.203	0.500	1		NELAC-N			
Certifications: CTDOH-PH-0723,NELAC-NY10854,NELAC-NY1058,NJDEP-CR	75-71-8	Dichlorodifluoromethane	ND		ug/L	0.451	0.500	1		NELAC-N			
Certifications: NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-69-68-69-68-69-68-69-68-69-68-69-69-69-69-69-69-69-69-69-69-69-69-69-	100-41-4	Ethyl Benzene	ND		ug/L	0.290	0.500	1		CTDOH-PI			
P-20-9 Methyl acetate ND ug/L 0.442 0.500 1 EPA 8260C 10/26/2023 09:00 10/26/2023 17:06 SMA	87-68-3	Hexachlorobutadiene	ND		ug/L	0.241	0.500	1		NELAC-N			
	98-82-8	Isopropylbenzene	ND		ug/L	0.405	0.500	1		CTDOH-PI			
	79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1		NELAC-N			

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 19 of 61

Client Sample ID: MW-4AR

<u>York Sample ID:</u> 23J1357-03

York Project (SDG) No. 23J1357 Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
October 19, 2023 10:55 am

Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

	d by Method: EPA 5030B											
CAS No.	-	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
634-04-4	Methyl tert-butyl ether (MTBE)	1.05		ug/L	0.244	0.500	1	EPA 8260C		10/26/2023 09:00	10/26/2023 17:06	SMA
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
08-87-2	Methylcyclohexane	ND		ug/L	0.477	0.500	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 Y10854,NELAC-NY12	10/26/2023 17:06 2058,NJDEP-CT005,I	SMA PADEP-68-04
75-09-2	Methylene chloride	ND	CAL-E	ug/L	0.397	2.00	1	EPA 8260C Certifications:	CTDOH-PI	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT
1-20-3	Naphthalene	ND		ug/L	0.212	2.00	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 Y10854,NELAC-NY12	10/26/2023 17:06 2058,NJDEP-CT005,I	SMA PADEP-68-04
04-51-8	n-Butylbenzene	ND		ug/L	0.399	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT
03-65-1	n-Propylbenzene	ND		ug/L	0.384	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT
5-47-6	o-Xylene	ND		ug/L	0.261	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,PADEP-68
79601-23-1	p- & m- Xylenes	ND		ug/L	0.578	1.00	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,PADEP-68
05-05-5	* p-Diethylbenzene	ND		ug/L	0.341	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00	10/26/2023 17:06	SMA
522-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00	10/26/2023 17:06	SMA
9-87-6	p-Isopropyltoluene	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT
35-98-8	sec-Butylbenzene	ND		ug/L	0.444	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT
00-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT
5-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.608	1.00	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 Y10854,NELAC-NY12	10/26/2023 17:06 2058,NJDEP-CT005,I	SMA PADEP-68-04
8-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT
27-18-4	Tetrachloroethylene	ND	CCVE, ICVE, QL-02	ug/L	0.239	0.500	1	EPA 8260C Certifications:	CTDOH-PF	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT
08-88-3	Toluene	ND		ug/L	0.346	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT
56-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT
9-01-6	Trichloroethylene	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT
5-69-4	Trichlorofluoromethane	ND		ug/L	0.337	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120:	SMA 58,NJDEP-CT
5-01-4	Vinyl Chloride	ND		ug/L	0.469	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT
330-20-7	Xylenes, Total	ND		ug/L	0.836	1.50	1	EPA 8260C Certifications:	CTDOH-PF	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:06 854,NELAC-NY120	SMA 58,NJDEP-CT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 20 of 61

Client Sample ID: MW-4AR

York Sample ID: 23

23J1357-03

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
October 19, 2023 10:55 am

<u>Date Received</u> 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Surrogate Recoveries	Result	Acc	ceptance Range					
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	105 %		69-130					
2037-26-5	Surrogate: SURR: Toluene-d8	97.5 %		81-117					
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	94.4 %		79-122					

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

a.c					Reported to					Date/Time	Date/Time	
CAS N	No. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	NELAC-NY	10/23/2023 08:55 Y10854,NJDEP-CT005	10/24/2023 14:27 i,PADEP-68-04440	KH
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	NELAC-NY	10/23/2023 08:55 Y10854,NJDEP-CT005	10/24/2023 14:27 i,PADEP-68-04440	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	NELAC-NY	10/23/2023 08:55 Y10854,NJDEP-CT005	10/24/2023 14:27 i,PADEP-68-04440	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,P	KH PADEP-68-04
38-06-2	2,4,6-Trichlorophenol	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,P	KH ADEP-68-04
120-83-2	2,4-Dichlorophenol	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,P	KH ADEP-68-04
105-67-9	2,4-Dimethylphenol	ND	CCVE	ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,P	KH PADEP-68-04
51-28-5	2,4-Dinitrophenol	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,P	KH PADEP-68-04
121-14-2	2,4-Dinitrotoluene	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,P	KH ADEP-68-04
606-20-2	2,6-Dinitrotoluene	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,P	KH PADEP-68-04
91-58-7	2-Chloronaphthalene	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,P	KH ADEP-68-04
95-57-8	2-Chlorophenol	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,P	KH PADEP-68-04
91-57-6	2-Methylnaphthalene	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,P	KH PADEP-68-04
95-48-7	2-Methylphenol	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,P	KH PADEP-68-04
38-74-4	2-Nitroaniline	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:		10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27	KH
38-75-5	2-Nitrophenol	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:		10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27	KH
55794-96-9	3- & 4-Methylphenols	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:		10/23/2023 08:55	10/24/2023 14:27 854,NJDEP-CT005,P	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 21 of 61

Log-in Notes:

Client Sample ID: MW-4AR

York Sample ID: 23J1357-03

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
October 19, 2023 10:55 am

Date Received 10/20/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Notes:

	ed by Method: EPA 3510C				<u> </u>	· (OCCS)		Sum	pre i vote	5.5		
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,J	KH PADEP-68-04
99-09-2	3-Nitroaniline	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
106-47-8	4-Chloroaniline	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
100-01-6	4-Nitroaniline	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
100-02-7	4-Nitrophenol	ND		ug/L	6.67	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
98-86-2	Acetophenone	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	NELAC-NY	10/23/2023 08:55 710854,NJDEP-CT00:	10/24/2023 14:27 5,PADEP-68-04440	KH
100-52-7	Benzaldehyde	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	NELAC-NY	10/23/2023 08:55 710854,NJDEP-CT00:	10/24/2023 14:27 5,PADEP-68-04440	KH
85-68-7	Benzyl butyl phthalate	ND	CCVE	ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
105-60-2	Caprolactam	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	NELAC-NY	10/23/2023 08:55 710854,NJDEP-CT00:	10/24/2023 14:27 5,PADEP-68-04440	KH
86-74-8	Carbazole	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
132-64-9	Dibenzofuran	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
84-66-2	Diethyl phthalate	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
131-11-3	Dimethyl phthalate	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
84-74-2	Di-n-butyl phthalate	ND	CCVE	ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
117-84-0	Di-n-octyl phthalate	ND	CCVE	ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	6.67	13.3	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 854,NJDEP-CT005,I	KH PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 22 of 61

Client Sample ID: MW-4AR

York Sample ID:

23J1357-03

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
October 19, 2023 10:55 am

Date Received 10/20/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in	Notes:

Sample Notes:

CAS No). Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
78-59-1	Isophorone	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 0854,NJDEP-CT005,F	KH PADEP-68-044
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 0854,NJDEP-CT005,F	KH ADEP-68-044
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 0854,NJDEP-CT005,F	KH PADEP-68-044
108-95-2	Phenol	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 0854,NJDEP-CT005,F	KH PADEP-68-044
2312-35-8	* Propargite	ND		ug/L	3.33	6.67	1	EPA 8270D Certifications:		10/23/2023 08:55	10/24/2023 14:27	KH
110-86-1	Pyridine	ND	ICVE, QL-02	-	3.33	6.67	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 14:27 0854,NJDEP-CT005,F	KH PADEP-68-044
	Surrogate Recoveries	Result		Accept	tance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	66.9 %	S-08	19	9.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	42.1 %	S-08	10	0.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	126 %	S-08	5	0.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	109 %	S-08	3	9.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	212 %	S-08	3	9.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	131 %	S-08	3	0.7-106							

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ Diluti	on Reference Method	Date/Time I Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND	ug/L	0.0667 1	EPA 8270D SIM Certifications: CTDOH	10/23/2023 08:55 -PH-0723,NELAC-NY10	10/26/2023 21:15 0854,NJDEP-CT005,F	KH PADEP-68-044
208-96-8	Acenaphthylene	ND	ug/L	0.0667 1	EPA 8270D SIM Certifications: CTDOH	10/23/2023 08:55 -PH-0723,NELAC-NY10	10/26/2023 21:15 0854,NJDEP-CT005,F	KH PADEP-68-044
120-12-7	Anthracene	ND	ug/L	0.0667 1	EPA 8270D SIM Certifications: CTDOH	10/23/2023 08:55 -PH-0723,NELAC-NY10	10/26/2023 21:15 0854,NJDEP-CT005,F	KH PADEP-68-044
1912-24-9	Atrazine	ND	ug/L	0.667 1	EPA 8270D SIM Certifications: CTDOH	10/23/2023 08:55 -PH-0723,NELAC-NY10	10/26/2023 21:15 0854,NJDEP-CT005	KH
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0667 1	EPA 8270D SIM Certifications: CTDOH	10/23/2023 08:55 -PH-0723,NELAC-NY10	10/26/2023 21:15 0854,NJDEP-CT005,F	KH PADEP-68-044
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0667 1	EPA 8270D SIM Certifications: CTDOH	10/23/2023 08:55 -PH-0723,NELAC-NY10	10/26/2023 21:15 0854,NJDEP-CT005,F	KH PADEP-68-044
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0667 1	EPA 8270D SIM Certifications: CTDOH	10/23/2023 08:55 -PH-0723,NELAC-NY10	10/26/2023 21:15 0854,NJDEP-CT005,F	KH PADEP-68-044
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0667 1	EPA 8270D SIM Certifications: CTDOH	10/23/2023 08:55 -PH-0723,NELAC-NY10	10/26/2023 21:15 0854,NJDEP-CT005,F	KH PADEP-68-044
207-08-9	Benzo(k)fluoranthene	ND	ug/L	0.0667 1	EPA 8270D SIM Certifications: CTDOH	10/23/2023 08:55 -PH-0723,NELAC-NY10	10/26/2023 21:15 0854,NJDEP-CT005,F	KH PADEP-68-044
117-81-7	Bis(2-ethylhexyl)phthalate	ND	ug/L	0.667 1	EPA 8270D SIM Certifications: CTDOH	10/23/2023 08:55 -PH-0723,NELAC-NY10	10/26/2023 21:15 0854,NJDEP-CT005	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 23 of 61

Client Sample ID: MW-4AR

York Sample ID: 23J1357-03

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water Collection Date/Time
October 19, 2023 10:55 am

Date Received 10/20/2023

Semi-volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
218-01-9	Chrysene	ND		ug/L	0.0667	1	EPA 8270D SIM Certifications: CTDOH-PH-	10/23/2023 08:55 0723,NELAC-NY10	10/26/2023 21:15 854,NJDEP-CT005,P	KH ADEP-68-044
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0667	1	EPA 8270D SIM Certifications: CTDOH-PH-	10/23/2023 08:55 0723,NELAC-NY10	10/26/2023 21:15 854,NJDEP-CT005,P	KH ADEP-68-044
206-44-0	Fluoranthene	ND		ug/L	0.0667	1	EPA 8270D SIM Certifications: CTDOH-PH-	10/23/2023 08:55 0723,NELAC-NY10	10/26/2023 21:15 854,NJDEP-CT005,P	KH ADEP-68-044
86-73-7	Fluorene	ND		ug/L	0.0667	1	EPA 8270D SIM Certifications: CTDOH-PH-	10/23/2023 08:55 0723,NELAC-NY10	10/26/2023 21:15 854,NJDEP-CT005,P	KH ADEP-68-044
118-74-1	Hexachlorobenzene	ND		ug/L	0.0267	1	EPA 8270D SIM Certifications: CTDOH-PH-	10/23/2023 08:55 0723,NELAC-NY10	10/26/2023 21:15 854,NJDEP-CT005	КН
87-68-3	Hexachlorobutadiene	ND		ug/L	0.667	1	EPA 8270D SIM Certifications: CTDOH-PH-	10/23/2023 08:55 0723,NELAC-NY10	10/26/2023 21:15 854,NJDEP-CT005	KH
67-72-1	Hexachloroethane	ND		ug/L	0.667	1	EPA 8270D SIM Certifications: CTDOH-PH-	10/23/2023 08:55 0723,NELAC-NY10	10/26/2023 21:15 854,NJDEP-CT005	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0667	1	EPA 8270D SIM Certifications: CTDOH-PH-	10/23/2023 08:55 0723,NELAC-NY10	10/26/2023 21:15 854,NJDEP-CT005,P.	KH ADEP-68-044
91-20-3	Naphthalene	ND		ug/L	0.0667	1	EPA 8270D SIM Certifications: CTDOH-PH-	10/23/2023 08:55 0723,NELAC-NY10	10/26/2023 21:15 854,NJDEP-CT005,P.	KH ADEP-68-044
98-95-3	Nitrobenzene	ND		ug/L	0.333	1	EPA 8270D SIM Certifications: CTDOH-PH-	10/23/2023 08:55 0723,NELAC-NY10	10/26/2023 21:15 854,NJDEP-CT005	KH
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.667	1	EPA 8270D SIM Certifications: CTDOH-PH-	10/23/2023 08:55 0723,NELAC-NY10	10/26/2023 21:15 854,NJDEP-CT005	KH
87-86-5	Pentachlorophenol	ND		ug/L	0.333	1	EPA 8270D SIM Certifications: CTDOH-PH-	10/23/2023 08:55 0723,NELAC-NY10	10/26/2023 21:15 854,NJDEP-CT005	КН
85-01-8	Phenanthrene	0.0800		ug/L	0.0667	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55	10/26/2023 21:15 0854,NJDEP-CT005,I	KH PADEP-68-04
129-00-0	Pyrene	ND		ug/L	0.0667	1	EPA 8270D SIM	10/23/2023 08:55	10/26/2023 21:15 854,NJDEP-CT005,P.	KH

Sample Information

Client Sample ID: MW-5AR

York Sample ID:

23J1357-04

York Project (SDG) No. 23J1357

Client Project ID 03C497-M <u>Matrix</u> Ground Water <u>Collection Date/Time</u> October 19, 2023 8:59 am Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time Method Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.216	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY10	10/26/2023 17:32 854,NELAC-NY1205	SMA 8,NJDEP-CT
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.266	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY10	10/26/2023 17:32 854,NELAC-NY1205	SMA 58,NJDEP-CT

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

THOMMOND THEE, INT. 11410

ClientServices@ Page 24 of 61

Client Sample ID: MW-5AR

York Sample ID: 23J1357-04

York Project (SDG) No. 23J1357

Sample Prepared by Method: EPA 5030B

Client Project ID 03C497-M Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 8:59 am Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.256	0.500	1	EPA 8260C Certifications:	СТДОН-РН	10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.286	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32	SMA
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:	СТDOH-PH	10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	
75-34-3	1,1-Dichloroethane	ND		ug/L	0.272	0.500	1	EPA 8260C Certifications:	СТДОН-РН	10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:	СТДОН-РН	10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32 0854 NELAC-NY120	
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.222	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 10854,NELAC-NY1	10/26/2023 17:32	SMA
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.273	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 10854,NELAC-NY1	10/26/2023 17:32	SMA
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.138	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 10854,NELAC-NY1	10/26/2023 17:32	SMA
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.310	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32	SMA
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.432	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32	SMA
106-93-4	1,2-Dibromoethane	ND		ug/L	0.215	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32	SMA
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.270	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32	SMA
107-06-2	1,2-Dichloroethane	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32	SMA
78-87-5	1,2-Dichloropropane	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32	SMA
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.347	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32	SMA
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.283	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32	SMA
142-28-9	1,3-Dichloropropane	ND		ug/L	0.260	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 10854,NELAC-NY1	10/26/2023 17:32	SMA
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.311	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32	SMA
123-91-1	1,4-Dioxane	ND	CCVE	ug/L	35.3	80.0	1	EPA 8260C Certifications:		10/26/2023 09:00 10854,NELAC-NY1	10/26/2023 17:32	SMA
78-93-3	2-Butanone	ND		ug/L	0.421	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32	SMA
591-78-6	2-Hexanone	ND		ug/L	0.320	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32	SMA
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.365	0.500	1	EPA 8260C		10/26/2023 09:00 -0723,NELAC-NY10	10/26/2023 17:32	SMA
67-64-1	Acetone	ND		ug/L	1.34	2.00	1	Certifications: EPA 8260C	CIDON-PH	-0/23,NELAC-NY10 10/26/2023 09:00	10/26/2023 17:32	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 25 of 61

Client Sample ID: MW-5AR

<u>York Sample ID:</u> 23J1357-04

York Project (SDG) No. 23J1357

Sample Prepared by Method: EPA 5030B

Client Project ID 03C497-M Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 8:59 am Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
107-02-8	Acrolein	ND		ug/L	0.447	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
107-13-1	Acrylonitrile	ND		ug/L	0.422	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085-	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
71-43-2	Benzene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
74-97-5	Bromochloromethane	ND		ug/L	0.354	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 NELAC-NY10854,NELAC-NY1205	10/26/2023 17:32 8,NJDEP-CT005,P	SMA ADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	0.245	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085-	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
75-25-2	Bromoform	ND		ug/L	0.163	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085-	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
74-83-9	Bromomethane	ND	CCVE	ug/L	0.119	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
75-15-0	Carbon disulfide	ND		ug/L	0.362	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085-	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
56-23-5	Carbon tetrachloride	ND		ug/L	0.204	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085-	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
108-90-7	Chlorobenzene	ND		ug/L	0.284	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085-	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
75-00-3	Chloroethane	ND		ug/L	0.448	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085-	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
67-66-3	Chloroform	ND		ug/L	0.243	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085-	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
74-87-3	Chloromethane	1.64		ug/L	0.372	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085	10/26/2023 17:32 54,NELAC-NY1205	SMA 58,NJDEP-C
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.294	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.262	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
110-82-7	Cyclohexane	ND		ug/L	0.491	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 NELAC-NY10854,NELAC-NY1205	10/26/2023 17:32 8,NJDEP-CT005,P	SMA ADEP-68-04
124-48-1	Dibromochloromethane	ND		ug/L	0.146	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
74-95-3	Dibromomethane	ND		ug/L	0.203	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 NELAC-NY10854,NELAC-NY1205	10/26/2023 17:32 8,NJDEP-CT005,P	SMA ADEP-68-04
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.451	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 NELAC-NY10854,NELAC-NY1205	10/26/2023 17:32 8,NJDEP-CT005,P	SMA ADEP-68-04
100-41-4	Ethyl Benzene	ND		ug/L	0.290	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY1085-	10/26/2023 17:32 4,NELAC-NY1205	SMA 8,NJDEP-CT
87-68-3	Hexachlorobutadiene	ND		ug/L	0.241	0.500	1	EPA 8260C Certifications:		10/26/2023 17:32	SMA
98-82-8	Isopropylbenzene	ND		ug/L	0.405	0.500	1	EPA 8260C Certifications:		10/26/2023 17:32	SMA
79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1	EPA 8260C Certifications:		10/26/2023 17:32	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 26 of 61

Client Sample ID: MW-5AR

York Sample ID: 23J1357-04

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 8:59 am Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

	TAT 4	
 na_in	Notes:	

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.244	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-C
08-87-2	Methylcyclohexane	ND		ug/L	0.477	0.500	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 710854,NELAC-NY12	10/26/2023 17:32 2058,NJDEP-CT005,	SMA PADEP-68-04
75-09-2	Methylene chloride	ND	CAL-E	ug/L	0.397	2.00	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-CT
1-20-3	Naphthalene	ND		ug/L	0.212	2.00	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 /10854,NELAC-NY12	10/26/2023 17:32 2058,NJDEP-CT005,	SMA PADEP-68-04
04-51-8	n-Butylbenzene	ND		ug/L	0.399	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-CT
03-65-1	n-Propylbenzene	ND		ug/L	0.384	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-CT
5-47-6	o-Xylene	ND		ug/L	0.261	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,PADEP-68
79601-23-1	p- & m- Xylenes	ND		ug/L	0.578	1.00	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,PADEP-68
05-05-5	* p-Diethylbenzene	ND		ug/L	0.341	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00	10/26/2023 17:32	SMA
22-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00	10/26/2023 17:32	SMA
9-87-6	p-Isopropyltoluene	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-CT
35-98-8	sec-Butylbenzene	ND		ug/L	0.444	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-CT
00-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-CT
5-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.608	1.00	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 /10854,NELAC-NY12	10/26/2023 17:32 2058,NJDEP-CT005,	SMA PADEP-68-04
8-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-CT
27-18-4	Tetrachloroethylene	ND	QL-02, CCVE, ICVE	ug/L	0.239	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-CT
08-88-3	Toluene	ND		ug/L	0.346	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-CT
56-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-CT
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-CT
9-01-6	Trichloroethylene	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-CT
5-69-4	Trichlorofluoromethane	ND		ug/L	0.337	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32 0854,NELAC-NY120	SMA 58,NJDEP-CT
5-01-4	Vinyl Chloride	ND		ug/L	0.469	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:32	SMA
330-20-7	Xylenes, Total	ND		ug/L	0.836	1.50	1	EPA 8260C Certifications:		10/26/2023 09:00	10/26/2023 17:32 0854,NELAC-NY120	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 27 of 61

Client Sample ID: MW-5AR **York Sample ID:**

23J1357-04

York Project (SDG) No. 23J1357

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time October 19, 2023 8:59 am Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Surrogate Recoveries	Result		Acc	eptance Rang	e					
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	104 %			69-130						
2037-26-5	Surrogate: SURR: Toluene-d8	96.9 %			81-117						
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	94.2 %			79-122						

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/23/2023 08:55 Y10854,NJDEP-CT005	10/24/2023 23:57 5,PADEP-68-04440	KH
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/23/2023 08:55 Y10854,NJDEP-CT005	10/24/2023 23:57 5,PADEP-68-04440	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-N	10/23/2023 08:55 Y10854,NJDEP-CT005	10/24/2023 23:57 5,PADEP-68-04440	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
105-67-9	2,4-Dimethylphenol	ND	CCVE	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 28 of 61

Client Sample ID: MW-5AR **York Sample ID:** 23J1357-04

York Project (SDG) No. 23J1357

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time October 19, 2023 8:59 am Date Received 10/20/2023

Semi-Volatiles, 8270 - Comprehensive

	atiles, 8270 - Comprehensive ed by Method: EPA 3510C				Log-in	Notes:		Sam	ple Notes	<u>s:</u>		
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
100-02-7	4-Nitrophenol	ND		ug/L	5.00	5.00	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	10/23/2023 08:55 710854,NJDEP-CT005	10/24/2023 23:57 5,PADEP-68-04440	КН
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	10/23/2023 08:55 /10854,NJDEP-CT005	10/24/2023 23:57 5,PADEP-68-04440	КН
85-68-7	Benzyl butyl phthalate	ND	CCVE	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.00	5.00	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	NELAC-NY	10/23/2023 08:55 710854,NJDEP-CT005	10/24/2023 23:57 5,PADEP-68-04440	КН
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	СТДОН-РН	10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,P	KH ADEP-68-044
84-74-2	Di-n-butyl phthalate	ND	CCVE	ug/L	2.50	5.00	1	EPA 8270D Certifications:		10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57	KH
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57	KH
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.00	10.0	1	EPA 8270D Certifications:		10/23/2023 08:55 I-0723,NELAC-NY10	10/24/2023 23:57	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 29 of 61

Client Sample ID: MW-5AR **York Sample ID:**

23J1357-04

York Project (SDG) No. 23J1357

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time October 19, 2023 8:59 am Date Received 10/20/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

	Log-i	in N	101	tes:
--	-------	------	-----	------

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,F	KH PADEP-68-044
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,F	KH PADEP-68-044
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,F	KH PADEP-68-044
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,F	KH PADEP-68-044
2312-35-8	* Propargite	ND		ug/L	2.50	5.00	1	EPA 8270D Certifications:		10/23/2023 08:55	10/24/2023 23:57	KH
110-86-1	Pyridine	ND	ICVE	ug/L	2.50	5.00	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/24/2023 23:57 854,NJDEP-CT005,F	KH PADEP-68-044
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	39.5 %			19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	22.7 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	101 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	85.2 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	160 %	S-08		39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	97.9 %			30.7-106							

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	0.370	ug/L	0.0500 1	EPA 8270D SIM	10/23/2023 08:55	10/26/2023 21:46	KH
					Certifications: CTDOH-F	PH-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
208-96-8	Acenaphthylene	ND	ug/L	0.0500 1	EPA 8270D SIM	10/23/2023 08:55	10/26/2023 21:46	KH
						H-0723,NELAC-NY10		
120-12-7	Anthracene	ND	ug/L	0.0500 1	EPA 8270D SIM	10/23/2023 08:55	10/26/2023 21:46	KH
					Certifications: CTDOH-P	H-0723,NELAC-NY10	854,NJDEP-C1005,P	ADEP-68-044
1912-24-9	Atrazine	ND	ug/L	0.500 1	EPA 8270D SIM	10/23/2023 08:55	10/26/2023 21:46	KH
					Certifications: CTDOH-P	H-0723,NELAC-NY10	854,NJDEP-CT005	
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0500 1	EPA 8270D SIM	10/23/2023 08:55	10/26/2023 21:46	KH
					Certifications: CTDOH-P	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0500 1	EPA 8270D SIM	10/23/2023 08:55	10/26/2023 21:46	KH
					Certifications: CTDOH-P	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0500 1	EPA 8270D SIM	10/23/2023 08:55	10/26/2023 21:46	KH
					Certifications: CTDOH-P.	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0500 1	EPA 8270D SIM	10/23/2023 08:55	10/26/2023 21:46	KH
					Certifications: CTDOH-P	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
207-08-9	Benzo(k)fluoranthene	ND	ug/L	0.0500 1	EPA 8270D SIM	10/23/2023 08:55	10/26/2023 21:46	KH
					Certifications: CTDOH-P	H-0723,NELAC-NY10	854,NJDEP-CT005,P	ADEP-68-044
117-81-7	Bis(2-ethylhexyl)phthalate	ND	ug/L	0.500 1	EPA 8270D SIM	10/23/2023 08:55	10/26/2023 21:46	KH
	, J J J		-		Certifications: CTDOH-P	H-0723,NELAC-NY10	854,NJDEP-CT005	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 30 of 61

Client Sample ID: MW-5AR **York Sample ID:** 23J1357-04

York Project (SDG) No. 23J1357

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time October 19, 2023 8:59 am Date Received 10/20/2023

Semi-volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ D	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
218-01-9	Chrysene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55 -0723,NELAC-NY10	10/26/2023 21:46 854,NJDEP-CT005,P	KH ADEP-68-044
53-70-3	Dibenzo(a,h)anthracene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55 -0723,NELAC-NY10	10/26/2023 21:46 854,NJDEP-CT005,P	KH ADEP-68-044
206-44-0	Fluoranthene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55 -0723,NELAC-NY10	10/26/2023 21:46 854,NJDEP-CT005,P	KH ADEP-68-044
86-73-7	Fluorene	0.290	ug/L	0.0500	1	EPA 8270D SIM	10/23/2023 08:55	10/26/2023 21:46	KH
						Certifications: CTDOH-PF	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
118-74-1	Hexachlorobenzene	ND	ug/L	0.0200	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55 -0723,NELAC-NY10	10/26/2023 21:46 854,NJDEP-CT005	KH
87-68-3	Hexachlorobutadiene	ND	ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55 -0723,NELAC-NY10	10/26/2023 21:46 854,NJDEP-CT005	KH
67-72-1	Hexachloroethane	ND	ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55 -0723,NELAC-NY10	10/26/2023 21:46 854,NJDEP-CT005	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55 -0723,NELAC-NY10	10/26/2023 21:46 854,NJDEP-CT005,P	KH ADEP-68-044
91-20-3	Naphthalene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55 -0723,NELAC-NY10	10/26/2023 21:46 854,NJDEP-CT005,P	KH ADEP-68-044
98-95-3	Nitrobenzene	ND	ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55 -0723,NELAC-NY10	10/26/2023 21:46 854,NJDEP-CT005	KH
62-75-9	N-Nitrosodimethylamine	ND	ug/L	0.500	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55 -0723,NELAC-NY10	10/26/2023 21:46 854,NJDEP-CT005	KH
87-86-5	Pentachlorophenol	ND	ug/L	0.250	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55 -0723,NELAC-NY10	10/26/2023 21:46 854,NJDEP-CT005	KH
85-01-8	Phenanthrene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55 -0723,NELAC-NY10	10/26/2023 21:46 854,NJDEP-CT005,P	KH ADEP-68-044
129-00-0	Pyrene	ND	ug/L	0.0500	1	EPA 8270D SIM Certifications: CTDOH-PH	10/23/2023 08:55 -0723,NELAC-NY10	10/26/2023 21:46 854,NJDEP-CT005,P	KH ADEP-68-044

Sample Information

Client Sample ID: DUP **York Sample ID:** 23J1357-05

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 03C497-M Ground Water 23J1357 October 19, 2023 3:00 pm 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.216	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY10	10/26/2023 17:59 854,NELAC-NY1205	SMA 8,NJDEP-CT
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.266	0.500	1	EPA 8260C Certifications:	10/26/2023 09:00 CTDOH-PH-0723,NELAC-NY10	10/26/2023 17:59 854,NELAC-NY1205	SMA 8,NJDEP-CT

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@

Page 31 of 61

Client Sample ID: DUP

<u>York Sample ID:</u> 23J1357-05

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 3:00 pm Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

	d by Method: EPA 5030B					10000		Sum	pie i tote	<u>5•</u>		
CAS No	•	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.256	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.286	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
75-34-3	1,1-Dichloroethane	ND		ug/L	0.272	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.222	0.500	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 Y10854,NELAC-NY1	10/26/2023 17:59 2058,NJDEP-CT005,l	SMA PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.273	0.500	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 Y10854,NELAC-NY1	10/26/2023 17:59 2058,NJDEP-CT005,l	SMA PADEP-68-04
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.138	0.500	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 Y10854,NELAC-NY1	10/26/2023 17:59 2058,NJDEP-CT005,l	SMA PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.310	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.432	0.500	1	EPA 8260C Certifications:	CTDOH-PF	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
106-93-4	1,2-Dibromoethane	ND		ug/L	0.215	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.270	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
107-06-2	1,2-Dichloroethane	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
78-87-5	1,2-Dichloropropane	ND		ug/L	0.327	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.347	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.283	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
142-28-9	1,3-Dichloropropane	ND		ug/L	0.260	0.500	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 Y10854,NELAC-NY1	10/26/2023 17:59 2058,NJDEP-CT005,l	SMA PADEP-68-04
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.311	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
123-91-1	1,4-Dioxane	ND	CCVE	ug/L	35.3	80.0	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 Y10854,NELAC-NY1	10/26/2023 17:59 2058,NJDEP-CT005,	SMA PADEP-68-04
78-93-3	2-Butanone	ND		ug/L	0.421	0.500	1	EPA 8260C Certifications:	CTDOH-PF	10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
591-78-6	2-Hexanone	ND		ug/L	0.320	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59	SMA
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.365	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59	SMA
67-64-1	Acetone	ND		ug/L	1.34	2.00	1	EPA 8260C Certifications:		10/26/2023 09:00 H-0723,NELAC-NY10	10/26/2023 17:59	SMA
								•		,	,	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 32 of 61

Client Sample ID: DUP

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23J135703C497-MGround WaterOctober 19, 2023 3:00 pm10/20/2023

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:
---------------	---------------

York Sample ID:

23J1357-05

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
107-02-8	Acrolein	ND		ug/L	0.447	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
107-13-1	Acrylonitrile	ND		ug/L	0.422	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
71-43-2	Benzene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
74-97-5	Bromochloromethane	ND		ug/L	0.354	0.500	1	EPA 8260C Certifications:	NELAC-NY	10/26/2023 09:00 710854,NELAC-NY1	10/26/2023 17:59 2058,NJDEP-CT005,	SMA PADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	0.245	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
75-25-2	Bromoform	ND		ug/L	0.163	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
74-83-9	Bromomethane	ND	CCVE	ug/L	0.119	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
75-15-0	Carbon disulfide	ND		ug/L	0.362	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
56-23-5	Carbon tetrachloride	ND		ug/L	0.204	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
108-90-7	Chlorobenzene	ND		ug/L	0.284	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
75-00-3	Chloroethane	ND		ug/L	0.448	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
67-66-3	Chloroform	ND		ug/L	0.243	0.500	1	EPA 8260C Certifications:	CTDOH-PH	10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-C
74-87-3	Chloromethane	0.730		ug/L	0.372	0.500	1	EPA 8260C Certifications:	CTDOH-PI	10/26/2023 09:00 H-0723,NELAC-NY1	10/26/2023 17:59 0854 NELAC-NY12	SMA
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.294	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59	SMA
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.262	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59	SMA
110-82-7	Cyclohexane	ND		ug/L	0.491	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 710854,NELAC-NY1	10/26/2023 17:59	SMA
124-48-1	Dibromochloromethane	ND		ug/L	0.146	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59	SMA
74-95-3	Dibromomethane	ND		ug/L	0.203	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 10854,NELAC-NY1	10/26/2023 17:59	SMA
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.451	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 10854,NELAC-NY1	10/26/2023 17:59	SMA
100-41-4	Ethyl Benzene	ND		ug/L	0.290	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59	SMA
87-68-3	Hexachlorobutadiene	ND		ug/L	0.241	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 10854,NELAC-NY1	10/26/2023 17:59	SMA
98-82-8	Isopropylbenzene	ND		ug/L	0.405	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00 I-0723,NELAC-NY10	10/26/2023 17:59	SMA
79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1	EPA 8260C Certifications:		10/26/2023 09:00	10/26/2023 17:59 2058,NJDEP-CT005,	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 33 of 61

Client Sample ID: DUP

Sample Prepared by Method: EPA 5030B

York Sample ID:

23J1357-05

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 3:00 pm Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		ate/Time Prepared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.244	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
108-87-2	Methylcyclohexane	ND		ug/L	0.477	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY12	10/26/2023 17:59 2058,NJDEP-CT005,	SMA PADEP-68-04
75-09-2	Methylene chloride	ND	CAL-E	ug/L	0.397	2.00	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
91-20-3	Naphthalene	ND		ug/L	0.212	2.00	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY12	10/26/2023 17:59 2058,NJDEP-CT005,	SMA PADEP-68-04
104-51-8	n-Butylbenzene	ND		ug/L	0.399	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
103-65-1	n-Propylbenzene	ND		ug/L	0.384	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
95-47-6	o-Xylene	ND		ug/L	0.261	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,PADEP-68
179601-23-1	p- & m- Xylenes	ND		ug/L	0.578	1.00	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,PADEP-68
105-05-5	* p-Diethylbenzene	ND		ug/L	0.341	0.500	1	EPA 8260C Certifications:	10/26	5/2023 09:00	10/26/2023 17:59	SMA
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260C Certifications:	10/26	5/2023 09:00	10/26/2023 17:59	SMA
99-87-6	p-Isopropyltoluene	ND		ug/L	0.377	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
135-98-8	sec-Butylbenzene	ND		ug/L	0.444	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
100-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.608	1.00	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY12	10/26/2023 17:59 2058,NJDEP-CT005,l	SMA PADEP-68-04
98-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
127-18-4	Tetrachloroethylene	ND	CCVE, ICVE, QL-02	ug/L	0.239	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
108-88-3	Toluene	ND		ug/L	0.346	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
79-01-6	Trichloroethylene	ND		ug/L	0.249	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-69-4	Trichlorofluoromethane	ND		ug/L	0.337	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
75-01-4	Vinyl Chloride	ND		ug/L	0.469	0.500	1	EPA 8260C Certifications:		5/2023 09:00 NELAC-NY10	10/26/2023 17:59 0854,NELAC-NY120	SMA 58,NJDEP-CT
1330-20-7	Xylenes, Total	ND		ug/L	0.836	1.50	1	EPA 8260C Certifications:		5/2023 09:00	10/26/2023 17:59	SMA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 34 of 61

Client Sample ID: DUP

York Sample ID:

23J1357-05

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 3:00 pm Date Received 10/20/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Surrogate Recoveries	Result		Acc	eptance Rang	e					
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	100 %			69-130						
2037-26-5	Surrogate: SURR: Toluene-d8	97.8 %			81-117						
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	94.3 %			79-122						

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to	LOO	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-NY	10/23/2023 08:55 Y10854,NJDEP-CT005	10/25/2023 00:30 5,PADEP-68-04440	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-NY	10/23/2023 08:55 Y10854,NJDEP-CT005	10/25/2023 00:30 5,PADEP-68-04440	КН
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-N	10/23/2023 08:55 Y10854,NJDEP-CT005	10/25/2023 00:30 5,PADEP-68-04440	KH
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04
105-67-9	2,4-Dimethylphenol	ND	CCVE	ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04
91-58-7	2-Chloronaphthalene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04
95-57-8	2-Chlorophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04
91-57-6	2-Methylnaphthalene	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04
95-48-7	2-Methylphenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04
88-74-4	2-Nitroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04
88-75-5	2-Nitrophenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PH	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723.NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 35 of 61

Client Sample ID: DUP

York Sample ID: 23J1357-05

York Project (SDG) No. 23J1357 Client Project ID 03C497-M Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 3:00 pm Date Received 10/20/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:
----------------------	---------------

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
99-09-2	3-Nitroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
106-47-8	4-Chloroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
100-01-6	4-Nitroaniline	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
100-02-7	4-Nitrophenol	ND		ug/L	5.26	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
98-86-2	Acetophenone	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-N	10/23/2023 08:55 Y10854,NJDEP-CT00	10/25/2023 00:30 5,PADEP-68-04440	KH
100-52-7	Benzaldehyde	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-N	10/23/2023 08:55 Y10854,NJDEP-CT00	10/25/2023 00:30 5,PADEP-68-04440	KH
85-68-7	Benzyl butyl phthalate	ND	CCVE	ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.05	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
105-60-2	Caprolactam	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	NELAC-N	10/23/2023 08:55 Y10854,NJDEP-CT00	10/25/2023 00:30 5,PADEP-68-04440	KH
86-74-8	Carbazole	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
132-64-9	Dibenzofuran	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
84-66-2	Diethyl phthalate	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
131-11-3	Dimethyl phthalate	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
84-74-2	Di-n-butyl phthalate	ND	CCVE	ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	5.26	10.5	1	EPA 8270D Certifications:	CTDOH-PI	10/23/2023 08:55 H-0723 NELAC-NY10	10/25/2023 00:30 0854,NJDEP-CT005,P	KH PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 36 of 61

Client Sample ID: DUP **York Sample ID:**

23J1357-05

York Project (SDG) No. 23J1357

Client Project ID 03C497-M

Matrix Ground Water

Collection Date/Time October 19, 2023 3:00 pm Date Received 10/20/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in	Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
78-59-1	Isophorone	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH ADEP-68-044
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH ADEP-68-044
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH ADEP-68-044
108-95-2	Phenol	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH ADEP-68-044
2312-35-8	* Propargite	ND		ug/L	2.63	5.26	1	EPA 8270D Certifications:		10/23/2023 08:55	10/25/2023 00:30	KH
110-86-1	Pyridine	ND	ICVE	ug/L	2.63	5.26	1	EPA 8270D Certifications:	CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/25/2023 00:30 854,NJDEP-CT005,P	KH ADEP-68-044
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	39.2 %			19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	22.1 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	110 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	93.0 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	179 %	S-08		39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	111 %	S-08		30.7-106							

Semi-volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ L	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	0.768	ug/L	0.0526	1	EPA 8270D SIM	10/23/2023 08:55	10/26/2023 22:17	KH
						Certifications: CTDOH-F	H-0723,NELAC-NY10	0854,NJDEP-CT005,I	PADEP-68-04
208-96-8	Acenaphthylene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 854,NJDEP-CT005,P	KH ADEP-68-044
120-12-7	Anthracene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 854,NJDEP-CT005,P	KH ADEP-68-044
1912-24-9	Atrazine	ND	ug/L	0.526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 854,NJDEP-CT005	KH
56-55-3	Benzo(a)anthracene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 854,NJDEP-CT005,P.	KH ADEP-68-044
50-32-8	Benzo(a)pyrene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 854,NJDEP-CT005,P	KH ADEP-68-044
205-99-2	Benzo(b)fluoranthene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 854,NJDEP-CT005,P	KH ADEP-68-044
191-24-2	Benzo(g,h,i)perylene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 854,NJDEP-CT005,P	KH ADEP-68-044
207-08-9	Benzo(k)fluoranthene	ND	ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 854,NJDEP-CT005,P	KH ADEP-68-044
117-81-7	Bis(2-ethylhexyl)phthalate	ND	ug/L	0.526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 854,NJDEP-CT005	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Client Sample ID: DUP

<u>York Sample ID:</u> 23J1357-05

York Project (SDG) No. 23J1357

Client Project ID 03C497-M Matrix Ground Water <u>Collection Date/Time</u> October 19, 2023 3:00 pm Date Received 10/20/2023

Semi-volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
218-01-9	Chrysene	ND		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005,P	KH PADEP-68-044
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005,P	KH PADEP-68-044
206-44-0	Fluoranthene	ND		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005,P	KH PADEP-68-044
86-73-7	Fluorene	0.400		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-I	10/23/2023 08:55 PH-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005,	KH PADEP-68-04
118-74-1	Hexachlorobenzene	ND		ug/L	0.0211	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	0.526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005	KH
67-72-1	Hexachloroethane	ND		ug/L	0.526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005,P	KH PADEP-68-044
91-20-3	Naphthalene	ND		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005,P	KH PADEP-68-044
98-95-3	Nitrobenzene	ND		ug/L	0.263	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005	КН
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005	KH
87-86-5	Pentachlorophenol	ND		ug/L	0.263	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005	КН
85-01-8	Phenanthrene	ND		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-P	10/23/2023 08:55 H-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005,P	KH PADEP-68-044
129-00-0	Pyrene	0.179		ug/L	0.0526	1	EPA 8270D SIM Certifications: CTDOH-I	10/23/2023 08:55 PH-0723,NELAC-NY10	10/26/2023 22:17 0854,NJDEP-CT005,I	KH PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 38 of 61

Analytical Batch Summary

Batch ID: BJ31543	Preparation Method:	EPA 3510C	Prepared By:	moa
YORK Sample ID	Client Sample ID	Preparation Date		
23J1357-03	MW-4AR	10/23/23		
23J1357-04	MW-5AR	10/23/23		
23J1357-05	DUP	10/23/23		
BJ31543-BLK1	Blank	10/23/23		
BJ31543-BLK2	Blank	10/23/23		
BJ31543-BS1	LCS	10/23/23		
BJ31543-BS2	LCS	10/23/23		
BJ31543-BSD1	LCS Dup	10/23/23		
Batch ID: BJ31863	Preparation Method:	EPA 3510C	Prepared By:	S_S
YORK Sample ID	Client Sample ID	Preparation Date		
23J1357-01	MW-1AR	10/26/23		
23J1357-01RE1	MW-1AR	10/26/23		
23J1357-02	MW-3AR	10/26/23		
23J1357-02RE1	MW-3AR	10/26/23		
BJ31863-BLK1	Blank	10/26/23		
BJ31863-BLK2	Blank	10/26/23		
BJ31863-BS1	LCS	10/26/23		
BJ31863-BS2	LCS	10/26/23		
BJ31863-MS1	Matrix Spike	10/26/23		
BJ31863-MSD1	Matrix Spike Dup	10/26/23		
Batch ID: BJ31877	Preparation Method:	EPA 5030B	Prepared By:	SMA
YORK Sample ID	Client Sample ID	Preparation Date		
23J1357-01	MW-1AR	10/26/23		
23J1357-02	MW-3AR	10/26/23		
23J1357-03	MW-4AR	10/26/23		
23J1357-04	MW-5AR	10/26/23		
23J1357-05	DUP	10/26/23		
BJ31877-BLK1	Blank	10/26/23		
BJ31877-BS1	LCS	10/26/23		
BJ31877-BSD1	LCS Dup	10/26/23		
BJ31877-MS1	Matrix Spike	10/26/23		
BJ31877-MSD1	Matrix Spike Dup	10/26/23		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 39 of 61

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

				Level	Result	%REC	Limits				Flag
Batch BJ31877 - EPA 5030B											
Blank (BJ31877-BLK1)							Prepa	red & Analy	zed: 10/26/	2023	
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L								
1,1,1-Trichloroethane	ND	0.500	"								
1,1,2,2-Tetrachloroethane	ND	0.500	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.500	"								
113)											
1,1,2-Trichloroethane	ND	0.500	"								
1,1-Dichloroethane	ND	0.500	"								
1,1-Dichloroethylene	ND	0.500	"								
1,2,3-Trichlorobenzene	ND	0.500	"								
1,2,3-Trichloropropane	ND	0.500	"								
1,2,4-Trichlorobenzene	ND	0.500	"								
1,2,4-Trimethylbenzene	ND	0.500	"								
1,2-Dibromo-3-chloropropane	ND	0.500	"								
1,2-Dibromoethane	ND	0.500	"								
1,2-Dichlorobenzene	ND	0.500	"								
1,2-Dichloroethane	ND	0.500	"								
1,2-Dichloropropane	ND	0.500	"								
1,3,5-Trimethylbenzene	ND	0.500	"								
1,3-Dichlorobenzene	ND	0.500	"								
1,3-Dichloropropane	ND	0.500	"								
1,4-Dichlorobenzene	ND	0.500	"								
1,4-Dioxane	ND	80.0	"								
2-Butanone	ND	0.500	"								
2-Hexanone	ND	0.500	"								
4-Methyl-2-pentanone	ND	0.500	"								
Acetone	ND	2.00	"								
Acrolein	ND	0.500	"								
Acrylonitrile	ND	0.500	"								
Benzene	ND	0.500	"								
Bromochloromethane	ND	0.500	"								
Bromodichloromethane	ND	0.500	"								
Bromoform	ND	0.500	"								
Bromomethane	ND	0.500	"								
Carbon disulfide	ND	0.500	"								
Carbon tetrachloride	ND	0.500	"								
Chlorobenzene	ND	0.500	"								
Chloroethane	ND	0.500	"								
Chloroform	ND	0.500	"								
Chloromethane	ND	0.500	"								
cis-1,2-Dichloroethylene	ND	0.500	"								
cis-1,3-Dichloropropylene	ND	0.500	"								
Cyclohexane	ND	0.500	"								
Dibromochloromethane	ND	0.500	"								
Dibromomethane	ND	0.500	"								
Dichlorodifluoromethane	ND	0.500	"								
Ethyl Benzene	ND	0.500	"								
Hexachlorobutadiene	ND	0.500	"								
Isopropylbenzene	ND	0.500	"								
Methyl acetate	ND	0.500	"								

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 40 of 61

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

%REC

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ31877 - EPA 5030B											
Blank (BJ31877-BLK1)							Prep	ared & Analy	yzed: 10/26/	2023	
Methylcyclohexane	ND	0.500	ug/L								
Methylene chloride	ND	2.00	"								
Naphthalene	ND	2.00	"								
n-Butylbenzene	ND	0.500	"								
n-Propylbenzene	ND	0.500	"								
o-Xylene	ND	0.500	"								
p- & m- Xylenes	ND	1.00	"								
p-Diethylbenzene	ND	0.500	"								
p-Ethyltoluene	ND	0.500	"								
p-Isopropyltoluene	ND	0.500	"								
sec-Butylbenzene	ND	0.500	"								
Styrene	ND	0.500	"								
tert-Butyl alcohol (TBA)	ND	1.00	"								
tert-Butylbenzene	ND	0.500	"								
Tetrachloroethylene	ND	0.500	"								
Toluene	ND	0.500	"								
trans-1,2-Dichloroethylene	ND	0.500	"								
trans-1,3-Dichloropropylene	ND	0.500	"								
Trichloroethylene	ND	0.500	"								
Trichlorofluoromethane	ND	0.500	"								
Vinyl Chloride	ND	0.500	"								
Xylenes, Total	ND	1.50	"								
Surrogate: SURR: 1,2-Dichloroethane-d4	10.6		"	10.0		106	69-130				
Surrogate: SURR: Toluene-d8	9.66		"	10.0		96.6	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.25		"	10.0		92.5	79-122				
LCS (BJ31877-BS1)							Prep	ared & Analy	yzed: 10/26/	2023	
1,1,1,2-Tetrachloroethane	9.75		ug/L	10.0		97.5	82-126				
1,1,1-Trichloroethane	9.99		"	10.0		99.9	78-136				
1,1,2,2-Tetrachloroethane	9.92		"	10.0		99.2	76-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.5		"	10.0		105	54-165				
113)											
1,1,2-Trichloroethane	9.66		"	10.0		96.6	82-123				
1,1-Dichloroethane	9.28		"	10.0		92.8	82-129				
1,1-Dichloroethylene	9.51		"	10.0		95.1	68-138				
1,2,3-Trichlorobenzene	10.8		"	10.0		108	76-136				
1,2,3-Trichloropropane	8.94		"	10.0		89.4	77-128				
1,2,4-Trichlorobenzene	10.4		"	10.0		104	76-137				
1,2,4-Trimethylbenzene	9.37		"	10.0		93.7	82-132				
1,2-Dibromo-3-chloropropane	9.56		"	10.0		95.6	45-147				
1,2-Dibromoethane	10.0		"	10.0		100	83-124				
1,2-Dichlorobenzene	9.94		"	10.0		99.4	79-123				
1,2-Dichloroethane	10.2		"	10.0		102	73-132				
1,2-Dichloropropane	9.61		"	10.0		96.1	78-126				
1,3,5-Trimethylbenzene	9.13		"	10.0		91.3	80-131				
1,3-Dichlorobenzene	9.55		"	10.0		95.5	86-122				
1,3-Dichloropropane	9.94		"	10.0		99.4	81-125				
1,4-Dichlorobenzene	9.55		"	10.0		95.5	85-124				
1,4-Dioxane	161		"	210		76.6	10-349				
2-Butanone	8.73		"	10.0		87.3	49-152				
2-Hexanone	8.75		"	10.0		87.5	51-146				
120 RESEARCH DRIVE	STRATFORD, CT 06619	5		10:	2-02 89th A	VENITE		RICHMOND	LIII NIV	11/110	
IZU NESEARUH DRIVE	311XA11 UKD, U1 000 13	J		13.	∠-∪∠ 05111 A	VLINUE	F		THEE, INT	11410	

120 RESEARCH DRIVE www.YORKLAB.com

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

ClientServices@ Page 41 of 61

RPD

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Acetone	9 10-153	57-145
Aectolen	9 10-153	
Aerylonitrile 10.1 10.0 11.0 10.0 10.0 10.0 10.0 10.		14-150 High Bias
Benzene 9.87 " 10.0 98 Bromochloromethane 10.0 " 10.0 10.0 10.0 10.0 10.0 10.0 10	51-150	10-153
Second color omethane 10.0		51-150
romofichloromethane 9.33	.7 85-126	85-126
Aromoform 10.6 " 10.0 10.0 10.0 20.0 20.0 20.0 20.0 20.0	0 77-128	77-128
romomethane 7.23 " 10.0 72 arbon disulfide 9.55 " 10.0 95 arbon tetrachloride 10.1 " 10.0 10 afriborobenzene 10.2 " 10.0 10 filorochane 10.7 " 10.0 10 filorochane 10.7 " 10.0 95 arbon tetrachloride 10.1 " 10.0 10 filorochane 10.7 " 10.0 95 arbon tetrachloride 10.0 9.79 " 10.0 95 ais-1,2-Dichlorochylene 9.26 " 10.0 95 ais-1,3-Dichloropropylene 9.39 " 10.0 95 ais-1,3-Dichloropropylene 9.39 " 10.0 95 ais-1,3-Dichloromethane 9.85 " 10.0 95 ais-1,3-Dichloromethane 11.1 " 10.0 11.1 ait-1,1 " 10.0 11.	.3 79-128	79-128
arbon disulfide arbon disulfide 4 9.55 arbon disulfide 4 9.55 4 10.0 5 10.0 5 10.0 6 1	6 78-133	78-133
arbon tetrachloride hlorobenzene hlorobenzene hlorobenzene hlorobenzene hlorofame hloroform 9.79 hloromethane 9.26 is-1,2-Dichloroethylene 9.25 is-1,2-Dichloropropylene 9.39 ibitromochloromethane 9.58 ibitromochloromethane 9.72 ibitromochloromethane 9.72 ibitromochloromethane 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11	.3 43-168	43-168
hlorobenzene hlorobenzene hlorobenzene hlorobenzene hlorobenzene hlorobenzene hlorobenzene hlorobenzene hloroform 9,79 10.0 10 10 10 10 10 10 10 10 10 10 10 10 10	.5 68-146	68-146
hloroethane hloroform 9.79 hloromethane 9.26 " 10.0 97 hloromethane 9.26 " 10.0 95 is-1,2-Dichloroethylene 9.55 " 10.0 95 is-1,3-Dichloroptylene 9.39 " 10.0 95 is-1,3-Dichloroptylene 9.39 " 10.0 95 is-1,3-Dichloroptylene 9.85 " 10.0 97 in 10.0 98 in 10.0 98 in 10.0 99 in 1		77-141
hloroethane hloroform 9.79 " 10.0 9.76 hloroform 9.79 " 10.0 9.76 hloromethane 9.26 " 10.0 9.75 hloromethane 9.26 " 10.0 9.75 s-1,2-Dichloroethylene 9.39 " 10.0 9.75 s-1,3-Dichloropropylene 9.39 " 10.0 9.75 s-1,3-Dichloropropylene 9.39 " 10.0 9.75 s-1,3-Dichloromethane 9.85 " 10.0 9.75 s-1,3-Dichloromethane 9.85 " 10.0 9.75 s-1,0-Dichloromethane 9.72 " 10.0 9.75 s-1,0-Dichloromethane 9.72 " 10.0 9.75 s-1,0-Dichloromethane 9.75 " 10.0 9.75 s-1,3-Dichloromethane 9.75 " 10.0 9.75 s-1,0-Dichloromethane 9.75 " 10.0 9.75 s-2,-Se - 10.0 9.75 s-3,-Se - 10.0 9.75 s-4,-Se - 10.0 9.75 s-4,-Se - 10.0 9.75 s-4,-Se - 10.0 9.75 s-6,-Se - 10.0 9.75 s-75 s-75 s-75 s-75 s-75 s-75 s-75 s-	2 88-120	88-120
Horoform hloromethane 9.79 hloromethane 9.26 " 10.0 92 s-1,2-Dichloroethylene 9.55 " 10.0 93 " 10.0 93 s-1,3-Dichloropropylene 9.39 " 10.0 93 " 10.0 93 yclohexane 9.58 " 10.0 98 ibromochloromethane 9.85 " 10.0 98 ibromochloromethane 11.1 " 10.0 11.1 thyl Benzene 9.51 " 10.0 95 exachlorobutadiene 10.2 " 10.0 1	7 65-136	65-136
hloromethane		82-128
s-1,2-Dichloroethylene		43-155
s-1,3-Dichloropropylene 9.39 " 10.0 93 yelohexane 9.58 " 10.0 95 ibromochloromethane 9.85 " 10.0 98 ibromochloromethane 9.85 " 10.0 98 ibromochloromethane 9.72 " 10.0 97 ichlorodifluoromethane 11.1 " 10.0 17 ichlorodifluoromethane 11.1 " 10.0 17 ichlorodifluoromethane 10.2 " 10.0 95 exachlorobutadiene 10.2 " 10.0 16 opropylbenzene 9.29 " 10.0 92 ichlyl acetate 9.95 " 10.0 99 ichlyl ett-butyl ether (MTBE) 10.6 " 10.0 16 ichlyl ett-butyl ether (MTBE) 10.6 " 10.0 16 ichlyl ethyl echloride 7.93 " 10.0 92 ichlylene chloride 7.93 " 10.0 92 ichlylenzene 9.55 " 10.0 92 ichlylenzene 9.55 " 10.0 95 ichlylenzene 9.55 " 10.0 95 ichlylenzene 9.50 " 10.0 95 ichlylenzene 9.51 " 10.0 95 ichlylenzene 9.52 " 10.0 95 ichlylenzene 9.54 " 10.0 95 ichlylenzene 9.46 " 10.0 95 ichlylenzene 9.46 " 10.0 95 ichlylenzene 9.46 " 10.0 95 ichlylenzene 9.47 " 10.0 95 ichlylenzene 9.49 " 10.0 97 ichlylenzene 9.55 " 10		83-129
yelohexane 9.58 " 10.0 95 sibromochloromethane 9.85 " 10.0 98 sibromochloromethane 9.85 " 10.0 98 sibromochloromethane 9.72 " 10.0 97 ichlorodifluoromethane 11.1 " 10.0 11 thyl Benzene 9.51 " 10.0 95 sexachlorobutadiene 10.2 " 10.0 16 opropylbenzene 9.29 " 10.0 92 lethyl acetate 9.95 " 10.0 95 lethyl cetate 9.95 " 10.0 95 lethyl cetate 9.95 " 10.0 92 lethyl cetate 9.25 " 10.0 92 lethylcyclohexane 9.55 " 10.0 92 lethylcyclohexane 9.55 " 10.0 95 lethylbenzene 9.52 " 10.0 95 lethylbenzene 9.52 " 10.0 95 lethylbenzene 9.50 "		80-131
ibromochloromethane 9.85 " 10.0 98 ibromomethane 9.72 " 10.0 97 ichlorodifluoromethane 9.72 " 10.0 97 ichlorodifluoromethane 11.1 " 10.0 11 ichly Benzene 9.51 " 10.0 95 exachlorobutadiene 10.2 " 10.0 10.0 95 exachlorobutadiene 9.29 " 10.0 92 ichly lectate 9.95 " 10.0 92 ichly lethy lether (MTBE) 10.6 " 10.0 95 ichly lethy lethy lether (MTBE) 10.6 " 10.0 95 ichly lethy lether (MTBE) 10.6 " 10.0 95 ichly lethy lether (MTBE) 10.0 95 ichly lethy let		63-149
ibromomethane 9.72 " 10.0 97 ichlorodifluoromethane 11.1 " 10.0 11 thyl Benzene 9.51 " 10.0 95 exachlorobutadiene 10.2 " 10.0 16 opropylbenzene 9.29 " 10.0 92 lethyl acetate 9.95 " 10.0 99 lethyl ether (MTBE) 10.6 " 10.0 10 lethyl ethyl ether (MTBE) 10.6 " 10.0 92 lethylene chloride 9.25 " 10.0 92 lethylene chloride 9.55 " 10.0 95 lethylene chloride 9.55 " 10.0 95 lethylene 9.55 " 10.0 95 lethylene 9.55 " 10.0 95 lethylene 9.52 " 10.0 95 lethylene 9.52 " 10.0 95 lethylene 9.52 " 10.0 95 lethylene 9.50 " 10.0 95 lethylene 9.50 " 10.0 95 lethylene 9.50 " 10.0 95 lethylene 9.53 " 10.0 95 lethylene 9.53 " 10.0 95 lethylene 9.53 " 10.0 95 lethylene 9.55 " 10.0 95 lethylene 9.57 " 10.0 95 lethylene 9.57 " 10.0 95 lethylene 9.58 " 10.0 95 lethylene 9.59 " 10.0 95 lethylene 9.50 " 10.0 95		80-130
ichlorodifluoromethane thyl Benzene thyl Ben		72-134
thyl Benzene 9.51 " 10.0 95 exachlorobutadiene 10.2 " 10.0 10 10 opropylbenzene 9.29 " 10.0 92 lethyl acetate 9.95 " 10.0 99 lethyl tert-butyl ether (MTBE) 10.6 " 10.0 92 lethyl tert-butyl ether (MTBE) 10.6 " 10.0 92 lethylene chloride 7.93 " 10.0 92 lethylene chloride 7.93 " 10.0 92 lethylene chloride 7.93 " 10.0 95 lethylene chloride 9.55 " 10.0 95 lethylene ethylene ethylene 9.55 " 10.0 95 lethylene ethylene ethylene 9.55 " 10.0 95 lethylene ethylene ethylene ethylene 9.55 " 10.0 95 lethylene ethylene ethylene ethylene ethylene 9.52 " 10.0 95 lethylene ethylene 9.46 " 10.0 95 lethylene ethylene 9.46 " 10.0 94 lethylene ethylene 9.53 " 10.0 95 lethylene ethylene 9.54 " 10.0 95 lethylene ethylene 9.55 " 10.0 95 lethylene ethylene 9.56 " 10.0 95 lethylene ethylene 9.57 " 10.0 95 lethylene ethylene 9.57 " 10.0 95 lethylene ethylene 9.57 " 10.0 95 lethylene 9.59 " 10.0 9		44-144
Seachlorobutadiene 10.2		80-131
Second S		67-146
lethyl acetate 9.95 " 10.0 99 lethyl tert-butyl ether (MTBE) 10.6 " 10.0 10 lethylcyclohexane 9.25 " 10.0 92 lethylene chloride 7.93 " 10.0 79 aphthalene 10.9 " 10.0 10 Butylbenzene 9.55 " 10.0 95 Propylbenzene 9.24 " 10.0 95 Wylene 9.52 " 10.0 95 Wylene 9.52 " 10.0 95 Ethyltohexane 9.52 " 10.0 95 Ethyltohexane 9.55 " 10.0 95 Ethyltohexane 9.53 " 10.0 94 Ethyltohexane 9.53 " 10.0 95 Expropyltohexane 9.53 " 10.0 95 Expressible prese 9.76 " 10.0 97 Expressible pressible pressibl		76-140
tethyl tert-butyl ether (MTBE) 10.6 " 10.0 10		51-139
tethylcyclohexane 9.25 " 10.0 92 ethylene chloride 7.93 " 10.0 79 aphthalene 10.9 " 10.0 10 10 10 10 10 10 10 10 10 10 10 10 10		76-135
rethylene chloride 7.93 " 10.0 79 raphthalene 10.9 " 10.0 10 Rutylbenzene 9.55 " 10.0 95 Propylbenzene 9.24 " 10.0 95 Xylene 9.52 " 10.0 95 & m- Xylenes 19.4 " 20.0 97 Diethylbenzene 9.46 " 10.0 94 Ethyltoluene 9.42 " 10.0 94 Isopropyltoluene 9.53 " 10.0 95 c-Butylbenzene 9.76 " 10.0 95 rt-Butyl alcohol (TBA) 71.9 " 50.0 14 rt-Butylbenzene 9.49 " 10.0 94 rt-Butylbenzene 9.50 " 10.0 95 rt-Butylbenzene 9.55 " 10.0 95		72-143
aphthalene 10.9 " 10.0 10 Butylbenzene 9.55 " 10.0 95 Propylbenzene 9.24 " 10.0 92 Xylene 9.52 " 10.0 95 & m- Xylenes 19.4 " 20.0 97 Diethylbenzene 9.46 " 10.0 94 Ethyltoluene 9.42 " 10.0 94 Isopropyltoluene 9.53 " 10.0 95 c-Butylbenzene 9.76 " 10.0 94 yrene 9.76 " 10.0 97 rt-Butyl alcohol (TBA) 71.9 " 50.0 14 rt-Butylbenzene 9.49 " 10.0 94 etrachloroethylene 9.53 " 10.0 95 oluene 9.55 " 10.0 95		55-137
Butylbenzene 9.55 " 10.0 95 Propylbenzene 9.24 " 10.0 92 Xylene 9.52 " 10.0 95 & m-Xylenes 19.4 " 20.0 97 Diethylbenzene 9.46 " 10.0 94 Ethyltoluene 9.42 " 10.0 94 Isopropyltoluene 9.53 " 10.0 95 c-Butylbenzene 9.47 " 10.0 95 yrene 9.76 " 10.0 97 rt-Butyl alcohol (TBA) 71.9 " 50.0 12 rt-Butylbenzene 9.49 " 10.0 94 etrachloroethylene 5.00 " 10.0 95 ans-1,2-Dichloroethylene 9.55 " 10.0 95 ans-1,2-Dichloroethylene 9.55 " 10.0 95		70-147
Propylbenzene 9.24 " 10.0 92 Xylene 9.52 " 10.0 95 - & m- Xylenes 19.4 " 20.0 97 - Diethylbenzene 9.46 " 10.0 94 - Ethyltoluene 9.42 " 10.0 94 - Isopropyltoluene 9.53 " 10.0 95 - c-Butylbenzene 9.47 " 10.0 95 - tyrene 9.76 " 10.0 97 - tr-Butyl alcohol (TBA) 71.9 " 50.0 12 - tr-Butylbenzene 9.49 " 10.0 94 - tyrene 9.76 " 10.0 95 - tr-Butylbenzene 9.49 " 10.0 95 - trachloroethylene 9.53 " 10.0 95 - tyrene 9.53 " 10.0 95 - tyrene 9.55 " 10.0 95 - tyrene 9.55 " 10.0 95 - tyrene 9.55 " 10.0 95		79-132
Xylene 9.52 " 10.0 95 & m- Xylenes 19.4 " 20.0 97 Diethylbenzene 9.46 " 10.0 94 Ethyltoluene 9.42 " 10.0 94 Isopropyltoluene 9.53 " 10.0 95 c-Butylbenzene 9.47 " 10.0 94 yrene 9.76 " 10.0 97 rt-Butyl alcohol (TBA) 71.9 " 50.0 12 rt-Butylbenzene 9.49 " 10.0 94 etrachloroethylene 5.00 " 10.0 95 oluene 9.53 " 10.0 95 ans-1,2-Dichloroethylene 9.55 " 10.0 95		78-133
& m- Xylenes 19.4 " 20.0 97 Diethylbenzene 9.46 " 10.0 94 Ethyltoluene 9.42 " 10.0 94 Isopropyltoluene 9.53 " 10.0 95 c-Butylbenzene 9.47 " 10.0 94 yrene 9.76 " 10.0 97 rt-Butyl alcohol (TBA) 71.9 " 50.0 12 rt-Butylbenzene 9.49 " 10.0 94 etrachloroethylene 5.00 " 10.0 50 oluene 9.53 " 10.0 95 ans-1,2-Dichloroethylene 9.55 " 10.0 95		78-130
Diethylbenzene		77-133
Ethyltoluene 9.42 " 10.0 94 Elsopropyltoluene 9.53 " 10.0 95 Exc-Butylbenzene 9.47 " 10.0 95 Exc-Butylbenzene 9.47 " 10.0 97 Extractional form of the state of th		84-134
Sopropyltoluene 9.53 " 10.0 95		88-129
10.0 94 9.47 94 9.47 94 9.47 95 9.47 97 97 97 97 97 97 97		81-136
tyrene 9.76 " 10.0 97 rt-Butyl alcohol (TBA) 71.9 " 50.0 12 rt-Butylbenzene 9.49 " 10.0 94 etrachloroethylene 5.00 " 10.0 50 eluene 9.53 " 10.0 95 ans-1,2-Dichloroethylene 9.55 " 10.0 95		79-137
rt-Butyl alcohol (TBA) 71.9 " 50.0 12 rt-Butyl benzene 9.49 " 10.0 94 etrachloroethylene 5.00 " 10.0 50 eluene 9.53 " 10.0 95 ans-1,2-Dichloroethylene 9.55 " 10.0 95		67-132
rt-Butylbenzene 9.49 " 10.0 94 etrachloroethylene 5.00 " 10.0 50 eluene 9.53 " 10.0 95 ans-1,2-Dichloroethylene 9.55 " 10.0 95		25-162
etrachloroethylene 5.00 " 10.0 50 oluene 9.53 " 10.0 95 ans-1,2-Dichloroethylene 9.55 " 10.0 95		77-138
oluene 9.53 " 10.0 95 ans-1,2-Dichloroethylene 9.55 " 10.0 95		82-131 Low Bias
ans-1,2-Dichloroethylene 9.55 " 10.0 95		80-127
·		80-127 80-132
and 1,5 Diemotopropyrene 9,51 " 10.0 93		78-131
richloroethylene 8.97 " 10.0 89		82-128
richlorofluoromethane 8.97 " 10.0 89		82-128 67-139
		58-145
urrogate: SURR: 1,2-Dichloroethane-d4 10.5 " 10.0		69-130
urrogate: SURR: Toluene-d8 9.75 " 10.0 97 urrogate: SURR: p-Bromofluorobenzene 9.38 " 10.0 93		81-117 79-122

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 42 of 61

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit Omis	Level	Result	70KEC	Limits	Tag	Kib	Liiiit	Tag
Batch BJ31877 - EPA 5030B										
LCS Dup (BJ31877-BSD1)						Prep	pared & Analy	zed: 10/26/	2023	
1,1,1,2-Tetrachloroethane	9.89	ug/L	10.0		98.9	82-126		1.43	30	
1,1,1-Trichloroethane	9.82	"	10.0		98.2	78-136		1.72	30	
1,1,2,2-Tetrachloroethane	10.6	"	10.0		106	76-129		6.63	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.1	"	10.0		101	54-165		4.16	30	
113)										
1,1,2-Trichloroethane	10.2	"	10.0		102	82-123		5.63	30	
1,1-Dichloroethane	9.24	"	10.0		92.4	82-129		0.432	30	
1,1-Dichloroethylene	9.29	"	10.0		92.9	68-138		2.34	30	
1,2,3-Trichlorobenzene	11.8	"	10.0		118	76-136		8.94	30	
1,2,3-Trichloropropane	9.72	"	10.0		97.2	77-128		8.36	30	
1,2,4-Trichlorobenzene	11.2	"	10.0		112	76-137		7.02	30	
1,2,4-Trimethylbenzene	9.11	"	10.0		91.1	82-132		2.81	30	
1,2-Dibromo-3-chloropropane	10.6	"	10.0		106	45-147		9.85	30	
1,2-Dibromoethane	10.6	"	10.0		106	83-124		5.83	30	
1,2-Dichlorobenzene	10.0	"	10.0		100	79-123		0.802	30	
1,2-Dichloroethane	10.7	"	10.0		107	73-132		4.31	30	
1,2-Dichloropropane	9.58	"	10.0		95.8	78-126		0.313	30	
1,3,5-Trimethylbenzene	8.74	"	10.0		87.4	80-131		4.36	30	
1,3-Dichlorobenzene	9.46	"	10.0		94.6	86-122		0.947	30	
1,3-Dichloropropane	10.4	"	10.0		104	81-125		4.14	30	
1,4-Dichlorobenzene	9.52	"	10.0		95.2	85-124		0.315	30	
1,4-Dioxane	55.1	"	210		26.3	10-349		97.9	30	Non-dir.
2-Butanone	9.94	"	10.0		99.4	49-152		13.0	30	
2-Hexanone	9.63	"	10.0		96.3	51-146		9.58	30	
4-Methyl-2-pentanone	10.1	"	10.0		101	57-145		10.8	30	
Acetone	21.2	"	10.0		212	14-150	High Bias	7.05	30	
Acrolein	12.9	"	10.0		129	10-153		7.98	30	
Acrylonitrile	10.9	"	10.0		109	51-150		7.34	30	
Benzene	9.90	"	10.0		99.0	85-126		0.303	30	
Bromochloromethane	10.5	"	10.0		105	77-128		4.40	30	
Bromodichloromethane	9.39	"	10.0		93.9	79-128		0.641	30	
Bromoform	11.3	"	10.0		113	78-133		6.75	30	
Bromomethane	7.35	"	10.0		73.5	43-168		1.65	30	
Carbon disulfide	9.39	"	10.0		93.9	68-146		1.69	30	
Carbon tetrachloride	9.63	"	10.0		96.3	77-141		4.96	30	
Chlorobenzene	10.2	"	10.0		102	88-120		0.980	30	
Chloroethane	10.4	"	10.0		104	65-136		2.65	30	
Chloroform	9.75	"	10.0		97.5	82-128		0.409	30	
Chloromethane	9.15	"	10.0		91.5	43-155		1.20	30	
cis-1,2-Dichloroethylene	9.49	"	10.0		94.9	83-129		0.630	30	
cis-1,3-Dichloropropylene	9.59	"	10.0		95.9	80-131		2.11	30	
Cyclohexane	9.49	"	10.0		94.9	63-149		0.944	30	
Dibromochloromethane	10.5	"	10.0		105	80-130		6.01	30	
Dibromomethane	10.2	"	10.0		102	72-134		4.43	30	
Dichlorodifluoromethane	10.9	"	10.0		109	44-144		1.73	30	
Ethyl Benzene	9.24	"	10.0		92.4	80-131		2.88	30	
Hexachlorobutadiene	9.92	"	10.0		99.2	67-146		3.27	30	
Isopropylbenzene	8.84	"	10.0		88.4	76-140		4.96	30	
Methyl acetate	11.0	"	10.0		110	51-139		10.2	30	
-										
Methyl tert-butyl ether (MTBE)	11.6	"	10.0		116	76-135		9.21	30	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 43 of 61

York Analytical Laboratories, Inc. - Stratford

Analyte	Result	Reporting Limit Ur	Spike nits Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
-	Toball	Ziiiii Oi	Level	LUGUIT	, stabe	Zimio				
Batch BJ31877 - EPA 5030B								1.40/0.6/	••••	
LCS Dup (BJ31877-BSD1)							pared & Analy			
Methylene chloride	7.97	ug			79.7	55-137		0.503	30	
Naphthalene	12.2		' 10.0		122	70-147		11.7	30	
n-Butylbenzene	9.18	,	10.0		91.8	79-132		3.95	30	
n-Propylbenzene	8.80	,	10.0		88.0	78-133		4.88	30	
o-Xylene	9.46	'	10.0		94.6	78-130		0.632	30	
p- & m- Xylenes	19.0	'	20.0		95.1	77-133		2.13	30	
p-Diethylbenzene	9.12	,	10.0		91.2	84-134		3.66	30	
o-Ethyltoluene	9.04	,	10.0		90.4	88-129		4.12	30	
p-Isopropyltoluene	9.08	,	10.0		90.8	81-136		4.84	30	
sec-Butylbenzene	9.10	,	10.0		91.0	79-137		3.98	30	
Styrene	9.74	,	10.0		97.4	67-132		0.205	30	
tert-Butyl alcohol (TBA)	85.6	,	50.0		171	25-162	High Bias	17.4	30	
tert-Butylbenzene	9.12	1	10.0		91.2	77-138		3.98	30	
Tetrachloroethylene	4.81	,	10.0		48.1	82-131	Low Bias	3.87	30	
Toluene	9.27	,	10.0		92.7	80-127		2.77	30	
trans-1,2-Dichloroethylene	9.37	,	10.0		93.7	80-132		1.90	30	
trans-1,3-Dichloropropylene	10.1	,	10.0		101	78-131		5.92	30	
Trichloroethylene	8.78	,	10.0		87.8	82-128		2.14	30	
Trichlorofluoromethane	10.1	,	10.0		101	67-139		4.16	30	
Vinyl Chloride	9.84	,	10.0		98.4	58-145		2.61	30	
Surrogate: SURR: 1,2-Dichloroethane-d4	10.7		" 10.0		107	69-130				
Surrogate: SURR: Toluene-d8	9.61		" 10.0		96.1	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.23		" 10.0		92.3	79-122				
Matrix Spike (BJ31877-MS1)	*Source sample: 23J	1328-05 (Matrix S	Snike)			Pre	pared & Analy	zed: 10/26/	2023	
1,1,1,2-Tetrachloroethane	12.1	ug	1 /	0.00	121	45-161	<u> </u>			
1,1,1-Trichloroethane	12.7		' 10.0	0.00	127	70-146				
1,1,2,2-Tetrachloroethane	12.1	,		0.00	121	74-121				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	13.6	,		0.00	136	21-217				
113)				****						
1,1,2-Trichloroethane	11.6	,	10.0	0.00	116	59-146				
1,1-Dichloroethane	11.7	1	10.0	0.00	117	54-146				
1,1-Dichloroethylene	12.2	,	10.0	0.00	122	44-165				
1,2,3-Trichlorobenzene	11.9	,	10.0	0.00	119	40-161				
1,2,3-Trichloropropane	11.0		10.0	0.00	110	74-127				
1,2,4-Trichlorobenzene	12.1	,	10.0	0.00	121	41-161				
1,2,4-Trimethylbenzene	11.3	,		0.00	113	72-129				
1,2-Dibromo-3-chloropropane	11.1	,		0.00	111	31-151				
1,2-Dibromoethane	12.0	,	10.0	0.00	120	75-125				
1,2-Dichlorobenzene	11.9	,	' 10.0	0.00	119	63-122				
1,2-Dichloroethane	12.5	i		0.00	125	68-131				
1,2-Dichloropropane	11.8			0.00	118	77-121				
1,3,5-Trimethylbenzene	11.2		' 10.0	0.00	112	69-126				
1,3-Dichlorobenzene	11.6	,	' 10.0	0.00	116	74-119				
1,3-Dichloropropane	12.0	,	' 10.0	0.00	120	77-119	High Bias			
1,4-Dichlorobenzene	11.6	,		0.00	116	70-124	J			
1,4-Dioxane	189	,		0.00	89.8	10-310				
2-Butanone	12.2		' 10.0	0.00	122	10-310				
2-Hexanone	10.3		' 10.0	0.00	103	53-133				
4-Methyl-2-pentanone	10.8		10.0	0.00	103	38-150				
	10.0		10.0	0.00	100	50-150				
• •	22 0		100	0.00	238	13 140	High Rise			
Acetone	23.8	,	10.0	0.00	238	13-149	High Bias			

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 44 of 61

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratah	R I31277	FDA	5030B

Matrix Spike (BJ31877-MS1)	*Source sample: 23J1328	3-05 (Matrix Spike)	Prepared & Analyzed: 10/26/2023				
Acrolein	15.0	ug/L	10.0	0.00	150	10-195	
Acrylonitrile	11.8	"	10.0	0.00	118	37-165	
Benzene	12.4	"	10.0	0.00	124	38-155	
Bromochloromethane	12.6	"	10.0	0.00	126	75-121	High Bias
Bromodichloromethane	11.5	"	10.0	0.00	115	70-129	
Bromoform	12.7	"	10.0	0.00	127	66-136	
Bromomethane	9.63	"	10.0	0.00	96.3	30-158	
arbon disulfide	12.4	"	10.0	0.00	124	10-138	
arbon tetrachloride	12.8	"	10.0	0.00	128	71-146	
hlorobenzene	12.7	"	10.0	0.00	127	81-117	High Bias
hloroethane	13.9	"	10.0	0.00	139	51-145	
hloroform	14.9	"	10.0	2.56	123	80-124	
hloromethane	12.3	"	10.0	0.00	123	16-163	
s-1,2-Dichloroethylene	11.6	"	10.0	0.00	116	76-125	
s-1,3-Dichloropropylene	11.2	"	10.0	0.00	112	58-131	
yclohexane	11.8	"	10.0	0.00	118	70-130	
ibromochloromethane	11.8	"	10.0	0.00	118	71-129	
ibromomethane	11.8	"	10.0	0.00	118	76-120	
ichlorodifluoromethane	14.1	"	10.0	0.00	141	30-147	
thyl Benzene	11.8	"	10.0	0.00	118	72-128	
exachlorobutadiene	11.6	"	10.0	0.00	116	34-166	
opropylbenzene	11.7	"	10.0	0.00	117	66-139	
lethyl acetate	12.2	"	10.0	0.00	122	10-200	
lethyl tert-butyl ether (MTBE)	12.9	"	10.0	0.00	129	75-128	High Bias
ethylcyclohexane	10.9	"	10.0	0.00	109	70-130	
ethylene chloride	9.86	"	10.0	0.00	98.6	57-128	
aphthalene	12.1	"	10.0	0.00	121	39-158	
Butylbenzene	11.2	"	10.0	0.00	112	61-138	
Propylbenzene	11.4	"	10.0	0.00	114	66-134	
Xylene	11.8	"	10.0	0.00	118	69-126	
& m- Xylenes	24.2	"	20.0	0.00	121	67-130	
Diethylbenzene	11.3	"	10.0	0.00	113	52-150	
Ethyltoluene	11.6	"	10.0	0.00	116	76-127	
Isopropyltoluene	11.6	"	10.0	0.00	116	64-137	
ec-Butylbenzene	11.6	"	10.0	0.00	116	53-155	
tyrene	11.9	"	10.0	0.00	119	69-125	
rt-Butyl alcohol (TBA)	87.9	"	50.0	0.00	176	10-130	High Bias
ert-Butylbenzene	11.8	"	10.0	0.00	118	65-139	
etrachloroethylene	6.70	"	10.0	0.260	64.4	64-139	
oluene	11.9	"	10.0	0.00	119	76-123	
ans-1,2-Dichloroethylene	12.2	"	10.0	0.00	122	79-131	
ans-1,3-Dichloropropylene	11.4	"	10.0	0.00	114	55-130	
richloroethylene	11.4	"	10.0	0.00	114	53-145	
richlorofluoromethane	13.6	"	10.0	0.00	136	61-142	
inyl Chloride	13.2	"	10.0	0.00	132	31-165	
urrogate: SURR: 1,2-Dichloroethane-d4	10.3	"	10.0		103	69-130	
urrogate: SURR: Toluene-d8	9.67	"	10.0		96.7	81-117	
urrogate: SURR: p-Bromofluorobenzene	9.38	"	10.0		93.8	79-122	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 45 of 61

FAX (203) 357-0166

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch RJ31877 - EPA 5030R	Ratch	R I31877.	- FPA	5030R
---------------------------	-------	-----------	-------	-------

Matrix Spike Dup (BJ31877-MSD1)	*Source sample: 23J1328	8-05 (Matrix Spike l	Oup)	Prepared & Analyzed: 10/26/2023							
,1,1,2-Tetrachloroethane	12.1	ug/L	10.0	0.00	121	45-161		0.248	30		
,1,1-Trichloroethane	12.8	"	10.0	0.00	128	70-146		0.235	30		
,1,2,2-Tetrachloroethane	12.4	"	10.0	0.00	124	74-121	High Bias	2.13	30		
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	13.7	"	10.0	0.00	137	21-217		0.512	30		
,1,2-Trichloroethane	11.7	"	10.0	0.00	117	59-146		0.344	30		
,1-Dichloroethane	11.7	"	10.0	0.00	117	54-146		0.0852	30		
,1-Dichloroethylene	12.3	"	10.0	0.00	123	44-165		0.245	30		
,2,3-Trichlorobenzene	12.9	"	10.0	0.00	129	40-161		7.92	30		
,2,3-Trichloropropane	11.0	"	10.0	0.00	110	74-127		0.727	30		
,2,4-Trichlorobenzene	12.6	"	10.0	0.00	126	41-161		3.73	30		
,2,4-Trimethylbenzene	11.2	"	10.0	0.00	112	72-129		0.443	30		
,2-Dibromo-3-chloropropane	11.4	"	10.0	0.00	114	31-151		2.13	30		
,2-Dibromoethane	12.4	"	10.0	0.00	124	75-125		2.54	30		
,2-Dichlorobenzene	12.0	"	10.0	0.00	120	63-122		0.585	30		
2-Dichloroethane	12.9	"	10.0	0.00	129	68-131		3.55	30		
,2-Dichloropropane	11.6	"	10.0	0.00	116	77-121		1.62	30		
,3,5-Trimethylbenzene	10.9	"	10.0	0.00	109	69-126		2.90	30		
,3-Dichlorobenzene	11.6	"	10.0	0.00	116	74-119		0.776	30		
3-Dichloropropane	11.9	"	10.0	0.00	119	77-119		0.167	30		
,4-Dichlorobenzene	11.5	"	10.0	0.00	115	70-124		1.30	30		
4-Dioxane	216	"	210	0.00	103	10-310		13.6	30		
-Butanone	12.9	"	10.0	0.00	129	10-193		5.35	30		
-Hexanone	10.6	"	10.0	0.00	106	53-133		2.86	30		
-Methyl-2-pentanone	11.1	"	10.0	0.00	111	38-150		2.37	30		
cetone	25.9	"	10.0	0.00	259	13-149	High Bias	8.51	30		
crolein	15.1	"	10.0	0.00	151	10-195		0.665	30		
crylonitrile	12.2	"	10.0	0.00	122	37-165		3.67	30		
enzene	12.4	"	10.0	0.00	124	38-155		0.161	30		
romochloromethane	12.9	"	10.0	0.00	129	75-121	High Bias	2.04	30		
romodichloromethane	11.4	"	10.0	0.00	114	70-129		0.524	30		
romoform	12.8	"	10.0	0.00	128	66-136		0.943	30		
romomethane	10.3	"	10.0	0.00	103	30-158		6.43	30		
arbon disulfide	12.3	"	10.0	0.00	123	10-138		0.324	30		
Carbon tetrachloride	12.9	"	10.0	0.00	129	71-146	*** * = *	1.25	30		
Chlorobenzene	12.6	"	10.0	0.00	126	81-117	High Bias	0.709	30		
Chloroethane	13.4	"	10.0	0.00	134	51-145		3.15	30		
Chloroform	14.8	"	10.0	2.56	122	80-124		0.540	30		
Chloromethane	12.6	"	10.0	0.00	126	16-163		1.77	30		
is-1,2-Dichloroethylene	11.6	"	10.0	0.00	116	76-125		0.776	30		
is-1,3-Dichloropropylene	11.2	"	10.0	0.00	112	58-131		0.893	30		
Cyclohexane	12.3	"	10.0	0.00	123	70-130		4.15	30		
bibromochloromethane	12.0	"	10.0	0.00	120	71-129		1.93	30		
ibromomethane	11.9	"	10.0	0.00	119	76-120		1.35	30		
vichlorodifluoromethane	14.6	"	10.0	0.00	146	30-147		3.20	30		
thyl Benzene	11.6	"	10.0	0.00	116	72-128		1.45	30		
[exachlorobutadiene	11.7	"	10.0	0.00	117	34-166		0.428	30		
sopropylbenzene	11.3	"	10.0	0.00	113	66-139		3.22	30		
fethyl acetate	12.3	"	10.0	0.00	123	10-200	*** * = :	0.978	30		
Methyl tert-butyl ether (MTBE)	13.4	"	10.0	0.00	134	75-128	High Bias	3.42	30		
Methylcyclohexane	11.5	"	10.0	0.00	115	70-130		5.27	30		

120 RESEARCH DRIVE STRATFORD, CT 06615

(203) 325-1371

www.YORKLAB.com

132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 46 of 61

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RI31	277	FPA	5030B

Matrix Spike Dup (BJ31877-MSD1)	*Source sample: 23J1328	-05 (Matrix Spike I	Oup)			Pre	pared & Analy	zed: 10/26/2	2023
Methylene chloride	9.85	ug/L	10.0	0.00	98.5	57-128		0.101	30
Naphthalene	13.0	"	10.0	0.00	130	39-158		7.32	30
n-Butylbenzene	11.1	"	10.0	0.00	111	61-138		1.34	30
n-Propylbenzene	11.2	"	10.0	0.00	112	66-134		2.48	30
o-Xylene	11.7	"	10.0	0.00	117	69-126		1.45	30
o- & m- Xylenes	23.8	"	20.0	0.00	119	67-130		1.33	30
p-Diethylbenzene	11.1	"	10.0	0.00	111	52-150		1.70	30
p-Ethyltoluene	11.4	"	10.0	0.00	114	76-127		1.39	30
p-Isopropyltoluene	11.4	"	10.0	0.00	114	64-137		1.75	30
sec-Butylbenzene	11.4	"	10.0	0.00	114	53-155		1.57	30
Styrene	11.9	"	10.0	0.00	119	69-125		0.168	30
ert-Butyl alcohol (TBA)	97.6	"	50.0	0.00	195	10-130	High Bias	10.4	30
ert-Butylbenzene	11.4	"	10.0	0.00	114	65-139		3.01	30
Tetrachloroethylene	6.51	"	10.0	0.260	62.5	64-139	Low Bias	2.88	30
Toluene	11.6	"	10.0	0.00	116	76-123		2.04	30
trans-1,2-Dichloroethylene	12.0	"	10.0	0.00	120	79-131		1.24	30
trans-1,3-Dichloropropylene	11.5	"	10.0	0.00	115	55-130		0.787	30
Trichloroethylene	11.1	"	10.0	0.00	111	53-145		2.31	30
Trichlorofluoromethane	13.7	"	10.0	0.00	137	61-142		0.512	30
Vinyl Chloride	13.1	"	10.0	0.00	131	31-165		1.37	30
Surrogate: SURR: 1,2-Dichloroethane-d4	10.5	"	10.0		105	69-130			
Surrogate: SURR: Toluene-d8	9.59	"	10.0		95.9	81-117			
Surrogate: SURR: p-Bromofluorobenzene	9.37	"	10.0		93.7	79-122			

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 47 of 61 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BJ31543-BLK1) ,1-Biphenyl ,2,4,5-Tetrachlorobenzene ,3,4,6-Tetrachlorophenol ,4,5-Trichlorophenol ,4,6-Trichlorophenol ,4-Dintlorophenol ,4-Dintrophenol ,4-Dinitrophenol ,4-Dinitrotoluene ,6-Dinitrotoluene -Chloronaphthalene -Chlorophenol -Methylnaphthalene -Methylphenol -Nitroaniline -Nitrophenol	ND N	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	ug/L " " " " " " " " "			
3,4,6-Tetrachlorophenol ,4,5-Trichlorophenol ,4,6-Trichlorophenol ,4-Dirichlorophenol ,4-Dinethylphenol ,4-Dinitrophenol ,4-Dinitrotoluene ,6-Dinitrotoluene -Chloronaphthalene -Chlorophenol -Methylnaphthalene -Methylphenol -Nitroaniline	ND N	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	" " " " " " " " " " " " " " " " " " "			
4,5-Trichlorophenol 4,4,6-Trichlorophenol 4,4-Dichlorophenol 4-Dimethylphenol 4-Dinitrophenol 4-Dinitrotoluene 6-Dinitrotoluene -Chlorophenol -Methylnaphthalene -Methylphenol -Nitroaniline	ND N	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	" " " " " " " " " " " " " " " " " " " "			
4,4,6-Trichlorophenol ,4-Dichlorophenol ,4-Dimethylphenol ,4-Dinitrophenol ,4-Dinitrotoluene ,6-Dinitrotoluene -Chloronaphthalene -Chlorophenol -Methylnaphthalene -Methylphenol -Nitroaniline	ND N	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	" " " " " " " " " " " " " " " " " " " "			
4,4,6-Trichlorophenol ,4-Dichlorophenol ,4-Dimethylphenol ,4-Dinitrophenol ,4-Dinitrotoluene ,6-Dinitrotoluene -Chloronaphthalene -Chlorophenol -Methylnaphthalene -Methylphenol -Nitroaniline	ND N	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	" " " "			
,4-Dichlorophenol ,4-Dimethylphenol ,4-Dinitrophenol ,4-Dinitrotoluene ,6-Dinitrotoluene -Chloronaphthalene -Chlorophenol -Methylnaphthalene -Methylphenol -Nitroaniline	ND	5.00 5.00 5.00 5.00 5.00 5.00 5.00	" " " " " " " " " " " " " " " " " " " "			
,4-Dimethylphenol ,4-Dinitrophenol ,4-Dinitrotoluene ,6-Dinitrotoluene -Chloronaphthalene -Chlorophenol -Methylnaphthalene -Methylphenol -Nitroaniline	ND	5.00 5.00 5.00 5.00 5.00 5.00	" "			
,4-Dinitrophenol ,4-Dinitrotoluene ,6-Dinitrotoluene -Chloronaphthalene -Chlorophenol -Methylnaphthalene -Methylphenol -Nitroaniline	ND ND ND ND ND ND ND ND	5.00 5.00 5.00 5.00 5.00	"			
,4-Dinitrotoluene ,6-Dinitrotoluene -Chloronaphthalene -Chlorophenol -Methylnaphthalene -Methylphenol -Nitroaniline	ND ND ND ND ND	5.00 5.00 5.00 5.00	"			
,6-Dinitrotoluene -Chloronaphthalene -Chlorophenol -Methylnaphthalene -Methylphenol -Nitroaniline	ND ND ND ND ND	5.00 5.00 5.00	"			
-Chloronaphthalene -Chlorophenol -Methylnaphthalene -Methylphenol -Nitroaniline	ND ND ND ND	5.00 5.00				
-Chlorophenol -Methylnaphthalene -Methylphenol -Nitroaniline	ND ND ND	5.00	"			
-Methylnaphthalene -Methylphenol -Nitroaniline	ND ND					
-Methylphenol -Nitroaniline	ND	5.00	"			
-Nitroaniline		5.00	,,			
	ND	5.00	,,			
	ND	5.00	,,			
- & 4-Methylphenols	ND ND	5.00	,,			
,3-Dichlorobenzidine	ND ND	5.00	,,			
-Nitroaniline	ND	5.00	,,			
,6-Dinitro-2-methylphenol	ND	5.00	,,			
-Bromophenyl phenyl ether	ND ND	5.00	,,			
-Chloro-3-methylphenol			,,			
-Chloroaniline	ND	5.00	,,			
-Chlorophenyl phenyl ether	ND	5.00	,,			
-Chlorophenyl phenyl ether -Nitroaniline	ND	5.00	,,			
-Nitroannine -Nitrophenol	ND	5.00	,,			
-	ND	5.00	,,			
cetophenone	ND	5.00				
enzaldehyde	ND	5.00	,,			
Benzyl butyl phthalate	ND	5.00				
sis(2-chloroethoxy)methane	ND	5.00				
sis(2-chloroethyl)ether	ND	5.00	"			
sis(2-chloroisopropyl)ether	ND	5.00	"			
Caprolactam	ND	5.00	"			
Carbazole	ND	5.00	"			
Dibenzofuran	ND	5.00	"			
Diethyl phthalate	ND	5.00	"			
Dimethyl phthalate	ND	5.00	"			
Di-n-butyl phthalate	ND	5.00	"			
Di-n-octyl phthalate	ND	5.00	"			
Iexachlorocyclopentadiene	ND	10.0	"			
sophorone	ND	5.00	"			
I-nitroso-di-n-propylamine	ND	5.00	"			
I-Nitrosodiphenylamine	ND	5.00	"			
henol	ND	5.00	"			
ropargite	ND	5.00	"			
yridine	ND	5.00	"			
urrogate: SURR: 2-Fluorophenol	11.0		"	50.0	21.9	19.7-63.1
urrogate: SURR: Phenol-d6	6.58		"	50.0	13.2	10.1-41.7
urrogate: SURR: Nitrobenzene-d5	12.4		"	25.0	49.8	50.2-113
urrogate: SURR: 2-Fluorobiphenyl	10.4		"	25.0	41.8	39.9-105
urrogate: SURR: 2,4,6-Tribromophenol	41.9		"	50.0	83.8	39.3-151

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 48 of 61

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BJ31543 - EPA 3510C						
Blank (BJ31543-BLK1)						Prepared: 10/23/2023 Analyzed: 10/24/2023
Surrogate: SURR: Terphenyl-d14	15.6		ug/L	25.0	62.4	30.7-106
Blank (BJ31543-BLK2)						Prepared: 10/23/2023 Analyzed: 10/24/2023
Acenaphthene	ND	0.0500	ug/L			
Acenaphthylene	ND	0.0500	"			
Anthracene	ND	0.0500	"			
Atrazine	ND	0.500	"			
Benzo(a)anthracene	ND	0.0500	"			
Benzo(a)pyrene	ND	0.0500	"			
Benzo(b)fluoranthene	ND	0.0500	"			
Benzo(g,h,i)perylene	ND	0.0500	"			
Benzo(k)fluoranthene	ND	0.0500	"			
Bis(2-ethylhexyl)phthalate	1.52	0.500	"			
Chrysene	ND	0.0500	"			
Dibenzo(a,h)anthracene	ND	0.0500	"			
Fluoranthene	ND	0.0500	"			
Fluorene	ND	0.0500	"			
Hexachlorobenzene	ND	0.0200	"			
Hexachlorobutadiene	ND	0.500	"			
Hexachloroethane	ND	0.500	"			

ND

ND

ND

ND

ND

ND

ND

0.0500

0.0500

0.250

0.500

0.250

0.0500

0.0500

Indeno(1,2,3-cd)pyrene

N-Nitrosodimethylamine

Pentachlorophenol

Naphthalene

Nitrobenzene

Phenanthrene

Pyrene

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 www.YORKLAB.com ClientServices@

(203) 325-1371 FAX (203) 357-0166 Page 49 of 61

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Lillit	Onits	Level	Resuit	70KEC	Lillits	Tag	KI D	Liiiit	Tag
Batch BJ31543 - EPA 3510C											
LCS (BJ31543-BS1)							Prep	pared: 10/23/2	2023 Analyz	zed: 10/24/2	2023
1,1-Biphenyl	12.4	5.00	ug/L	25.0		49.6	33-95				
1,2,4,5-Tetrachlorobenzene	12.7	5.00	"	25.0		50.9	26-120				
2,3,4,6-Tetrachlorophenol	16.0	5.00	"	25.0		64.0	30-130				
2,4,5-Trichlorophenol	16.8	5.00	"	25.0		67.1	32-114				
2,4,6-Trichlorophenol	16.1	5.00	"	25.0		64.4	35-118				
2,4-Dichlorophenol	15.6	5.00	"	25.0		62.6	25-116				
2,4-Dimethylphenol	10.7	5.00	"	25.0		42.7	15-116				
2,4-Dinitrophenol	31.7	5.00	"	25.0		127	10-170				
2,4-Dinitrotoluene	20.9	5.00	"	25.0		83.7	41-128				
2,6-Dinitrotoluene	19.8	5.00	"	25.0		79.3	45-116				
2-Chloronaphthalene	11.9	5.00	"	25.0		47.8	33-112				
2-Chlorophenol	11.2	5.00	"	25.0		45.0	15-120				
2-Methylnaphthalene	13.4	5.00	"	25.0		53.4	24-118				
2-Methylphenol	10.7	5.00	"	25.0		42.8	10-110				
2-Nitroaniline	16.8	5.00	"	25.0		67.3	34-129				
2-Nitrophenol	16.9	5.00	"	25.0		67.6	28-118				
3- & 4-Methylphenols	8.56	5.00	"	25.0		34.2	10-107				
3,3-Dichlorobenzidine	12.7	5.00	"	25.0		50.8	15-187				
3-Nitroaniline	13.0	5.00	"	25.0		52.1	24-134				
4,6-Dinitro-2-methylphenol	33.2	5.00	"	25.0		133	10-153				
4-Bromophenyl phenyl ether	18.1	5.00	"	25.0		72.5	34-120				
4-Chloro-3-methylphenol	17.0	5.00	"	25.0		68.0	20-120				
4-Chloroaniline	8.84	5.00	,,	25.0		35.4	10-147				
4-Chlorophenyl phenyl ether	16.1	5.00	,,	25.0		64.5	27-121				
4-Nitroaniline	13.0	5.00	,,	25.0		51.9	13-134				
4-Nitrophenol	9.47	5.00	"	25.0		37.9	10-131				
Acetophenone	13.7	5.00	"	25.0		55.0	25-110				
Benzaldehyde	11.3	5.00	,,	25.0		45.2	29-117				
Benzyl butyl phthalate	13.7	5.00	,,	25.0		54.7	29-133				
Bis(2-chloroethoxy)methane	15.1	5.00	,,	25.0		60.5	10-154				
Bis(2-chloroethyl)ether	13.8	5.00	"	25.0		55.2	17-125				
Bis(2-chloroisopropyl)ether	12.6	5.00	,,	25.0		50.2	10-139				
Caprolactam	2.95	5.00	"	25.0		11.8	10-137				
Carbazole	15.0	5.00	,,	25.0		59.9	42-126				
Dibenzofuran	13.7	5.00	"	25.0		54.7	36-113				
Diethyl phthalate	15.1	5.00	"	25.0		60.5	38-115				
Dimethyl phthalate	14.9	5.00	,,	25.0		59.8	38-129				
Di-n-butyl phthalate	14.8	5.00	,,	25.0		59.4	31-120				
Di-n-octyl phthalate	14.4	5.00	"	25.0		57.6	21-149				
Hexachlorocyclopentadiene	7.91	10.0	"	25.0		31.6	10-130				
Isophorone	17.0	5.00	"	25.0		67.8	25-127				
N-nitroso-di-n-propylamine	14.8	5.00	"	25.0		59.2	26-122				
N-Nitrosodiphenylamine	15.8	5.00		25.0		63.4	23-149				
Phenol	5.38	5.00	"	25.0		21.5	10-110				
Pyridine	ND	5.00	"	35.0		21.3	10-110	Low Bias			
		2.00	"			22.2					
Surrogate: SURR: 2-Fluorophenol	16.7		"	50.0		33.3	19.7-63.1				
Surrogate: SURR: Phenol-d6	10.6		,,	50.0		21.1 77.0	10.1-41.7				
Surrogate: SURR: Nitrobenzene-d5	19.5		,,	25.0 25.0		77.9	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	16.6		"	25.0		66.3	39.9-105				
Surrogate: SURR: 2,4,6-Tribromophenol	67.8		"	50.0		136	39.3-151				
Surrogate: SURR: Terphenyl-d14	23.7		.,	25.0		94.7	30.7-106				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 50 of 61

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

%REC

Reporting

		Reporting		Spike	Source*		%REC			KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ31543 - EPA 3510C											
LCS (BJ31543-BS2)							Prep	pared: 10/23/2	023 Analyz	ed: 10/24/2	2023
Acenaphthene	0.550	0.0500	ug/L	1.00		55.0	25-116				
Acenaphthylene	0.670	0.0500	"	1.00		67.0	26-116				
Anthracene	0.720	0.0500	"	1.00		72.0	25-123				
Benzo(a)anthracene	0.820	0.0500	"	1.00		82.0	33-125				
Benzo(a)pyrene	0.800	0.0500	"	1.00		80.0	32-132				
Benzo(b)fluoranthene	0.790	0.0500	"	1.00		79.0	22-137				
Benzo(g,h,i)perylene	0.870	0.0500	"	1.00		87.0	10-138				
Benzo(k)fluoranthene	0.930	0.0500	"	1.00		93.0	20-137				
Bis(2-ethylhexyl)phthalate	2.93	0.500	"	1.00		293	10-189	High Bias			
Chrysene	0.840	0.0500	"	1.00		84.0	32-124				
Dibenzo(a,h)anthracene	0.940	0.0500	"	1.00		94.0	16-133				
Fluoranthene	0.920	0.0500	"	1.00		92.0	32-121				
Fluorene	0.780	0.0500	"	1.00		78.0	28-118				
Hexachlorobenzene	0.970	0.0200	"	1.00		97.0	23-124				
Hexachlorobutadiene	0.750	0.500	"	1.00		75.0	15-123				
Hexachloroethane	2.58	0.500	"	1.00		258	18-115	High Bias			
Indeno(1,2,3-cd)pyrene	0.940	0.0500	"	1.00		94.0	15-135	8			
Naphthalene	0.590	0.0500	"	1.00		59.0	18-120				
Nitrobenzene	0.940	0.250	,,	1.00		94.0	21-121				
N-Nitrosodimethylamine			,,			94.0		Low Bias			
Pentachlorophenol	ND	0.500	,,	1.00		160	10-124	High Bias			
Phenanthrene	1.69	0.250	"	1.00		169	10-156	High Dias			
	0.720	0.0500		1.00		72.0	24-127				
Pyrene	0.690	0.0500	"	1.00		69.0	31-132				
LCS Dup (BJ31543-BSD1)								pared: 10/23/2			2023
1,1-Biphenyl	14.0	5.00	ug/L	25.0		56.1	33-95		12.4	20	
1,2,4,5-Tetrachlorobenzene	14.6	5.00	"	25.0		58.3	26-120		13.6	20	
2,3,4,6-Tetrachlorophenol	17.1	5.00	"	25.0		68.4	30-130		6.70	20	
2,4,5-Trichlorophenol	18.2	5.00	"	25.0		72.9	32-114		8.34	20	
2,4,6-Trichlorophenol	17.7	5.00	"	25.0		71.0	35-118		9.75	20	
2,4-Dichlorophenol	17.4	5.00	"	25.0		69.5	25-116		10.5	20	
2,4-Dimethylphenol	12.3	5.00	"	25.0		49.2	15-116		14.0	20	
2,4-Dinitrophenol	36.3	5.00	"	25.0		145	10-170		13.6	20	
2,4-Dinitrotoluene	23.2	5.00	"	25.0		92.9	41-128		10.5	20	
2,6-Dinitrotoluene	21.7	5.00	"	25.0		86.8	45-116		9.01	20	
2-Chloronaphthalene	13.6	5.00	"	25.0		54.2	33-112		12.6	20	
2-Chlorophenol	12.3	5.00	"	25.0		49.3	15-120		9.08	20	
2-Methylnaphthalene	15.4	5.00	"	25.0		61.6	24-118		14.2	20	
2-Methylphenol	12.0	5.00	"	25.0		48.1	10-110		11.7	20	
2-Nitroaniline	18.6	5.00	"	25.0		74.5	34-129		10.1	20	
2-Nitrophenol	18.6	5.00	"	25.0		74.4	28-118		9.46	20	
3- & 4-Methylphenols	9.78	5.00	"	25.0		39.1	10-107		13.3	20	
3,3-Dichlorobenzidine	13.8	5.00	,,	25.0		55.3	15-187		8.37	20	
3-Nitroaniline	14.3	5.00	"	25.0		57.3	24-134		9.58	20	
4,6-Dinitro-2-methylphenol	37.9	5.00	"	25.0		152	10-153		13.3	20	
4-Bromophenyl phenyl ether	20.2	5.00		25.0		80.8	34-120		10.9	20	
4-Chloro-3-methylphenol	19.2	5.00	"	25.0		77.0	20-120		12.5	20	
4-Chloroaniline			,,						12.3	20	
	9.98	5.00	,,	25.0		39.9	10-147		9.29	20	
4-Chlorophenyl phenyl ether	17.7	5.00		25.0		70.8	27-121				
4-Nitroaniline	14.4	5.00	"	25.0		57.8	13-134		10.6	20	
4-Nitrophenol	10.7	5.00	"	25.0		42.6	10-131		11.8	20	
120 RESEARCH DRIVE	STRATEORD CT	06615		12	2-02 80th A\	/ENLIE		BICHMOND	HILL NV	11/112	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 51 of 61

RPD

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

Reporting

RPD

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ31543 - EPA 3510C											
LCS Dup (BJ31543-BSD1)							Prep	pared: 10/23/2	2023 Analyz	red: 10/24/	2023
Acetophenone	15.0	5.00	ug/L	25.0		60.2	25-110		9.03	20	
Benzaldehyde	12.6	5.00	"	25.0		50.2	29-117		10.6	20	
Benzyl butyl phthalate	14.5	5.00	"	25.0		57.9	29-133		5.75	20	
Bis(2-chloroethoxy)methane	17.1	5.00	"	25.0		68.3	10-154		12.0	20	
Bis(2-chloroethyl)ether	20.6	5.00	"	25.0		82.3	17-125		39.4	20	Non-dir
Bis(2-chloroisopropyl)ether	13.6	5.00	"	25.0		54.5	10-139		8.18	20	
Caprolactam	3.29	5.00	"	25.0		13.2	10-137		10.9	20	
Carbazole	16.2	5.00	"	25.0		64.6	42-126		7.52	20	
Dibenzofuran	15.3	5.00	"	25.0		61.0	36-113		11.0	20	
Diethyl phthalate	16.0	5.00	"	25.0		64.0	38-115		5.66	20	
Dimethyl phthalate	16.2	5.00	"	25.0		64.9	38-129		8.28	20	
Di-n-butyl phthalate	15.8	5.00	"	25.0		63.3	31-120		6.46	20	
Di-n-octyl phthalate	15.5	5.00	"	25.0		61.9	21-149		7.10	20	
Hexachlorocyclopentadiene	8.81	10.0	"	25.0		35.2	10-130		10.8	20	
Isophorone	18.7	5.00	"	25.0		75.0	25-127		10.0	20	
N-nitroso-di-n-propylamine	16.5	5.00	"	25.0		66.1	26-122		11.0	20	
N-Nitrosodiphenylamine	17.3	5.00	"	25.0		69.3	23-149		8.98	20	
Phenol	5.96	5.00	"	25.0		23.8	10-110		10.2	20	
Pyridine	ND	5.00	"	35.0			10-90	Low Bias		20	
Surrogate: SURR: 2-Fluorophenol	16.6		"	50.0		33.2	19.7-63.1				
Surrogate: SURR: Phenol-d6	10.8		"	50.0		21.5	10.1-41.7				
Surrogate: SURR: Nitrobenzene-d5	19.2		"	25.0		76.6	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	16.1		"	25.0		64.2	39.9-105				
Surrogate: SURR: 2,4,6-Tribromophenol	65.1		"	50.0		130	39.3-151				
Surrogate: SURR: Terphenyl-d14	22.4		"	25.0		89.4	30.7-106				
Batch BJ31863 - EPA 3510C											
Blank (BJ31863-BLK1)							Prer	pared: 10/26/2	2023 Analyz	red: 10/27/	2023
1,1-Biphenyl	ND	5.00	ug/L				1101	Jarea: 10/20/2	2023 / 1114172		2023
1,2,4,5-Tetrachlorobenzene	ND ND	5.00	ug/L								
2,3,4,6-Tetrachlorophenol	ND ND	5.00	,,								
2,4,5-Trichlorophenol	ND ND	5.00	,,								
2,4,6-Trichlorophenol	ND ND	5.00	,,								
2,4-Dichlorophenol	ND ND	5.00	,,								
2,4-Dimethylphenol	ND ND	5.00	,,								
2,4-Dinitrophenol	ND ND	5.00	,,								
2,4-Dinitrotoluene	ND ND	5.00	,,								
2,6-Dinitrotoluene	ND ND	5.00	,,								
2-Chloronaphthalene	ND ND	5.00	"								
2-Chlorophenol	ND ND	5.00	"								
2-Methylnaphthalene	ND ND	5.00	"								
2-Methylphenol	ND ND	5.00	"								
2-Nitroaniline	ND ND	5.00	,,								
2-Nitrophenol	ND ND	5.00	"								
3- & 4-Methylphenols	ND ND	5.00	"								
3.3-Dichlorobenzidine	ND ND	5.00	"								
3-Nitroaniline	ND ND	5.00	"								
4,6-Dinitro-2-methylphenol	ND ND	5.00	,,								
4-Bromophenyl phenyl ether	ND ND	5.00	"								
4-Chloro-3-methylphenol	ND	5.00	"								
120 RESEARCH DRIVE	STRATFORD, CT	06615		10	2-02 89th A	VENITE	r	RICHMOND	HILL NV	11 <u>/</u> 12	
120 NESEARON DRIVE	STRAIFURD, CI	00010		13	2-02 09111 A	VLINUE	r	VIOLINIOND	TILL, IN I	11410	

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 52 of 61

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

DI 1 (D 1210 (2 DI 171)						D 1 10/06/0000 A 1 1 10/07/000
Blank (BJ31863-BLK1)						Prepared: 10/26/2023 Analyzed: 10/27/202
4-Chloroaniline	ND	5.00	ug/L			
4-Chlorophenyl phenyl ether	ND	5.00	"			
4-Nitroaniline	ND	5.00	"			
4-Nitrophenol	ND	5.00	"			
Acetophenone	ND	5.00	"			
Benzaldehyde	ND	5.00	"			
Benzyl butyl phthalate	ND	5.00	"			
Bis(2-chloroethoxy)methane	ND	5.00	"			
Bis(2-chloroethyl)ether	ND	5.00	"			
Bis(2-chloroisopropyl)ether	ND	5.00	"			
Caprolactam	ND	5.00	"			
Carbazole	ND	5.00	"			
Dibenzofuran	ND	5.00	"			
Diethyl phthalate	ND	5.00	"			
Dimethyl phthalate	ND	5.00	"			
Di-n-butyl phthalate	ND	5.00	"			
Di-n-octyl phthalate	ND	5.00	"			
Hexachlorocyclopentadiene	ND	10.0	"			
Isophorone	ND	5.00	"			
N-nitroso-di-n-propylamine	ND	5.00	"			
N-Nitrosodiphenylamine	ND	5.00	"			
Phenol	ND	5.00	"			
Propargite	ND	5.00	"			
Pyridine	ND	5.00	"			
Surrogate: SURR: 2-Fluorophenol	14.2		"	50.0	28.4	19.7-63.1
Surrogate: SURR: Phenol-d6	8.20		"	50.0	16.4	10.1-41.7
Surrogate: SURR: Nitrobenzene-d5	19.1		"	25.0	76.5	50.2-113
Surrogate: SURR: 2-Fluorobiphenyl	15.6		"	25.0	62.6	39.9-105
Surrogate: SURR: 2,4,6-Tribromophenol	57.1		"	50.0	114	39.3-151
Surrogate: SURR: Terphenyl-d14	18.3		"	25.0	73.0	30.7-106

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 53 of 61 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc. - Stratford

Service Serv			Reporting		Spike	Source*		%REC			RPD	
Property 10262023 Analyzed: 10272023 Analyzed:	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
No.	Batch BJ31863 - EPA 3510C											
None	Blank (BJ31863-BLK2)							Prepa	ared: 10/26/2	023 Analyz	ed: 10/27/2	023
No.	Acenaphthene	ND	0.0500	ug/L								
Namerine ND 0.590 "	Acenaphthylene	ND	0.0500									
Second Juntaneces	Anthracene	ND	0.0500	"								
Searco (Paper ND 0.000 *	Atrazine	ND	0.500	"								
Scance ND	Benzo(a)anthracene	ND	0.0500	"								
No.	Benzo(a)pyrene	ND	0.0500	"								
Semode ND	Benzo(b)fluoranthene	ND	0.0500	"								
Side-2-thy theory by the theory of the content of	Benzo(g,h,i)perylene	ND	0.0500	"								
No	Benzo(k)fluoranthene	ND	0.0500	"								
Dilescript Alpurtherenee	Bis(2-ethylhexyl)phthalate	ND	0.500	"								
Theresthere	Chrysene	ND	0.0500	"								
Resemblerobezere ND	Dibenzo(a,h)anthracene	ND	0.0500	"								
Sexachlorobatraciene ND	Fluoranthene	ND	0.0500	"								
Reachlorobutualiene ND 0.500 "	Fluorene	ND	0.0500	"								
decachloroethane ND 0.500 "	Hexachlorobenzene	ND	0.0200	"								
ndeno(1,2,3-ed)pyrone ND 0,0500 " suphthalene ND 0,0500 " Stribenezene ND 0,0500 " Pentachlorophenol ND 0,0500 " Pentachlorophenol ND 0,0500 " Prene ND 0,0500 " Prepared: 10,262023 Analyzed: 10,277,2023 1,18] phospy 1,15 5,000 ug/L 25,0 46,2 33-95 1,24,5-Tetrachlorophenol 13,0 5,000 " 25,0 51,4 26-120 1,24,5-Tetrachlorophenol 14,5 5,000 " 25,0 52,1 30-130 1,24,5-Tetrachlorophenol 14,6 5,000 " 25,0 58,2 35-118 1,24,6-Tetrachlorophenol 14,4 5,000 " 25,0 58,2 35-118 1,24,6-Tetrachlorophenol 14,4 5,000 " 25,0 58,2 35-116 1,24-Dinitrophenol 26,8 5,000 " 25,0 107 10-170 1,24-Dinitrophenol 26,8 5,000 " 25,0 107 10-170 1,24-Dinitrophenol 26,8 5,000 " 25,0 107 10-170 1,24-Dinitrophenol 16,4 5,000 " 25,0 107 10-170 1,24-Dinitrophenol 16,4 5,000 " 25,0 107 10-170 1,24-Dinitrophenol 16,4 5,000 " 25,0 107 10-170 1,26-Dinitrophenol 16,4 5,000 " 25,0 10,5 15-116 1,24-Dinitrophenol 16,4 5,000 " 25,0 10,5 10-116 1,24-Dinitrophenol 16,4 5,000	Hexachlorobutadiene	ND	0.500	"								
Naphthalene	Hexachloroethane	ND	0.500	"								
No	Indeno(1,2,3-cd)pyrene	ND	0.0500	"								
A-Nitrosodimethylamine ND	Naphthalene	ND	0.0500	"								
Pertachlorophenol ND 0.250 " Perhamitrene ND 0.0500 " ND 0.0500 ND	Nitrobenzene	ND	0.250	"								
Prepared ND 0.0500 " ND 0.0500 ND ND 0.0500 ND ND ND ND ND ND ND	N-Nitrosodimethylamine	ND	0.500	"								
Prepared: 10/26/2023 Analyzed: 10/27/2023	Pentachlorophenol	ND	0.250	"								
Prepared: 10/26/2023 Analyzed: 10/27/2023 1.15 1.1	Phenanthrene	ND	0.0500	"								
1.1 1.5	Pyrene	ND	0.0500	"								
12.8 5.00 " 25.0 51.4 26-120	LCS (BJ31863-BS1)							Prepa	ared: 10/26/2	023 Analyz	ed: 10/27/2	023
23.4,6-Tetrachlorophenol 13.0 5.00 " 25.0 52.1 30-130	1,1-Biphenyl	11.5	5.00	ug/L	25.0		46.2	33-95				
2.4.5-Trichlorophenol	1,2,4,5-Tetrachlorobenzene	12.8	5.00	"	25.0		51.4	26-120				
2.4.6-Trichlorophenol	2,3,4,6-Tetrachlorophenol	13.0	5.00	"	25.0		52.1	30-130				
2.4-Dichlorophenol	2,4,5-Trichlorophenol	14.5	5.00	"	25.0		58.0	32-114				
2.4-Dimethylphenol 9.13 5.00 " 25.0 36.5 15-116 2.4-Dimitrophenol 26.8 5.00 " 25.0 107 10-170 2.4-Dimitrophenol 26.8 5.00 " 25.0 71.3 41-128 2.4-Dimitrotoluene 17.8 5.00 " 25.0 70.5 45-116 2.4-Dimitrotoluene 17.6 5.00 " 25.0 70.5 45-116 2.4-Dimitrotoluene 17.6 5.00 " 25.0 70.5 45-116 2.4-Dimitrotoluene 11.6 5.00 " 25.0 46.3 33-112 2.4-Dimotophenol 10.4 5.00 " 25.0 41.4 15-120 2.4-Dimotophenol 10.4 5.00 " 25.0 53.8 24-118 2.4-Dimotophenol 13.4 5.00 " 25.0 53.8 24-118 2.4-Dimotophenol 14.7 5.00 " 25.0 56.0 10-110 2.4-Dimotophenol 16.4 5.00 " 25.0 58.9 34-129 2.4-Dimotophenol 16.4 5.00 " 25.0 56.7 28-118 3.4-Dimotophenol 16.4 5.00 " 25.0 56.7 28-118 3.4-Dimotop	2,4,6-Trichlorophenol	14.6	5.00	"	25.0		58.2	35-118				
26.8 5.00 " 25.0 107 10-170 24-Dinitrobluene 17.8 5.00 " 25.0 71.3 41-128 24-Dinitrobluene 17.6 5.00 " 25.0 70.5 45-116 25-Chloronaphthalene 11.6 5.00 " 25.0 46.3 33-112 25-Chloronaphthalene 11.6 5.00 " 25.0 46.3 33-112 25-Chlorophenol 10.4 5.00 " 25.0 41.4 15-120 25-Methylnaphthalene 13.4 5.00 " 25.0 53.8 24-118 25-Methylphenol 9.14 5.00 " 25.0 36.6 10-110 25-Nitronalline 14.7 5.00 " 25.0 58.9 34-129 25-Nitrophenol 16.4 5.00 " 25.0 58.9 34-129 25-Nitrophenol 16.4 5.00 " 25.0 59.9 15-187 25-Nitrophenol 16.0 5.00 " 25.0 59.9 34-120 25-Nitrophenol 16.0 5.00 " 25.0 59.8 34-120 25-Nitrophenol 16.0 59.8 34-120 25-Nitrophenol 16.0 59.8 34-120 25-Nitrophenol 16.0 59.8 34-120 25-Ni	2,4-Dichlorophenol	14.4	5.00	"	25.0		57.8	25-116				
17.8 5.00 25.0 71.3 41-128	2,4-Dimethylphenol	9.13	5.00	"	25.0		36.5	15-116				
2.6.Dinitrotoluene 17.6 5.00 " 25.0 70.5 45-116 2.7.Chloronaphthalene 11.6 5.00 " 25.0 46.3 33-112 2.7.Chlorophenol 10.4 5.00 " 25.0 41.4 15-120 2.7.Chlorophenol 10.4 5.00 " 25.0 53.8 24-118 2.7.Chlorophenol 11.4 5.00 " 25.0 58.9 34-129 2.7.Chlorophenol 11.4 5.00 " 25.0 59.0 59.1 10-107 3.3.Chlorophenol 11.4 5.00 " 25.0 59.0 59.1 10-107 3.3.Chlorophenol 11.4 5.00 " 25.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 5	2,4-Dinitrophenol	26.8	5.00	"	25.0		107	10-170				
2-Chlorophenol 11.6 5.00 " 25.0 46.3 33-112 2-Chlorophenol 10.4 5.00 " 25.0 41.4 15-120 2-Chlorophenol 10.4 5.00 " 25.0 53.8 24-118 2-Chlorophenol 13.4 5.00 " 25.0 53.8 24-118 2-Chlorophenol 14.7 5.00 " 25.0 53.8 24-118 2-Chlorophenol 14.7 5.00 " 25.0 56.6 10-110 2-Chlorophenol 16.4 5.00 " 25.0 56.7 28-118 3-Chlorophenol 16.4 5.00 " 25.0 65.7 28-118 3-Chlorophenol 16.4 5.00 " 25.0 59.9 34-129 3-Chlorophenol 16.4 5.00 " 25.0 59.9 15-187 3-Chlorophenol 16.4 5.00 " 25.0 59.9 15-187 3-Chlorophenol 16.9 5.00 " 25.0 39.9 15-187 3-Chlorophenol 16.9 5.00 " 25.0 59.8 34-120 3-Chlorophenol 16.0 5.00 " 25.0 59.8 3-Chlorophenol 16.0 59.0 " 25.0 59.8 3-Chlorophenol 16.0	2,4-Dinitrotoluene	17.8	5.00	"	25.0		71.3	41-128				
2-Chlorophenol 10.4 5.00 " 25.0 41.4 15-120 2-Methylnaphthalene 13.4 5.00 " 25.0 53.8 24-118 2-Methylphenol 9.14 5.00 " 25.0 36.6 10-110 2-Methylphenol 14.7 5.00 " 25.0 58.9 34-129 2-Mitrophenol 16.4 5.00 " 25.0 65.7 28-118 3-24-Methylphenols 7.28 5.00 " 25.0 29.1 10-107 3-3-Dichlorobenzidine 9.97 5.00 " 25.0 39.9 15-187 3-Mitroaniline 10.9 5.00 " 25.0 39.9 15-187 3-Mitroaniline 10.9 5.00 " 25.0 112 10-153 3-Bromophenyl phenyl ether 14.9 5.00 " 25.0 59.8 34-120 3-Chloro-3-methylphenol 14.6 5.00 " 25.0 59.8 34-120 3-Chlorophenyl phenyl ether 13.7 5.00 " 25.0 59.0 32.0 10-147 3-Chlorophenyl phenyl ether 13.7 5.00 " 25.0 54.8 27-121 3-Nitroaniline 11.6 5.00 " 25.0 59.0 54.8 27-121 3-Nitroaniline 11.6 5.00 " 25.0 55.0 59.8 34-120 3-Chlorophenyl phenyl ether 13.7 5.00 " 25.0 59.0 54.8 27-121 3-Nitroaniline 11.6 5.00 " 25.0 59.0 54.8 27-121 3-Nitroaniline 11.6 5.00 " 25.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0	2,6-Dinitrotoluene	17.6	5.00	"	25.0		70.5	45-116				
2-Methylnaphthalene 13.4 5.00 " 25.0 53.8 24-118 2-Methylphenol 9.14 5.00 " 25.0 36.6 10-110 2-Nitroaniline 14.7 5.00 " 25.0 58.9 34-129 2-Nitrophenol 16.4 5.00 " 25.0 65.7 28-118 3-& 4-Methylphenols 7.28 5.00 " 25.0 29.1 10-107 3-3-Dichlorobenzidine 9.97 5.00 " 25.0 39.9 15-187 3-Nitroaniline 10.9 5.00 " 25.0 39.9 15-187 3-Nitroaniline 10.9 5.00 " 25.0 112 10-153 3-Bromophenyl phenyl ether 14.9 5.00 " 25.0 59.8 34-120 3-Chloro-3-methylphenol 14.6 5.00 " 25.0 59.8 34-120 3-Chloro-3-methylphenol 14.6 5.00 " 25.0 59.8 32-0 10-147 3-Chlorophenyl phenyl ether 13.7 5.00 " 25.0 54.8 27-121 3-Nitroaniline 11.6 5.00 " 25.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 5	•		5.00	"	25.0		46.3	33-112				
2-Methylphenol 9.14 5.00 " 25.0 36.6 10-110 2-Nitroaniline 14.7 5.00 " 25.0 58.9 34-129 2-Nitrophenol 16.4 5.00 " 25.0 65.7 28-118 3-& 4-Methylphenols 7.28 5.00 " 25.0 29.1 10-107 3.3-Dichlorobenzidine 9.97 5.00 " 25.0 39.9 15-187 3-Nitroaniline 10.9 5.00 " 25.0 43.6 24-134 4.6-Dinitro-2-methylphenol 27.9 5.00 " 25.0 112 10-153 1-Bromophenyl phenyl ether 14.9 5.00 " 25.0 59.8 34-120 1-Chloro-3-methylphenol 14.6 5.00 " 25.0 59.8 34-120 1-Chloro-3-methylphenol 14.6 5.00 " 25.0 59.8 32.0 10-147 1-Nitroaniline 13.7 5.00 " 25.0 54.8 27-121 1-Nitroaniline 11.6 5.00 " 25.0 46.5 13-134	2-Chlorophenol	10.4	5.00	"	25.0		41.4	15-120				
2-Nitroaniline 14.7 5.00 " 25.0 58.9 34-129 25.0 Fibrophenol 16.4 5.00 " 25.0 65.7 28-118 25.0 43.6 24-134 25.0 15.00 " 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	2-Methylnaphthalene	13.4	5.00	"	25.0		53.8	24-118				
2-Nitrophenol 16.4 5.00 " 25.0 65.7 28-118 3-& 4-Methylphenols 7.28 5.00 " 25.0 29.1 10-107 3.3-Dichlorobenzidine 9.97 5.00 " 25.0 39.9 15-187 3-Nitroaniline 10.9 5.00 " 25.0 43.6 24-134 4.6-Dinitro-2-methylphenol 27.9 5.00 " 25.0 112 10-153 4-Bromophenyl phenyl ether 14.9 5.00 " 25.0 59.8 34-120 4-Chloro-3-methylphenol 14.6 5.00 " 25.0 58.2 20-120 4-Chloroaniline 8.00 5.00 " 25.0 32.0 10-147 4-Chlorophenyl phenyl ether 13.7 5.00 " 25.0 54.8 27-121 4-Nitroaniline 11.6 5.00 " 25.0 46.5 13-134	2-Methylphenol	9.14	5.00	"	25.0		36.6	10-110				
3-& 4-Methylphenols 7.28 5.00 " 25.0 29.1 10-107 3.3-Dichlorobenzidine 9.97 5.00 " 25.0 39.9 15-187 5-Nitroaniline 10.9 5.00 " 25.0 43.6 24-134 4.6-Dinitro-2-methylphenol 27.9 5.00 " 25.0 112 10-153 5-Nitroaniline 14.9 5.00 " 25.0 59.8 34-120 5-Nitroaniline 14.6 5.00 " 25.0 59.8 34-120 5-Nitroaniline 14.6 5.00 " 25.0 59.8 34-120 5-Nitroaniline 14.6 5.00 " 25.0 59.8 34-120 5-Nitroaniline 15.00 " 25.00 59.8 34-120 5-Nitroaniline 15.00 " 25.	2-Nitroaniline		5.00				58.9	34-129				
3.3-Dichlorobenzidine 9.97 5.00 " 25.0 39.9 15-187 3-Nitroaniline 10.9 5.00 " 25.0 43.6 24-134 4.6-Dinitro-2-methylphenol 27.9 5.00 " 25.0 112 10-153 4-Bromophenyl phenyl ether 14.9 5.00 " 25.0 59.8 34-120 4-Chloro-3-methylphenol 14.6 5.00 " 25.0 58.2 20-120 4-Chloroaniline 8.00 5.00 " 25.0 32.0 10-147 4-Chlorophenyl phenyl ether 13.7 5.00 " 25.0 54.8 27-121 4-Nitroaniline 11.6 5.00 " 25.0 46.5 13-134	2-Nitrophenol		5.00				65.7					
10.9 5.00 25.0 43.6 24-134	3- & 4-Methylphenols											
4,6-Dinitro-2-methylphenol 27.9 5.00 " 25.0 112 10-153 1-Bromophenyl phenyl ether 14.9 5.00 " 25.0 59.8 34-120 1-Chloro-3-methylphenol 14.6 5.00 " 25.0 58.2 20-120 1-Chloroaniline 8.00 5.00 " 25.0 32.0 10-147 1-Chlorophenyl phenyl ether 13.7 5.00 " 25.0 54.8 27-121 1-Nitroaniline 11.6 5.00 " 25.0 46.5 13-134	3,3-Dichlorobenzidine											
H-Bromophenyl phenyl ether 14.9 5.00 " 25.0 59.8 34-120 14.6 5.00 " 25.0 58.2 20-120 14.6 5.00 " 25.0 58.2 20-120 14.6 5.00 " 25.0 58.2 20-120 14.6 14.6 5.00 " 25.0 58.2 20-120 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6	3-Nitroaniline		5.00				43.6					
A-Chloro-3-methylphenol 14.6 5.00 " 25.0 58.2 20-120 1-Chloroaniline 8.00 5.00 " 25.0 32.0 10-147 1-Chlorophenyl phenyl ether 13.7 5.00 " 25.0 54.8 27-121 1-Nitroaniline 11.6 5.00 " 25.0 46.5 13-134	4,6-Dinitro-2-methylphenol											
H-Chloroaniline 8.00 5.00 " 25.0 32.0 10-147 H-Chlorophenyl phenyl ether 13.7 5.00 " 25.0 54.8 27-121 H-Nitroaniline 11.6 5.00 " 25.0 46.5 13-134	4-Bromophenyl phenyl ether		5.00				59.8					
I-Chlorophenyl phenyl ether 13.7 5.00 " 25.0 54.8 27-121	4-Chloro-3-methylphenol		5.00									
I-Nitroaniline 11.6 5.00 " 25.0 46.5 13-134	4-Chloroaniline	8.00	5.00				32.0					
	4-Chlorophenyl phenyl ether		5.00				54.8	27-121				
	4-Nitroaniline	11.6	5.00	"	25.0		46.5	13-134				
	120 RESEARCH DRIVE						·-··					

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 54 of 61

Semivolatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

%REC

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ31863 - EPA 3510C											
LCS (BJ31863-BS1)							Prep	pared: 10/26/2	2023 Analyz	zed: 10/27/2	2023
4-Nitrophenol	6.50	5.00	ug/L	25.0		26.0	10-131				
Acetophenone	13.1	5.00	"	25.0		52.4	25-110				
Benzaldehyde	10.4	5.00	"	25.0		41.7	29-117				
Benzyl butyl phthalate	8.98	5.00	"	25.0		35.9	29-133				
Bis(2-chloroethoxy)methane	14.5	5.00	"	25.0		58.1	10-154				
Bis(2-chloroethyl)ether	13.3	5.00	"	25.0		53.3	17-125				
Bis(2-chloroisopropyl)ether	12.6	5.00	"	25.0		50.2	10-139				
Caprolactam	ND	5.00	"	25.0			10-137	Low Bias			
Carbazole	12.2	5.00	"	25.0		48.7	42-126				
Dibenzofuran	12.3	5.00	"	25.0		49.2	36-113				
Diethyl phthalate	11.9	5.00	"	25.0		47.7	38-115				
Dimethyl phthalate	12.8	5.00	"	25.0		51.2	38-129				
Di-n-butyl phthalate	10.3	5.00	"	25.0		41.3	31-120				
Di-n-octyl phthalate	9.11	5.00	"	25.0		36.4	21-149				
Hexachlorocyclopentadiene	7.86	10.0	"	25.0		31.4	10-130				
sophorone	15.2	5.00	"	25.0		61.0	25-127				
N-nitroso-di-n-propylamine	13.8	5.00	"	25.0		55.3	26-122				
N-Nitrosodiphenylamine	13.5	5.00	"	25.0		53.9	23-149				
Phenol	4.40	5.00	"	25.0		17.6	10-110				
Pyridine	3.30	5.00	"	35.0		9.43	10-90	Low Bias			
Surrogate: SURR: 2-Fluorophenol	14.1		"	50.0		28.2	19.7-63.1				
Surrogate: SURR: Phenol-d6	8.58		"	50.0		17.2	10.1-41.7				
Surrogate: SURR: Nitrobenzene-d5	19.3		"	25.0		77.3	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	15.6		"	25.0		62.3	39.9-105				
Surrogate: SURR: 2,4,6-Tribromophenol	56.8		"	50.0		114	39.3-151				
Surrogate: SURR: Terphenyl-d14	15.5		"	25.0		61.9	30.7-106				
LCS (BJ31863-BS2)							Prej	pared: 10/26/2	2023 Analyz	zed: 10/27/2	2023
Acenaphthene	0.520	0.0500	ug/L	1.00		52.0	25-116	-	-		
Acenaphthylene	0.560	0.0500	"	1.00		56.0	26-116				
Anthracene	0.540	0.0500	"	1.00		54.0	25-123				
Benzo(a)anthracene	0.620	0.0500	"	1.00		62.0	33-125				
Benzo(a)pyrene	0.560	0.0500	"	1.00		56.0	32-132				
Benzo(b)fluoranthene	0.630	0.0500	"	1.00		63.0	22-137				
Benzo(g,h,i)perylene	0.530	0.0500	"	1.00		53.0	10-138				
Benzo(k)fluoranthene	0.610	0.0500	"	1.00		61.0	20-137				
Bis(2-ethylhexyl)phthalate	0.760	0.500	"	1.00		76.0	10-189				
Chrysene	0.610	0.0500	"	1.00		61.0	32-124				
Dibenzo(a,h)anthracene	0.450	0.0500	"	1.00		45.0	16-133				
Fluoranthene	0.530	0.0500	"	1.00		53.0	32-121				
Fluorene	0.550	0.0500	"	1.00		55.0	28-118				
Hexachlorobenzene	0.490	0.0200	"	1.00		49.0	23-124				
Hexachlorobutadiene	0.620	0.500	"	1.00		62.0	15-123				
Hexachloroethane	2.47	0.500	"	1.00		247	18-115	High Bias			
ndeno(1,2,3-cd)pyrene	0.520	0.0500	"	1.00		52.0	15-135				
Naphthalene	0.550	0.0500	"	1.00		55.0	18-120				
Vitrobenzene	0.830	0.250	"	1.00		83.0	21-121				
N-Nitrosodimethylamine	ND	0.500	,,	1.00		22.0	10-124	Low Bias			
Pentachlorophenol	ND	0.250	,,	1.00			10-124	Low Bias			
Phenanthrene	0.560	0.0500	,,	1.00		56.0	24-127	2140			
Pyrene	0.760	0.0500	"	1.00		76.0	31-132				
120 RESEARCH DRIVE	STRATFORD, CT (06615	•	13	2-02 89th A	VENUE	l	RICHMOND	HILL, NY	11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 55 of 61

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

R	atch	RI	1863	- FPA	3510C

Batch BJ31863 - EPA 3510C								
Matrix Spike (BJ31863-MS1)	*Source sample: 23J	1328-05 (Ma	trix Spike)				Prep	pared: 10/26/2023 Analyzed: 10/27/2023
,1-Biphenyl	10.5	5.00	ug/L	25.0	ND	42.1	26-79	
2,4,5-Tetrachlorobenzene	12.1	5.00	"	25.0	ND	48.3	33-90	
3,4,6-Tetrachlorophenol	11.3	5.00	"	25.0	ND	45.3	30-130	
4,5-Trichlorophenol	12.0	5.00	"	25.0	ND	48.1	43-96	
4,6-Trichlorophenol	12.2	5.00	"	25.0	ND	49.0	46-94	
4-Dichlorophenol	11.9	5.00	"	25.0	ND	47.7	26-101	
4-Dimethylphenol	7.52	5.00	"	25.0	ND	30.1	10-104	
4-Dinitrophenol	24.5	5.00	"	25.0	ND	98.1	10-146	
4-Dinitrotoluene	15.9	5.00	"	25.0	ND	63.4	30-108	
6-Dinitrotoluene	15.3	5.00	"	25.0	ND	61.2	38-98	
Chloronaphthalene	10.5	5.00	"	25.0	ND	42.2	30-89	
Chlorophenol	7.84	5.00	"	25.0	ND	31.4	24-98	
Methylnaphthalene	12.2	5.00	"	25.0	ND	49.0	10-112	
Methylphenol	6.86	5.00	"	25.0	ND	27.4	10-134	
Nitroaniline	12.9	5.00	"	25.0	ND	51.6	25-110	
Nitrophenol	14.3	5.00	"	25.0	ND	57.3	10-139	
& 4-Methylphenols	5.41	5.00	"	25.0	ND	21.6	10-91	
3-Dichlorobenzidine	5.40	5.00	"	25.0	ND	21.6	10-140	
Nitroaniline	9.45	5.00	"	25.0	ND	37.8	22-111	
6-Dinitro-2-methylphenol	24.7	5.00	"	25.0	ND	98.8	10-140	
Bromophenyl phenyl ether	13.6	5.00	"	25.0	ND	54.5	30-108	
Chloro-3-methylphenol	11.5	5.00	"	25.0	ND	46.1	11-109	
Chloroaniline	6.87	5.00	"	25.0	ND	27.5	10-116	
Chlorophenyl phenyl ether	12.5	5.00	"	25.0	ND	50.0	39-85	
Nitroaniline	10.3	5.00	"	25.0	ND	41.1	11-132	
Nitrophenol	6.44	5.00	"	25.0	ND	25.8	10-82	
cetophenone	11.6	5.00	"	25.0	ND	46.3	14-102	
enzaldehyde	8.75	5.00	"	25.0	ND	35.0	13-87	
enzyl butyl phthalate	9.82	5.00	"	25.0	ND ND	39.3	10-133	
is(2-chloroethoxy)methane			"					
is(2-chloroethyl)ether	13.0 11.9	5.00	"	25.0 25.0	ND ND	51.9 47.5	18-105 10-108	
is(2-chloroisopropyl)ether		5.00	"					
aprolactam	10.8	5.00	"	25.0	ND	43.1	13-116	Low Bias
•	ND	5.00		25.0	ND	46.0	10-75	LOW Blas
arbazole	11.6	5.00	"	25.0	ND	46.2	36-108	
ibenzofuran	11.0	5.00	"	25.0	ND	44.0	34-92	
iethyl phthalate	10.4	5.00	"	25.0	ND	41.6	33-98	
imethyl phthalate	11.0	5.00	"	25.0	ND	44.0	18-116	
i-n-butyl phthalate	10.5	5.00	"	25.0	ND	41.9	25-97	
i-n-octyl phthalate	9.86	5.00	"	25.0	ND	39.4	10-137	
exachlorocyclopentadiene	7.57	10.0	"	25.0	ND	30.3	10-79	
ophorone	13.7	5.00	"	25.0	ND	54.6	25-103	
-nitroso-di-n-propylamine	12.3	5.00	"	25.0	ND	49.2	19-115	
-Nitrosodiphenylamine	11.8	5.00	"	25.0	ND	47.3	31-112	
nenol	3.44	5.00	"	25.0	ND	13.8	10-61	
vridine	ND	5.00	"	35.0	ND		10-78	Low Bias
urrogate: SURR: 2-Fluorophenol	9.92		"	50.0		19.8	19.7-63.1	
urrogate: SURR: Phenol-d6	6.38		"	50.0		12.8	10.1-41.7	
urrogate: SURR: Nitrobenzene-d5	16.8		"	25.0		67.2	50.2-113	
urrogate: SURR: 2-Fluorobiphenyl	13.6		"	25.0		54.5	39.9-105	
urrogate: SURR: 2,4,6-Tribromophenol	48.2		"	50.0		96.3	39.3-151	
urrogate: SURR: Terphenyl-d14	11.3		"	25.0		45.1	30.7-106	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 56 of 61 ClientServices@

$Semivolatile\ Organic\ Compounds\ by\ GC/MS\ -\ Quality\ Control\ Data$

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	B 13	1863	_ FPA	3510C

Matrix Spike Dup (BJ31863-MSD1)	*Source sample: 23J	1328-05 (Ma	trix Spike	Dup)			Prep	ared: 10/26/20	023 Analyze	ed: 10/27/202
1,1-Biphenyl	10.1	5.00	ug/L	25.0	ND	40.3	26-79		4.37	25
,2,4,5-Tetrachlorobenzene	11.4	5.00	"	25.0	ND	45.8	33-90		5.36	25
,3,4,6-Tetrachlorophenol	11.0	5.00	"	25.0	ND	44.0	30-130		2.96	25
,4,5-Trichlorophenol	12.0	5.00	"	25.0	ND	48.1	43-96		0.00	25
,4,6-Trichlorophenol	12.1	5.00	"	25.0	ND	48.5	46-94		0.984	25
,4-Dichlorophenol	11.5	5.00	"	25.0	ND	46.0	26-101		3.76	25
,4-Dimethylphenol	7.69	5.00	"	25.0	ND	30.8	10-104		2.24	25
,4-Dinitrophenol	23.4	5.00	"	25.0	ND	93.6	10-146		4.67	25
,4-Dinitrotoluene	15.0	5.00	"	25.0	ND	60.0	30-108		5.64	25
,6-Dinitrotoluene	14.4	5.00	"	25.0	ND	57.4	38-98		6.27	25
-Chloronaphthalene	10.0	5.00	"	25.0	ND	40.0	30-89		5.26	25
-Chlorophenol	7.73	5.00	"	25.0	ND	30.9	24-98		1.41	25
-Methylnaphthalene	11.4	5.00	"	25.0	ND	45.6	10-112		7.19	25
-Methylphenol	6.85	5.00	"	25.0	ND	27.4	10-134		0.146	25
-Nitroaniline	12.3	5.00	"	25.0	ND	49.4	25-110		4.36	25
-Nitrophenol	13.2	5.00	"	25.0	ND	53.0	10-139		7.83	25
- & 4-Methylphenols	5.55	5.00	"	25.0	ND	22.2	10-91		2.55	25
,3-Dichlorobenzidine	5.82	5.00	"	25.0	ND	23.3	10-140		7.49	25
-Nitroaniline	8.63	5.00	"	25.0	ND	34.5	22-111		9.07	25
,6-Dinitro-2-methylphenol	23.2	5.00	"	25.0	ND	92.7	10-140		6.39	25
-Bromophenyl phenyl ether	13.0	5.00	"	25.0	ND	51.8	30-108		5.12	25
-Chloro-3-methylphenol	11.6	5.00	"	25.0	ND	46.2	11-109		0.260	25
-Chloroaniline	6.48	5.00	"	25.0	ND	25.9	10-116		5.84	25
-Chlorophenyl phenyl ether	12.1	5.00	"	25.0	ND	48.4	39-85		3.33	25
-Nitroaniline	9.93	5.00	"	25.0	ND	39.7	11-132		3.37	25
-Nitrophenol	6.10	5.00	"	25.0	ND	24.4	10-82		5.42	25
cetophenone	11.0	5.00	"	25.0	ND	44.1	14-102		4.87	25
Benzaldehyde	8.27	5.00	"	25.0	ND	33.1	13-87		5.64	25
enzyl butyl phthalate	9.81	5.00	"	25.0	ND	39.2	10-133		0.102	25
Bis(2-chloroethoxy)methane	12.1	5.00	"	25.0	ND	48.4	18-105		6.86	25
Bis(2-chloroethyl)ether	11.1	5.00	"	25.0	ND	44.3	10-108		6.97	25
sis(2-chloroisopropyl)ether	10.0	5.00	"	25.0	ND	40.1	13-116		7.12	25
Caprolactam	ND	5.00	"	25.0	ND		10-75	Low Bias		25
Carbazole	11.1	5.00	"	25.0	ND	44.5	36-108		3.70	25
Dibenzofuran	10.6	5.00	"	25.0	ND	42.4	34-92		3.70	25
Piethyl phthalate	9.81	5.00	"	25.0	ND	39.2	33-98		5.74	25
Dimethyl phthalate	10.5	5.00	"	25.0	ND	41.9	18-116		4.75	25
Di-n-butyl phthalate	10.1	5.00	"	25.0	ND	40.4	25-97		3.50	25
Pi-n-octyl phthalate	9.82	5.00	"	25.0	ND	39.3	10-137		0.407	25
Iexachlorocyclopentadiene	7.12	10.0	"	25.0	ND	28.5	10-79		6.13	25
sophorone	12.8	5.00	"	25.0	ND	51.4	25-103		6.11	25
I-nitroso-di-n-propylamine	11.7	5.00	"	25.0	ND	46.8	19-115		5.09	25
I-Nitrosodiphenylamine	11.0	5.00	"	25.0	ND	44.0	31-112		7.28	25
henol	3.27	5.00	"	25.0	ND	13.1	10-61		5.07	25
yridine	ND	5.00	"	35.0	ND		10-78	Low Bias		25
urrogate: SURR: 2-Fluorophenol	9.53		"	50.0		19.1	19.7-63.1			
urrogate: SURR: Phenol-d6	6.13		"	50.0		12.3	10.1-41.7			
urrogate: SURR: Nitrobenzene-d5	14.9		"	25.0		59.6	50.2-113			
urrogate: SURR: 2-Fluorobiphenyl	12.5		"	25.0		50.0	39.9-105			
urrogate: SURR: 2,4,6-Tribromophenol	45.0		"	50.0		89.9	39.3-151			
Surrogate: SURR: Terphenyl-d14	12.1		"	25.0		48.5	30.7-106			

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 57 of 61

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
23J1357-01	MW-1AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23J1357-02	MW-3AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23J1357-03	MW-4AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23J1357-04	MW-5AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
23J1357-05	DUP	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

S-08	The recovery of this surrogate was outside of QC limits.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
ICVE	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration verification (recovery exceeded 30% of expected value).
CCVE	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
CAL-E	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%)
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 59 of 61

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York

reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

www.YORKLAB.com (203) 325-1371

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 60 of 61

Field Chain-of-Custody Record

YORK Project No.

Compared to the following Special Instruction Turn-Around Time PL 10120/23 1320 PFAS Standard is 7-10 Day YORK Reg. Comp. Regulation(s): (please fill in) Standard (6-9 Day) 3 VOAs, 2000 bers RUSH - Three Day Container Type RUSH - Four Day RUSH - Next Day RUSH - Two Day RUSH - Five Day Field Filtered Lab to Filter 10/20/23 JOSE NJDEP SRP HazSite York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document. VOC5 (8260) Full SNOCS (8270) EQuIS (Standard) 800-306-YORK NY ASP B Package Other NY ASP A Package CT RCP DQA/DUE NYSDEC EQUIS YOUR Project Number NaOH YOUR Project Name Report / EDD Type (circle selections) This document serves as your written authorization for YORK to proceed with the analyses requested below. Preservation: (check all that apply) NJDEP Reduced NJDKQP 03C497-M H2S04 imples Received in KAB by Analyses Requested www.yorklab.com Standard Excel EDD Deliverables Your signature binds you to YORK's Standard Terms & Conditions. YOUR PO#: HN03 Ascorbic Acid МеОН Summary Report clientservices@yorklab.com Mother Myster D. 10/2013 0806 0/20/23 1810 QA Report Y ICH Samples iced/chilled at time of lab pickup? circle Yes or No Invoice To: 10/19/2023 1158 0145 Date/Time Sampled 0854 055 Samples From Pennsylvania Connecticut New Jersey 20 Research Drive Stratford, CT 06615 132-02 89th Ave Queens, NY 11418 56 Church Hill Rd. #2 Newtown, CT 06470 New York Other: Contact: DW - drinking water Matrix Codes Sample Matrix GW - groundwater WW - wastewater 0 - Oil Other Z € GW GE GW 95 Report To: 10/20/2023 0806 Samples will not be logged in and the turn-around-time clock will not 10/26/23 1326 Please print clearly and legibly. All information must be complete. Samples Collected by: (print AND sign your name) begin until any questions by YORK are resolved. Sample Identification blowry@ Bicompanies.com ddress: 355 Research Parkway Rodniquez MW - 54R MW - 44R Meriden, CT 06450 MW-14R MW - 3AR YOUR Information Company. 86 Companies ontact: Brian Lowdry Cregory Comments: Page 61 of 61

Technical Report

prepared for:

BL Companies 355 Research Parkway Meriden CT, 06450 Attention: Brian Lowry

Report Date: 06/10/2024
Client Project ID: 03C497

York Project (SDG) No.: 24F0113

Stratford, CT Laboratory IDs: NY:10854, NJ: CT005, PA: 68-0440, CT: PH-0723

Richmond Hill, NY Laboratory IDs: NY:12058, NJ: NY037, CT: PH-0721, NH: 2097, EPA: NY01600 Report Date: 06/10/2024 Client Project ID: 03C497 York Project (SDG) No.: 24F0113

BL Companies

355 Research Parkway Meriden CT, 06450

Attention: Brian Lowry

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on June 04, 2024 and listed below. The project was identified as your project: 03C497.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
24F0113-01	MW-1AR	Ground Water	06/03/2024	06/04/2024
24F0113-02	MW-3AR	Ground Water	06/03/2024	06/04/2024
24F0113-03	MW-4AR	Ground Water	06/03/2024	06/04/2024
24F0113-04	MW-5AR	Ground Water	06/03/2024	06/04/2024
24F0113-05	DUP	Ground Water	06/03/2024	06/04/2024

General Notes for York Project (SDG) No.: 24F0113

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

Oh I most

- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854, NJ Cert No. CT005, PA Cert No. 68-04440, CT Cert No. PH-0723; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058, NJ Cert No. NY037, CT Cert No. PH-0721, NH Cert No. 2097, EPA Cert No. NY01600.

Approved By:

Cassie L. Mosher Laboratory Manager **Date:** 06/10/2024

Client Sample ID: MW-1AR York Sample ID: 24F0113-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received24F011303C497Ground WaterJune 3, 2024 7:00 am06/04/2024

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

					Reported to					Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
530-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 0854,NELAC-NY12	
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY12	
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 0854,NELAC-NY12	
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY12	
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY12	
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY12	
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 9854,NELAC-NY12	
37-61-6	1,2,3-Trichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 /10854,NELAC-NY1	06/05/2024 17:06 2058,NJDEP-CT005	
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 710854,NELAC-NY1	06/05/2024 17:06 2058,NJDEP-CT005	
120-82-1	1,2,4-Trichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 /10854,NELAC-NY1	06/05/2024 17:06 2058,NJDEP-CT005	
95-63-6	1,2,4-Trimethylbenzene	0.27	J	ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00	06/05/2024 17:06	FO FO
								Certifications:	CTDOH-PI	H-0723,NELAC-NY1	0854,NELAC-NY12	058,NJDEP-C
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY12	
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТДОН-РН	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY12	
95-50-1	1,2-Dichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТДОН-РН	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY12	
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТДОН-РН	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY12	
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 0854,NELAC-NY12	
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY12	
541-73-1	1,3-Dichlorobenzene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY12	
106-46-7	1,4-Dichlorobenzene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY12	
123-91-1	1,4-Dioxane	ND		ug/L	40	40	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 710854,NELAC-NY1	06/05/2024 17:06 2058,NJDEP-CT005	
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY12	
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH PH	06/05/2024 08:00	06/05/2024 17:06 0854,NELAC-NY12	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 54

Client Sample ID: MW-1AR

York Sample ID: 2

24F0113-01

York Project (SDG) No. 24F0113

Client Project ID 03C497 Matrix Ground Water <u>Collection Date/Time</u> June 3, 2024 7:00 am Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No. 108-10-1 4-Methyl-2 67-64-1 Acetone 107-02-8 Acrolein 107-13-1 Acrylonitri	Parameter -pentanone	Result ND ND	Flag	Units ug/L	Reported to LOD/MDL 0.20	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1 Acetone 107-02-8 Acrolein	-pentanone	ND		ug/L	0.20	0.50						
107-02-8 Acrolein						0.50	1	EPA 8260D Certifications:	СТДОН-РН	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120	FO 58,NJDEP-CT
				ug/L	1.0	2.0	1	EPA 8260D Certifications:	СТДОН-РН	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120	FO 58,NJDEP-CT
107-13-1 Acrylonitri		ND	CCVE, ICVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТDOH-PH	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120:	FO 58,NJDEP-CT
	le	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТDOH-PH	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120	FO 58,NJDEP-CT
71-43-2 Benzene		50		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PF	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:06	FO
74-97-5 Bromochlo	romethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 (10854,NELAC-NY12	06/05/2024 17:06	FO
75-27-4 Bromodich	loromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06	FO
75-25-2 Bromoform		ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06	FO
74-83-9 Bromometh	nane	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТДОН-РН	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120	FO 58,NJDEP-CT
75-15-0 Carbon disc	ılfide	ND	(_ ,_	ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТДОН-РН	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120	FO 58,NJDEP-CT
56-23-5 Carbon tetr	achloride	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТДОН-РН	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120	FO 58,NJDEP-CT
108-90-7 Chlorobenz	ene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТДОН-РН	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120	FO 58,NJDEP-CT
75-00-3 Chloroetha	ne	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТDOH-PH	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120	FO 58,NJDEP-CT
67-66-3 Chloroform		ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТDOH-PH	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120:	FO 58,NJDEP-CT
74-87-3 Chlorometh	nane	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТДОН-РН	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120	FO 58,NJDEP-CT
156-59-2 cis-1,2-Dic	hloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТDOH-PH	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120:	FO 58,NJDEP-CT
10061-01-5 cis-1,3-Dic	hloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТDOH-PH	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120:	FO 58,NJDEP-CT
110-82-7 Cyclohexa	ne	60	CCVE, ICVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 Y10854,NELAC-NY1	06/05/2024 17:06 2058,NJDEP-CT005,	FO PADEP-68-04
124-48-1 Dibromoch	loromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТДОН-РН	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120	FO 58,NJDEP-CT
74-95-3 Dibromomo	ethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 10854,NELAC-NY12	06/05/2024 17:06	FO
75-71-8 Dichlorodi	luoromethane	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 10854,NELAC-NY12	06/05/2024 17:06 2058,NJDEP-CT005,I	FO PADEP-68-04
100-41-4 Ethyl Benz	ene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	СТDOH-PH	06/05/2024 08:00 -0723,NELAC-NY10	06/05/2024 17:06 854,NELAC-NY120	FO 58,NJDEP-CT
87-68-3 Hexachloro	butadiene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 10854,NELAC-NY12	06/05/2024 17:06 2058,NJDEP-CT005,I	FO PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 5 of 54

Client Sample ID: MW-1AR

York Sample ID:

24F0113-01

York Project (SDG) No. 24F0113

Sample Prepared by Method: EPA 5030B

Client Project ID 03C497 Matrix Ground Water <u>Collection Date/Time</u> June 3, 2024 7:00 am Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
98-82-8	Isopropylbenzene	1.9		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00	06/05/2024 17:06	FO
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
79-20-9	Methyl acetate	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY1	06/05/2024 17:06 2058,NJDEP-CT005,I	FO PADEP-68-04
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:06 0854,NELAC-NY120	FO 58,NJDEP-CT
108-87-2	Methylcyclohexane	24	CCVE, ICVE,	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 JY10854,NELAC-NY1	06/05/2024 17:06 12058,NJDEP-CT005,	FO PADEP-68-0
			QL-02									
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:06 0854,NELAC-NY120	FO 58,NJDEP-CT
104-51-8	n-Butylbenzene	0.40	J	ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00	06/05/2024 17:06	FO
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
103-65-1	n-Propylbenzene	1.1		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00	06/05/2024 17:06	FO
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1		
95-47-6	o-Xylene	0.37	J	ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00	06/05/2024 17:06	FO
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1		
179601-23-1	p- & m- Xylenes	0.77	J	ug/L	0.50	1.0	1	EPA 8260D		06/05/2024 08:00	06/05/2024 17:06	FO
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	058,PADEP-6
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:06 0854,NELAC-NY120	FO 58,NJDEP-CT
135-98-8	sec-Butylbenzene	0.92		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00	06/05/2024 17:06	FO
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:06 0854,NELAC-NY120	FO 58,NJDEP-CT
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.50	1.0	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY1	06/05/2024 17:06 2058,NJDEP-CT005,I	FO PADEP-68-04
98-06-6	tert-Butylbenzene	0.26	J	ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00	06/05/2024 17:06	FO
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
127-18-4	Tetrachloroethylene	ND	ICVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:06 0854,NELAC-NY120	FO 58,NJDEP-CT
108-88-3	Toluene	0.87		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00	06/05/2024 17:06	FO
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:06 0854,NELAC-NY120	FO 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:06 0854,NELAC-NY1205	FO 58,NJDEP-CT
110-57-6	trans-1,4-dichloro-2-butene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:06 0854,NELAC-NY120	FO 58,NJDEP-CT
79-01-6	Trichloroethylene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:06	FO
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:06	FO
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723 NEL AC-NY10	06/05/2024 17:06	FO

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166

Certifications:

RICHMOND HILL, NY 11418

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT

ClientServices@ Page 6 of 54

Client Sample ID: MW-1AR

York Sample ID:

24F0113-01

York Project (SDG) No. 24F0113

Client Project ID 03C497 Matrix Ground Water <u>Collection Date/Time</u> June 3, 2024 7:00 am Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	1.1	J	ug/L	0.60	1.5	1	EPA 8260D	06/05/2024 08:00	06/05/2024 17:06	FO
								Certifications: CTDOH	-PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
	Surrogate Recoveries	Result		Acce	eptance Rang	e					
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	100 %			69-130						
2037-26-5	Surrogate: SURR: Toluene-d8	95.6 %			81-117						
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	99.4 %			79-122						

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepare	d by Method: EPA 3510C								_			
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/06/2024 13:02 Y10854,NJDEP-CT005	06/07/2024 16:35 5,PADEP-68-04440	SS
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/06/2024 13:02 Y10854,NJDEP-CT005	06/07/2024 16:35 5,PADEP-68-04440	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 854,NJDEP-CT005,P	SS ADEP-68-04
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/06/2024 13:02 Y10854,PADEP-68-04	06/07/2024 16:35 440	SS
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/06/2024 13:02 Y10854,NJDEP-CT005	06/07/2024 16:35 5,PADEP-68-04440	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/06/2024 13:02 Y10854,PADEP-68-04	06/07/2024 16:35 440	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/06/2024 13:02 Y10854,PADEP-68-04	06/07/2024 16:35 440	SS
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/06/2024 13:02 Y10854,NJDEP-CT005	06/07/2024 16:35 5,PADEP-68-04440	SS
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 854,NJDEP-CT005,P	SS ADEP-68-04
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 854,NJDEP-CT005,P	SS ADEP-68-04
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 854,NJDEP-CT005,P	SS ADEP-68-04
105-67-9	2,4-Dimethylphenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 854,NJDEP-CT005,P	SS ADEP-68-04
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 854,NJDEP-CT005,P	SS ADEP-68-04
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 854,NJDEP-CT005,P	SS ADEP-68-04
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 854,NJDEP-CT005,P	SS ADEP-68-04
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 854,NJDEP-CT005,P	SS ADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 7 of 54

Client Sample ID: MW-1AR

York Sample ID: 24F

24F0113-01

York Project (SDG) No. 24F0113 Client Project ID 03C497 Matrix Ground Water <u>Collection Date/Time</u> June 3, 2024 7:00 am Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method Date/Time Prepared	Date/Time Analyzed	Analyst
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-044
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04-
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04-
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-044
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-044
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04-
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04-
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04-
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04-
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04-
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04-
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04-
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04
100-02-7	4-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04-
83-32-9	Acenaphthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04
208-96-8	Acenaphthylene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 NELAC-NY10854,NJDEP-CT(SS
62-53-3	Aniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 NELAC-NY10854,NJDEP-CT(SS
120-12-7	Anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY		SS PADEP-68-04-
1912-24-9	Atrazine	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	06/06/2024 13:02 NELAC-NY10854,NJDEP-CT(06/07/2024 16:35	SS
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 NELAC-NY10854,NJDEP-CT0	06/07/2024 16:35	SS
92-87-5	Benzidine	ND		ug/L	10.0	20.0	1	EPA 8270E Certifications:	06/06/2024 13:02 CTDOH-PH-0723,NELAC-NY	06/07/2024 16:35	SS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 8 of 54

Client Sample ID: MW-1AR

York Sample ID: 24F0113-01

York Project (SDG) No. 24F0113 Client Project ID 03C497 Matrix Ground Water Collection Date/Time
June 3, 2024 7:00 am

Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		ate/Time Analyzed	Analyst
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ	07/2024 16:35 JDEP-CT005,PA	SS DEP-68-044
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ	07/2024 16:35 JDEP-CT005,PA	SS DEP-68-044
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ	07/2024 16:35 JDEP-CT005,PA	SS DEP-68-044
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ	07/2024 16:35 JDEP-CT005,PA	SS DEP-68-044
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ	07/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
65-85-0	Benzoic acid	ND		ug/L	25.0	50.0	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 NELAC-NY10854,NJDEP-CT005,PADE	07/2024 16:35 EP-68-04440	SS
100-51-6	Benzyl alcohol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 NELAC-NY10854,NJDEP-CT005,PADE	07/2024 16:35 EP-68-04440	SS
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ	07/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ)7/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ)7/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ)7/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ)7/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 NELAC-NY10854,NJDEP-CT005,PADE	07/2024 16:35 EP-68-04440	SS
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ)7/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ)7/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ)7/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ)7/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ)7/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ)7/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ)7/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ)7/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044
122-39-4	* Diphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0	07/2024 16:35	SS
206-44-0	Fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/06/2024 13:02 06/0 CTDOH-PH-0723,NELAC-NY10854,NJ	07/2024 16:35 JDEP-CT005,PA	SS .DEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 9 of 54

Log-in Notes:

Client Sample ID: MW-1AR

York Sample ID:

24F0113-01

York Project (SDG) No. 24F0113 Client Project ID 03C497 Matrix Ground Water <u>Collection Date/Time</u> June 3, 2024 7:00 am

Sample Notes:

Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Sample Prepare	ed by Method: EPA 3510C											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
86-73-7	Fluorene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	NELAC-N	06/06/2024 13:02 Y10854,NJDEP-CT00	06/07/2024 16:35 5,PADEP-68-04440	SS
118-74-1	Hexachlorobenzene	ND		ug/L	0.0200	0.0200	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
87-68-3	Hexachlorobutadiene	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
67-72-1	Hexachloroethane	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
91-20-3	Naphthalene	0.410		ug/L	0.0500	0.0500	1	EPA 8270E		06/06/2024 13:02	06/07/2024 16:35	SS
								Certifications:	CTDOH-F	H-0723,NELAC-NY1	0854,NJDEP-CT005,	PADEP-68-04
98-95-3	Nitrobenzene	ND		ug/L	0.250	0.250	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
87-86-5	Pentachlorophenol	ND		ug/L	0.250	0.250	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
85-01-8	Phenanthrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
129-00-0	Pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-P	06/06/2024 13:02 H-0723,NELAC-NY10	06/07/2024 16:35 0854,NJDEP-CT005,F	SS PADEP-68-044
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	46.1 %			19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	27.1 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	78.7 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	91.8 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	134 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	101 %			30.7-106							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 10 of 54

Client Sample ID: MW-3AR

York Sample ID:

24F0113-02

York Project (SDG) No. 24F0113 Client Project ID 03C497 Matrix Ground Water Collection Date/Time
June 3, 2024 10:47 am

Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 8,NJDEP-C
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35	FO
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35	FO
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-C
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 854,NELAC-NY1205	FO 8,NJDEP-C
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-C
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-C
87-61-6	1,2,3-Trichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 /10854,NELAC-NY12	06/05/2024 17:35 2058,NJDEP-CT005,F	FO PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 /10854,NELAC-NY12	06/05/2024 17:35 2058,NJDEP-CT005,F	FO PADEP-68-04
120-82-1	1,2,4-Trichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 /10854,NELAC-NY12	06/05/2024 17:35 2058,NJDEP-CT005,F	FO PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-C
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 854,NELAC-NY1205	FO 8,NJDEP-C
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 854,NELAC-NY1205	FO 8,NJDEP-C
95-50-1	1,2-Dichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 854,NELAC-NY1205	FO 8,NJDEP-C
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 8,NJDEP-C
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 854,NELAC-NY1205	FO 8,NJDEP-C
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-C
541-73-1	1,3-Dichlorobenzene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 854,NELAC-NY1205	FO 8,NJDEP-C
106-46-7	1,4-Dichlorobenzene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO i8,NJDEP-C
123-91-1	1,4-Dioxane	ND	X	ug/L	40	40	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 /10854,NELAC-NY12	06/05/2024 17:35 2058,NJDEP-CT005,F	FO PADEP-68-04
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-C
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35	FO
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 17:35	FO

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 11 of 54

Client Sample ID: MW-3AR

York Sample ID: 24F0113-02

York Project (SDG) No. 24F0113 Client Project ID 03C497 Matrix Ground Water Collection Date/Time
June 3, 2024 10:47 am

Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 5030B									D . (77)	D . (77)	
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
107-02-8	Acrolein	ND	CCVE, ICVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
107-13-1	Acrylonitrile	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY1	06/05/2024 17:35 2058,NJDEP-CT005,F	FO PADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
74-83-9	Bromomethane	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
108-90-7	Chlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
74-87-3	Chloromethane	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
110-82-7	Cyclohexane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY1	06/05/2024 17:35 2058,NJDEP-CT005,F	FO PADEP-68-04
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY1	06/05/2024 17:35 2058,NJDEP-CT005,F	FO PADEP-68-04
75-71-8	Dichlorodifluoromethane	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY1	06/05/2024 17:35 2058,NJDEP-CT005,F	FO PADEP-68-04
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-CT
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY1	06/05/2024 17:35 2058,NJDEP-CT005,F	FO PADEP-68-04
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35	FO

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 12 of 54

Log-in Notes:

Client Sample ID: MW-3AR

York Sample ID:

24F0113-02

York Project (SDG) No. 24F0113

Client Project ID 03C497 Matrix Ground Water Collection Date/Time
June 3, 2024 10:47 am

Sample Notes:

Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-20-9	Methyl acetate	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 17:35 2058,NJDEP-CT005,I	FO PADEP-68-0
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 9854,NELAC-NY120	FO 58,NJDEP-C
108-87-2	Methylcyclohexane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 17:35 2058,NJDEP-CT005,I	FO PADEP-68-0
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY120	FO 58,NJDEP-C
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 854,NELAC-NY120	FO 58,NJDEP-C
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 854,NELAC-NY120	FO 58,NJDEP-C
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 9854,NELAC-NY120	FO 58,PADEP-6
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 9854,NELAC-NY120	FO 58,PADEP-6
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 9854,NELAC-NY120	FO 58,NJDEP-C
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35	FO
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35 0854,NELAC-NY1205	FO 58,NJDEP-C
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.50	1.0	1	EPA 8260D Certifications:		06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 17:35	FO
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35	FO
127-18-4	Tetrachloroethylene	ND	ICVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35	FO
108-88-3	Toluene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35	FO
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35	FO
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35	FO
110-57-6	trans-1,4-dichloro-2-butene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35	FO
79-01-6	Trichloroethylene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35	FO
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00	06/05/2024 17:35	FO
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	Certifications: EPA 8260D Certifications:		H-0723,NELAC-NY10 06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35	FO
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 17:35	FO
	Surrogate Recoveries	Result		Acc	eptance Rang	e		Certifications.	CIDOII-FI	1-0/23,NBEAC-N110	007,NELAC-N I 120.	20,141DEF-C

120 RESEARCH DRIVE www.YORKLAB.com

Surrogate: SURR:

1,2-Dichloroethane-d4

17060-07-0

STRATFORD, CT 06615

99.6 %

(203) 325-1371

132-02 89th AVENUE

69-130

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 13 of 54

Client Sample ID: MW-3AR **York Sample ID:**

24F0113-02

York Project (SDG) No. 24F0113

Client Project ID 03C497

Flag

Units

Matrix Ground Water

Dilution

Collection Date/Time June 3, 2024 10:47 am Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Parameter

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

Date/Time Date/Time

Reference Method

Analyzed

Surrogate: SURR: Toluene-d8 460-00-4 Surrogate: SURR:

CAS No.

2037-26-5

95.9 % 100 %

Result

81-117

Reported to LOD/MDL

Prepared

Analyst

p-Bromofluorobenzene

Sample Prepared by Method: EPA 3510C

79-122

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00:	06/06/2024 16:20 5,PADEP-68-04440	SS
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00:	06/06/2024 16:20 5,PADEP-68-04440	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,P	SS ADEP-68-044
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,PADEP-68-04	06/06/2024 16:20 440	SS
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00:	06/06/2024 16:20 5,PADEP-68-04440	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,PADEP-68-04	06/06/2024 16:20 440	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,PADEP-68-04	06/06/2024 16:20 440	SS
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00:	06/06/2024 16:20 5,PADEP-68-04440	SS
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,P	SS ADEP-68-044
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 0854,NJDEP-CT005,P	SS ADEP-68-044
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 0854,NJDEP-CT005,P	SS ADEP-68-044
105-67-9	2,4-Dimethylphenol	ND	CCVE, ICVE	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 0854,NJDEP-CT005,P	SS ADEP-68-044
51-28-5	2,4-Dinitrophenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 0854,NJDEP-CT005,P	SS ADEP-68-044
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 0854,NJDEP-CT005,P	SS ADEP-68-044
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 0854,NJDEP-CT005,P	SS ADEP-68-044
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 0854,NJDEP-CT005,P	SS ADEP-68-044
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 0854,NJDEP-CT005,P	SS ADEP-68-044
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:		06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20	SS
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:		06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20	SS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 14 of 54

Client Sample ID: MW-3AR

York Sample ID:

24F0113-02

York Project (SDG) No. 24F0113

Client Project ID 03C497 Matrix Ground Water Collection Date/Time
June 3, 2024 10:47 am

Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:
----------------------	---------------

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PF	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-04
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	СТДОН-РЕ	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854.NJDEP-CT005.F	SS PADEP-68-04
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:		06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20	SS
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:		06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20	SS
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:		06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20	SS
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270E Certifications:		06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20	SS
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270E		06/05/2024 08:10	06/06/2024 16:20	SS
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	Certifications:		H-0723,NELAC-NY10 06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20	SS
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	Certifications:		06/05/2024 08:10	06/06/2024 16:20	SS
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	Certifications:		H-0723,NELAC-NY10 06/05/2024 08:10	06/06/2024 16:20	SS
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	Certifications:		H-0723,NELAC-NY10 06/05/2024 08:10	06/06/2024 16:20	SS
100-02-7	4-Nitrophenol	ND	CAL-E	ug/L	2.50	5.00	1	Certifications:		H-0723,NELAC-NY10 06/05/2024 08:10	06/06/2024 16:20	SS
83-32-9	Acenaphthene	ND		ug/L	0.0500	0.0500	1	Certifications:		1-0723,NELAC-NY10 06/05/2024 08:10	06/06/2024 16:20	SS
208-96-8	Acenaphthylene	ND		ug/L	0.0500	0.0500	1	Certifications:		H-0723,NELAC-NY10 06/05/2024 08:10	06/06/2024 16:20	SS
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	Certifications: EPA 8270E		1-0723,NELAC-NY10 06/05/2024 08:10	06/06/2024 16:20	SS
62-53-3	Aniline	ND		ug/L	2.50	5.00	1	Certifications: EPA 8270E		Y10854,NJDEP-CT005 06/05/2024 08:10	06/06/2024 16:20	SS
120-12-7	Anthracene	ND		ug/L	0.0500	0.0500	1	Certifications: EPA 8270E		Y10854,NJDEP-CT005 06/05/2024 08:10	06/06/2024 16:20	SS
1912-24-9	Atrazine	ND		ug/L	0.500	0.500	1	Certifications: EPA 8270E		H-0723,NELAC-NY10 06/05/2024 08:10	06/06/2024 16:20	ADEP-68-04 SS
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	Certifications: EPA 8270E	NELAC-N	Y10854,NJDEP-CT005 06/05/2024 08:10	5,PADEP-68-04440 06/06/2024 16:20	SS
92-87-5	Benzidine	ND		ug/L	10.0	20.0	1	Certifications: EPA 8270E	NELAC-NY	Y10854,NJDEP-CT005 06/05/2024 08:10	5,PADEP-68-04440 06/06/2024 16:20	SS
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	0.0500	1	Certifications: EPA 8270E	CTDOH-PI	H-0723,NELAC-NY10 06/05/2024 08:10	854,NJDEP-CT005,F 06/06/2024 16:20	PADEP-68-04 SS
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	0.0500	1	Certifications: EPA 8270E	CTDOH-PI	H-0723,NELAC-NY10 06/05/2024 08:10	854,NJDEP-CT005,F 06/06/2024 16:20	PADEP-68-04
	Zonzo(u)pjiene	110					-	Certifications:	CTDOH-PH	H-0723,NELAC-NY10		
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 15 of 54

Client Sample ID: MW-3AR

York Sample ID:

24F0113-02

York Project (SDG) No. 24F0113 Client Project ID 03C497 Matrix Ground Water Collection Date/Time
June 3, 2024 10:47 am

Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

T	οσ_in	Notes:	
L	(U2-III	motes:	

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
65-85-0	Benzoic acid	ND	CAL-E	ug/L	25.0	50.0	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 710854,NJDEP-CT00	06/06/2024 16:20 5,PADEP-68-04440	SS
100-51-6	Benzyl alcohol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 710854,NJDEP-CT00	06/06/2024 16:20 5,PADEP-68-04440	SS
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 710854,NJDEP-CT00:	06/06/2024 16:20 5,PADEP-68-04440	SS
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
122-39-4	* Diphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:		06/05/2024 08:10	06/06/2024 16:20	SS
206-44-0	Fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
86-73-7	Fluorene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:		06/05/2024 08:10 10854,NJDEP-CT00:	06/06/2024 16:20	SS
118-74-1	Hexachlorobenzene	ND		ug/L	0.0200	0.0200	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,I	SS PADEP-68-04
87-68-3	Hexachlorobutadiene	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:		06/05/2024 08:10	06/06/2024 16:20 854,NJDEP-CT005,I	SS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 16 of 54

Client Sample ID: MW-3AR

York Sample ID:

24F0113-02

York Project (SDG) No. 24F0113

Client Project ID 03C497

Matrix Ground Water

Collection Date/Time June 3, 2024 10:47 am Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in	Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND	ICVE	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-044
67-72-1	Hexachloroethane	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-044
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-044
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-044
91-20-3	Naphthalene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-044
98-95-3	Nitrobenzene	ND		ug/L	0.250	0.250	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-044
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-044
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-044
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-044
87-86-5	Pentachlorophenol	ND		ug/L	0.250	0.250	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-044
85-01-8	Phenanthrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-044
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-044
129-00-0	Pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:20 854,NJDEP-CT005,F	SS PADEP-68-044
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	34.1 %			19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	19.1 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	93.8 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	100 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	124 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	109 %	S-08		30.7-106							

Sample Information

MW-4AR **Client Sample ID: York Sample ID:** 24F0113-03

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 24F0113 03C497 Ground Water June 3, 2024 8:28 am 06/04/2024

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 17 of 54

Client Sample ID: MW-4AR **York Sample ID:**

24F0113-03

York Project (SDG) No. 24F0113

Client Project ID 03C497

Matrix Ground Water

Collection Date/Time June 3, 2024 8:28 am Date Received 06/04/2024

					Reported to				Date/Time		Date/Time	
CAS No.	. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference I	Method	Prepared	Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120	FO 58,NJDEP-C
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120	FO 58,NJDEP-C
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120	FO 58,NJDEP-C
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120:	FO 58,NJDEP-C
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120:	FO 58,NJDEP-C
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120:	FO 58,NJDEP-C
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO
87-61-6	1,2,3-Trichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 18:03 2058,NJDEP-CT005,1	FO PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 18:03	FO
120-82-1	1,2,4-Trichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 18:03	FO
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO
95-50-1	1,2-Dichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO
541-73-1	1,3-Dichlorobenzene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO
106-46-7	1,4-Dichlorobenzene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO
123-91-1	1,4-Dioxane	ND	QL-02	ug/L	40	40	1	EPA 8260D		06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 18:03	FO
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03	FO

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 18 of 54

Client Sample ID: MW-4AR

York Sample ID: 24F0113-03

York Project (SDG) No. 24F0113 Client Project ID 03C497 Matrix Ground Water <u>Collection Date/Time</u> June 3, 2024 8:28 am

> Date/Time Prepared

Date Received 06/04/2024

Analyst

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Date/Time Analyzed

Sample Prepared by Method: EPA 5030B										
CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method			

107-02-8	Acrolein	ND	CCVE, ICVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
107-13-1	Acrylonitrile	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
74-83-9	Bromomethane	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
108-90-7	Chlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
74-87-3	Chloromethane	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
110-82-7	Cyclohexane	0.21	J	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
75-71-8	Dichlorodifluoromethane	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
79-20-9	Methyl acetate	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:03 FO NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
									,

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 19 of 54

Log-in Notes:

Client Sample ID: MW-4AR **York Sample ID:**

24F0113-03

York Project (SDG) No. 24F0113

Client Project ID 03C497

Matrix Ground Water

Collection Date/Time June 3, 2024 8:28 am

Sample Notes:

Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

mple Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	0.68		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00	06/05/2024 18:03	FO
								Certifications:	CTDOH-F	H-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP-0
08-87-2	Methylcyclohexane	0.20	J	ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00	06/05/2024 18:03	FO
								Certifications:	NELAC-N	Y10854,NELAC-NY1	2058,NJDEP-CT005	PADEP-68-0
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 854,NELAC-NY120	FO 58,NJDEP-C
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 9854,NELAC-NY120:	FO 58,NJDEP-C
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 9854,NELAC-NY120	FO 58,NJDEP-C
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 854,NELAC-NY120	FO 58,PADEP-6
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 9854,NELAC-NY120	FO 58,PADEP-6
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 9854,NELAC-NY120:	FO 58,NJDEP-C
135-98-8	sec-Butylbenzene	0.21	J	ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00	06/05/2024 18:03	FO
	•	***						Certifications:	CTDOH-F	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 9854,NELAC-NY120	FO 58,NJDEP-C
75-65-0	tert-Butyl alcohol (TBA)	1.3		ug/L	0.50	1.0	1	EPA 8260D		06/05/2024 08:00	06/05/2024 18:03	FO
								Certifications:	NELAC-N	Y10854,NELAC-NY1	2058,NJDEP-CT005	,PADEP-68-0
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120	FO 58,NJDEP-C
127-18-4	Tetrachloroethylene	ND	ICVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120:	FO 58,NJDEP-C
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120:	FO 58,NJDEP-C
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120	FO 58,NJDEP-C
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120	FO 58,NJDEP-C
110-57-6	trans-1,4-dichloro-2-butene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120	FO 58,NJDEP-C
79-01-6	Trichloroethylene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120	FO 58,NJDEP-C
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 0854,NELAC-NY120	FO 58,NJDEP-C
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 9854,NELAC-NY120	FO 58,NJDEP-C
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:03 9854,NELAC-NY120	FO 58,NJDEP-C
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	99.8 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	96.0 %			81-117							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 20 of 54

Client Sample ID: MW-4AR **York Sample ID:**

24F0113-03

York Project (SDG) No. 24F0113

Client Project ID 03C497

Flag

Units

Matrix Ground Water

Collection Date/Time June 3, 2024 8:28 am Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

Date/Time

CAS No.

460-00-4

Parameter

79-122

Reported to LOD/MDL

Dilution

Reference Method

Date/Time Prepared

Analyzed Analyst

 $p\hbox{-} Bromofluor obenzene$

Semi-Volatiles, 8270 - Comprehensive

Surrogate: SURR:

Log-in Notes:

Sample Notes:

Sample Prepared by Metho	od: EPA 3510C						
CAS No.	Parameter	Result	Flaσ	Units	Reported to	oo Dib	ution Reference Meth

Result

101 %

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 // 10854,NJDEP-CT005	06/06/2024 16:50 5,PADEP-68-04440	SS
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT005	06/06/2024 16:50 5,PADEP-68-04440	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-04
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 710854,PADEP-68-04	06/06/2024 16:50 440	SS
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 710854,NJDEP-CT005	06/06/2024 16:50 5,PADEP-68-04440	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 710854,PADEP-68-04	06/06/2024 16:50 440	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 710854,PADEP-68-04	06/06/2024 16:50 440	SS
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT00	06/06/2024 16:50 5,PADEP-68-04440	SS
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-04
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-04
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-04
105-67-9	2,4-Dimethylphenol	ND	CCVE, ICVE	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-04
51-28-5	2,4-Dinitrophenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-04
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-04
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-04
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-04
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-04
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-04
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270E		06/05/2024 08:10	06/06/2024 16:50	SS

Log-in Notes:

Client Sample ID: MW-4AR

York Sample ID:

24F0113-03

York Project (SDG) No. 24F0113 Client Project ID 03C497 Matrix Ground Water <u>Collection Date/Time</u> June 3, 2024 8:28 am

Sample Notes:

Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepar	red by Method: EPA 3510C											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
100-02-7	4-Nitrophenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
83-32-9	Acenaphthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
208-96-8	Acenaphthylene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00	06/06/2024 16:50 5,PADEP-68-04440	SS
62-53-3	Aniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00:	06/06/2024 16:50 5,PADEP-68-04440	SS
120-12-7	Anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
1912-24-9	Atrazine	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00	06/06/2024 16:50 5,PADEP-68-04440	SS
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00:	06/06/2024 16:50 5,PADEP-68-04440	SS
92-87-5	Benzidine	ND		ug/L	10.0	20.0	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,P	SS ADEP-68-044
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:		06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50	SS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 22 of 54

Client Sample ID: MW-4AR

York Sample ID:

24F0113-03

York Project (SDG) No. 24F0113 Client Project ID 03C497 Matrix Ground Water <u>Collection Date/Time</u> June 3, 2024 8:28 am Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,I	SS PADEP-68-04
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,	SS PADEP-68-044
65-85-0	Benzoic acid	ND	CAL-E	ug/L	25.0	50.0	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT00	06/06/2024 16:50 5,PADEP-68-04440	SS
100-51-6	Benzyl alcohol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT00	06/06/2024 16:50 5,PADEP-68-04440	SS
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 0854,NJDEP-CT005,I	SS PADEP-68-044
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 0854,NJDEP-CT005,I	SS PADEP-68-04-
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 0854,NJDEP-CT005,I	SS PADEP-68-04-
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 0854,NJDEP-CT005,I	SS PADEP-68-04-
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 0854,NJDEP-CT005,	SS PADEP-68-044
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT00:	06/06/2024 16:50 5,PADEP-68-04440	SS
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 0854,NJDEP-CT005,	SS PADEP-68-044
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 0854,NJDEP-CT005,	SS PADEP-68-044
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 0854,NJDEP-CT005,	SS PADEP-68-044
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 0854,NJDEP-CT005,	SS PADEP-68-044
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 0854,NJDEP-CT005,	SS PADEP-68-044
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 0854,NJDEP-CT005,	SS PADEP-68-044
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 0854,NJDEP-CT005,	SS PADEP-68-044
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 0854,NJDEP-CT005,	SS PADEP-68-044
122-39-4	* Diphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:		06/05/2024 08:10	06/06/2024 16:50	SS
206-44-0	Fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,	SS PADEP-68-04-
86-73-7	Fluorene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT00	06/06/2024 16:50 5,PADEP-68-04440	SS
118-74-1	Hexachlorobenzene	ND		ug/L	0.0200	0.0200	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 16:50 9854,NJDEP-CT005,I	SS PADEP-68-044
87-68-3	Hexachlorobutadiene	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	СТДОН-РН	06/05/2024 08:10	06/06/2024 16:50 0854,NJDEP-CT005,J	SS PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 23 of 54

Client Sample ID: MW-4AR **York Sample ID:**

24F0113-03

York Project (SDG) No. 24F0113

Client Project ID 03C497

Matrix Ground Water

Collection Date/Time June 3, 2024 8:28 am Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

-		T . 7
LΩσ	_in	Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND	ICVE	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,F	SS PADEP-68-044
67-72-1	Hexachloroethane	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 9854,NJDEP-CT005,F	SS PADEP-68-044
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 9854,NJDEP-CT005,F	SS PADEP-68-044
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 9854,NJDEP-CT005,F	SS PADEP-68-044
91-20-3	Naphthalene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,F	SS PADEP-68-044
98-95-3	Nitrobenzene	ND		ug/L	0.250	0.250	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,F	SS PADEP-68-044
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,F	SS PADEP-68-044
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,F	SS PADEP-68-044
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,F	SS PADEP-68-044
87-86-5	Pentachlorophenol	ND		ug/L	0.250	0.250	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,F	SS PADEP-68-044
85-01-8	Phenanthrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,F	SS PADEP-68-044
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,F	SS PADEP-68-044
129-00-0	Pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 16:50 854,NJDEP-CT005,F	SS PADEP-68-044
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	24.3 %			19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	13.4 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	69.0 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	74.6 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	97.7 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	83.7 %			30.7-106							

Sample Information

MW-5AR **York Sample ID: Client Sample ID:** 24F0113-04

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 24F0113 03C497 Ground Water June 3, 2024 9:50 am 06/04/2024

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 24 of 54

Client Sample ID: MW-5AR **York Sample ID:** 24F0113-04

York Project (SDG) No. 24F0113

Client Project ID 03C497

Matrix Ground Water

Collection Date/Time June 3, 2024 9:50 am Date Received 06/04/2024

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
87-61-6	1,2,3-Trichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 18:32 2058,NJDEP-CT005,I	FO PADEP-68-0
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 18:32 2058,NJDEP-CT005,I	FO PADEP-68-0
120-82-1	1,2,4-Trichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 18:32 2058,NJDEP-CT005,I	FO PADEP-68-0
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120	FO 58,NJDEP-C
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
95-50-1	1,2-Dichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120	FO 58,NJDEP-C
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
541-73-1	1,3-Dichlorobenzene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
106-46-7	1,4-Dichlorobenzene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32 854,NELAC-NY120:	FO 58,NJDEP-C
123-91-1	1,4-Dioxane	ND	Q2 02	ug/L	40	40	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 18:32 2058,NJDEP-CT005,I	FO PADEP-68-0
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32	FO
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32	FO
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32	FO
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 18:32	FO

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

Page 25 of 54 ClientServices@

Client Sample ID: MW-5AR

York Sample ID: 24F0113-04

York Project (SDG) No. 24F0113

Sample Prepared by Method: EPA 5030B

Client Project ID 03C497 Matrix Ground Water Collection Date/Time
June 3, 2024 9:50 am

Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/Time Method Prepared Analyzed Analyst
107-02-8	Acrolein	ND	CCVE, ICVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
107-13-1	Acrylonitrile	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-0
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
74-83-9	Bromomethane	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
75-15-0	Carbon disulfide	ND	Q2 02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
108-90-7	Chlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
74-87-3	Chloromethane	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
110-82-7	Cyclohexane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-0
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-0
75-71-8	Dichlorodifluoromethane	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-0
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-0
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
79-20-9	Methyl acetate	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/2024 08:00 06/05/2024 18:32 FO NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-0
								_cranounous.	1.122.10 1111005-j.122110-11112050j.100E1-C1005j.14DEF-00-0

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 26 of 54

Log-in Notes:

Client Sample ID: MW-5AR

York Sample ID: 2

24F0113-04

York Project (SDG) No. 24F0113 Client Project ID 03C497 Matrix Ground Water Collection Date/Time
June 3, 2024 9:50 am

Sample Notes:

Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		/Time epared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
108-87-2	Methylcyclohexane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 NELAC-NY10854,NE	024 08:00 ELAC-NY1	06/05/2024 18:32 2058,NJDEP-CT005,	FO PADEP-68-04
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,PADEP-68
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,PADEP-68
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
75-65-0	tert-Butyl alcohol (TBA)	0.89	J	ug/L	0.50	1.0	1	EPA 8260D	06/05/20	024 08:00	06/05/2024 18:32	FO
								Certifications:	NELAC-NY10854,N	ELAC-NY	12058,NJDEP-CT005	,PADEP-68-04
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
127-18-4	Tetrachloroethylene	ND	ICVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
110-57-6	trans-1,4-dichloro-2-butene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
79-01-6	Trichloroethylene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	06/05/20 CTDOH-PH-0723,NE	024 08:00 LAC-NY10	06/05/2024 18:32 0854,NELAC-NY120	FO 58,NJDEP-CT
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260D Certifications:		024 08:00	06/05/2024 18:32	FO
	Surrogate Recoveries	Result		Acc	eptance Rang	e					,	,
17060-07-0	Surrogate: SURR:	99.5 %			69-130							
	1,2-Dichloroethane-d4											
2037-26-5	Surrogate: SURR: Toluene-d8	95.4 %			81-117							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 27 of 54

Client Sample ID: MW-5AR **York Sample ID:**

24F0113-04

York Project (SDG) No. 24F0113

Client Project ID 03C497

Matrix Ground Water

Collection Date/Time June 3, 2024 9:50 am Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

Date/Time Date/Time

CAS No.

Parameter

Result Flag Units

Reported to LOD/MDL

Dilution

Reference Method

Analyst

460-00-4

Surrogate: SURR: $p\hbox{-} Bromofluor obenzene$ 99.2 %

79-122

Prepared

Analyzed

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 Y10854,NJDEP-CT005	06/06/2024 17:20 5,PADEP-68-04440	SS
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT005	06/06/2024 17:20 5,PADEP-68-04440	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 Y10854,PADEP-68-04	06/06/2024 17:20 440	SS
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 Y10854,NJDEP-CT005	06/06/2024 17:20 5,PADEP-68-04440	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 Y10854,PADEP-68-04	06/06/2024 17:20 440	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 Y10854,PADEP-68-04	06/06/2024 17:20 440	SS
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT005	06/06/2024 17:20 5,PADEP-68-04440	SS
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
105-67-9	2,4-Dimethylphenol	ND	CCVE, ICVE	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
51-28-5	2,4-Dinitrophenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:		06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20	SS
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:		06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20	SS
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:		06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20	SS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 28 of 54

Client Sample ID: MW-5AR

York Sample ID: 2

24F0113-04

York Project (SDG) No. 24F0113

Client Project ID 03C497 Matrix Ground Water Collection Date/Time
June 3, 2024 9:50 am

Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:
---------------	---------------

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
100-02-7	4-Nitrophenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
83-32-9	Acenaphthene	0.220		ug/L	0.0500	0.0500	1	EPA 8270E		06/05/2024 08:10	06/06/2024 17:20	SS
								Certifications:	CTDOH-PI	H-0723,NELAC-NY1		
208-96-8	Acenaphthylene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10		
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT00	06/06/2024 17:20 5,PADEP-68-04440	SS
62-53-3	Aniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT00	06/06/2024 17:20 5,PADEP-68-04440	SS
120-12-7	Anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
1912-24-9	Atrazine	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT00	06/06/2024 17:20 5,PADEP-68-04440	SS
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT00	06/06/2024 17:20 5,PADEP-68-04440	SS
92-87-5	Benzidine	ND		ug/L	10.0	20.0	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10		SS PADEP-68-04
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 0854,NJDEP-CT005,	SS PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 29 of 54

Log-in Notes:

Client Sample ID: MW-5AR **York Sample ID:**

24F0113-04

York Project (SDG) No. 24F0113

Client Project ID 03C497

Matrix Ground Water

Collection Date/Time June 3, 2024 9:50 am

Sample Notes:

Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepare	ed by Method: EPA 3510C											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	СТДОН-РН	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
65-85-0	Benzoic acid	ND	CAL-E	ug/L	25.0	50.0	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT005	06/06/2024 17:20 5,PADEP-68-04440	SS
100-51-6	Benzyl alcohol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT005	06/06/2024 17:20 5,PADEP-68-04440	SS
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT005	06/06/2024 17:20 5,PADEP-68-04440	SS
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P.	SS ADEP-68-044
122-39-4	* Diphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:		06/05/2024 08:10	06/06/2024 17:20	SS
206-44-0	Fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P.	SS ADEP-68-044
86-73-7	Fluorene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	NELAC-NY	06/05/2024 08:10 /10854,NJDEP-CT005	06/06/2024 17:20 5,PADEP-68-04440	SS
118-74-1	Hexachlorobenzene	ND		ug/L	0.0200	0.0200	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044
87-68-3	Hexachlorobutadiene	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-PH	06/05/2024 08:10 I-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,P	SS ADEP-68-044

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 30 of 54

Client Sample ID: MW-5AR **York Sample ID:**

24F0113-04

York Project (SDG) No. 24F0113

Client Project ID 03C497

Matrix Ground Water

Collection Date/Time June 3, 2024 9:50 am Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log	-in	N	01	tes:	

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND	ICVE	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,F	SS ADEP-68-044
67-72-1	Hexachloroethane	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,F	SS PADEP-68-044
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,F	SS ADEP-68-044
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,F	SS PADEP-68-044
91-20-3	Naphthalene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,F	SS PADEP-68-044
98-95-3	Nitrobenzene	ND		ug/L	0.250	0.250	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,F	SS PADEP-68-044
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,F	SS PADEP-68-044
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,F	SS PADEP-68-044
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,F	SS PADEP-68-044
87-86-5	Pentachlorophenol	ND		ug/L	0.250	0.250	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,F	SS PADEP-68-044
85-01-8	Phenanthrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,F	SS PADEP-68-044
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,F	SS PADEP-68-044
129-00-0	Pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:20 854,NJDEP-CT005,F	SS PADEP-68-044
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	33.1 %			19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	18.3 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	80.5 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	86.0 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	108 %			39.3-151							
1718-51-0	Surrogate: SURR: Terphenyl-d14	97.0 %			30.7-106							

Sample Information

DUP **York Sample ID: Client Sample ID:** 24F0113-05

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 24F0113 03C497 Ground Water June 3, 2024 3:00 pm 06/04/2024

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 31 of 54

Client Sample ID: York Sample ID:

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received24F011303C497Ground WaterJune 3, 2024 3:00 pm06/04/2024

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 19:00	FO
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
87-61-6	1,2,3-Trichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 /10854,NELAC-NY12	06/05/2024 19:00 2058,NJDEP-CT005,I	FO PADEP-68-0
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 / 10854,NELAC-NY12	06/05/2024 19:00 2058,NJDEP-CT005,F	FO PADEP-68-0
120-82-1	1,2,4-Trichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 710854,NELAC-NY12	06/05/2024 19:00 2058,NJDEP-CT005,F	FO PADEP-68-0
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
95-50-1	1,2-Dichlorobenzene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
541-73-1	1,3-Dichlorobenzene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
106-46-7	1,4-Dichlorobenzene	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
123-91-1	1,4-Dioxane	ND		ug/L	40	40	1	EPA 8260D Certifications:	NELAC-NY	06/05/2024 08:00 /10854,NELAC-NY12	06/05/2024 19:00 2058,NJDEP-CT005,F	FO PADEP-68-0
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PH	06/05/2024 08:00 I-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY1205	FO 58,NJDEP-C
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00	FO

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 32 of 54

24F0113-05

Client Sample ID: DUP

York Sample ID:

24F0113-05

York Project (SDG) No. 24F0113 Client Project ID 03C497 Matrix Ground Water <u>Collection Date/Time</u> June 3, 2024 3:00 pm Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

	_				Reported to					Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
107-02-8	Acrolein	ND	CCVE, ICVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
107-13-1	Acrylonitrile	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY120	FO 58,NJDEP-C
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 9854,NELAC-NY120	FO 58,NJDEP-C
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 19:00 2058,NJDEP-CT005,I	FO PADEP-68-0
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
74-83-9	Bromomethane	ND	CCVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00	FO
75-15-0	Carbon disulfide	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00	FO
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00	FO
108-90-7	Chlorobenzene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00	FO
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00	FO
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	Certifications:		06/05/2024 08:00	06/05/2024 19:00	FO
74-87-3	Chloromethane	ND	CCVE	ug/L	0.20	0.50	1	Certifications:		H-0723,NELAC-NY10 06/05/2024 08:00	06/05/2024 19:00	FO
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	Certifications: EPA 8260D		H-0723,NELAC-NY10 06/05/2024 08:00	06/05/2024 19:00	FO
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	Certifications: EPA 8260D		H-0723,NELAC-NY10 06/05/2024 08:00	06/05/2024 19:00	FO
110-82-7	Cyclohexane	0.25	I	ug/L	0.20	0.50	1	Certifications: EPA 8260D	CTDOH-PI	H-0723,NELAC-NY10 06/05/2024 08:00	06/05/2024 19:00	58,NJDEP-C FO
110 02 7	Cyclonexune	0.23	J	ug/L	0.20	0.50	1	Certifications:	NELAC-N	IY10854,NELAC-NY1		
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-PI	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 854,NELAC-NY120	FO 58,NJDEP-C
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 19:00 2058,NJDEP-CT005,I	FO PADEP-68-0
75-71-8	Dichlorodifluoromethane	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	NELAC-N	06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 19:00 2058,NJDEP-CT005,I	FO PADEP-68-0
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00	FO
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 19:00	FO
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00	FO
79-20-9	Methyl acetate	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 Y10854,NELAC-NY12	06/05/2024 19:00	FO

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 33 of 54

Log-in Notes:

Client Sample ID: DUP

York Sample ID:

24F0113-05

York Project (SDG) No. 24F0113 Client Project ID 03C497 Matrix Ground Water <u>Collection Date/Time</u> June 3, 2024 3:00 pm

Sample Notes:

Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	0.62		ug/L	0.20	0.50	1	EPA 8260D		06/05/2024 08:00	06/05/2024 19:00	FO
108-87-2	Methylcyclohexane	ND		ug/L	0.20	0.50	1	Certifications: EPA 8260D	CTDOH-F	PH-0723,NELAC-NY1 06/05/2024 08:00	0854,NELAC-NY120 06/05/2024 19:00)58,NJDEP-C FO
								Certifications:	NELAC-N	Y10854,NELAC-NY1		
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854.NELAC-NY120	FO 58.PADEP-68
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00	FO
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:		06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00	FO
135-98-8	sec-Butylbenzene	0.21	J	ug/L	0.20	0.50	1	EPA 8260D	CIDOIII	06/05/2024 08:00	06/05/2024 19:00	FO
								Certifications:	CTDOH-F	PH-0723,NELAC-NY1	0854,NELAC-NY120)58,NJDEP-C
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
75-65-0	tert-Butyl alcohol (TBA)	0.80	J	ug/L	0.50	1.0	1	EPA 8260D		06/05/2024 08:00	06/05/2024 19:00	FO
								Certifications:	NELAC-N	VY10854,NELAC-NY	12058,NJDEP-CT005	,PADEP-68-0
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
127-18-4	Tetrachloroethylene	ND	ICVE, QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
110-57-6	trans-1,4-dichloro-2-butene	ND	CCVE	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
79-01-6	Trichloroethylene	ND	QL-02	ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260D Certifications:	CTDOH-P	06/05/2024 08:00 H-0723,NELAC-NY10	06/05/2024 19:00 0854,NELAC-NY120	FO 58,NJDEP-C
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	99.6 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	95.5 %			81-117							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 34 of 54

Client Sample ID: DUP **York Sample ID:**

24F0113-05

York Project (SDG) No. 24F0113

Client Project ID 03C497

Matrix Ground Water

Collection Date/Time June 3, 2024 3:00 pm Date Received 06/04/2024

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Reported to LOD/MDL

79-122

Sample Notes:

Date/Time

CAS No.

Parameter

Flag Units

Result

100 %

Dilution LOQ

Reference Method

Date/Time Prepared Analyzed

Analyst

460-00-4 Surrogate: SURR:

Sample Prepared by Method: EPA 3510C

 $p\hbox{-} Bromofluor obenzene$

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00:	06/06/2024 17:50 5,PADEP-68-04440	SS
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00	06/06/2024 17:50 5,PADEP-68-04440	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,PADEP-68-04	06/06/2024 17:50 440	SS
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00:	06/06/2024 17:50 5,PADEP-68-04440	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,PADEP-68-04	06/06/2024 17:50 440	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,PADEP-68-04	06/06/2024 17:50 440	SS
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00:	06/06/2024 17:50 5,PADEP-68-04440	SS
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
120-83-2	2,4-Dichlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 0854,NJDEP-CT005,P	SS ADEP-68-04
105-67-9	2,4-Dimethylphenol	ND	CCVE, ICVE	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
51-28-5	2,4-Dinitrophenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-044
121-14-2	2,4-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
606-20-2	2,6-Dinitrotoluene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 0854,NJDEP-CT005,P	SS ADEP-68-04
91-58-7	2-Chloronaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
95-57-8	2-Chlorophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 0854,NJDEP-CT005,P	SS ADEP-68-04
91-57-6	2-Methylnaphthalene	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 0854,NJDEP-CT005,P	SS ADEP-68-044
95-48-7	2-Methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 0854,NJDEP-CT005,P	SS ADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 35 of 54

Log-in Notes:

Client Sample ID: DUP

York Sample ID:

24F0113-05

York Project (SDG) No. 24F0113

Client Project ID 03C497 Matrix Ground Water Collection Date/Time
June 3, 2024 3:00 pm

Sample Notes:

Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
88-74-4	2-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
88-75-5	2-Nitrophenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
65794-96-9	3- & 4-Methylphenols	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
91-94-1	3,3-Dichlorobenzidine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
99-09-2	3-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
106-47-8	4-Chloroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
100-01-6	4-Nitroaniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
100-02-7	4-Nitrophenol	ND	CAL-E	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
83-32-9	Acenaphthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
208-96-8	Acenaphthylene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
98-86-2	Acetophenone	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00	06/06/2024 17:50 5,PADEP-68-04440	SS
62-53-3	Aniline	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00	06/06/2024 17:50 5,PADEP-68-04440	SS
120-12-7	Anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-PI	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
1912-24-9	Atrazine	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00	06/06/2024 17:50 5,PADEP-68-04440	SS
100-52-7	Benzaldehyde	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	NELAC-N	06/05/2024 08:10 Y10854,NJDEP-CT00:	06/06/2024 17:50 5,PADEP-68-04440	SS
92-87-5	Benzidine	ND		ug/L	10.0	20.0	1	EPA 8270E		06/05/2024 08:10	06/06/2024 17:50	SS

0.0500

0.0500

0.0500

ug/L

ug/L

ug/L

120 RESEARCH DRIVE www.YORKLAB.com

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(a)pyrene

56-55-3

50-32-8

205-99-2

STRATFORD, CT 06615 (203) 325-1371

ND

ND

ND

132-02 89th AVENUE FAX (203) 357-0166

0.0500

0.0500

0.0500

Certifications:

EPA 8270E

Certifications:

EPA 8270E

EPA 8270E

RICHMOND HILL, NY 11418

CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044

CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044

CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044

CTDOH-PH-0723,NELAC-NY10854,NJDEP-CT005,PADEP-68-044

ClientServices@ Page 36 of 54

Client Sample ID: DUP

York Sample ID:

24F0113-05

York Project (SDG) No. 24F0113 Client Project ID 03C497 Matrix Ground Water Collection Date/Time
June 3, 2024 3:00 pm

Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes

	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method Prepare	d Analyzed	Analyst
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-1		SS PADEP-68-04
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-1		SS PADEP-68-04
65-85-0	Benzoic acid	ND	CAL-E	ug/L	25.0	50.0	1	EPA 8270E Certifications:	06/05/2024 08 NELAC-NY10854,NJDEP-0		SS
100-51-6	Benzyl alcohol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/05/2024 08 NELAC-NY10854,NJDEP-0		SS
85-68-7	Benzyl butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-		SS PADEP-68-04
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-		SS PADEP-68-04
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-		SS PADEP-68-04
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-		SS PADEP-68-04
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-1		SS PADEP-68-04
105-60-2	Caprolactam	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/05/2024 08 NELAC-NY10854,NJDEP-0		SS
86-74-8	Carbazole	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-1		SS PADEP-68-04
218-01-9	Chrysene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-1		SS PADEP-68-04
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-1		SS PADEP-68-04
132-64-9	Dibenzofuran	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-1		SS PADEP-68-04
84-66-2	Diethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-1		SS PADEP-68-04
131-11-3	Dimethyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-1		SS PADEP-68-04
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-1		SS PADEP-68-04
117-84-0	Di-n-octyl phthalate	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-1		SS PADEP-68-04
122-39-4	* Diphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	06/05/2024 08	:10 06/06/2024 17:50	SS
206-44-0	Fluoranthene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-1		SS PADEP-68-04
86-73-7	Fluorene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	06/05/2024 08 NELAC-NY10854,NJDEP-0	:10 06/06/2024 17:50	SS
118-74-1	Hexachlorobenzene	ND		ug/L	0.0200	0.0200	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-	:10 06/06/2024 17:50	SS PADEP-68-04
87-68-3	Hexachlorobutadiene	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	06/05/2024 08 CTDOH-PH-0723,NELAC-1	:10 06/06/2024 17:50	SS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 37 of 54

Log-in Notes:

Client Sample ID: DUP **York Sample ID:**

24F0113-05

York Project (SDG) No. 24F0113

Client Project ID 03C497

Matrix Ground Water

Collection Date/Time June 3, 2024 3:00 pm

Sample Notes:

Date Received 06/04/2024

Semi-Volatiles, 8270 - Comprehensive

mple Prepared by Method: EPA 3510C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND	ICVE	ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 854,NJDEP-CT005,P	SS ADEP-68-04
67-72-1	Hexachloroethane	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 9854,NJDEP-CT005,P	SS ADEP-68-04
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 9854,NJDEP-CT005,P	SS ADEP-68-04
78-59-1	Isophorone	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 9854,NJDEP-CT005,P	SS PADEP-68-04
91-20-3	Naphthalene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 9854,NJDEP-CT005,P	SS PADEP-68-04
98-95-3	Nitrobenzene	ND		ug/L	0.250	0.250	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 9854,NJDEP-CT005,P	SS PADEP-68-04
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.500	0.500	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 9854,NJDEP-CT005,P	SS ADEP-68-04
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 9854,NJDEP-CT005,P	SS PADEP-68-04
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 9854,NJDEP-CT005,P	SS PADEP-68-04
87-86-5	Pentachlorophenol	ND		ug/L	0.250	0.250	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 9854,NJDEP-CT005,P	SS PADEP-68-04
85-01-8	Phenanthrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 9854,NJDEP-CT005,P	SS PADEP-68-04
108-95-2	Phenol	ND		ug/L	2.50	5.00	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 9854,NJDEP-CT005,P	SS ADEP-68-04
129-00-0	Pyrene	ND		ug/L	0.0500	0.0500	1	EPA 8270E Certifications:	CTDOH-P	06/05/2024 08:10 H-0723,NELAC-NY10	06/06/2024 17:50 9854,NJDEP-CT005,P	SS PADEP-68-04
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	28.8 %			19.7-63.1							
13127-88-3	Surrogate: SURR: Phenol-d6	16.6 %			10.1-41.7							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	68.5 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	73.2 %			39.9-105							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	91.0 %			39.3-151							

30.7-106

120 RESEARCH DRIVE www.YORKLAB.com

Surrogate: SURR: Terphenyl-d14

1718-51-0

STRATFORD, CT 06615 (203) 325-1371

77.8 %

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 38 of 54

Analytical Batch Summary

Batch ID: BF40252	Preparation Method:	EPA 3510C	Prepared By:	JM
YORK Sample ID	Client Sample ID	Preparation Date		
24F0113-02	MW-3AR	06/05/24		
24F0113-03	MW-4AR	06/05/24		
24F0113-04	MW-5AR	06/05/24		
24F0113-05	DUP	06/05/24		
BF40252-BLK1	Blank	06/05/24		
BF40252-BS1	LCS	06/05/24		
BF40252-BSD1	LCS Dup	06/05/24		
Batch ID: BF40273	Preparation Method:	EPA 5030B	Prepared By:	FO
YORK Sample ID	Client Sample ID	Preparation Date		
24F0113-01	MW-1AR	06/05/24		
24F0113-02	MW-3AR	06/05/24		
24F0113-03	MW-4AR	06/05/24		
24F0113-04	MW-5AR	06/05/24		
24F0113-05	DUP	06/05/24		
BF40273-BLK1	Blank	06/05/24		
BF40273-BS1	LCS	06/05/24		
BF40273-BSD1	LCS Dup	06/05/24		
Batch ID: BF40402	Preparation Method:	EPA 3510C	Prepared By:	moa
YORK Sample ID	Client Sample ID	Preparation Date		
24F0113-01	MW-1AR	06/06/24		

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BF40273-BLK1)				Prepared & Analyzed: 06
,1,1,2-Tetrachloroethane	ND	0.50	ug/L	
1,1,1-Trichloroethane	ND	0.50	"	
,1,2,2-Tetrachloroethane	ND	0.50	"	
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.50	"	
3)				
,1,2-Trichloroethane	ND	0.50	"	
1-Dichloroethane	ND	0.50	"	
1-Dichloroethylene	ND	0.50	"	
2,3-Trichlorobenzene	ND	0.50	"	
2,3-Trichloropropane	ND	0.50	"	
,2,4-Trichlorobenzene	ND	0.50	"	
,2,4-Trimethylbenzene	ND	0.50	"	
,2-Dibromo-3-chloropropane	ND	0.50	"	
,2-Dibromoethane	ND	0.50	"	
,2-Dichlorobenzene	ND	0.50	"	
,2-Dichloroethane	ND	0.50	"	
,2-Dichloropropane	ND	0.50	"	
3,5-Trimethylbenzene	ND	0.50	"	
3-Dichlorobenzene	ND	0.50	"	
4-Dichlorobenzene	ND	0.50	"	
4-Dioxane	ND	40	"	
Butanone	ND	0.50	"	
Hexanone	ND	0.50	"	
Methyl-2-pentanone	ND	0.50	"	
cetone	ND	2.0	"	
crolein	ND	0.50	"	
crylonitrile	ND	0.50	"	
Benzene	ND	0.50	"	
Bromochloromethane	ND	0.50	"	
romodichloromethane	ND	0.50	"	
Bromoform	ND	0.50	"	
romomethane	ND	0.50	"	
arbon disulfide	ND	0.50	"	
arbon tetrachloride	ND	0.50	"	
hlorobenzene	ND	0.50	"	
Phloroethane	ND	0.50	"	
hloroform	ND	0.50	"	
hloromethane	ND	0.50	"	
is-1,2-Dichloroethylene	ND	0.50	"	
s-1,3-Dichloropropylene	ND	0.50	"	
yclohexane	ND	0.50	"	
bibromochloromethane	ND	0.50	"	
Dibromomethane	ND ND	0.50	"	
Dichlorodifluoromethane	ND ND	0.50	"	
Ethyl Benzene	ND ND	0.50	"	
Hexachlorobutadiene	ND ND	0.50	"	
sopropylbenzene			"	
sopropyrochizene	ND	0.50		

120 RESEARCH DRIVE www.YORKLAB.com

Methyl tert-butyl ether (MTBE)

Methyl acetate

Methylcyclohexane

STRATFORD, CT 06615

(203) 325-1371

ND

ND

ND

0.50

0.50

0.50

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 40 of 54

York Analytical Laboratories, Inc. - Stratford

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BF40273 - EPA 5030B										_	
Blank (BF40273-BLK1)							Prep	ared & Anal	yzed: 06/05/	2024	
Methylene chloride	ND	2.0	ug/L								
n-Butylbenzene	ND	0.50	"								
n-Propylbenzene	ND	0.50	"								
o-Xylene	ND	0.50	"								
p- & m- Xylenes	ND	1.0	"								
p-Isopropyltoluene	ND	0.50	"								
sec-Butylbenzene	ND	0.50	"								
Styrene	ND	0.50	"								
tert-Butyl alcohol (TBA)	ND	1.0	"								
tert-Butylbenzene	ND	0.50	"								
Tetrachloroethylene	ND	0.50	"								
Toluene	ND	0.50	"								
trans-1,2-Dichloroethylene	ND	0.50	"								
trans-1,3-Dichloropropylene	ND	0.50	"								
trans-1,4-dichloro-2-butene	ND	0.50	"								
Trichloroethylene	ND	0.50	"								
Trichlorofluoromethane	ND	0.50	"								
Vinyl Chloride	ND	0.50	"								
Xylenes, Total	ND	1.5	"								
Surrogate: SURR: 1,2-Dichloroethane-d4	9.80		"	10.0		98.0	69-130				
Surrogate: SURR: Toluene-d8	9.59		"	10.0		95.9	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.93		,,	10.0		99.3	79-122				
	2.23			10.0		99.3					
LCS (BF40273-BS1)								ared & Anal	yzed: 06/05/	2024	
1,1,1,2-Tetrachloroethane	8.5		ug/L	10.0		85.3	82-126				
1,1,1-Trichloroethane	9.9		"	10.0		99.3	78-136				
1,1,2,2-Tetrachloroethane	9.6		"	10.0		95.7	76-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	17		"	10.0		170	54-165	High Bias			
1,1,2-Trichloroethane	8.3		"	10.0		83.2	82-123				
1,1-Dichloroethane	8.8		"	10.0		88.5	82-129				
1,1-Dichloroethylene	14		"	10.0		139	68-138	High Bias			
1,2,3-Trichlorobenzene	8.3		"	10.0		82.9	40-130				
1,2,3-Trichloropropane	8.2		"	10.0		81.8	77-128				
1,2,4-Trichlorobenzene	8.3		"	10.0		83.4	65-137				
1,2,4-Trimethylbenzene	8.7		"	10.0		86.9	82-132				
1,2-Dibromo-3-chloropropane	9.0		"	10.0		89.6	45-147				
1,2-Dibromoethane	8.6		"	10.0		85.8	83-124				
1,2-Dichlorobenzene	8.1		"	10.0		81.2	79-123				
1,2-Dichloroethane	8.8		"	10.0		88.4	73-132				
1,2-Dichloropropane	8.4		"	10.0		83.5	78-126				
1,3,5-Trimethylbenzene	8.8		"	10.0		87.6	80-131				
1,3-Dichlorobenzene	8.1		"	10.0		81.2	86-130	Low Bias			
1,4-Dichlorobenzene	8.0		"	10.0		79.7	85-130	Low Bias			
1,4-Dioxane	160		"	210		78.5	10-349				
2-Butanone	8.9		"	10.0		88.8	49-152				
2-Hexanone	7.7		"	10.0		77.4	51-146				
4-Methyl-2-pentanone	8.2		"	10.0		82.4	57-145				
Acetone	5.4		"	10.0		54.4	14-150				
Acrolein	5.0		"	10.0		50.4	10-153				
Acrylonitrile	8.9		"	10.0		89.1	51-150				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 41 of 54

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BF40273	- EPA	5030R

LCS (BF40273-BS1)					Prep	pared & Analyzed: 06/05/2024
Benzene	9.5	ug/L	10.0	95.3	85-126	
Bromochloromethane	8.7	"	10.0	87.3	77-128	
Bromodichloromethane	8.5	"	10.0	85.3	79-128	
Bromoform	9.1	"	10.0	91.4	78-133	
Bromomethane	3.9	"	10.0	39.1	43-168	Low Bias
Carbon disulfide	12	"	10.0	118	68-146	
Carbon tetrachloride	13	"	10.0	133	77-141	
Chlorobenzene	8.4	"	10.0	84.4	88-120	Low Bias
Chloroethane	10	"	10.0	100	65-136	
Chloroform	8.7	"	10.0	87.2	82-128	
Chloromethane	8.5	"	10.0	85.0	43-155	
cis-1,2-Dichloroethylene	8.9	"	10.0	88.7	83-129	
cis-1,3-Dichloropropylene	8.2	"	10.0	82.2	80-131	
Cyclohexane	16	"	10.0	159	63-149	High Bias
Dibromochloromethane	8.8	"	10.0	88.5	80-130	
Dibromomethane	8.3	"	10.0	83.1	72-134	
Dichlorodifluoromethane	19	"	10.0	190	44-144	High Bias
Ethyl Benzene	10	"	10.0	100	80-131	
Hexachlorobutadiene	12	"	10.0	115	67-146	
sopropylbenzene	10	"	10.0	104	76-140	
Methyl acetate	7.8	"	10.0	78.5	51-139	
Methyl tert-butyl ether (MTBE)	8.9	"	10.0	89.2	76-135	
Methylcyclohexane	14	"	10.0	143	72-143	
Methylene chloride	12	"	10.0	118	55-137	
n-Butylbenzene	11	"	10.0	107	79-132	
n-Propylbenzene	10	"	10.0	102	78-133	
o-Xylene	8.6	"	10.0	86.3	78-130	
o- & m- Xylenes	19	"	20.0	96.2	77-133	
p-Isopropyltoluene	9.0	"	10.0	90.2	81-136	
sec-Butylbenzene	11	"	10.0	112	79-137	
Styrene	8.6	"	10.0	86.0	67-132	
tert-Butyl alcohol (TBA)	54	"	50.0	109	25-162	
ert-Butylbenzene	8.8	"	10.0	87.9	77-138	
Tetrachloroethylene	4.7	"	10.0	46.8	82-131	Low Bias
Toluene	10	"	10.0	100	80-127	
trans-1,2-Dichloroethylene	9.5	"	10.0	95.0	80-132	
trans-1,3-Dichloropropylene	8.4	"	10.0	84.0	78-131	
trans-1,4-dichloro-2-butene	7.7	"	10.0	77.0	63-141	
Trichloroethylene	8.0	"	10.0	80.0	82-128	Low Bias
Trichlorofluoromethane	15	"	10.0	154	67-139	High Bias
Vinyl Chloride	11	"	10.0	108	58-145	
Surrogate: SURR: 1,2-Dichloroethane-d4	9.59	"	10.0	95.9	69-130	
Surrogate: SURR: Toluene-d8	9.61	"	10.0	96.1	81-117	
Surrogate: SURR: p-Bromofluorobenzene	9.83	"	10.0	98.3	79-122	

120 RESEARCH DRIVE STRATFORD, CT 06615 • 132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 42 of 54

ClientServices@

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit Uni	ts Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF40273 - EPA 5030B										
LCS Dup (BF40273-BSD1)						Pre	pared & Analy	zed: 06/05/	2024	
1,1,1,2-Tetrachloroethane	8.7	ug/	L 10.0		86.8	82-126		1.74	30	
1,1,1-Trichloroethane	10	"	10.0		104	78-136		4.14	30	
1,1,2,2-Tetrachloroethane	9.8	"	10.0		97.7	76-129		2.07	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	18	"	10.0		177	54-165	High Bias	4.03	30	
113)										
1,1,2-Trichloroethane	8.3	"	10.0		83.4	82-123		0.240	30	
1,1-Dichloroethane	9.2	"	10.0		91.6	82-129		3.44	30	
1,1-Dichloroethylene	14	"	10.0		143	68-138	High Bias	2.63	30	
1,2,3-Trichlorobenzene	8.7	"	10.0		87.1	40-130		4.94	30	
1,2,3-Trichloropropane	8.3	"	10.0		83.2	77-128		1.70	30	
1,2,4-Trichlorobenzene	8.7	"	10.0		86.7	65-137		3.88	30	
1,2,4-Trimethylbenzene	9.0	"	10.0		90.4	82-132		3.95	30	
1,2-Dibromo-3-chloropropane	9.0	"	10.0		90.5	45-147		0.999	30	
1,2-Dibromoethane	8.7	"	10.0		87.3	83-124		1.73	30	
1,2-Dichlorobenzene	8.4	"	10.0		84.0	79-123		3.39	30	
1,2-Dichloroethane	9.1	"	10.0		90.8	73-132		2.68	30	
1,2-Dichloropropane	8.4	"	10.0		84.5	78-126		1.19	30	
1,3,5-Trimethylbenzene	9.2	"	10.0		91.7	80-131		4.57	30	
1,3-Dichlorobenzene	8.4	"	10.0		84.2	86-130	Low Bias	3.63	30	
1,4-Dichlorobenzene	8.3	"	10.0		83.0	85-130	Low Bias	4.06	30	
1,4-Dioxane	170	"	210		80.3	10-349		2.24	30	
2-Butanone	9.1		10.0		90.8	49-152		2.23	30	
2-Hexanone	7.8	"	10.0		78.5	51-146		1.41	30	
4-Methyl-2-pentanone	8.4	"	10.0		84.0	57-145		1.92	30	
Acctone	5.6	"	10.0		56.3	14-150		3.43	30	
Acrolein	4.6		10.0		45.5	10-153		10.2	30	
Acrylonitrile	9.1		10.0		91.3	51-150		2.44	30	
Bromochloromethane	9.9	"	10.0		98.9	85-126		3.71	30	
Bromodichloromethane	8.9	"	10.0		89.4	77-128		2.38	30 30	
Bromoform	8.6 9.3	"	10.0		86.2	79-128		1.05 1.52	30	
Bromomethane		"	10.0		92.8	78-133		30.6	30	Non-dir.
Carbon disulfide	5.3	"	10.0		53.2	43-168		2.77	30	Non-dir.
Carbon tetrachloride	12	"	10.0		121	68-146		4.34	30	
Chlorobenzene	14 8.6		10.0 10.0		139	77-141 88-120	Low Bias	2.23	30	
Chloroethane	10	"	10.0		86.3 102	65-136	LOW DIAS	1.78	30	
Chloroform	9.1	"	10.0		90.9			4.15	30	
Chloromethane	8.5	,,	10.0		85.0	82-128 43-155		0.00	30	
cis-1,2-Dichloroethylene	9.2	"						3.22	30	
cis-1,3-Dichloropropylene	8.3	,,	10.0 10.0		91.6 83.0	83-129 80-131		0.969	30	
Cyclohexane	17	"	10.0		168	63-149	High Bias	5.46	30	
Dibromochloromethane	8.9	"	10.0				High Dias	0.900	30	
Dibromomethane	8.5	"	10.0		89.3 84.7	80-130 72-134		1.91	30	
Dichlorodifluoromethane	8.3 19	"	10.0		84.7 194	72-134 44-144	High Bias	2.55	30	
Ethyl Benzene	19	"	10.0		194	80-131	mgn Dias	3.34	30	
Hexachlorobutadiene	11	"	10.0		103	67-146		2.11	30	
Isopropylbenzene		"						5.35	30	
Methyl acetate	11 8.0		10.0		109	76-140		2.52	30	
Methyl tert-butyl ether (MTBE)	8.0 9.2		10.0		80.5	51-139		2.87	30	
Methylcyclohexane	9.2 15		10.0 10.0		91.8 148	76-135 72-143	High Bias	3.57	30	
Methylene chloride		"					mgn Dias	6.42	30	
wich yield childride	13	"	10.0		125	55-137		0.42	30	

RICHMOND HILL, NY 11418 120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF40273 - EPA 5030B											
LCS Dup (BF40273-BSD1)							Prep	oared & Analy	zed: 06/05/	2024	
n-Butylbenzene	11		ug/L	10.0		113	79-132		5.26	30	
n-Propylbenzene	11		"	10.0		107	78-133		5.55	30	
o-Xylene	8.9		"	10.0		89.0	78-130		3.08	30	
p- & m- Xylenes	20		"	20.0		100	77-133		3.97	30	
p-Isopropyltoluene	9.6		"	10.0		96.0	81-136		6.23	30	
sec-Butylbenzene	12		"	10.0		119	79-137		6.50	30	
Styrene	8.8		"	10.0		88.3	67-132		2.64	30	
tert-Butyl alcohol (TBA)	56		"	50.0		112	25-162		2.92	30	
tert-Butylbenzene	9.3		"	10.0		93.3	77-138		5.96	30	
Tetrachloroethylene	4.8		"	10.0		48.4	82-131	Low Bias	3.36	30	
Toluene	10		"	10.0		102	80-127		1.88	30	
trans-1,2-Dichloroethylene	9.8		"	10.0		97.8	80-132		2.90	30	

10.0

10.0

10.0

84.7

80.2

80.4

78-131

63-141

82-128

Low Bias

High Bias

0.830

4.07

0.499

2.70

2.93

30

30

30

30

30

Trichlorofluoromethane	16	"	10.0	158	67-139
Vinyl Chloride	11	"	10.0	111	58-145
Surrogate: SURR: 1,2-Dichloroethane-d4	9.86	"	10.0	98.6	69-130
Surrogate: SURR: Toluene-d8	9.56	"	10.0	95.6	81-117
Surrogate: SURR: p-Bromofluorobenzene	9.80	"	10.0	98.0	79-122

8.5

8.0

8.0

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 (203) 325-1371 www.YORKLAB.com FAX (203) 357-0166 ClientServices@ Page 44 of 54

trans-1,3-Dichloropropylene

trans-1,4-dichloro-2-butene

Trichloroethylene

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF40252 - EPA 3510C											
Blank (BF40252-BLK1)							Prepa	ared: 06/05/2	2024 Analyz	ed: 06/06/2	2024
1,1-Biphenyl	ND	5.00	ug/L								
1,2,4,5-Tetrachlorobenzene	ND	5.00	"								
1,2,4-Trichlorobenzene	ND	5.00	"								
1,2-Dichlorobenzene	ND	5.00	"								
1,2-Diphenylhydrazine (as Azobenzene)	ND	5.00	"								
1,3-Dichlorobenzene	ND	5.00	"								
1,4-Dichlorobenzene	ND	5.00	"								
2,3,4,6-Tetrachlorophenol	ND	5.00	"								
2,4,5-Trichlorophenol	ND	5.00	"								
2,4,6-Trichlorophenol	ND	5.00	"								
2,4-Dichlorophenol	ND	5.00	"								
2,4-Dimethylphenol	ND	5.00	"								
2,4-Dinitrophenol	ND	5.00	"								
2,4-Dinitrotoluene	ND	5.00	"								
2,6-Dinitrotoluene	ND	5.00	"								
2-Chloronaphthalene	ND	5.00	"								
2-Chlorophenol	ND	5.00	"								
2-Methylnaphthalene	ND	5.00	"								
2-Methylphenol	ND	5.00	"								
2-Nitroaniline	ND	5.00	"								
2-Nitrophenol	ND	5.00	"								
3- & 4-Methylphenols	ND	5.00	"								
3,3-Dichlorobenzidine	ND	5.00	"								
3-Nitroaniline	ND	5.00	"								
4,6-Dinitro-2-methylphenol	ND	5.00	"								
4-Bromophenyl phenyl ether	ND	5.00	"								
4-Chloro-3-methylphenol	ND	5.00	"								
4-Chloroaniline	ND	5.00	"								
4-Chlorophenyl phenyl ether	ND	5.00	"								
4-Nitroaniline	ND	5.00	"								
4-Nitrophenol	ND	5.00	"								
Acenaphthene	ND	0.0500	"								
Acenaphthylene	ND	0.0500	"								
Acetophenone	ND	5.00	"								
Aniline	ND	5.00	"								
Anthracene	ND	0.0500	"								
Atrazine	ND	0.500	"								
Benzaldehyde	ND	5.00	"								
Benzidine	ND	20.0	"								
Benzo(a)anthracene	ND	0.0500	"								
Benzo(a)pyrene	ND	0.0500	"								
Benzo(b)fluoranthene	ND	0.0500	"								
Benzo(g,h,i)perylene	ND	0.0500	"								
Benzo(k)fluoranthene	ND	0.0500	"								
Benzoic acid	ND	50.0	"								
Benzyl alcohol	ND	5.00	"								
Benzyl butyl phthalate	ND	5.00	"								
Bis(2-chloroethoxy)methane	ND	5.00	"								
Bis(2-chloroethyl)ether	ND	5.00	"								
Bis(2-chloroisopropyl)ether	ND	5.00	"								
Bis(2-ethylhexyl)phthalate	ND	0.500	"								

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 45 of 54

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BF40252-BLK1)						Prepared: 06/05/2024 Analyzed: 06/06/202
Caprolactam	ND	5.00	ug/L			
Carbazole	ND	5.00	"			
Chrysene	ND	0.0500	"			
Dibenzo(a,h)anthracene	ND	0.0500	"			
Dibenzofuran	ND	5.00	"			
Diethyl phthalate	ND	5.00	"			
Dimethyl phthalate	ND	5.00	"			
Di-n-butyl phthalate	ND	5.00	"			
Di-n-octyl phthalate	ND	5.00	"			
Diphenylamine	ND	5.00	"			
Fluoranthene	ND	0.0500	"			
Fluorene	ND	0.0500	"			
Hexachlorobenzene	ND	0.0200	"			
Hexachlorobutadiene	ND	0.500	"			
Hexachlorocyclopentadiene	ND	5.00	"			
Hexachloroethane	ND	0.500	"			
ndeno(1,2,3-cd)pyrene	ND	0.0500	"			
sophorone	ND	5.00	"			
Naphthalene	ND	0.0500	"			
Nitrobenzene	ND	0.250	"			
N-Nitrosodimethylamine	ND	0.500	"			
N-nitroso-di-n-propylamine	ND	5.00	"			
N-Nitrosodiphenylamine	ND	5.00	"			
Pentachlorophenol	ND	0.250	"			
Phenanthrene	ND	0.0500	"			
Phenol	ND	5.00	"			
Pyrene	ND	0.0500	"			
Surrogate: SURR: 2-Fluorophenol	23.2		"	50.0	46.4	19.7-63.1
Surrogate: SURR: Phenol-d6	11.5		"	50.0	23.0	10.1-41.7
Surrogate: SURR: Nitrobenzene-d5	22.8		"	25.0	91.0	50.2-113
Surrogate: SURR: 2-Fluorobiphenyl	22.9		"	25.0	91.6	39.9-105
Surrogate: SURR: 2,4,6-Tribromophenol	62.6		"	50.0	125	39.3-151
Surrogate: SURR: Terphenyl-d14	27.0		"	25.0	108	30.7-106

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 46 of 54

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BF40252 - EPA 3510C							
LCS (BF40252-BS1)						Pre	pared: 06/05/2024 Analyzed: 06/06/2024
1,1-Biphenyl	21.6	5.00	ug/L	6.25	346	21-102	High Bias
1,2,4,5-Tetrachlorobenzene	22.1	5.00	"	6.25	354	28-105	High Bias
1,2,4-Trichlorobenzene	21.8	5.00	"	6.25	349	35-91	High Bias
1,2-Dichlorobenzene	19.5	5.00	"	6.25	313	42-85	High Bias
1,2-Diphenylhydrazine (as Azobenzene)	17.6	5.00	"	6.25	281	16-137	High Bias
1,3-Dichlorobenzene	19.3	5.00	"	6.25	309	45-80	High Bias
1,4-Dichlorobenzene	19.7	5.00	"	6.25	315	42-82	High Bias
2,3,4,6-Tetrachlorophenol	29.1	5.00	"	6.25	466	30-130	High Bias
2,4,5-Trichlorophenol	26.7	5.00	"	6.25	428	36-112	High Bias
2,4,6-Trichlorophenol	25.9	5.00	"	6.25	415	41-107	High Bias
2,4-Dichlorophenol	23.3	5.00	"	6.25	373	43-92	High Bias
2,4-Dimethylphenol	15.3	5.00	"	6.25	244	25-92	High Bias
2,4-Dinitrophenol	44.5	5.00	"	6.25	712	10-149	High Bias
2,4-Dinitrotoluene	31.6	5.00	"	6.25	506	41-114	High Bias
2,6-Dinitrotoluene	29.4	5.00	"	6.25	470	49-106	High Bias
2-Chloronaphthalene	21.5	5.00	"	6.25	344	40-96	High Bias
2-Chlorophenol	20.6	5.00	"	6.25	330	35-84	High Bias
2-Methylnaphthalene	20.9	5.00	"	6.25	334	33-101	High Bias
2-Methylphenol	15.8	5.00	"	6.25	253	10-90	High Bias
2-Nitroaniline	26.0	5.00	"	6.25	416	31-122	High Bias
2-Nitrophenol	26.6	5.00	"	6.25	426	37-97	High Bias
3- & 4-Methylphenols	12.7	5.00	"	6.25	203	10-101	High Bias
3,3-Dichlorobenzidine	18.4	5.00	"	6.25	295	25-155	High Bias
3-Nitroaniline	19.6	5.00	"	6.25	314	29-128	High Bias
4,6-Dinitro-2-methylphenol	40.6	5.00	"	6.25	649	10-135	High Bias
4-Bromophenyl phenyl ether	24.4	5.00	"	6.25	390	38-116	High Bias
4-Chloro-3-methylphenol	22.0	5.00	"	6.25	353	28-101	High Bias
4-Chloroaniline	13.9	5.00	"	6.25	222	10-154	High Bias
4-Chlorophenyl phenyl ether	24.5	5.00	"	6.25	393	34-112	High Bias
4-Nitroaniline	20.5	5.00	"	6.25	328	15-143	High Bias
4-Nitrophenol	8.78	5.00	"	6.25	140	10-112	High Bias
Acenaphthene	21.3	0.0500	"	6.25	340	24-114	High Bias
Acenaphthylene	19.6	0.0500	,,	6.25	313	26-112	High Bias
Acetophenone	22.3	5.00	"	6.25	356	47-92	High Bias
Aniline	9.89	5.00	,,	6.25	158	10-107	High Bias
Anthracene	27.3	0.0500	"	6.25	437	35-114	High Bias
Atrazine	25.5	0.500	,,	6.25	409	43-101	High Bias
Benzaldehyde	20.3	5.00	,,	6.25	325	17-117	High Bias
Benzo(a)anthracene	24.8	0.0500	"		323 397	38-127	High Bias
Benzo(a)pyrene			,,	6.25			High Bias
Benzo(b)fluoranthene	23.7	0.0500	"	6.25	379	30-146	High Bias
	24.2	0.0500	"	6.25	388	36-145	-
Benzo(g,h,i)perylene	25.2	0.0500		6.25	403	10-163	High Bias
Benzo(k)fluoranthene	23.6	0.0500	"	6.25	377	16-149	High Bias
Benzoic acid	ND	50.0		6.25	216	30-130	Low Bias
Benzyl alcohol	13.5	5.00		6.25	216	18-75	High Bias
Benzyl butyl phthalate	24.8	5.00	"	6.25	397	28-129	High Bias
Bis(2-chloroethoxy)methane	19.2	5.00	"	6.25	307	27-112	High Bias
Bis(2-chloroethyl)ether	19.0	5.00	"	6.25	304	24-114	High Bias
Bis(2-chloroisopropyl)ether	12.8	5.00	"	6.25	205	21-124	High Bias
Bis(2-ethylhexyl)phthalate	22.6	0.500	"	6.25	362	10-171	High Bias
Caprolactam	4.19	5.00	"	6.25	67.0	10-29	High Bias

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 47 of 54

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BF40252-BS1)						Prep	pared: 06/05/2024 Analyzed: 06/06/202
Carbazole	31.4	5.00	ug/L	6.25	502	49-116	High Bias
Chrysene	23.3	0.0500	"	6.25	372	33-120	High Bias
Dibenzo(a,h)anthracene	28.4	0.0500	"	6.25	455	10-149	High Bias
Dibenzofuran	22.5	5.00	"	6.25	360	42-105	High Bias
Diethyl phthalate	24.2	5.00	"	6.25	388	38-112	High Bias
Dimethyl phthalate	23.7	5.00	"	6.25	379	49-106	High Bias
Di-n-butyl phthalate	32.0	5.00	"	6.25	512	36-110	High Bias
Di-n-octyl phthalate	26.2	5.00	"	6.25	419	12-149	High Bias
Diphenylamine	25.9	5.00	"	6.25	414	40-140	High Bias
luoranthene	32.2	0.0500	"	6.25	515	33-126	High Bias
luorene	23.5	0.0500	"	6.25	375	28-117	High Bias
Iexachlorobenzene	24.2	0.0200	"	6.25	388	27-120	High Bias
Iexachlorobutadiene	24.0	0.500	"	6.25	384	25-106	High Bias
Iexachlorocyclopentadiene	12.8	5.00	"	6.25	204	10-99	High Bias
Iexachloroethane	19.4	0.500	"	6.25	311	33-84	High Bias
ndeno(1,2,3-cd)pyrene	30.0	0.0500	"	6.25	480	10-150	High Bias
sophorone	21.1	5.00	"	6.25	337	29-115	High Bias
Taphthalene	19.7	0.0500	"	6.25	316	30-99	High Bias
litrobenzene	21.3	0.250	"	6.25	341	32-113	High Bias
I-Nitrosodimethylamine	12.2	0.500	"	6.25	195	10-63	High Bias
I-nitroso-di-n-propylamine	19.8	5.00	"	6.25	317	36-118	High Bias
I-Nitrosodiphenylamine	24.8	5.00	"	6.25	396	27-145	High Bias
entachlorophenol	27.1	0.250	"	6.25	434	19-127	High Bias
Phenanthrene	24.3	0.0500	"	6.25	388	31-112	High Bias
Phenol	7.47	5.00	"	6.25	120	10-37	High Bias
Pyrene	24.0	0.0500	"	6.25	383	42-125	High Bias
urrogate: SURR: 2-Fluorophenol	25.3		"	50.0	50.5	19.7-63.1	
Surrogate: SURR: Phenol-d6	12.8		"	50.0	25.6	10.1-41.7	
urrogate: SURR: Nitrobenzene-d5	25.0		"	25.0	99.9	50.2-113	
Surrogate: SURR: 2-Fluorobiphenyl	24.6		"	25.0	98.6	39.9-105	
Surrogate: SURR: 2,4,6-Tribromophenol	68.0		"	50.0	136	39.3-151	

25.0

30.7-106

27.3

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 (203) 325-1371 FAX (203) 357-0166 Page 48 of 54 ClientServices@

www.YORKLAB.com

Surrogate: SURR: Terphenyl-d14

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
•											

LOGD DEMASS BODA						ъ	1. 06/05/20	24.4. 1	1.00/00	/2024
LCS Dup (BF40252-BSD1)							pared: 06/05/20			
1,1-Biphenyl	17.2	5.00	ug/L	6.25	275	21-102	High Bias	22.9	20	Non-di
1,2,4,5-Tetrachlorobenzene	17.4	5.00	"	6.25	278	28-105	High Bias	24.1	20	Non-di
1,2,4-Trichlorobenzene	15.8	5.00	"	6.25	253	35-91	High Bias	31.7	20	Non-di
1,2-Dichlorobenzene	14.2	5.00	"	6.25	226	42-85	High Bias	32.0	20	Non-di
,2-Diphenylhydrazine (as Azobenzene)	16.3	5.00	"	6.25	261	16-137	High Bias	7.61	20	
1,3-Dichlorobenzene	13.6	5.00	"	6.25	217	45-80	High Bias	34.9	20	Non-di
1,4-Dichlorobenzene	13.9	5.00	"	6.25	222	42-82	High Bias	34.4	20	Non-di
2,3,4,6-Tetrachlorophenol	26.2	5.00	"	6.25	419	30-130	High Bias	10.7	20	
2,4,5-Trichlorophenol	21.8	5.00	"	6.25	348	36-112	High Bias	20.4	20	Non-di
2,4,6-Trichlorophenol	21.8	5.00	"	6.25	348	41-107	High Bias	17.5	20	
2,4-Dichlorophenol	18.7	5.00	"	6.25	299	43-92	High Bias	22.2	20	Non-di
2,4-Dimethylphenol	12.9	5.00	"	6.25	206	25-92	High Bias	16.8	20	
2,4-Dinitrophenol	36.2	5.00	"	6.25	579	10-149	High Bias	20.7	20	Non-di
2,4-Dinitrotoluene	25.5	5.00	"	6.25	407	41-114	High Bias	21.7	20	Non-dia
2,6-Dinitrotoluene	24.1	5.00	"	6.25	386	49-106	High Bias	19.6	20	
2-Chloronaphthalene	17.2	5.00	"	6.25	274	40-96	High Bias	22.5	20	Non-di
2-Chlorophenol	15.8	5.00	"	6.25	253	35-84	High Bias	26.2	20	Non-di
2-Methylnaphthalene	16.2	5.00	"	6.25	259	33-101	High Bias	25.1	20	Non-di
2-Methylphenol	12.2	5.00	"	6.25	196	10-90	High Bias	25.8	20	Non-di
2-Nitroaniline	21.3	5.00	"	6.25	341	31-122	High Bias	19.7	20	
2-Nitrophenol	21.3	5.00	"	6.25	341	37-97	High Bias	22.0	20	Non-di
3- & 4-Methylphenols	10.0	5.00	"	6.25	160	10-101	High Bias	23.5	20	Non-di
3,3-Dichlorobenzidine	15.1	5.00	"	6.25	241	25-155	High Bias	20.0	20	
3-Nitroaniline	17.4	5.00	"	6.25	279	29-128	High Bias	11.7	20	
,6-Dinitro-2-methylphenol	32.1	5.00	"	6.25	514	10-135	High Bias	23.2	20	Non-di
I-Bromophenyl phenyl ether	19.8	5.00	"	6.25	317	38-116	High Bias	20.7	20	Non-di
1-Chloro-3-methylphenol	17.9	5.00	"	6.25	286	28-101	High Bias	20.8	20	Non-di
4-Chloroaniline	13.2	5.00	"	6.25	211	10-154	High Bias	4.87	20	
4-Chlorophenyl phenyl ether	19.4	5.00	"	6.25	311	34-112	High Bias	23.2	20	Non-di
4-Nitroaniline	17.2	5.00	"	6.25	276	15-143	High Bias	17.4	20	
4-Nitrophenol	ND	5.00	"	6.25	2,0	10-112	Low Bias		20	
Acenaphthene	17.2	0.0500	"	6.25	274	24-114	High Bias	21.5	20	Non-di
Acenaphthylene	15.7	0.0500		6.25	252	26-112	High Bias	21.8	20	Non-di
Acetophenone	17.0	5.00	,,	6.25	272	47-92	High Bias	26.9	20	Non-di
Aniline	8.05	5.00	,,	6.25	129	10-107	High Bias	20.5	20	Non-di
Anthracene	22.4	0.0500	,,	6.25	358	35-114	High Bias	20.0	20	rvon-un
Atrazine	21.0	0.500	,,	6.25	335	43-101	High Bias	19.7	20	
Benzaldehyde			,,				High Bias	28.3	20	Non-di
Benzaldenyde Benzo(a)anthracene	15.3	5.00	,,	6.25	244	17-117	High Bias			Non-ui
* *	20.8	0.0500	,,	6.25	332	38-127		17.8	20	
Benzo(a)pyrene	20.1	0.0500	,,	6.25	322	30-146	High Bias	16.3	20 20	
Benzo(b)fluoranthene	20.6	0.0500	,,	6.25	329	36-145	High Bias	16.3		
Benzo(g,h,i)perylene	21.4	0.0500		6.25	343	10-163	High Bias	16.1	20	
Benzo(k)fluoranthene	19.9	0.0500	"	6.25	318	16-149	High Bias	17.0	20	
Benzoic acid	ND	50.0	"	6.25		30-130	Low Bias	150	20	
Benzyl alcohol	11.3	5.00		6.25	181	18-75	High Bias	17.8	20	
Benzyl butyl phthalate	21.0	5.00	"	6.25	337	28-129	High Bias	16.5	20	
Bis(2-chloroethoxy)methane	15.4	5.00	"	6.25	247	27-112	High Bias	21.6	20	Non-di
Bis(2-chloroethyl)ether	14.0	5.00	"	6.25	224	24-114	High Bias	30.3	20	Non-di
Bis(2-chloroisopropyl)ether	8.96	5.00	"	6.25	143	21-124	High Bias	35.2	20	Non-di
Bis(2-ethylhexyl)phthalate	19.2	0.500	"	6.25	307	10-171	High Bias	16.7	20	
Caprolactam	3.49	5.00	"	6.25	55.8	10-29	High Bias	18.2	20	

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 49 of 54

132-02 89th AVENUE

STRATFORD, CT 06615

120 RESEARCH DRIVE

RICHMOND HILL, NY 11418

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BF40252	- FPA	351	OC.

LCS Dup (BF40252-BSD1)						Prep	pared: 06/05/20)24 Analyze	ed: 06/06	/2024
Carbazole	26.1	5.00	ug/L	6.25	418	49-116	High Bias	18.3	20	
Chrysene	19.6	0.0500	"	6.25	313	33-120	High Bias	17.4	20	
Dibenzo(a,h)anthracene	24.2	0.0500	"	6.25	387	10-149	High Bias	16.0	20	
Dibenzofuran	18.5	5.00	"	6.25	296	42-105	High Bias	19.6	20	
Diethyl phthalate	20.0	5.00	"	6.25	321	38-112	High Bias	18.9	20	
Dimethyl phthalate	19.3	5.00	"	6.25	309	49-106	High Bias	20.3	20	Non-dir.
Di-n-butyl phthalate	27.2	5.00	"	6.25	435	36-110	High Bias	16.4	20	
Di-n-octyl phthalate	21.5	5.00	"	6.25	344	12-149	High Bias	19.6	20	
Diphenylamine	21.2	5.00	"	6.25	339	40-140	High Bias	19.9	20	
Fluoranthene	26.4	0.0500	"	6.25	423	33-126	High Bias	19.5	20	
Fluorene	19.3	0.0500	"	6.25	308	28-117	High Bias	19.6	20	
Hexachlorobenzene	20.0	0.0200	"	6.25	321	27-120	High Bias	19.0	20	
Hexachlorobutadiene	17.2	0.500	"	6.25	275	25-106	High Bias	33.3	20	Non-dir.
Hexachlorocyclopentadiene	8.75	5.00	"	6.25	140	10-99	High Bias	37.4	20	Non-dir.
Hexachloroethane	13.2	0.500	"	6.25	211	33-84	High Bias	38.3	20	Non-dir.
Indeno(1,2,3-cd)pyrene	25.5	0.0500	"	6.25	408	10-150	High Bias	16.2	20	
Isophorone	16.6	5.00	"	6.25	265	29-115	High Bias	23.9	20	Non-dir.
Naphthalene	14.9	0.0500	"	6.25	238	30-99	High Bias	28.1	20	Non-dir.
Nitrobenzene	17.0	0.250	"	6.25	272	32-113	High Bias	22.6	20	Non-dir.
N-Nitrosodimethylamine	9.50	0.500	"	6.25	152	10-63	High Bias	24.8	20	Non-dir.
N-nitroso-di-n-propylamine	14.7	5.00	"	6.25	235	36-118	High Bias	29.6	20	Non-dir.
N-Nitrosodiphenylamine	20.8	5.00	"	6.25	332	27-145	High Bias	17.7	20	
Pentachlorophenol	21.1	0.250	"	6.25	338	19-127	High Bias	24.9	20	Non-dir.
Phenanthrene	20.0	0.0500	"	6.25	320	31-112	High Bias	19.3	20	
Phenol	5.92	5.00	"	6.25	94.7	10-37	High Bias	23.2	20	Non-dir.
Pyrene	20.2	0.0500	"	6.25	323	42-125	High Bias	17.1	20	
Surrogate: SURR: 2-Fluorophenol	21.2		"	50.0	42.4	19.7-63.1				
Surrogate: SURR: Phenol-d6	10.9		"	50.0	21.9	10.1-41.7				
Surrogate: SURR: Nitrobenzene-d5	20.9		"	25.0	83.6	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	21.2		"	25.0	84.9	39.9-105				
Surrogate: SURR: 2,4,6-Tribromophenol	57.3		"	50.0	115	39.3-151				
Surrogate: SURR: Terphenyl-d14	24.4		"	25.0	97.6	30.7-106				

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 50 of 54

ClientServices@

www.YORKLAB.com (203) 325-1371

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
24F0113-01	MW-1AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
24F0113-02	MW-3AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
24F0113-03	MW-4AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
24F0113-04	MW-5AR	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
24F0113-05	DUP	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

S-08	The recovery of this surrogate was outside of QC limits.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
ICVE	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration verification (recovery exceeded 30% of expected value).
CCVE	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
CAL-E	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%)
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

STRATFORD, CT 06615

120 RESEARCH DRIVE

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 52 of 54

132-02 89th AVENUE

RICHMOND HILL, NY 11418

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 53 of 54

York Analytical Laboratories, Inc. 120 Research Drive 132-02 89th Ave Stratford, CT 06615 Queens, NY 11418 clientservices@yorklab.com

www.yorklab.com

YORK AMALTOTOM LABORATORIES INC.

Field Chain-of-Custody Record

NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.

Page of YORK Project No. SHEOHS

VOIIR Information	C		Your signature	Your signature binds you to YORK's Standard Terms & Conditions.	Terms & Conditions.		Page of
Company:	Company:	Keport Io:		Invoice To:	YOUR	YOUR Project Number	Turn-Around Time
Compani		2	SOS SOS	9	1760	10	RUSH - Next Day
355 Research OKWY	Address.	C	Address:	0	ててのロー	ープ	RUSH - Two Day
Meriden, CT 06450	Phone: O	3	SAM	N. C.	YOUR	YOUR Project Name	RUSH - Three Day
Contact	SOW	d'	Phone.: SOLM	7	Broshan 1	Brooklyn Whole Foods	RUSH - Four Day
Brian Lown	_	L.		R	7		Standard (5-7 Dav)
REDWING BLEAMPONIES. Com	S Color	a	E-mail: CAM	Ne	YOUR PO#:		
will not be logged in and the turn-around-time clock will not begin until any questions by YORK are resolved.	lock will not begin until any	Matrix Codes	Samples From	Report	Report / EDD Type (circle selections)	selections)	YORK Reg. Comp.
CCCO DOGOVA		S - soil / solid	New York	Summary Report	CT RCP	Standard Excel EDD	Compared to the following Regulation(s): (please fill in)
Samples Collected by Continuous name when and nime below.	trice by the control of the control	GW - groundwater	New Jersey	QA Report	CT RCP DQA/DUE	EQuIS (Standard)	(a) (b) (b) (b)
The state of the s	above allu sign below)	DW - drinking water	Connecticut	NY ASP A Package	NJDEP Reduced	NYSDEC EQUIS	
Challe Myss		WW - wastewater	Pennsylvania Other	NY ASP B Package	Deliverables	MADEP SRP HazSite	1
Sample Identification	on		Date/Time Sampled		יייייייייייייייייייייייייייייייייייייי	11	Okage >
NWI-140			U		nalysis Reques		Container Description
		,	V13/24 UIVD	7011 VUCA	(8260)	SVOCS (8270)	3VOR. 2 ambers
		GW	TH01	FULL VDCS	(8260)	SYNC (8270)	
MW-1AR		GW G	0828	FUN VOCS	(82(00)		8770 Sympe 2 2 months
MW-548		MC	0950		(8760)		ZIVAGE STORY
DUP		SW	\ \ \		(8260)	(8770)	2 VAR
		,					
Comments:				2000,0	the shoot of the state of the s	7	
					ou:		Special Instruction
	٠			HCI MeOH HN Ascorbic Acid Other:	HNO3 H2SO4 er:	NaOH ZnAc	Field Filtered
	Date/Time Sa	Samples Received by / Company)ate/Time	Samples Relinquished by / Company	wood	Lab to I lite!
Christina Kitzo- Bi Campanies			9	6/4/12 1/00)	4	npany	C/4/ Ju 14 Un
d bles Received by / Company	Date/Time Sa	Samples Relinquished by / Company		Date/Time 8	Samples Received by / Company	ny	Date/T/me
Jes Relinquished by / Company	Date/Time Sa	Samples Received by / Company		Date/Time S	Samples Received in LAB by	Date/Time	Temp. Received at Lab
54				-	Mich 6	0441 46-4-0	5.7
							Degrees C